WorldWideScience

Sample records for atmospheric dust deposition

  1. Contribution of Asian dust to atmospheric deposition of radioactive cesium (137Cs)

    International Nuclear Information System (INIS)

    Fukuyama, Taijiro; Fujiwara, Hideshi

    2008-01-01

    Both Asian dust (kosa) transported from the East Asian continent and locally suspended dust near monitoring sites contribute to the observed atmospheric deposition of 137 Cs in Japan. To estimate the relative contribution of these dust phenomena to the total 137 Cs deposition, we monitored weekly deposition of mineral particles and 137 Cs in spring. Deposition of 137 Cs from a single Asian dust event was 62.3 mBq m -2 and accounted for 67% of the total 137 Cs deposition during the entire monitoring period. Furthermore, we found high 137 Cs specific activity in the Asian dust deposition sample. Although local dust events contributed to 137 Cs deposition, their contribution was considerably smaller than that of Asian dust. We conclude that the primary source of atmospheric 137 Cs in Japan is dust transported from the East Asian continent

  2. Dust cloud evolution in sub-stellar atmospheres via plasma deposition and plasma sputtering

    Science.gov (United States)

    Stark, C. R.; Diver, D. A.

    2018-04-01

    Context. In contemporary sub-stellar model atmospheres, dust growth occurs through neutral gas-phase surface chemistry. Recently, there has been a growing body of theoretical and observational evidence suggesting that ionisation processes can also occur. As a result, atmospheres are populated by regions composed of plasma, gas and dust, and the consequent influence of plasma processes on dust evolution is enhanced. Aim. This paper aims to introduce a new model of dust growth and destruction in sub-stellar atmospheres via plasma deposition and plasma sputtering. Methods: Using example sub-stellar atmospheres from DRIFT-PHOENIX, we have compared plasma deposition and sputtering timescales to those from neutral gas-phase surface chemistry to ascertain their regimes of influence. We calculated the plasma sputtering yield and discuss the circumstances where plasma sputtering dominates over deposition. Results: Within the highest dust density cloud regions, plasma deposition and sputtering dominates over neutral gas-phase surface chemistry if the degree of ionisation is ≳10-4. Loosely bound grains with surface binding energies of the order of 0.1-1 eV are susceptible to destruction through plasma sputtering for feasible degrees of ionisation and electron temperatures; whereas, strong crystalline grains with binding energies of the order 10 eV are resistant to sputtering. Conclusions: The mathematical framework outlined sets the foundation for the inclusion of plasma deposition and plasma sputtering in global dust cloud formation models of sub-stellar atmospheres.

  3. Atmospheric deposition of radioactive cesium (137Cs) associated with dust events in East Asia

    International Nuclear Information System (INIS)

    Fujiwara, H.

    2010-01-01

    Since the cessation of atmospheric nuclear testing in 1980, there has been no known serious atmospheric contamination by radioactive cesium (sup(137)Cs) apart from the Chernobyl nuclear reactor accident in 1986. There now remain only small amounts of anthropogenic radionuclides in the atmosphere that can be directly related to past testing. However, sup(137)Cs is still regularly found in atmospheric deposition samples in Japan. In this study, we analyzed sup(137)Cs monitoring data, meteorological data, and field survey results to investigate the recent transport and deposition of sup(137)Cs associated with dust phenomena. Monthly records of nationwide sup(137)Cs deposition in Japan during the 1990s show a consistent seasonal variation, with higher levels of deposition occurring in spring. In March 2002, an unexpectedly high amount of sup(137)Cs was deposited in the northwestern coastal area of Japan at the same time as an Asian dust event was observed. Analysis of land-based weather data showed that sandstorms and other dust-raising phenomena also occurred in March 2002 over areas of Mongolia and northeastern China where grassland and shrubs predominated. Furthermore, radioactivity measurements showed sup(137)Cs enrichment in the surface layer of grassland soils in the areas affected by these sandstorms. These results suggest that grasslands are potential sources of sup(137)Cs-bearing dust. Continued desertification of the East Asian continent in response to recent climate change can be expected to result in an increase in sup(137)Cs-bearing soil particles in the atmosphere, and their subsequent re-deposition in Japan. However, soil dust is also raised around Japanese monitoring sites by the strong winds that are common in Japan in spring, and this local dust might also contribute to sup(137)Cs deposition in Japan. To estimate the relative contributions of local and distant dust events to the total sup(137)Cs deposition, we monitored deposition of mineral particles

  4. Characterisation of atmospheric deposited particles during a dust storm in urban areas of Eastern Australia

    Energy Technology Data Exchange (ETDEWEB)

    Gunawardena, Janaka, E-mail: j.gunawardena@qut.edu.au; Ziyath, Abdul M., E-mail: mohamed.ziyath@qut.edu.au; Bostrom, Thor E., E-mail: t.bostrom@qut.edu.au; Bekessy, Lambert K., E-mail: l.bekessy@qut.edu.au; Ayoko, Godwin A., E-mail: g.ayoko@qut.edu.au; Egodawatta, Prasanna, E-mail: p.egodawatta@qut.edu.au; Goonetilleke, Ashantha, E-mail: a.goonetilleke@qut.edu.au

    2013-09-01

    The characteristics of dust particles deposited during the 2009 dust storm in the Gold Coast and Brisbane regions of Australia are discussed in this paper. The study outcomes provide important knowledge in relation to the potential impacts of dust storm related pollution on ecosystem health in the context that the frequency of dust storms is predicted to increase due to anthropogenic desert surface modifications and climate change impacts. The investigated dust storm contributed a large fraction of fine particles to the environment with an increased amount of total suspended solids, compared to dry deposition under ambient conditions. Although the dust storm passed over forested areas, the organic carbon content in the dust was relatively low. The primary metals present in the dust storm deposition were aluminium, iron and manganese, which are common soil minerals in Australia. The dust storm deposition did not contain significant loads of nickel, cadmium, copper and lead, which are commonly present in the urban environment. Furthermore, the comparison between the ambient and dust storm chromium and zinc loads suggested that these metals were contributed to the dust storm by local anthropogenic sources. The potential ecosystem health impacts of the 2009 dust storm include, increased fine solids deposition on ground surfaces resulting in an enhanced capacity to adsorb toxic pollutants as well as increased aluminium, iron and manganese loads. In contrast, the ecosystem health impacts related to organic carbon and other metals from dust storm atmospheric deposition are not considered to be significant. - Highlights: • The dust storm contributed a large fraction of fine particles to pollutant build-up. • The dust storm increased TSS, Al, Fe and Mn loads in build-up on ground surfaces. • Dust storm did not significantly increase TOC, Ni, Cu, Pb and Cd loads in build-up. • Cr and Zn in dust storm deposition were contributed by local anthropogenic sources.

  5. Characterisation of atmospheric deposited particles during a dust storm in urban areas of Eastern Australia

    International Nuclear Information System (INIS)

    Gunawardena, Janaka; Ziyath, Abdul M.; Bostrom, Thor E.; Bekessy, Lambert K.; Ayoko, Godwin A.; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2013-01-01

    The characteristics of dust particles deposited during the 2009 dust storm in the Gold Coast and Brisbane regions of Australia are discussed in this paper. The study outcomes provide important knowledge in relation to the potential impacts of dust storm related pollution on ecosystem health in the context that the frequency of dust storms is predicted to increase due to anthropogenic desert surface modifications and climate change impacts. The investigated dust storm contributed a large fraction of fine particles to the environment with an increased amount of total suspended solids, compared to dry deposition under ambient conditions. Although the dust storm passed over forested areas, the organic carbon content in the dust was relatively low. The primary metals present in the dust storm deposition were aluminium, iron and manganese, which are common soil minerals in Australia. The dust storm deposition did not contain significant loads of nickel, cadmium, copper and lead, which are commonly present in the urban environment. Furthermore, the comparison between the ambient and dust storm chromium and zinc loads suggested that these metals were contributed to the dust storm by local anthropogenic sources. The potential ecosystem health impacts of the 2009 dust storm include, increased fine solids deposition on ground surfaces resulting in an enhanced capacity to adsorb toxic pollutants as well as increased aluminium, iron and manganese loads. In contrast, the ecosystem health impacts related to organic carbon and other metals from dust storm atmospheric deposition are not considered to be significant. - Highlights: • The dust storm contributed a large fraction of fine particles to pollutant build-up. • The dust storm increased TSS, Al, Fe and Mn loads in build-up on ground surfaces. • Dust storm did not significantly increase TOC, Ni, Cu, Pb and Cd loads in build-up. • Cr and Zn in dust storm deposition were contributed by local anthropogenic sources

  6. Modeling the biogeochemical impact of atmospheric phosphate deposition from desert dust and combustion sources to the Mediterranean Sea

    Science.gov (United States)

    Richon, Camille; Dutay, Jean-Claude; Dulac, François; Wang, Rong; Balkanski, Yves

    2018-04-01

    Daily modeled fields of phosphate deposition to the Mediterranean from natural dust, anthropogenic combustion and wildfires were used to assess the effect of this external nutrient on marine biogeochemistry. The ocean model used is a high-resolution (1/12°) regional coupled dynamical-biogeochemical model of the Mediterranean Sea (NEMO-MED12/PISCES). The input fields of phosphorus are for 2005, which are the only available daily resolved deposition fields from the global atmospheric chemical transport model LMDz-INCA. Traditionally, dust has been suggested to be the main atmospheric source of phosphorus, but the LMDz-INCA model suggests that combustion is dominant over natural dust as an atmospheric source of phosphate (PO4, the bioavailable form of phosphorus in seawater) for the Mediterranean Sea. According to the atmospheric transport model, phosphate deposition from combustion (Pcomb) brings on average 40.5×10-6 mol PO4 m-2 yr-1 over the entire Mediterranean Sea for the year 2005 and is the primary source over the northern part (e.g., 101×10-6 mol PO4 m-2 yr-1 from combustion deposited in 2005 over the north Adriatic against 12.4×10-6 from dust). Lithogenic dust brings 17.2×10-6 mol PO4 m-2 yr-1 on average over the Mediterranean Sea in 2005 and is the primary source of atmospheric phosphate to the southern Mediterranean Basin in our simulations (e.g., 31.8×10-6 mol PO4 m-2 yr-1 from dust deposited in 2005 on average over the south Ionian basin against 12.4×10-6 from combustion). The evaluation of monthly averaged deposition flux variability of Pdust and Pcomb for the 1997-2012 period indicates that these conclusions may hold true for different years. We examine separately the two atmospheric phosphate sources and their respective flux variability and evaluate their impacts on marine surface biogeochemistry (phosphate concentration, chlorophyll a, primary production). The impacts of the different phosphate deposition sources on the biogeochemistry of the

  7. Atmospheric processing of iron carried by mineral dust

    Directory of Open Access Journals (Sweden)

    S. Nickovic

    2013-09-01

    Full Text Available Nutrification of the open ocean originates mainly from deposited aerosol in which the bio-avaliable iron is likely to be an important factor. The relatively insoluble iron in dust from arid soils becomes more soluble after atmospheric processing and, through its deposition in the ocean, could contribute to marine primary production. To numerically simulate the atmospheric route of iron from desert sources to sinks in the ocean, we developed a regional atmospheric dust-iron model that included parameterization of the transformation of iron to a soluble form caused by dust mineralogy, cloud processes and solar radiation. When compared with field data on the aerosol iron, which were collected during several Atlantic cruises, the results from the higher-resolution simulation experiments showed that the model was capable of reproducing the major observed patterns.

  8. Diagnosis of the Relationship between Dust Storms over the Sahara Desert and Dust Deposit or Coloured Rain in the South Balkans

    Directory of Open Access Journals (Sweden)

    N. G. Prezerakos

    2010-01-01

    Full Text Available The main objects of study in this paper are the synoptic scale atmospheric circulation systems associated with the rather frequent phenomenon of coloured rain and the very rare phenomenon of dust or sand deposits from a Saharan sandstorm triggered by a developing strong depression. Analysis of two such cases revealed that two days before the occurrence of the coloured rain or the dust deposits over Greece a sand storm appeared over the north-western Sahara desert. The flow in the entire troposphere is southerly/south-westerly with an upward vertical motion regime. If the atmospheric conditions over Greece favour rain then this rain contains a part of the dust cloud while the rest is drawn away downstream adopting a light yellow colour. In cases where the atmospheric circulation on the route of the dust cloud trajectories is not intensively anticyclonic dust deposits can occur on the surface long far from the region of the dust origin. Such was the case on 4th April, 1988, when significant synoptic-scale subsidence occurred over Italy and towards Greece. The upper air data, in the form of synoptic maps, illustrate in detail the synoptic-scale atmospheric circulations associated with the emission-transport-deposition and confirm the transportation of dust particles.

  9. Atmospheric dust additions as a soil formation factor

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Hernandez, J. L.; Ruoss, J.

    2009-07-01

    The Mediterranean area is distinguished by a least four features that determine the nature of its soils. These are its climate, its mountains, the addition of exogenous dust and ongoing anthropogenic effects. We here present three cases in which the influence of atmospheric dust additions can be detected in the soils of representative circum-Saharan contexts the Canary Islands, Betic intramontane depressions, and the Sierra Bermeja peridotite massif (Malaga). The unique position of the Canary Islands determines important rates of dust deposit, largely depending on position on the relief. the nature of the dust contrasts with the rocky substratum of the islands, and the marine and volcanic context can also affect the nature of the deposits. The numerous, extensive intramontane basins of the Betic Cordilleras act as large captors of atmospheric dust, with rates similar to those found in the Canary archipelago. The carbonate content of these exogenous additions represents a significant components that should be taken into account when establishing the carbonate accumulation regime in these soils. (Author) 13 refs.

  10. Impact of air pollution on deposition of mineral dust: Implications for ocean productivity

    Science.gov (United States)

    Fan, S.; Horrowitz, L. W.; Levy, H.; Moxim, W. J.

    2003-12-01

    Atmospheric dust aerosols originating from arid regions are simulated in an atmospheric global chemical transport model. Based on model results and observations of dust oncentration, we hypothesize that Asian dust over the North Pacific is mostly hydrophilic and removed efficiently by both ice and droplet nucleation processes. By contrast, African dust over the tropical Atlantic is mostly hydrophobic and removed by ice, but not droplet, nucleation. We suggest that Asian dust is transformed into hydrophilic aerosols by chemical reactions with air pollutants over East Asia, which produce high levels of readily soluble materials on the surface of dust particles. A model of chemical aging will be presented for the hygroscopic transformation of mineral dust in the atmosphere. The model predicts that evolving air pollution in East Asia could have caused an increase of dust deposition to the coastal oceans off Asia and a decrease by as much as 50 percent in the eastern North Pacific. Insofar as iron from dust deposition fuels diatom blooms in the North Pacific Ocean, this decrease could have potential consequences on ocean biology.

  11. Impacts of Cosmic Dust on Planetary Atmospheres and Surfaces

    Science.gov (United States)

    Plane, John M. C.; Flynn, George J.; Määttänen, Anni; Moores, John E.; Poppe, Andrew R.; Carrillo-Sanchez, Juan Diego; Listowski, Constantino

    2018-02-01

    Recent advances in interplanetary dust modelling provide much improved estimates of the fluxes of cosmic dust particles into planetary (and lunar) atmospheres throughout the solar system. Combining the dust particle size and velocity distributions with new chemical ablation models enables the injection rates of individual elements to be predicted as a function of location and time. This information is essential for understanding a variety of atmospheric impacts, including: the formation of layers of metal atoms and ions; meteoric smoke particles and ice cloud nucleation; perturbations to atmospheric gas-phase chemistry; and the effects of the surface deposition of micrometeorites and cosmic spherules. There is discussion of impacts on all the planets, as well as on Pluto, Triton and Titan.

  12. Improved dust representation in the Community Atmosphere Model

    Science.gov (United States)

    Albani, S.; Mahowald, N. M.; Perry, A. T.; Scanza, R. A.; Zender, C. S.; Heavens, N. G.; Maggi, V.; Kok, J. F.; Otto-Bliesner, B. L.

    2014-09-01

    Aerosol-climate interactions constitute one of the major sources of uncertainty in assessing changes in aerosol forcing in the anthropocene as well as understanding glacial-interglacial cycles. Here we focus on improving the representation of mineral dust in the Community Atmosphere Model and assessing the impacts of the improvements in terms of direct effects on the radiative balance of the atmosphere. We simulated the dust cycle using different parameterization sets for dust emission, size distribution, and optical properties. Comparing the results of these simulations with observations of concentration, deposition, and aerosol optical depth allows us to refine the representation of the dust cycle and its climate impacts. We propose a tuning method for dust parameterizations to allow the dust module to work across the wide variety of parameter settings which can be used within the Community Atmosphere Model. Our results include a better representation of the dust cycle, most notably for the improved size distribution. The estimated net top of atmosphere direct dust radiative forcing is -0.23 ± 0.14 W/m2 for present day and -0.32 ± 0.20 W/m2 at the Last Glacial Maximum. From our study and sensitivity tests, we also derive some general relevant findings, supporting the concept that the magnitude of the modeled dust cycle is sensitive to the observational data sets and size distribution chosen to constrain the model as well as the meteorological forcing data, even within the same modeling framework, and that the direct radiative forcing of dust is strongly sensitive to the optical properties and size distribution used.

  13. A 20-year simulated climatology of global dust aerosol deposition.

    Science.gov (United States)

    Zheng, Yu; Zhao, Tianliang; Che, Huizheng; Liu, Yu; Han, Yongxiang; Liu, Chong; Xiong, Jie; Liu, Jianhui; Zhou, Yike

    2016-07-01

    Based on a 20-year (1991-2010) simulation of dust aerosol deposition with the global climate model CAM5.1 (Community Atmosphere Model, version 5.1), the spatial and temporal variations of dust aerosol deposition were analyzed using climate statistical methods. The results indicated that the annual amount of global dust aerosol deposition was approximately 1161±31Mt, with a decreasing trend, and its interannual variation range of 2.70% over 1991-2010. The 20-year average ratio of global dust dry to wet depositions was 1.12, with interannual variation of 2.24%, showing the quantity of dry deposition of dust aerosol was greater than dust wet deposition. High dry deposition was centered over continental deserts and surrounding regions, while wet deposition was a dominant deposition process over the North Atlantic, North Pacific and northern Indian Ocean. Furthermore, both dry and wet deposition presented a zonal distribution. To examine the regional changes of dust aerosol deposition on land and sea areas, we chose the North Atlantic, Eurasia, northern Indian Ocean, North Pacific and Australia to analyze the interannual and seasonal variations of dust deposition and dry-to-wet deposition ratio. The deposition amounts of each region showed interannual fluctuations with the largest variation range at around 26.96% in the northern Indian Ocean area, followed by the North Pacific (16.47%), Australia (9.76%), North Atlantic (9.43%) and Eurasia (6.03%). The northern Indian Ocean also had the greatest amplitude of interannual variation in dry-to-wet deposition ratio, at 22.41%, followed by the North Atlantic (9.69%), Australia (6.82%), North Pacific (6.31%) and Eurasia (4.36%). Dust aerosol presented a seasonal cycle, with typically strong deposition in spring and summer and weak deposition in autumn and winter. The dust deposition over the northern Indian Ocean exhibited the greatest seasonal change range at about 118.00%, while the North Atlantic showed the lowest seasonal

  14. Elemental concentrations in deposited dust on leaves along an urbanization gradient.

    Science.gov (United States)

    Simon, Edina; Baranyai, Edina; Braun, Mihály; Cserháti, Csaba; Fábián, István; Tóthmérész, Béla

    2014-08-15

    Environmental health is an essential component of the quality of life in modern societies. Monitoring of environmental quality and the assessment of environmental risks are often species based on the elemental concentration of deposited dust. Our result suggested that stomata size and distribution were the most important factors influencing the accumulation of air contaminants in leaves. We found that the leaves' surfaces of Acer negundo and Celtis occidentalis were covered by a large number of trichomes, and these species have proven to be suitable biomonitors for atmospheric pollution difficult; these can be overcome using bioindicator species. Leaves of Padus serotina, Acer campestre, A. negundo, Quercus robur and C. occidentalis were used to assess the amount of deposited dust and the concentration of contaminants in deposited dust in and around the city of Debrecen, Hungary. Samples were collected from an urban, suburban and rural area along an urbanization gradient. The concentrations of Ba, Cu, Fe, Mn, Ni, Pb, S, Sr and Zn were determined in deposited dust using ICP-OES. Scanning electron microscopy (SEM) was used to explore the morphological structure and dust absorbing capacity of leaves. We found significant differences in dust deposition among species, and dust deposition correlated with trichomes' density. Principal component analysis (PCA) also showed a total separation of tree. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Atmospheric and oceanic dust fluxes in the northeastern tropical Atlantic Ocean: how close a coupling?

    Directory of Open Access Journals (Sweden)

    A. Bory

    2002-12-01

    Full Text Available Atmospheric inputs to the ocean of dust originating from Africa are compared with downward dust flux in the oceanic water column. Atmospheric fluxes were estimated using remote-sensing-derived dust optical thickness and parameters from a transport/deposition model (TM2z. Oceanic fluxes were measured directly over/in two regions of contrasting primary productivity of the northeastern tropical Atlantic (one mesotrophic and one oligotrophic, located at about 500 and 1500 km off Mauritania underlying the offshore dust plume. In both regions, estimates of annual atmospheric dust inputs to the ocean surface are lower than, but of the same order of magnitude as, oceanic fluxes (49.5 and 8.8 mg.m-2 .d-1 in the mesotrophic and oligotrophic regions. Part of this mismatch may reflect both a general flaw in the dust grain size distribution used in transport models, which likely underestimates large particles, and/or lateral advection to each region of dustier surface waters from upstream, where dust deposition is higher. Higher-frequency temporal coupling between atmospheric and oceanic fluxes seems to be primary-productivity dependent, as hypothesized in previously reported studies.Key words. Atmospheric composition and structure (aerosols and particles; geochemical cycles Oceanography: biological and chemical (geochemistry

  16. Effect of rock fragment embedding on the aeolian deposition of dust on stone-covered surfaces

    NARCIS (Netherlands)

    Goossens, D.

    2005-01-01

    Many stone-covered surfaces on Earth are subject to aeolian deposition of atmospheric dust. This study investigates how the deposition of dust is affected when rock fragments become gradually more embedded in the ground or, inversely, become more concentrated on the surface. Experiments were

  17. Magnetic Measurements of Atmospheric Dust Deposition in Soils

    Science.gov (United States)

    Kapička, Aleš; Petrovský, Eduard; Grison, Hana; Podrázský, Vilém; Křížek, Pavel

    2010-05-01

    Atmospheric dust of anthropogenic origin contains significant portion of minerals characterized by ferrimagnetic properties [1,2]. These minerals, mostly iron oxides, can serve as tracers of industrial pollutants in soil layers. Moreover, recent results, e.g., [3,4] show significant correlation between concentration-dependent magnetic parameters (e.g., low-field magnetic susceptibility) and concentration of heavy metals (e.g., Pb, Zn, Cd). In our paper we have investigated magnetic properties of depth soil profiles from Krušné hory Mountains (Czech Republic), which belong to a highly contaminated, so-called Black Triangle in central Europe. Emissions are determined by considerable concentration of big sources of pollution (power plants burning fossil fuel, metallurgical and chemical industry). Increased values of magnetic susceptibility (25 - 200 × 10-5 SI) were clearly identified in the top-soil layers. Thermomagnetic analyses and SEM observation indicate that the accumulated anthropogenic ferrimagnetics dominate these layers. Magnetic enhancement is limited to depths of 4-7 cm below the soil surface, usually in F-H or top of Ah soil horizons; deeper soil horizons contain mainly magnetically weak materials and are characterized by much lower values of susceptibility (up to 30 × 10-5 SI). Significant magnetic parameters (e.g., Curie temperature Tc) and SEM results of contaminated topsoils are comparable with magnetic parameters of atmospheric dust, collected (using high-volume samplers) at the same localities.

  18. Estimating chemical composition of atmospheric deposition fluxes from mineral insoluble particles deposition collected in the western Mediterranean region

    Directory of Open Access Journals (Sweden)

    Y. Fu

    2017-11-01

    Full Text Available In order to measure the mass flux of atmospheric insoluble deposition and to constrain regional models of dust simulation, a network of automatic deposition collectors (CARAGA has been installed throughout the western Mediterranean Basin. Weekly samples of the insoluble fraction of total atmospheric deposition were collected concurrently on filters at five sites including four on western Mediterranean islands (Frioul and Corsica, France; Mallorca, Spain; and Lampedusa, Italy and one in the southern French Alps (Le Casset, and a weighing and ignition protocol was applied in order to quantify their mineral fraction. Atmospheric deposition is both a strong source of nutrients and metals for marine ecosystems in this area. However, there are few data on trace-metal deposition in the literature, since their deposition measurement is difficult to perform. In order to obtain more information from CARAGA atmospheric deposition samples, this study aimed to test their relevance in estimating elemental fluxes in addition to total mass fluxes. The elemental chemical analysis of ashed CARAGA filter samples was based on an acid digestion and an elemental analysis by inductively coupled plasma atomic emission spectroscopy (ICP-AES and mass spectrometry (MS in a clean room. The sampling and analytical protocols were tested to determine the elemental composition for mineral dust tracers (Al, Ca, K, Mg and Ti, nutrients (P and Fe and trace metals (Cd, Co, Cr, Cu, Mn, Ni, V and Zn from simulated wet deposition of dust analogues and traffic soot. The relative mass loss by dissolution in wet deposition was lower than 1 % for Al and Fe, and reached 13 % for P due to its larger solubility in water. For trace metals, this loss represented less than 3 % of the total mass concentration, except for Zn, Cu and Mn for which it could reach 10 %, especially in traffic soot. The chemical contamination during analysis was negligible for all the elements except for Cd

  19. Elemental concentrations in deposited dust on leaves along an urbanization gradient

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Edina, E-mail: edina.simon@gmail.com [Department of Ecology, University of Debrecen, H-4010 Debrecen, P.O. Box 71 (Hungary); Baranyai, Edina [Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4010 Debrecen, P.O. Box 21 (Hungary); Agilent Atomic Spectroscopy Partner Laboratory, University of Debrecen, Egyetem tér 1, H-4032 Debrecen (Hungary); Braun, Mihály [Institute of Nuclear Research of the Hungarian Academy of Sciences, Herteleni Laboratory of Environmental Studies, 4026 Debrecen, Bem tér 18/C (Hungary); Cserháti, Csaba [Department of Solid State Physics, University of Debrecen, H-4010 Debrecen, P.O. Box 2 (Hungary); Fábián, István [Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4010 Debrecen, P.O. Box 21 (Hungary); Tóthmérész, Béla [HAS-UD Biodiversity and Ecosystem Services Research Group, H-4010 Debrecen, P.O. Box 71 (Hungary)

    2014-08-15

    Environmental health is an essential component of the quality of life in modern societies. Monitoring of environmental quality and the assessment of environmental risks are often species based on the elemental concentration of deposited dust. Our result suggested that stomata size and distribution were the most important factors influencing the accumulation of air contaminants in leaves. We found that the leaves' surfaces of Acer negundo and Celtis occidentalis were covered by a large number of trichomes, and these species have proven to be suitable biomonitors for atmospheric pollution difficult; these can be overcome using bioindicator species. Leaves of Padus serotina, Acer campestre, A. negundo, Quercus robur and C. occidentalis were used to assess the amount of deposited dust and the concentration of contaminants in deposited dust in and around the city of Debrecen, Hungary. Samples were collected from an urban, suburban and rural area along an urbanization gradient. The concentrations of Ba, Cu, Fe, Mn, Ni, Pb, S, Sr and Zn were determined in deposited dust using ICP–OES. Scanning electron microscopy (SEM) was used to explore the morphological structure and dust absorbing capacity of leaves. We found significant differences in dust deposition among species, and dust deposition correlated with trichomes' density. Principal component analysis (PCA) also showed a total separation of tree. - Highlights: • Dust is used as indicators of the accumulation of inorganic pollutants. • Scanning EM was used to explore the morphological structure of leaves. • Amount of dust deposited of leaves correlated with trichomes' density. • A. negundo, C. occidentalis and Q. robur are suitable to indicate air contaminants. • A. negundo and C. occidentalis are suitable to decrease the amount of dust in air.

  20. Elemental concentrations in deposited dust on leaves along an urbanization gradient

    International Nuclear Information System (INIS)

    Simon, Edina; Baranyai, Edina; Braun, Mihály; Cserháti, Csaba; Fábián, István; Tóthmérész, Béla

    2014-01-01

    Environmental health is an essential component of the quality of life in modern societies. Monitoring of environmental quality and the assessment of environmental risks are often species based on the elemental concentration of deposited dust. Our result suggested that stomata size and distribution were the most important factors influencing the accumulation of air contaminants in leaves. We found that the leaves' surfaces of Acer negundo and Celtis occidentalis were covered by a large number of trichomes, and these species have proven to be suitable biomonitors for atmospheric pollution difficult; these can be overcome using bioindicator species. Leaves of Padus serotina, Acer campestre, A. negundo, Quercus robur and C. occidentalis were used to assess the amount of deposited dust and the concentration of contaminants in deposited dust in and around the city of Debrecen, Hungary. Samples were collected from an urban, suburban and rural area along an urbanization gradient. The concentrations of Ba, Cu, Fe, Mn, Ni, Pb, S, Sr and Zn were determined in deposited dust using ICP–OES. Scanning electron microscopy (SEM) was used to explore the morphological structure and dust absorbing capacity of leaves. We found significant differences in dust deposition among species, and dust deposition correlated with trichomes' density. Principal component analysis (PCA) also showed a total separation of tree. - Highlights: • Dust is used as indicators of the accumulation of inorganic pollutants. • Scanning EM was used to explore the morphological structure of leaves. • Amount of dust deposited of leaves correlated with trichomes' density. • A. negundo, C. occidentalis and Q. robur are suitable to indicate air contaminants. • A. negundo and C. occidentalis are suitable to decrease the amount of dust in air

  1. Atmospheric particle characterization, distribution, and deposition in Xi'an, Shaanxi Province, Central China

    International Nuclear Information System (INIS)

    Cao Zongze; Yang Yuhua; Lu, Julia; Zhang Chengxiao

    2011-01-01

    Physical characterization and chemical analysis of settled dusts collected in Xi'an from November 2007 to December 2008 show that (1) dust deposition rates ranged from 14.6 to 350.4 g m -2 yr -1 . The average deposition rate (76.7 g m -2 yr -1 ) ranks the 11th out of 56 dust deposition rates observed throughout the world. The coal-burning power was the major particle source; (2) on average (except site 4), ∼10% of the settled dusts having size 70% having size <30 μm; (3) the concentrations for 20 out of 27 elements analyzed were upto 18 times higher than their soil background values in China. With such high deposition rates of dusts that contain elevated levels of toxic elements, actions should be taken to reduce emission and studies are needed to assess the potential impacts of settled particles on surface ecosystem, water resource, and human health in the area. - Research highlights: → High atmospheric dust deposition rate in Xi'an, Shaanxi, China. → Coal-burning power plan being a major source of particulate matter in Xi'an area. → High levels of toxic elements in the settled dusts. → Enrichment of heavy metals (e.g., Pb, Ni, Cu) in fine particles. - Atmospheric dust deposition rate is high and the levels of toxic elements associated with the settled dusts are elevated in Xi'an, Shaanxi, China.

  2. Viking Lander image analysis of Martian atmospheric dust

    Science.gov (United States)

    Pollack, James B.; Ockert-Bell, Maureen E.; Shepard, Michael K.

    1995-01-01

    We have reanalyzed three sets of Viking Lander 1 and 2 (VL1 and VL2) images of the Martian atmosphere to better evaluate the radiative properties of the atmospheric dust particles. The properties of interest are the first two moments of the size distribution, the single-scattering albedo, the dust single-scattering phase function, and the imaginary index of refraction. These properties provide a good definition of the influence that the atmospheric dust has on heating of the atmosphere. Our analysis represents a significant improvement over past analyses (Pollack et al. 1977,1979) by deriving more accurate brightnesses closer to the sun, by carrying out more precise analyses of the data to acquire the quantities of interest, and by using a better representation of scattering by nonspherical particles. The improvements allow us to better define the diffraction peak and hence the size distribution of the particles. For a lognormal particle size distribution, the first two moments of the size distribution, weighted by the geometric cross section, are found. The geometric cross-section weighted mean radius (r(sub eff)) is found to be 1.85 +/- 0.3 microns at VL2 during northern summer when dust loading was low and 1.52 +/- 0.3 microns at VL1 during the first dust storm. In both cases the best cross-section weighted mean variance (nu(eff)) of the size distribution is equal to 0.5 +/- 0.2 microns. The changes in size distribution, and thus radiative properties, do not represent a substantial change in solar energy deposition in the atmosphere over the Pollack et al. (1977,1979) estimates.

  3. Atmospheric particle characterization, distribution, and deposition in Xi'an, Shaanxi Province, Central China

    Energy Technology Data Exchange (ETDEWEB)

    Cao Zongze; Yang Yuhua [Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an, 710062 (China); Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3 (Canada); Lu, Julia, E-mail: julialu@ryerson.c [Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3 (Canada); Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an, 710062 (China); Zhang Chengxiao, E-mail: cxzhang@snnu.edu.c [Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an, 710062 (China)

    2011-02-15

    Physical characterization and chemical analysis of settled dusts collected in Xi'an from November 2007 to December 2008 show that (1) dust deposition rates ranged from 14.6 to 350.4 g m{sup -2} yr{sup -1}. The average deposition rate (76.7 g m{sup -2} yr{sup -1}) ranks the 11th out of 56 dust deposition rates observed throughout the world. The coal-burning power was the major particle source; (2) on average (except site 4), {approx}10% of the settled dusts having size <2.6, {approx}30% having size <10.5, and >70% having size <30 {mu}m; (3) the concentrations for 20 out of 27 elements analyzed were upto 18 times higher than their soil background values in China. With such high deposition rates of dusts that contain elevated levels of toxic elements, actions should be taken to reduce emission and studies are needed to assess the potential impacts of settled particles on surface ecosystem, water resource, and human health in the area. - Research highlights: High atmospheric dust deposition rate in Xi'an, Shaanxi, China. Coal-burning power plan being a major source of particulate matter in Xi'an area. High levels of toxic elements in the settled dusts. Enrichment of heavy metals (e.g., Pb, Ni, Cu) in fine particles. - Atmospheric dust deposition rate is high and the levels of toxic elements associated with the settled dusts are elevated in Xi'an, Shaanxi, China.

  4. Biomonitoring spatial and temporal impact of atmospheric dust from a cement industry

    International Nuclear Information System (INIS)

    Branquinho, Cristina; Gaio-Oliveira, Gisela; Augusto, Sofia; Pinho, Pedro; Maguas, Cristina; Correia, Otilia

    2008-01-01

    The objective of this work was to evaluate the spatial and temporal impact of dust-pollution in the vicinity of a cement industry, located in an area with dry climate. The spatial impact integrated over time was evaluated from the concentrations of Ca, Fe and Mg in in-situ Xanthoria parietina. The temporal pattern was assessed through one-month transplants of the lichen Ramalina canariensis. Four potential sources of atmospheric dust were evaluated: the limestone-quarry; the unpaved roads, the deposit area and the cement mill. Calcium concentration in lichens was considered the best cement-dust indicator. Different types of dust (clinker and grinded-limestone-dust) resulted in different time-patterns of Ca accumulation, which was also related with the different influence that wet and dry periods have in the lichen accumulation process. The dust pollution was found to be deposited locally and dependent on: the nature of dust particles and the volume and frequency of precipitation. - Biomonitoring Spatial and Temporal dust emissions in dry climates

  5. Biomonitoring spatial and temporal impact of atmospheric dust from a cement industry

    Energy Technology Data Exchange (ETDEWEB)

    Branquinho, Cristina [Universidade de Lisboa, Faculdade de Ciencias, Centro de Ecologia e Biologia Vegetal, Campo Grande, Edificio C2, Piso 4, 1749-016 Lisbon (Portugal); Universidade Atlantica, Antiga Fabrica da Polvora de Barcarena, 2745-615 Barcarena (Portugal)], E-mail: cmbranquinho@fc.ul.pt; Gaio-Oliveira, Gisela; Augusto, Sofia; Pinho, Pedro; Maguas, Cristina; Correia, Otilia [Universidade de Lisboa, Faculdade de Ciencias, Centro de Ecologia e Biologia Vegetal, Campo Grande, Edificio C2, Piso 4, 1749-016 Lisbon (Portugal)

    2008-01-15

    The objective of this work was to evaluate the spatial and temporal impact of dust-pollution in the vicinity of a cement industry, located in an area with dry climate. The spatial impact integrated over time was evaluated from the concentrations of Ca, Fe and Mg in in-situ Xanthoria parietina. The temporal pattern was assessed through one-month transplants of the lichen Ramalina canariensis. Four potential sources of atmospheric dust were evaluated: the limestone-quarry; the unpaved roads, the deposit area and the cement mill. Calcium concentration in lichens was considered the best cement-dust indicator. Different types of dust (clinker and grinded-limestone-dust) resulted in different time-patterns of Ca accumulation, which was also related with the different influence that wet and dry periods have in the lichen accumulation process. The dust pollution was found to be deposited locally and dependent on: the nature of dust particles and the volume and frequency of precipitation. - Biomonitoring Spatial and Temporal dust emissions in dry climates.

  6. Atmospheric Deposition of Pb, Zn, Cu, and Cd in Amman, Jordan

    International Nuclear Information System (INIS)

    Momani, K.A.; Jiries, A.G.; Jaradat, Q.M.

    1999-01-01

    Atmospheric samples were collected by high-volume air sampler and dust fall containers during the summer of 1995 at different sites in Amman City, Jordan. Heavy metal contents in settle able (dust fall) as well as in air particulates (suspended) were analyzed by graphite furnace atomic absorption spectrophotometry. The atmospheric concentrations of Zn, Cu, Pb, and Cd were 344, 170, 291, and 3.8 ng/m 3 , respectively. On the other hand, the levels of these elements in dust fall deposition were 505, 94, 74, and 3.1 μg/g, respectively. The fluxes and dry deposition velocities of these heavy metals were determined and compared with the findings of other investigators worldwide. Significant enrichment coefficients of heavy metals in dust fall were observed. The enrichment coefficients were 12.1, 6.1, 11.7, and 1.1 for Zn, Cu, Pb, and Cd, respectively

  7. Deposition rates of viruses and bacteria above the atmospheric boundary layer.

    Science.gov (United States)

    Reche, Isabel; D'Orta, Gaetano; Mladenov, Natalie; Winget, Danielle M; Suttle, Curtis A

    2018-04-01

    Aerosolization of soil-dust and organic aggregates in sea spray facilitates the long-range transport of bacteria, and likely viruses across the free atmosphere. Although long-distance transport occurs, there are many uncertainties associated with their deposition rates. Here, we demonstrate that even in pristine environments, above the atmospheric boundary layer, the downward flux of viruses ranged from 0.26 × 10 9 to >7 × 10 9  m -2 per day. These deposition rates were 9-461 times greater than the rates for bacteria, which ranged from 0.3 × 10 7 to >8 × 10 7  m -2 per day. The highest relative deposition rates for viruses were associated with atmospheric transport from marine rather than terrestrial sources. Deposition rates of bacteria were significantly higher during rain events and Saharan dust intrusions, whereas, rainfall did not significantly influence virus deposition. Virus deposition rates were positively correlated with organic aerosols 0.7 μm, implying that viruses could have longer residence times in the atmosphere and, consequently, will be dispersed further. These results provide an explanation for enigmatic observations that viruses with very high genetic identity can be found in very distant and different environments.

  8. Efficiency of the deposition mode ice nucleation on mineral dust particles

    Directory of Open Access Journals (Sweden)

    O. Möhler

    2006-01-01

    Full Text Available The deposition mode ice nucleation efficiency of various dust aerosols was investigated at cirrus cloud temperatures between 196 and 223 K using the aerosol and cloud chamber facility AIDA (Aerosol Interaction and Dynamics in the Atmosphere. Arizona test dust (ATD as a reference material and two dust samples from the Takla Makan desert in Asia (AD1 and the Sahara (SD2 were used for the experiments at simulated cloud conditions. The dust particle sizes were almost lognormally distributed with mode diameters between 0.3 and 0.5 μm and geometric standard deviations between 1.6 and 1.9. Deposition ice nucleation was most efficient on ATD particles with ice-active particle fractions of about 0.6 and 0.8 at an ice saturation ratio SiSiSi. This indicates that deposition ice nucleation on mineral particles may not be treated in the same stochastic sense as homogeneous freezing. The suggested formulation of ice activation spectra may be used to calculate the formation rate of ice crystals in models, if the number concentration of dust particles is known. More experimental work is needed to quantify the variability of the ice activation spectra as function of the temperature and dust particle properties.

  9. The role of forest in mitigating the impact of atmospheric dust pollution in a mixed landscape.

    Science.gov (United States)

    Santos, Artur; Pinho, Pedro; Munzi, Silvana; Botelho, Maria João; Palma-Oliveira, José Manuel; Branquinho, Cristina

    2017-05-01

    Atmospheric dust pollution, especially particulate matter below 2.5 μm, causes 3.3 million premature deaths per year worldwide. Although pollution sources are increasingly well known, the role of ecosystems in mitigating their impact is still poorly known. Our objective was to investigate the role of forests located in the surrounding of industrial and urban areas in reducing atmospheric dust pollution. This was tested using lichen transplants as biomonitors in a Mediterranean regional area with high levels of dry deposition. After a multivariate analysis, we have modeled the maximum pollution load expected for each site taking into consideration nearby pollutant sources. The difference between maximum expected pollution load and the observed values was explained by the deposition in nearby forests. Both the dust pollution and the ameliorating effect of forested areas were then mapped. The results showed that forest located nearby pollution sources plays an important role in reducing atmospheric dust pollution, highlighting their importance in the provision of the ecosystem service of air purification.

  10. Parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC: impact of nudging and soil properties

    Science.gov (United States)

    Astitha, M.; Lelieveld, J.; Abdel Kader, M.; Pozzer, A.; de Meij, A.

    2012-11-01

    Airborne desert dust influences radiative transfer, atmospheric chemistry and dynamics, as well as nutrient transport and deposition. It directly and indirectly affects climate on regional and global scales. Two versions of a parameterization scheme to compute desert dust emissions are incorporated into the atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy2.41 Atmospheric Chemistry). One uses a globally uniform soil particle size distribution, whereas the other explicitly accounts for different soil textures worldwide. We have tested these two versions and investigated the sensitivity to input parameters, using remote sensing data from the Aerosol Robotic Network (AERONET) and dust concentrations and deposition measurements from the AeroCom dust benchmark database (and others). The two versions are shown to produce similar atmospheric dust loads in the N-African region, while they deviate in the Asian, Middle Eastern and S-American regions. The dust outflow from Africa over the Atlantic Ocean is accurately simulated by both schemes, in magnitude, location and seasonality. Approximately 70% of the modelled annual deposition data and 70-75% of the modelled monthly aerosol optical depth (AOD) in the Atlantic Ocean stations lay in the range 0.5 to 2 times the observations for all simulations. The two versions have similar performance, even though the total annual source differs by ~50%, which underscores the importance of transport and deposition processes (being the same for both versions). Even though the explicit soil particle size distribution is considered more realistic, the simpler scheme appears to perform better in several locations. This paper discusses the differences between the two versions of the dust emission scheme, focusing on their limitations and strengths in describing the global dust cycle and suggests possible future improvements.

  11. Parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC: impact of nudging and soil properties

    Directory of Open Access Journals (Sweden)

    M. Astitha

    2012-11-01

    Full Text Available Airborne desert dust influences radiative transfer, atmospheric chemistry and dynamics, as well as nutrient transport and deposition. It directly and indirectly affects climate on regional and global scales. Two versions of a parameterization scheme to compute desert dust emissions are incorporated into the atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy2.41 Atmospheric Chemistry. One uses a globally uniform soil particle size distribution, whereas the other explicitly accounts for different soil textures worldwide. We have tested these two versions and investigated the sensitivity to input parameters, using remote sensing data from the Aerosol Robotic Network (AERONET and dust concentrations and deposition measurements from the AeroCom dust benchmark database (and others. The two versions are shown to produce similar atmospheric dust loads in the N-African region, while they deviate in the Asian, Middle Eastern and S-American regions. The dust outflow from Africa over the Atlantic Ocean is accurately simulated by both schemes, in magnitude, location and seasonality. Approximately 70% of the modelled annual deposition data and 70–75% of the modelled monthly aerosol optical depth (AOD in the Atlantic Ocean stations lay in the range 0.5 to 2 times the observations for all simulations. The two versions have similar performance, even though the total annual source differs by ~50%, which underscores the importance of transport and deposition processes (being the same for both versions. Even though the explicit soil particle size distribution is considered more realistic, the simpler scheme appears to perform better in several locations. This paper discusses the differences between the two versions of the dust emission scheme, focusing on their limitations and strengths in describing the global dust cycle and suggests possible future improvements.

  12. Parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC: impact of nudging and soil properties

    OpenAIRE

    Astitha, M.; Lelieveld, J.; Kader, M. Abdel; Pozzer, A.; de Meij, A.

    2012-01-01

    Airborne desert dust influences radiative transfer, atmospheric chemistry and dynamics, as well as nutrient transport and deposition. It directly and indirectly affects climate on regional and global scales. Two versions of a parameterization scheme to compute desert dust emissions are incorporated into the atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy2.41 Atmospheric Chemistry). One uses a global...

  13. Atmospheric processing outside clouds increases soluble iron in mineral dust.

    Science.gov (United States)

    Shi, Zongbo; Krom, Michael D; Bonneville, Steeve; Benning, Liane G

    2015-02-03

    Iron (Fe) is a key micronutrient regulating primary productivity in many parts of the global ocean. Dust deposition is an important source of Fe to the surface ocean, but most of this Fe is biologically unavailable. Atmospheric processing and reworking of Fe in dust aerosol can increase the bioavailable Fe inputs to the ocean, yet the processes are not well understood. Here, we experimentally simulate and model the cycling of Fe-bearing dust between wet aerosol and cloud droplets. Our results show that insoluble Fe in dust particles readily dissolves under acidic conditions relevant to wet aerosols. By contrast, under the higher pH conditions generally relevant to clouds, Fe dissolution tends to stop, and dissolved Fe precipitates as poorly crystalline nanoparticles. If the dust-bearing cloud droplets evaporated again (returning to the wet aerosol stage with low pH), those neo-formed Fe nanoparticles quickly redissolve, while the refractory Fe-bearing phases continue to dissolve gradually. Overall, the duration of the acidic, wet aerosol stage ultimately increases the amount of potentially bioavailable Fe delivered to oceans, while conditions in clouds favor the formation of Fe-rich nanoparticles in the atmosphere.

  14. The concentration, source and deposition flux of ammonium and nitrate in atmospheric particles during dust events at a coastal site in northern China

    Science.gov (United States)

    Qi, Jianhua; Liu, Xiaohuan; Yao, Xiaohong; Zhang, Ruifeng; Chen, Xiaojing; Lin, Xuehui; Gao, Huiwang; Liu, Ruhai

    2018-01-01

    Asian dust has been reported to carry anthropogenic reactive nitrogen during transport from source areas to the oceans. In this study, we attempted to characterize NH4+ and NO3- in atmospheric particles collected at a coastal site in northern China during spring dust events from 2008 to 2011. Based on the mass concentrations of NH4+ and NO3- in each total suspended particle (TSP) sample, the samples can be classified into increasing or decreasing types. In Category 1, the concentrations of NH4+ and NO3- were 20-440 % higher in dust day samples relative to samples collected immediately before or after a dust event. These concentrations decreased by 10-75 % in the dust day samples in Categories 2 and 3. Back trajectory analysis suggested that multiple factors, such as the transport distance prior to the reception site, the mixing layer depth on the transport route and the residence time across highly polluted regions, might affect the concentrations of NH4+ and NO3-. NH4+ in the dust day samples was likely either in the form of ammonium salts existing separately to dust aerosols or as the residual of incomplete reactions between ammonium salts and carbonate salts. NO3- in the dust day samples was attributed to various formation processes during the long-range transport. The positive matrix factorization (PMF) receptor model results showed that the contribution of soil dust increased from 23 to 36 % on dust days, with decreasing contributions from local anthropogenic inputs and associated secondary aerosols. The estimated deposition flux of NNH4++NO3- varied greatly from event to event; e.g., the dry deposition flux of NNH4++NO3- increased by 9-285 % in Category 1 but decreased by 46-73 % in Category 2. In Category 3, the average dry deposition fluxes of particulate nitrate and ammonium decreased by 46 % and increased by 10 %, respectively, leading to 11-48 % decrease in the fluxes of NNH4++NO3-.

  15. Deposition of 137Cs in Rokkasho, Japan and its relation to Asian dust

    International Nuclear Information System (INIS)

    Akata, Naofumi; Hasegawa, Hidenao; Kawabata, Hitoshi; Chikuchi, Yuki; Sato, Tadahiro; Ohtsuka, Yoshihito; Kondo, Kunio; Hisamatsu, Shun'ichi

    2007-01-01

    Biweekly atmospheric depositions of 137 Cs were measured in Rokkasho, Aomori, Japan from March 2000 to March 2006 to study recent 137 Cs deposition. Although the deposition level was generally lower than the detectable limit, deposition samples collected in spring occasionally had measurable levels of 137 Cs. The annual 137 Cs deposition from 2001 to 2005 was 0.04-0.69 Bq m -2 with a mean value of 0.27 Bq m -2 . Depositions of insoluble Al, Fe and Ti were strongly correlated with the 137 Cs deposition, suggesting that suspension of soil particles was the main source of the recent 137 Cs deposition. Asian dust events were coincident with some of the significant 137 Cs depositions in spring. It was found that the ratios of 137 Cs/Al and Fe/Al could be used as indices for discriminating Asian dust from suspension of the local surface soil. Backward trajectory analysis suggested southern Mongolian and northeastern China regions as sources of the significant 137 Cs depositions

  16. Saharan Dust Deposition May Affect Phytoplankton Growth in the Mediterranean Sea at Ecological Time Scales

    Science.gov (United States)

    Gallisai, Rachele; Peters, Francesc; Volpe, Gianluca; Basart, Sara; Baldasano, José Maria

    2014-01-01

    The surface waters of the Mediterranean Sea are extremely poor in the nutrients necessary for plankton growth. At the same time, the Mediterranean Sea borders with the largest and most active desert areas in the world and the atmosphere over the basin is subject to frequent injections of mineral dust particles. We describe statistical correlations between dust deposition over the Mediterranean Sea and surface chlorophyll concentrations at ecological time scales. Aerosol deposition of Saharan origin may explain 1 to 10% (average 5%) of seasonally detrended chlorophyll variability in the low nutrient-low chlorophyll Mediterranean. Most of the statistically significant correlations are positive with main effects in spring over the Eastern and Central Mediterranean, conforming to a view of dust events fueling needed nutrients to the planktonic community. Some areas show negative effects of dust deposition on chlorophyll, coinciding with regions under a large influence of aerosols from European origin. The influence of dust deposition on chlorophyll dynamics may become larger in future scenarios of increased aridity and shallowing of the mixed layer. PMID:25333783

  17. Particle size traces modern Saharan dust transport and deposition across the equatorial North Atlantic

    Directory of Open Access Journals (Sweden)

    M. van der Does

    2016-11-01

    Full Text Available Mineral dust has a large impact on regional and global climate, depending on its particle size. Especially in the Atlantic Ocean downwind of the Sahara, the largest dust source on earth, the effects can be substantial but are poorly understood. This study focuses on seasonal and spatial variations in particle size of Saharan dust deposition across the Atlantic Ocean, using an array of submarine sediment traps moored along a transect at 12° N. We show that the particle size decreases downwind with increased distance from the Saharan source, due to higher gravitational settling velocities of coarse particles in the atmosphere. Modal grain sizes vary between 4 and 32 µm throughout the different seasons and at five locations along the transect. This is much coarser than previously suggested and incorporated into climate models. In addition, seasonal changes are prominent, with coarser dust in summer and finer dust in winter and spring. Such seasonal changes are caused by transport at higher altitudes and at greater wind velocities during summer than in winter. Also, the latitudinal migration of the dust cloud, associated with the Intertropical Convergence Zone, causes seasonal differences in deposition as the summer dust cloud is located more to the north and more directly above the sampled transect. Furthermore, increased precipitation and more frequent dust storms in summer coincide with coarser dust deposition. Our findings contribute to understanding Saharan dust transport and deposition relevant for the interpretation of sedimentary records for climate reconstructions, as well as for global and regional models for improved prediction of future climate.

  18. The Paleozoic Dust Bowl: Dust Deposition in Tropical Western Pangaea (Midcontinent U.S.) at the Terminus of the Late Paleozoic Ice Age

    Science.gov (United States)

    Soreghan, G. S.; Heavens, N. G.; Benison, K. C.; Soreghan, M. J.; Mahowald, N. M.; Foster, T.; Zambito, J.; Sweet, A.; Kane, M.

    2012-12-01

    Atmospheric dust is well recognized and studied as both an archive and agent of climate change in Earth's relatively recent past. Archives of past dust include loess deposits and dust recovered from ocean- and ice-cores. Dust remains poorly known in Earth's past prior to the Cenozoic, but is increasingly recognized in the form of paleo-loess deposits, and (epeiric) marine strata that accumulated isolated from fluvio-deltaic influx. Here, we report on the growing recognition of voluminous dust deposits preserved in the Permian record of the U.S. Midcontinent (western tropical Pangaea). Fine-grained redbeds predominate in Permian strata throughout the U.S. Midcontinent, but notably in a swath extending from Oklahoma through South Dakota. These units consist predominantly of red mudstone and siltstone in commonly massive units, but sedimentary structures and bedding that signal aqueous processes (e.g. laminations, ripples) have led most to infer deltaic or tidal deposition. The absence of channel systems to deliver the sediment, as well as the predominantly massive and laterally continuous character and the uniform fine grain size signal wind transport, implying that these units record sustained dust deposition overprinted at times by sub-aqueous deposition in lakes, including ephemeral saline and acid lakes that led to evaporite cementation. Detrital zircon geochronology indicates that much of the dust originated in the relatively distant Appalachian-Ouachita orogenic systems, which formed part of the central Pangaean mountains (CPM), the collisional zone that sutured the supercontinent. Within the Anadarko basin of Oklahoma, Permian redbeds record >2 km of predominantly dust deposition, some of the thickest dust deposits yet documented in Earth's record. Yet the tropical setting is remarkably non-uniformitarian, as much Quaternary loess occurs in mid- to high-latitude regions, commonly linked to glacial genesis. We are currently investigating with both data and

  19. Global transport of thermophilic bacteria in atmospheric dust.

    Science.gov (United States)

    Perfumo, Amedea; Marchant, Roger

    2010-04-01

    Aerosols from dust storms generated in the Sahara-Sahel desert area of Africa are transported north over Europe and periodically result in dry dust precipitation in the Mediterranean region. Samples of dust collected in Turkey and Greece following two distinct desert storm events contained viable thermophilic organisms of the genus Geobacillus, namely G. thermoglucosidasius and G. thermodenitrificans, and the recently reclassified Aeribacillus pallidus (formerly Geobacillus pallidus). We present here evidence that African dust storms create an atmospheric bridge between distant geographical regions and that they are also probably the source of thermophilic geobacilli later deposited over northern Europe by rainfall or dust plumes themselves. The same organisms (99% similarity in the 16S rDNA sequence) were found in dust collected in the Mediterranean region and inhabiting cool soils in Northern Ireland. This study also contributes new insights to the taxonomic identification of Geobacillus sp. Attempts to identify these organisms using 16S rRNA gene sequences have revealed that they contain multiple and diverse copies of the ribosomal RNA operon (up to 10 copies with nine different sequences), which dictates care in interpreting data about the systematics of this genus. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  20. Iron Oxide Minerals in Atmospheric Dust and Source Sediments-Studies of Types and Properties to Assess Environmental Effects

    Science.gov (United States)

    Reynolds, R. L.; Goldstein, H. L.; Moskowitz, B. M.; Till, J. L.; Flagg, C.; Kokaly, R. F.; Munson, S.; Landry, C.; Lawrence, C. R.; Hiza, M. M.; D'Odorico, P.; Painter, T. H.

    2011-12-01

    Ferric oxide minerals in atmospheric dust can influence atmospheric temperatures, accelerate melting of snow and ice, stimulate marine phytoplankton productivity, and impact human health. Such effects vary depending on iron mineral type, size, surface area, and solubility. Generally, the presence of ferric oxides in dust is seen in the red, orange, or yellow hues of plumes that originate in North Africa, central and southwest Asia, South America, western North America, and Australia. Despite their global importance, these minerals in source sediments, atmospheric dust, and downwind aeolian deposits remain poorly described with respect to specific mineralogy, particle size and surface area, or presence in far-traveled aerosol compounds. The types and properties of iron minerals in atmospheric dust can be better understood using techniques of rock magnetism (measurements at 5-300 K), Mössbauer and high-resolution visible and near-infrared reflectance spectroscopy; chemical reactivity of iron oxide phases; and electron microscopy for observing directly the ferric oxide coatings and particles. These studies can elucidate the diverse environmental effects of iron oxides in dust and can help to identify dust-source areas. Dust-source sediments from the North American Great Basin and Colorado Plateau deserts and the Kalahari Desert, southern Africa, were used to compare average reflectance values with a magnetic parameter (hard isothermal remanent magnetization, HIRM) for ferric oxide abundance. Lower reflectance values correspond strongly with higher HIRM values, indicating that ferric oxides (hematite or goethite, or both) contribute to absorption of solar radiation in these sediments. Dust deposited to snow cover of the San Juan Mountains (Colorado) and Wasatch Mountains (Utah) was used to characterize dust composition compared with properties of sediments exposed in source-areas identified from satellite retrievals. Results from multiple methods indicate that

  1. Dust deposit in recirculation regions

    International Nuclear Information System (INIS)

    Griemert, R.

    1985-03-01

    The present report shows investigations, which have been carried out in a closed duct at forward and backward facing steps. Distribution of fluid velocity and fluid fluctuations in and normal to main flow direction as well as the distribution of Reynolds shear stress have been measured. The mass transfer downstream of a backward facing step has been investigated as well. By using graphite-, copper-, tin- and rubber dust, conditions of deposition have been defined experimentally. A serie of photos shows the filling of a recirculation region downstream of a backward facing step with graphite dust. The present investigations allow to avoid deposition of dust in recirculation regions by selecting the fluid numbers in an appropriate way. (orig.) [de

  2. Sensitivity of transatlantic dust transport to chemical aging and related atmospheric processes

    KAUST Repository

    Abdelkader, Mohamed

    2017-03-20

    We present a sensitivity study on transatlantic dust transport, a process which has many implications for the atmosphere, the ocean and the climate. We investigate the impact of key processes that control the dust outflow, i.e., the emission flux, convection schemes and the chemical aging of mineral dust, by using the EMAC model following Abdelkader et al. (2015). To characterize the dust outflow over the Atlantic Ocean, we distinguish two geographic zones: (i) dust interactions within the Intertropical Convergence Zone (ITCZ), or the dust–ITCZ interaction zone (DIZ), and (ii) the adjacent dust transport over the Atlantic Ocean (DTA) zone. In the latter zone, the dust loading shows a steep and linear gradient westward over the Atlantic Ocean since particle sedimentation is the dominant removal process, whereas in the DIZ zone aerosol–cloud interactions, wet deposition and scavenging processes determine the extent of the dust outflow. Generally, the EMAC simulated dust compares well with CALIPSO observations; however, our reference model configuration tends to overestimate the dust extinction at a lower elevation and underestimates it at a higher elevation. The aerosol optical depth (AOD) over the Caribbean responds to the dust emission flux only when the emitted dust mass is significantly increased over the source region in Africa by a factor of 10. These findings point to the dominant role of dust removal (especially wet deposition) in transatlantic dust transport. Experiments with different convection schemes have indeed revealed that the transatlantic dust transport is more sensitive to the convection scheme than to the dust emission flux parameterization. To study the impact of dust chemical aging, we focus on a major dust outflow in July 2009. We use the calcium cation as a proxy for the overall chemical reactive dust fraction and consider the uptake of major inorganic acids (i.e., H2SO4, HNO3 and HCl) and their anions, i.e., sulfate (SO42−), bisulfate

  3. Surface acoustic wave dust deposition monitor

    Science.gov (United States)

    Fasching, G.E.; Smith, N.S. Jr.

    1988-02-12

    A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.

  4. Characterisation of nutrients wet deposition under influence of Saharan dust at Puerto-Rico in Caribbean Sea

    Science.gov (United States)

    Desboeufs, Karine; Formenti, Paola; Triquet, Sylvain; Laurent, Benoit; Denjean, Cyrielle; Gutteriez-Moreno, Ian E.; Mayol-Bracero, Olga L.

    2015-04-01

    Large quantities of African dust are carried across the North Atlantic toward the Caribbean every summer by Trade Winds. Atmospheric deposition of dust aerosols, and in particular wet deposition, is widely acknowledged to be the major delivery pathway for nutrients to ocean ecosystems, as iron, phosphorus and various nitrogen species. The deposition of this dustis so known to have an important impact on biogeochemical processes in the Tropical and Western Atlantic Ocean and Caribbean including Puerto-Rico. However, very few data exists on the chemical composition in nutrients in dusty rain in this region. In the framework of the Dust-ATTAcK project, rainwater was collected at the natural reserve of Cape San Juan (CSJ) (18.38°N, 65.62°W) in Puerto-Ricobetween 20 June 2012 and 12 July 2012 during thedusty period. A total of 7 rainwater events were sampled during various dust plumes. Complementary chemical analyses on aerosols in suspension was also determined during the campaign. The results on dust composition showed that no mixing with anthropogenic material was observed, confirming dust aerosols were the major particles incorporated in rain samples. The partitioning between soluble and particulate nutrients in rain samples showed that phosphorous solubility ranged from 30 and 80%. The average Fe solubility was around 0.5%, in agreement with Fe solubility observed in rains collected in Niger during African monsoon. That means that the high solubility measurements previously observed in Caribbean was probably due to an anthropogenic influence. Atmospheric wet deposition fluxes of soluble and total nutrients (N, P, Si, Fe, Co, Cu, Mn, Ni, Zn) to Caribbean Sea were determined. Atmospheric P and N inputs were strongly depleted relative to the stoichiometry of phytoplankton Fe, N, P and Si requirements.The nitrogen speciation was also determined and showed the predominance of ammonium form. 3-D modeling was used to estimate the spatial extend of these fluxes over the

  5. Coal fly ash as a source of iron in atmospheric dust.

    Science.gov (United States)

    Chen, Haihan; Laskin, Alexander; Baltrusaitis, Jonas; Gorski, Christopher A; Scherer, Michelle M; Grassian, Vicki H

    2012-02-21

    Anthropogenic coal fly ash (FA) aerosol may represent a significant source of bioavailable iron in the open ocean. Few measurements have been made that compare the solubility of atmospheric iron from anthropogenic aerosols and other sources. We report here an investigation of iron dissolution for three FA samples in acidic aqueous solutions and compare the solubilities with that of Arizona test dust (AZTD), a reference material for mineral dust. The effects of pH, simulated cloud processing, and solar radiation on iron solubility have been explored. Similar to previously reported results on mineral dust, iron in aluminosilicate phases provides the predominant component of dissolved iron. Iron solubility of FA is substantially higher than of the crystalline minerals comprising AZTD. Simulated atmospheric processing elevates iron solubility due to significant changes in the morphology of aluminosilicate glass, a dominant material in FA particles. Iron is continuously released into the aqueous solution as FA particles break up into smaller fragments. These results suggest that the assessment of dissolved atmospheric iron deposition fluxes and their effect on the biogeochemistry at the ocean surface should be constrained by the source, environmental pH, iron speciation, and solar radiation.

  6. Trace-element evidence for the origin of desert varnish by direct aqueous atmospheric deposition

    Science.gov (United States)

    Thiagarajan, Nivedita; Aeolus Lee, Cin-Ty

    2004-07-01

    Smooth rock surfaces in arid environments are often covered with a thin coating of Fe-Mn oxyhydroxides known as desert varnish. It is debated whether such varnish is formed (a) by slow diagenesis of dust particles deposited on rock surfaces, (b) by leaching from the underlying rock substrate, or (c) by direct deposition of dissolved constituents in the atmosphere. Varnishes collected from smooth rock surfaces in the Mojave Desert and Death Valley, California are shown here to have highly enriched and fractionated trace-element abundances relative to upper continental crust (UCC). They are highly enriched in Co, Ni, Pb and the rare-earth elements (REEs). In particular, they have anomalously high Ce/La and low Y/Ho ratios. These features can only be explained by preferential scavenging of Co, Ni, Pb and the REEs by Fe-Mn oxyhydroxides in an aqueous environment. High field strength elements (HFSEs: Zr, Hf, Ta, Nb, Th), however, show only small enrichments despite the fact that these elements should also be strongly scavenged by Fe-Mn oxyhydroxides. This suggests that their lack of enrichment is a feature inherited from a solution initially poor in HFSEs. The first two scenarios for varnish formation can be ruled out as follows. The high enrichment factors of Fe, Mn and many trace elements cannot be generated by mass loss associated with post-depositional diagenesis of dust particles because such a process predicts only a small increase in concentration. In addition, the highly fractionated abundance patterns of particle reactive element pairs (e.g., Ce/La and Y/Ho) rules out leaching of the rock substrate. This is because if leaching were to occur, varnishes would grow from the inside to the outside, and thus any particle-reactive trace element leached from the substrate would be quantitatively sequestered in the Fe-Mn oxyhydroxide layers, prohibiting any significant elemental fractionations. One remaining possibility is that the Fe, Mn and trace metals in varnish are

  7. Investigation of methods for physical characteristics of atmospheric aerosols and ground dust fractions on radioactive contaminated areas

    International Nuclear Information System (INIS)

    Artem'ev, O.I.; Osintsev, A.Yu.; Gaziev, Ya.I.; Gordeev, S.K.

    2005-01-01

    The paper presents data about current situation and trends to develop investigation methods for physical characteristics of atmospheric aerosols and ground dust fractions that are observed on the former Semipalatinsk Test Site area and adjacent regions. It was considered one of the options for comprehensive collection of radioactive aerosols as fallout within control area of atmospheric contamination and underlying surface with aerosol products of the man-caused dusting on the former STS area to determine rates of 'dry' deposition and ground-based activity concentration contained in these products of radionuclides at different distances from place of dusting. (author)

  8. Quantification of the lithogenic carbon pump following a dust deposition event

    Science.gov (United States)

    Bressac, M.; Guieu, C.; Doxaran, D.; Bourrin, F.; Desboeufs, K.; Leblond, N.; Ridame, C.

    2013-08-01

    Lithogenic particles, such as desert dust, have been postulated to influence particulate organic carbon (POC) export to the deep ocean by acting as mineral ballasts. However, an accurate understanding and quantification of the POC-dust association that occurs within the upper ocean is required in order to affine the "ballast hypothesis". In the framework of the DUNE project, two artificial seedings were performed seven days apart within large mesocosms. A suite of optical and biogeochemical measurements were used to quantify surface POC export following simulated dust events within a low-nutrient low-chlorophyll ecosystem. The two successive seedings led to a 2.3-6.7 fold higher POC flux as compared to the POC flux observed in controlled mesocosms. A simple linear regression analysis revealed that the lithogenic fluxes explained more than 85% of the variance in POC fluxes. At the scale of a dust deposition event, we estimated that 42-50% of POC fluxes were strictly associated with lithogenic particles through an aggregation process. Lithogenic ballasting also likely impacted the remaining POC fraction which resulted from the fertilization effect. The observations support the "ballast hypothesis" and provide a quantitative estimation of the surface POC export abiotically triggered by dust deposition. In this work, we demonstrate that the strength of such a "lithogenic carbon pump" depends on the biogeochemical conditions of the water column at the time of deposition. Based on these observations, we suggest that this "lithogenic carbon pump" could represent a major component of the biological pump in oceanic areas subjected to intense atmospheric forcing.

  9. Can Transport of Saharan Dust Explain Extensive Clay Deposits in the Amazon Basin? A Test Using Radiogenic Isotopes

    Science.gov (United States)

    Andreae, M. O.; Abouchami, W.; Näthe, K.; Kumar, A.; Galer, S. J.; Jochum, K. P.; Williams, E.; Horbe, A. M.; Rosa, J. W.; Adams, D. K.; Balsam, W. R.

    2012-12-01

    The Bodélé Depression, located in the Southern Sahara, is a huge source of atmospheric dust and thus an important element in biogeochemical cycles and the radiative budget of Earth's atmosphere. Previous studies have shown that Saharan dust transport across the Atlantic acts as an important source of mineral nutrients to the Amazon rainforest. The Belterra Clay, which outcrops extensively across the Amazon Basin in Brazil, has been proposed to result from dry deposition of African dusts. We have investigated this hypothesis by measuring the radiogenic isotopic composition (Sr, Nd and Pb) of a suite of samples from the Belterra Clay, the Bodélé Depression, dusts deposits collected at various locations along the airmass transport trajectory, as well as loess from the Cape Verde Islands. Radiogenic isotope systems are powerful tracers of provenance and can be used to fingerprint dust sources and atmospheric transport patterns. Our results identify distinct isotopic signatures in the Belterra Clay samples and the African sources. The Belterra Clay display radiogenic Sr and Pb isotope ratios associated with non-radiogenic Nd isotope signatures. In contrast, Bodélé samples and dusts deposits show lower Pb isotope ratios, variable 87Sr/86Sr, and relatively homogeneous Nd isotopic compositions, albeit more radiogenic than those of the Belterra Clay. Our data show unambiguously that the Belterra Clay is not derived from African dust deposition, nor from the Andean chain, as originally suggested by W. Sombroek. Rather, isotopic compositions and Nd model ages are consistent with simple mixing of Archean and younger Proterozoic terranes within the Amazon Basin as a result of weathering and erosion under humid tropical conditions. Whether Saharan dusts contribute to the fertilization in the Amazon Basin cannot be ruled out, however, since the African dust isotopic signature is expected to be entirely overprinted by local sources. Radiogenic isotope data obtained on

  10. Atmospheric deposition of selected chemicals and their effect on nonpoint-source pollution in the Twin Cities Metropolitan Area, Minnesota

    Science.gov (United States)

    Brown, R.G.

    1984-01-01

    Atmospheric deposition and subsequent runoff concentrations of total Kjeldahl nitrogen, dissolved nitrite-plus-nitrate nitrogen, total phosphorus, total sulfate (only for atmospheric deposition), total chloride, and total lead were studied from April 1 to October 31, 1980, in one rural and three urban watersheds in the Twin Cities Metropolitan Area, Minnesota. Seasonal patterns of wetfall and dryfall generally were similar for all constituents except chloride in both rural and urban watersheds. Similarity between constituents and between rural and urban watersheds suggested that regional air masses transported from the Gulf of Mexico by frontal storm movements influence seasonal patterns of atmospheric deposition in the metropolitan area. Local influences such as industrial, agricultural, and vehicular air pollutants were found to influence the magnitude or rate of atmospheric deposition rather than the seasonal pattern. Chloride was primarily influenced by northwest frontal storms laden with coastal chloride. Local influences such as dust from road deicing salt dust are thought to have caused an increase in atmospheric chloride during June.

  11. Atmospheric Deposition Effects on Plankton Communities in the Eastern Mediterranean: A Mesocosm Experimental Approach

    Directory of Open Access Journals (Sweden)

    Tatiana M. Tsagaraki

    2017-07-01

    Full Text Available The effects of atmospheric deposition on plankton community structure were examined during a mesocosm experiment using water from the Cretan Sea (Eastern Mediterranean, an area with a high frequency of atmospheric aerosol deposition events. The experiment was carried out under spring-summer conditions (May 2012. The main objective was to study the changes induced from a single deposition event, on the autotrophic and heterotrophic surface microbial populations, from viruses to zooplankton. To this end, the effects of Saharan dust addition were compared to the effects of mixed aerosol deposition on the plankton community over 9 days. The effects of the dust addition seemed to propagate throughout the food-web, with changes observed in nearly all of the measured parameters up to copepods. The dust input stimulated increased productivity, both bacterial and primary. Picoplankton, both autotrophic and heterotrophic capitalized on the changes in nutrient availability and microzooplankton abundance also increased due to increased availability of prey. Five days after the simulated deposition, copepods also responded, with an increase in egg production. The results suggest that nutrients were transported up the food web through autotrophs, which were favored by the Nitrogen supplied through both treatments. Although, the effects of individual events are generally short lived, increased deposition frequency and magnitude of events is expected in the area, due to predicted reduction in rainfall and increase in temperature, which can lead to more persistent changes in plankton community structure. Here we demonstrate how a single dust deposition event leads to enhancement of phytoplankton and microzooplankton and can eventually, through copepods, transport more nutrients up the food web in the Eastern Mediterranean Sea.

  12. Trends in the chemistry of atmospheric deposition and surface waters in the Lake Maggiore catchment

    Directory of Open Access Journals (Sweden)

    M. Rogora

    2001-01-01

    Full Text Available The Lake Maggiore catchment is the area of Italy most affected by acid deposition. Trend analysis was performed on long-term (15-30 years series of chemical analyses of atmospheric deposition, four small rivers draining forested catchments and four high mountain lakes. An improvement in the quality of atmospheric deposition was detected, due to decreasing sulphate concentration and increasing pH. Similar trends were also found in high mountain lakes and in small rivers. Atmospheric deposition, however, is still providing a large and steady flux of nitrogen compounds (nitrate and ammonium which is causing increasing nitrogen saturation in forest ecosystems and increasing nitrate levels in rivers. Besides atmospheric deposition, an important factor controlling water acidification and recovery is the weathering of rocks and soils which may be influenced by climate warming. A further factor is the episodic deposition of Saharan calcareous dust which contributes significantly to base cation deposition. Keywords: trend, atmospheric deposition, nitrogen, stream water chemistry.

  13. Health effects from exposure to atmospheric mineral dust near Las Vegas, NV, USA

    Directory of Open Access Journals (Sweden)

    Deborah E. Keil

    Full Text Available Desert areas are usually characterized by a continuous deposition of fine airborne particles. Over time, this process results in the accumulation of silt and clay on desert surfaces. We evaluated health effects associated with regional atmospheric dust, or geogenic dust, deposited on surfaces in the Nellis Dunes Recreation Area (NDRA in Clark County, Nevada, a popular off-road vehicle (ORV recreational site frequented daily by riders, families, and day campers. Because of atmospheric mixing and the mostly regional origin of the accumulated particles, the re-suspended airborne dust is composed of a complex mixture of minerals and metals including aluminum, vanadium, chromium, manganese, iron, cobalt, copper, zinc, arsenic, strontium, cesium, lead, uranium, and others. Geogenic dust with a median diameter of 4.1 μm was administered via oropharyngeal aspiration to female B6C3F1 mice at doses of 0.01 to 100 mg dust/kg body weight, four times, a week apart, for 28-days. Immuno- and neurotoxicological outcomes 24 h following the last exposure were evaluated. Antigen-specific IgM responses were dose-responsively suppressed at 0.1, 1.0, 10 and 100 mg/kg/day. Splenic and thymic lymphocytic subpopulations and natural killer cell activity also were significantly reduced. Antibodies against MBP, NF-68, and GFAP were not affected, while brain CD3+ T cells were decreased in number. A lowest observed adverse effect level (LOAEL of 0.1 mg/kg/day and a no observed adverse effect level (NOAEL of 0.01 mg/kg/day were derived based on the antigen-specific IgM responses. Keywords: Geogenic dust, Heavy metals, Minerals, Lung exposure, Immunotoxicity, Neurotoxicity

  14. Evaluating the Contributions of Atmospheric Deposition of Carbon and Other Nutrients to Nitrification in Alpine Environments

    Science.gov (United States)

    Oldani, K. M.; Mladenov, N.; Williams, M. W.

    2013-12-01

    The Colorado Front Range of the Rocky Mountains contains undeveloped, barren soils, yet in this environment there is strong evidence for a microbial role in increased nitrogen (N) export. Barren soils in alpine environments are severely carbon-limited, which is the main energy source for microbial activity and sustenance of life. It has been shown that atmospheric deposition can contain high amounts of organic carbon (C). Atmospheric pollutants, dust events, and biological aerosols, such as bacteria, may be important contributors to the atmospheric organic C load. In this stage of the research we evaluated seasonal trends in the chemical composition and optical spectroscopic (fluorescence and UV-vis absorbance) signatures of snow, wet deposition, and dry deposition in an alpine environment at Niwot Ridge in the Rocky Mountains of Colorado to obtain a better understanding of the sources and chemical character of atmospheric deposition. Our results reveal a positive trend between dissolved organic carbon concentrations and calcium, nitrate and sulfate concentrations in wet and dry deposition, which may be derived from such sources as dust and urban air pollution. We also observed the presence of seasonally-variable fluorescent components that may be attributed to fluorescent pigments in bacteria. These results are relevant because atmospheric inputs of carbon and other nutrients may influence nitrification in barren, alpine soils and, ultimately, the export of nitrate to alpine watersheds.

  15. Mineral Dust Instantaneous Radiative Forcing in the Arctic

    Science.gov (United States)

    Kylling, A.; Groot Zwaaftink, C. D.; Stohl, A.

    2018-05-01

    Mineral dust sources at high and low latitudes contribute to atmospheric dust loads and dust deposition in the Arctic. With dust load estimates from Groot Zwaaftink et al. (https://doi.org/10.1002/2016JD025482), we quantify the mineral dust instantaneous radiative forcing (IRF) in the Arctic for the year 2012. The annual-mean top of the atmosphere IRF is 0.225 W/m2, with the largest contributions from dust transported from Asia south of 60°N and Africa. High-latitude (>60°N) dust sources contribute about 39% to top of the atmosphere IRF and have a larger impact (1 to 2 orders of magnitude) on IRF per emitted kilogram of dust than low-latitude sources. Mineral dust deposited on snow accounts for nearly all of the bottom of the atmosphere IRF of 0.135 W/m2. More than half of the bottom of the atmosphere IRF is caused by dust from high-latitude sources, indicating substantial regional climate impacts rarely accounted for in current climate models.

  16. Increasing aeolian dust deposition to snowpacks in the Rocky Mountains inferred from snowpack, wet deposition, and aerosol chemistry

    Science.gov (United States)

    Clow, David W.; Williams, Mark W.; Schuster, Paul F.

    2016-01-01

    Mountain snowpacks are a vital natural resource for ∼1.5 billion people in the northern Hemisphere, helping to meet human and ecological demand for water in excess of that provided by summer rain. Springtime warming and aeolian dust deposition accelerate snowmelt, increasing the risk of water shortages during late summer, when demand is greatest. While climate networks provide data that can be used to evaluate the effect of warming on snowpack resources, there are no established regional networks for monitoring aeolian dust deposition to snow. In this study, we test the hypothesis that chemistry of snow, wet deposition, and aerosols can be used as a surrogate for dust deposition to snow. We then analyze spatial patterns and temporal trends in inferred springtime dust deposition to snow across the Rocky Mountains, USA, for 1993–2014. Geochemical evidence, including strong correlations (r2 ≥ 0.94) between Ca2+, alkalinity, and dust concentrations in snow deposited during dust events, indicate that carbonate minerals in dust impart a strong chemical signature that can be used to track dust deposition to snow. Spatial patterns in chemistry of snow, wet deposition, and aerosols indicate that dust deposition increases from north to south in the Rocky Mountains, and temporal trends indicate that winter/spring dust deposition increased by 81% in the southern Rockies during 1993–2014. Using a multivariate modeling approach, we determined that increases in dust deposition and decreases in springtime snowfall combined to accelerate snowmelt timing in the southern Rockies by approximately 7–18 days between 1993 and 2014. Previous studies have shown that aeolian dust emissions may have doubled globally during the 20th century, possibly due to drought and land-use change. Climate projections for increased aridity in the southwestern U.S., northern Africa, and other mid-latitude regions of the northern Hemisphere suggest that aeolian dust emissions may continue to

  17. Role of clay minerals in the formation of atmospheric aggregates of Saharan dust

    Science.gov (United States)

    Cuadros, Javier; Diaz-Hernandez, José L.; Sanchez-Navas, Antonio; Garcia-Casco, Antonio

    2015-11-01

    Saharan dust can travel long distances in different directions across the Atlantic and Europe, sometimes in episodes of high dust concentration. In recent years it has been discovered that Saharan dust aerosols can aggregate into large, approximately spherical particles of up to 100 μm generated within raindrops that then evaporate, so that the aggregate deposition takes place most times in dry conditions. These aerosol aggregates are an interesting phenomenon resulting from the interaction of mineral aerosols and atmospheric conditions. They have been termed "iberulites" due to their discovery and description from aerosol deposits in the Iberian Peninsula. Here, these aggregates are further investigated, in particular the role of the clay minerals in the aggregation process of aerosol particles. Iberulites, and common aerosol particles for reference, were studied from the following periods or single dust events and locations: June 1998 in Tenerife, Canary Islands; June 2001 to August 2002, Granada, Spain; 13-20 August 2012, Granada; and 1-6 June 2014, Granada. Their mineralogy, chemistry and texture were analysed using X-ray diffraction, electron microprobe analysis, SEM and TEM. The mineral composition and structure of the iberulites consists of quartz, carbonate and feldspar grains surrounded by a matrix of clay minerals (illite, smectite and kaolinite) that also surrounds the entire aggregate. Minor phases, also distributed homogenously within the iberulites, are sulfates and Fe oxides. Clays are apparently more abundant in the iberulites than in the total aerosol deposit, suggesting that iberulite formation concentrates clays. Details of the structure and composition of iberulites differ from descriptions of previous samples, which indicates dependence on dust sources and atmospheric conditions, possibly including anthropic activity. Iberulites are formed by coalescence of aerosol mineral particles captured by precursor water droplets. The concentration of

  18. Atmospheric deposition as a source of carbon and nutrients to an alpine catchment of the Colorado Rocky Mountains

    Science.gov (United States)

    Mladenov, N.; Williams, M. W.; Schmidt, S. K.; Cawley, K.

    2012-08-01

    Many alpine areas are experiencing deglaciation, biogeochemical changes driven by temperature rise, and changes in atmospheric deposition. There is mounting evidence that the water quality of alpine streams may be related to these changes, including rising atmospheric deposition of carbon (C) and nutrients. Given that barren alpine soils can be severely C limited, atmospheric deposition sources may be an important source of C and nutrients for these environments. We evaluated the magnitude of atmospheric deposition of C and nutrients to an alpine site, the Green Lake 4 catchment in the Colorado Rocky Mountains. Using a long-term dataset (2002-2010) of weekly atmospheric wet deposition and snowpack chemistry, we found that volume weighted mean dissolved organic carbon (DOC) concentrations were 1.12 ± 0.19 mg l-1, and weekly concentrations reached peaks as high at 6-10 mg l-1 every summer. Total dissolved nitrogen concentration also peaked in the summer, whereas total dissolved phosphorus and calcium concentrations were highest in the spring. To investigate potential sources of C in atmospheric deposition, we evaluated the chemical quality of dissolved organic matter (DOM) and relationships between DOM and other solutes in wet deposition. Relationships between DOC concentration, fluorescence, and nitrate and sulfate concentrations suggest that pollutants from nearby urban and agricultural sources and organic aerosols derived from sub-alpine vegetation may influence high summer DOC wet deposition concentrations. Interestingly, high DOC concentrations were also recorded during "dust-in-snow" events in the spring, which may reflect an association of DOM with dust. Detailed chemical and spectroscopic analyses conducted for samples collected in 2010 revealed that the DOM in many late spring and summer samples was less aromatic and polydisperse and of lower molecular weight than that of winter and fall samples. Our C budget estimates for the Green Lake 4 catchment

  19. Evaluating the use of strontium isotopes in tree rings to record the isotopic signal of dust deposited on the Wasatch Mountains

    International Nuclear Information System (INIS)

    Miller, Olivia L.; Solomon, Douglas Kip; Fernandez, Diego P.; Cerling, Thure E.; Bowling, David R.

    2014-01-01

    Highlights: • Dust was a major contributor of Sr to soil and tree rings over Sr poor bedrocks. • Tree rings were evaluated for their use as a record of dust strontium isotope history. • The isotopic signal of dust deposited on the Wasatch Mountains changed over the past ∼75 years. - Abstract: Dust cycling from the Great Basin to the Rocky Mountains is an important component of ecological and hydrological processes. We investigated the use of strontium (Sr) concentrations and isotope ratios ( 87 Sr/ 86 Sr) in tree rings as a proxy for dust deposition. We report Sr concentrations and isotope ratios ( 87 Sr/ 86 Sr) from atmospherically deposited dust, soil, bedrock, and tree rings from the Wasatch Mountains to investigate provenance of dust landing on the Wasatch Mountains and to determine if a dust Sr record is preserved in tree rings. Trees obtained a majority of their Sr from dust, making them a useful record of dust source and deposition. Dust contributions of Sr to soils were more than 94% over quartzite, 63% over granodiorite, and 50% over limestone. Dust contributions of Sr to trees were more than 85% in trees growing over quartzite, 55% over granodiorite, and between 0% and 92% over limestone. These findings demonstrate that a dust signal was preserved in some tree rings and reflects how Sr from dust and bedrock mixes within the soil. Trees growing over quartzite were most sensitive to dust. Changes in Sr isotope ratios for a tree growing over quartzite were interpreted as changes in dust source over time. This work has laid the foundation for using tree rings as a proxy for dust deposition over time

  20. An analysis of the dust deposition on solar photovoltaic modules.

    Science.gov (United States)

    Styszko, Katarzyna; Jaszczur, Marek; Teneta, Janusz; Hassan, Qusay; Burzyńska, Paulina; Marcinek, Ewelina; Łopian, Natalia; Samek, Lucyna

    2018-03-29

    Solid particles impair the performance of the photovoltaic (PV) modules. This results in power losses which lower the efficiency of the system as well as the increases of temperature which additionally decreases the performance and lifetime. The deposited dust chemical composition, concentration and formation of a dust layer on the PV surface differ significantly in reference to time and location. In this study, an evaluation of dust deposition on the PV front cover glass during the non-heating season in one of the most polluted European cities, Kraków, was performed. The time-dependent particle deposition and its correlation to the air pollution with particulate matter were analysed. Dust deposited on several identical PV modules during variable exposure periods (from 1 day up to 1 week) and the samples of total suspended particles (TSP) on quartz fibre filters using a low volume sampler were collected during the non-heating season in the period of 5 weeks. The concentration of TSP in the study period ranged between 12.5 and 60.05 μg m -3 while the concentration of PM10 observed in the Voivodeship Inspectorate of Environmental Protection traffic station, located 1.2 km from the TSP sampler, ranged from 14 to 47 μg m -3 . It was revealed that dust deposition density on a PV surface ranged from 7.5 to 42.1 mg m -2 for exposure periods of 1 day while the measured weekly dust deposition densities ranged from 25.8 to 277.0 mg m -2 . The precipitation volume and its intensity as well as humidity significantly influence the deposited dust. The rate of dust accumulation reaches approximately 40 mg m -2 day -1 in the no-precipitation period and it was at least two times higher than fluxes calculated on the basis of PM10 and TSP concentrations which suggest that additional forces such as electrostatic forces significantly influence dust deposition.

  1. Validation of a continuous flow method for the determination of soluble iron in atmospheric dust and volcanic ash.

    Science.gov (United States)

    Simonella, Lucio E; Gaiero, Diego M; Palomeque, Miriam E

    2014-10-01

    Iron is an essential micronutrient for phytoplankton growth and is supplied to the remote areas of the ocean mainly through atmospheric dust/ash. The amount of soluble Fe in dust/ash is a major source of uncertainty in modeling-Fe dissolution and deposition to the surface ocean. Currently in the literature, there exist almost as many different methods to estimate fractional solubility as researchers in the field, making it difficult to compare results between research groups. Also, an important constraint to evaluate Fe solubility in atmospheric dust is the limited mass of sample which is usually only available in micrograms to milligrams amounts. A continuous flow (CF) method that can be run with low mass of sediments (solubility studies on dust/ash. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Biological response to coastal upwelling and dust deposition in the area off Northwest Africa

    Science.gov (United States)

    Ohde, T.; Siegel, H.

    2010-05-01

    Nutrient supply in the area off Northwest Africa is mainly regulated by two processes, coastal upwelling and deposition of Saharan dust. In the present study, both processes were analyzed and evaluated by different methods, including cross-correlation, multiple correlation, and event statistics, using remotely sensed proxies of the period from 2000 to 2008 to investigate their influence on the marine environment. The remotely sensed chlorophyll- a concentration was used as a proxy for the phytoplankton biomass stimulated by nutrient supply into the euphotic zone from deeper water layers and from the atmosphere. Satellite-derived alongshore wind stress and sea-surface temperature were applied as proxies for the strength and reflection of coastal upwelling processes. The westward wind and the dust component of the aerosol optical depth describe the transport direction of atmospheric dust and the atmospheric dust column load. Alongshore wind stress and induced upwelling processes were most significantly responsible for the surface chlorophyll- a variability, accounting for about 24% of the total variance, mainly in the winter and spring due to the strong north-easterly trade winds. The remotely sensed proxies allowed determination of time lags between biological response and its forcing processes. A delay of up to 16 days in the surface chlorophyll- a concentration due to the alongshore wind stress was determined in the northern winter and spring. Although input of atmospheric iron by dust storms can stimulate new phytoplankton production in the study area, only 5% of the surface chlorophyll- a variability could be ascribed to the dust component in the aerosol optical depth. All strong desert storms were identified by an event statistics in the time period from 2000 to 2008. The 57 strong storms were studied in relation to their biological response. Six events were clearly detected in which an increase of chlorophyll- a was caused by Saharan dust input and not by

  3. Peatland Microbial Communities as Indicators of the Extreme Atmospheric Dust Deposition.

    Science.gov (United States)

    Fiałkiewicz-Kozieł, B; Smieja-Król, B; Ostrovnaya, T M; Frontasyeva, M; Siemińska, A; Lamentowicz, M

    We investigated a peat profile from the Izery Mountains, located within the so-called Black Triangle, the border area of Poland, Czech Republic, and Germany. This peatland suffered from an extreme atmospheric pollution during the last 50 years, which created an exceptional natural experiment to examine the impact of pollution on peatland microbes. Testate amoebae (TA), Centropyxis aerophila and Phryganella acropodia , were distinguished as a proxy of atmospheric pollution caused by extensive brown coal combustion. We recorded a decline of mixotrophic TA and development of agglutinated taxa as a response for the extreme concentration of Al (30 g kg -1 ) and Cu (96 mg kg -1 ) as well as the extreme amount of fly ash particles determined by scanning electron microscopy (SEM) analysis, which were used by TA for shell construction. Titanium (5.9 %), aluminum (4.7 %), and chromium (4.2 %) significantly explained the highest percentage of the variance in TA data. Elements such as Al, Ti, Cr, Ni, and Cu were highly correlated ( r  > 0.7, p  < 0.01) with pseudostome position/body size ratio and pseudostome position. Changes in the community structure, functional diversity, and mechanisms of shell construction were recognized as the indicators of dust pollution. We strengthen the importance of the TA as the bioindicators of the recent atmospheric pollution.

  4. Deposition and retention of air pollutants on vegetation and other atmospheric interfaces

    International Nuclear Information System (INIS)

    Jonas, R.

    1984-09-01

    The question of the deposition of aerosols and gases are applied to biological and ecological problems concerning the filtering aspect of atmospheric interfaces, especially vegetation, with respect to air pollution, and also the resulting pollutant effect. In order to determine the deposition of aerosols, numerous field experiments were carried out. The deposition of gases was treated on the basis of current literature data. The experiments indicate that the deposition of aerosols on grass largely depends on aerosol diameter, dry weight per unit area and the wind velocity or turbulence of the air layer near the ground. Of the interfaces studied, namely soil without vegetation, water, filter paper, smooth and structured metals, grass, clover and trees, the latter had the greatest dust collecting capability. It is recommended that in the afforestation of areas in the close proximity of industrial regions the common beech, silver birch and Japanese larch should be taken into particular consideration due to their great deposition effectiveness with respect to dusts and their comparatively high resistance to pollutant gases. Silver birch and moreover red horse chestnut should be considered for filtering the air in urban regions because of the high aerosol deposition. (orig./HP) [de

  5. Understanding the nature of atmospheric acid processing of mineral dusts in supplying bioavailable phosphorus to the oceans.

    Science.gov (United States)

    Stockdale, Anthony; Krom, Michael D; Mortimer, Robert J G; Benning, Liane G; Carslaw, Kenneth S; Herbert, Ross J; Shi, Zongbo; Myriokefalitakis, Stelios; Kanakidou, Maria; Nenes, Athanasios

    2016-12-20

    Acidification of airborne dust particles can dramatically increase the amount of bioavailable phosphorus (P) deposited on the surface ocean. Experiments were conducted to simulate atmospheric processes and determine the dissolution behavior of P compounds in dust and dust precursor soils. Acid dissolution occurs rapidly (seconds to minutes) and is controlled by the amount of H + ions present. For H + 10 -4 mol/g of dust, the amount of P (and calcium) released has a direct proportionality to the amount of H + consumed until all inorganic P minerals are exhausted and the final pH remains acidic. Once dissolved, P will stay in solution due to slow precipitation kinetics. Dissolution of apatite-P (Ap-P), the major mineral phase in dust (79-96%), occurs whether calcium carbonate (calcite) is present or not, although the increase in dissolved P is greater if calcite is absent or if the particles are externally mixed. The system was modeled adequately as a simple mixture of Ap-P and calcite. P dissolves readily by acid processes in the atmosphere in contrast to iron, which dissolves more slowly and is subject to reprecipitation at cloud water pH. We show that acidification can increase bioavailable P deposition over large areas of the globe, and may explain much of the previously observed patterns of variability in leachable P in oceanic areas where primary productivity is limited by this nutrient (e.g., Mediterranean).

  6. Monitoring the airborne dust and water vapor in the low atmosphere of Mars: the MEDUSA experiment for the ESA ExoMars mission

    Science.gov (United States)

    Esposito, Francesca; Colangeli, Luigi; Palumbo, Pasquale; Della Corte, Vincenzo; Molfese, Cesare; Merrison, Jonathan; Nornberg, Per; Lopez-Moreno, J. J.; Rodriguez Gomez, Julio

    Dust and water vapour are fundamental components of Martian atmosphere. Dust amount varies with seasons and with the presence of local and global dust storms, but never drops entirely to zero. Aerosol dust has always played a fundamental role on the Martian climate. Dust interaction with solar and thermal radiation and the related condensation and evaporation processes influence the thermal structure and balance, and the dynamics (in terms of circulation) of the atmosphere. Water vapour is a minor constituent of the Martian atmosphere but it plays a fundamental role and it is important as indicator of seasonal climate changes. Moreover, the interest about the water cycle on local and global scales is linked to the fundamental function that water could have played in relation to the existence of living organisms on Mars. In view of tracing the past environmental conditions on Mars, that possibly favoured the appearing of life forms, it is important to study the present climate and its evolution, on which dust and water vapour have (and have had) strong influence. Moreover, nowadays, dust is a relevant agent that affects environmental conditions in the lower Martian atmosphere and, thus, may interact / interfere with any instrumentation delivered to Mars surface for in situ analyses. So, information on dust properties and deposition rate is also of great interest for future mission design. Knowledge of how much dust settles on solar arrays and the size and shape of particles will be crucial elements for designing missions that will operate by solar power for periods of several years and will have moving parts which will experience degradation by dust. This information is essential also for proper planning of future manned missions in relation to characterisation of environmental hazardous conditions. Little is known about dust structure and dynamics, so far. Size distribution is known only roughly and the mechanism of settling and rising into the atmosphere, the

  7. Atmospheric deposition and surface stratification as controls of contrasting chlorophyll abundance in the North Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Patra, P.K.; DileepKumar, M.; Mahowald, N.; Sarma, V.V.S.S.

    Intense upwelling during summer and convection in winter are believed to drive higher biological productivity in the Arabian Sea than in the Bay of Bengal. Although the Arabian Sea receives substantial atmospheric deposition of dust aerosols, its...

  8. Laboratory dust generation and size-dependent characterization of metal and metalloid-contaminated mine tailings deposits

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, Patricia; Felix, Omar [Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721 (United States); Alexander, Caitlin; Lutz, Eric [Division of Community, Environment, and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1656 E. Mabel St., Tucson, AZ 85724 (United States); Ela, Wendell [Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721 (United States); Eduardo Sáez, A., E-mail: esaez@arizona.edu [Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721 (United States)

    2014-09-15

    Highlights: • A laboratory dust fractionator was developed for the production of respirable dust. • The size-dependent distribution of arsenic and lead in mine tailings dust is reported. • Metal and metalloid contaminants are enriched in particles smaller than 10 μm. • Lead isotope signatures show spread of mine tailings particles onto surrounding soils. - Abstract: The particle size distribution of mine tailings material has a major impact on the atmospheric transport of metal and metalloid contaminants by dust. Implications to human health should be assessed through a holistic size-resolved characterization involving multidisciplinary research, which requires large uniform samples of dust that are difficult to collect using conventional atmospheric sampling instruments. To address this limitation, we designed a laboratory dust generation and fractionation system capable of producing several grams of dust from bulk materials. The equipment was utilized in the characterization of tailings deposits from the arsenic and lead-contaminated Iron King Superfund site in Dewey-Humboldt, Arizona. Results show that metal and metalloid contaminants are more concentrated in particles of <10 μm aerodynamic diameter, which are likely to affect surrounding communities and ecosystems. In addition, we traced the transport of contaminated particles from the tailings to surrounding soils by identifying Pb and Sr isotopic signatures in soil samples. The equipment and methods developed for this assessment ensure uniform samples for further multidisciplinary studies, thus providing a tool for comprehensive representation of emission sources and associated risks of exposure.

  9. Laboratory dust generation and size-dependent characterization of metal and metalloid-contaminated mine tailings deposits

    International Nuclear Information System (INIS)

    Gonzales, Patricia; Felix, Omar; Alexander, Caitlin; Lutz, Eric; Ela, Wendell; Eduardo Sáez, A.

    2014-01-01

    Highlights: • A laboratory dust fractionator was developed for the production of respirable dust. • The size-dependent distribution of arsenic and lead in mine tailings dust is reported. • Metal and metalloid contaminants are enriched in particles smaller than 10 μm. • Lead isotope signatures show spread of mine tailings particles onto surrounding soils. - Abstract: The particle size distribution of mine tailings material has a major impact on the atmospheric transport of metal and metalloid contaminants by dust. Implications to human health should be assessed through a holistic size-resolved characterization involving multidisciplinary research, which requires large uniform samples of dust that are difficult to collect using conventional atmospheric sampling instruments. To address this limitation, we designed a laboratory dust generation and fractionation system capable of producing several grams of dust from bulk materials. The equipment was utilized in the characterization of tailings deposits from the arsenic and lead-contaminated Iron King Superfund site in Dewey-Humboldt, Arizona. Results show that metal and metalloid contaminants are more concentrated in particles of <10 μm aerodynamic diameter, which are likely to affect surrounding communities and ecosystems. In addition, we traced the transport of contaminated particles from the tailings to surrounding soils by identifying Pb and Sr isotopic signatures in soil samples. The equipment and methods developed for this assessment ensure uniform samples for further multidisciplinary studies, thus providing a tool for comprehensive representation of emission sources and associated risks of exposure

  10. Quantification of the lithogenic carbon pump following a simulated dust-deposition event in large mesocosms

    Science.gov (United States)

    Bressac, M.; Guieu, C.; Doxaran, D.; Bourrin, F.; Desboeufs, K.; Leblond, N.; Ridame, C.

    2014-02-01

    Lithogenic particles, such as desert dust, have been postulated to influence particulate organic carbon (POC) export to the deep ocean by acting as mineral ballasts. However, an accurate understanding and quantification of the POC-dust association that occurs within the upper ocean is required in order to refine the "ballast hypothesis". In the framework of the DUNE (a DUst experiment in a low-Nutrient, low-chlorophyll Ecosystem) project, two artificial seedings were performed seven days apart within large mesocosms. A suite of optical and biogeochemical measurements were used to quantify surface POC export following simulated dust events within a low-nutrient, low-chlorophyll ecosystem. The two successive seedings led to a 2.3-6.7-fold higher POC flux than the POC flux observed in controlled mesocosms. A simple linear regression analysis revealed that the lithogenic fluxes explained more than 85% of the variance in POC fluxes. On the scale of a dust-deposition event, we estimated that 42-50% of POC fluxes were strictly associated with lithogenic particles (through aggregation and most probably sorption processes). Lithogenic ballasting also likely impacted the remaining POC fraction which resulted from the fertilization effect. The observations support the "ballast hypothesis" and provide a quantitative estimation of the surface POC export abiotically triggered by dust deposition. In this work, we demonstrate that the strength of such a "lithogenic carbon pump" depends on the biogeochemical conditions of the water column at the time of deposition. Based on these observations, we suggest that this lithogenic carbon pump could represent a major component of the biological pump in oceanic areas subjected to intense atmospheric forcing.

  11. DUST LOADING OF THE ATMOSPHERE AND GLACIERS IN THE KUMTOR MINING AREA (AKSHYYRAK, TIEN SHAN

    Directory of Open Access Journals (Sweden)

    V. A. Kuzmichenok

    2012-01-01

    Full Text Available Industrial development of the Kumtor Gold Mine in the nival-glacial zone of Tien Shan (altitude ranging from 4000 to 4500 m a.s.l. is inevitably accompanied by the release of some additional amounts of dust in atmosphere. Sampling in 7 points and an analysis of the quantity (weight of dust in the seasonal snow (September–April on glaciers show that the dust pollution does not substantially exceed the natural level of dust in Tien Shan. An analysis of almost 3 000 daily measurements of dust in the surface layer of air at 4 points around the gold mine has also shown that the economic activity has no significant impact on dust production. It is likely that the manmade component of overall dust in the immediate vicinity of the deposit and the gob pile does not exceed 20%. No increase in the content of dust and in its anthropogenic component with time has been found. Thus, we suggest that the principal amount of dust in the area is brought during the cold season from snow-free areas of Central Asia.

  12. The quantitative studies on gas explosion suppression by an inert rock dust deposit.

    Science.gov (United States)

    Song, Yifan; Zhang, Qi

    2018-07-05

    The traditional defence against propagating gas explosions is the application of dry rock dust, but not much quantitative study on explosion suppression of rock dust has been made. Based on the theories of fluid dynamics and combustion, a simulated study on the propagation of premixed gas explosion suppressed by deposited inert rock dust layer is carried out. The characteristics of the explosion field (overpressure, temperature, flame speed and combustion rate) at different deposited rock dust amounts are investigated. The flame in the pipeline cannot be extinguished when the deposited rock dust amount is less than 12 kg/m 3 . The effects of suppressing gas explosion become weak when the deposited rock dust amount is greater than 45 kg/m 3 . The overpressure decreases with the increase of the deposited rock dust amounts in the range of 18-36 kg/m 3 and the flame speed and the flame length show the same trends. When the deposited rock dust amount is 36 kg/m 3 , the overpressure can be reduced by 40%, the peak flame speed by 50%, and the flame length by 42% respectively, compared with those of the gas explosion of stoichiometric mixture. In this model, the effective raised dust concentrations to suppress explosion are 2.5-3.5 kg/m 3 . Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Dust Deposition Events on Mt. Elbrus, Caucasus Mountains in the 21st Century Reconstructed from the Shallow Firn and Ice Cores (Invited)

    Science.gov (United States)

    Shahgedanova, M.; Kutuzov, S.; Mikhalenko, V.; Ginot, P.; Lavrentiev, I.

    2013-12-01

    This paper presents and discusses a record of dust deposition events reconstructed from the shallow firn and ice cores extracted on the Western Plateau, Mt. Elbrus, Caucasus Mountains, Russia. A combination of SEVIRI imagery, HYSPLIT trajectory model, meteorological and atmospheric optical depth data were used to establish timing of deposition events and source regions of dust with very high temporal (hours) and spatial (c. 50-100 km) resolution. The source regions of the desert dust transported to Mt. Elbrus were primarily located in the Middle East, in particular in eastern Syria and in the Syrian Desert at the border between Saudi Arabia, Iraq and Jordan. Northern Sahara, the foothills of the Djebel Akhdar Mountains in eastern Libya and the border region between Libya and Algeria were other important sources of desert dust. Dust sources in the Sahara were natural (e.g. palaeolakes and alluvial deposits in the foothills) while in the Middle East, dust entrainment occurred from both natural (e.g. dry river beds) and anthropogenic (e.g. agricultural fields) sources. The overall majority of dust deposition events occurred between March and June and, less frequently, dust deposition events occurred in February and October. In all cases, dust deposition was associated with depressions causing strong surface wind and dust uplift in the source areas, transportation of dust to the Caucasus with a strong south-westerly flow from the Sahara or southerly flow from the Middle East, merging of the dust clouds with precipitation-bearing weather fronts and precipitation over the Caucasus region. The Saharan depressions were vigorous and associated with stronger daily wind speeds of 20-30 m/s at the 700 hPa level; depressions forming over the Middle East and the associated wind speeds were weaker at 12-15 m/s. The Saharan depressions were less frequent than those carrying dust from the Middle East but higher dust loads were associated with the Saharan depressions. A higher

  14. Activation analysis of deposited dust brought to Israel by dust storms

    International Nuclear Information System (INIS)

    Ganor, E.; Tal, A.; Donagi, A.

    1975-01-01

    The determination of dust particles deposited in Jerusalem during regional dust storms was carried out by polarized microscopy, X-ray analysis and atomic absorption measurements. These analyses showed the presence of particles of quartz, calcite, dolomite, feldspar, halite, kaolinite, montmorillonite, epidote, tourmaline, glauconite, illite and other heavy minerals. The aims of the present study were to apply activation analysis for the determination of element composition in dust samples; to compare the results obtained by activation analysis with those obtained by other methods, i.e. chemical analysis, polarized microscopy and X-ray analysis. The results obtained by the various methods were in good agreement. (B.G.)

  15. Tracing the Sources of Atmospheric Phosphorus Deposition to a Tropical Rain Forest in Panama Using Stable Oxygen Isotopes.

    Science.gov (United States)

    Gross, A; Turner, B L; Goren, T; Berry, A; Angert, A

    2016-02-02

    Atmospheric dust deposition can be a significant source of phosphorus (P) in some tropical forests, so information on the origins and solubility of atmospheric P is needed to understand and predict patterns of forest productivity under future climate scenarios. We characterized atmospheric dust P across a seasonal cycle in a tropical lowland rain forest on Barro Colorado Nature Monument (BCNM), Republic of Panama. We traced P sources by combining remote sensing imagery with the first measurements of stable oxygen isotopes in soluble inorganic phosphate (δ(18)OP) in dust. In addition, we measured soluble inorganic and organic P concentrations in fine (1 μm) aerosol fractions and used this data to estimate the contribution of P inputs from dust deposition to the forest P budget. Aerosol dry mass was greater in the dry season (December to April, 5.6-15.7 μg m(-3)) than the wet season (May to November, 3.1-7.1 μg m(-3)). In contrast, soluble P concentrations in the aerosols were lower in the dry season (980-1880 μg P g(-1)) than the wet season (1170-3380 μg P g(-1)). The δ(18)OP of dry-season aerosols resembled that of nearby forest soils (∼19.5‰), suggesting a local origin. In the wet season, when the Trans-Atlantic Saharan dust belt moves north close to Panama, the δ(18)OP of aerosols was considerably lower (∼15.5‰), suggesting a significant contribution of long-distance dust P transport. Using satellite retrieved aerosol optical depth (AOD) and the P concentrations in aerosols we sampled in periods when Saharan dust was evident we estimate that the monthly P input from long distance dust transport during the period with highest Saharan dust deposition is 88 ± 31 g P ha(-1) month(-1), equivalent to between 10 and 29% of the P in monthly litter fall in nearby forests. These findings have important implications for our understanding of modern nutrient budgets and the productivity of tropical forests in the region under future climate scenarios.

  16. Atmospheric heavy metal deposition in the Copenhagen area

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, A; Hovmand, M F; Johnsen, I

    1978-10-01

    Transport of heavy metals from the atmosphere to the soil and vegetation takes place by dust fall, bulk precipitation, and gas/aerosol adsorption processes. Atmospheric dry and wet deposition of the heavy metals lead, zinc, nickel, vanadium, iron, and copper over the Copenhagen area was measured by sampling in plastic funnels from 17 stations throughout the area for 12 months. Epigeic bryophytes, epiphytic lichen, and topsoil samples were analyzed. A linear correlation between bulk precipitation and heavy metal concentration in lichens and bryophytes was found. An exponential correlation between bulk precipitation and heavy metal concentration in soil was noted. Regional variation of the heavy metal levels in the Copenhagen area was described, and three sub-areas with high metal burdens were distinguished. (10 diagrams, 8 graphs, 13 references, 2 tables)

  17. Field Measurements and Modeling of Dust Transport and Deposition on a Hawaiian Volcano

    Science.gov (United States)

    Douglas, M.; Stock, J. D.; Cerovski-Darriau, C.; Bishaw, K.; Bedford, D.

    2017-12-01

    The western slopes of Hawaii's Mauna Kea volcano are mantled by fine-grained soils that record volcanic airfall and eolian deposition. Where exposed, strong winds transport this sediment across west Hawaii, affecting tourism and local communities by decreasing air and water quality. Operations on US Army's Ke'amuku Maneuver Area (KMA) have the potential to increase dust flux from these deposits. To understand regional dust transport and composition, the USGS established 18 ground monitoring sites and sampling locations surrounding KMA. For over three years, each station measured vertical and horizontal dust flux while co-located anemometers measured wind speed and direction. We use these datasets to develop a model for dust supply and transport to assess whether KMA is a net dust sink or source. We find that horizontal dust flux rates are most highly correlated with entrainment threshold wind speeds of 8 m/s. Using a dust model that partitions measured horizontal dust flux into inward- and outward-directed components, we predict that KMA is currently a net dust sink. Geochemical analysis of dust samples illustrates that organics and pedogenic carbonate make up to 70% of their mass. Measured vertical dust deposition rates of 0.005 mm/m2/yr are similar to deposition rates of 0.004 mm/m2/yr predicted from the divergence of dust across KMA's boundary. These rates are low compared to pre-historic rates of 0.2-0.3 mm/yr estimated from radiocarbon dating of buried soils. Therefore, KMA's soils record persistent deposition both over past millennia and at present at rates that imply infrequent, large dust storms. Such events led to soil-mantled topography in an otherwise rocky Pleistocene volcanic landscape. A substantial portion of fine-grained soils in other leeward Hawaiian Island landscapes may have formed from similar eolian deposition, and not direct weathering of parent rock.

  18. Analysis of graphite dust deposition in hot gas duct of HTGR

    International Nuclear Information System (INIS)

    Peng Wei; Zhen Ya'nan; Yang Xiaoyong; Ye Ping

    2013-01-01

    The behavior of the graphite dust is important to the safety of high-temperature gas-cooled reactor (HTGR). The temperature field in hot gas duct was obtained using computational fluid dynamics (CFD) method. Further analysis to the thermo-phoretic deposition and turbulent deposition shows that as the dust particle diameter increases, the thermo-phoretic deposition efficiency decreases, and the turbulent deposition efficiency initially decreases and then increases. The comparisons of calculation results for two reactor powers, namely 30% FP (full power) and 100 % FP, indicate that the thermo-phoretic deposition efficiency is higher at 30% FP than that at 100% FP. while the turbulent deposition efficiency grows more rapidly at 100% FP. Besides, the results also demonstrate that the thermo-phoretic deposition and the turbulent deposition are nearly equivalent when particle sizes are small, while the turbulent deposition becomes dominant when particle sizes are fairly large. The calculation results by using the most probable distribution of particle size show that the total deposition of graphite dusts in hot gas duct is limited. (authors)

  19. Windblown Dust Deposition Forecasting and Spread of Contamination around Mine Tailings.

    Science.gov (United States)

    Stovern, Michael; Guzmán, Héctor; Rine, Kyle P; Felix, Omar; King, Matthew; Ela, Wendell P; Betterton, Eric A; Sáez, Avelino Eduardo

    2016-02-01

    Wind erosion, transport and deposition of windblown dust from anthropogenic sources, such as mine tailings impoundments, can have significant effects on the surrounding environment. The lack of vegetation and the vertical protrusion of the mine tailings above the neighboring terrain make the tailings susceptible to wind erosion. Modeling the erosion, transport and deposition of particulate matter from mine tailings is a challenge for many reasons, including heterogeneity of the soil surface, vegetative canopy coverage, dynamic meteorological conditions and topographic influences. In this work, a previously developed Deposition Forecasting Model (DFM) that is specifically designed to model the transport of particulate matter from mine tailings impoundments is verified using dust collection and topsoil measurements. The DFM is initialized using data from an operational Weather Research and Forecasting (WRF) model. The forecast deposition patterns are compared to dust collected by inverted-disc samplers and determined through gravimetric, chemical composition and lead isotopic analysis. The DFM is capable of predicting dust deposition patterns from the tailings impoundment to the surrounding area. The methodology and approach employed in this work can be generalized to other contaminated sites from which dust transport to the local environment can be assessed as a potential route for human exposure.

  20. Loess as an environmental archive of atmospheric trace element deposition

    Science.gov (United States)

    Blazina, T.; Winkel, L. H.

    2013-12-01

    environmental archive to reconstruct long term natural variations in atmospheric trace element input. By comparing paleomonsoon proxy data with geochemical data we can directly correlate variations in atmospheric trace element input to fluctuations in the EAM. For example we are able to link Se input into the CLP to EAM derived precipitation. In interglacial climatic periods from 2.3-1.56Ma and 1.50-1.29Ma, we find very strong positive correlations between Se concentration and the summer monsoon index, a proxy for effective precipitation. In later interglacial periods from 1.26-0.83Ma and 0.78-0.16Ma, we find dust input plays a greater role. Our findings demonstrate that the CLP is a valuable environmental archive of atmospheric trace element deposition and suggest that other loess deposits worldwide may serve as useful records for investigating long term natural variations in atmospheric trace element cycling.

  1. Dust: Small-scale processes with global consequences

    Science.gov (United States)

    Okin, G.S.; Bullard, J.E.; Reynolds, R.L.; Ballantine, J.-A.C.; Schepanski, K.; Todd, M.C.; Belnap, J.; Baddock, M.C.; Gill, T.E.; Miller, M.E.

    2011-01-01

    Desert dust, both modern and ancient, is a critical component of the Earth system. Atmospheric dust has important effects on climate by changing the atmospheric radiation budget, while deposited dust influences biogeochemical cycles in the oceans and on land. Dust deposited on snow and ice decreases its albedo, allowing more light to be trapped at the surface, thus increasing the rate of melt and influencing energy budgets and river discharge. In the human realm, dust contributes to the transport of allergens and pathogens and when inhaled can cause or aggravate respiratory diseases. Dust storms also represent a significant hazard to road and air travel. Because it affects so many Earth processes, dust is studied from a variety of perspectives and at multiple scales, with various disciplines examining emissions for different purposes using disparate strategies. Thus, the range of objectives in studying dust, as well as experimental approaches and results, has not yet been systematically integrated. Key research questions surrounding the production and sources of dust could benefit from improved collaboration among different research communities. These questions involve the origins of dust, factors that influence dust production and emission, and methods through which dust can be monitored. ?? Author(s) 2011.

  2. Evaluation of the pollution and human health risks posed by heavy metals in the atmospheric dust in Ebinur Basin in Northwest China.

    Science.gov (United States)

    Abuduwailil, Jilili; Zhaoyong, Zhang; Fengqing, Jiang

    2015-09-01

    Recently, a large amount of research assessing pollution levels and the related health risks posed by atmosphere dust has been undertaken worldwide. However, little work has been done in the oases of the arid regions of Northwest China. In this paper, we studied the pollution and health risks over a year of seven heavy metals in the atmospheric dust of Ebinur Basin, a typical oasis in Northwest China. The results showed the following: (1) The annual amount of atmospheric deposition in Ebinur Basin was 298.23 g m(-2) and the average monthly atmospheric deposition was 25.06 g m(-2). The average and maximum values of the seven heavy metals measured were all below the National Soil Environmental Quality Standards (2nd). (2) Heavy metals of Cu, Cr, and As in the atmospheric deposition mainly originated from the natural geological background, while Zn came from human activity. This study also showed that among the seven measured heavy metals, the ratios of the no-pollution status of Pb, Cd, and Hg were higher than those of others with moderate degrees of pollution also accounting for a certain ratio. (3) The carcinogenic risks from As, Cd, and Cr were all lower than the corresponding standard limit values, and these metals are considered not harmful to the health of the basin. However, there is a relatively high risk of exposure for children from hand-to-mouth intake, which is worthy of attention. This research showed that both human activity and natural factors, such as wind and altitude, influenced the heavy metal contents in the atmospheric dust of the study area. Furthermore, recent human activity in the study area had the most negative influence on the accumulation of the heavy metals and the corresponding health risks, especially for Hg, Pb, and Cd, which is worthy of attention.

  3. Atmospheric deposition as a source of carbon and nutrients to barren, alpine soils of the Colorado Rocky Mountains

    Science.gov (United States)

    Mladenov, N.; Williams, M. W.; Schmidt, S. K.; Cawley, K.

    2012-03-01

    Many alpine areas are experiencing intense deglaciation, biogeochemical changes driven by temperature rise, and changes in atmospheric deposition. There is mounting evidence that the water quality of alpine streams may be related to these changes, including rising atmospheric deposition of carbon (C) and nutrients. Given that barren alpine soils can be severely C limited, we evaluated the magnitude and chemical quality of atmospheric deposition of C and nutrients to an alpine site, the Green Lake 4 catchment in the Colorado Rocky Mountains. Using a long term dataset (2002-2010) of weekly atmospheric wet deposition and snowpack chemistry, we found that volume weighted mean dissolved organic carbon (DOC) concentrations were approximately 1.0 mg L-1and weekly concentrations reached peaks as high at 6-10 mg L-1 every summer. Total dissolved nitrogen concentration also peaked in the summer, whereas total dissolved phosphorus and calcium concentrations were highest in the spring. Relationships among DOC concentration, dissolved organic matter (DOM) fluorescence properties, and nitrate and sulfate concentrations suggest that pollutants from nearby urban and agricultural sources and organic aerosols derived from sub-alpine vegetation may influence high summer DOC wet deposition concentrations. Interestingly, high DOC concentrations were also recorded during "dust-in-snow" events in the spring. Detailed chemical and spectroscopic analyses conducted for samples collected in 2010 revealed that the DOM in many late spring and summer samples was less aromatic and polydisperse and of lower molecular weight than that of winter and fall samples and, therefore, likely to be more bioavailable to microbes in barren alpine soils. Bioavailability experiments with different types of atmospheric C sources are needed to better evaluate the substrate quality of atmospheric C inputs. Our C budget estimates for the Green Lake 4 catchment suggest that atmospheric deposition represents an

  4. How large is the cosmic dust flux into the Earth's atmosphere?

    Science.gov (United States)

    Plane, John; Janches, Diego; Gomez-Martin, Juan Carlos; Bones, David; Diego Carrillo-Sanchez, Juan; James, Sandy; Nesvorny, David; Pokorny, Petr

    2016-07-01

    Cosmic dust particles are produced in the solar system from the sublimation of comets as they orbit close to the sun, and also from collisions between asteroids in the belt between Mars and Jupiter. Current estimates of the magnitude of the cosmic dust input rate into the Earth's atmosphere range from 2 to well over 100 tons per day, depending on whether the measurements are made in space, in the middle atmosphere, or at the surface in polar ice cores. This nearly 2 order-of-magnitude discrepancy indicates that there are serious flaws in the interpretation of observations that have been used to make the estimates. Dust particles enter the atmosphere at hyperthermal velocities (11 - 72 km s ^{-1}), and mostly ablate at heights between 80 and 120 km in a region of the atmosphere known as the mesosphere/lower thermosphere (MLT). The resulting metal vapours (Fe, Mg, Si and Na etc.) then oxidize and recondense to form nm-size particles, termed "meteoric smoke". These particles are too small to sediment downwards. Instead, they are transported by the general circulation of the atmosphere, taking roughly 5 years to reach the surface. There is great interest in the role smoke particles play as condensation nuclei of noctilucent ice clouds in the mesosphere, and polar stratospheric clouds in the lower stratosphere. Various new estimates of the dust input will be discussed. The first is from a zodiacal dust cloud model which predicts that more than 90% of the dust entering the atmosphere comes from Jupiter Family Comets; this model is constrained by observations of the zodiacal cloud using the IRAS, COBE and Planck satellites. The cometary dust is predicted to mostly be in a near-prograde orbit, entering the atmosphere with an average velocity around 14 km s ^{-1}. The total dust input should then be about 40 t d ^{-1}. However, relatively few of these particles are observed, even by the powerful Arecibo 430 MHz radar. Coupled models of meteoroid differential ablation

  5. Dust emission: small-scale processes with global consequences

    Science.gov (United States)

    Okin, Gregory S.; Bullard, Joanna E.; Reynolds, Richard L.; Ballantine, John-Andrew C.; Schepanski, Kerstin; Todd, Martin C.; Belnap, Jayne; Baddock, Matthew C.; Gill, Thomas E.; Miller, Mark E.

    2011-01-01

    Desert dust, both modern and ancient, is a critical component of the Earth system. Atmospheric dust has important effects on climate by changing the atmospheric radiation budget, while deposited dust influences biogeochemical cycles in the oceans and on land. Dust deposited on snow and ice decreases its albedo, allowing more light to be trapped at the surface, thus increasing the rate of melt and influencing energy budgets and river discharge. In the human realm, dust contributes to the transport of allergens and pathogens and when inhaled can cause or aggravate respiratory diseases. Dust storms also represent a significant hazard to road and air travel. Because it affects so many Earth processes, dust is studied from a variety of perspectives and at multiple scales, with various disciplines examining emissions for different purposes using disparate strategies. Thus, the range of objectives in studying dust, as well as experimental approaches and results, has not yet been systematically integrated. Key research questions surrounding the production and sources of dust could benefit from improved collaboration among different research communities. These questions involve the origins of dust, factors that influence dust production and emission, and methods through which dust can be monitored.

  6. Transport of Mineral Dust and Its Impact on Climate

    Directory of Open Access Journals (Sweden)

    Kerstin Schepanski

    2018-04-01

    Full Text Available Mineral dust plays a pivotal role in the Earth’s system. Dust modulates the global energy budget directly via its interactions with radiation and indirectly via its influence on cloud and precipitation formation processes. Dust is a micro-nutrient and fertilizer for ecosystems due to its mineralogical composition and thus impacts on the global carbon cycle. Hence, dust aerosol is an essential part of weather and climate. Dust suspended in the air is determined by the atmospheric dust cycle: Dust sources and emission processes define the amount of dust entrained into the atmosphere. Atmospheric mixing and circulation carry plumes of dust to remote places. Ultimately, dust particles are removed from the atmosphere by deposition processes such as gravitational settling and rain wash out. During its residence time, dust interacts with and thus modulates the atmosphere resulting into changes such as in surface temperature, wind, clouds, and precipitation rates. There are still uncertainties regarding individual dust interactions and their relevance. Dust modulates key processes that are inevitably influencing the Earth energy budget. Dust transport allows for these interactions and at the same time, the intermittency of dust transport introduces additional fluctuations into a complex and challenging system.

  7. Atmospheric deposition impacts on nutrients and biological budgets of the Mediterranean Sea, results from the high resolution coupled model NEMOMED12/PISCES

    Science.gov (United States)

    Richon, Camille; Dutay, Jean-Claude; Dulac, François; Desboeufs, Karine; Nabat, Pierre; Guieu, Cécile; Aumont, Olivier; Palmieri, Julien

    2016-04-01

    Atmospheric deposition is at present not included in regional oceanic biogeochemical models of the Mediterranean Sea, whereas, along with river inputs, it represents a significant source of nutrients at the basin scale, especially through intense desert dust events. Moreover, observations (e.g. DUNE campaign, Guieu et al. 2010) show that these events significantly modify the biogeochemistry of the oligotrophic Mediterranean Sea. We use a high resolution (1/12°) version of the 3D coupled model NEMOMED12/PISCES to investigate the effects of high resolution atmospheric dust deposition forcings on the biogeochemistry of the Mediterranean basin. The biogeochemical model PISCES represents the evolution of 24 prognostic tracers including five nutrients (nitrate, ammonium, phosphate, silicate and iron) and two phytoplankton and zooplanktons groups (Palmiéri, 2014). From decadal simulations (1982-2012) we evaluate the influence of natural dust and anthropogenic nitrogen deposition on the budget of nutrients in the basin and its impact on the biogeochemistry (primary production, plankton distributions...). Our results show that natural dust deposition accounts for 15% of global PO4 budget and that it influences primarily the southern part of the basin. Anthropogenic nitrogen accounts for 50% of bioavailable N supply for the northern part. Deposition events significantly affect biological production; primary productivity enhancement can be as high as 30% in the areas of high deposition, especially during the stratified period. Further developments of the model will include 0D and 1D modeling of bacteria in the frame of the PEACETIME project.

  8. Corrosion resistance of Ni-50Cr HVOF coatings on 310S alloy substrates in a metal dusting atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Saaedi, J. [Centre for Advanced Coating Technologies, Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4 (Canada); Department of Materials and Metallurgical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Arabi, H.; Mirdamadi, S.; Ghorbani, H. [Department of Materials and Metallurgical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Coyle, T.W. [Centre for Advanced Coating Technologies, Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4 (Canada)

    2011-09-15

    Metal dusting attack has been examined after three 168 h cycles on two Ni-50Cr coatings with different microstructures deposited on 310S alloy substrates by the high velocity oxy-fuel (HVOF) thermal-spray process. Metal dusting in uncoated 310S alloy specimens was found to be still in the initiation stage after 504 h of exposure in the 50H{sub 2}:50CO gas environment at 620 C. Dense Ni-50Cr coatings offered suitable resistance to metal dusting. Metal dusting was observed in the 310S substrates adjacent to pores at the interface between the substrate and a porous Ni-50Cr coating. The porosity present in the as-deposited coatings was shown to introduce a large variability into coating performance. Carbon formed by decomposition of the gaseous species accumulated in the surface pores and resulted in the dislodgement of surface splats due to stresses generated by the volume changes. When the corrosive gas atmosphere was able to penetrate through the interconnected pores and reach the coating-substrate interface, the 310S substrate was carburized, metal dusting attack occurred, and the resulting formation of coke in the pores led to local failure of the coating. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Early-Holocene greening of the Afro-Asian dust belt changed sources of mineral dust in West Asia

    Science.gov (United States)

    Sharifi, Arash; Murphy, Lisa N.; Pourmand, Ali; Clement, Amy C.; Canuel, Elizabeth A.; Naderi Beni, Abdolmajid; Lahijani, Hamid A. K.; Delanghe, Doriane; Ahmady-Birgani, Hesam

    2018-01-01

    Production, transport and deposition of mineral dust have significant impacts on different components of the Earth systems through time and space. In modern times, dust plumes are associated with their source region(s) using satellite and land-based measurements and trajectory analysis of air masses through time. Reconstruction of past changes in the sources of mineral dust as related to changes in climate, however, must rely on the knowledge of the geochemical and mineralogical composition of modern and paleo-dust, and that of their potential source origins. In this contribution, we present a 13,000-yr record of variations in radiogenic Sr-Nd-Hf isotopes and Rare Earth Element (REE) anomalies as well as dust grain size from an ombrotrophic (rain fed) peat core in NW Iran as proxies of past changes in the sources of dust over the interior of West Asia. Our data shows that although the grain size of dust varies in a narrow range through the entire record, the geochemical fingerprint of dust particles deposited during the low-flux, early Holocene period (11,700-6,000 yr BP) is distinctly different from aerosols deposited during high dust flux periods of the Younger Dryas and the mid-late Holocene (6,000-present). Our findings indicate that the composition of mineral dust deposited at the study site changed as a function of prevailing atmospheric circulation regimes and land exposure throughout the last deglacial period and the Holocene. Simulations of atmospheric circulation over the region show the Northern Hemisphere Summer Westerly Jet was displaced poleward across the study area during the early Holocene when Northern Hemisphere insolation was higher due to the Earth's orbital configuration. This shift, coupled with lower dust emissions simulated based on greening of the Afro-Asian Dust Belt during the early Holocene likely led to potential sources in Central Asia dominating dust export to West Asia during this period. In contrast, the dominant western and

  10. Variability of mineral dust deposition in the western Mediterranean basin and south-east of France

    Directory of Open Access Journals (Sweden)

    J. Vincent

    2016-07-01

    Full Text Available Previous studies have provided some insight into the Saharan dust deposition at a few specific locations from observations over long time periods or intensive field campaigns. However, no assessment of the dust deposition temporal variability in connection with its regional spatial distribution has been achieved so far from network observations over more than 1 year. To investigate dust deposition dynamics at the regional scale, five automatic deposition collectors named CARAGA (Collecteur Automatique de Retombées Atmosphériques insolubles à Grande Autonomie in French have been deployed in the western Mediterranean region during 1 to 3 years depending on the station. The sites include, from south to north, Lampedusa, Majorca, Corsica, Frioul and Le Casset (southern French Alps. Deposition measurements are performed on a common weekly period at the five sites. The mean dust deposition fluxes are higher close to the northern African coasts and decrease following a south–north gradient, with values from 7.4 g m−2 year−1 in Lampedusa (35°31′ N, 12°37′ E to 1 g m−2 year−1 in Le Casset (44°59′ N, 6°28′ E. The maximum deposition flux recorded is of 3.2 g m−2 wk−1 in Majorca with only two other events showing more than 1 g m−2 wk−1 in Lampedusa, and a maximum of 0.5 g m−2 wk−1 in Corsica. The maximum value of 2.1 g m−2 year−1 observed in Corsica in 2013 is much lower than existing records in the area over the 3 previous decades (11–14 g m−2 year−1. From the 537 available samples, 98 major Saharan dust deposition events have been identified in the records between 2011 and 2013. Complementary observations provided by both satellite and air mass trajectories are used to identify the dust provenance areas and the transport pathways from the Sahara to the stations for the studied period. Despite the large size of African dust plumes detected by satellites, more

  11. Airborne desert dust and aeromicrobiology over the Turkish Mediterranean coastline

    Science.gov (United States)

    Griffin, Dale W.; Kubilay, Nilgün; Kocak, Mustafa; Gray, Mike A.; Borden, Timothy C.; Shinn, Eugene A.

    2007-01-01

    Between 18 March and 27 October 2002, 220 air samples were collected on 209 of 224 calendar days, on top of a coastal atmospheric research tower in Erdemli, Turkey. The volume of air filtered for each sample was 340 liters. Two hundred fifty-seven bacterial and 2598 fungal colony forming units (CFU) were enumerated from the samples using a low-nutrient agar. Ground-based dust measurements demonstrated that the region is routinely impacted by dust generated regionally and from North Africa and that the highest combined percent recovery of total CFU and African dust deposition occurred in the month of April (93.4% of CFU recovery and 91.1% of dust deposition occurred during African dust days versus no African dust present, for that month). A statistically significant correlation was observed (peak regional African dust months of March, April and May; rs=0.576, P=0.000) between an increase in the prevalence of microorganisms recovered from atmospheric samples on dust days (regional and African as determined by ground-based dust measurements), versus that observed on non-dust days. Given the prevalence of atmospherically suspended desert dust and microorganisms observed in this study, and that culture-based studies typically only recover a small fraction (

  12. Optical properties of dust and the opacity of the Martian atmosphere

    Science.gov (United States)

    Korablev, O.; Moroz, V. I.; Petrova, E. V.; Rodin, A. V.

    Particulate component of the Mars atmosphere composed by micron-sized products of soil weathering and water ice clouds strongly affects the current climate of the planet. In the absence of a dust storm so-called permanent dust haze with τ ≈ 0.2 in the atmosphere of Mars determines its thermal structure. Dust loading varies substantially with the season and geographic location, and only the data of mapping instruments are adequate to characterize it, such as TES/MGS and IRTM/Viking. In spite of vast domain of collected data, no model is now capable to explain all observed spectral features of dust aerosol. Several mineralogical and microphysical models of the atmospheric dust have been proposed but they cannot explain the pronounced systematic differences between the IR data (τ = 0.05-0.2) and measurements from the surface (Viking landers, Pathfinder) which give the typical “clear” optical depth of τ ≈ 0.5 from one side, and ground-based observations in the UV-visible range showing much more transparent atmosphere, on the other side. Also the relationship between τ9 and the visible optical depth is not well constrained experimentally so far. Future focused measurements are therefore necessary to study Martian aerosol.

  13. Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates.

    Science.gov (United States)

    Csavina, Janae; Field, Jason; Félix, Omar; Corral-Avitia, Alba Y; Sáez, A Eduardo; Betterton, Eric A

    2014-07-15

    Atmospheric particulate have deleterious impacts on human health. Predicting dust and aerosol emission and transport would be helpful to reduce harmful impacts but, despite numerous studies, prediction of dust events and contaminant transport in dust remains challenging. In this work, we show that relative humidity and wind speed are both determinants in atmospheric dust concentration. Observations of atmospheric dust concentrations in Green Valley, AZ, USA, and Juárez, Chihuahua, México, show that PM10 concentrations are not directly correlated with wind speed or relative humidity separately. However, selecting the data for high wind speeds (>4m/s at 10 m elevation), a definite trend is observed between dust concentration and relative humidity: dust concentration increases with relative humidity, reaching a maximum around 25% and it subsequently decreases with relative humidity. Models for dust storm forecasting may be improved by utilizing atmospheric humidity and wind speed as main drivers for dust generation and transport. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. A model of environmental behaviour of contaminated dust and its application to determining dust fluxes and residence times

    International Nuclear Information System (INIS)

    Allott, R.W.; Kelly, M.; Hewitt, C.N.

    1994-01-01

    A model has been developed to describe the temporal behaviour of the concentrations of a pollutant tracer within the urban environment of Barrow-in-Furness, NW England. The tracer used was 137 Cs derived primarily from wet deposition of the radioactive cloud from the Chernobyl reactor accident. The 137 Cs activity deposited during this primary event was supplemented by a small secondary atmospheric deposition input of resuspended activity. The model was validated against the measured temporal behaviour of 137 Cs in urban dust for two outdoor reservoirs in which the only observed input of dust and activity was by atmospheric deposition. Further modelling studies on other reservoirs (both outdoors and indoors) confirmed the existence of additional input influxes of dust and activity. The model enabled estimates of the magnitudes of these additional fluxes to be made and mean dust mass residence times to be calculated. These residence times correspond to environment half-lives of 170 ± 70 d outdoors and 20 ± 1 d indoors, for reservoirs which only receive a single primary input of a contaminant. Where secondary inputs of pollutants occur, the mean environmental half-lives of the pollutants increase by 50% for outdoor dust reservoirs and over 18-times for indoor reservoirs. This re-contamination of indoor dusts has implications in that attention should be paid to reducing outdoor contamination levels to ensure that attempts to reduce the levels of a pollutant indoors by cleaning are effective. (Author)

  15. [Geochemical characteristics and sources of atmospheric particulates in Shanghai during dust storm event].

    Science.gov (United States)

    Qian, Peng; Zheng, Xiang-min; Zhou, Li-min

    2013-05-01

    Atmospheric particulates were sampled from three sampling sites of Putuo, Minhang and Qingpu Districts in Shanghai between Oct. , 2009 and Oct. , 2010. In addition, particulate samples were also collected from Nantong, Zhengzhou, Xi'an, and Beijing city where dust storm dust transported along during spring. Element compositions of atmospheric particulates were determined by XRF and ICP-MS. The concentrations of major and trace elements in atmospheric particulates from Putuo, Minhang and Qingpu Districts were similar, indicating their common source. The UCC standardization distribution map showed that the major element composition of dust storm samples was similar to that of loess in northwestern China, indicating that the dust storm dust was mainly derived from Western desert and partly from local area. The REE partition patterns of dust storm dusts among different cities along dust transport route were similar to each other, as well as to those of northern loess, which indicates that the dust storm samples may have the same material source as loess, which mainly comes from crust material. However, the REE partition patterns of non-dust storm particulates were different among the studied cities, and different from those of loess, which suggests that the non-dust storm samples may be mixed with non-crust source material, which is different from dust storm dust and loess. The major element composition and REE partition pattern are effective indicators for source tracing of dust storm dust.

  16. Assessment of two physical parameterization schemes for desert dust emissions in an atmospheric chemistry general circulation model

    Science.gov (United States)

    Astitha, M.; Abdel Kader, M.; Pozzer, A.; Lelieveld, J.

    2012-04-01

    Atmospheric particulate matter and more specific desert dust has been the topic of numerous research studies in the past due to the wide range of impacts in the environment and climate and the uncertainty of characterizing and quantifying these impacts in a global scale. In this work we present two physical parameterizations of the desert dust production that have been incorporated in the atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy2.41 Atmospheric Chemistry). The scope of this work is to assess the impact of the two physical parameterizations in the global distribution of desert dust and highlight the advantages and disadvantages of using either technique. The dust concentration and deposition has been evaluated using the AEROCOM dust dataset for the year 2000 and data from the MODIS and MISR satellites as well as sun-photometer data from the AERONET network was used to compare the modelled aerosol optical depth with observations. The implementation of the two parameterizations and the simulations using relatively high spatial resolution (T106~1.1deg) has highlighted the large spatial heterogeneity of the dust emission sources as well as the importance of the input parameters (soil size and texture, vegetation, surface wind speed). Also, sensitivity simulations with the nudging option using reanalysis data from ECMWF and without nudging have showed remarkable differences for some areas. Both parameterizations have revealed the difficulty of simulating all arid regions with the same assumptions and mechanisms. Depending on the arid region, each emission scheme performs more or less satisfactorily which leads to the necessity of treating each desert differently. Even though this is a quite different task to accomplish in a global model, some recommendations are given and ideas for future improvements.

  17. Characterizing dust aerosols in the atmospheric boundary layer over the deserts in Northwest China: monitoring network and field observation

    Science.gov (United States)

    He, Q.; Matimin, A.; Yang, X.

    2016-12-01

    TheTaklimakan, Gurbantunggut and BadainJaran Deserts with the total area of 43.8×104 km2 in Northwest China are the major dust emission sources in Central Asia. Understanding Central Asian dust emissions and the interaction with the atmospheric boundary layer has an important implication for regional and global climate and environment changes. In order to explore these scientific issues, a monitoring network of 63 sites was established over the vast deserts (Taklimakan Desert, Gurbantunggut Desert and Badain Jaran Desert) in Northwest China for the comprehensive measurements of dust aerosol emission, transport and deposition as well as the atmospheric boundary layer including the meteorological parameters of boundary layer, surface radiation, surface heat fluxes, soil parameters, dust aerosol properties, water vapor profiles, and dust emission. Based on the monitoring network, the field experiments have been conducted to characterize dust aerosols and the atmospheric boundary layer over the deserts. The experiment observation indicated that depth of the convective boundary layer can reach 5000m on summer afternoons. In desert regions, the diurnal mean net radiation was effected significantly by dust weather, and sensible heat was much greater than latent heat accounting about 40-50% in the heat balance of desert. The surface soil and dust size distributions of Northwest China Deserts were obtained through widely collecting samples, results showed that the dominant dust particle size was PM100within 80m height, on average accounting for 60-80% of the samples, with 0.9-2.5% for PM0-2.5, 3.5-7.0% for PM0-10 and 5.0-14.0% for PM0-20. The time dust emission of Taklimakan Desert, Gurbantunggut Desert and Badain Jaran Desert accounted for 0.48%, 7.3%×10-5and 1.9% of the total time within a year, and the threshold friction velocity for dust emission were 0.22-1.06m/s, 0.29-1.5m/s and 0.21-0.59m/s, respectively.

  18. Metal dusting of low alloy steels

    Energy Technology Data Exchange (ETDEWEB)

    Grabke, H.J. (Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)); Bracho-Troconis, C.B. (Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)); Mueller-Lorenz, E.M. (Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany))

    1994-04-01

    The metal dusting of two low alloy steels was investigated at 475 C in flowing CO-H[sub 2]-H[sub 2]O mixtures at atmospheric pressure with a[sub C] > 1. The reaction sequence comprises: (1) oversaturation with C, formation of cementite and its decomposition to metal particles and carbon, and (2) additional carbon deposition on the metal particles from the atmosphere. The metal wastage rate r[sub 1] was determined by analysis of the corrosion product after exposures, this rate is constant with time and virtually independent of the environment. The carbon deposition from the atmosphere was determined by thermogravimetry, its rate r[sub 2] increases linearly with time, which can be explained by the catalytic action of the metal particles - periodic changes are superposed. The rate of carbon deposition r[sub 2] is proportional to the carbon activity in the atmosphere. The metal dusting could not be suppressed by increasing the oxygen activity or preoxidation, even if magnetite should be stable. Addition of H[sub 2]S, however, effectively suppresses the attack. (orig.)

  19. Laboratory studies of immersion and deposition mode ice nucleation of ozone aged mineral dust particles

    Directory of Open Access Journals (Sweden)

    Z. A. Kanji

    2013-09-01

    Full Text Available Ice nucleation in the atmosphere is central to the understanding the microphysical properties of mixed-phase and cirrus clouds. Ambient conditions such as temperature (T and relative humidity (RH, as well as aerosol properties such as chemical composition and mixing state play an important role in predicting ice formation in the troposphere. Previous field studies have reported the absence of sulfate and organic compounds on mineral dust ice crystal residuals sampled at mountain top stations or aircraft based measurements despite the long-range transport mineral dust is subjected to. We present laboratory studies of ice nucleation for immersion and deposition mode on ozone aged mineral dust particles for 233 T ns are reported and observed to increase as a function of decreasing temperature. We present first results that demonstrate enhancement of the ice nucleation ability of aged mineral dust particles in both the deposition and immersion mode due to ageing. We also present the first results to show a suppression of heterogeneous ice nucleation activity without the condensation of a coating of (inorganic material. In immersion mode, low ozone exposed Ka particles showed enhanced ice activity requiring a median freezing temperature of 1.5 K warmer than that of untreated Ka, whereas high ozone exposed ATD particles showed suppressed ice nucleation requiring a median freezing temperature of 3 K colder than that of untreated ATD. In deposition mode, low exposure Ka had ice active fractions of an order of magnitude higher than untreated Ka, whereas high ozone exposed ATD had ice active fractions up to a factor of 4 lower than untreated ATD. From our results, we derive and present parameterizations in terms of ns(T that can be used in models to predict ice nuclei concentrations based on available aerosol surface area.

  20. Infra-red photon release from cosmic dust entering into the earth's atmosphere

    International Nuclear Information System (INIS)

    Kobayashi, Koichi

    1975-01-01

    Cosmic dust brings considerably high intensity of energy flux to the upper atmosphere of the earth. Most of this energy can be converted to infra-red radiation. It can be concluded that the infra-red background radiation in the sky of its wavelength of less than about 10μ may considerably originate in the cosmic dust which has entered the earth's atmosphere, or that the upper limit to the flux of cosmic dust is about 10 5 tons/earth year. (author)

  1. Influence of Dust Loading on Atmospheric Ionizing Radiation on Mars

    Science.gov (United States)

    Norman, Ryan B.; Gronoff, Guillaume; Mertens, Christopher J.

    2014-01-01

    Measuring the radiation environment at the surface of Mars is the primary goal of the Radiation Assessment Detector on the NASA Mars Science Laboratory's Curiosity rover. One of the conditions that Curiosity will likely encounter is a dust storm. The objective of this paper is to compute the cosmic ray ionization in different conditions, including dust storms, as these various conditions are likely to be encountered by Curiosity at some point. In the present work, the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety model, recently modified for Mars, was used along with the Badhwar & O'Neill 2010 galactic cosmic ray model. In addition to galactic cosmic rays, five different solar energetic particle event spectra were considered. For all input radiation environments, radiation dose throughout the atmosphere and at the surface was investigated as a function of atmospheric dust loading. It is demonstrated that for galactic cosmic rays, the ionization depends strongly on the atmosphere profile. Moreover, it is shown that solar energetic particle events strongly increase the ionization throughout the atmosphere, including ground level, and can account for the radio blackout conditions observed by the Mars Advanced Radar for Subsurface and Ionospheric Sounding instrument on the Mars Express spacecraft. These results demonstrate that the cosmic rays' influence on the Martian surface chemistry is strongly dependent on solar and atmospheric conditions that should be taken into account for future studies.

  2. Short-term changes in the northwest African Upwelling System induced by Saharan dust deposition events

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, A G; Coca, J; Redondo, A [SeaSnet Canarias. Dpto. de Biologia (University of Las Palmas de Gran Canaria), Canary Islands (Spain); Cuevas, E; Alonso-Perez, S; Bustos, J J [Izana Atmospheric Research Center, Agencia Estatal de Meteorologia, Tenerife (Spain); Perez, C; Baldasano, J M [Earth Sciences Department. Barcelona Supercomputing Center, Barcelona (Spain); Nickovic, S [Atmospheric Research and Environment Branch, World Meteorological Organization, Geneva (Switzerland)], E-mail: aramos@pesca.gi.ulpgc.es

    2009-03-01

    During the last 7-year period (2000-2006) atmosphere circulation changes show strong influences on the dust storm deposition dynamics and, as a result, on the primary production dynamics of the northwest African Upwelling System. From 2000 to 2006, the annual mean sea level pressure became higher ranging from 1014 to 1015 mb. Mean annual zonal wind intensity became higher (from 1.1 to 1.8 m s{sup -1}), while the mean annual meridional was reduced from 6.2 to 5.3 m s{sup -1} at the north of the Canary Islands. Mean annual satellite-derived AVHRR/NOAA SST recorded in the northwest African Upwelling became warmer in both locations, from 18.3 deg. C to 18.8 deg. C in Cape Ghir and from 19.5 deg. C to 20.3 deg. C north Canary Islands waters. CHL records from the SeaWiFS/OV-2 showed a different pattern trend. Mean annual CHL levels increased at Cape Ghir from 0.65 mg m-3 to 0.9 mg m-3 and significantly reduced from 0.59 mg m{sup -3} to 0.31 mg m{sup -3} at the north of the Canary Islands. Changes observed in the role of CHL during the last 7-years period could be associated to intensive dust deposition and exceptional weather warming observed in this area since 2000. However, this study focused on a 7-year period and conclusions on possible links between dust deposition and marine biochemistry activity cannot be generalized.

  3. Short-term changes in the northwest African Upwelling System induced by Saharan dust deposition events

    International Nuclear Information System (INIS)

    Ramos, A G; Coca, J; Redondo, A; Cuevas, E; Alonso-Perez, S; Bustos, J J; Perez, C; Baldasano, J M; Nickovic, S

    2009-01-01

    During the last 7-year period (2000-2006) atmosphere circulation changes show strong influences on the dust storm deposition dynamics and, as a result, on the primary production dynamics of the northwest African Upwelling System. From 2000 to 2006, the annual mean sea level pressure became higher ranging from 1014 to 1015 mb. Mean annual zonal wind intensity became higher (from 1.1 to 1.8 m s -1 ), while the mean annual meridional was reduced from 6.2 to 5.3 m s -1 at the north of the Canary Islands. Mean annual satellite-derived AVHRR/NOAA SST recorded in the northwest African Upwelling became warmer in both locations, from 18.3 deg. C to 18.8 deg. C in Cape Ghir and from 19.5 deg. C to 20.3 deg. C north Canary Islands waters. CHL records from the SeaWiFS/OV-2 showed a different pattern trend. Mean annual CHL levels increased at Cape Ghir from 0.65 mg m-3 to 0.9 mg m-3 and significantly reduced from 0.59 mg m -3 to 0.31 mg m -3 at the north of the Canary Islands. Changes observed in the role of CHL during the last 7-years period could be associated to intensive dust deposition and exceptional weather warming observed in this area since 2000. However, this study focused on a 7-year period and conclusions on possible links between dust deposition and marine biochemistry activity cannot be generalized.

  4. Dust storms and their impact on ocean and human health: dust in Earth's atmosphere

    Science.gov (United States)

    Griffin, Dale W.; Kellog, Christina A.

    2004-01-01

    Satellite imagery has greatly influenced our understanding of dust activity on a global scale. A number of different satellites such as NASA's Earth-Probe Total Ozone Mapping Spectrometer (TOMS) and Se-viewing Field-of-view Sensor (SeaWiFS) acquire daily global-scale data used to produce imagery for monitoring dust storm formation and movement. This global-scale imagery has documented the frequent transmission of dust storm-derived soils through Earth's atmosphere and the magnitude of many of these events. While various research projects have been undertaken to understand this normal planetary process, little has been done to address its impact on ocean and human health. This review will address the ability of dust storms to influence marine microbial population densities and transport of soil-associated toxins and pathogenic microorganisms to marine environments. The implications of dust on ocean and human health in this emerging scientific field will be discussed.

  5. Atmospheric response to Saharan dust deduced from ECMWF reanalysis increments

    Science.gov (United States)

    Kishcha, P.; Alpert, P.; Barkan, J.; Kirchner, I.; Machenhauer, B.

    2003-04-01

    This study focuses on the atmospheric temperature response to dust deduced from a new source of data - the European Reanalysis (ERA) increments. These increments are the systematic errors of global climate models, generated in reanalysis procedure. The model errors result not only from the lack of desert dust but also from a complex combination of many kinds of model errors. Over the Sahara desert the dust radiative effect is believed to be a predominant model defect which should significantly affect the increments. This dust effect was examined by considering correlation between the increments and remotely-sensed dust. Comparisons were made between April temporal variations of the ERA analysis increments and the variations of the Total Ozone Mapping Spectrometer aerosol index (AI) between 1979 and 1993. The distinctive structure was identified in the distribution of correlation composed of three nested areas with high positive correlation (> 0.5), low correlation, and high negative correlation (Forecast(ECMWF) suggests that the PCA (NCA) corresponds mainly to anticyclonic (cyclonic) flow, negative (positive) vorticity, and downward (upward) airflow. These facts indicate an interaction between dust-forced heating /cooling and atmospheric circulation. The April correlation results are supported by the analysis of vertical distribution of dust concentration, derived from the 24-hour dust prediction system at Tel Aviv University (website: http://earth.nasa.proj.ac.il/dust/current/). For other months the analysis is more complicated because of the essential increasing of humidity along with the northward progress of the ITCZ and the significant impact on the increments.

  6. Introduction to project DUNE, a DUst experiment in a low Nutrient, low chlorophyll Ecosystem

    Science.gov (United States)

    Guieu, C.; Dulac, F.; Ridame, C.; Pondaven, P.

    2014-01-01

    The main goal of project DUNE was to estimate the impact of atmospheric deposition on an oligotrophic ecosystem based on mesocosm experiments simulating strong atmospheric inputs of eolian mineral dust. Our mesocosm experiments aimed at being representative of real atmospheric deposition events onto the surface of oligotrophic marine waters and were an original attempt to consider the vertical dimension after atmospheric deposition at the sea surface. This introductory paper describes the objectives of DUNE and the implementation plan of a series of mesocosm experiments conducted in the Mediterranean Sea in 2008 and 2010 during which either wet or dry and a succession of two wet deposition fluxes of 10 g m-2 of Saharan dust have been simulated based on the production of dust analogs from erodible soils of a source region. After the presentation of the main biogeochemical initial conditions of the site at the time of each experiment, a general overview of the papers published in this special issue is presented. From laboratory results on the solubility of trace elements in dust to biogeochemical results from the mesocosm experiments and associated modeling, these papers describe how the strong simulated dust deposition events impacted the marine biogeochemistry. Those multidisciplinary results are bringing new insights into the role of atmospheric deposition on oligotrophic ecosystems and its impact on the carbon budget. The dissolved trace metals with crustal origin - Mn, Al and Fe - showed different behaviors as a function of time after the seeding. The increase in dissolved Mn and Al concentrations was attributed to dissolution processes. The observed decrease in dissolved Fe was due to scavenging on sinking dust particles and aggregates. When a second dust seeding followed, a dissolution of Fe from the dust particles was then observed due to the excess Fe binding ligand concentrations present at that time. Calcium nitrate and sulfate were formed in the dust

  7. Dust Transport and Deposition Observed from the Terra-Moderate Image Spectrometer (MODIS) Space Observations

    Science.gov (United States)

    Kaufman, Y.

    2004-01-01

    Meteorological observations, in situ data and satellite images of dust episodes were used already in the 1970s to estimate that 100 tg of dust are transported from Africa over the Atlantic Ocean every year between June and August and deposited in the Atlantic Ocean and the Americas. Desert dust is a main source of nutrients to oceanic biota and the Amazon forest, but deteriorates air quality and caries pathogens as shown for Florida. Dust affects the Earth radiation budget, thus participating in climate change and feedback mechanisms. There is an urgent need for new tools for quantitative evaluation of the dust distribution, transport and deposition. The Terra spacecraft launched at the dawn of the last millennium provides first systematic well calibrated multispectral measurements from the MODIS instrument, for daily global analysis of aerosol. MODIS data are used here to distinguish dust from smoke and maritime aerosols and evaluate the African dust column concentration, transport and deposition. We found that 230 plus or minus 80 tg of dust are transported annually from Africa to the Atlantic Ocean, 30 tg return to Africa and Europe, 70 tg reach the Caribbean, 45 tg fertilize the Amazon Basin, 4 times as previous estimates thus explaining a paradox regarding the source of nutrition to the Amazon forest, and 120 plus or minus 40 tg are deposited in the Atlantic Ocean. The results are compared favorably with dust transport models for particle radius less than or equal to 12 microns. This study is a first example of quantitative use of MODIS aerosol for a geophysical study.

  8. Loess and Eolian Dust Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past environment derived from Loess and Eolian dust (silt-sized material deposited on the Earth surface by the surface winds. Parameter keywords describe...

  9. Volatility of 210Po in airborne dusts in an atmosphere of nitrogen

    International Nuclear Information System (INIS)

    Abe, Michiko; Abe, Siro; Ikeda, Nagao.

    1976-01-01

    Volatilization behavior of 210 Po contained in airborne dusts in the temperature range of 200 - 800 0 C was investigated in an atmosphere of nitrogen. It was revealed that the volatilization of 210 Po in airborne dusts in an atmosphere of nitrogen as a function of temperature can be expressed in a stairlike shape with two steps. This tendency is similar to the previous results obtained in air. The previous and present data may suggest that 210 Po in airborne dusts consists of two or more different kinds of chemical species. (auth.)

  10. [Pollution evaluation and health risk assessment of heavy metals from atmospheric deposition in Lanzhou].

    Science.gov (United States)

    Li, Ping; Xue, Su-Yin; Wang, Sheng-Li; Nan, Zhong-Ren

    2014-03-01

    In order to evaluate the contamination and health risk of heavy metals from atmospheric deposition in Lanzhou, samples of atmospheric deposition were collected from 11 sampling sites respectively and their concentrations of heavy metals were determined. The results showed that the average contents of Cu, Pb, Cd, Cr, Ni, Zn and Mn were 82.22, 130.31, 4.34, 88.73, 40.64, 369.23 and 501.49 mg x kg(-1), respectively. There was great difference among different functional areas for all elements except Mn. According to the results, the enrichment factor score of Mn was close to 1, while the enrichment of Zn, Ni, Cu and Cr was more serious, and Pb and Cd were extremely enriched. The assessment results of geoaccumulation index of potential ecological risk indicated that the pollution of Cd in the atmospheric deposition of Lanzhou should be classified as extreme degree, and that of Cu, Ni, Zn, Pb as between slight and extreme degrees, and Cr as practically uncontaminated. Contaminations of atmospheric dust by heavy metals in October to the next March were more serious than those from April to August. Health risk assessment indicated that the heavy metals in atmospheric deposition were mainly ingested by human bodies through hand-mouth ingestion. The non-cancer risk was higher for children than for adults. The order of non-cancer hazard indexes of heavy metals was Pb > Cr > Cd > Cu > Ni > Zn. The non-cancer hazard indexes and carcinogen risks of heavy metals were both lower than their threshold values, suggesting that they will not harm the health.

  11. Atmosphere aerosol/dust composition over central Asia and western Siberia derived from snow/ice core records and calibrated with NASA remote sensing data

    Science.gov (United States)

    Aizen, V. B.; Aizen, E. M.; Joswiak, D. R.; Surazakov, A. B.; Takeuchi, N.

    2007-12-01

    The vast arid and semi-arid regions of central Asia, Mongolia, and Northern China are the world's second largest source of atmospheric mineral dust. In recent years, severe dust storms in Asia have intensified in frequency, duration, and areal coverage. However, limited spatial and temporal extent of aerosol measurements precludes definitive statements to be made regarding relationship between the Asian aerosol generation and climate. It has been well known that glaciers are the natural archives of environmental records related to past climate and aerosol generation. In our research, we utilized central Asian and western Siberia shallow ice-core records recovered from Altai, Tien Shan and Pamir mountain glaciers. Despite the fact that ice-core data may extend climate/aerosol records back in time, their sparse coverage is inadequate to document aerosol spatial distribution. The NASA products from Aura, Terra and Aqua satellite missions address this gap identifying aerosol sources, transport pathways, and area of deposition. The main objective of our research is to evaluate an affect of climate variability on dynamics of Asian aerosol loading to atmosphere and changes in aerosol transport pathways. Dust particle, major and rare earth element analysis from dust aerosols deposited and accumulated in Altai, Tien Shan and Pamir glaciers suggests that loess from Tajikistan, Afghanistan and north-western China are main sources of aerosol loading into the upper troposphere over the central Asia and western Siberia. At the same time, the soluble ionic component of the ice-cores, related to aerosol generated from evaporate deposits, demonstrated both anthropogenic and natural impacts on atmospheric chemistry over these regions. Large perturbations of Ca2+ derived from CaCO3- rich dust transported from Goby Desert to Altai and Tien Shan. Origin and pathway of the ice-core aerosol depositions for the last 10-years were identified through calibrating ice-core records with dust

  12. The lunar atmosphere and dust environment explorer mission (LADEE)

    CERN Document Server

    Russell, Christopher

    2015-01-01

    This volume contains five articles describing the mission and its instruments.  The first paper, by the project scientist Richard C. Elphic and his colleagues, describes the mission objectives, the launch vehicle, spacecraft and the mission itself.  This is followed by a description of LADEE’s Neutral Mass Spectrometer by Paul Mahaffy and company.  This paper describes the investigation that directly targets the lunar exosphere, which can also be explored optically in the ultraviolet.  In the following article Anthony Colaprete describes LADEE’s Ultraviolet and Visible Spectrometer that operated from 230 nm to 810 nm scanning the atmosphere just above the surface.  Not only is there atmosphere but there is also dust that putatively can be levitated above the surface, possibly by electric fields on the Moon’s surface.  Mihaly Horanyi leads this investigation, called the Lunar Dust Experiment, aimed at understanding the purported observations of levitated dust.  This experiment was also very succes...

  13. The field experiments and model of the natural dust deposition effects on photovoltaic module efficiency.

    Science.gov (United States)

    Jaszczur, Marek; Teneta, Janusz; Styszko, Katarzyna; Hassan, Qusay; Burzyńska, Paulina; Marcinek, Ewelina; Łopian, Natalia

    2018-04-20

    The maximisation of the efficiency of the photovoltaic system is crucial in order to increase the competitiveness of this technology. Unfortunately, several environmental factors in addition to many alterable and unalterable factors can significantly influence the performance of the PV system. Some of the environmental factors that depend on the site have to do with dust, soiling and pollutants. In this study conducted in the city centre of Kraków, Poland, characterised by high pollution and low wind speed, the focus is on the evaluation of the degradation of efficiency of polycrystalline photovoltaic modules due to natural dust deposition. The experimental results that were obtained demonstrated that deposited dust-related efficiency loss gradually increased with the mass and that it follows the exponential. The maximum dust deposition density observed for rainless exposure periods of 1 week exceeds 300 mg/m 2 and the results in efficiency loss were about 2.1%. It was observed that efficiency loss is not only mass-dependent but that it also depends on the dust properties. The small positive effect of the tiny dust layer which slightly increases in surface roughness on the module performance was also observed. The results that were obtained enable the development of a reliable model for the degradation of the efficiency of the PV module caused by dust deposition. The novelty consists in the model, which is easy to apply and which is dependent on the dust mass, for low and moderate naturally deposited dust concentration (up to 1 and 5 g/m 2 and representative for many geographical regions) and which is applicable to the majority of cases met in an urban and non-urban polluted area can be used to evaluate the dust deposition-related derating factor (efficiency loss), which is very much sought after by the system designers, and tools used for computer modelling and system malfunction detection.

  14. Mimicking Martian dust: An in-vacuum dust deposition system for testing the ultraviolet sensors on the Curiosity rover

    International Nuclear Information System (INIS)

    Sobrado, J. M.; Martín-Soler, J.; Martín-Gago, J. A.

    2015-01-01

    We have designed and developed an in-vacuum dust deposition system specifically conceived to simulate and study the effect of accumulation of Martian dust on the electronic instruments of scientific planetary exploration missions. We have used this device to characterize the dust effect on the UV sensor of the Rover Environmental Monitoring Station in the Mars science Laboratory mission of NASA in similar conditions to those found on Mars surface. The UV sensor includes six photodiodes for measuring the radiation in all UV wavelengths (direct incidence and reflected); it is placed on the body of Curiosity rover and it is severely affected by the dust deposited on it. Our experimental setup can help to estimate the duration of reliable reading of this instrument during operation. We have used an analogous of the Martian dust in chemical composition (magnetic species), color, and density, which has been characterized by X-ray spectroscopy. To ensure a Brownian motion of the dust during its fall and a homogeneous coverage on the instrumentation, the operating conditions of the vacuum vessel, determined by partial pressures and temperature, have to be modified to account for the different gravities of Mars with respect to Earth. We propose that our designed device and operational protocol can be of interest to test optoelectronic instrumentation affected by the opacity of dust, as can be the degradation of UV photodiodes in planetary exploration

  15. Mimicking Martian dust: An in-vacuum dust deposition system for testing the ultraviolet sensors on the Curiosity rover

    Energy Technology Data Exchange (ETDEWEB)

    Sobrado, J. M., E-mail: sobradovj@inta.es; Martín-Soler, J. [Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, 28850 Madrid (Spain); Martín-Gago, J. A. [Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, 28850 Madrid (Spain); Instituto de Ciencias de Materiales de Madrid (ICMM–CSIC), Cantoblanco, 28049 Madrid (Spain)

    2015-10-15

    We have designed and developed an in-vacuum dust deposition system specifically conceived to simulate and study the effect of accumulation of Martian dust on the electronic instruments of scientific planetary exploration missions. We have used this device to characterize the dust effect on the UV sensor of the Rover Environmental Monitoring Station in the Mars science Laboratory mission of NASA in similar conditions to those found on Mars surface. The UV sensor includes six photodiodes for measuring the radiation in all UV wavelengths (direct incidence and reflected); it is placed on the body of Curiosity rover and it is severely affected by the dust deposited on it. Our experimental setup can help to estimate the duration of reliable reading of this instrument during operation. We have used an analogous of the Martian dust in chemical composition (magnetic species), color, and density, which has been characterized by X-ray spectroscopy. To ensure a Brownian motion of the dust during its fall and a homogeneous coverage on the instrumentation, the operating conditions of the vacuum vessel, determined by partial pressures and temperature, have to be modified to account for the different gravities of Mars with respect to Earth. We propose that our designed device and operational protocol can be of interest to test optoelectronic instrumentation affected by the opacity of dust, as can be the degradation of UV photodiodes in planetary exploration.

  16. GEOCHEMISTRY OF ATMOSPHERIC DUST ON THE TERRITORY OF THE CITY OF YEREVAN

    Directory of Open Access Journals (Sweden)

    Armen Saghatelyan

    2012-06-01

    Full Text Available This research is focused on the level of heavy metal contents in dust of a near-ground layer of atmosphere. The dust load level was evaluated as medial. Indicated was a quality composition of dominating dust pollutants. The level of summary load of metals was low.

  17. Martian dust storms as a possible sink of atmospheric methane

    Science.gov (United States)

    Farrell, W. M.; Delory, G. T.; Atreya, S. K.

    2006-11-01

    Recent laboratory tests, analog studies and numerical simulations all suggest that Martian dust devils and larger dusty convective storms generate and maintain large-scale electric fields. Such expected E-fields will have the capability to create significant electron drift motion in the collisional gas and to form an extended high energy (u $\\gg$ kT) electron tail in the distribution. We demonstrate herein that these energetic electrons are capable of dissociating any trace CH4 in the ambient atmosphere thereby acting as an atmospheric sink of this important gas. We demonstrate that the methane destruction rate increases by a factor of 1012 as the dust storm E-fields, E, increase from 5 to 25 kV/m, resulting in an apparent decrease in methane stability from ~ 1010 sec to a value of ~1000 seconds. While destruction in dust storms is severe, the overall methane lifetime is expected to decrease only moderately due to recycling of products, heterogeneous effects from localized sinks, etc. We show further evidence that the electrical activity anticipated in Martian dust storms creates a new harsh electro-chemical environment.

  18. Dust Quantization and Effects on Agriculture Over Uttar Pradesh, India

    Science.gov (United States)

    Munshi, Pavel; Tiwari, Shubhansh

    2017-01-01

    Dust plays a very important role in the atmosphere and the biosphere. In this communication, the effect of atmospheric dust on the yields of certain crops grown in Uttar Pradesh, India is assessed. Coherent physical and thermodynamic fingerprints of dust parameters such as from Satellite data- KALPANA-1, MODIS, OMI, CALIPSO; Model data- DREAM, HYSPLIT, ECMWF; have been considered to run the APSIM model to derive the impacts. This paper assesses dust as a physical atmospheric phenomenon including its Long Range Transport (LRT) and dispersion along with considerable variations of Aerosol Optical Depths (AODs) over the subcontinent of India. While AODs significantly increase by more dust concentration, the local dispersion of pollutants is a major concern with deposition of atmospheric dust such as sulphates and other chemical constituents that affect agricultural land. An approach in atmospheric physics is also taken to parameterize the model outputs. This communication indicates dust to be a positive factor for the cultivation of certain crops such as wheat, maize in the experimental location. Initial results suggest that LRT dust is a viable counterpart to decrease the concentration of soil acidity and related parameters thus enhancing the vitality of crops.

  19. MEDUSA: The ExoMars experiment for in-situ monitoring of dust and water vapour

    Science.gov (United States)

    Colangeli, L.; Lopez-Moreno, J. J.; Nørnberg, P.; Della Corte, V.; Esposito, F.; Mazzotta Epifani, E.; Merrison, J.; Molfese, C.; Palumbo, P.; Rodriguez-Gomez, J. F.; Rotundi, A.; Visconti, G.; Zarnecki, J. C.; The International Medusa Team

    2009-07-01

    Dust and water vapour are fundamental components of the Martian atmosphere. In view of tracing the past environmental conditions on Mars, that possibly favoured the appearing of life forms, it is important to study the present climate and its evolution. Here dust and water vapour have (and have had) strong influence. Of major scientific interest is the quantity and physical, chemical and electrical properties of dust and the abundance of water vapour dispersed in the atmosphere and their exchange with the surface. Moreover, in view of the exploration of the planet with automated systems and in the future by manned missions, it is of primary importance to analyse the hazards linked to these environmental factors. The Martian Environmental Dust Systematic Analyser (MEDUSA) experiment, included in the scientific payload of the ESA ExoMars mission, accommodates a complement of sensors, based on optical detection and cumulative mass deposition, that aims to study dust and water vapour in the lower Martian atmosphere. The goals are to study, for the first time, in-situ and quantitatively, physical properties of the airborne dust, including the cumulative dust mass flux, the dust deposition rate, the physical and electrification properties, the size distribution of sampled particles and the atmospheric water vapour abundance versus time.

  20. Sampling of Atmospheric Precipitation and Deposits for Analysis of Atmospheric Pollution

    OpenAIRE

    Skarżyńska, K.; Polkowska, Ż; Namieśnik, J.

    2006-01-01

    This paper reviews techniques and equipment for collecting precipitation samples from the atmosphere (fog and cloud water) and from atmospheric deposits (dew, hoarfrost, and rime) that are suitable for the evaluation of atmospheric pollution. It discusses the storage and preparation of samples for analysis and also presents bibliographic information on the concentration ranges of inorganic and organic compounds in the precipitation and atmospheric deposit samples.

  1. Understanding the Transport of Patagonian Dust and Its Influence on Marine Biological Activity in the South Atlantic Ocean

    Science.gov (United States)

    Johnson, Matthew; Meskhidze, Nicholas; Kiliyanpilakkil, Praju; Gasso, Santiago

    2010-01-01

    Modeling and remote sensing techniques were applied to examine the horizontal and vertical transport pathways of Patagonian dust and quantify the effect of soluble-iron- laden mineral dust deposition on marine primary productivity in the South Atlantic Ocean (SAO) surface waters. The global chemistry transport model GEOS-Chem, implemented with an iron dissolution scheme, was applied to evaluate the atmospheric transport and deposition of mineral dust and bioavailable iron during two dust outbreaks originating in the source regions of Patagonia. In addition to this "rapidly released" iron, offline calculations were also carried out to estimate the amount of bioavailable iron leached during the residence time of dust in the ocean mixed layer. Model simulations showed that the horizontal and vertical transport pathways of Patagonian dust plumes were largely influenced by the synoptic meteorological patterns of high and low pressure systems. Model-predicted horizontal and vertical transport pathways of Patagonian dust over the SAO were in reasonable agreement with remotely-sensed data. Comparison between remotely-sensed and offline calculated ocean surface chlorophyll-a concentrations indicated that, for the two dust outbreaks examined in this study, the deposition of bioavailable iron in the SAO through atmospheric pathways was insignificant. As the two dust transport episodes examined here represent typical outflows of mineral dust from South American sources, our study suggests that the atmospheric deposition of mineral dust is unlikely to induce large scale marine primary productivity and carbon sequestration in the South Atlantic sector of the Southern Ocean.

  2. 7Be in soil, deposited dust and atmospheric air and its using to infer soil erosion along Alexandria region, Egypt.

    Science.gov (United States)

    Saleh, I H; Abdel-Halim, A A

    2017-06-01

    This study investigated the radioactivity behavior of 7 Be in surface soil, airborne and deposited dust along Alexandria region in Egypt. The results obtained were used to predict scavenging processes of 7 Be from surface soil to infer soil erosion and land vulnerable to accelerated sea-level rise. The areal activity concentrations of 7 Be in surface soil were investigated in 30 undisturbed sites and 7 Be inventories were determined via deposited dust in 10 locations. Results of the former were found to be ranged from 78 Bq/m 2 to 104 Bq/m 2 . High levels were observed in western sites associated with high dust deposition rate. On the other hand, low levels were found in the eastern sites, those may be attributed to scavenging processes such as land erosion toward the direction to the sea. The effective removal rates of 7 Be were calculated using the box-model, showing a broad special trend of inventories generally decreasing eastwards. The scavenging rates were ranged between 3.13 yr -1 in western sites to 5.34 yr -1 in eastern ones which denote that the east of the city suffers from rapid soil erosion. The airborne 7 Be was monthly monitored along the period from October 2014 to September 2015 through one site located at the mid of the city. The results revealed lower values in winter and autumn than in summer and spring ranged between 6.2 mBq/m 3 and 10.5 mBq/m 3 . These levels are comparable with that in other world regions and the seasonal variations are associated with the prevailing climatic conditions in Alexandria region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Intense dust episodes in the Mediterranean and possible effects on atmospheric lapse rates

    Science.gov (United States)

    Hatzianastassiou, Nikos; Gkikas, Antonis; Papadimas, Christos D.; Gavrouzou, Maria

    2016-04-01

    Dust aerosols are major contributor to the atmospheric particulate matter, having significant effects on climate and weather patterns as well as on human health, not to mention others like agriculture or ocean chlorophyll. Moreover, these effects are maximized under conditions of massive dust concentration in the atmosphere, namely dust episodes or events. Such events are caused by uplifting and transport of dust from arid and semi-arid areas under favorable synoptic conditions. The Mediterranean basin, nearby to the greatest world deserts of North Africa and Middle East, frequently undergoes dust episodes. During such Mediterranean episodes, the number and mass concentration of dust is high, due to the proximity of its source areas. The dust episodes, through the direct interaction of dust primarily withthe shortwave but also with longwave radiation can lead to strong local warming in the atmosphere, possibly causing temperature inversion during daytime. The existence of such temperature inversions, associated with intense dust episodes in the Mediterranean, is the focus in this study. The methodology followed to achieve the scientific goal of the study consists in the use of a synergy of different data. This synergy enables: (i) the determination of intense dust episodes over the Mediterranean, (ii) the investigation and specification of temperature lapse rates and inversions during the days of dust episodes and (iii) the identification of vertical distribution of aerosols in the atmosphere over specific locations during the days of the episodes. These objectives are achieved through the use of data from: (i) the AERosol Robotic NETwork (AERONET) network, (ii) the Upper Air Observations (radiosondes) database of the University of Wyoming (UoW) and (iii) the European Aerosol Research Lidar Network (EARLINET) database. The study period spans the years from 2000 to 2013, constrained by the data availability of the databases. A key element of the methodology is the

  4. Source identification of heavy metals in atmospheric dust using Platanus orientalis L. leaves as bioindicator

    Directory of Open Access Journals (Sweden)

    Samira Norouzi

    2015-07-01

    Full Text Available Studies on atmospheric dust have been limited by the high cost of instrumental monitoring methods and also sampling difficulties. The use of organisms acting as bioaccumulators has recently been proposed. In this study, the leaves of Platanus orientalis L., as a possible biomonitor of heavy metals in atmospheric dust, were evaluated to understand the likely source(s of pollution in Isfahan, Iran. Concentration of Zn, Cu, Ni and Mn and Magnetic susceptibility (χlf were determined in washed (WL and unwashed leaves (UL, monthly sampled from May to Nov., 2012. By subtracting the amount of metal concentrations and χlf in UL and WL, the amount of these parameters in dust deposited on the leaves (UL-WL were calculated. Enrichment factor analysis (EF, correlation coeficient, principal component analysis (PCA and cluster analysis (CA on the UL-WL data were employed to trace the heavy metals sources. Results showed that the metal concentration in UL and WL in primary sampling times was not statistically different. As time passed, this difference became more noticeable. Seasonal accumulation trends of elements concentration in UL-WL, referred to as accumulative biomonitors showing the accumulation of dust on the leaves are considerable and the contamination of plants by metal occurs mainly by retention of particulate matter. All the heavy metals are well correlated with χlf, indicating the potential of magnetic measurement as an inexpensive and less laborious method to estimate heavy metals. Cu and Zn exhibited a very strong correlation with each other and the highest correlation with χlf, suggesting an anthropogenic nature of these two metals. High EF of Cu and Zn showed that anthropogenic sources contribute a substantial amount of these metals to dust deposited on leaves. Whereas, less EF for Mn and Ni shows that natural source and local polluted soils might be the main origins of these metals. PCA results showed 2 principal components. Factor 1 with

  5. Climatology of atmospheric circulation patterns of Arabian dust in western Iran.

    Science.gov (United States)

    Najafi, Mohammad Saeed; Sarraf, B S; Zarrin, A; Rasouli, A A

    2017-08-28

    Being in vicinity of vast deserts, the west and southwest of Iran are characterized by high levels of dust events, which have adverse consequences on human health, ecosystems, and environment. Using ground based dataset of dust events in western Iran and NCEP/NCAR reanalysis data, the atmospheric circulation patterns of dust events in the Arabian region and west of Iran are identified. The atmospheric circulation patterns which lead to dust events in the Arabian region and western Iran were classified into two main categories: the Shamal dust events that occurs in warm period of year and the frontal dust events as cold period pattern. In frontal dust events, the western trough or blocking pattern at mid-level leads to frontogenesis, instability, and air uplift at lower levels of troposphere in the southwest of Asia. Non-frontal is other pattern of dust event in the cold period and dust generation are due to the regional circulation systems at the lower level of troposphere. In Shamal wind pattern, the Saudi Arabian anticyclone, Turkmenistan anticyclone, and Zagros thermal low play the key roles in formation of this pattern. Summer and transitional patterns are two sub-categories of summer Shamal wind pattern. In summer trough pattern, the mid-tropospheric trough leads to intensify the surface thermal systems in the Middle East and causes instability and rising of wind speed in the region. In synthetic pattern of Shamal wind and summer trough, dust is created by the impact of a trough in mid-levels of troposphere as well as existing the mentioned regional systems which are contributed in formation of summer Shamal wind pattern.

  6. Source apportionment and environmental fate of lead chromates in atmospheric dust in arid environments.

    Science.gov (United States)

    Meza-Figueroa, Diana; González-Grijalva, Belem; Romero, Francisco; Ruiz, Joaquin; Pedroza-Montero, Martín; Rivero, Carlos Ibañez-Del; Acosta-Elías, Mónica; Ochoa-Landin, Lucas; Navarro-Espinoza, Sofía

    2018-03-07

    The environmental fate of lead derived from traffic paint has been poorly studied in developing countries, mainly in arid zones. For this purpose, a developing city located in the Sonoran desert (Hermosillo, Mexico), was chosen to conduct a study. In this paper the lead chromate (crocoite) sources in atmospheric dust were addressed using a combination of Raman microspectroscopy, X-ray diffraction, scanning electron microscopy (SEM), and Pb isotope measurements. A high concentration of Pb and Cr as micro- and nanostructured pigments of crocoite is reported in yellow traffic paint (n=80), road dust (n=146), settled dust in roofs (n=21), and atmospheric dust (n=20) from a developing city located in the Sonoran Desert. 10 samples of peri-urban soils were collected for local geochemical background. The paint photodegradation and erosion of the asphaltic cover are enhanced by the climate, and the presence of the mineral crocoite (PbCrO 4 ) in road dust with an aerodynamic diameter ranging from 100nm to 2μm suggests its integration into the atmosphere by wind resuspension processes. A positive PbCr correlation (R 2 =0.977) was found for all studied samples, suggesting a common source. The Pb-isotope data show signatures in atmospheric dust as a product of the mixing of two end members: i) local soils and ii) crocoite crystals as pigments in paint. The presence of lead chromates in atmospheric dust has not been previously documented in Latin America, and it represents an unknown health risk to the exposed population because the identified size of crystals can reach the deepest part of lungs. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Dust Deposition and Migration of the ITCZ through the Last Glacial Cycle in the Central Equatorial Pacific (Line Islands).

    Science.gov (United States)

    Reimi Sipala, M. A.; Marcantonio, F.

    2014-12-01

    Atmospheric dust can be used to record climate change in addition to itself playing a role in several key climate processes, such as affecting Earth's albedo, fomenting rain coalescence, encouraging biological productivity, and enhancing carbon export though particle sinks. Using deep sea sediments, it is possible to quantify and locate the sources and sinks of atmospheric dust. A key area of research is the shift in the inter-tropical converge zone (ITCZ), a thermally influenced area that shifts according to the northern and southern hemisphere temperature gradient. This ongoing project focuses on the changes of the ITCZ over the Central Equatorial Pacific (CEP) over the past ~25000 years. The research focuses on two cores taken from the Line Islands Ridge at 0° 29' N (ML1208-18GC), and 4° 41' N (ML1208-31BB). The main aim is to quantify the magnitude and provenance of windblown dust deposited in the CEP, and to address questions regarding the nature of the variations of dust through ice-age climate transitions. Radiogenic isotopes (Sr, Nd, Pb) have been successfully used to distinguish between different potential dust sources in the aluminosilicates fractions of Pacific Sediments. Our preliminary Pb isotope ratios suggest that, for modern deposition, the northern core's (31BB) detrital sediment fraction is likely sourced from Asian Loess (average ratios are 206Pb/204Pb = 18.88, 207Pb/204Pb = 15.69, 208Pb/204Pb = 39.06). The equatorial core's (18GC) detrital fraction has a less radiogenic Pb signature, which is consistent with South American dust sourcing (206Pb/204Pb = 18.62, 207Pb/204Pb = 15.63, 208Pb/204Pb = 38.62). This is indicative of a strong modern ITCZ that acts as an effective barrier for inter-hemispheric dust transport. Prior to Holocene time, the changes in Pb isotope ratios in both cores appear to be in anti-phase; the northern core becomes less radiogenic up to the LGM, while the southern core becomes more radiogenic. This is potentially due to a

  8. Study of dust re-suspension at low pressure in a dedicated wind-tunnel

    Science.gov (United States)

    Rondeau, Anthony; Sabroux, Jean-Christophe; Chassefière, Eric

    2015-04-01

    The atmosphere of several telluric planets or satellites are dusty. Such is the case of Earth, Venus, Mars and Titan, each bearing different aeolian processes linked principally to the kinematic viscosity of the near-surface atmosphere. Studies of the Martian atmosphere are particularly relevant for the understanding of the dust re-suspension phenomena at low pressure (7 mbar). It turns out that operation of fusion reactors of the tokamak design produces significant amount of dust through the erosion of plasma-facing components. Such dust is a key issue, both regarding the performance and the safety of a fusion reactor such as ITER, under construction in Cadarache, France. Indeed, to evaluate the explosion risk in the ITER fusion reactor, it is essential to quantify the re-suspended dust fraction as a function of the dust inventory that can be potentially mobilized during a loss of vacuum accident (LOVA), with air or water vapour ingress. A complete accident sequence will encompass dust re-suspension from near-vacuum up to atmospheric pressure. Here, we present experimental results of particles re-suspension fractions measured at 1000, 600 and 300 mbar in the IRSN BISE (BlowIng facility for airborne releaSE) wind tunnel. Both dust monolayer deposits and multilayer deposits were investigated. In order to obtain experimental re-suspension data of dust monolayer deposits, we used an optical microscope allowing to measure the re-suspended particles fraction by size intervals of 1 µm. The deposits were made up of tungsten particles on a tungsten surface (an ubiquitous plasma facing component) and alumina particles on a glass plate, as a surrogate. A comparison of the results with the so-called Rock'nRoll dust re-suspension model (Reeks and Hall, 2001) is presented and discussed. The multilayer deposits were made in a vacuum sedimentation chamber allowing to obtain uniform deposits in terms of thickness. The re-suspension experimental data of such deposits were obtained

  9. The Lunar Atmosphere and Dust Environment Explorer (LADEE): Initial Science Results

    Science.gov (United States)

    Elphic, R. C.; Hine, B.; Delory, G. T.; Salute, J. S.; Noble, S.; Colaprete, A.; Horanyi, M.; Mahaffy, P.

    2014-01-01

    On September 6, 2013, a near-perfect launch of the first Minotaur V rocket successfully carried NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) into a high-eccentricity geocentric orbit. LADEE arrived at the Moon on October 6, 2013, dur-ing the government shutdown. The spacecraft impact-ed the lunar surface on April 18, 2014, following a completely successful mission. LADEE's science objectives were twofold: (1) De-termine the composition and variability of the lunar atmosphere; (2) Characterize the lunar exospheric dust environment, and its variability. The LADEE science payload consisted of the Lunar Dust Experiment (LDEX), which sensed dust impacts in situ, for parti-cles between 100 nm and 5 micrometers; a neutral mass spectrometer (NMS), which sampled lunar exo-spheric gases in situ, over the 2-150 Dalton mass range; an ultraviolet/visible spectrometer (UVS) ac-quired spectra of atmospheric emissions and scattered light from tenuous dust, spanning a 250-800 nm wave-length range. UVS also performed dust extinction measurements via a separate solar viewer optic. The following are preliminary results for the lunar exosphere: (1) The helium exosphere of the Moon, first observed during Apollo, is clearly dominated by the delivery of solar wind He++. (2) Neon 20 is clearly seen as an important constituent of the exosphere. (3) Argon 40, also observed during Apollo and arising from interior outgassing, exhibits variations related to surface temperature-driven condensation and release, and is also enhanced over specific selenographic longi-tudes. (4) The sodium abundance varies with both lu-nar phase and with meteoroid influx, implicating both solar wind sputtering and impact vaporization process-es. (5) Potassium was also routinely monitored and exhibits some of the same properties as sodium. (6) Other candidate species were seen by both NMS and UVS, and await confirmation. Dust measurements have revealed a persistent "shroud" of small dust particles

  10. Sensitivity of transatlantic dust transport to chemical aging and related atmospheric processes

    KAUST Repository

    Abdelkader, Mohamed; Metzger, Swen; Steil, Benedikt; Klingmü ller, Klaus; Tost, Holger; Pozzer, Andrea; Stenchikov, Georgiy L.; Barrie, Leonard; Lelieveld, Jos

    2017-01-01

    We present a sensitivity study on transatlantic dust transport, a process which has many implications for the atmosphere, the ocean and the climate. We investigate the impact of key processes that control the dust outflow, i.e., the emission flux

  11. Atmospheric response to Saharan dust deduced from ECMWF reanalysis (ERA) temperature increments

    Science.gov (United States)

    Kishcha, P.; Alpert, P.; Barkan, J.; Kirchner, I.; Machenhauer, B.

    2003-09-01

    This study focuses on the atmospheric temperature response to dust deduced from a new source of data the European Reanalysis (ERA) increments. These increments are the systematic errors of global climate models, generated in the reanalysis procedure. The model errors result not only from the lack of desert dust but also from a complex combination of many kinds of model errors. Over the Sahara desert the lack of dust radiative effect is believed to be a predominant model defect which should significantly affect the increments. This dust effect was examined by considering correlation between the increments and remotely sensed dust. Comparisons were made between April temporal variations of the ERA analysis increments and the variations of the Total Ozone Mapping Spectrometer aerosol index (AI) between 1979 and 1993. The distinctive structure was identified in the distribution of correlation composed of three nested areas with high positive correlation (>0.5), low correlation and high negative correlation (Forecast (ECMWF) suggest that the PCA (NCA) corresponds mainly to anticyclonic (cyclonic) flow, negative (positive) vorticity and downward (upward) airflow. These findings are associated with the interaction between dust-forced heating/cooling and atmospheric circulation. This paper contributes to a better understanding of dust radiative processes missed in the model.

  12. Response of the Eastern Mediterranean microbial ecosystem to dust and dust affected by acid processing in the atmosphere

    Directory of Open Access Journals (Sweden)

    Michael David Krom

    2016-08-01

    Full Text Available Acid processes in the atmosphere, particularly those caused by anthropogenic acid gases, increase the amount of bioavailable P in dust and hence are predicted to increase microbial biomass and primary productivity when supplied to oceanic surface waters. This is likely to be particularly important in the Eastern Mediterranean Sea (EMS, which is P limited during the winter bloom and N&P co-limited for phytoplankton in summer. However, it is not clear how the acid processes acting on Saharan dust will affect the microbial biomass and primary productivity in the EMS. Here, we carried out bioassay manipulations on EMS surface water on which Saharan dust was added as dust (Z, acid treated dust (ZA, dust plus excess N (ZN and acid treated dust with excess N (ZNA during springtime (May 2012 and measured bacterioplankton biomass, metabolic and other relevant chemical and biological parameters. We show that acid treatment of Saharan dust increased the amount of bioavailable P supplied by a factor of ~40 compared to non-acidified dust (18.4 nmoles P mg-1 dust vs. 0.45 nmoles P mg-1 dust, respectively. The increase in chlorophyll, primary and bacterial productivity for treatments Z and ZA were controlled by the amount of N added with the dust while those for treatments ZN and ZNA (in which excessive N was added were controlled by the amount of P added. These results confirm that the surface waters were N&P co-limited for phytoplankton during springtime. However, total chlorophyll and primary productivity in the acid treated dust additions (ZA and ZNA were less than predicted from that calculated from the amount of the potentially limiting nutrient added. This biological inhibition was interpreted as being due to labile trace metals being added with the acidified dust. A probable cause for this biological inhibition was the addition of dissolved Al, which forms potentially toxic Al nanoparticles when added to seawater. Thus, the effect of anthropogenic acid

  13. Investigation of dust formations in the atmosphere on the basis of satellite observations

    Science.gov (United States)

    Ivanchik, M. V.; Kliushnikov, S. I.; Krovotyntsev, V. A.; Serebrennikov, A. N.

    1984-06-01

    A method for the computer processing of space photographs is described which makes it possible to determine dust formations in the atmosphere. Dust formations are identified according to the character of contrast-density distribution. Processed images are compared with actinometric data collected in a dust storm area (Conakry, Guinea, May 1983).

  14. The Potential Impact of Mars' Atmospheric Dust on Future Human Exploration of the Red Planet

    Science.gov (United States)

    Winterhalter, D.; Levine, J. S.; Kerschmann, R.; Beaty, D. W.; Carrier, B. L.; Ashley, J. W.

    2017-12-01

    With the increasing focus by NASA and other space agencies on a crewed mission to Mars in the 2039 time-frame, many Mars-specific environmental factors are now starting to be considered by NASA and other engineering teams. Learning from NASA's Apollo Missions to the Moon, where lunar dust turned out to be a significant challenge to mission and crew safety, attention is now turning to the dust in Mars' atmosphere and regolith. To start the process of identifying possible dust-caused challenges to the human presence on Mars, and thus aid early engineering and mission design efforts, the NASA Engineering and Safety Center (NESC) Robotic Spacecraft Technical Discipline Team organized and conducted a Workshop on the "Dust in Mars' Atmosphere and Its Impact on the Human Exploration of Mars", held at the Lunar and Planetary Institute (LPI), Houston, TX, June 13-15, 2017. The workshop addressed the following general areas: 1. What is known about Mars' dust in terms of its physical and chemical properties, its local and global abundance and composition, and its variability.2. What is the impact of Mars atmospheric dust on human health.3. What is the impact of Mars atmospheric dust on surface mechanical systems (e.g., spacesuits, habitats, mobility systems, etc.). We present the top priority issues identified in the workshop.

  15. Saharan Dust Deposition Effects on the Microbial Food Web in the Eastern Mediterranean: A Study Based on a Mesocosm Experiment

    Directory of Open Access Journals (Sweden)

    Paraskevi Pitta

    2017-05-01

    Full Text Available The effect of episodicity of Saharan dust deposition on the pelagic microbial food web was studied in the oligotrophic Eastern Mediterranean by means of a mesocosm experiment in May 2014. Two different treatments in triplicates (addition of natural Saharan dust in a single-strong pulse or in three smaller consecutive doses of the same total quantity, and three unamended controls were employed; chemical and biological parameters were measured during a 10-day experiment. Temporal changes in primary (PP and bacterial (BP production, chlorophyll a (Chl a concentration and heterotrophic bacteria, Synechococcus and mesozooplankton abundance were studied. The results suggested that the auto- and hetero-trophic components of the food web (at least the prokaryotes were enhanced by the dust addition (and by the nitrogen and phosphorus added through dust. Furthermore, a 1-day delay was observed for PP, BP, and Chl a increases when dust was added in three daily doses; however, the maximal values attained were similar in the two treatments. Although, the effect was evident in the first osmotrophic level (phytoplankton and bacteria, it was lost further up the food web, masked under the impact of grazing exerted by predators such as heterotrophic flagellates, ciliates and dinoflagellates. This was partly proved by two dilution experiments. This study demonstrates the important role of atmospheric deposition and protist grazing when evaluating the effect on oligotrophic systems characterized by increased numbers of trophic levels.

  16. Atmospheric deposition 2000. NOVA 2003; Atmosfaerisk deposition 2000. NOVA 2003

    Energy Technology Data Exchange (ETDEWEB)

    Ellermann, T.; Hertel, O.; Hovmand, M.F.; Kemp, K.; Skjoeth, C.A.

    2001-11-01

    This report presents measurements and calculations from the atmospheric part of NOVA 2003 and covers results for 2000. It summarises the main results concerning concentrations and depositions of nitrogen, phosphorus and sulphur compounds related to eutrophication and acidification. Depositions of atmospheric compounds to Danish marine waters as well as land surface are presented. Measurements: In 2000 the monitoring program consisted of eight stations where wet deposition of ammonium, nitrate, phosphate (semi quantitatively) and sulphate were measured using bulk precipitation samplers. Six of the stations had in addition measurements of atmospheric content of A, nitrogen, phosphorus, and sulphur compounds in gas and particulate phase carried out by use of filter pack samplers. Filters were analysed at the National Environmental Research Institute. Furthermore nitrogen dioxide were measured using nitrogen dioxide filter samplers and monitors. Model calculations: The measurements in the monitoring program were supplemented with model calculations of concentrations and depositions of nitrogen and sulphur compounds to Danish land surface, marine waters, fjords and bays using the ACDEP model (Atmospheric Chemistry and Deposition). The model is a so-called trajectory model and simulates the physical and chemical processes in the atmosphere using meteorological and emission data as input. The advantage of combining measurements with model calculations is that the strengths of both methods is obtained. Conclusions concerning: 1) actual concentration levels at the monitoring stations, 2) deposition at the monitoring stations, 3) seasonal variations and 4) long term trends in concentrations and depositions are mainly based on the direct measurements. These are furthermore used to validate the results of the model calculations. Calculations and conclusions concerning: 1) depositions to land surface and to the individual marine water, 2) contributions from different emission

  17. Evaluating the impact of atmospheric depositions on springtime dinitrogen fixation in the Cretan Sea (Eastern Mediterranean - A mesocosm approach

    Directory of Open Access Journals (Sweden)

    Eyal Rahav

    2016-09-01

    Full Text Available Large amounts of dust and atmospheric aerosols, originating from surrounding desert areas (e.g., Sahara and Middle East are deposited annually on the surface of the Eastern Mediterranean Sea. These depositions can provide high amounts of micro (such as Fe, Zn, Co and macro nutrients (such as P and N to supplement nutrient-poor surface waters- that typically limit primary productivity and also dinitrogen (N2 fixation in many marine environments. Here, we studied the impact of the atmospheric deposition of dust and aerosols on N2 fixation in the Cretan Sea (Eastern Mediterranean Sea. Mixed polluted aerosols (hereafter A and Saharan dust (hereafter SD were added to nine mesocosms (3-m3 each containing surface mixed layer seawater (~10 m, and N2 fixation was evaluated for 6 days during May 2012 (springtime. The addition of SD triggered a rapid (30 h and robust (2-4 fold increase in N2 fixation rates that remained high for 6 days and contributed 3-8% of the primary productivity. The A addition also resulted in higher N2 fixation rates compared to the unamended control mesocosms, although the responses were less profound (1.5-2 fold and accounted for only 2-4% of the primary productivity. The microbial community responded differently to the two additions. Heterotrophic bacterial N2 fixers dominated the diazotroph community in A and the control mesocosms, while the non-filamentous cyanobacterial group Trichodesmium prevailed in the SD treatment (68% of all the operational taxonomic units, verified by qPCR analyses. Our results indicate that the aerosol source, its route prior to deposition, and its specific chemical composition, can alter the diazotrophic diversity and activity in the Eastern Mediterranean Sea and may thus impact both the N and C dynamics in this impoverished environment.

  18. Achieving uniform layer deposition by atmospheric-pressure plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Ok [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Kang, Woo Seok, E-mail: kang@kimm.re.kr [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Department of Environment & Energy Mechanical Engineering, University of Science & Technology (UST), Daejeon 305-350 (Korea, Republic of); Hur, Min; Lee, Jin Young [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Song, Young-Hoon [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Department of Environment & Energy Mechanical Engineering, University of Science & Technology (UST), Daejeon 305-350 (Korea, Republic of)

    2015-12-31

    This work investigates the use of plasma-enhanced chemical vapor deposition under atmospheric pressure for achieving uniform layer formation. Electrical and optical measurements demonstrated that the counterbalance between oxygen and precursors maintained the homogeneous discharge mode, while creating intermediate species for layer deposition. Several steps of the deposition process of the layers, which were processed on a stationary stage, were affected by flow stream and precursor depletion. This study showed that by changing the flow streamlines using substrate stage motion uniform layer deposition under atmospheric pressure can be achieved. - Highlights: • Zirconium oxide was deposited by atmospheric-pressure plasma-enhanced chemical vapor deposition. • Homogeneous plasma was maintained by counterbalancing between discharge gas and precursors. • Several deposition steps were observed affected by the gas flow stream and precursor depletion. • Thin film layer was uniformly grown when the substrate underwent a sweeping motion.

  19. Asian dust outflow in the PBL and free atmosphere retrieved by NASA CALIPSO and an assimilated dust transport model

    OpenAIRE

    Y. Hara; K. Yumimoto; I. Uno; A. Shimizu; N. Sugimoto; Z. Liu; D. M. Winker

    2009-01-01

    International audience; Three-dimensional structures of Asian dust transport in the planetary boundary layer (PBL) and free atmosphere occurring successively during the end of May 2007 were clarified using results of space-borne backscatter lidar, Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), and results simulated using a data-assimilated version of a dust transport model (RC4) based on a ground-based NIES lidar network. Assimilated results mitigated overestimation of dust concen...

  20. Real-time mass measurement of dust particles deposited on vessel wall in a divertor simulator using quartz crystal microbalances

    International Nuclear Information System (INIS)

    Tateishi, Mizuki; Koga, Kazunori; Katayama, Ryu; Yamashita, Daisuke; Kamataki, Kunihiro; Seo, Hyunwoong; Itagaki, Naho; Shiratani, Masaharu; Ashikawa, Naoko; Masuzaki, Suguru; Nishimura, Kiyohiko; Sagara, Akio

    2015-01-01

    We are developing a dust monitoring method using quartz crystal microbalances (QCMs) equipped with a dust eliminating filter. Here we report a dust eliminating ratio of the filter and first measurement results of the QCMs in a divertor simulator. The volume of spherical dust in unit area on the filter and QCM under the filter were 2.09 × 10 −9 and 1.22 × 10 −10 m 3 m −2 , respectively. Thus, the dust eliminating ratio of the filter is 94.2%. The QCM without the filter gives deposition rate due to radicals and dust particles, whereas the QCM with the filter gives deposition rate predominantly due to radicals. From the results, we deduce information of mass fraction of dust particles in deposits

  1. Atmospherically deposited trace metals from bulk mineral concentrate port operations.

    Science.gov (United States)

    Taylor, Mark Patrick

    2015-05-15

    Although metal exposures in the environment have declined over the last two decades, certain activities and locations still present a risk of harm to human health. This study examines environmental dust metal and metalloid hazards (arsenic, cadmium, lead and nickel) associated with bulk mineral transport, loading and unloading port operations in public locations and children's playgrounds in the inner city of Townsville, northern Queensland. The mean increase in lead on post-play hand wipes (965 μg/m(2)/day) across all sites was more than 10-times the mean pre-play loadings (95 μg/m(2)/day). Maximum loading values after a 10-minute play period were 3012 μg/m(2), more than seven times the goal of 400 μg/m(2) used by the Government of Western Australia (2011). Maximum daily nickel post-play hand loadings (404 μg/m(2)) were more than 26 times above the German Federal Immission Control Act 2002 annual benchmark of 15 μg/m(2)/day. Repeat sampling over the 5-day study period showed that hands and surfaces were re-contaminated daily from the deposition of metal-rich atmospheric dusts. Lead isotopic composition analysis of dust wipes ((208)Pb/(207)Pb and (206)Pb/(207)Pb) showed that surface dust lead was similar to Mount Isa type ores, which are exported through the Port of Townsville. While dust metal contaminant loadings are lower than other mining and smelting towns in Australia, they exceeded national and international benchmarks for environmental quality. The lessons from this study are clear - even where operations are considered acceptable by managing authorities, targeted assessment and monitoring can be used to evaluate whether current management practices are truly best practice. Reassessment can identify opportunities for improvement and maximum environmental and human health protection. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Dust deposition effects on growth and physiology of the endangered Astragalus jaegerianus (Fabaceae)

    Science.gov (United States)

    Wijayratne, Upekala C.; Scoles-Sciulla, Sara J.; Defalco, Lesley A.

    2009-01-01

    Human expansion into the Mojave Desert is a significant threat to rare desert plants. While immediate habitat loss is often the greatest concern, rare plants situated near areas where soil surfaces experience frequent disturbance may be indirectly impacted when fine particulate dust accumulates on leaf surfaces. Remaining populations of the federally listed Astragalus jaegerianus (Lane Mountain milkvetch) occur on land open to expanding military activities and on adjacent public land with increasing recreational use. This study was initiated to determine whether dust accumulation could decrease the vigor and fitness of A. jaegerianus through reduced growth. Beginning in early May 2004, plants located on Bureau of Land Management (BLM) land were dusted bimonthly at canopy-level dust concentrations ranging from 0 to 32 g/m2, and physiology and growth were monitored until late June when plants senesced. The maximum experimental dust level simulates dust concentrations of Mojave Desert perennials neighboring military activities at a nearby army training center. Average shoot growth declined with increasing dust accumulation, but seasonal net photosynthesis increased. Further investigation of plants grown in a greenhouse supported similar trends. This pattern of greater net photosynthesis with increasing dust accumulation may be explained by higher leaf temperatures of dusted individuals. Ambient dust deposition measured in traps near field plants (May 2004–July 2004) ranged from 0.04–0.17 g/m2/ d, which was well below the lowest level of dust on experimental plants (3.95 g/m2/d). With this low level of ambient deposition, we expect that A. jaegerianus plants in this population were not greatly affected by the dust they receive at the level of recreational use during the study.

  3. High-resolution provenance of desert dust deposited on Mt. Elbrus, Caucasus in 2009–2012 using snow pit and firn core records

    Directory of Open Access Journals (Sweden)

    S. Kutuzov

    2013-09-01

    Full Text Available The first record of dust deposition events on Mt. Elbrus, Caucasus Mountains derived from a snow pit and a shallow firn core is presented for the 2009–2012 period. A combination of isotopic analysis, SEVIRI red-green-blue composite imagery, MODIS atmospheric optical depth fields derived using the Deep Blue algorithm, air mass trajectories derived using the HYSPLIT model and analyses of meteorological data enabled identification of dust source regions with high temporal (hours and spatial (ca. 20–100 km resolution. Seventeen dust deposition events were detected; fourteen occurred in March–June, one in February and two in October. Four events originated in the Sahara, predominantly in northeastern Libya and eastern Algeria. Thirteen events originated in the Middle East, in the Syrian Desert and northern Mesopotamia, from a mixture of natural and anthropogenic sources. Dust transportation from Sahara was associated with vigorous Saharan depressions, strong surface winds in the source region and mid-tropospheric southwesterly flow with daily winds speeds of 20–30 m s−1 at 700 hPa level. Although these events were less frequent than those originating in the Middle East, they resulted in higher dust concentrations in snow. Dust transportation from the Middle East was associated with weaker depressions forming over the source region, high pressure centred over or extending towards the Caspian Sea and a weaker southerly or southeasterly flow towards the Caucasus Mountains with daily wind speeds of 12–18 m s−1 at 700 hPa level. Higher concentrations of nitrates and ammonium characterised dust from the Middle East deposited on Mt. Elbrus in 2009 indicating contribution of anthropogenic sources. The modal values of particle size distributions ranged between 1.98 μm and 4.16 μm. Most samples were characterised by modal values of 2.0–2.8 μm with an average of 2.6 μm and there was no significant difference between dust from the Sahara and

  4. Ice nucleation properties of mineral dusts

    OpenAIRE

    Steinke, Isabelle

    2013-01-01

    Ice nucleation in clouds has a significant impact on the global hydrological cycle as well as on the radiative budget of the Earth. The AIDA cloud chamber was used to investigate the ice nucleation efficiency of various atmospherically relevant mineral dusts. From experiments with Arizona Test Dust (ATD) a humidity and temperature dependent ice nucleation active surface site density parameterization was developed to describe deposition nucleation at temperatures above 220 K. Based...

  5. Snow–Dust Storm: Unique case study from Iceland, March 6–7, 2013

    Czech Academy of Sciences Publication Activity Database

    Dagsson-Waldhauserova, P.; Arnalds, O.; Olafsson, H.; Hladil, Jindřich; Skála, Roman; Navrátil, Tomáš; Chadimová, Leona; Meinander, O.

    2015-01-01

    Roč. 16, March (2015), s. 69-74 ISSN 1875-9637 Institutional support: RVO:67985831 Keywords : snow dust deposition * atmosphere cryosphere interactions * volcanic dust * natural phenomenon * Arctic Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.275, year: 2015

  6. 10Be in desert sands, falling dust and loess in China

    International Nuclear Information System (INIS)

    Shen, C.D.; Beer, J.; Kubik, P.W.; Sun, W.D.; Liu, T.S.; Liu, K.X.

    2010-01-01

    Cosmogenic 10 Be is produced in the atmosphere, and deposits onto the surface of the earth mainly through wet precipitation and dust. Based on the analysis of 10 Be in Chinese loess, we believe that 10 Be in loess is composed of two components: locally precipitated atmospheric 10 Be, and windblown 10 Be adsorbed on the surface of silt grains. On the Loess Plateau, 10 Be concentrations in loess and paleosol range from (1.4 to 2.8) x 10 8 atoms/g and (2.7 to 4.5) x 10 8 atoms/g, respectively. To investigate the sources of 10 Be in loess, we measured 10 Be in sand grains from deserts in western China and falling dust from the deposition regions. The results show that the 10 Be concentrations in sand and dust are (1.1-5.1) x 10 7 atoms/g and (1.3-2.8) x 10 8 atoms/g, respectively. Loess and paleosol on the Loess Plateau both contain inherited 10 Be adsorbed on silt grains from dust; most of the windblown deposited loess materials do not directly come from the Gobi and other sand deserts, but mainly from the loess-desert transitional zones, which are characterized by silt and dust holding areas.

  7. Change of the Asian dust source region deduced from the composition of anthropogenic radionuclides in surface soil in Mongolia

    Directory of Open Access Journals (Sweden)

    Y. Igarashi

    2011-07-01

    Full Text Available Recent climate change, especially during the 2000s, may be the primary reason for the expansion of the Asian dust source region. The change in the dust source region was investigated by examining anthropogenic radionuclides contained in surface soil samples from Mongolia. Surface soil was globally labeled by radioactive fallout from nuclear testing during the late 1950s and early 1960s, but there are no current direct sources for anthropogenic radionuclides in the air (before the Fukushima nuclear power plant accident in 2011. Radionuclides in the atmosphere are therefore carried mainly by wind-blown dust from surface soil, that is, aeolian dust. Asian dust carries traces of 90Sr, 137Cs, and other anthropogenic radionuclides; the heaviest deposition occurs in spring and has been recorded in Japan since the early 1990s. The composition of anthropogenic radionuclides in atmospheric depositions would be affected by a change in the dust source. Previous studies of atmospheric deposition at long-term monitoring sites (e.g. in Tsukuba, Japan have detected changes in the 137Cs/90Sr ratio and in the specific activity of the radionuclides. These changes in the composition of observed atmospheric depositions are supposed to reflect changes in the climatic conditions of the dust source region. To investigate this dust source change, we conducted a field survey of radionuclides (90Sr and 137Cs in surface soil samples in September 2007 in the eastern and southern regions of Mongolia, where dust storms have occurred more frequently since 2000. The specific activities of both radionuclides as well as the 137Cs/90Sr ratio in the surface soil were well correlated with annual average precipitation in the Mongolian desert-steppe zone. Higher specific activities and a higher 137Cs/90Sr ratio were found in grassland regions that experienced greater

  8. Dust deposition in southern Nevada and California, 1984-1989: Relations to climate, source area, and source lithology

    Science.gov (United States)

    Reheis, Marith C.; Kihl, Rolf

    1995-05-01

    Dust samples collected annually for 5 years from 55 sites in southern Nevada and California provide the first regional source of information on modern rates of dust deposition, grain size, and mineralogical and chemical composition relative to climate and to type and lithology of dust source. The average silt and clay flux (rate of deposition) in southern Nevada and southeastern California ranges from 4.3 to 15.7 g/m2/yr, but in southwestern California the average silt and clay flux is as high as 30 g/m2/yr. The climatic factors that affect dust flux interact with each other and with the factors of source type (playas versus alluvium), source lithology, geographic area, and human disturbance. Average dust flux increases with mean annual temperature but is not correlated to decreases in mean annual precipitation because the regional winds bring dust to relatively wet areas. In contrast, annual dust flux mostly reflects changes in annual precipitation (relative drought) rather than temperature. Although playa and alluvial sources produce about the same amount of dust per unit area, the total volume of dust from the more extensive alluvial sources is much larger. In addition, playa and alluvial sources respond differently to annual changes in precipitation. Most playas produce dust that is richer in soluble salts and carbonate than that from alluvial sources (except carbonate-rich alluvium). Gypsum dust may be produced by the interaction of carbonate dust and anthropogenic or marine sulfates. The dust flux in an arid urbanizing area may be as much as twice that before disturbance but decreases when construction stops. The mineralogic and major-oxide composition of the dust samples indicates that sand and some silt is locally derived and deposited, whereas clay and some silt from different sources can be far-traveled. Dust deposited in the Transverse Ranges of California by the Santa Ana winds appears to be mainly derived from sources to the north and east.

  9. Open questions on optical properties of dust and the opacity of the Martian atmosphere

    Science.gov (United States)

    Korablev, O.; Moroz, V.; Petrova, E.; Rodin, A.

    Particulate component of the atmosphere composed by micron-sized products of soil weathering and water ice clouds that strongly affect the current climate of the planet. In the absence of a dust storm so-called permanent dust haze with0.2 in the atmosphere of Mars determines its thermal structure. Dust loading varies substantially with the season and geographic location, and only the data of mapping instruments are adequate to characterize it, such as TES/MGS and IRTM/Viking. In spite of vast domain of collected data, no model is now capable to explain all observed spectral features of dust aerosol. Several mineralogical and microphysical models of the atmospheric dust have been proposed but they cannot explain the pronounced systematic differences between the IR data and measurem ents from the surface (Viking landers, Pathfinder) which give in the quiet seasons the typical optical depth of? 0.5 from one side, and ground-based observations in the UV-visible range that frequently infer <0.2, on the other side. Also the relationship between9 and the visible optical depth is not well established experimentally so far. Future focused measurements are therefore necessary to study Martian aerosol.

  10. ENVIRONMENTAL MONITORING USING LINDEN TREE LEAVES AS NATURAL TRAPS OF ATMOSPHERIC DEPOSITION: A PILOT STUDY IN TRANSILVANIA, ROMANIA

    Directory of Open Access Journals (Sweden)

    MIHÁLY BRAUN

    2007-12-01

    Full Text Available Atmospheric pollution caused by toxic elements is an emerging problem of concern. Tree leaves have been widely used as indicator of atmospheric pollutions and they are effective alternatives to the moreusual biomonitoring methods. Tree leaves can be used as natural traps of atmospheric deposition. Elemental composition of dust deposited onto leaf surfaces can be used to characterize the urban environment. A pilot survey including 16 Romanian settlements was carried out in order to evaluate the characteristics and sources of air pollutants. Tree leaves (Tilia tomentosa, Tilia cordata, Tilia platyphyllos were collected and used for the measurements. Elemental analyses were carried out by ICP-OES and ICP-MS. Principal component and discriminant analyses were used to characterizing and estimating the level of pollution. Settlements were grouped on the basis of discriminant function values. Multivariate comparison of chemical data ordered the settlements into 3 main groups, which showed a systematic geographic distribution.

  11. Millennial-scale variability in dust deposition, marine export production, and nutrient consumption in the glacial subantarctic ocean (Invited)

    Science.gov (United States)

    Martinez-Garcia, A.; Sigman, D. M.; Anderson, R. F.; Ren, H. A.; Hodell, D. A.; Straub, M.; Jaccard, S.; Eglinton, T. I.; Haug, G. H.

    2013-12-01

    Based on the limitation of modern Southern Ocean phytoplankton by iron and the evidence of higher iron-bearing dust fluxes to the ocean during ice ages, it has been proposed that iron fertilization of Southern Ocean phytoplankton contributed to the reduction in atmospheric CO2 during ice ages. In the Subantarctic zone of the Atlantic Southern Ocean, glacial increases in dust flux and export production have been documented, supporting the iron fertilization hypothesis. However, these observations could be interpreted alternatively as resulting from the equatorward migration of Southern Ocean fronts during ice ages if the observed productivity rise was not accompanied by an increase in major nutrient consumption. Here, new 230Th-normalized lithogenic and opal fluxes are combined with high-resolution biomarker measurements to reconstruct millennial-scale changes in dust deposition and marine export production in the subantarctic Atlantic over the last glacial cycle. In the same record foraminifera-bound nitrogen isotopes are used to reconstruct ice age changes in surface nitrate utilization, providing a comprehensive test of the iron fertilization hypothesis. Elevation in foraminifera-bound δ15N, indicating more complete nitrate consumption, coincides with times of surface cooling and greater dust flux and export production. These observations indicate that the ice age Subantarctic was characterized by iron fertilized phytoplankton growth. The resulting strengthening of the Southern Ocean's biological pump can explain the ~40 ppm lowering of CO2 that characterizes the transitions from mid-climate states to full ice age conditions as well as the millennial-scale atmospheric CO2 fluctuations observed within the last ice age

  12. An index for estimating the potential metal pollution contribution to atmospheric particulate matter from road dust in Beijing.

    Science.gov (United States)

    Zhao, Hongtao; Shao, Yaping; Yin, Chengqing; Jiang, Yan; Li, Xuyong

    2016-04-15

    The resuspension of road dust from street surfaces could be a big contributor to atmospheric particulate pollution in the rapid urbanization context in the world. However, to date what its potential contribution to the spatial pattern is little known. Here we developed an innovative index model called the road dust index (RIatmospheric suspended particles. The factors were ranked and weighted based on road dust characteristics (the amounts, grain sizes, and mobilities of the road dust, and the concentrations and toxicities of metals in the road dust). We then applied the RIatmospheric suspended particles. The results demonstrated that the road dust in urban areas has higher potential risk of metal to atmospheric particles than that in rural areas. The RIatmospheric suspended particles and for controlling atmospheric particulate pollution caused by road dust emissions. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Numerical Prediction of Dust. Chapter 10

    Science.gov (United States)

    Benedetti, Angela; Baldasano, J. M.; Basart, S.; Benincasa, F.; Boucher, O.; Brooks, M.; Chen, J. P.; Colarco, P. R.; Gong, S.; Huneeus, N.; hide

    2013-01-01

    Covers the whole breadth of mineral dust research, from a scientific perspective Presents interdisciplinary work including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies Explores the role of dust as a player and recorder of environmental change This volume presents state-of-the-art research about mineral dust, including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies. Dust research is a new, dynamic and fast-growing area of science and due to its multiple roles in the Earth system, dust has become a fascinating topic for many scientific disciplines. Aspects of dust research covered in this book reach from timescales of minutes (as with dust devils, cloud processes, and radiation) to millennia (as with loess formation and oceanic sediments), making dust both a player and recorder of environmental change. The book is structured in four main parts that explore characteristics of dust, the global dust cycle, impacts of dust on the Earth system, and dust as a climate indicator. The chapters in these parts provide a comprehensive, detailed overview of this highly interdisciplinary subject. The contributions presented here cover dust from source to sink and describe all the processes dust particles undergo while travelling through the atmosphere. Chapters explore how dust is lifted and transported, how it affects radiation, clouds, regional circulations, precipitation and chemical processes in the atmosphere, and how it deteriorates air quality. The book explores how dust is removed from the atmosphere by gravitational settling, turbulence or precipitation, how iron contained in dust fertilizes terrestrial and marine ecosystems, and about the role that dust plays in human health. We learn how dust is observed, simulated using computer models and forecast. The book also details the role of dust deposits for climate reconstructions

  14. Dust and radon: the legal implications

    International Nuclear Information System (INIS)

    Van Sittert, J.M.O.

    1990-01-01

    It is known that radon gas is not generally considered to be a major problem when encountered in the working environment. However, in its process of decay, a series of four short lived daughter products are formed. In a dust-laden atmosphere these daughter products, which are ionized readily, attach to the particulate material and when inhaled are deposited in the alveoli of the lungs. Therefore, if respirable dust is controlled, the effects of radon daughters will also be minimized. The legal requirements for dust control in South Africa and their implications are discussed. 1 ill

  15. Effect of Atmospheric Organics on Bioavailable Fe Lifetime in the Oceans

    Science.gov (United States)

    Meskhidze, Nicholas; Hurley, David; Royalty, Taylor Michael; Johnson, Matthew S.

    2016-01-01

    The deposition of atmospheric aerosols is an important supply pathway of soluble iron (sol-Fe) to the global oceans influencing marine ecosystem processes and climate. Previous studies have shown that natural and anthropogenic acidic trace gases, when mixed with mineral dust, can lead to production of sol-Fe, leading to considerable increase in dust-Fe solubility. Recent studies have further highlighted the importance of atmospheric organic compounds/ligands in the production of sol-Fe during atmospheric transport and transformation of mineral aerosols. However, the actual scope of this aerosol sol-Fe for stimulating the primary productivity in the oceans is determined by both: the total atmospheric fluxes of sol-Fe and the lifetime of sol-Fe after its deposition to the ocean. In this study several atmospheric organic ligands were investigated for their effect on the lifetime of sol-Fe after mixing with seawater. Organic ligands were selected based on their abundance in the marine boundary layer and rainwater and their ability to form bidentate complexes with Fe. The results reveal that the tested organics had minor influence on Fe(II) lifetime in seawater. However, results also show that some organic acid considerably extended the lifetime of colloidal and aqueous Fe(III). Using these results we simulate aerosol sol-Fe lifetime in the ocean for different mineral dust deposition events in the presence and the absence of atmospheric organic ligands. The calculations suggest that when a large dust plume is assumed to contain Fe(II) alone, less than 15% of aerosol sol-Fe gets complexed with marine organic ligands. However, this fraction increases to over 90% when atmospheric Fe is allowed to bond with atmospheric organic acids prior to deposition to the oceans. Calculations also show that for the conditions when seawater organic ligands get titrated by Fe released from dust aerosol particles, retention of sol-Fe in the ocean depends on surface ocean mixing, i

  16. Phosphorus speciation and solubility in aeolian dust deposited in the interior American West

    Science.gov (United States)

    Zhang, Zhuojun; Goldstein, Harland L.; Reynolds, Richard L.; Hu, Yongfeng; Wang, Xiaoming; Zhu, Mengqiang

    2018-01-01

    Aeolian dust is a significant source of phosphorus (P) to alpine oligotrophic lakes, but P speciation in dust and source sediments and its release kinetics to lake water remain unknown. Phosphorus K-edge XANES spectroscopy shows that calcium-bound P (Ca−P) is dominant in 10 of 12 dust samples (41−74%) deposited on snow in the central Rocky Mountains and all 42 source sediment samples (the fine fraction) (68−80%), with a lower proportion in dust probably because acidic snowmelt dissolves some Ca−P in dust before collection. Iron-bound P (Fe−P, ∼54%) dominates in the remaining two dust samples. Chemical extractions (SEDEX) on these samples provide inaccurate results because of unselective extraction of targeted species and

  17. MEAD Marine Effects of Atmospheric Deposition

    Science.gov (United States)

    Jickells, T.; Spokes, L.

    2003-04-01

    The coastal seas are one of the most valuable resources on the planet but they are threatened by human activity. We rely on the coastal area for mineral resources, waste disposal, fisheries and recreation. In Europe, high population densities and high levels of industrial activity mean that the pressures arising from these activities are particularly acute. One of the main problems concerning coastal seas is the rapid increase in the amounts of nitrogen-based pollutants entering the water. They come from many sources, the most important ones being traffic, industry and agriculture. These pollutants can be used by algae as nutrients. The increasing concentrations of these nutrients have led to excessive growth of algae, some of which are harmful. When algae die and decay, oxygen in the water is used up and the resulting lower levels of oxygen may lead to fish kills. Human activity has probably doubled the amount of chemically and biologically reactive nitrogen present globally. In Europe the increases have been greater than this, leading to real concern over the health of coastal waters. Rivers have, until recently, been thought to be the most important source of reactive nitrogen to the coastal seas but we now know that inputs from the atmosphere are large and can equal, or exceed, those from the rivers. Our initial hypothesis was that atmospheric inputs are important and potentially different in their effect on coastal ecosystems to riverine inputs and hence require different management strategies. However, we had almost no information on the direct effects of atmospheric deposition on marine ecosystems, though clearly such a large external nitrogen input should lead to enhanced phytoplankton growth The aim of this European Union funded MEAD project has been to determine how inputs of nitrogen from the atmosphere affect the chemistry and biology of coastal waters. To try to answer this, we have conducted field experiments in the Kattegat, an area where we know

  18. Paleo-dust insights onto dust-climate interactions

    Science.gov (United States)

    Albani, S.; Mahowald, N. M.

    2017-12-01

    Mineral dust emissions are affected by changing climate conditions, and in turn dust impacts the atmospheric radiation budget, clouds and biogeochemical cycles. Climate and public health dust-related issues call for attention on the fate of the dust cycle in the future, and the representation of the dust cycle is now part of the strategy of the Paleoclimate Modelling Intercomparison Project phase 4 and the Coupled Model Intercomparison Project phase 6 (PMIP4-CMIP6). Since mineral aerosols are one of the most important natural aerosols, understanding past dust responses to climate in the paleoclimate will allow us to better understand mineral aerosol feedbacks with climate and biogeochemistry in the Anthropocene. Modern observations and paleoclimate records offer the possibility of multiple, complementary views on the global dust cycle, and allow to validate and/or constrain the numerical representation of dust in climate and Earth system models. We present our results from a set of simulations with the Community Earth System Model for different climate states, including present and past climates such as the pre-industrial, the mid-Holocene and the Last Glacial Maximum. A set of simulations including a prognostic dust cycle was thoroughly compared with a wide set of present day observations from different platforms and regions, in order to realistically constrain the magnitude of dust load, surface concentration, deposition, optical properties, and particle size distributions. The magnitude of emissions for past climate regimes was constrained based on compilations of paleodust mass accumulation rates and size distributions, as well as based on information on dust provenance. The comparison with a parallel set of simulations without dust allows estimating the impacts of dust on surface climate. We analyze impacts of dust on the mean and variability of surface temperature and precipitation in each climate state, as well as the impacts that changing dust emissions had

  19. Further Analysis on the Mystery of the Surveyor III Dust Deposits

    Science.gov (United States)

    Metzger, Philip; Hintze, Paul; Trigwell, Steven; Lane, John

    2012-01-01

    The Apollo 12 lunar module (LM) landing near the Surveyor III spacecraft at the end of 1969 has remained the primary experimental verification of the predicted physics of plume ejecta effects from a rocket engine interacting with the surface of the moon. This was made possible by the return of the Surveyor III camera housing by the Apollo 12 astronauts, allowing detailed analysis of the composition of dust deposited by the LM plume. It was soon realized after the initial analysis of the camera housing that the LM plume tended to remove more dust than it had deposited. In the present study, coupons from the camera housing have been reexamined. In addition, plume effects recorded in landing videos from each Apollo mission have been studied for possible clues.

  20. Atmospheric mercury deposition to forests in the eastern USA

    International Nuclear Information System (INIS)

    Risch, Martin R.; DeWild, John F.; Gay, David A.; Zhang, Leiming; Boyer, Elizabeth W.; Krabbenhoft, David P.

    2017-01-01

    Atmospheric mercury (Hg) deposition to forests is important because half of the land cover in the eastern USA is forest. Mercury was measured in autumn litterfall and weekly precipitation samples at a total of 27 National Atmospheric Deposition Program (NADP) monitoring sites in deciduous and mixed deciduous-coniferous forests in 16 states in the eastern USA during 2007–2014. These simultaneous, uniform, repeated, annual measurements of forest Hg include the broadest area and longest time frame to date. The autumn litterfall-Hg concentrations and litterfall mass at the study sites each year were combined with annual precipitation-Hg data. Rates of litterfall-Hg deposition were higher than or equal to precipitation-Hg deposition rates in 70% of the annual data, which indicates a substantial contribution from litterfall to total atmospheric-Hg deposition. Annual litterfall-Hg deposition in this study had a median of 11.7 μg per square meter per year (μg/m 2 /yr) and ranged from 2.2 to 23.4 μg/m 2 /yr. It closely matched modeled dry-Hg deposition, based on land cover at selected NADP Hg-monitoring sites. Mean annual atmospheric-Hg deposition at forest study sites exhibited a spatial pattern partly explained by statistical differences among five forest-cover types and related to the mapped density of Hg emissions. Forest canopies apparently recorded changes in atmospheric-Hg concentrations over time because litterfall-Hg concentrations decreased year to year and litterfall-Hg concentrations were significantly higher in 2007–2009 than in 2012–2014. These findings reinforce reported decreases in Hg emissions and atmospheric elemental-Hg concentrations during this same time period. Methylmercury (MeHg) was detected in all litterfall samples at all sites, compared with MeHg detections in less than half the precipitation samples at selected sites during the study. These results indicate MeHg in litterfall is a pathway into the terrestrial food web where it can

  1. Direct observations of the atmospheric processing of Asian mineral dust

    Directory of Open Access Journals (Sweden)

    R. C. Sullivan

    2007-01-01

    mechanisms of the atmospheric processing of dust and generally agrees with simulated aerosol chemistry from the STEM-2K3 model. This series of novel results has important implications for improving the treatment of dust in global chemistry models and highlights a number of key processes that merit further investigation through laboratory and field studies.

  2. Effect of atmospheric organic complexation on iron-bearing dust solubility

    Directory of Open Access Journals (Sweden)

    R. Paris

    2013-05-01

    Full Text Available Recent studies reported that the effect of organic complexation may be a potentially important process to be considered by models estimating atmospheric iron flux to the ocean. In this study, we investigated this process effect by a series of dissolution experiments on iron-bearing dust in the presence or the absence of various organic compounds (acetate, formate, oxalate, malonate, succinate, glutarate, glycolate, lactate, tartrate and humic acid as an analogue of humic like substances, HULIS typically found in atmospheric waters. Only 4 of tested organic ligands (oxalate, malonate, tartrate and humic acid caused an enhancement of iron solubility which was associated with an increase of dissolved Fe(II concentrations. For all of these organic ligands, a positive linear dependence of iron solubility to organic concentrations was observed and showed that the extent of organic complexation on iron solubility decreased in the following order: oxalate >malonate = tartrate > humic acid. This was attributed to the ability of electron donors of organic ligands and implies a reductive ligand-promoted dissolution. This study confirms that among the known atmospheric organic binding ligands of Fe, oxalate is the most effective ligand promoting dust iron solubility and showed, for the first time, the potential effect of HULIS on iron dissolution under atmospheric conditions.

  3. Effects of dust polarity and nonextensive electrons on the dust-ion acoustic solitons and double layers in earth atmosphere

    Science.gov (United States)

    Ghobakhloo, Marzieh; Zomorrodian, Mohammad Ebrahim; Javidan, Kurosh

    2018-05-01

    Propagation of dustion acoustic solitary waves (DIASWs) and double layers is discussed in earth atmosphere, using the Sagdeev potential method. The best model for distribution function of electrons in earth atmosphere is found by fitting available data on different distribution functions. The nonextensive function with parameter q = 0.58 provides the best fit on observations. Thus we analyze the propagation of localized waves in an unmagnetized plasma containing nonextensive electrons, inertial ions, and negatively/positively charged stationary dust. It is found that both compressive and rarefactive solitons as well as double layers exist depending on the sign (and the value) of dust polarity. Characters of propagated waves are described using the presented model.

  4. [Effects of the grain size and thickness of dust deposits on soil water and salt movement in the hinterland of the Taklimakan Desert].

    Science.gov (United States)

    Sun, Yan-Wei; Li, Sheng-Yu; Xu, Xin-Wen; Zhang, Jian-Guo; Li, Ying

    2009-08-01

    By using mcirolysimeter, a laboratory simulation experiment was conducted to study the effects of the grain size and thickness of dust deposits on the soil water evaporation and salt movement in the hinterland of the Taklimakan Desert. Under the same initial soil water content and deposition thickness condition, finer-textured (grain size of dust deposits on soil water evaporation had an inflection point at the grain size 0.20 mm, i. e., increased with increasing grain size when the grain size was 0.063-0.20 mm but decreased with increasing grain size when the grain size was > 0.20 mm. With the increasing thickness of dust deposits, its inhibition effect on soil water evaporation increased, and there existed a logarithmic relationship between the dust deposits thickness and water evaporation. Surface soil salt accumulation had a negative correlation with dust deposits thickness. In sum, the dust deposits in study area could affect the stability of arid desert ecosystem.

  5. Origin-Dependent Variations in the Atmospheric Microbiome in Eastern Mediterranean Dust Storms

    Science.gov (United States)

    Rudich, Y.; Gat, D.

    2017-12-01

    Microorganisms carried by dust storms are transported through the atmosphere and may affect human health and the functionality of microbial communities in various environments. Characterizing the dust-borne microbiome in dust storms of different origins, or that followed different trajectories, provides valuable data to improve our understanding of global health and environmental impacts. We present a comparative study on the diversity of dust- borne bacterial communities in dust storms from three distinct origins—North Africa, Syria and Saudi Arabia—and compare them with local bacterial communities sampled on clear days, all collected at a single location, in Israel. Storms from different dust origins exhibited distinct bacterial communities, with signature bacterial taxa for each source. Dust storms were characterized by a lower abundance of selected antibiotic resistance genes (ARGs) compared with ambient dust, asserting that the origin of these genes is local, possibly anthropogenic. With the progression of the storm, the storm-borne bacterial community showed increasing resemblance to ambient dust, suggesting mixing with local dust. We will also discuss how exposure to dust containing biological components affect lung epithelial cells. These results show, for the first time, that dust storms from different sources display distinct bacterial communities, suggesting possible distinct effects on the environment and public health.

  6. PERSPECTIVE: Dust, fertilization and sources

    Science.gov (United States)

    Remer, Lorraine A.

    2006-11-01

    Aerosols, tiny suspended particles in the atmosphere, play an important role in modifying the Earth's energy balance and are essential for the formation of cloud droplets. Suspended dust particles lifted from the world's arid regions by strong winds contain essential minerals that can be transported great distances and deposited into the ocean or on other continents where productivity is limited by lack of usable minerals [1]. Dust can transport pathogens as well as minerals great distance, contributing to the spread of human and agricultural diseases, and a portion of dust can be attributed to human activity suggesting that dust radiative effects should be included in estimates of anthropogenic climate forcing. The greenish and brownish tints in figure 1 show the wide extent of monthly mean mineral dust transport, as viewed by the MODerate resolution Imaging Spectroradiometer (MODIS) satellite sensor. The monthly mean global aerosol system for February 2006 from the MODIS aboard the Terra satellite Figure 1. The monthly mean global aerosol system for February 2006 from the MODIS aboard the Terra satellite. The brighter the color, the greater the aerosol loading. Red and reddish tints indicate aerosol dominated by small particles created primarily from combustion processes. Green and brownish tints indicate larger particles created from wind-driven processes, usually transported desert dust. Note the bright green band at the southern edge of the Saharan desert, the reddish band it must cross if transported to the southwest and the long brownish transport path as it crosses the Atlantic to South America. Image courtesy of the NASA Earth Observatory (http://earthobservatory.nasa.gov). Even though qualitatively we recognize the extent and importance of dust transport and the role that it plays in fertilizing nutrient-limited regions, there is much that is still unknown. We are just now beginning to quantify the amount of dust that exits one continental region and the

  7. Observations of skeletal microstructures in various types of dust deposit in tokamak T-10

    International Nuclear Information System (INIS)

    Kolbasov, B.N.; Kukushkin, A.B.; Rantsev-Kartinov, V.A.; Romanov, P.V.

    2003-01-01

    An analysis of electron transmission and scanning micrographs of various types of dust deposit in tokamak T-10 was carried out for (a) analyzing the origin of non-trivial (e.g. cauliflower-like) structures in dust deposits in tokamaks, and (b) verifying the former hypothesis for the possibility of self-assembling, during electric breakdown, of skeletal macro structures from wildly formed carbon nano tubes. The results show (i) the presence of tubular structures in the range of diameters D ∼ 5 nm - 10 μm; (ii) the trend of assembling bigger tubules from smaller ones (i.e., the self-similarity); (iii) the ability of nano tubular structures to build up the skeletons of various topology, including the tubules, cartwheels, dendrites; (iv) the presence of an amorphous (mostly, hydrocarbon) component which may hide the internal skeleton either fully (to give a solitary dust particle, e.g. of submicron size) or partly (to give an agglomerate of visually separate particles); (v) the similarity of tubules and cartwheels in the dust deposits, in the range D < 10 μm, and in the (high temporal resolution) images of plasma in tokamaks, Z-pinches and plasma focus, D ∼ 5 nm - 100 μ - 10 cm. (author)

  8. Interpreting last glacial to Holocene dust changes at Talos Dome (East Antarctica: implications for atmospheric variations from regional to hemispheric scales

    Directory of Open Access Journals (Sweden)

    S. Albani

    2012-04-01

    Full Text Available Central East Antarctic ice cores preserve stratigraphic records of mineral dust originating from remote sources in the Southern Hemisphere, and represent useful indicators of climatic variations on glacial-interglacial time scales. The peripheries of the East Antarctic Ice Sheet, where ice-free areas with the potential to emit dust exist, have been less explored from this point of view. Here, we present a new profile of dust deposition flux and grain size distributions from an ice core drilled at Talos Dome (TALDICE, Northern Victoria Land, East Antarctica, where there is a significant input of dust from proximal Antarctic ice-free areas. We analyze dust and stable water isotopes variations from the Last Glacial Maximum to the Late Holocene, and compare them to the EPICA Dome C profiles from central East Antarctica. The smaller glacial-interglacial variations at Talos Dome compared to Dome C and a distinctive decreasing trend during the Holocene characterize the TALDICE dust profile. By deciphering the composite dust signal from both remote and local sources, we show the potential of this combined proxy of source activity and atmospheric transport to give information on both regional and larger spatial scales. In particular, we show how a regional signal, which we relate to the deglaciation history of the Ross Sea embayment, can be superimposed to the broader scale glacial-interglacial variability that characterizes other Antarctic sites.

  9. 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies.

    Science.gov (United States)

    Shu, Anthony; Collette, Andrew; Drake, Keith; Grün, Eberhard; Horányi, Mihály; Kempf, Sascha; Mocker, Anna; Munsat, Tobin; Northway, Paige; Srama, Ralf; Sternovsky, Zoltán; Thomas, Evan

    2012-07-01

    A hypervelocity dust accelerator for studying micrometeorite impacts has been constructed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) at the University of Colorado. Based on the Max-Planck-Institüt für Kernphysik (MPI-K) accelerator, this accelerator is capable of emitting single particles of a specific mass and velocity selected by the user. The accelerator consists of a 3 MV Pelletron generator with a dust source, four image charge pickup detectors, and two interchangeable target chambers: a large high-vacuum test bed and an ultra-high vacuum impact study chamber. The large test bed is a 1.2 m diameter, 1.5 m long cylindrical vacuum chamber capable of pressures as low as 10(-7) torr while the ultra-high vacuum chamber is a 0.75 m diameter, 1.1 m long chamber capable of pressures as low as 10(-10) torr. Using iron dust of up to 2 microns in diameter, final velocities have been measured up to 52 km/s. The spread of the dust particles and the effect of electrostatic focusing have been measured using a long exposure CCD and a quartz target. Furthermore, a new technique of particle selection is being developed using real time digital filtering techniques. Signals are digitized and then cross-correlated with a shaped filter, resulting in a suppressed noise floor. Improvements over the MPI-K design, which include a higher operating voltage and digital filtering for detection, increase the available parameter space of dust emitted by the accelerator. The CCLDAS dust facility is a user facility open to the scientific community to assist with instrument calibrations and experiments.

  10. 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Anthony; Horanyi, Mihaly; Kempf, Sascha; Thomas, Evan [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Laboratory for Atmospheric and Space Physics, 1234 Innovation Drive, Boulder, Colorado 80303 (United States); Collette, Andrew; Drake, Keith; Northway, Paige [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); Laboratory for Atmospheric and Space Physics, 1234 Innovation Drive, Boulder, Colorado 80303 (United States); Gruen, Eberhard [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Mocker, Anna [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); IRS, Universitaet Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart (Germany); Munsat, Tobin [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Srama, Ralf [MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); IRS, Universitaet Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart (Germany); and others

    2012-07-15

    A hypervelocity dust accelerator for studying micrometeorite impacts has been constructed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) at the University of Colorado. Based on the Max-Planck-Instituet fuer Kernphysik (MPI-K) accelerator, this accelerator is capable of emitting single particles of a specific mass and velocity selected by the user. The accelerator consists of a 3 MV Pelletron generator with a dust source, four image charge pickup detectors, and two interchangeable target chambers: a large high-vacuum test bed and an ultra-high vacuum impact study chamber. The large test bed is a 1.2 m diameter, 1.5 m long cylindrical vacuum chamber capable of pressures as low as 10{sup -7} torr while the ultra-high vacuum chamber is a 0.75 m diameter, 1.1 m long chamber capable of pressures as low as 10{sup -10} torr. Using iron dust of up to 2 microns in diameter, final velocities have been measured up to 52 km/s. The spread of the dust particles and the effect of electrostatic focusing have been measured using a long exposure CCD and a quartz target. Furthermore, a new technique of particle selection is being developed using real time digital filtering techniques. Signals are digitized and then cross-correlated with a shaped filter, resulting in a suppressed noise floor. Improvements over the MPI-K design, which include a higher operating voltage and digital filtering for detection, increase the available parameter space of dust emitted by the accelerator. The CCLDAS dust facility is a user facility open to the scientific community to assist with instrument calibrations and experiments.

  11. Shifts in alpine lakes' ecosystems in Japan driven by increasing Asian dusts

    Science.gov (United States)

    Tsugeki, N. K.; Tani, Y.; Ueda, S.; Agusa, T.; Toyoda, K.; Kuwae, M.; Oda, H.; Tanabe, S.; Urabe, J.

    2011-12-01

    Recently in East Asia the amount of fossil fuel combustion have increased with economic growth. It has caused a problem of trans-boundary air pollution in the whole of eastern Asia. Furthermore, Asian dust storms contribute episodically to the global aerosol load. However, the effects of increased Asian dusts on aquatic ecosystems are not well understood. If biologically important nutrients such as nitrogen (N) and phosphorus (P) are transported via air dust, the atmospheric deposition of the dust may have serious impacts on recipient aquatic ecosystems because the biological production is limited by these nutrient elements. A previous report using sedimentary records has evaluated that atmospheric P inputs to the alpine lakes in the United States increased fivefold following the increased western settlement to this country during the nineteenth century. Since P is the most deficient nutrient for production in many lakes increase in P loading through atmospheric deposition of anthropogenically-derived dust might greatly affect the lake ecosystems. We examined fossil pigments and zooplankton remains from Pb-dated sediments taken from a high mountain lake of Hourai-Numa, located in the Towada-Hachimantai National Park of Japan, to uncover historical changes in the phyto- and zooplankton community over the past 100 years. Simultaneously, we measured the biogeochemical variables of TOC, TN, TP, δ13C, δ15N, and 206Pb/207Pb, 208Pb/207Pb in the sediments to identify environmental factors causing such changes. As a result, despite little anthropogenic activities in the watersheds, alpine lakes in Japan Islands increased algal and herbivore plankton biomasses by 3-6 folds for recent years depending on terrestrial the surrounded vegetations and landscape conditions. Biological and biogeochemical proxies recorded in the lake sediments indicate that this eutrophication occurred after the 1990s when P deposition increased due to atmospheric loading transported from Asian

  12. Red Dawn: Characterizing Iron Oxide Minerals in Atmospheric Dust

    Science.gov (United States)

    Yauk, K.; Ottenfeld, C. F.; Reynolds, R. L.; Goldstein, H.; Cattle, S.; Berquo, T. S.; Moskowitz, B. M.

    2012-12-01

    Atmospheric dust is comprised of many components including small amounts of iron oxide minerals. Although the iron oxides make up a small weight percent of the bulk dust, they are important because of their roles in ocean fertilization, controls on climate, and as a potential health hazard to humans. Here we report on the iron oxide mineralogy in dust from a large dust storm, dubbed Red Dawn, which engulfed eastern Australia along a 3000 km front on 23 September 2009. Red Dawn originated from the lower Lake Eyre Basin of South Australia, western New South Wales (NSW) and southwestern Queensland and was the worst dust storm to have hit the city of Sydney in more than 60 years. Dust samples were collected from various locations across eastern Australia (Lake Cowal, Orange, Hornsby, Sydney) following the Red Dawn event. Our dust collection provides a good opportunity to study the physical and mineralogical properties of iron oxides from Red Dawn using a combination of reflectance spectroscopy, Mössbauer spectroscopy (MB), and magnetic measurements. Magnetization measurements from 20-400 K reveal that magnetite/maghemite, hematite and goethite are present in all samples with magnetite occurring in trace amounts (effects (d< 100 nm). Finally, we compared reflectance with a magnetic parameter (hard isothermal remanent magnetization, HIRM) for ferric oxide abundance to assess the degree to which ferric oxide in these samples might absorb solar radiation. In samples for which both parameters were obtained, HIRM and average reflectance over the visible wavelengths are correlated as a group (r2=0.24). These results indicate that the ferric oxide minerals in Red Dawn dust absorb solar radiation. Much of this ferric oxide occurs likely as grain coatings of nanohematite and nanogoethite, thereby providing high surface area to enhance absorption of solar radiation.

  13. Changes in the atmospheric deposition of minor and rare elements between 1975 and 2000 in south Sweden, as measured by moss analysis

    International Nuclear Information System (INIS)

    Ruehling, Aake; Tyler, Germund

    2004-01-01

    Elements emitted to the atmosphere are partly exported to more remote areas and contribute to the regional and territorial deposition rates. This study is based on the principle that carpet-forming bryophytes (pleurocarpic mosses) absorb elements and particles from rain, melting snow and dry deposition. We compare the concentrations of 60 elements in carpets of the forest moss Pleurozium schreberi sampled in 1975 and 2000 within a sparsely inhabited area dominated by forest and bogland in south Sweden. As an average for all the 60 elements, the median concentration was 2.7 times higher in 1975 than in 2000. The greatest difference was measured for Pb, although In, Bi, Ge, V, Sn, As and Ag had more than 5 times higher concentrations in 1975 than in 2000. Somewhat lower 1975/2000 concentration ratios (3.0-3.8) were measured for U, Sb, Cd, W, Ga, Fe, Li, and Be. The rare-earth elements (Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), except Eu as well as Th, Ni, Al, Ti, Hf, Nb, and Zr, had concentration ratios around the average (2.5-2.8). Possible causes of these changes are discussed. We conclude that reductions in anthropogenic dust emissions during recent decades have decreased the atmospheric deposition over northern Europe of most elements in the periodical system, as previously reported for a limited number of transition and heavy metals. Changes in the deposition of soil dust would be of minor importance to the decreased deposition rates

  14. Changes in the atmospheric deposition of minor and rare elements between 1975 and 2000 in south Sweden, as measured by moss analysis.

    Science.gov (United States)

    Rühling, Ake; Tyler, Germund

    2004-10-01

    Elements emitted to the atmosphere are partly exported to more remote areas and contribute to the regional and territorial deposition rates. This study is based on the principle that carpet-forming bryophytes (pleurocarpic mosses) absorb elements and particles from rain, melting snow and dry deposition. We compare the concentrations of 60 elements in carpets of the forest moss Pleurozium schreberi sampled in 1975 and 2000 within a sparsely inhabited area dominated by forest and bogland in south Sweden. As an average for all the 60 elements, the median concentration was 2.7 times higher in 1975 than in 2000. The greatest difference was measured for Pb, although In, Bi, Ge, V, Sn, As and Ag had more than 5 times higher concentrations in 1975 than in 2000. Somewhat lower 1975/2000 concentration ratios (3.0-3.8) were measured for U, Sb, Cd, W, Ga, Fe, Li, and Be. The rare-earth elements (Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), except Eu as well as Th, Ni, Al, Ti, Hf, Nb, and Zr, had concentration ratios around the average (2.5-2.8). Possible causes of these changes are discussed. We conclude that reductions in anthropogenic dust emissions during recent decades have decreased the atmospheric deposition over northern Europe of most elements in the periodical system, as previously reported for a limited number of transition and heavy metals. Changes in the deposition of soil dust would be of minor importance to the decreased deposition rates.

  15. Patterned deposition by atmospheric pressure plasma-enhanced spatial atomic layer deposition

    NARCIS (Netherlands)

    Poodt, P.; Kniknie, B.J.; Branca, A.; Winands, G.J.J.; Roozeboom, F.

    2011-01-01

    An atmospheric pressure plasma enhanced atomic layer deposition reactor has been developed, to deposit Al2O3 films from trimethyl aluminum and an He/O2 plasma. This technique can be used for 2D patterned deposition in a single in-line process by making use of switched localized plasma sources. It

  16. Methodology and significance of studies of atmospheric deposition in highway runoff

    Science.gov (United States)

    Colman, John A.; Rice, Karen C.; Willoughby, Timothy C.

    2001-01-01

    Atmospheric deposition and the processes that are involved in causing and altering atmospheric deposition in relation to highway surfaces and runoff were evaluated nationwide. Wet deposition is more easily monitored than dry deposition, and data on wet deposition are available for major elements and water properties (constituents affecting acid deposition) from the inter-agency National Atmospheric Deposition Program/ National Trends Network (NADP/NTN). Many trace constituents (metals and organic compounds) of interest in highway runoff loads, however, are not included in the NADP/NTN. Dry deposition, which constitutes a large part of total atmospheric deposition for many constituents in highway runoff loads, is difficult to monitor accurately. Dry-deposition rates are not widely available.Many of the highway-runoff investigations that have addressed atmospheric-deposition sources have had flawed investigative designs or problems with methodology. Some results may be incorrect because of reliance on time-aggregated data collected during a period of changing atmospheric emissions. None of the investigations used methods that could accurately quantify the part of highway runoff load that can be attributed to ambient atmospheric deposition. Lack of information about accurate ambient deposition rates and runoff loads was part of the problem. Samples collected to compute the rates and loads were collected without clean-sampling methods or sampler protocols, and without quality-assurance procedures that could validate the data. Massbudget calculations comparing deposition and runoff did not consider loss of deposited material during on-highway processing. Loss of deposited particles from highway travel lanes could be large, as has been determined in labeled particle studies, because of resuspension caused by turbulence from passing traffic. Although a cause of resuspension of large particles, traffic turbulence may increase the rate of deposition for small particles and

  17. Dynamic responses of photosystem II in the Namib Desert shrub, Zygophyllum prismatocarpum, during and after foliar deposition of limestone dust

    International Nuclear Information System (INIS)

    Heerden, P.D.R. van; Krueger, G.H.J.; Kilbourn Louw, M.

    2007-01-01

    The effects of limestone dust deposition on vegetation in desert ecosystems have not yet been reported. We investigated these effects in a succulent shrub from the Namib Desert at a limestone quarry near Skorpion Zinc mine (Namibia). Effects of limestone dust were determined in Zygophyllum prismatocarpum (dollar bush) plants with heavy, moderate and no visible foliar dust cover by means of chlorophyll a fluorescence measurements. Limestone dust deposition decreased overall plant performance through loss of chlorophyll content, inhibition of CO 2 assimilation, uncoupling of the oxygen-evolving complex and decreased electron transport. Importantly, dynamic recovery occurred after termination of limestone extraction at the quarry. Recovery was accelerated by rainfall, mainly because of dust removal from leaves and stimulation of new growth. These results indicate that limestone dust has severe effects on photosynthesis in desert shrubs, but that recovery is possible and that, in arid environments, this process is modulated by rainfall. - Limestone dust deposition reduced photosynthetic capacity in the Namib Desert shrub, Zygophyllum prismatocarpum

  18. Revised mineral dust emissions in the atmospheric chemistry–climate model EMAC (MESSy 2.52 DU_Astitha1 KKDU2017 patch)

    KAUST Repository

    Klingmüller, Klaus

    2018-03-16

    To improve the aeolian dust budget calculations with the global ECHAM/MESSy atmospheric chemistry–climate model (EMAC), which combines the Modular Earth Submodel System (MESSy) with the ECMWF/Hamburg (ECHAM) climate model developed at the Max Planck Institute for Meteorology in Hamburg based on a weather prediction model of the European Centre for Medium-Range Weather Forecasts (ECMWF), we have implemented new input data and updates of the emission scheme. The data set comprises land cover classification, vegetation, clay fraction and topography. It is based on up-to-date observations, which are crucial to account for the rapid changes of deserts and semi-arid regions in recent decades. The new Moderate Resolution Imaging Spectroradiometer (MODIS)-based land cover and vegetation data are time dependent, and the effect of long-term trends and variability of the relevant parameters is therefore considered by the emission scheme. All input data have a spatial resolution of at least 0.1° compared to 1° in the previous version, equipping the model for high-resolution simulations. We validate the updates by comparing the aerosol optical depth (AOD) at 550 nm wavelength from a 1-year simulation at T106 (about 1.1°) resolution with Aerosol Robotic Network (AERONET) and MODIS observations, the 10 µm dust AOD (DAOD) with Infrared Atmospheric Sounding Interferometer (IASI) retrievals, and dust concentration and deposition results with observations from the Aerosol Comparisons between Observations and Models (AeroCom) dust benchmark data set. The update significantly improves agreement with the observations and is therefore recommended to be used in future simulations.

  19. Revised mineral dust emissions in the atmospheric chemistry-climate model EMAC (MESSy 2.52 DU_Astitha1 KKDU2017 patch)

    Science.gov (United States)

    Klingmüller, Klaus; Metzger, Swen; Abdelkader, Mohamed; Karydis, Vlassis A.; Stenchikov, Georgiy L.; Pozzer, Andrea; Lelieveld, Jos

    2018-03-01

    To improve the aeolian dust budget calculations with the global ECHAM/MESSy atmospheric chemistry-climate model (EMAC), which combines the Modular Earth Submodel System (MESSy) with the ECMWF/Hamburg (ECHAM) climate model developed at the Max Planck Institute for Meteorology in Hamburg based on a weather prediction model of the European Centre for Medium-Range Weather Forecasts (ECMWF), we have implemented new input data and updates of the emission scheme.The data set comprises land cover classification, vegetation, clay fraction and topography. It is based on up-to-date observations, which are crucial to account for the rapid changes of deserts and semi-arid regions in recent decades. The new Moderate Resolution Imaging Spectroradiometer (MODIS)-based land cover and vegetation data are time dependent, and the effect of long-term trends and variability of the relevant parameters is therefore considered by the emission scheme. All input data have a spatial resolution of at least 0.1° compared to 1° in the previous version, equipping the model for high-resolution simulations.We validate the updates by comparing the aerosol optical depth (AOD) at 550 nm wavelength from a 1-year simulation at T106 (about 1.1°) resolution with Aerosol Robotic Network (AERONET) and MODIS observations, the 10 µm dust AOD (DAOD) with Infrared Atmospheric Sounding Interferometer (IASI) retrievals, and dust concentration and deposition results with observations from the Aerosol Comparisons between Observations and Models (AeroCom) dust benchmark data set. The update significantly improves agreement with the observations and is therefore recommended to be used in future simulations.

  20. Introduction to the project DUNE, a DUst experiment in a low Nutrient, low chlorophyll Ecosystem

    Science.gov (United States)

    Guieu, C.; Dulac, F.; Ridame, C.; Pondaven, P.

    2013-07-01

    The main goal of the project DUNE was to estimate the impact of atmospheric deposition on an oligotrophic ecosystem based on mesocosm experiments simulating strong atmospheric inputs of Aeolian dust. Atmospheric deposition is now recognized as a significant source of macro- and micro-nutrients for the surface ocean, but the quantification of its role on the biological carbon pump is still poorly determined. We proposed in DUNE to investigate the role of atmospheric inputs on the functioning of an oligotrophic system particularly well adapted to this kind of study: the Mediterranean Sea. The Mediterranean Sea - etymologically, sea surrounded by land - is submitted to atmospheric inputs that are very variable both in frequency and intensity. During the thermal stratification period, only atmospheric deposition is prone to fertilize Mediterranean surface waters which has become very oligotrophic due to the nutrient depletion (after the spring bloom). This paper describes the objectives of DUNE and the implementation plan of a series of mesocosms experiments during which either wet or dry and a succession of two wet deposition fluxes of 10 g m-2 of Saharan dust have been simulated. After the presentation of the main biogeochemical initial conditions of the site at the time of each experiment, a general overview of the papers published in this special issue is presented, including laboratory results on the solubility of trace elements in erodible soils in addition to results from the mesocosm experiments. Our mesocosm experiments aimed at being representative of real atmospheric deposition events onto the surface of oligotrophic marine waters and were an original attempt to consider the vertical dimension in the study of the fate of atmospheric deposition within surface waters. Results obtained can be more easily extrapolated to quantify budgets and parameterize processes such as particle migration through a "captured water column". The strong simulated dust deposition

  1. Dust deposition and ambient PM10 concentration in northwest China: Spatial and temporal variability

    Science.gov (United States)

    Aeolian dust transport and deposition are important geophysical processes which influence global bio-geochemical cycles. Currently, reliable continental deposition data are scarce in central Asia. Located in the eastern part of central Asia, Xinjiang Province of northwestern China has long played a ...

  2. Modeling dust emission response to North Atlantic millennial-scale climate variations from the perspective of East European MIS 3 loess deposits

    Directory of Open Access Journals (Sweden)

    A. Sima

    2013-07-01

    Full Text Available European loess sequences of the Marine Isotope Stage 3 (~60–25 kyr BP show periods of strong dust accumulation alternating with episodes of reduced sedimentation, favoring soil development. In the western part of the loess belt centered around 50° N, these variations appear to have been related to the North Atlantic rapid climate changes: the Dansgaard–Oeschger (DO and Heinrich (H events. It has been recently suggested that the North Atlantic climate signal can be detected further east, in loess deposits from Stayky (50°05.65' N, 30°53.92' E, Ukraine. Here we use climate and dust emission modeling to investigate this data interpretation. We focus on the areas north and northeast of the Carpathians, where loess deposits can be found, and the corresponding main dust sources must have been located as well. The simulations were performed with the LMDZ atmospheric general circulation model and the ORCHIDEE land surface model. They represent a reference "Greenland stadial" state and two perturbations, seen as sensitivity tests with respect to changes in the North Atlantic surface conditions between 30° and 63° N: a "Greenland interstadial" and an "H event". The main source for the loess deposits in the studied area is identified as a dust deflation band, with two very active spots located west-northwest from our reference site. Emissions only occur between February and June. Differences from one deflation spot to another, and from one climate state to another, are explained by analyzing the relevant meteorological and surface variables. Over most of the source region, the annual emission fluxes in the "interstadial" experiment are 30 to 50% lower than the "stadial" values; they would only be about 20% lower if the inhibition of dust uplift by the vegetation were not taken into account. Assuming that lower emissions result in reduced dust deposition leads us to the conclusion that the loess–paleosol stratigraphic succession in the Stayky

  3. DUST LOADING OF THE ATMOSPHERE AND GLACIERS IN THE KUMTOR MINING AREA (AKSHYYRAK, TIEN SHAN)

    OpenAIRE

    V. A. Kuzmichenok

    2012-01-01

    Industrial development of the Kumtor Gold Mine in the nival-glacial zone of Tien Shan (altitude ranging from 4000 to 4500 m a.s.l.) is inevitably accompanied by the release of some additional amounts of dust in atmosphere. Sampling in 7 points and an analysis of the quantity (weight) of dust in the seasonal snow (September–April) on glaciers show that the dust pollution does not substantially exceed the natural level of dust in Tien Shan. An analysis of almost 3 000 daily measurements of dust...

  4. Exploring records of Saharan dust transport and hurricanes in the Caribbean and Gulf of Mexico over recent millennia

    Science.gov (United States)

    Hayes, C. T.; Wallace, D. J.

    2017-12-01

    Locations in the northern Caribbean and Gulf of Mexico receive aerosol deposition from the summertime Saharan dust plume that is representative of atmospheric conditions over a very large expanse of the North Atlantic Ocean. A recent reconstruction of stable dust deposition in the Bahamas over the past 2 thousand years contrasts other records from the African continent which were impacted by local anthropogenic emissions. Dust deposition in the Bahamas also appeared relatively insensitive to expected changes in intertropical convergence zone position. Here, we will investigate records of Atlantic hurricane activity and Saharan dust transport, parameters which are anti-correlated today, in the Caribbean and Gulf region over the past few thousand years to further probe possible variations in Saharan dust forcings on Atlantic climate.

  5. Characterization of atmospheric bioaerosols along the transport pathway of Asian dust during the Dust-Bioaerosol 2016 Campaign

    Science.gov (United States)

    Tang, Kai; Huang, Zhongwei; Huang, Jianping; Maki, Teruya; Zhang, Shuang; Shimizu, Atsushi; Ma, Xiaojun; Shi, Jinsen; Bi, Jianrong; Zhou, Tian; Wang, Guoyin; Zhang, Lei

    2018-05-01

    Previous studies have shown that bioaerosols are injected into the atmosphere during dust events. These bioaerosols may affect leeward ecosystems, human health, and agricultural productivity and may even induce climate change. However, bioaerosol dynamics have rarely been investigated along the transport pathway of Asian dust, especially in China where dust events affect huge areas and massive numbers of people. Given this situation, the Dust-Bioaerosol (DuBi) Campaign was carried out over northern China, and the effects of dust events on the amount and diversity of bioaerosols were investigated. The results indicate that the number of bacteria showed remarkable increases during the dust events, and the diversity of the bacterial communities also increased significantly, as determined by means of microscopic observations with 4,6-diamidino-2-phenylindole (DAPI) staining and MiSeq sequencing analysis. These results indicate that dust clouds can carry many bacteria of various types into downwind regions and may have potentially important impacts on ecological environments and climate change. The abundances of DAPI-stained bacteria in the dust samples were 1 to 2 orders of magnitude greater than those in the non-dust samples and reached 105-106 particles m-3. Moreover, the concentration ratios of DAPI-stained bacteria to yellow fluorescent particles increased from 5.1 % ± 6.3 % (non-dust samples) to 9.8 % ± 6.3 % (dust samples). A beta diversity analysis of the bacterial communities demonstrated the distinct clustering of separate prokaryotic communities in the dust and non-dust samples. Actinobacteria, Bacteroidetes, and Proteobacteria remained the dominant phyla in all samples. As for Erenhot, the relative abundances of Acidobacteria and Chloroflexi had a remarkable rise in dust events. In contrast, the relative abundances of Acidobacteria and Chloroflexi in non-dust samples of R-DzToUb were greater than those in dust samples. Alphaproteobacteria made the major

  6. Reconstructing the Mineralogy and Bioavailability of Dust-Borne Iron Deposited to the Southern Ocean through the Last Glacial Cycle

    Science.gov (United States)

    Shoenfelt, E. M.; Winckler, G.; Lamy, F.; Bostick, B. C.

    2017-12-01

    The iron (Fe) in dust deposited to the Fe-limited Southern Ocean plays an important role in ocean biogeochemistry and global climate. For instance, increases in dust-borne Fe deposition in the subantarctic Southern Ocean have been linked to increases in productivity and part of the CO2 drawdown of the last glacial cycle [1]. Notably, bioavailable Fe impacts productivity rather than total Fe. While it has long been understood that Fe mineralogy impacts Fe bioavailability in general, our understanding of the mineralogy of Fe in dust in specific is limited to that in modern dust sources. Reduced mineral Fe in dust has been shown to be more bioavailable than oxidized mineral iron, as it is more readily dissolved [2], and it is more easily utilized directly by a model diatom [3]. Our previous work focusing on South American dust sources shows that glacial activity is associated with higher Fe(II) fractions in dust-borne minerals, due to the physical weathering of Fe(II)-rich silicates in bedrock [3]. Thus, we hypothesize that there were higher Fe(II) fractions in dust deposited during cold glacial periods where ice sheets were more widespread. Using synchrotron-based X-ray absorption spectroscopy, we have reconstructed the mineralogy of Fe deposited to Southern Ocean sediment cores from the subantarctic South Atlantic (TN057-6/ODP Site 1090) and South Pacific (PS7/56-1) through the last glacial cycle, creating the first paleorecord of Fe mineralogy and its associated bioavailability. During cold glacial periods there is a higher fraction of reduced Fe - in the form of Fe(II) silicates - deposited to the sediments compared to warm interglacial periods. Thus, Fe(II) content is directly correlated with dust input. The presence of Fe(II) silicates rather than products of diagenesis such as pyrite suggests that these Fe(II) minerals are physically weathered from bedrock and preserved rather than produced in the sediment. This result suggests that not only was there more dust

  7. Mobilization and distribution of lead originating from roof dust and wet deposition in a roof runoff system.

    Science.gov (United States)

    Yu, Jianghua; Yu, Haixia; Huang, Xiaogu

    2015-12-01

    In this research, the mobilization and distribution of lead originating in roof dust and wet deposition were investigated within a roof dust-rooftop-runoff system. The results indicated that lead from roof dust and wet deposition showed different transport dynamics in runoff system and that this process was significantly influenced by the rainfall intensity. Lead present in the roof dust could be easily washed off into the runoff, and nearly 60 % of the total lead content was present in particulate form. Most of the lead from the roof dust was transported during the late period of rainfall; however, the lead concentration was higher for several minutes at the rainfall beginning. Even though some of the lead from wet deposition, simulated with a standard isotope substance, was adsorbed onto adhered roof dust and/or retained on rooftop in runoff system, most of it (50-82 %) remained as dissolved lead in the runoff for rainfall events of varying intensity. Regarding the distribution of lead in the runoff system, the results indicated that it could be carried in the runoff in dissolved and particulate form, be adsorbed to adhered roof dust, or remain on the rooftop because of adsorption to the roof material. Lead from the different sources showed different distribution patterns that were also related to the rainfall intensity. Higher rainfall intensity resulted in a higher proportion of lead in the runoff and a lower proportion of lead remaining on the rooftop.

  8. Interactions between atmospheric circulation, nutrient deposition, and tropical forest primary production (Invited)

    Science.gov (United States)

    Randerson, J. T.; Chen, Y.; Rogers, B. M.; Morton, D. C.; van der Werf, G.; Mahowald, N. M.

    2010-12-01

    Tropical forests influence regional and global climate by means of several pathways, including by modifying surface energy exchange and by forming clouds. High levels of precipitation, leaching, and soil weathering limit nutrient availability in these ecosystems. Phosphorus (P) is a key element limiting net primary production, and in some areas, including forests recovering from prior disturbance, nitrogen (N) also may limit some components of production. Here we quantified atmospheric P and N inputs to these forests from fires using satellite-derived estimates of emissions and atmospheric models. In Africa and South America, cross-biome transport of fire-emitted aerosols and reactive N gases from savannas and areas near the deforestation frontier increased deposition of P and N in interior forests. Equatorward atmospheric transport during the dry (fire) season in one hemisphere was linked with surface winds moving toward the inter-tropical convergence zone (ITCZ) in the other hemisphere. Deposition levels were higher in tropical forests in Africa than in South America because of large savanna areas with high levels of fire emissions in both southern and northern Africa. We conclude by describing a potential feedback loop by which equatorward transport of fire emissions, dust, and spores sustains the productivity of tropical forests. We specifically assessed evidence that savanna-to-forest atmospheric transport of nutrients increases forest productivity, height, and rates of evapotranspiration (ET). In parallel, we examined the degree to which increases in ET and surface roughness in tropical forests have the potential to strengthen several components of the Hadley circulation, including deep convection, equatorward return flow (near the surface), and the intensity of seasonal drought in the subtropics (thereby increasing fires). These interactions are important for understanding biogeochemical - climate interactions on millennial timescales and for quantifying how

  9. EXPLORING THE ROLE OF SUB-MICRON-SIZED DUST GRAINS IN THE ATMOSPHERES OF RED L0–L6 DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Hiranaka, Kay; Cruz, Kelle L.; Baldassare, Vivienne F. [Hunter College, Department of Physics and Astronomy, City University of New York, 695 Park Ave, New York, NY 10065 (United States); Douglas, Stephanie T. [American Museum of Natural History, Department of Astrophysics, Central Park West at 79th Street, New York, NY 10024 (United States); Marley, Mark S., E-mail: khiranak@hunter.cuny.edu [NASA Ames Research Center, MS-245-3, Moffett Field, CA 94035 (United States)

    2016-10-20

    We examine the hypothesis that the red near-infrared colors of some L dwarfs could be explained by a “dust haze” of small particles in their upper atmospheres. This dust haze would exist in conjunction with the clouds found in dwarfs with more typical colors. We developed a model that uses Mie theory and the Hansen particle size distributions to reproduce the extinction due to the proposed dust haze. We apply our method to 23 young L dwarfs and 23 red field L dwarfs. We constrain the properties of the dust haze including particle size distribution and column density using Markov Chain Monte Carlo methods. We find that sub-micron-range silicate grains reproduce the observed reddening. Current brown dwarf atmosphere models include large-grain (1–100 μ m) dust clouds but not sub-micron dust grains. Our results provide a strong proof of concept and motivate a combination of large and small dust grains in brown dwarf atmosphere models.

  10. Analysis of Co, Cr and Mn Concentrations in Atmospheric Dry Deposition in Hamadan City

    Directory of Open Access Journals (Sweden)

    P. Shokri Ragheb

    2016-07-01

    Full Text Available Introduction & Objective: Heavy metals are major pollutants that can spread in the atmosphere with particulate matter and dust and because of the toxic and carcinogenic effects, their meas-urement and control is very important. Therefore, this study was conducted to assess Co, Cr and Mn concentration in the atmospheric dry deposition collected from Hamadan city in 2014. Materials & Methods: After collection of 12 dust samples from 3 sampling stations and their laboratory preparation, metals concentrations were determined using ICP–OES. All statistical analyses were performed using the SPSS statistical package. Results: The results showed that the minimum and maximum mean concentrations of Co were 0.19 and 0.29 mg/kg for high and low traffic intensity sampling stations, respectively. The min and max mean concentrations of Cr were 0.65and 1.02 mg/kg for high traffic intensity and suburb sampling stations, respectively and the min and max mean concentrations of Mn were 7.23and 8.82 mg/kg for high and low traffic intensity sampling stations , respectively. Also comparing the mean concentrations of assessed metals with WHO permissible limits showed a significant difference (P< 0.05. The mean concentrations of metals were signifi-cantly lower than the maximum permissible limits. Conclusion: Although the mean concentrations of Co, Cr and Mn are lower than the standard levels, lack of continuous monitoring of heavy metals concentrations in the dust and particu-late matters in the air can lead to the entrance of various types of toxic pollutants such as heavy metals into the air and result in adverse health effects. (Sci J Hamadan Univ Med Sci 2016; 23 (2:149-156

  11. Physical and chemical properties of deposited airborne particulates over the Arabian Red Sea coastal plain

    Science.gov (United States)

    Engelbrecht, Johann P.; Stenchikov, Georgiy; Jish Prakash, P.; Lersch, Traci; Anisimov, Anatolii; Shevchenko, Illia

    2017-09-01

    Mineral dust is the most abundant aerosol, having a profound impact on the global energy budget. This research continues our previous studies performed on surface soils in the Arabian Peninsula, focusing on the mineralogical, physical and chemical composition of dust deposits from the atmosphere at the Arabian Red Sea coast. For this purpose, aerosols deposited from the atmosphere are collected during 2015 at six sites on the campus of the King Abdullah University of Science and Technology (KAUST) situated on the Red Sea coastal plain of Saudi Arabia and subjected to the same chemical and mineralogical analysis we conducted on soil samples. Frisbee deposition samplers with foam inserts were used to collect dust and other deposits, for the period December 2014 to December 2015. The average deposition rate measured at KAUST for this period was 14 g m-2 per month, with lowest values in winter and increased deposition rates in August to October. The particle size distributions provide assessments of particle size fractions in the dust deposits.X-ray diffraction (XRD) analysis of a subset of samples confirms variable amounts of quartz, feldspars, micas, and halite, with lesser amounts of gypsum, calcite, dolomite, hematite, and amphibole. Freeze-dried samples were re-suspended onto the Teflon® filters for elemental analysis by X-ray fluorescence (XRF), while splits from each sample were analyzed for water-soluble cations and anions by ion chromatography. The dust deposits along the Red Sea coast are considered to be a mixture of dust emissions from local soils and soils imported from distal dust sources. Airborne mineral concentrations are greatest at or close to dust sources, compared to those through medium- and long-range transport. It is not possible to identify the exact origin of deposition samples from the mineralogical and chemical results alone. These aerosol data are the first of their kind from the Red Sea region. They will help assess their potential

  12. Spatial and Temporal Variability of Dust Deposition in the San Juan Mountains, CO: A Network of Late Holocene Lake Sediment Records

    Science.gov (United States)

    Arcusa, S.; Routson, C.; McKay, N.

    2017-12-01

    Millions of stakeholders living in the arid southwestern US rely on snowmelt from the San Juan Mountains of Colorado. However, dust deposition on snow accelerates snowmelt, challenging water management. Dustiness in the southwestern US is primarily mediated by drought, which is projected to increase in frequency and severity. Over the past several millennia, multidecadal-length megadroughts are hypothesized to have enhanced regional dustiness. These past megadroughts were more frequent during the Roman (ca. 1-400 CE) and Medieval (ca. 800-1300 CE) time periods and were similar in duration and severity to those projected for the future. Developing an understanding of the temporal and spatial patterns of past dust deposition in the San Juan Mountains will help inform adaptation strategies for future droughts. A network of short sediment cores from six alpine lakes in the San Juan Mountains were collected in 2016 and 2017 to investigate the spatial patterns of dust deposition. The range in lake basin characteristics in the network, such as catchment size, helps to constrain the influence of secondary dust deposition. Grain size analysis and X-ray Fluorescence were combined with radiocarbon dating to trace the temporal patterns in dust flux over the Late Holocene (the last 2000 years). The End-member Modelling Algorithm (EMMA) was used to estimate the dust proportion in the lake sediment, distinguishing from locally derived catchment material. Comparisons to modern dust-on-snow samples were made to identify the dust size distribution. The results show that deposition trends were not uniform between the south-eastern and north-western San Juans, with increasing trends towards the present in the former, possibly reflecting a shift in dust sources associated with changes in wind speed and direction. Dust levels greater than long term averages were recorded during the Medieval and Roman periods. The network also showed the influence of lake basin parameters, such as the

  13. Properties and effects of dust particles suspended in the martian atmosphere

    International Nuclear Information System (INIS)

    Pollack, J.B.; Colburn, D.S.; Flasar, M.; Kahn, R.; Carlston, C.E.; Pidek, D.

    1979-01-01

    Direct measurements of the optical depth above the two Viking landers are reported for a period of covering the summer, fall, and winter seasons in the northern hemisphere, a time period during which two global dust storms occurred. The optical depth had a value of about 1 just before the onset of each storm; it increased very rapidly, on a time scale of a few days, to peak values of about 3 and 6 with the arrival of the first and second storms, respectively; and its steadily decreased shortly thereafter (> or approx. = few days to few weeks) for both storms, with the decay occurring more rapidly during the initial period of decay. We have also carried out further analyses of observations of the sky brightness made with the lander cameras during the summer season to obtain improved estimates of other dust particle parameters, including the cross section weighted mean particle radius, several shape factors, and the imaginary indices of refraction. These results have been used to define the radiative properties of the suspended dust particles at solar wavelenths. The derived radiative properties of the dust were incorporated into a 1D radiative convective model. Satisfactory agreement with the temperature structure determined during the descent of the landers to the surface. Is achieved when allowance is made for the effects of vertical motions induced by large scale atmospheric dynamics. The diurnal temperature variations predicted by the 1D calculations for the observed optical depths are also in crude agreement with values inferred from orbiter and lander measurements. The 1D model predicts that the diurnal temperature change and daily mean temperature, averaged over the entire atmospheric vertical column, steadily increase as the optical depth of the dust increases to a value of several, and then subsequently change little

  14. Revised mineral dust emissions in the atmospheric chemistry–climate model EMAC (MESSy 2.52 DU_Astitha1 KKDU2017 patch

    Directory of Open Access Journals (Sweden)

    K. Klingmüller

    2018-03-01

    Full Text Available To improve the aeolian dust budget calculations with the global ECHAM/MESSy atmospheric chemistry–climate model (EMAC, which combines the Modular Earth Submodel System (MESSy with the ECMWF/Hamburg (ECHAM climate model developed at the Max Planck Institute for Meteorology in Hamburg based on a weather prediction model of the European Centre for Medium-Range Weather Forecasts (ECMWF, we have implemented new input data and updates of the emission scheme.The data set comprises land cover classification, vegetation, clay fraction and topography. It is based on up-to-date observations, which are crucial to account for the rapid changes of deserts and semi-arid regions in recent decades. The new Moderate Resolution Imaging Spectroradiometer (MODIS-based land cover and vegetation data are time dependent, and the effect of long-term trends and variability of the relevant parameters is therefore considered by the emission scheme. All input data have a spatial resolution of at least 0.1° compared to 1° in the previous version, equipping the model for high-resolution simulations.We validate the updates by comparing the aerosol optical depth (AOD at 550 nm wavelength from a 1-year simulation at T106 (about 1.1° resolution with Aerosol Robotic Network (AERONET and MODIS observations, the 10 µm dust AOD (DAOD with Infrared Atmospheric Sounding Interferometer (IASI retrievals, and dust concentration and deposition results with observations from the Aerosol Comparisons between Observations and Models (AeroCom dust benchmark data set. The update significantly improves agreement with the observations and is therefore recommended to be used in future simulations.

  15. Periodic input of dust over the Eastern Carpathians during the Holocene linked with Saharan desertification and human impact

    Science.gov (United States)

    Longman, Jack; Veres, Daniel; Ersek, Vasile; Salzmann, Ulrich; Hubay, Katalin; Bormann, Marc; Wennrich, Volker; Schäbitz, Frank

    2017-07-01

    Reconstructions of dust flux have been used to produce valuable global records of changes in atmospheric circulation and aridity. These studies have highlighted the importance of atmospheric dust in marine and terrestrial biogeochemistry and nutrient cycling. By investigating a 10 800-year-long paleoclimate archive from the Eastern Carpathians (Romania) we present the first peat record of changing dust deposition over the Holocene for the Carpathian-Balkan region. Using qualitative (X-ray fluorescence (XRF) core scanning) and quantitative inductively coupled plasma optical emission spectrometer(ICP-OES) measurements of lithogenic (K, Si, Ti) elements, we identify 10 periods of major dust deposition between 9500-9200, 8400-8100, 7720-7250, 6350-5950, 5450-5050, 4130-3770, 3450-2850, 2000-1450, 800-620, and 60 cal yr BP to present. In addition, we used testate amoeba assemblages preserved within the peat to infer local palaeohydroclimatic conditions. Our record highlights several discrepancies between eastern and western European dust depositional records and the impact of highly complex hydrological regimes in the Carpathian region. Since 6100 cal yr BP, we find that the geochemical indicators of dust flux have become uncoupled from the local hydrology. This coincides with the appearance of millennial-scale cycles in the dust input and changes in geochemical composition of dust. We suggest that this is indicative of a shift in dust provenance from local-regional (likely loess-related) to distal (Saharan) sources, which coincide with the end of the African Humid Period and the onset of Saharan desertification.

  16. Massive CO2 Ice Deposits Sequestered in the South Polar Layered Deposits of Mars

    Science.gov (United States)

    Phillips, Roger J.; Davis, Brian J.; Tanaka, Kenneth L.; Byrne, Shane; Mellon, Michael T.; Putzig, Nathaniel E.; Haberle, Robert M.; Kahre, Melinda A.; Campbell, Bruce A.; Carter, Lynn M.; Smith, Isaac B.; Holt, John W.; Smrekar, Suzanne E.; Nunes, Daniel C.; Plaut, Jeffrey J.; Egan, Anthony F.; Titus, Timothy N.; Seu, Roberto

    2011-01-01

    Shallow Radar soundings from the Mars Reconnaissance Orbiter reveal a buried deposit of carbon dioxide (CO2) ice within the south polar layered deposits of Mars with a volume of 9500 to 12,500 cubic kilometers, about 30 times that previously estimated for the south pole residual cap. The deposit occurs within a stratigraphic unit that is uniquely marked by collapse features and other evidence of interior CO2 volatile release. If released into the atmosphere at times of high obliquity, the CO2 reservoir would increase the atmospheric mass by up to 80%, leading to more frequent and intense dust storms and to more regions where liquid water could persist without boiling.

  17. Biological consequences of earlier snowmelt from desert dust deposition in alpine landscapes.

    Science.gov (United States)

    Steltzer, Heidi; Landry, Chris; Painter, Thomas H; Anderson, Justin; Ayres, Edward

    2009-07-14

    Dust deposition to mountain snow cover, which has increased since the late 19(th) century, accelerates the rate of snowmelt by increasing the solar radiation absorbed by the snowpack. Snowmelt occurs earlier, but is decoupled from seasonal warming. Climate warming advances the timing of snowmelt and early season phenological events (e.g., the onset of greening and flowering); however, earlier snowmelt without warmer temperatures may have a different effect on phenology. Here, we report the results of a set of snowmelt manipulations in which radiation-absorbing fabric and the addition and removal of dust from the surface of the snowpack advanced or delayed snowmelt in the alpine tundra. These changes in the timing of snowmelt were superimposed on a system where the timing of snowmelt varies with topography and has been affected by increased dust loading. At the community level, phenology exhibited a threshold response to the timing of snowmelt. Greening and flowering were delayed before seasonal warming, after which there was a linear relationship between the date of snowmelt and the timing of phenological events. Consequently, the effects of earlier snowmelt on phenology differed in relation to topography, which resulted in increasing synchronicity in phenology across the alpine landscape with increasingly earlier snowmelt. The consequences of earlier snowmelt from increased dust deposition differ from climate warming and include delayed phenology, leading to synchronized growth and flowering across the landscape and the opportunity for altered species interactions, landscape-scale gene flow via pollination, and nutrient cycling.

  18. Physical and chemical properties of deposited airborne particulates over the Arabian Red Sea coastal plain

    KAUST Repository

    Engelbrecht, Johann

    2017-09-27

    Mineral dust is the most abundant aerosol, having a profound impact on the global energy budget. This research continues our previous studies performed on surface soils in the Arabian Peninsula, focusing on the mineralogical, physical and chemical composition of dust deposits from the atmosphere at the Arabian Red Sea coast. For this purpose, aerosols deposited from the atmosphere are collected during 2015 at six sites on the campus of the King Abdullah University of Science and Technology (KAUST) situated on the Red Sea coastal plain of Saudi Arabia and subjected to the same chemical and mineralogical analysis we conducted on soil samples. Frisbee deposition samplers with foam inserts were used to collect dust and other deposits, for the period December 2014 to December 2015. The average deposition rate measured at KAUST for this period was 14 g m−2 per month, with lowest values in winter and increased deposition rates in August to October. The particle size distributions provide assessments of  < 10 and  < 2.5 µm dust deposition rates, and it is suggested that these represent proxies for PM10 (coarse) and PM2. 5 (fine) particle size fractions in the dust deposits. X-ray diffraction (XRD) analysis of a subset of samples confirms variable amounts of quartz, feldspars, micas, and halite, with lesser amounts of gypsum, calcite, dolomite, hematite, and amphibole. Freeze-dried samples were re-suspended onto the Teflon® filters for elemental analysis by X-ray fluorescence (XRF), while splits from each sample were analyzed for water-soluble cations and anions by ion chromatography. The dust deposits along the Red Sea coast are considered to be a mixture of dust emissions from local soils and soils imported from distal dust sources. Airborne mineral concentrations are greatest at or close to dust sources, compared to those through medium- and long-range transport. It is not possible to identify the exact origin of deposition samples from the

  19. Total dissolved atmospheric nitrogen deposition in the anoxic Cariaco basin

    Science.gov (United States)

    Rasse, R.; Pérez, T.; Giuliante, A.; Donoso, L.

    2018-04-01

    Atmospheric deposition of total dissolved nitrogen (TDN) is an important source of nitrogen for ocean primary productivity that has increased since the industrial revolution. Thus, understanding its role in the ocean nitrogen cycle will help assess recent changes in ocean biogeochemistry. In the anoxic Cariaco basin, the place of the CARIACO Ocean Time-Series Program, the influence of atmospherically-deposited TDN on marine biogeochemistry is unknown. In this study, we measured atmospheric TDN concentrations as dissolved organic (DON) and inorganic (DIN) nitrogen (TDN = DIN + DON) in atmospheric suspended particles and wet deposition samples at the northeast of the basin during periods of the wet (August-September 2008) and dry (March-April 2009) seasons. We evaluated the potential anthropogenic N influences by measuring wind velocity and direction, size-fractionated suspended particles, chemical traces and by performing back trajectories. We found DIN and DON concentration values that ranged between 0.11 and 0.58 μg-N m-3 and 0.11-0.56 μg-N m-3 in total suspended particles samples and between 0.08 and 0.54 mg-N l-1 and 0.02-1.3 mg-N l-1 in wet deposition samples, respectively. Continental air masses increased DON and DIN concentrations in atmospheric suspended particles during the wet season. We estimate an annual TDN atmospheric deposition (wet + particles) of 3.6 × 103 ton-N year-1 and concluded that: 1) Atmospheric supply of TDN plays a key role in the C and N budget of the basin because replaces a fraction of the C (20% by induced primary production) and N (40%) removed by sediment burial, 2) present anthropogenic N could contribute to 30% of TDN atmospheric deposition in the basin, and 3) reduced DON (gas + particles) should be a significant component of bulk N deposition.

  20. Impact of atmospheric circulation types on southwest Asian dust and Indian summer monsoon rainfall

    Science.gov (United States)

    Kaskaoutis, D. G.; Houssos, E. E.; Solmon, F.; Legrand, M.; Rashki, A.; Dumka, U. C.; Francois, P.; Gautam, R.; Singh, R. P.

    2018-03-01

    This study examines the meteorological feedback on dust aerosols and rainfall over the Arabian Sea and India during the summer monsoon using satellite data, re-analysis and a regional climate model. Based on days with excess aerosol loading over the central Ganges basin during May - September, two distinct atmospheric circulation types (weather clusters) are identified, which are associated with different dust-aerosol and rainfall distributions over south Asia, highlighting the role of meteorology on dust emissions and monsoon rainfall. Each cluster is characterized by different patterns of mean sea level pressure (MSLP), geopotential height at 700 hPa (Z700) and wind fields at 1000 hPa and at 700 hPa, thus modulating changes in dust-aerosol loading over the Arabian Sea. One cluster is associated with deepening of the Indian/Pakistan thermal low leading to (i) increased cyclonicity and thermal convection over northwestern India and Arabian Peninsula, (ii) intensification of the southwest monsoon off the Horn of Africa, iii) increase in dust emissions from Rub-Al-Khali and Somalian deserts, (iv) excess dust accumulation over the Arabian Sea and, (v) strengthening of the convergence of humid air masses and larger precipitation over Indian landmass compared to the other cluster. The RegCM4.4 model simulations for dust-aerosol and precipitation distributions support the meteorological fields and satellite observations, while the precipitation over India is positively correlated with the aerosol loading over the Arabian Sea on daily basis for both weather clusters. This study highlights the key role of meteorology and atmospheric dynamics on dust life cycle and rainfall over the monsoon-influenced south Asia.

  1. Legal immigrants: invasion of alien microbial communities during winter occurring desert dust storms.

    Science.gov (United States)

    Weil, Tobias; De Filippo, Carlotta; Albanese, Davide; Donati, Claudio; Pindo, Massimo; Pavarini, Lorenzo; Carotenuto, Federico; Pasqui, Massimiliano; Poto, Luisa; Gabrieli, Jacopo; Barbante, Carlo; Sattler, Birgit; Cavalieri, Duccio; Miglietta, Franco

    2017-03-10

    A critical aspect regarding the global dispersion of pathogenic microorganisms is associated with atmospheric movement of soil particles. Especially, desert dust storms can transport alien microorganisms over continental scales and can deposit them in sensitive sink habitats. In winter 2014, the largest ever recorded Saharan dust event in Italy was efficiently deposited on the Dolomite Alps and was sealed between dust-free snow. This provided us the unique opportunity to overcome difficulties in separating dust associated from "domestic" microbes and thus, to determine with high precision microorganisms transported exclusively by desert dust. Our metagenomic analysis revealed that sandstorms can move not only fractions but rather large parts of entire microbial communities far away from their area of origin and that this microbiota contains several of the most stress-resistant organisms on Earth, including highly destructive fungal and bacterial pathogens. In particular, we provide first evidence that winter-occurring dust depositions can favor a rapid microbial contamination of sensitive sink habitats after snowmelt. Airborne microbial depositions accompanying extreme meteorological events represent a realistic threat for ecosystem and public health. Therefore, monitoring the spread and persistence of storm-travelling alien microbes is a priority while considering future trajectories of climatic anomalies as well as anthropogenically driven changes in land use in the source regions.

  2. Atmospheric mercury deposition to forests in the eastern USA.

    Science.gov (United States)

    Risch, Martin R; DeWild, John F; Gay, David A; Zhang, Leiming; Boyer, Elizabeth W; Krabbenhoft, David P

    2017-09-01

    Atmospheric mercury (Hg) deposition to forests is important because half of the land cover in the eastern USA is forest. Mercury was measured in autumn litterfall and weekly precipitation samples at a total of 27 National Atmospheric Deposition Program (NADP) monitoring sites in deciduous and mixed deciduous-coniferous forests in 16 states in the eastern USA during 2007-2014. These simultaneous, uniform, repeated, annual measurements of forest Hg include the broadest area and longest time frame to date. The autumn litterfall-Hg concentrations and litterfall mass at the study sites each year were combined with annual precipitation-Hg data. Rates of litterfall-Hg deposition were higher than or equal to precipitation-Hg deposition rates in 70% of the annual data, which indicates a substantial contribution from litterfall to total atmospheric-Hg deposition. Annual litterfall-Hg deposition in this study had a median of 11.7 μg per square meter per year (μg/m 2 /yr) and ranged from 2.2 to 23.4 μg/m 2 /yr. It closely matched modeled dry-Hg deposition, based on land cover at selected NADP Hg-monitoring sites. Mean annual atmospheric-Hg deposition at forest study sites exhibited a spatial pattern partly explained by statistical differences among five forest-cover types and related to the mapped density of Hg emissions. Forest canopies apparently recorded changes in atmospheric-Hg concentrations over time because litterfall-Hg concentrations decreased year to year and litterfall-Hg concentrations were significantly higher in 2007-2009 than in 2012-2014. These findings reinforce reported decreases in Hg emissions and atmospheric elemental-Hg concentrations during this same time period. Methylmercury (MeHg) was detected in all litterfall samples at all sites, compared with MeHg detections in less than half the precipitation samples at selected sites during the study. These results indicate MeHg in litterfall is a pathway into the terrestrial food web where it can

  3. Current state and temporal evolution of the chemical composition of atmospheric depositions in forest areas of the CONECOFOR network

    Directory of Open Access Journals (Sweden)

    Marchetto A

    2014-04-01

    Full Text Available Current state and temporal evolution of the chemical composition of atmospheric depositions in forest areas of the CONECOFOR network. Since 1997, atmospheric deposition was sampled and analyzed in the permanent plots of the Italian network for the evaluation of forest health (CONECOFOR, under the coordination of the Italian Forest Service. This paper presents the results of the activity carried out in 2009, when the EU-funded LIFE+ “FutMon” project allowed to extend the sampling network to 22 sites. Long-term trends will also be evaluated for the sampling sites with the longest time series. The sampling of open field bulk deposition was performed in a clearance close to the CONECOFOR permanent plots, while throughfall deposition and stemflow (in beech stand, only were sampled in the plot. Deposition samples were collected weekly and sent to the laboratories, where they were analyzed for pH, conductivity, major ions, and total carbon and nitrogen. Most measured variables showed a strong geographical gradient. For example, nitrogen deposition was relatively high in the Po plain (where the emissions of nitrogen oxides and ammonia are the highest and surrounding hills, reaching 10-20 kgN ha-1 y-1 in the open field and 13-25 kgN ha-1 y-1 in the throughfall. Sulphate deposition also showed a marked geographical gradient. Deposition of marine aerosol also had an important impact on the chemical composition of atmospheric deposition in Italy, together with the episodic deposition of Saharan dust, which showed a marked gradient, with highest values in the southernmost plots. Trend analysis was carried out on 10 sites running since the beginning of the program. A general negative trend in sulphate concentration was detected, paralleled in most plots by a positive trend in deposition pH, in good agreement with the strong reduction in the emission of sulphur dioxide recorded in the last decades. Nitrogen concentration also showed a significant decrease

  4. Regional and climatic controls on seasonal dust deposition in the southwestern U.S.

    Science.gov (United States)

    Reheis, M.C.; Urban, F.E.

    2011-01-01

    Vertical dust deposition rates (dust flux) are a complex response to the interaction of seasonal precipitation, wind, changes in plant cover and land use, dust source type, and local vs. distant dust emission in the southwestern U.S. Seasonal dust flux in the Mojave-southern Great Basin (MSGB) deserts, measured from 1999 to 2008, is similar in summer-fall and winter-spring, and antecedent precipitation tends to suppress dust flux in winter-spring. In contrast, dust flux in the eastern Colorado Plateau (ECP) region is much larger in summer-fall than in winter-spring, and twice as large as in the MSGB. ECP dust is related to wind speed, and in the winter-spring to antecedent moisture. Higher summer dust flux in the ECP is likely due to gustier winds and runoff during monsoonal storms when temperature is also higher. Source types in the MSGB and land use in the ECP have important effects on seasonal dust flux. In the MSGB, wet playas produce salt-rich dust during wetter seasons, whereas antecedent and current moisture suppress dust emission from alluvial and dry-playa sources during winter-spring. In the ECP under drought conditions, dust flux at a grazed-and-plowed site increased greatly, and also increased at three annualized, previously grazed sites. Dust fluxes remained relatively consistent at ungrazed and currently grazed sites that have maintained perennial vegetation cover. Under predicted scenarios of future climate change, these results suggest that an increase in summer storms may increase dust flux in both areas, but resultant effects will depend on source type, land use, and vegetation cover. ?? 2011.

  5. Electrodynamic Dust Shield for Solar Panels on Mars

    Science.gov (United States)

    Calle, C. I.; Buhler, C. R.; Mantovani, J. G.; Clements S.; Chen, A.; Mazumder, M. K.; Biris, A. S.; Nowicki, A. W.

    2004-01-01

    The Materials Adherence Experiment on the Mars Pathfinder mission measured an obscuration of the solar arrays due to dust deposition at a rate of about 0.2 8% per day. It was estimated that settling dust may cause degradation in performance of a solar panel of between 22% and 89% over the course of two years [1, 2]. These results were obtained without the presence of a global dust storm. Several types of adherence forces keep dust particles attached to surfaces. The most widely discussed adherence force is the electrostatic force. Laboratory experiments [3] as well as indirect evidence from the Wheel Abrasion Experiment on Pathfinder [4] indicate that it is very likely that the particles suspended in the Martian atmosphere are electrostatically charged.

  6. Temporal and spatial variation in radioactivity deposition in Japan-influence of the Asian dust-Kosa

    International Nuclear Information System (INIS)

    Igarashi, Yasuhito; Aoyama, Michio; Hirose, Katsumi; Shinoda, Yoshihiro

    2007-01-01

    The possible effect of Asian dust-Kosa in radioactivity deposition, recorded during the recent years, is addressed. The Kosa events were remarkable during 2000 to 2002 in the Far East region, however no significant change was admitted in the MRI radioactivity deposition time series for 90 Sr and 137 Cs. Therefore, we looked at the nationwide distribution and seasonal trends in 90 Sr and 137 Cs depositions by using the data from the Environmental Radioactivity and Radiation Database available on the web. It was found that 137 Cs deposition was larger in northern Japan along the Japan Sea side during spring. The 137 Cs/ 90 Sr activity ratio as well as the 137 Cs specific activity tended to be larger at the high 137 Cs deposition sites. The influence of the Kosa during 2000 to 2002 had larger in northern Japan/Sea of Japan side and the source of the Kosa may be different from the conventional type of the Kosa. The high 137 Cs/ 90 Sr activity ratio and the high 137 Cs specific activity suggest the source area had higher precipitation rate (higher fallout), where the fractionation between the 137 Cs and 90 Sr proceeded. Such area may become new source area for the aeolian dust due possibly to the recent global climate change. This accords with the literature on the source statistics of the Asian dust during the 1990s and the early 2000s. (author)

  7. Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures

    Directory of Open Access Journals (Sweden)

    C. M. Archuleta

    2005-01-01

    Full Text Available This study examines the potential role of some types of mineral dust and mineral dust with sulfuric acid coatings as heterogeneous ice nuclei at cirrus temperatures. Commercially-available nanoscale powder samples of aluminum oxide, alumina-silicate and iron oxide were used as surrogates for atmospheric mineral dust particles, with and without multilayer coverage of sulfuric acid. A sample of Asian dust aerosol particles was also studied. Measurements of ice nucleation were made using a continuous-flow ice-thermal diffusion chamber (CFDC operated to expose size-selected aerosol particles to temperatures between -45 and -60°C and a range of relative humidity above ice-saturated conditions. Pure metal oxide particles supported heterogeneous ice nucleation at lower relative humidities than those required to homogeneously freeze sulfuric acid solution particles at sizes larger than about 50 nm. The ice nucleation behavior of the same metal oxides coated with sulfuric acid indicate heterogeneous freezing at lower relative humidities than those calculated for homogeneous freezing of the diluted particle coatings. The effect of soluble coatings on the ice activation relative humidity varied with the respective uncoated core particle types, but for all types the heterogeneous freezing rates increased with particle size for the same thermodynamic conditions. For a selected size of 200 nm, the natural mineral dust particles were the most effective ice nuclei tested, supporting heterogeneous ice formation at an ice relative humidity of approximately 135%, irrespective of temperature. Modified homogeneous freezing parameterizations and theoretical formulations are shown to have application to the description of heterogeneous freezing of mineral dust-like particles with soluble coatings.

  8. The Neutral Mass Spectrometer on the Lunar Atmosphere and Dust Environment Explorer Mission

    Science.gov (United States)

    Mahaffy, Paul R.; Hodges, R. Richard; Benna, Mehdi; King, Todd; Arvey, Robert; Barciniak, Michael; Bendt, Mirl; Carigan, Daniel; Errigo, Therese; Harpold, Daniel N.; hide

    2014-01-01

    The Neutral Mass Spectrometer (NMS) of the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission is designed to measure the composition and variability of the tenuous lunar atmosphere. The NMS complements two other instruments on the LADEE spacecraft designed to secure spectroscopic measurements of lunar composition and in situ measurement of lunar dust over the course of a 100-day mission in order to sample multiple lunation periods. The NMS utilizes a dual ion source designed to measure both surface reactive and inert species and a quadrupole analyzer. The NMS is expected to secure time resolved measurements of helium and argon and determine abundance or upper limits for many other species either sputtered or thermally evolved from the lunar surface.

  9. Crustal tracers in the atmosphere and ocean: Relating their concentrations, fluxes, and ages

    Science.gov (United States)

    Han, Qin

    Crustal tracers are important sources of key limiting nutrients (e.g., iron) in remote ocean regions where they have a large impact on global biogeochemical cycles. However, the atmospheric delivery of bio-available iron to oceans via mineral dust aerosol deposition is poorly constrained. This dissertation aims to improve understanding and model representation of oceanic dust deposition and to provide soluble iron flux maps by testing observations of crustal tracer concentrations and solubilities against predictions from two conceptual solubility models. First, we assemble a database of ocean surface dissolved Al and incorporate Al cycling into the global Biogeochemical Elemental Cycling (BEC) model. The observed Al concentrations show clear basin-scale differences that are useful for constraining dust deposition. The dynamic mixed layer depth and Al residence time in the BEC model significantly improve the simulated dissolved Al field. Some of the remaining model-data discrepancies appear related to the neglect of aerosol size, age, and air mass characteristics in estimating tracer solubility. Next, we develop the Mass-Age Tracking method (MAT) to efficiently and accurately estimate the mass-weighted age of tracers. We apply MAT to four sizes of desert dust aerosol and simulate, for the first time, global distributions of aerosol age in the atmosphere and at deposition. These dust size and age distributions at deposition, together with independent information on air mass acidity, allow us to test two simple yet plausible models for predicting the dissolution of mineral dust iron and aluminum during atmospheric transport. These models represent aerosol solubility as controlled (1) by a diffusive process leaching nutrients from the dust into equilibrium with the liquid water coating or (2) by a process that continually dissolves nutrients in proportion to the particle surface area. The surface-controlled model better captures the spatial pattern of observed

  10. Long-range atmospheric transport of volatile monocarboxylic acids with Asian dust over a high mountain snow site, central Japan

    Directory of Open Access Journals (Sweden)

    T. Mochizuki

    2016-11-01

    Full Text Available To understand the long-range transport of monocarboxylic acids from the Asian continent to the Japanese islands, we collected snowpack samples from a pit sequence (depth ca. 6 m at the Murodo-Daira snowfield near the summit of Mt. Tateyama, central Japan, in 2009 and 2011. Snow samples (n = 16 were analyzed for normal (C1–C10, branched chain (iC4–iC6, aromatic (benzoic and toluic acid isomers, and hydroxyl (glycolic and lactic monocarboxylic acids, together with inorganic ions and dissolved organic carbon (DOC. Acetic acid (C2 was found to be a dominant species (average 125 ng g−1, followed by formic acid (C1 (85.7 ng g−1 and isopentanoic acid (iC5 (20.0 ng g−1. We found a strong correlation (r =  0.88 between formic plus acetic acids and non-sea-salt Ca2+ that is a proxy of Asian dust. Contributions of total monocarboxylic acids to DOC in 2009 (21.2 ± 11.6 % were higher than that in 2011 (3.75 ± 2.62 %, being consistent with higher intensity of Asian dust in 2009 than in 2011. Formic plus acetic acids also showed a positive correlation (r =  0.90 with benzoic acid that is a tracer of automobile exhaust, indicating that monocarboxylic acids and their precursors are largely emitted from anthropogenic sources in China and/or secondarily produced in the atmosphere by photochemical processing. In addition, the ratio of formic plus acetic acids to nss–Ca2+ (0.27 was significantly higher than those (0.00036–0.0018 obtained for reference dust materials of Chinese loess deposits from the Tengger and Gobi deserts. This result suggests that volatile and semi-volatile organic acids are adsorbed on the alkaline dust particles during long-range atmospheric transport. Entrainment of organic acids by dusts is supported by a good correlation (r = 0.87 between formic plus acetic acids and pH of melt snow samples. Our study suggests that Asian alkaline dusts may be a carrier of volatile monocarboxylic

  11. Atmospheric dust contribution to budget of U-series nuclides in weathering profiles. The Mount Cameroon volcano

    Science.gov (United States)

    Pelt, E.; Chabaux, F. J.; Innocent, C.; Ghaleb, B.

    2009-12-01

    Analysis of U-series nuclides in weathering profiles is developed today for constraining time scale of soil and weathering profile formation (e.g., Chabaux et al., 2008). These studies require the understanding of U-series nuclides sources and fractionation in weathering systems. For most of these studies the impact of aeolian inputs on U-series nuclides in soils is usually neglected. Here, we propose to discuss such an assumption, i.e., to evaluate the impact of dust deposition on U-series nuclides in soils, by working on present and paleo-soils collected on the Mount Cameroon volcano. Recent Sr, Nd, Pb isotopic analyses performed on these samples have indeed documented significant inputs of Saharan dusts in these soils (Dia et al., 2006). We have therefore analyzed 238U-234U-230Th nuclides in the same samples. Comparison of U-Th isotopic data with Sr-Nd-Pb isotopic data indicates a significant impact of the dust input on the U and Th budget of the soils, around 10% for both U and Th. Using Sr-Nd-Pb isotopic data of Saharan dusts given by Dia et al. (2006) we estimate U-Th concentrations and U-Th isotope ratios of dusts compatible with U-Th data obtained on Saharan dusts collected in Barbados (Rydell H.S. and Prospero J.M., 1972). However, the variations of U/Th ratios along the weathering profiles cannot be explained by a simple mixing scenario between material from basalt and from the defined atmospheric dust pool. A secondary uranium migration associated with chemical weathering has affected the weathering profiles. Mass balance calculation suggests that U in soils from Mount Cameroon is affected at the same order of magnitude by both chemical migration and dust accretion. Nevertheless, the Mount Cameroon is a limit case were large dust inputs from continental crust of Sahara contaminate basaltic terrain from Mount Cameroon volcano. Therefore, this study suggests that in other contexts were dust inputs are lower, or the bedrocks more concentrated in U and Th

  12. Metal-dusting resistance of uncoated and coated iron and nickel base materials against metal-dusting in heat treatment furnaces with carbonaceous atmospheres

    International Nuclear Information System (INIS)

    Kleingries, Mirko; Ackermann, Helen; Lucka, Klaus; Hoja, Timo; Mehner, Andeas; Zoch, Hans-Werner; Altena, Herwig

    2010-01-01

    Metal-Dusting is a well-known corrosion problem that occurs in carburizing atmospheres in industrial thermal processing plants. In literature almost no quantitative data on the metal dusting resistance of typical alloys employed in industrial furnaces are available. Therefore, a series of experiments with uncoated and sol gel ZrO 2 coated high temperature materials was conducted in order to quantify their metal dusting behaviour under conditions close to those in case hardening furnaces. The experimental results show a strong influence of the surface conditions on the alloys resistance and a noticeable enhancement of the resistance by sol gel coatings. (orig.)

  13. Oil sands development and its impact on atmospheric wet deposition of air pollutants to the Athabasca Oil Sands Region, Alberta, Canada

    International Nuclear Information System (INIS)

    Lynam, Mary M.; Dvonch, J. Timothy; Barres, James A.; Morishita, Masako; Legge, Allan; Percy, Kevin

    2015-01-01

    Characterization of air pollutant deposition resulting from Athabasca oil sands development is necessary to assess risk to humans and the environment. To investigate this we collected event-based wet deposition during a pilot study in 2010–2012 at the AMS 6 site 30 km from the nearest upgrading facility in Fort McMurray, AB, Canada. Sulfate, nitrate and ammonium deposition was (kg/ha) 1.96, 1.60 and 1.03, respectively. Trace element pollutant deposition ranged from 2 × 10"−"5 - 0.79 and exhibited the trend Hg < Se < As < Cd < Pb < Cu < Zn < S. Crustal element deposition ranged from 1.4 × 10"−"4 – 0.46 and had the trend: La < Ce < Sr < Mn < Al < Fe < Mg. S, Se and Hg demonstrated highest median enrichment factors (130–2020) suggesting emissions from oil sands development, urban activities and forest fires were deposited. High deposition of the elements Sr, Mn, Fe and Mg which are tracers for soil and crustal dust implies land-clearing, mining and hauling emissions greatly impacted surrounding human settlements and ecosystems. - Highlights: • Atmospheric event wet deposition was collected during a 21 month pilot study. • Major ion, anthropogenic and crustal element wet deposition was characterized. • Low precipitation depths attenuated major ion and anthropogenic element deposition. • Oil sands development, urban activities and forest fires contributed to deposition. - In the vicinity of oil sands, monitoring revealed that wet deposition of major ions (SO_4"2"−, NO_3"-, NH_4"+) was highest followed by S and Mg, the latter is a tracer for soil/crustal dust.

  14. Atmospheric heavy metal deposition accumulated in rural forest soils of southern Scandinavia

    DEFF Research Database (Denmark)

    Hovmand, Mads Frederik; Kemp, Kaare; Kystol, J.

    2008-01-01

    Thirty-three years of measurements of atmospheric heavy metal (HM) deposition (bulk precipitation) in Denmark combined with European emission inventories form the basis for calculating a 50-year accumulated atmospheric input to a remote forest plantation on the island of Laesoe. Soil samples taken...... in atmospheric deposition and in soils. The accumulated atmospheric deposition is of the same magnitude as the increase of these metals in the top soil....

  15. Effect of Dust Deposition on Yield and Yield Components of Chickpea (Cicer arietinum L. under Rain Fed and Supplemental Irrigation Conditions in Kermanshah

    Directory of Open Access Journals (Sweden)

    hamze felegari

    2017-10-01

    Full Text Available Introduction Dust storms over Middle East are one of the most important environmental and pollution problems. In order to assess the effects of dust deposition and supplemental irrigation on yield and yield components of chickpea, an experiment was conducted at the research farm of Agriculture and Natural Resources Campus of Razi University, Kermanshah, in 2013-2014 growing season based on RCDB with three replicatins. Treatments of the experiment included supplemental irrigation as the main plot factor with 2 levels (No-irrigation and irrigation at poding stage. and dust deposition as the sub plot factor with7 levels (Control, dust application at vegetative stage, dust application at poding stage, dust application at pod filling stage, Washing at the end of vegetative stage, Washing at the end of poding stage and Washing at the end of vegetative and poding stages.Supplemental irrigation and dust deposition had significant effect on yield and yield components of chickpea. Drought stress reduced yield and yield components. With dust application at vegetative stage (67.86 g.m-2, poding stage (79.37 g.m-2 and pod filling (79.52 g.m-2 seed yield reduced. With Washing leaves at the end of vegetative and poding stages seed yield (85.20 g.m-2 increased. Materials and Methods This study was conducted during 2013-2014 at the research Farm of Razi university in Kermanshah state in the west of Iran (47º 9′ E and 34º 21′ N, 1319 meters above sea level. The soil of the research area was clay loam (36.1% clay, 30.7% silt and was cultivated with chickpea previously. Treatments included supplemental irrigation as the main plot at 2 levels (control (non-irrigation and irrigation at poding stage. Other treatments included dust deposition as the sub plot at 7 levels (Control (non-treatment, dust application at vegetative stage, dust application at poding stage, dust application at pod filling stage, Washing at the end of vegetative stage, Washing at the end

  16. Comparing modeled and observed changes in mineral dust transport and deposition to Antarctica between the Last Glacial Maximum and current climates

    Energy Technology Data Exchange (ETDEWEB)

    Albani, Samuel [University of Siena, Graduate School in Polar Sciences, Siena (Italy); University of Milano-Bicocca, Department of Environmental Sciences, Milano (Italy); Cornell University, Department of Earth and Atmospheric Sciences, Ithaca, NY (United States); Mahowald, Natalie M. [Cornell University, Department of Earth and Atmospheric Sciences, Ithaca, NY (United States); Delmonte, Barbara; Maggi, Valter [University of Milano-Bicocca, Department of Environmental Sciences, Milano (Italy); Winckler, Gisela [Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY (United States); Columbia University, Department of Earth and Environmental Sciences, New York, NY (United States)

    2012-05-15

    Mineral dust aerosols represent an active component of the Earth's climate system, by interacting with radiation directly, and by modifying clouds and biogeochemistry. Mineral dust from polar ice cores over the last million years can be used as paleoclimate proxy, and provide unique information about climate variability, as changes in dust deposition at the core sites can be due to changes in sources, transport and/or deposition locally. Here we present results from a study based on climate model simulations using the Community Climate System Model. The focus of this work is to analyze simulated differences in the dust concentration, size distribution and sources in current climate conditions and during the Last Glacial Maximum at specific ice core locations in Antarctica, and compare with available paleodata. Model results suggest that South America is the most important source for dust deposited in Antarctica in current climate, but Australia is also a major contributor and there is spatial variability in the relative importance of the major dust sources. During the Last Glacial Maximum the dominant source in the model was South America, because of the increased activity of glaciogenic dust sources in Southern Patagonia-Tierra del Fuego and the Southernmost Pampas regions, as well as an increase in transport efficiency southward. Dust emitted from the Southern Hemisphere dust source areas usually follow zonal patterns, but southward flow towards Antarctica is located in specific areas characterized by southward displacement of air masses. Observations and model results consistently suggest a spatially variable shift in dust particle sizes. This is due to a combination of relatively reduced en route wet removal favouring a generalized shift towards smaller particles, and on the other hand to an enhanced relative contribution of dry coarse particle deposition in the Last Glacial Maximum. (orig.)

  17. Atmospheric Deposition of Phosphorus to the Everglades: Concepts, Constraints, and Published Deposition Rates for Ecosystem Management

    Directory of Open Access Journals (Sweden)

    Garth W. Redfield

    2002-01-01

    Full Text Available This paper summarizes concepts underlying the atmospheric input of phosphorus (P to ecosystems, published rates of P deposition, measurement methods, and approaches to future monitoring and research. P conveyed through the atmosphere can be a significant nutrient source for some freshwater and marine ecosystems. Particle sources and sinks at the land-air interface produce variation in P deposition from the atmosphere across temporal and spatial scales. Natural plant canopies can affect deposition rates by changing the physical environment and surface area for particle deposition. Land-use patterns can alter P deposition rates by changing particle concentrations in the atmosphere. The vast majority of P in dry atmospheric deposition is conveyed by coarse (2.5 to 10 μm and giant (10 to 100 μm particles, and yet these size fractions represent a challenge for long-term atmospheric monitoring in the absence of accepted methods for routine sampling. Most information on P deposition is from bulk precipitation collectors and wet/dry bucket sampling, both with questionable precision and accuracy. Most published annual rates of P deposition are gross estimates derived from bulk precipitation sampling in locations around the globe and range from about 5 to well over 100 mg P m–2 year–1, although most inland ecosystems receive between 20 and 80 mg P m–2 year–1. Rates below 30 mg P m–2 year–1 are found in remote areas and near coastlines. Intermediate rates of 30 to 50 mg P m–2 year–1 are associated with forests or mixed land use, and rates of 50 to 100 mg P m–2 year–1 or more are often recorded from urban or agricultural settings. Comparison with other methods suggests that these bulk precipitation estimates provide crude boundaries around actual P deposition rates for various land uses. However, data screening cannot remove all positive bias caused by contamination of bucket or bulk collectors. As a consequence, continued sampling

  18. Influence of Atmospheric Processes on the Solubility and Composition of Iron in Saharan Dust.

    Science.gov (United States)

    Longo, Amelia F; Feng, Yan; Lai, Barry; Landing, William M; Shelley, Rachel U; Nenes, Athanasios; Mihalopoulos, Nikolaos; Violaki, Kalliopi; Ingall, Ellery D

    2016-07-05

    Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation state became more reduced, and aerosol acidity increased. Atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility.

  19. Large-scale coherent structures of suspended dust concentration in the neutral atmospheric surface layer: A large-eddy simulation study

    Science.gov (United States)

    Zhang, Yangyue; Hu, Ruifeng; Zheng, Xiaojing

    2018-04-01

    Dust particles can remain suspended in the atmospheric boundary layer, motions of which are primarily determined by turbulent diffusion and gravitational settling. Little is known about the spatial organizations of suspended dust concentration and how turbulent coherent motions contribute to the vertical transport of dust particles. Numerous studies in recent years have revealed that large- and very-large-scale motions in the logarithmic region of laboratory-scale turbulent boundary layers also exist in the high Reynolds number atmospheric boundary layer, but their influence on dust transport is still unclear. In this study, numerical simulations of dust transport in a neutral atmospheric boundary layer based on an Eulerian modeling approach and large-eddy simulation technique are performed to investigate the coherent structures of dust concentration. The instantaneous fields confirm the existence of very long meandering streaks of dust concentration, with alternating high- and low-concentration regions. A strong negative correlation between the streamwise velocity and concentration and a mild positive correlation between the vertical velocity and concentration are observed. The spatial length scales and inclination angles of concentration structures are determined, compared with their flow counterparts. The conditionally averaged fields vividly depict that high- and low-concentration events are accompanied by a pair of counter-rotating quasi-streamwise vortices, with a downwash inside the low-concentration region and an upwash inside the high-concentration region. Through the quadrant analysis, it is indicated that the vertical dust transport is closely related to the large-scale roll modes, and ejections in high-concentration regions are the major mechanisms for the upward motions of dust particles.

  20. Environmental factors controlling the seasonal variability in particle sizedistribution of modern Saharan dust deposited off Cape Blanc

    NARCIS (Netherlands)

    Friese, C.A.; van der Does, M.; Merkel, U.; Iversen, M.H.; Fischer, G.; Stuut, J-B W.

    2016-01-01

    The particle sizes of Saharan dust in marine sediment core records have been used frequently as a proxyfor trade-wind speed. However, there are still large uncertainties with respect to the seasonality of theparticle sizes of deposited Saharan dust off northwestern Africa and the factors influencing

  1. Sulfur accumulation and atmospherically deposited sulfate in the Lake States.

    Science.gov (United States)

    Mark B. David; George Z. Gernter; David F. Grigal; Lewis F. Ohmann

    1989-01-01

    Characterizes the mass of soil sulfur (adjusted for nitrogen), and atmospherically deposited sulfate along an acid precipitation gradient from Minnesota to Michigan. The relationship of these variables, presented graphically through contour mapping, suggests that patterns of atmospheric wet sulfate deposition are reflected in soil sulfur pools.

  2. Direct and indirect atmospheric deposition of PCBs to the Delaware River watershed.

    Science.gov (United States)

    Totten, Lisa A; Panangadan, Maya; Eisenreich, Steven J; Cavallo, Gregory J; Fikslin, Thomas J

    2006-04-01

    Atmospheric deposition can be an important source of PCBs to aquatic ecosystems. To develop the total maximum daily load (TMDL) for polychlorinated biphenyls (PCBs) for the tidal Delaware River (water-quality Zones 2-5), estimates of the loading of PCBs to the river from atmospheric deposition were generated from seven air-monitoring sites along the river. This paper presents the atmospheric PCB data from these sites, estimates direct atmospheric deposition fluxes, and assesses the importance of atmospheric deposition relative to other sources of PCBs to the river. Also, the relationship between indirect atmospheric deposition and PCB loads from minor tributaries to the Delaware River is discussed. Data from these sites revealed high atmospheric PCB concentrations in the Philadelphia/Camden urban area and lower regional background concentrations in the more remote areas. Wet, dry particle, and gaseous absorption deposition are estimated to contribute about 0.6, 1.8, and 6.5 kg year-(-1) sigmaPCBs to the River, respectively, exceeding the TMDL of 0.139 kg year(-1) by more than an order of magnitude. Penta-PCB watershed fluxes were obtained by dividing the tributary loads by the watershed area. The lowest of these watershed fluxes are less than approximately 1 ng m(-2) day(-1) for penta-PCB and probably indicates pristine watersheds in which PCB loads are dominated by atmospheric deposition. In these watersheds, the pass-through efficiency of PCBs is estimated to be on the order of 1%.

  3. Atmospheric heavy metal deposition in Europe estimated by moss analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ruehling, Aa. [Swedish Environmental Research Inst., Lund (Sweden). Dept. of Ecology

    1995-12-31

    Atmospheric heavy metal deposition in Europe including 21 countries was monitored in 1990-1992 by the moss technique. This technique is based on the fact that the concentrations of heavy metals in moss are closely correlated to atmospheric deposition. This was the first attempt to map heavy metal deposition in this large area. The objectives of the project were to characterise qualitatively and quantitatively the regional atmospheric deposition pattern of heavy metals in background areas in Europe, to indicate the location of important heavy metal pollution sources and to allow retrospective comparisons with similar studies. The present survey is a follow-up of a joint Danish and Swedish project in 1980 and an extended survey in 1985 within the framework of the Nordic Council of Ministers. In Sweden, heavy-metal deposition was first mapped on a nation-wide scale in 1968-1971 and 1975. (author)

  4. Atmospheric heavy metal deposition in Europe estimated by moss analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ruehling, Aa [Swedish Environmental Research Inst., Lund (Sweden). Dept. of Ecology

    1996-12-31

    Atmospheric heavy metal deposition in Europe including 21 countries was monitored in 1990-1992 by the moss technique. This technique is based on the fact that the concentrations of heavy metals in moss are closely correlated to atmospheric deposition. This was the first attempt to map heavy metal deposition in this large area. The objectives of the project were to characterise qualitatively and quantitatively the regional atmospheric deposition pattern of heavy metals in background areas in Europe, to indicate the location of important heavy metal pollution sources and to allow retrospective comparisons with similar studies. The present survey is a follow-up of a joint Danish and Swedish project in 1980 and an extended survey in 1985 within the framework of the Nordic Council of Ministers. In Sweden, heavy-metal deposition was first mapped on a nation-wide scale in 1968-1971 and 1975. (author)

  5. Interannual Variability in Dust Deposition, Radiative Forcing, and Snowmelt Rates in the Colorado River Basin

    Science.gov (United States)

    Skiles, M.; Painter, T. H.; Deems, J. S.; Barrett, A. P.

    2011-12-01

    Dust in snow accelerates snowmelt through its direct reduction of albedo and its further reduction of albedo by accelerating the growth of snow effective grain size. Since the Anglo expansion and disturbance of the western US that began in the mid 19th century, the mountain snow cover of the Colorado River Basin has been subject to five-fold greater dust loading. Here we present the impacts of dust deposition onto alpine snow cover using a 7-year energy balance record at the alpine and subalpine towers in the Senator Beck Basin Study Area (SBBSA), San Juan Mountains in southwestern Colorado, USA. We assess the radiative and hydrologic impacts with a two-layer point snow energy balance snowmelt model that calculates snowmelt and predicts point runoff using measured inputs of energy exchanges and snow properties. By removing the radiative forcing due to dust, we can determine snowmelt under observed dusty and modeled clean conditions. Additionally, we model the relative response of melt rates to simulated increases in air temperature. Our modeling results indicate that the number of days that dust advances retreat of snow cover and cumulative radiative forcing are linearly related to total dust concentration. The greatest dust radiative impact occurred in 2009, when the highest observed end of year dust concentrations reduced visible albedo to less than 0.35 during the last three weeks of snowcover and snow cover duration was shortened by 50 days. This work also shows that dust radiative forcing has a markedly greater impact on snow cover duration than increases in temperature in terms of acceleration of snowmelt. We have completed the same analysis over a 2-year energy balance record at the Grand Mesa Study plot (GMSP) in west central Colorado, 150 km north of SBBSA. This new location allows us to assess site variability. For example, at SBBSA 2010 and 2011 were the second and third highest dust deposition years, respectively, but 2010 was a larger year with 3

  6. Ways of far-distance dust transport onto Caucasian glaciers and chemical composition of snow on the Western plateau of Elbrus

    Directory of Open Access Journals (Sweden)

    S. S. Kutuzov

    2014-01-01

    Full Text Available We present and discuss the chronology of dust deposition events documented by the shallow firn and ice cores extracted on the Western Plateau, Mt. Elbrus (5150 m a.s.l. in 2009, 2012 and 2013. Snow and ice samples were analysed for major ions and minor element concentrations including heavy metals. Dust layers are formed on the surface of the glaciers as a result of atmospheric transport of mineral dust and aerosol particles to the Caucasus region. Satellite imagery (SEVIRI, trajectory models, and meteorological data were used for accurate dating of each the dust layers revealed in the ice cores. Then we tried to determine origins of the dust clouds and to investigate their transport pathways with high resolution (50–100 km. It was found that the desert dust is deposited on Caucasus glaciers 3–7 times in a year and it comes mainly from deserts of the Middle East and more rarely from the Northern Sahara desert. For the first time average annual dust flux (264 µg/cm2 per a year and average mass concentration (1.7 mg/kg over the period 2007–2013 were calculated for this region. The deposition of dust resulted in elevated concentrations consists of mostly ions, especially Ca2+, Mg2+, K+, and sulphates. Dust originated from various sources in the Middle East, including Mesopotamia, or similar dust clouds passing over the Middle East are characterised by high concentrations of nitrates and ammonia that may be related to atmospheric transport of ammonium from agricultural lands that may explain high concentrations of ammonium in the dust originating from this region. Mean values of crustal enrichment factors (EF for the measured minor elements including heavy metals were calculated. We believe that high content of Cu, Zn and Cd can be a result of possible contribution from anthropogenic sources. Studies of the Caucasus ice cores may allow obtaining new independent data on the atmosphere circulation and high-altitude environment of this region.

  7. Climate change and climate systems influence and control the atmospheric dispersion of desert dust: implications for human health

    Science.gov (United States)

    Griffin, Dale W.; Ragaini, Richard C.

    2010-01-01

    The global dispersion of desert dust through Earth’s atmosphere is greatly influenced by temperature. Temporal analyses of ice core data have demonstrated that enhanced dust dispersion occurs during glacial events. This is due to an increase in ice cover, which results in an increase in drier terrestrial cover. A shorter temporal analysis of dust dispersion data over the last 40 years has demonstrated an increase in dust transport. Climate systems or events such as the North Atlantic Oscillation, the Indian Ocean subtropical High, Pacific Decadal Oscillation, and El Nino-Sothern Oscillation are known to influence global short-term dust dispersion occurrence and transport routes. Anthropogenic influences on dust transport include deforestation, harmful use of topsoil for agriculture as observed during the American Dust Bowl period, and the creation of dry seas (Aral Sea) and lakes (Lake Owens in California and Lake Chad in North Africa) through the diversion of source waters (for irrigation and drinking water supplies). Constituents of desert dust both from source regions (pathogenic microorganisms, organic and inorganic toxins) and those scavenged through atmospheric transport (i.e., industrial and agricultural emissions) are known to directly impact human and ecosystem health. This presentation will present a review of global scale dust storms and how these events can be both a detriment and benefit to various organisms in downwind environments.

  8. Atmospheric dust events in central Asia: Relationship to wind, soil type, and land use

    Science.gov (United States)

    Pi, Huawei; Sharratt, Brenton; Lei, Jiaqiang

    2017-06-01

    Xinjiang Province in northwest China is one of the most important source regions of atmospheric dust in the world. Spatial-temporal characteristics of dust events in the province were investigated by time series analysis of annual dust event frequency and meteorological data collected at 101 meteorological stations from 1960 to 2007. Blowing dust frequency (BDF) and dust storm frequency (DSF) decreased with time in North, South, and East Xinjiang whereas floating dust frequency (FDF) decreased with time only in South and East Xinjiang. Dust concentrations were lower in North than in South Xinjiang and decreased with time in East Xinjiang. Wind significantly influenced the temporal trend in FDF, BDF, and DSF in South Xinjiang and DSF in North Xinjiang. Frequency of dust events was smaller by an order of magnitude in North (10.9 d yr-1) than in South Xinjiang (111.3 d yr-1), possibly due in part to higher annual precipitation in North Xinjiang. Floating dust was most frequently observed in East and South Xinjiang, while blowing dust was most frequently observed in North Xinjiang. The high frequency of floating dust in East and South Xinjiang is likely due to the enclosed terrain that characterizes these regions. Land use and soil type also influenced dust events. Although climate influences frequency of dust events, the occurrence of these events may be reduced most effectively by imposing better land management practices in deciduous forests or orchards characterized by saline soils in respectively North and East Xinjiang and meadows characterized by Guanyu soils in South Xinjiang.

  9. Net atmospheric mercury deposition to Svalbard: Estimates from lacustrine sediments

    Science.gov (United States)

    Drevnick, Paul E.; Yang, Handong; Lamborg, Carl H.; Rose, Neil L.

    2012-11-01

    In this study we used lake sediments, which faithfully record Hg inputs, to derive estimates of net atmospheric Hg deposition to Svalbard, Norwegian Arctic. With the exception of one site affected by local pollution, the study lakes show twofold to fivefold increases in sedimentary Hg accumulation since 1850, likely due to long-range atmospheric transport and deposition of anthropogenic Hg. Sedimentary Hg accumulation in these lakes is a linear function of the ratio of catchment area to lake area, and we used this relationship to model net atmospheric Hg flux: preindustrial and modern estimates are 2.5 ± 3.3 μg m-2 y-1 and 7.0 ± 3.0 μg m-2 y-1, respectively. The modern estimate, by comparison with data for Hg wet deposition, indicates that atmospheric mercury depletion events (AMDEs) or other dry deposition processes contribute approximately half (range 0-70%) of the net flux. Hg from AMDEs may be moving in significant quantities into aquatic ecosystems, where it is a concern because of contamination of aquatic food webs.

  10. Summary of the results from the Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment (LADEE) Mission

    Science.gov (United States)

    Horanyi, Mihaly

    2016-07-01

    The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission (9/2013 - 4/2014) discovered a permanently present dust cloud engulfing the Moon. The size, velocity, and density distributions of the dust particles are consistent with ejecta clouds generated from the continual bombardment of the lunar surface by sporadic interplanetary dust particles. Intermittent density enhancements were observed during several of the annual meteoroid streams, especially during the Geminids. LDEX found no evidence of the expected density enhancements over the terminators where electrostatic processes were predicted to efficiently loft small grains. LDEX is an impact ionization dust detector, it captures coincident signals and full waveforms to reliably identify dust impacts. LDEX recorded average impact rates of approximately 1 and 0.1 hits/minute of particles with impact charges of q > 0.5 and q > 5 fC, corresponding to particles with radii of a > 0.3 and a> 0.7~μm, respectively. Several of the yearly meteor showers generated sustained elevated levels of impact rates, especially if their radiant direction intersected the lunar surface near the equatorial plane, greatly enhancing the probability of crossing their ejecta plumes. The characteristic velocities of dust particles in the cloud are on the order of ~100 m/s which we neglect compared to the typical spacecraft speeds of 1.6 km/s. Hence, with the knowledge of the spacecraft orbit and attitude, impact rates can be directly turned into particle densities as functions of time and position. LDEX observations are the first to identify the ejecta clouds around the Moon sustained by the continual bombardment of interplanetary dust particles. Most of the dust particles generated in impacts have insufficient energy to escape and follow ballistic orbits, returning to the surface, 'gardening' the regolith. Similar ejecta clouds are expected to engulf all airless planetary objects, including

  11. Identification of mineral dust layers in high alpine snow packs

    Science.gov (United States)

    Greilinger, Marion; Kau, Daniela; Schauer, Gerhard; Kasper-Giebl, Anne

    2017-04-01

    Deserts serve as a major source for aerosols in the atmosphere with mineral dust as a main contributor to primary aerosol mass. Especially the Sahara, the largest desert in the world, contributes roughly half of the primarily emitted aerosol mass found in the atmosphere [1]. The eroded Saharan dust is episodically transported over thousands of kilometers with synoptic wind patterns towards Europe [2] and reaches Austria about 20 to 30 days per year. Once the Saharan dust is removed from the atmosphere via dry or wet deposition processes, the chemical composition of the precipitation or the affected environment is significantly changed. Saharan dust serves on the one hand as high ionic input leading to an increase of ionic species such as calcium, magnesium or sulfate. On the other hand Saharan dust provides a high alkaline input neutralizing acidic components and causing the pH to increase [3]. Based on these changes in the ion composition, the pH and cross plots of the ion and conductivity balance [4] we tried to develop a method to identify Saharan dust layers in high alpine snow packs. We investigated seasonal snow packs of two high alpine sampling sites situated on the surrounding glaciers of the meteorological Sonnblick observatory serving as a global GAW (Global Atmospheric Watch) station located in the National Park Hohe Tauern in the Austrian Alps. Samples with 10 cm resolution representing the whole winter accumulation period were taken just prior to the start of snow melt at the end of April 2016. In both snow packs two layers with clearly different chemical behavior were observed. In comparison with the aerosol data from the Sonnblick observatory, these layers could be clearly identified as Saharan dust layers. Identified Saharan dust layers in the snow pack allow calculations of the ecological impact of deposited ions, with and without Saharan dust, during snow melt. Furthermore the chemical characteristics for the identification of Saharan dust layers

  12. Effect of atmospheric organic complexation on iron-bearing dust solubility

    OpenAIRE

    Paris , R.; Desboeufs , K. V.

    2013-01-01

    International audience; Recent studies reported that the effect of organic complexation may be a potentially important process to be considered by models estimating atmospheric iron flux to the ocean. In this study, we investigated this process effect by a series of dissolution experiments on iron-bearing dust in the presence or the absence of various organic compounds (acetate, formate, oxalate, malonate, succinate, glutarate, glycolate, lactate, tartrate and humic acid as an analogue of hum...

  13. Regional Modeling of Dust Mass Balance and Radiative Forcing over East Asia using WRF-Chem

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Siyu; Zhao, Chun; Qian, Yun; Leung, Lai-Yung R.; Huang, J.; Huang, Zhongwei; Bi, Jianrong; Zhang, Wu; Shi, Jinsen; Yang, Lei; Li, Deshuai; Li, Jinxin

    2014-12-01

    The Weather Research and Forecasting model with Chemistry (WRF-Chem) is used to investigate the seasonal and annual variations of mineral dust over East Asia during 2007-2011, with a focus on the dust mass balance and radiative forcing. A variety of measurements from in-stu and satellite observations have been used to evaluate simulation results. Generally, WRF-Chem reproduces not only the column variability but also the vertical profile and size distribution of mineral dust over and near the dust source regions of East Asia. We investigate the dust lifecycle and the factors that control the seasonal and spatial variations of dust mass balance and radiative forcing over the seven sub-regions of East Asia, i.e. source regions, the Tibetan Plateau, Northern China, Southern China, the ocean outflow region, and Korea-Japan regions. Results show that, over the source regions, transport and dry deposition are the two dominant sinks. Transport contributes to ~30% of the dust sink over the source regions. Dust results in a surface cooling of up to -14 and -10 W m-2, atmospheric warming of up to 20 and 15 W m-2, and TOA cooling of -5 and -8 W m-2 over the two major dust source regions of East Asia, respectively. Over the Tibetan Plateau, transport is the dominant source with a peak in summer. Over identified outflow regions, maximum dust mass loading in spring is contributed by the transport. Dry and wet depositions are the comparably dominant sinks, but wet deposition is larger than dry deposition over the Korea-Japan region, particularly in spring (70% versus 30%). The WRF-Chem simulations can generally capture the measured features of dust aerosols and its radaitve properties and dust mass balance over East Asia, which provides confidence for use in further investigation of dust impact on climate over East Asia.

  14. Chemical characterization of atmospheric dust from a weekly time series in the north Red Sea between 2006 and 2010

    Science.gov (United States)

    Torfstein, Adi; Teutsch, Nadya; Tirosh, Ofir; Shaked, Yeala; Rivlin, Tanya; Zipori, Assaf; Stein, Mordechai; Lazar, Boaz; Erel, Yigal

    2017-08-01

    Atmospheric dust loads and chemical compositions serve as a key link between global climate patterns and marine biogeochemical cycles. The primary source of atmospheric dust in the world today is the Sahara-Arabian desert belt. Although this source was also active during the Quaternary, the interpretation of paleo-dust records and their effects on marine ecosystems is complicated by the scarcely reported atmospheric load patterns of bioavailable phases (i.e., water and acid leachable phases) and present-day contamination of anthropogenic components. This study reports a multi-annual time series of atmospheric dust loads (2006-2016) and their chemical compositions (2006-2010) collected in the north Gulf of Aqaba (north Red Sea) at a weekly to bi-weekly resolution. Major and trace element abundances in each sample are reported for three fractions: water-soluble salts, carbonates and oxides (weak acid leach), and Al-silicates. Dust loads vary seasonally from low values in late summer (∼20-30 μg m-3) to higher values in the fall, and highest values in late winter and early spring (∼150-250 μg m-3). Major and trace element abundances allow to distinguish between the sources and chemical compositions that dominate high and low dust loads in each season. The water leachable fraction (L0) is relatively enriched in Na, Ca, K and Mg, the acid-leachable fraction (L1) is enriched in Ca as well as Na, Al, Mg, Zn, Cd and Pb, and the silicate residue (L2) in Al and Fe. High dust loads occurring mainly during winter and spring months are characterized by low Mg/Ca (L1, L2), low K/Al and Na/Al (L1) and high Ca/Al (L1), high Mg/Al (L2) and relatively un-weathered (L2) contents. High dust load intervals during winter months are characterized by low passing air masses originating from the Sahara, while the ambient winter dust (low dust load) is associated with proximal source regions from the East Sahara and Arabian Peninsula. During late winter and spring months, high dust

  15. Removal of Atmospheric Ethanol by Wet Deposition: A Global Flux Estimate

    Science.gov (United States)

    Felix, J. D. D.; Willey, J. D.; Avery, B.; Thomas, R.; Mullaugh, K.; Kieber, R. J.; Mead, R. N.; Helms, J. R.; Campos, L.; Shimizu, M. S.; Guibbina, F.

    2017-12-01

    Global ethanol fuel consumption has increased exponentially over the last two decades and the US plans to double annual renewable fuel production in the next five years as required by the renewable fuel standard. Regardless of the technology or feedstock used to produce the renewable fuel, the primary end product will be ethanol. Increasing ethanol fuel consumption will have an impact on the oxidizing capacity of the atmosphere and increase atmospheric concentrations of the secondary pollutant peroxyacetyl nitrate as well a variety of VOCs with relatively high ozone reactivities (e.g. ethanol, formaldehyde, acetaldehyde). Despite these documented effects of ethanol emissions on atmospheric chemistry, current global atmospheric ethanol budget models have large uncertainties in the magnitude of ethanol sources and sinks. The presented work investigates the global wet deposition sink by providing the first estimate of the global wet deposition flux of ethanol (2.4 ± 1.6 Tg/yr) based on empirical wet deposition data (219 samples collected at 12 locations). This suggests the wet deposition sink removes between 6 and 17% of atmospheric ethanol annually. Concentrations of ethanol in marine wet deposition (25 ± 6 nM) were an order of magnitude less than in the majority of terrestrial deposition (345 ± 280 nM). Terrestrial deposition collected in locations impacted by high local sources of biofuel usage and locations downwind from ethanol distilleries were an order of magnitude higher in ethanol concentration (3090 ± 448 nM) compared to deposition collected in terrestrial locations not impacted by these sources. These results indicate that wet deposition of ethanol is heavily influenced by local sources and ethanol emission impacts on air quality may be more significant in highly populated areas. As established and developing countries continue to rapidly increase ethanol fuel consumption and subsequent emissions, understanding the magnitude of all ethanol sources and

  16. Effects of atmospheric inorganic nitrogen deposition on ocean biogeochemistry

    OpenAIRE

    Krishnamurthy, Aparna; Moore, J. Keith; Zender, Charles S; Luo, Chao

    2007-01-01

     We perform a sensitivity study with the Biogeochemical Elemental Cycling (BEC) ocean model to understand the impact of atmospheric inorganic nitrogen deposition on marine biogeochemistry and air-sea CO2 exchange. Simulations involved examining the response to three different atmospheric inorganic nitrogen deposition scenarios namely, Pre-industrial (22 Tg N/year), 1990s (39 Tg N/year), and an Intergovernmental Panel on Climate Change (IPCC) prediction for 2100, IPCC-A1FI (69 Tg N/year). Glob...

  17. The Southern Kalahari: a potential new dust source in the Southern Hemisphere?

    International Nuclear Information System (INIS)

    Bhattachan, Abinash; D’Odorico, Paolo; Baddock, Matthew C; Zobeck, Ted M; Okin, Gregory S; Cassar, Nicolas

    2012-01-01

    Most sources of atmospheric dust on Earth are located in the Northern Hemisphere. The lower dust emissions in the Southern Hemisphere in part limit the supply of micronutrients (primarily soluble iron) to the Southern Ocean, thereby constraining its productivity. Climate and land use change can alter the current distribution of dust source regions on Earth. Can new dust sources be activated in the Southern Hemisphere? Here we show that vegetation loss and dune remobilization in the Southern Kalahari can promote dust emissions comparable to those observed from major contemporary dust sources in the Southern African region. Dust generation experiments support the hypothesis that, in the Southern Kalahari, aeolian deposits that are currently mostly stabilized by savanna vegetation are capable of emitting substantial amounts of dust from interdune areas. We show that dust from these areas is relatively rich in soluble iron, an important micronutrient for ocean productivity. Trajectory analyses show that dust from the Kalahari commonly reaches the Southern Ocean and could therefore enhance its productivity. (letter)

  18. Atmospheric deposition, operational report for air pollution 2003. NOVA 2003; Atmosfaerisk deposition, driftsrapport for Luftforurening i 2003 NOVA 2003

    Energy Technology Data Exchange (ETDEWEB)

    Ellermann, T.; Hertel, O.; Ambelas Skjoeth, C.; Kemp, K.; Monies, C.

    2004-12-01

    This report presents measurements and calculations from the atmospheric part of NOVA 2003 and covers results for 2003. It summarises the main results concerning concentrations and depositions of nitrogen, phosphorous and sulphur compounds related to eutrofication and acidification and selected heavy metals. Depositions of atmospheric compounds to Danish marine waters as well as land surface are presented. The measurements in the monitoring programme are supplemented with model calculations of concentrations and depositions of nitrogen and sulphur compounds to Danish land surfaces as well as marine waters, fjords and bays using the ACDEP model (Atmospheric Chemistry and Deposition). The model is a so-called trajectory model and simulates the physical and chemical processes in the atmosphere using meteorological and emission data input. (BA)

  19. Scattering Matrix for Typical Urban Anthropogenic Origin Cement Dust and Discrimination of Representative Atmospheric Particulates

    Science.gov (United States)

    Liu, Jia; Zhang, Yongming; Zhang, Qixing; Wang, Jinjun

    2018-03-01

    The complete scattering matrix for cement dust was measured as a function of scattering angle from 5° to 160° at a wavelength of 532 nm, as a representative of mineral dust of anthropogenic origin in urban areas. Other related characteristics of cement dust, such as particle size distribution, chemical composition, refractive index, and micromorphology, were also analyzed. For this objective, a newly improved apparatus was built and calibrated using water droplets. Measurements of water droplets were in good agreement with Lorenz-Mie calculations. To facilitate the direct applicability of measurements for cement dust in radiative transfer calculation, the synthetic scattering matrix was computed and defined over the full scattering angle range from 0° to 180°. The scattering matrices for cement dust and typical natural mineral dusts were found to be similar in trends and angular behaviors. Angular distributions of all matrix elements were confined to rather limited domains. To promote the application of light-scattering matrix in atmospheric observation and remote sensing, discrimination methods for various atmospheric particulates (cement dust, soot, smolder smoke, and water droplets) based on the angular distributions of their scattering matrix elements are discussed. The ratio -F12/F11 proved to be the most effective discrimination method when a single matrix element is employed; aerosol identification can be achieved based on -F12/F11 values at 90° and 160°. Meanwhile, the combinations of -F12/F11 with F22/F11 (or (F11 - F22)/(F11 + F22)) or -F12/F11 with F44/F11 at 160° can be used when multiple matrix elements at the same scattering angle are selected.

  20. Chinese mineral dust and anthropogenic aerosol inter-continental transport: a Greenland perspective

    Science.gov (United States)

    Bory, A.; Abouchami, W.; Galer, S.; Svensson, A.; Biscaye, P.

    2012-04-01

    Impurities contained in snow and ice layers in Greenland provide a record of the history of atmospheric dustiness and pollution in the Northern Hemisphere. The source of the particles deposited onto the ice cap may be investigated using specific intrinsic tracers. Provenance discrimination may then provide valuable constraints for the validation of atmospheric transport models as well as for the monitoring of natural and anthropogenic aerosols emissions at a global scale. Clay mineralogy combined with the strontium and neodymium isotope composition of the insoluble particles extracted from recent snow deposits at NorthGRIP (75.1°N, 042.3°W), for instance, enabled us to demonstrate that the Taklimakan desert of North-western China was the main source of mineral dust reaching central Greenland at present [Bory et al., EPSL, 2002 ; GRL, 2003a]. Here we report the lead isotopic signature of these snow-pit samples, covering the 1989-1995 and 1998-2001 time periods. Unradiogenic lead isotopic composition of our Greenland samples, compared to Asian dust isotopic fingerprints, implies that most of the insoluble lead reaching the ice cap is of anthropogenic origin. Lead isotopes reveal likely contributions from European/Canadian and, to a lesser extent, US sources, as well as a marked overprinted signature typical of Chinese anthropogenic lead sources. The relative contribution of the latter appears to have been increasing steadily over the last decade of the 20th century. Quantitative estimates suggest that, in addition to providing most of the dust, China may have already become the most important supplier of anthropogenic lead deposited in Greenland by the turn of the 20th to the 21st century. The close timing between dust and anthropogenic particles deposition onto the ice cap provides new insights for our understanding of Chinese aerosols transport to Greenland.

  1. Investigation of spatial and temporal metal atmospheric deposition in France through lichen and moss bioaccumulation over one century

    Energy Technology Data Exchange (ETDEWEB)

    Agnan, Y., E-mail: yannick.agnan@biogeochimie.fr; Séjalon-Delmas, N.; Claustres, A.; Probst, A., E-mail: anne.probst@ensat.fr

    2015-10-01

    Lichens and mosses were used as biomonitors to assess the atmospheric deposition of metals in forested ecosystems in various regions of France. The concentrations of 17 metals/metalloids (Al, As, Cd, Co, Cr, Cs, Cu, Fe, Mn, Ni, Pb, Sb, Sn, Sr, Ti, V, and Zn) indicated overall low atmospheric contamination in these forested environments, but a regionalism emerged from local contributions (anthropogenic activities, as well as local lithology). Taking into account the geochemical background and comparing to Italian data, the elements from both natural and anthropogenic activities, such as Cd, Pb, or Zn, did not show any obvious anomalies. However, elements mainly originating from lithogenic dust (e.g., Al, Fe, Ti) were more prevalent in sparse forests and in the Southern regions of France, whereas samples from dense forests showed an accumulation of elements from biological recycling (Mn and Zn). The combination of enrichment factors and Pb isotope ratios between current and herbarium samples indicated the historical evolution of metal atmospheric contamination: the high contribution of coal combustion beginning 150 years ago decreased at the end of the 20th century, and the influence of car traffic during the latter observed period decreased in the last few decades. In the South of France, obvious local influences were well preserved during the last century. - Highlights: • A century of metal deposition was assessed by lichens and mosses in France. • A regional forest cover-dependent geochemical background signature was evidenced. • The anthropogenic contribution was low but stronger in the North-Eastern region. • Changes in the nature of atmospheric deposition were evidenced since the 19th century. • Pb isotopes traced a conservative specific contamination in SW France over a century.

  2. Investigation of spatial and temporal metal atmospheric deposition in France through lichen and moss bioaccumulation over one century

    International Nuclear Information System (INIS)

    Agnan, Y.; Séjalon-Delmas, N.; Claustres, A.; Probst, A.

    2015-01-01

    Lichens and mosses were used as biomonitors to assess the atmospheric deposition of metals in forested ecosystems in various regions of France. The concentrations of 17 metals/metalloids (Al, As, Cd, Co, Cr, Cs, Cu, Fe, Mn, Ni, Pb, Sb, Sn, Sr, Ti, V, and Zn) indicated overall low atmospheric contamination in these forested environments, but a regionalism emerged from local contributions (anthropogenic activities, as well as local lithology). Taking into account the geochemical background and comparing to Italian data, the elements from both natural and anthropogenic activities, such as Cd, Pb, or Zn, did not show any obvious anomalies. However, elements mainly originating from lithogenic dust (e.g., Al, Fe, Ti) were more prevalent in sparse forests and in the Southern regions of France, whereas samples from dense forests showed an accumulation of elements from biological recycling (Mn and Zn). The combination of enrichment factors and Pb isotope ratios between current and herbarium samples indicated the historical evolution of metal atmospheric contamination: the high contribution of coal combustion beginning 150 years ago decreased at the end of the 20th century, and the influence of car traffic during the latter observed period decreased in the last few decades. In the South of France, obvious local influences were well preserved during the last century. - Highlights: • A century of metal deposition was assessed by lichens and mosses in France. • A regional forest cover-dependent geochemical background signature was evidenced. • The anthropogenic contribution was low but stronger in the North-Eastern region. • Changes in the nature of atmospheric deposition were evidenced since the 19th century. • Pb isotopes traced a conservative specific contamination in SW France over a century

  3. Aerosol deposition and suspension during a Texas dust storm

    International Nuclear Information System (INIS)

    Porch, W.M.; Lovill, J.E.

    1976-03-01

    It is important to understand deposition and suspension of aerosol by wind as separate phenomena. This is especially true for the case of a contaminated area of land, contributing toxic aerosol. Once the toxic particulates have left the contaminated area, they can only deposit, even though new non-toxic particulates are being suspended all around them. A fortunate meteorological situation and a site with fast response aerosol and wind instrumentation, allowed us to analyze deposition and suspension, as separate phenomena on the same data record during a Texas dust storm. The major results of this analysis can be summarized as follows: The size distribution of the soil particulates and the geometrical orientation of plowed furrows to the wind are important to the threshold velocity, beyond which particles will be suspended from bare soil. Thresholds this year for clay soil were almost double that for the previous year for sand soil; the relationship between aerosol flux and wind speed above threshold was less well defined than the sandy soil data. The relationship does seem to involve a lower exponent than the sandy soil data, which showed a flux that varied as about the sixth power of the wind speed

  4. Atmospheric transport, diffusion, and deposition of radioactivity

    International Nuclear Information System (INIS)

    Crawford, T.V.

    1969-01-01

    From a meteorological standpoint there are two types of initial sources for atmospheric diffusion from Plowshare applications. One is the continuous point-source plume - a slow, small leak from an underground engineering application. The other is the large cloud produced almost instantaneously from a cratering application. For the purposes of this paper the effluent from neither type has significant fall speed. Both are carried by the prevailing wind, but the statistics of diffusion for each type are different. The use of constant altitude, isobaric and isentropic techniques for predicting the mean path of the effluent is briefly discussed. Limited data are used to assess the accuracy of current trajectory forecast techniques. Diffusion of continuous point-source plumes has been widely studied; only a brief review is given of the technique used and the variability of their results with wind speed and atmospheric stability. A numerical model is presented for computing the diffusion of the 'instantaneously-produced' large clouds. This model accounts for vertical and diurnal changes in atmospheric turbulence, wet and dry deposition, and radioactivity decay. Airborne concentrations, cloud size, and deposition on the ground are calculated. Pre- and post-shot calculations of cloud center, ground level concentration of gross radioactivity, and dry and wet deposition of iodine-131 are compared with measurements on Cabriolet and Buggy. (author)

  5. Atmospheric transport, diffusion, and deposition of radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, T V [Lawrence Radiation Laboratory, Livermore, CA (United States)

    1969-07-01

    From a meteorological standpoint there are two types of initial sources for atmospheric diffusion from Plowshare applications. One is the continuous point-source plume - a slow, small leak from an underground engineering application. The other is the large cloud produced almost instantaneously from a cratering application. For the purposes of this paper the effluent from neither type has significant fall speed. Both are carried by the prevailing wind, but the statistics of diffusion for each type are different. The use of constant altitude, isobaric and isentropic techniques for predicting the mean path of the effluent is briefly discussed. Limited data are used to assess the accuracy of current trajectory forecast techniques. Diffusion of continuous point-source plumes has been widely studied; only a brief review is given of the technique used and the variability of their results with wind speed and atmospheric stability. A numerical model is presented for computing the diffusion of the 'instantaneously-produced' large clouds. This model accounts for vertical and diurnal changes in atmospheric turbulence, wet and dry deposition, and radioactivity decay. Airborne concentrations, cloud size, and deposition on the ground are calculated. Pre- and post-shot calculations of cloud center, ground level concentration of gross radioactivity, and dry and wet deposition of iodine-131 are compared with measurements on Cabriolet and Buggy. (author)

  6. Seasonal and spatial variations of atmospheric trace elemental deposition in the Aliaga industrial region, Turkey

    Science.gov (United States)

    Kara, Melik; Dumanoglu, Yetkin; Altiok, Hasan; Elbir, Tolga; Odabasi, Mustafa; Bayram, Abdurrahman

    2014-11-01

    Atmospheric bulk deposition (wet + dry deposition) samples (n = 40) were collected concurrently at ten sites in four seasons between June 2009 and April 2010 in the Aliaga heavily industrialized region, Turkey, containing a number of significant air pollutant sources. Analyses of trace elements were carried out using inductively coupled plasma-mass spectrometry (ICP-MS). While there were significant differences in the particulate matter (PM) deposition fluxes among the sampling sites, seasonal variations were not statistically significant (Kruskal-Wallis test, p < 0.05). Both PM deposition and elemental fluxes were increased at the sampling sites in the vicinity of industrial activities. The crustal elements (i.e., Ca, Mg) and some anthropogenic elements (such as Fe, Zn, Mn, Pb, Cu, and Cr) were high, and the highest fluxes were mostly measured in summer and winter seasons. The enrichment factor (EF) and principal component analysis (PCA) was applied to the data to determine the possible sources in the study area. High EF values were obtained for the anthropogenic elements such as Ag, Cd, Zn, Pb, Cu and Sb. The possible sources were identified as anthropogenic sources (i.e., iron-steel production) (45.4%), crustal and re-suspended dust (27.1%), marine aerosol (7.9%), and coal and wood combustion (8.2%). Thus, the iron-steel production and its related activities were found to be the main pollutant sources for this region.

  7. A GCM Study of Responses of the Atmospheric Water Cycle of West Africa and the Atlantic to Saharan Dust Radiative Forcing

    Science.gov (United States)

    Lau, K. M.; Kim, K. M.; Sud, Y. C.; Walker, G. K.

    2009-01-01

    The responses of the atmospheric water cycle and climate of West Africa and the Atlantic to radiative forcing of Saharan dust are studied using the NASA finite volume general circulation model (fvGCM), coupled to a mixed layer ocean. We find evidence of an "elevated heat pump" (EHP) mechanism that underlines the responses of the atmospheric water cycle to dust forcing as follow. During the boreal summerr, as a result of large-scale atmospheric feedback triggered by absorbing dust aerosols, rainfall and cloudiness are ehanIed over the West Africa/Eastern Atlantic ITCZ, and suppressed over the West Atlantic and Caribbean region. Shortwave radiation absorption by dust warms the atmosphere and cools the surface, while longwave has the opposite response. The elevated dust layer warms the air over West Africa and the eastern Atlantic. As the warm air rises, it spawns a large-scale onshore flow carrying the moist air from the eastern Atlantic and the Gulf of Guinea. The onshore flow in turn enhances the deep convection over West Africa land, and the eastern Atlantic. The condensation heating associated with the ensuing deep convection drives and maintains an anomalous large-scale east-west overturning circulation with rising motion over West Africa/eastern Atlantic, and sinking motion over the Caribbean region. The response also includes a strengthening of the West African monsoon, manifested in a northward shift of the West Africa precipitation over land, increased low-level westerlies flow over West Africa at the southern edge of the dust layer, and a near surface westerly jet underneath the dust layer overr the Sahara. The dust radiative forcing also leads to significant changes in surface energy fluxes, resulting in cooling of the West African land and the eastern Atlantic, and warming in the West Atlantic and Caribbean. The EHP effect is most effective for moderate to highly absorbing dusts, and becomes minimized for reflecting dust with single scattering albedo at0

  8. Mechanisms and Effects of Summertime Transport of African Dust Through the Tokar Mountain Gap to the Red Sea and Arabian Peninsula

    Science.gov (United States)

    Kalenderski, S.; Stenchikov, G. L.

    2015-12-01

    Very high dust loading over the Red Sea region in summer strongly affects the nutrition balance and thermal and dynamic regimes of the sea. The observations suggest that small-scale local dynamic and orographic effects, from both the Arabian and African sides, strongly contribute to dust plume formation. To better understand and quantify these processes we present here the first high resolution modeling study of the dust outbreak phenomena in June 2012 over East Africa, the Red Sea, and the Arabian Peninsula using the WRF-Chem model. We identified several dust generating dynamical processes that range from convective to synoptic scales, including: synoptic cyclones, nocturnal low-level jets, and cold pools of mesoscale convective systems. The simulations reveal an eastward transport of African dust across the Red Sea. Over the northern part of the Red Sea most of the dust transport occurs beyond 2 km above ground level and is strengthened by a pressure gradient formed by low pressure over the eastern Mediterranean and high pressure over the Arabian Peninsula. Across the central and southern parts of the Red Sea dust is mostly transported below 2 km height. During the study period dust is a dominant contributor (87%) to aerosol optical depth (AOD), producing a domain average cooling effect of -12.1 W m-2 at surface, a warming of 7.1 W m-2 in the atmosphere, and a residual cooling of -4.9 W m-2 at the top of the atmosphere. WRF-Chem simulations demonstrate that both dry and wet deposition processes contribute significantly to dust removal from the atmosphere. During the dust outbreak 49.2 Tg of dust deposits within the calculation domain, which is approximately 90% of the total dust emission of 54.5 Tg. Model results compare well with available ground-based and satellite observations but generally underestimate the observed AOD maximum values.

  9. First Results from NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE)

    Science.gov (United States)

    Elphic, R. C.; Colaprete, A.; Horanyi, M.; Mahaffy, P. R.; Delory, G. T.; Noble, S. K.; Boroson, D.; Hine, B.; Salute, J.

    2013-12-01

    As of early August, 2013, the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission is scheduled for launch on a Minotaur V rocket from Wallops Flight Facility during a five-day launch period that opens on Sept. 6, 2013 (early Sept. 7 UTC). LADEE will address 40 year-old mysteries of the lunar atmosphere and the question of levitated lunar dust. It will also pioneer the next generation of optical space communications. LADEE will assess the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions. LADEE will also determine whether dust is present in the lunar exosphere, and reveal its sources and variability. These investigations are relevant to our understanding of surface boundary exospheres and dust processes occurring at many objects throughout the solar system, address questions regarding the origin and evolution of lunar volatiles, and have potential implications for future exploration activities. Following a successful launch, LADEE will enter a series of phasing orbits, which allows the spacecraft to arrive at the Moon at the proper time and phase. This approach accommodates any dispersion in the Minotaur V launch injection. LADEE's arrival at the moon depends on the launch date, but with the Sept. 6 launch date it should arrive at the Moon in early October. The spacecraft will approach the moon from its leading edge, travel behind the Moon out of sight of the Earth, and then re-emerge and execute a three-minute Lunar Orbit Insertion maneuver. This will place LADEE in an elliptical retrograde equatorial orbit with an orbital period of approximately 24 hours. A series of maneuvers is then performed to reduce the orbit to become nearly circular with a 156-mile (250-kilometer) altitude. Spacecraft checkout and science instrument commissioning will commence in early-October and will nominally span 30 days but can be extended for an additional 30

  10. Electrostatic Precipitation of Dust in the Martian Atmosphere: Implications for the Utilization of Resources During Future Manned Exploration Missions

    Science.gov (United States)

    Calle, Carlos I.; Clements, Judson S.; Thompson, Samuel M.; Cox, Nathan D.; Hogue, Michael D.; Johansen, Michael R.; Williams, Blakeley S.

    2011-01-01

    Future human missions to Mars will require the utilization of local resources for oxygen, fuel. and water. The In Situ Resource Utilization (ISRU) project is an active research endeavor at NASA to develop technologies that can enable cost effective ways to live off the land. The extraction of oxygen from the Martian atmosphere. composed primarily of carbon dioxide, is one of the most important goals of the Mars ISRU project. The main obstacle is the relatively large amount of dust present in the Martian atmosphere. This dust must be efficiently removed from atmospheric gas intakes for ISRU processing chambers. A common technique to achieve this removal on earth is by electrostatic precipitation, where large electrostatic fields are established in a localized region to precipitate and collect previously charged dust particles. This technique is difficult to adapt to the Martian environment, with an atmospheric pressure of about one-hundredth of the terrestrial atmosphere. At these low pressures. the corona discharges required to implant an electrostatic charge to the particles to be collected is extremely difficult to sustain and the corona easily becomes biopolar. which is unsuitable for particle charging. In this paper, we report on our successful efforts to establish a stable corona under Martian simulated conditions. We also present results on dust collecting efficiencies with an electrostatic precipitator prototype that could be effectively used on a future mission to the red planet

  11. Sahara Dust Cloud

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Dust Particles Click on the image for Quicktime movie from 7/15-7/24 A continent-sized cloud of hot air and dust originating from the Sahara Desert crossed the Atlantic Ocean and headed towards Florida and the Caribbean. A Saharan Air Layer, or SAL, forms when dry air and dust rise from Africa's west coast and ride the trade winds above the Atlantic Ocean. These dust clouds are not uncommon, especially during the months of July and August. They start when weather patterns called tropical waves pick up dust from the desert in North Africa, carry it a couple of miles into the atmosphere and drift westward. In a sequence of images created by data acquired by the Earth-orbiting Atmospheric Infrared Sounder ranging from July 15 through July 24, we see the distribution of the cloud in the atmosphere as it swirls off of Africa and heads across the ocean to the west. Using the unique silicate spectral signatures of dust in the thermal infrared, AIRS can detect the presence of dust in the atmosphere day or night. This detection works best if there are no clouds present on top of the dust; when clouds are present, they can interfere with the signal, making it much harder to detect dust as in the case of July 24, 2005. In the Quicktime movie, the scale at the bottom of the images shows +1 for dust definitely detected, and ranges down to -1 for no dust detected. The plots are averaged over a number of AIRS observations falling within grid boxes, and so it is possible to obtain fractional numbers. [figure removed for brevity, see original site] Total Water Vapor in the Atmosphere Around the Dust Cloud Click on the image for Quicktime movie The dust cloud is contained within a dry adiabatic layer which originates over the Sahara Desert. This Saharan Air Layer (SAL) advances Westward over the Atlantic Ocean, overriding the cool, moist air nearer the surface. This burst of very dry air is visible in the AIRS retrieved total water

  12. Integrative Analysis of Desert Dust Size and Abundance Suggests Less Dust Climate Cooling

    Science.gov (United States)

    Kok, Jasper F.; Ridley, David A.; Zhou, Qing; Miller, Ron L.; Zhao, Chun; Heald, Colette L.; Ward, Daniel S.; Albani, Samuel; Haustein, Karsten

    2017-01-01

    Desert dust aerosols affect Earths global energy balance through interactions with radiation, clouds, and ecosystems. But the magnitudes of these effects are so uncertain that it remains unclear whether atmospheric dust has a net warming or cooling effect on global climate. Consequently, it is still uncertain whether large changes in atmospheric dust loading over the past century have slowed or accelerated anthropogenic climate change, and the climate impact of possible future alterations in dust loading is similarly disputed. Here we use an integrative analysis of dust aerosol sizes and abundance to constrain the climatic impact of dust through direct interactions with radiation. Using a combination of observational, experimental, and model data, we find that atmospheric dust is substantially coarser than represented in current climate models. Since coarse dust warms global climate, the dust direct radiative effect (DRE) is likely less cooling than the 0.4 W m superscript 2 estimated by models in a current ensemble. We constrain the dust DRE to -0.20 (-0.48 to +0.20) W m superscript 2, which suggests that the dust DRE produces only about half the cooling that current models estimate, and raises the possibility that dust DRE is actually net warming the planet.

  13. Deposition of atmospheric 210Pb and total beta activity in Finland

    International Nuclear Information System (INIS)

    Jussi Paatero; Murat Buyukay; Juha Hatakka; Kaisa Vaaramaa; Jukka Lehto

    2015-01-01

    The seasonal and regional variation of the atmospheric 210 Pb deposition in Finland was studied. The 210 Pb activity concentration in precipitation shows a decreasing trend from southeastern Finland north-westwards. An average deposition of 40 Bq/m 2 during a 12 months period was observed. The deposition of 210 Pb shows a seasonal variation with minimum in spring and maximum in autumn and winter. The specific activity of 210 Pb (activity of 210 Pb per unit mass of stable lead) in the atmosphere has returned to the level prior to World War II owing to the reduced lead emissions into the atmosphere. (author)

  14. Atmospheric dust deposition on soils around an abandoned fluorite mine (Hammam Zriba, NE Tunisia).

    Science.gov (United States)

    Djebbi, Chaima; Chaabani, Fredj; Font, Oriol; Queralt, Ignasi; Querol, Xavier

    2017-10-01

    The present study focuses on the eolian dispersion and dust deposition, of major and trace elements in soils in a semi-arid climate, around an old fluorite (CaF 2 ) and barite (BaSO 4 ) mine, located in Hammam Zriba in Northern Tunisia. Ore deposits from this site contain a high amount of metal sulphides constituting heavy metal pollution in the surrounding environment. Samples of waste from the surface of mine tailings and agricultural topsoil samples in the vicinity of the mine were collected. The soil samples and a control sample from unpolluted area, were taken in the direction of prevailing northwest and west winds. Chemical analysis of these solids was performed using both X-ray fluorescence and X-ray diffraction. To determine the transfer from mine wastes to the soils, soluble fraction was performed by inductively coupled plasma and ionic chromatography. The fine grained size fraction of the un-restored tailings, still contained significant levels of barium, strontium, sulphur, fluorine, zinc and lead with mean percentages (wt%) of 30 (calculated as BaO), 13 (as SrO), 10 (as SO 3 ), 4 (F), 2 (Zn) and 1.2 (Pb). Also, high concentrations of cadmium (Cd), arsenic (As) and mercury (Hg) were found with an averages of 36, 24 and 1.2mgkg -1 , respectively. As a result of the eolian erosion of the tailings and their subsequent wind transport, the concentrations of Ba, Sr, S, F, Zn and Pb were extremely high in the soils near to the tailings dumps, with 5%, 4%, 7%, 1%, 0.8% and 0.2%, respectively. Concentration of major pollutants decreases with distance, but they were high even in the farthest samples. Same spatial distribution was observed for Cd, As and Hg. While, the other elements follow different spatial patterns. The leaching test revealed that most elements in the mining wastes, except for the anions, had a low solubility despite their high bulk concentrations. According the 2003/33/CE Decision Threshold, some of these tailings samples were considered as

  15. Assessment of atmospheric heavy metal deposition in the Tarkwa gold mining area of Ghana using epiphytic lichens

    Energy Technology Data Exchange (ETDEWEB)

    Boamponsem, L.K. [Department of Theoretical and Applied Biology, College of Science, Kwame Nkrumah University of Science and Technology, University Post Office, Kumasi (Ghana); Department of Laboratory Technology, School of Physical Sciences, University of Cape Coast, Cape Coast (Ghana); Adam, J.I. [Department of Theoretical and Applied Biology, College of Science, Kwame Nkrumah University of Science and Technology, University Post Office, Kumasi (Ghana); Dampare, S.B., E-mail: dampare@cc.okayama-u.ac.j [National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon-Accra (Ghana); Department of Earth Sciences, Okayama University, 1-1, Tsushima-Naka 3-Chome, Okayama 700-8530 (Japan); Nyarko, B.J.B. [National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon-Accra (Ghana); Essumang, D.K. [Department of Laboratory Technology, School of Physical Sciences, University of Cape Coast, Cape Coast (Ghana)

    2010-05-01

    In situ lichens (Parmelia sulcata) have been used to assess atmospheric heavy metal deposition in the Tarkwa gold mining area of Ghana. Total heavy metal concentrations obtained by instrumental neutron activation analysis (INAA) were processed by positive matrix factorization (PMF), principal component (PCA) and cluster (CA) analyses. The pollution index factor (PIF) and pollution load index (PLI) criteria revealed elevated levels of Sb, Mn, Cu, V, Al, Co, Hg, Cd and As in excess of the background values. The PCA and CA classified the examined elements into anthropogenic and natural sources, and PMF resolved three primary sources/factors: agricultural activities and other non-point anthropogenic origins, natural soil dust, and gold mining activities. Gold mining activities, which are characterized by dominant species of Sb, Th, As, Hg, Cd and Co, and significant contributions of Cu, Al, Mn and V, are the main contributors of heavy metals in the atmosphere of the study area.

  16. Assessment of atmospheric heavy metal deposition in the Tarkwa gold mining area of Ghana using epiphytic lichens

    International Nuclear Information System (INIS)

    Boamponsem, L.K.; Adam, J.I.; Dampare, S.B.; Nyarko, B.J.B.; Essumang, D.K.

    2010-01-01

    In situ lichens (Parmelia sulcata) have been used to assess atmospheric heavy metal deposition in the Tarkwa gold mining area of Ghana. Total heavy metal concentrations obtained by instrumental neutron activation analysis (INAA) were processed by positive matrix factorization (PMF), principal component (PCA) and cluster (CA) analyses. The pollution index factor (PIF) and pollution load index (PLI) criteria revealed elevated levels of Sb, Mn, Cu, V, Al, Co, Hg, Cd and As in excess of the background values. The PCA and CA classified the examined elements into anthropogenic and natural sources, and PMF resolved three primary sources/factors: agricultural activities and other non-point anthropogenic origins, natural soil dust, and gold mining activities. Gold mining activities, which are characterized by dominant species of Sb, Th, As, Hg, Cd and Co, and significant contributions of Cu, Al, Mn and V, are the main contributors of heavy metals in the atmosphere of the study area.

  17. Coupling Mars' Dust and Water Cycles: Effects on Dust Lifting Vigor, Spatial Extent and Seasonality

    Science.gov (United States)

    Kahre, M. A.; Hollingsworth, J. L.; Haberle, R. M.; Montmessin, F.

    2012-01-01

    The dust cycle is an important component of Mars' current climate system. Airborne dust affects the radiative balance of the atmosphere, thus greatly influencing the thermal and dynamical state of the atmosphere. Dust raising events on Mars occur at spatial scales ranging from meters to planet-wide. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. Generally, a low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading were observed by MGS/TES: one peak occurred before northern winter solstice at Ls 200-240, and one peak occurred after northern winter solstice at L(sub s) 305-340. These maxima in dust loading are thought to be associated with transient eddy activity in the northern hemisphere, which has been observed to maximize pre- and post-solstice. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading. Interactive dust cycle studies typically have not included the formation of water ice clouds or their radiative effects. Water ice clouds can influence the dust cycle by scavenging dust from atmosphere and by interacting with solar and infrared radiation

  18. Ablation and chemical alteration of cosmic dust particles during entry into the earth`s atmosphere

    Digital Repository Service at National Institute of Oceanography (India)

    Rudraswami, N.G.; ShyamPrasad, M.; Dey, S.; Plane, J.M.C.; Feng, W.; Carrillo-Sanchez, J.D.; Fernandes, D.

    Most dust-sized cosmic particles undergo ablation and chemical alteration during atmospheric entry, which alters their original properties. A comprehensive understanding of this process is essential in order to decipher their pre...

  19. Spatial variation in the flux of atmospheric deposition and its ecological effects in arid Asia

    Science.gov (United States)

    Jiao, Linlin; Wang, Xunming; Li, Danfeng

    2018-06-01

    Atmospheric deposition is one of the key land surface processes, and plays important roles in regional ecosystems and global climate change. Previous studies have focused on the magnitude of and the temporal and spatial variations in the flux of atmospheric deposition, and the composition of atmospheric deposition on a local scale. However, there have been no comprehensive studies of atmospheric deposition on a regional scale and its ecological effects in arid Asia. The temporal and spatial patterns, composition of atmospheric deposition, and its potential effects on regional ecosystems in arid Asia are investigated in this study. The results show that the annual deposition flux is high on the Turan Plain, Aral Sea Desert, and Tarim Basin. The seasonal deposition flux also varies remarkably among different regions. The Tarim Basin shows higher deposition flux in both spring and summer, southern Mongolian Plateau has a higher deposition flux in spring, and the deposition flux of Iran Plateau is higher in summer. Multiple sources of elements in deposited particles are identified. Calcium, iron, aluminum, and magnesium are mainly derived from remote regions, while zinc, copper and lead have predominantly anthropogenic sources. Atmospheric deposition can provide abundant nutrients to vegetation and consequently play a role in the succession of regional ecosystems by affecting the structure, function, diversity, and primary production of the vegetation, especially the exotic or short-lived opportunistic species in arid Asia. Nevertheless, there is not much evidence of the ecological effects of atmospheric deposition on the regional and local scale. The present results may help in further understanding the mechanism of atmospheric deposition as well as providing a motivation for the protection of the ecological environment in arid Asia.

  20. Occurrence of lead, copper, zinc, and arsenic compounds in atmospheric dusts, and the sources of these impurities

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, J T; Bloxam, H C.L.

    1933-06-30

    The authors indicate that the combustion of fossil fuels such as coal for industrial and electrical power causes the deposition of zinc, arsenic, copper, and lead which are then found in the dust and soots of most urban areas. They express the fear that these dusts, if not poisonous, may be expected to be injurious to the health of man, animals, and plants.

  1. Atmospheric acidification of mineral aerosols: a source of bioavailable phosphorus for the oceans

    Directory of Open Access Journals (Sweden)

    A. Nenes

    2011-07-01

    Full Text Available Primary productivity of continental and marine ecosystems is often limited or co-limited by phosphorus. Deposition of atmospheric aerosols provides the major external source of phosphorus to marine surface waters. However, only a fraction of deposited aerosol phosphorus is water soluble and available for uptake by phytoplankton. We propose that atmospheric acidification of aerosols is a prime mechanism producing soluble phosphorus from soil-derived minerals. Acid mobilization is expected to be pronounced where polluted and dust-laden air masses mix. Our hypothesis is supported by the soluble compositions and reconstructed pH values for atmospheric particulate matter samples collected over a 5-yr period at Finokalia, Crete. In addition, at least tenfold increase in soluble phosphorus was observed when Saharan soil and dust were acidified in laboratory experiments which simulate atmospheric conditions. Aerosol acidification links bioavailable phosphorus supply to anthropogenic and natural acidic gas emissions, and may be a key regulator of ocean biogeochemistry.

  2. The 7-13 March 2006 major Saharan outbreak: Multiproxy characterization of mineral dust deposited on the West African margin

    NARCIS (Netherlands)

    Skonieczny, C.; Bory, A.; Bout-Roumazeilles, V.; Abouchami, W.; Galer, S.J.G.; Crosta, X.; Stuut, J.B.; Meyer, I.; Chiapello, I.; Podvin, T.; Chatenet, B.; Diallo, A.; Ndiaye, T.

    2011-01-01

    Mineral dust deposits were collected at Mbour, Senegal, throughout the spring of 2006 and especially during the well-documented March 7-13 large Saharan dust outbreak. During this 7-day period, significant changes in mass flux, grain-size, clay mineralogy and Sr and Nd isotopic compositions were

  3. Dust devil generation

    International Nuclear Information System (INIS)

    G Onishchenko, O; A Pokhotelov, O; Horton, W; Stenflo, L

    2014-01-01

    The equations describing axi-symmetric nonlinear internal gravity waves in an unstable atmosphere are derived. A hydrodynamic model of a dust devil generation mechanism in such an atmosphere is investigated. It is shown that in an unstably stratified atmosphere the convective plumes with poloidal motion can grow exponentially. Furthermore, it is demonstrated that these convective plumes in an atmosphere with weak large scale toroidal motion are unstable with respect to three-dimensional dust devil generation. (papers)

  4. The annual averaged atmospheric dispersion factor and deposition factor according to methods of atmospheric stability classification

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae Sun; Jeong, Hyo Joon; Kim, Eun Han; Han, Moon Hee; Hwang, Won Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-09-15

    This study analyzes the differences in the annual averaged atmospheric dispersion factor and ground deposition factor produced using two classification methods of atmospheric stability, which are based on a vertical temperature difference and the standard deviation of horizontal wind direction fluctuation. Daedeok and Wolsong nuclear sites were chosen for an assessment, and the meteorological data at 10 m were applied to the evaluation of atmospheric stability. The XOQDOQ software program was used to calculate atmospheric dispersion factors and ground deposition factors. The calculated distances were chosen at 400 m, 800 m, 1,200 m, 1,600 m, 2,400 m, and 3,200 m away from the radioactive material release points. All of the atmospheric dispersion factors generated using the atmospheric stability based on the vertical temperature difference were shown to be higher than those from the standard deviation of horizontal wind direction fluctuation. On the other hand, the ground deposition factors were shown to be same regardless of the classification method, as they were based on the graph obtained from empirical data presented in the Nuclear Regulatory Commission's Regulatory Guide 1.111, which is unrelated to the atmospheric stability for the ground level release. These results are based on the meteorological data collected over the course of one year at the specified sites; however, the classification method of atmospheric stability using the vertical temperature difference is expected to be more conservative.

  5. Radiative effects of light-absorbing particles deposited in snow over Himalayas using WRF-Chem simulations

    Science.gov (United States)

    Sarangi, C.; Qian, Y.; Painter, T. H.; Liu, Y.; Lin, G.; Wang, H.

    2017-12-01

    Radiative forcing induced by light-absorbing particles (LAP) deposited on snow is an important surface forcing. It has been debated that an aerosol-induced increase in atmospheric and surface warming over Tibetan Plateau (TP) prior to the South Asian summer monsoon can have a significant effect on the regional thermodynamics and South Asian monsoon circulation. However, knowledge about the radiative effects due to deposition of LAP in snow over TP is limited. In this study we have used a high-resolution WRF-Chem (coupled with online chemistry and snow-LAP-radiation model) simulations during 2013-2014 to estimate the spatio-temporal variation in LAP deposition on snow, specifically black carbon (BC) and dust particles, in Himalayas. Simulated distributions in meteorology, aerosol concentrations, snow albedo, snow grain size and snow depth are evaluated against satellite and in-situ measurements. The spatio-temporal change in snow albedo and snow grain size with variation in LAP deposition is investigated and the resulting shortwave LAP radiative forcing at surface is calculated. The LAP-radiative forcing due to aerosol deposition, both BC and dust, is higher in magnitude over Himalayan slopes (terrain height below 4 km) compared to that over TP (terrain height above 4 km). We found that the shortwave aerosol radiative forcing efficiency at surface due to increase in deposited mass of BC particles in snow layer ( 25 (W/m2)/ (mg/m2)) is manifold higher than the efficiency of dust particles ( 0.1 (W/m2)/ (mg/m2)) over TP. However, the radiative forcing of dust deposited in snow is similar in magnitude (maximum 20-30 W/m2) to that of BC deposited in snow over TP. This is mainly because the amount of dust deposited in snow over TP can be about 100 times greater than the amount of BC deposited in snow during polluted conditions. The impact of LAP on surface energy balance, snow melting and atmospheric thermodynamics is also examined.

  6. Millennial-scale changes in atmospheric CO2 levels linked to the Southern Ocean carbon isotope gradient and dust flux

    Science.gov (United States)

    Ziegler, Martin; Diz, Paula; Hall, Ian R.; Zahn, Rainer

    2013-06-01

    The rise in atmospheric CO2 concentrations observed at the end of glacial periods has, at least in part, been attributed to the upwelling of carbon-rich deep water in the Southern Ocean. The magnitude of outgassing of dissolved CO2, however, is influenced by the biological fixation of upwelled inorganic carbon and its transfer back to the deep sea as organic carbon. The efficiency of this biological pump is controlled by the extent of nutrient utilization, which can be stimulated by the delivery of iron by atmospheric dust particles. Changes in nutrient utilization should be reflected in the δ13C gradient between intermediate and deep waters. Here we use the δ13C values of intermediate- and bottom-dwelling foraminifera to reconstruct the carbon isotope gradient between thermocline and abyssal water in the subantarctic zone of the South Atlantic Ocean over the past 360,000 years. We find millennial-scale oscillations of the carbon isotope gradient that correspond to changes in dust flux and atmospheric CO2 concentrations as reported from Antarctic ice cores. We interpret this correlation as a relationship between the efficiency of the biological pump and fertilization by dust-borne iron. As the correlation is exponential, we suggest that the sensitivity of the biological pump to dust-borne iron fertilization may be increased when the background dust flux is low.

  7. Zn isotope study of atmospheric emissions and dry depositions within a 5 km radius of a Pb-Zn refinery

    Science.gov (United States)

    Mattielli, Nadine; Petit, Jérôme C. J.; Deboudt, Karine; Flament, Pascal; Perdrix, Esperanza; Taillez, Aurélien; Rimetz-Planchon, Juliette; Weis, Dominique

    The present paper examines the use of zinc isotopes as tracers of atmospheric sources and focuses on the potential fractionation of Zn isotopes through anthropogenic processes. In order to do so, Zn isotopic ratios are measured in enriched ores and airborne particles associated with pyrometallurgical activities of one of the major Pb-Zn refineries in France. Supporting the isotopic investigation, this paper also compares morphological and chemical characteristics of Zn particles collected on dry deposition plates ("environmental samples") placed within a 5 km radius of the smelter, with those of Zn particles collected inside the plant ("process samples"), i.e. dust collected from the main exhaust system of the plant. To ensure a constant isotopic "supply", the refinery processed a specific set of ores during the sampling campaigns, as agreed with the executive staff of the plant. Enriched ores and dust produced by the successive Zn extraction steps show strong isotope fractionation (from -0.66 to +0.22‰) mainly related to evaporation processes within the blast furnaces. Dust from the main chimney displays a δ 66Zn value of -0.67‰. Application of the Rayleigh equation to evaluate the fractionation factor associated with the Zn vapor produced after a free evaporation gives a range of αore/vapor from 1.0004 to 1.0008. The dry deposits, collected on plates downwind of the refinery, display δ 66Zn variations of up to +0.7‰. However, it is to be noted that between 190 and 1250 m from the main chimney of the refinery, the dry deposits show a high level of large (>10 μm) Zn, S, Fe and O bearing aggregates characterized by positive δ 66Zn values (+0.02 to +0.19‰). These airborne particles probably derive from the re-suspension of slag heaps and local emissions from the working-units. In contrast, from 1720 to 4560 m, the dry deposits are comprised of small (PM10) particles, including spherical Zn-bearing aggregates, showing negative δ 66Zn values (-0.52 to -0

  8. Ignition of Coal Dust from the Tomsk Region Talovsky Deposit by Air Flow

    Directory of Open Access Journals (Sweden)

    Chebochakova Diana A.

    2015-01-01

    Full Text Available This paper focuses on the experimental studies of the ignition characteristics of brown coal dust particles from the Tomsk region Talovsky deposit under the conditions of convective heating. The boundary conditions of combustion initiation have been established. The approximation dependence of ignition delay time from the temperature of a heat source has been found.

  9. Global Modeling Study of the Bioavailable Atmospheric Iron Supply to the Global Ocean

    Science.gov (United States)

    Myriokefalitakis, S.; Krol, M. C.; van Noije, T.; Le Sager, P.

    2017-12-01

    Atmospheric deposition of trace constituents acts as a nutrient source to the open ocean and affect marine ecosystem. Dust is known as a major source of nutrients to the global ocean, but only a fraction of these nutrients is released in a bioavailable form that can be assimilated by the marine biota. Iron (Fe) is a key micronutrient that significantly modulates gross primary production in the High-Nutrient-Low-Chlorophyll (HNLC) oceans, where macronutrients like nitrate are abundant, but primary production is limited by Fe scarcity. The global atmospheric Fe cycle is here parameterized in the state-of-the-art global Earth System Model EC-Earth. The model takes into account the primary emissions of both insoluble and soluble Fe forms, associated with mineral dust and combustion aerosols. The impact of atmospheric acidity and organic ligands on mineral dissolution processes, is parameterized based on updated experimental and theoretical findings. Model results are also evaluated against available observations. Overall, the link between the labile Fe atmospheric deposition and atmospheric composition changes is here demonstrated and quantified. This work has been financed by the Marie-Curie H2020-MSCA-IF-2015 grant (ID 705652) ODEON (Online DEposition over OceaNs; modeling the effect of air pollution on ocean bio-geochemistry in an Earth System Model).

  10. Modelling atmospheric deposition flux of Cadmium and Lead in urban areas

    International Nuclear Information System (INIS)

    Cherin, Nicolas

    2017-01-01

    According to WHO, air pollution is responsible for more than 3.7 million premature deaths each year (OMS, 2014). Moreover, among these deaths, more than 70 within urban areas. Consequently, the health and environmental impacts of pollutants within these urban areas are of great concern in air quality studies. The deposition fluxes of air pollutants, which can be significant near sources of pollution, have rarely been modeled within urban areas. Historically, atmospheric deposition studies have focused mostly on remote areas to assess the potential impacts on ecosystems of acid deposition and nitrogen loading. Therefore, current atmospheric deposition models may not be suitable to simulate deposition fluxes in urban areas, which include complex surface geometries and diverse land use types. Atmospheric dry deposition is typically modeled using an average roughness length, which depends on land use. This classical roughness-length approach cannot account for the spatial variability of dry deposition in complex settings such as urban areas. Urban canopy models have been developed to parameterize momentum and heat transfer. We extend this approach here to mass transfer, and a new dry deposition model based on the urban canyon concept is presented. It uses a local mixing-length parameterization of turbulence within the canopy, and a description of the urban canopy via key parameters to provide spatially distributed dry deposition fluxes. This approach provides spatially distributed dry deposition fluxes depending on surfaces (streets, walls, roofs) and flow regimes (recirculation and ventilation) within the urban area. (author) [fr

  11. Dust pollution of the atmosphere in the vicinity of coal-fired power plant (Omsk City, Russia)

    Science.gov (United States)

    Talovskaya, Anna V.; Raputa, Vladimir F.; Litay, Victoriya V.; Yazikov, Egor G.; Yaroslavtseva, Tatyana V.; Mikhailova, Kseniya Y.; Parygina, Irina A.; Lonchakova, Anna D.; Tretykova, Mariya I.

    2015-11-01

    The article shows the results of dust pollution level of air in the vicinity of coal-fired power plant of Omsk city on the base of study snow cover pollution. The samples were collected west-, east- and northeastwards at a distance of 0,75-6 km from the chimney for range-finding of dust emission transfer. The research findings have shown the dust load changes from 53 till 343 mg•(m2·day)-1 in the vicinity of power plant. The ultimate dust load was detected at a distance of 3-3,5 km. On the basis of asymptotics of equation solution for impurity transfer, we have made numerical analysis of dust load rate. With the usage of ground-based facilities and satellites we have determined the wind shifts in the atmospheric boundary layer have a significant impact on the field forming of long-term dustfall.

  12. Applying geochemical signatures of atmospheric dust to distinguish current mine emissions from legacy sources

    Science.gov (United States)

    Dong, Chenyin; Taylor, Mark Patrick

    2017-07-01

    Resolving the source of environmental contamination is the critical first step in remediation and exposure prevention. Australia's oldest silver-zinc-lead mine at Broken Hill (>130 years old) has generated a legacy of contamination and is associated with persistent elevated childhood blood lead (Pb) levels. However, the source of environmental Pb remains in dispute: current mine emissions; remobilized mine-legacy lead in soils and dusts; and natural lead from geological weathering of the gossan ore body. Multiple lines of evidence used to resolve this conundrum at Broken Hill include spatial and temporal variations in dust Pb concentrations and bioaccessibility, Pb isotopic compositions, particle morphology and mineralogy. Total dust Pb loading (mean 255 μg/m2/day) and its bioaccessibility (mean 75% of total Pb) is greatest adjacent to the active mining operations. Unweathered galena (PbS) found in contemporary dust deposits contrast markedly to Pb-bearing particles from mine-tailings and weathered gossan samples. Contemporary dust particles were more angular, had higher sulfur content and had little or no iron and manganese. Dust adjacent to the mine has Pb isotopic compositions (208Pb/207Pb: 2.3197; 206Pb/207Pb: 1.0406) that are a close match (99%) to the ore body with values slightly lower (94%) at the edge of the city. The weight of evidence supports the conclusion that contemporary dust Pb contamination in Broken Hill is sourced primarily from current mining activities and not from weathering or legacy sources.

  13. Spatial atmospheric atomic layer deposition of alxzn1-xo

    NARCIS (Netherlands)

    Illiberi, A.; Scherpenborg, R.; Wu, Y.; Roozeboom, F.; Poodt, P.

    2013-01-01

    The possibility of growing multicomponent oxides by spatial atmospheric atomic layer deposition has been investigated. To this end, Al xZn1-xO films have been deposited using diethyl zinc (DEZ), trimethyl aluminum (TMA), and water as Zn, Al, and O precursors, respectively. When the metal precursors

  14. Deposition and Resuspension of Particles

    DEFF Research Database (Denmark)

    Lengweiler, P.; Nielsen, Peter V.; Moser, A.

    A new experimental set-up to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airBorne dust concentration considerably. As a basis for developing methods to eliminate dust related problems in rooms......, there is a need for better understanding of the mechanism of dust deposition and resuspension....

  15. Thermal infrared properties of the Martian atmosphere 4. Predictions of the presence of dust and ice clouds from Viking IRTM spectral measurements

    International Nuclear Information System (INIS)

    Hunt, G.E.

    1979-01-01

    In this paper we investigate the response of the Martian atmosphere at the wavelengths measured by the Viking infrared thermal mapper instrument (IRTM) to the presence of varying amounts of dust and water ice clouds. A detailed radiative transfer study is represented to show that these IRTM measurements at channels centered at 7, 9, 11, and 20 μm may be used to differentiate between the presence of dust and water ice clouds in the Martian atmosphere. They show further that these measurements may also be used to provide some information on the structure of the lower atmosphere. The use of the IRTM measurements in the manner we describe can provide information associated with the thermal characteristics of Martian dust storms

  16. Experimental Method for Measuring Dust Load on Surfaces in Rooms

    DEFF Research Database (Denmark)

    Lengweiler, Philip; Nielsen, Peter V.; Moser, Alfred

    A new experimental setup to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airborne dust concentration considerably. As a basis for developing methods to eliminate dust-related problems in rooms, there is a n......A new experimental setup to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airborne dust concentration considerably. As a basis for developing methods to eliminate dust-related problems in rooms......, there is a need for better understanding of the mechanism of dust deposition and resuspension. With the presented experimental setup, the dust load on surfaces in a channel can be measured as a function of the environmental and surface conditions and the type of particles under controlled laboratory conditions....

  17. Laboratory measurements and model sensitivity studies of dust deposition ice nucleation

    Directory of Open Access Journals (Sweden)

    G. Kulkarni

    2012-08-01

    Full Text Available We investigated the ice nucleating properties of mineral dust particles to understand the sensitivity of simulated cloud properties to two different representations of contact angle in the Classical Nucleation Theory (CNT. These contact angle representations are based on two sets of laboratory deposition ice nucleation measurements: Arizona Test Dust (ATD particles of 100, 300 and 500 nm sizes were tested at three different temperatures (−25, −30 and −35 °C, and 400 nm ATD and kaolinite dust species were tested at two different temperatures (−30 and −35 °C. These measurements were used to derive the onset relative humidity with respect to ice (RHice required to activate 1% of dust particles as ice nuclei, from which the onset single contact angles were then calculated based on CNT. For the probability density function (PDF representation, parameters of the log-normal contact angle distribution were determined by fitting CNT-predicted activated fraction to the measurements at different RHice. Results show that onset single contact angles vary from ~18 to 24 degrees, while the PDF parameters are sensitive to the measurement conditions (i.e. temperature and dust size. Cloud modeling simulations were performed to understand the sensitivity of cloud properties (i.e. ice number concentration, ice water content, and cloud initiation times to the representation of contact angle and PDF distribution parameters. The model simulations show that cloud properties are sensitive to onset single contact angles and PDF distribution parameters. The comparison of our experimental results with other studies shows that under similar measurement conditions the onset single contact angles are consistent within ±2.0 degrees, while our derived PDF parameters have larger discrepancies.

  18. Comparing early twentieth century and present-day atmospheric pollution in SW France: A story of lichens

    International Nuclear Information System (INIS)

    Agnan, Y.; Séjalon-Delmas, N.; Probst, A.

    2013-01-01

    Lichens have long been known to be good indicators of air quality and atmospheric deposition. Xanthoria parietina was selected to investigate past (sourced from a herbarium) and present-day trace metal pollution in four sites from South-West France (close to Albi). Enrichment factors, relationships between elements and hierarchical classification indicated that the atmosphere was mainly impacted by coal combustion (as shown by As, Pb or Cd contamination) during the early twentieth century, whereas more recently, another mixture of pollutants (e.g. Sb, Sn, Pb and Cu) from local factories and car traffic has emerged. The Rare Earth Elements (REE) and other lithogenic elements indicated a higher dust content in the atmosphere in the early twentieth century and a specific lithological local signature. In addition to long-range atmospheric transport, local urban emissions had a strong impact on trace element contamination registered in lichens, particularly for contemporary data. - Highlights: ► We compared metal concentrations registered in contemporary and early 1900's lichens. ► In the past, As, Pb and Cd were enriched due to coal combustion. ► Nowadays, a new mixture of enriched contaminants (Sb, Sn, Pb and Cu) was evidenced. ► REE originated from local bedrock and proved an increased dust deposition in the past. ► Lichens recorded both local and long-range atmospheric contamination. - Using lichens registration, past (As, Pb, Cd) and recent (Sb, Sn, Cu) atmospheric pollution from local and long-range transport, as well as dust deposition, was evidenced in SW France.

  19. Trade-Induced Atmospheric Mercury Deposition over China and Implications for Demand-Side Controls.

    Science.gov (United States)

    Chen, Long; Meng, Jing; Liang, Sai; Zhang, Haoran; Zhang, Wei; Liu, Maodian; Tong, Yindong; Wang, Huanhuan; Wang, Wei; Wang, Xuejun; Shu, Jiong

    2018-02-20

    Mercury (Hg) is of global concern because of its adverse effects on humans and the environment. In addition to long-range atmospheric transport, Hg emissions can be geographically relocated through economic trade. Here, we investigate the effect of China's interregional trade on atmospheric Hg deposition over China, using an atmospheric transport model and multiregional input-output analysis. In general, total atmospheric Hg deposition over China is 408.8 Mg yr -1 , and 32% of this is embodied in China's interregional trade, with the hotspots occurring over Gansu, Henan, Hebei, and Yunnan provinces. Interprovincial trade considerably redistributes atmospheric Hg deposition over China, with a range in deposition flux from -104% to +28%. Developed regions, such as the Yangtze River Delta (Shanghai, Jiangsu, and Zhejiang) and Guangdong, avoid Hg deposition over their geographical boundaries, instead causing additional Hg deposition over developing provinces. Bilateral interaction among provinces is strong over some regions, suggesting a need for joint mitigation, such as the Jing-Jin-Ji region (Beijing, Tianjin, and Hebei) and the Yangtze River Delta. Transferring advanced technology from developed regions to their developing trade partners would be an effective measure to mitigate China's Hg pollution. Our findings are relevant to interprovincial efforts to reduce trans-boundary Hg pollution in China.

  20. Atmospheric Nitrogen Deposition in the Western United States: Sources, Sinks and Changes over Time

    Science.gov (United States)

    Anderson, Sarah Marie

    Anthropogenic activities have greatly modified the way nitrogen moves through the atmosphere and terrestrial and aquatic environments. Excess reactive nitrogen generated through fossil fuel combustion, industrial fixation, and intensification of agriculture is not confined to anthropogenic systems but leaks into natural ecosystems with consequences including acidification, eutrophication, and biodiversity loss. A better understanding of where excess nitrogen originates and how that changes over time is crucial to identifying when, where, and to what degree environmental impacts occur. A major route into ecosystems for excess nitrogen is through atmospheric deposition. Excess nitrogen is emitted to the atmosphere where it can be transported great distances before being deposited back to the Earth's surface. Analyzing the composition of atmospheric nitrogen deposition and biological indicators that reflect deposition can provide insight into the emission sources as well as processes and atmospheric chemistry that occur during transport and what drives variation in these sources and processes. Chapter 1 provides a review and proof of concept of lichens to act as biological indicators and how their elemental and stable isotope composition can elucidate variation in amounts and emission sources of nitrogen over space and time. Information on amounts and emission sources of nitrogen deposition helps inform natural resources and land management decisions by helping to identify potentially impacted areas and causes of those impacts. Chapter 2 demonstrates that herbaria lichen specimens and field lichen samples reflect historical changes in atmospheric nitrogen deposition from urban and agricultural sources across the western United States. Nitrogen deposition increases throughout most of the 20 th century because of multiple types of emission sources until the implementation of the Clean Air Act Amendments of 1990 eventually decrease nitrogen deposition around the turn of

  1. Impact of biomass burning on nutrient deposition to the global ocean

    Science.gov (United States)

    Kanakidou, Maria; Myriokefalitakis, Stelios; Daskalakis, Nikos; Mihalopoulos, Nikolaos; Nenes, Athanasios

    2017-04-01

    Atmospheric deposition of trace constituents, both of natural and anthropogenic origin, can act as a nutrient source into the open ocean and affect marine ecosystem functioning and subsequently the exchange of CO2 between the atmosphere and the global ocean. Dust is known as a major source of nutrients (Fe and P) into the atmosphere, but only a fraction of these nutrients is released in soluble form that can be assimilated by the ecosystems. Dust is also known to enhance N deposition by interacting with anthropogenic pollutants and neutralisation of part of the acidity of the atmosphere by crustal alkaline species. These nutrients have also primary anthropogenic sources including combustion emissions. The global atmospheric N [1], Fe [2] and P [3] cycles have been parameterized in the global 3-D chemical transport model TM4-ECPL, accounting for inorganic and organic forms of these nutrients, for all natural and anthropogenic sources of these nutrients including biomass burning, as well as for the link between the soluble forms of Fe and P atmospheric deposition and atmospheric acidity. The impact of atmospheric acidity on nutrient solubility has been parameterised based on experimental findings and the model results have been evaluated by extensive comparison with available observations. In the present study we isolate the significant impact of biomass burning emissions on these nutrients deposition by comparing global simulations that consider or neglect biomass burning emissions. The investigated impact integrates changes in the emissions of the nutrients as well as in atmospheric oxidants and acidity and thus in atmospheric processing and secondary sources of these nutrients. The results are presented and thoroughly discussed. References [1] Kanakidou M, S. Myriokefalitakis, N. Daskalakis, G. Fanourgakis, A. Nenes, A. Baker, K. Tsigaridis, N. Mihalopoulos, Past, Present and Future Atmospheric Nitrogen Deposition, Journal of the Atmospheric Sciences (JAS-D-15

  2. Atmospheric deposition exposes Qinling pandas to toxic pollutants.

    Science.gov (United States)

    Chen, Yi-Ping; Zheng, Ying-Juan; Liu, Qiang; Song, Yi; An, Zhi-Sheng; Ma, Qing-Yi; Ellison, Aaron M

    2017-03-01

    The giant panda (Ailuropoda melanoleuca) is one of the most endangered animals in the world, and it is recognized worldwide as a symbol for conservation. A previous study showed that wild and captive pandas, especially those of the Qinling subspecies, were exposed to toxicants in their diet of bamboo; the ultimate origin of these toxicants is unknown. Here we show that atmospheric deposition is the most likely origin of heavy metals and persistent organic pollutants (POPs) in the diets of captive and wild Qinling pandas. Average atmospheric deposition was 199, 115, and 49 g·m -2 ·yr -1 in the center of Xi'an City, at China's Shaanxi Wild Animal Research Center (SWARC), and at Foping National Nature Reserve (FNNR), respectively. Atmospheric deposition of heavy metals (As, Cd, Cr, Pb, Hg, Co, Cu, Zn, Mn, and Ni) and POPs was highest at Xi'an City, intermediate at SWARC, and lowest at FNNR. Soil concentrations of the aforementioned heavy metals other than As and Zn also were significantly higher at SWARC than at FNNR. Efforts to conserve Qinling pandas may be compromised by air pollution attendant to China's economic development. Improvement of air quality and reductions of toxic emissions are urgently required to protect China's iconic species. © 2017 by the Ecological Society of America.

  3. WRF-Chem Model Simulations of Arizona Dust Storms

    Science.gov (United States)

    Mohebbi, A.; Chang, H. I.; Hondula, D.

    2017-12-01

    The online Weather Research and Forecasting model with coupled chemistry module (WRF-Chem) is applied to simulate the transport, deposition and emission of the dust aerosols in an intense dust outbreak event that took place on July 5th, 2011 over Arizona. Goddard Chemistry Aerosol Radiation and Transport (GOCART), Air Force Weather Agency (AFWA), and University of Cologne (UoC) parameterization schemes for dust emission were evaluated. The model was found to simulate well the synoptic meteorological conditions also widely documented in previous studies. The chemistry module performance in reproducing the atmospheric desert dust load was evaluated using the horizontal field of the Aerosol Optical Depth (AOD) from Moderate Resolution Imaging Spectro (MODIS) radiometer Terra/Aqua and Aerosol Robotic Network (AERONET) satellites employing standard Dark Target (DT) and Deep Blue (DB) algorithms. To assess the temporal variability of the dust storm, Particulate Matter mass concentration data (PM10 and PM2.5) from Arizona Department of Environmental Quality (AZDEQ) ground-based air quality stations were used. The promising performance of WRF-Chem indicate that the model is capable of simulating the right timing and loading of a dust event in the planetary-boundary-layer (PBL) which can be used to forecast approaching severe dust events and to communicate an effective early warning.

  4. Charged dust structures in plasmas

    International Nuclear Information System (INIS)

    Cramer, N.F.; Vladimirov, S.V.

    1999-01-01

    We report here on theoretical investigations of the mechanical-electrostatic modes of vibration of a dust-plasma crystal, extending earlier work on the transverse modes of a horizontal line of grains (where the ions flow vertically downward to a plane horizontal cathode), the modes of two such lines of grains, and the modes of a vertical string of grains. The last two arrangements have the unique feature that the effect of the background plasma on the mutual grain interaction is asymmetric because of the wake downstream of the grains studied in. The characteristic frequencies of the vibrations are dependent on the parameters of the plasma and the dust grains, such as the Debye length and the grain charge, and so measurement of the frequencies could provide diagnostics of these quantities. Although the current boom in dusty plasma research is driven mainly by such industrial applications as plasma etching, sputtering and deposition, the physical outcomes of investigations in this rapidly expanding field cover many important topics in space physics and astrophysics as well. Examples are the interaction of dust with spacecraft, the structure of planetary rings, star formation, supernova explosions and shock waves. In addition, the study of the influence of dust in environmental research, such as in the Earth's ionosphere and atmosphere, is important. The unique binding of dust particles in a plasma opens possibilities for so-called super-chemistry, where the interacting bound elements are not atoms but dust grains

  5. Advanced receptor modelling for the apportionment of road dust resuspension to atmospheric PM

    Science.gov (United States)

    Amato, F.; Pandolfi, M.; Escrig, A.; Querol, X.; Alastuey, A.; Pey, J.; Perez, N.; Hopke, P. K.

    2009-04-01

    Fugitive emissions from traffic resuspension can often represent an important source of atmospheric particulate matter in urban environments, especially when the scarce precipitations favour the accumulation of road dust. Resuspension of road dust can lead to high exposures to heavy metals, metalloids and mineral matter. Knowing the amount of its contribution to atmospheric PM is a key task for establishing eventual mitigation or preventive measures. Factor analysis techniques are widely used tools for atmospheric aerosol source apportionment, based on the mass conservation principle. Paatero and Tapper (1993) suggested the use of a Weighted Least Squares scheme with the aim of obtaining a minimum variance solution. Additionally they proposed to incorporate the basic physical constraint of non negativity, calling their approach Positive Matrix Factorization (PMF), which can be performed by the program PMF2 released by Paatero (1997). Nevertheless, Positive Matrix Factorization can be either solved with the Multilinear Engine (ME-2), a more flexible program, also developed by Paatero (1999), which can solve any model consisting in sum of products of unknowns. The main difference with PMF2 is that ME-2 does not solve only well-defined tasks, but its actions are defined in a "script file" written in a special-purpose programming language, allowing incorporating additional tasks such as data processing etc. Thus in ME-2 a priori information, e.g. chemical fingerprints can be included as auxiliary terms of the object function to be minimized. This feature of ME-2 make it especially suitable for source apportionment studies where some knowledge (chemical ratios, profiles, mass conservation etc) of involved sources is available. The aim of this study was to quantify the contribution of road dust resuspension in PM10, PM2.5 and PM1 data set from Barcelona (Spain). Given that recently the emission profile of local road dust was characterized (Amato et al., in press

  6. Geochemical Identification of Windblown Dust Deposits in the Upper Permian Brushy Canyon Formation, Southern New Mexico

    Science.gov (United States)

    Tice, M. M.; Motanated, K.; Weiss, R.

    2009-12-01

    Windblown dust is a potentially important but difficult-to-quantify source of siliciclastics for sedimentary basins worldwide. Positively identifying windblown deposits requires distinguishing them from other low density suspension transport deposits. For instance, laminated very fine grained sandstones and siltstones of the Upper Permian Brushy Canyon Formation have been variously interpreted as 1) the deposits of slow-moving, low-density turbidity currents, 2) distal overbank deposits of turbidity currents, 3) the deposits of turbulent suspensions transported across a pycnocline (interflows), and 4) windblown dust. This facies forms the bulk of Brushy Canyon Formation slope deposits, so understanding its origin is critical to understanding the evolution of the basin as a whole. We use a geochemical mapping technique (x-ray fluorescence microscopy) to show that these rocks are up to two times enriched in very fine sand sized zircon and rutile grains relative to Bouma A divisions of interbedded turbidites, suggesting substantial turbulence during transport. However, in contrast with the A divisions, the laminated sandstones and siltstones never show evidence of scour or amalgamation, implying that flow turbulence did not interact with underlying beds. Moreover, proximal loess deposits are often characterized by elevated Zr/Al2O3. These observations are most consistent with windblown interpretations for Brushy Canyon Formation slope sediments, and suggest that evolution of this early deepwater slope system was controlled largely by short-distance aeolian transport of very fine sand and silt from the coast. Heavy mineral incorporation into Brushy Canyon Formation slope deposits as reflected in laminae-scale bulk Zr and Ti abundances may preserve a long-term record of local wind intensity during the Upper Permian.

  7. Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China

    Science.gov (United States)

    Pan, Y. P.; Wang, Y. S.

    2015-01-01

    Atmospheric deposition is considered to be a major process that removes pollutants from the atmosphere and an important source of nutrients and contaminants for ecosystems. Trace elements (TEs), especially toxic metals deposited on plants and into soil or water, can cause substantial damage to the environment and human health due to their transfer and accumulation in food chains. Despite public concerns, quantitative knowledge of metal deposition from the atmosphere to ecosystems remains scarce. To advance our understanding of the spatiotemporal variations in the magnitudes, pathways, compositions and impacts of atmospherically deposited TEs, precipitation (rain and snow) and dry-deposited particles were collected simultaneously at 10 sites in Northern China from December 2007 to November 2010. The measurements showed that the wet and dry depositions of TEs in the target areas were orders of magnitude higher than previous observations within and outside China, generating great concern over the potential risks. The spatial distribution of the total (wet plus dry) deposition flux was consistent with that of the dry deposition, with a significant decrease from industrial and urban areas to suburban, agricultural and rural sites, while the wet deposition exhibited less spatial variation. In addition, the seasonal variation of wet deposition was also different from that of dry deposition, although they were both governed by the precipitation and emission patterns. For the majority of TEs that exist as coarse particles, dry deposition dominated the total flux at each site. This was not the case for potassium, nickel, arsenic, lead, zinc, cadmium, selenium, silver and thallium, for which the relative importance between wet and dry deposition fluxes varied by site. Whether wet deposition is the major atmospheric cleansing mechanism for the TEs depends on the size distribution of the particles. We found that atmospheric inputs of copper, lead, zinc, cadmium, arsenic and

  8. Reconstructing transport pathways for late Quaternary dust from eastern Australia using the composition of trace elements of long traveled dusts

    Science.gov (United States)

    Petherick, Lynda M.; McGowan, Hamish A.; Kamber, Balz S.

    2009-04-01

    The southeast Australian dust transport corridor is the principal pathway through which continental emissions of dust from central and eastern Australia are carried to the oceans by the prevailing mid-latitude westerly circulation. The analysis of trace elements of aeolian dust, preserved in lake sediment on North Stradbroke Island, southeast Queensland, is used to reconstruct variation in the intensity and position of dust transport to the island over the past 25,000 yrs. Separation of local and long traveled dust content of lake sediments is achieved using a unique, four-element (Ga, Ni, Tl and Sc) separation method. The local and continental chronologies of aeolian deposition developed by this study show markedly different records, and indicate varied responses to climate variability on North Stradbroke Island (local aeolian sediment component) and in eastern and central Australia (long traveled dust component). The provenance of the continental component of the record to sub-geologic catchment scales was accomplished using a ternary mixing model in which the chemical identification of dusts extracted, from the lake sediments, was compared to potential chemical characteristics of surface dust from the source areas using 16 trace elements. The results indicate that the position and intensity of dust transport pathways during the late Quaternary varied considerably in response to changing atmospheric circulation patterns as well as to variations in sediment supply to dust source areas, which include the large anabranching river systems of the Lake Eyre and Murray-Darling Basins.

  9. Modeling the global atmospheric transport and deposition of mercury to the Great Lakes

    Directory of Open Access Journals (Sweden)

    Mark D. Cohen

    2016-07-01

    Full Text Available Abstract Mercury contamination in the Great Lakes continues to have important public health and wildlife ecotoxicology impacts, and atmospheric deposition is a significant ongoing loading pathway. The objective of this study was to estimate the amount and source-attribution for atmospheric mercury deposition to each lake, information needed to prioritize amelioration efforts. A new global, Eulerian version of the HYSPLIT-Hg model was used to simulate the 2005 global atmospheric transport and deposition of mercury to the Great Lakes. In addition to the base case, 10 alternative model configurations were used to examine sensitivity to uncertainties in atmospheric mercury chemistry and surface exchange. A novel atmospheric lifetime analysis was used to characterize fate and transport processes within the model. Model-estimated wet deposition and atmospheric concentrations of gaseous elemental mercury (Hg(0 were generally within ∼10% of measurements in the Great Lakes region. The model overestimated non-Hg(0 concentrations by a factor of 2–3, similar to other modeling studies. Potential reasons for this disagreement include model inaccuracies, differences in atmospheric Hg fractions being compared, and the measurements being biased low. Lake Erie, downwind of significant local/regional emissions sources, was estimated by the model to be the most impacted by direct anthropogenic emissions (58% of the base case total deposition, while Lake Superior, with the fewest upwind local/regional sources, was the least impacted (27%. The U.S. was the largest national contributor, followed by China, contributing 25% and 6%, respectively, on average, for the Great Lakes. The contribution of U.S. direct anthropogenic emissions to total mercury deposition varied between 46% for the base case (with a range of 24–51% over all model configurations for Lake Erie and 11% (range 6–13% for Lake Superior. These results illustrate the importance of atmospheric

  10. Atmospheric mercury deposition and its contribution of the regional atmospheric transport to mercury pollution at a national forest nature reserve, southwest China.

    Science.gov (United States)

    Ma, Ming; Wang, Dingyong; Du, Hongxia; Sun, Tao; Zhao, Zheng; Wei, Shiqing

    2015-12-01

    Atmospheric mercury deposition by wet and dry processes contributes to the transformation of mercury from atmosphere to terrestrial and aquatic systems. Factors influencing the amount of mercury deposited to subtropical forests were identified in this study. Throughfall and open field precipitation samples were collected in 2012 and 2013 using precipitation collectors from forest sites located across Mt. Jinyun in southwest China. Samples were collected approximately every 2 weeks and analyzed for total (THg) and methyl mercury (MeHg). Forest canopy was the primary factor on THg and MeHg deposition. Simultaneously, continuous measurements of atmospheric gaseous elemental mercury (GEM) were carried out from March 2012 to February 2013 at the summit of Mt. Jinyun. Atmospheric GEM concentrations averaged 3.8 ± 1.5 ng m(-3), which was elevated compared with global background values. Sources identification indicated that both regional industrial emissions and long-range transport of Hg from central, northeast, and southwest China were corresponded to the elevated GEM levels. Precipitation deposition fluxes of THg and MeHg in Mt. Jinyun were slightly higher than those reported in Europe and North America, whereas total fluxes of MeHg and THg under forest canopy on Mt. Jiuyun were 3 and 2.9 times of the fluxes of THg in wet deposition in the open. Highly elevated litterfall deposition fluxes suggest that even in remote forest areas of China, deposition of atmospheric Hg(0) via uptake by vegetation leaf may be a major pathway for the deposition of atmospheric Hg. The result illustrates that areas with greater atmospheric pollution can be expected to have greater fluxes of Hg to soils via throughfall and litterfall.

  11. Effect of fuel type and deposition surface temperature on the growth and structure of ash deposit collected during co-firing of coal with sewage-sludge, saw-dust and refuse derived fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kupka, Tomasz; Zajac, Krzysztof; Weber, Roman [Clausthal Univ. of Technology, Clausthal-Zellerfeld (Germany). Inst. of Energy Process Engineering and Fuel Technology

    2008-07-01

    Blends of a South African bituminous ''Middleburg'' coal and three alternative fuels (a municipal sewage-sludge, a saw-dust and a refuse derived fuel) have been fired in the slagging reactor to examine the effect of the added fuel on slagging propensity of the mixtures. Two kinds of deposition probes have been used, un-cooled ceramic probes and air-cooled steal probes. Distinct differences in physical and chemical structures of the deposits collected using the un-cooled ceramic probes and air-cooled metal probes have been observed. Glassy, easily molten deposits collected on un-cooled ceramic deposition probes were characteristic for co-firing of municipal sewage-sludge with coal. Porous, sintered (not molten) but easily removable deposits of the same fuel blend have been collected on the air-cooled metal deposition probes. Loose, easy removable deposits have been sampled on air-cooled metal deposition probe during co-firing of coal/saw-dust blends. The mass of the deposit sampled at lower surface temperatures (550-700 C) was always larger than the mass sampled at higher temperatures (1100-1300 C) since the higher temperature ash agglomerated and sintered much faster than the low temperature deposit. (orig.)

  12. Review of the ITER diagnostics suite for erosion, deposition, dust and tritium measurements

    Energy Technology Data Exchange (ETDEWEB)

    Reichle, R., E-mail: roger.reichle@iter.org [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Andrew, P. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Bates, P. [F4E, Torres Diagonal Litoral B3, Barcelona (Spain); Bede, O.; Casal, N.; Choi, C.H.; Barnsley, R. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Damiani, C. [F4E, Torres Diagonal Litoral B3, Barcelona (Spain); Bertalot, L. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Dubus, G. [F4E, Torres Diagonal Litoral B3, Barcelona (Spain); Ferreol, J.; Jagannathan, G.; Kocan, M.; Leipold, F.; Lisgo, S.W.; Martin, V.; Palmer, J.; Pearce, R. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Philipps, V. [Institut für Energieforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Association EURATOM – Forschungszentrum Jülich, D-52425 Jülich (Germany); Pitts, R.A. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); and others

    2015-08-15

    Dust and tritium inventories in the vacuum vessel have upper limits in ITER that are set by nuclear safety requirements. Erosion, migration and re-deposition of wall material together with fuel co-deposition will be largely responsible for these inventories. The diagnostic suite required to monitor these processes, along with the set of the corresponding measurement requirements is currently under review given the recent decision by the ITER Organization to eliminate the first carbon/tungsten (C/W) divertor and begin operations with a full-W variant Pitts et al. [1]. This paper presents the result of this review as well as the status of the chosen diagnostics.

  13. Radiogenic isotope evidence for transatlantic atmospheric dust transport

    Science.gov (United States)

    Kumar, Ashwini; Abouchami, Wafa; Garrison, Virginia H.; Galer, Stephen J. G.; Andreae, Meinrat O.

    2013-04-01

    Early studies by Prospero and colleagues [1] have shown that African dust reaches all across the Atlantic and into the Caribbean. It may contribute to fertilizing the Amazon rainforest [2,3,4], in addition to enhancing the ocean biological productivity via delivery of iron, a key nutrient element[5]. Radiogenic isotope ratios (Sr, Nd, Pb) are robust tracers of dust sources and can thus provide information on provenance and pathways of dust transport. Here we report Sr, Nd and Pb isotope data on atmospheric aerosols, collected in 2008 on quartz filters, from three different locations in Mali (12.6° N, 8.0° W; 555 m a.s.l.), Tobago (11.3° N, 60.5° W; 329 m a.s.l.) and the U.S. Virgin Islands (17.7° N, 64.6° W; 27 m a.s.l.) to investigate the hypothesis of dust transport across the Atlantic. About 2 cm2 of filter were acid-leached in 0.5 N HBr for selective removal of the anthropogenic labile Pb component (leachate) and possibly the fine soluble particle fraction. The remainder of the filter was subsequently dissolved using a mixture of HF and HNO3 acids, and should be representative of the silicate fraction. Isotopic compositions were measured by TIMS on a ThermoFisher Triton at MPIC, with Pb isotope ratios determined using the triple-spike method. Significant Pb isotope differences between leachates and residues were observed. The variability in Pb isotopic composition among leachates may be attributed to variable and distinct anthropogenic local Pb sources from Africa and South America [6], however, residues are imprinted by filter blank contribution suggesting to avoid the quartz fiber filter for isotopic study of aerosols. The Nd and Sr isotope ratios of aerosol leachates show similar signatures at all three locations investigated. The nearly identical Nd and Sr isotopic compositions in the Mali, Tobago and Virgin islands leachates are comparable to those obtained on samples from the Bodélé depression, Northern Chad [7] and suggest a possible common

  14. Human health risk assessment of lead pollution in atmospheric deposition in Baoshan District, Shanghai.

    Science.gov (United States)

    Chen, Yuanyuan; Wang, Jun; Shi, Guitao; Sun, Xiaojing; Chen, Zhenlou; Xu, Shiyuan

    2011-12-01

    The lead (Pb) content in atmospheric deposition was determined at 42 sampling sites in Baoshan District of Shanghai, China. Based on exposure and dose-response assessments, the health risk caused by Pb exposure in atmospheric deposition was investigated. The results indicated that Pb was significantly accumulated in atmospheric deposition. The spatial distribution of Pb was mapped by geostatistical analysis, and the results showed that pollution hotspots were present at traffic and industrial zones. Ingestion was the main route of Pb exposure in both adults and children. For children the risk value was above 1, whereas it was below 1 for the adult group. Therefore, children belong to the high-risk group for Pb exposure from atmospheric deposition in the observed area of Shanghai, China.

  15. Measurement of forest condition and response along the Pennsylvania atmospheric deposition gradent

    Science.gov (United States)

    D.D. David; J.M. Skelly; J.A. Lynch; L.H. McCormick; B.L. Nash; M. Simini; E.A. Cameron; J.R. McClenahen; R.P. Long

    1991-01-01

    Research in the oak-hickory forest of northcentral Pennsylvania is being conducted to detect anomalies in forest condition that may be due to atmospheric deposition, with the intent that such anomalies will be further studied to determine the role, if any, of atmospheric deposition. This paper presents the status of research along a 160-km gradient of sulfate/nitrate...

  16. Atmospheric Deposition of Heavy Metals in Soil Affected by Different Soil Uses of Southern Spain

    Science.gov (United States)

    Acosta, J. A.; Faz, A.; Martínez-Martínez, S.; Bech, J.

    2009-04-01

    Heavy metals are a natural constituent of rocks, sediments and soils. However, the heavy metal content of top soils is also dependent on other sources than weathering of the indigenous minerals; input from atmospheric deposition seems to be an important pathway. Atmospheric deposition is defined as the process by which atmospheric pollutants are transferred to terrestrial and aquatic surfaces and is commonly classified as either dry or wet. The interest in atmospheric deposition has increased over the past decade due to concerns about the effects of deposited materials on the environment. Dry deposition provides a significant mechanism for the removal of particles from the atmosphere and is an important pathway for the loading of heavy metals into the soil ecosystem. Within the last decade, an intensive effort has been made to determine the atmospheric heavy metal deposition in both urban and rural areas. The main objective of this study was to identification of atmospheric heavy metals deposition in soil affected by different soil uses. Study area is located in Murcia Province (southeast of Spain), in the surroundings of Murcia City. The climate is typically semiarid Mediterranean with an annual average temperature of 18°C and precipitation of 350 mm. In order to determine heavy metals atmospheric deposition a sampling at different depths (0-1 cm, 1-5 cm, 5-15 cm and 15-30 cm) was carried out in 7 sites including agricultural soils, two industrial areas and natural sites. The samples were taken to the laboratory where, dried, passed through a 2 mm sieve, and grinded. For the determination of the moisture the samples were weighed and oven dried at 105 °C for 24 h. The total amounts of metals (Pb, Cu, Pb, Zn, Cd, Mn, Ni and Cr) were determined by digesting the samples with nitric/perchoric acids and measuring with ICP-MS. Results showed that zinc contamination in some samples of industrial areas was detected, even this contamination reaches 30 cm depth; thus it is

  17. Atmospheric wet deposition of mercury in North America

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, C.W.; Prestbo, E.; Brunette, B.

    1999-07-01

    Currently, 39 states in the US and 5 Canadian provinces have issued advisories about the dangers of eating mercury-contaminated fish taken from waters within their boundaries. The problem is most severe in the Great Lakes region, the Northeast US states, the Canadian maritime provinces, and in south Florida where many lakes and streams contain fish with concentrations of 1 ppm or higher. For many rural and remote locations, atmospheric deposition is the primary source of mercury. In 1995, the National Atmospheric Deposition Program (NADP) initiated a program to monitor total mercury and methylmercury (MMHg) in wet deposition (rain and snow) in North America. In this program, the Mercury Deposition Network (MDN), individual monitoring sites are funded and operated by a variety of local, state, and federal agencies. However, sampling and analysis are coordinated through a central laboratory so that all of the samples are collected and analyzed using the same protocols. Weekly wet-only precipitation samples are collected using an all-glass sampling train and special handling techniques. Analysis is by cold vapor atomic fluorescence spectrometry using USEPA Method 1631 for total mercury. Nearly 40 MDN sites are in operation in 1999. Most of the sites are in the eastern US and Canada. During 1996 and 1997, the volume-weighted mean concentration of total mercury in precipitation collected at 22 sites ranged from 6.0 to 18.9 ng/L. Annual deposition varied between 2.1 and 25.3 {micro} g/m{sup 2}. The average weekly wet deposition of total mercury is more than three times higher in the summer (June-August) than in the winter (December-February). This increase is due to both higher amounts of precipitation and higher concentrations of mercury in precipitation during the summer. The highest values for mercury concentration in precipitation and wet deposition of mercury were measured in the southeastern US.

  18. Oceanic Emissions and Atmospheric Depositions of Volatile Organic Compounds

    Science.gov (United States)

    Yang, M.; Blomquist, B.; Beale, R.; Nightingale, P. D.; Liss, P. S.

    2015-12-01

    Atmospheric volatile organic compounds (VOCs) affect the tropospheric oxidative capacity due to their ubiquitous abundance and relatively high reactivity towards the hydroxyal radical. Over the ocean and away from terrestrial emission sources, oxygenated volatile organic compounds (OVOCs) make up a large fraction of VOCs as airmasses age and become more oxidized. In addition to being produced or destroyed in the marine atmosphere, OVOCs can also be emitted from or deposited to the surface ocean. Here we first present direct air-sea flux measurements of three of the most abundant OVOCs - methanol, acetone, and acetaldehyde, by the eddy covariance technique from two cruises in the Atlantic: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The OVOC mixing ratios were quantified by a high resolution proton-reaction-transfer mass spectrometer with isotopically labeled standards and their air-sea (net) fluxes were derived from the eddy covariance technique. Net methanol flux was consistently from the atmosphere to the surface ocean, while acetone varied from supersaturation (emission) in the subtropics to undersaturation (deposition) in the higher latitudes of the North Atlantic. The net air-sea flux of acetaldehyde is near zero through out the Atlantic despite the apparent supersaturation of this compound in the surface ocean. Knowing the dissolved concentrations and in situ production rates of these compounds in seawater, we then estimate their bulk atmospheric depositions and oceanic emissions. Lastly, we summarize the state of knowledge on the air-sea transport of a number of organic gasses, and postulate the magnitude and environmental impact of total organic carbon transfer between the ocean and the atmosphere.

  19. Standard test method for determining atmospheric chloride deposition rate by wet candle method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This test method covers a wet candle device and its use in measuring atmospheric chloride deposition (amount of chloride salts deposited from the atmosphere on a given area per unit time). 1.2 Data on atmospheric chloride deposition can be useful in classifying the corrosivity of a specific area, such as an atmospheric test site. Caution must be exercised, however, to take into consideration the season because airborne chlorides vary widely between seasons. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  20. Atmospheric Dust Modeling from Meso to Global Scales with the Online NMMB/BSC-Dust Model Part 2: Experimental Campaigns in Northern Africa

    Science.gov (United States)

    Haustein, K.; Perez, C.; Baldasano, J. M.; Jorba, O.; Basart, S.; Miller, R. L.; Janjic, Z.; Black, T.; Nickovic, S.; Todd, M. C.; hide

    2012-01-01

    The new NMMB/BSC-Dust model is intended to provide short to medium-range weather and dust forecasts from regional to global scales. It is an online model in which the dust aerosol dynamics and physics are solved at each model time step. The companion paper (Perez et al., 2011) develops the dust model parameterizations and provides daily to annual evaluations of the model for its global and regional configurations. Modeled aerosol optical depth (AOD) was evaluated against AERONET Sun photometers over Northern Africa, Middle East and Europe with correlations around 0.6-0.7 on average without dust data assimilation. In this paper we analyze in detail the behavior of the model using data from the Saharan Mineral dUst experiment (SAMUM-1) in 2006 and the Bodele Dust Experiment (BoDEx) in 2005. AOD from satellites and Sun photometers, vertically resolved extinction coefficients from lidars and particle size distributions at the ground and in the troposphere are used, complemented by wind profile data and surface meteorological measurements. All simulations were performed at the regional scale for the Northern African domain at the expected operational horizontal resolution of 25 km. Model results for SAMUM-1 generally show good agreement with satellite data over the most active Saharan dust sources. The model reproduces the AOD from Sun photometers close to sources and after long-range transport, and the dust size spectra at different height levels. At this resolution, the model is not able to reproduce a large haboob that occurred during the campaign. Some deficiencies are found concerning the vertical dust distribution related to the representation of the mixing height in the atmospheric part of the model. For the BoDEx episode, we found the diurnal temperature cycle to be strongly dependant on the soil moisture, which is underestimated in the NCEP analysis used for model initialization. The low level jet (LLJ) and the dust AOD over the Bodélé are well reproduced

  1. Recent Advances in Atmospheric Vapor-Phase Deposition of Transparent and Conductive Zinc Oxide

    NARCIS (Netherlands)

    Illiberi, A.; Poodt, P.; Roozeboom, F.

    2014-01-01

    The industrial need for high-throughput and low-cost ZnO deposition processes has triggered the development of atmospheric vapor-phase deposition techniques which can be easily applied to continuous, in-line manufacturing. While atmospheric CVD is a mature technology, new processes for the growth of

  2. Dust Devil Tracks

    Science.gov (United States)

    2002-01-01

    (Released 8 May 2002) The Science This image, centered near 50.0 S and 17.7 W displays dust devil tracks on the surface. Most of the lighter portions of the image likely have a thin veneer of dust settled on the surface. As a dust devil passes over the surface, it acts as a vacuum and picks up the dust, leaving the darker substrate exposed. In this image there is a general trend of many of the tracks running from east to west or west to east, indicating the general wind direction. There is often no general trend present in dust devil tracks seen in other images. The track patterns are quite ephemeral and can completely change or even disappear over the course of a few months. Dust devils are one of the mechanisms that Mars uses to constantly pump dust into the ubiquitously dusty atmosphere. This atmospheric dust is one of the main driving forces of the present Martian climate. The Story Vrrrrooooooooom. Think of a tornado, the cartoon Tasmanian devil, or any number of vacuum commercials that powerfully suck up swirls of dust and dirt. That's pretty much what it's like on the surface of Mars a lot of the time. Whirlpools of wind called

  3. The Lunar Dust Environment

    Science.gov (United States)

    Szalay, Jamey Robert

    Planetary bodies throughout the solar system are continually bombarded by dust particles, largely originating from cometary activities and asteroidal collisions. Surfaces of bodies with thick atmospheres, such as Venus, Earth, Mars and Titan are mostly protected from incoming dust impacts as these particles ablate in their atmospheres as 'shooting stars'. However, the majority of bodies in the solar system have no appreciable atmosphere and their surfaces are directly exposed to the flux of high speed dust grains. Impacts onto solid surfaces in space generate charged and neutral gas clouds, as well as solid secondary ejecta dust particles. Gravitationally bound ejecta clouds forming dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, and had not yet been observed near bodies with refractory regolith surfaces before NASA's Lunar Dust and Environment Explorer (LADEE) mission. In this thesis, we first present the measurements taken by the Lunar Dust Explorer (LDEX), aboard LADEE, which discovered a permanently present, asymmetric dust cloud surrounding the Moon. The global characteristics of the lunar dust cloud are discussed as a function of a variety of variables such as altitude, solar longitude, local time, and lunar phase. These results are compared with models for lunar dust cloud generation. Second, we present an analysis of the groupings of impacts measured by LDEX, which represent detections of dense ejecta plumes above the lunar surface. These measurements are put in the context of understanding the response of the lunar surface to meteoroid bombardment and how to use other airless bodies in the solar system as detectors for their local meteoroid environment. Third, we present the first in-situ dust measurements taken over the lunar sunrise terminator. Having found no excess of small grains in this region, we discuss its implications for the putative population of electrostatically lofted dust.

  4. Modeling the emission, transport and deposition of contaminated dust from a mine tailing site.

    Science.gov (United States)

    Stovern, Michael; Betterton, Eric A; Sáez, A Eduardo; Villar, Omar Ignacio Felix; Rine, Kyle P; Russell, Mackenzie R; King, Matt

    2014-01-01

    Mining operations are potential sources of airborne particulate metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, due to potential deleterious effects on human health and ecology. Dust emissions and dispersion of contaminants from the Iron King Mine tailings in Dewey-Humboldt, Arizona, a Superfund site, are currently being investigated through in situ field measurements and computational fluid dynamics modeling. These tailings are significantly contaminated with lead and arsenic with an average soil concentration of 1616 and 1420 ppm, respectively. Similar levels of these contaminants have also been measured in soil samples taken from the area surrounding the mine tailings. Using a computational fluid dynamics model, we have been able to model dust transport from the mine tailings to the surrounding region. The model includes a distributed Eulerian model to simulate fine aerosol transport and a Lagrangian approach to model fate and transport of larger particles. In order to improve the accuracy of the dust transport simulations both regional topographical features and local weather patterns have been incorporated into the model simulations.

  5. Long term change in atmospheric dust absorption, dust scattering and black carbon aerosols scattering coefficient parameters over western Indian locations

    Science.gov (United States)

    Satoliya, Anil Kumar; Vyas, B. M.; Shekhawat, M. S.

    2018-05-01

    The first time satellite space based measurement of atmospheric black carbon (BC) aerosols scattering coefficient at 550nm (BC SC at 550nm), dust aerosols scattering and dust aerosols extinction coefficient (DSC at 550nm and DEC at 550nm) parameters have been used to understand their long term trend of natural and anthropogenic aerosols behavior with its close association with ground based measured precipitation parameters such as Total Rain Fall (TRF), and Total Number of Rainy Days (TNRD) for the same period over western Indian regions concerned to the primary aerosols sources of natural activities. The basic objective of this study is an attempt to investigate the inter-correlation between dust and black carbon aerosols loading characteristics with a variation of rainfall pattern parameters as indirect aerosols induced effect i.e., aerosols-cloud interaction. The black carbon aerosols generated by diverse anthropogenic or human made activities are studied by choosing of measured atmospheric BC SC at 550nm parameter, whereas desert dust mineral aerosols primarily produced by varieties of natural activities pre-dominated of dust mineral desert aerosols mainly over Thar desert influenced area of hot climate and rural tropical site are investigated by selecting DSC at 550nm and DEC at 550nm of first semi-urban site i.e., Udaipur (UDP, 24.6°N, 73.35°E, 580m above surface level (asl)) situated in southern Rajasthan part as well as over other two Great Indian Thar desert locations i.e., Jaisalmer (JSM, 26.90°N, 69.90°E, 220m asl)) and Bikaner (BKN, 28.03°N, 73.30°E, 224m asl) located in the vicinity of the Thar desert region situated in Rajasthan state of the western Indian region. The source of the present study would be collection of longer period of monthly values of the above parameters of spanning 35 years i.e., 1980 to 2015. Such types of atmospheric aerosols-cloud monsoon interaction investigation is helpful in view of understanding their direct and

  6. Thirteen years of Aeolian dust dynamics in a desert region (Negev desert, Israel): analysis of horizontal and vertical dust flux, vertical dust distribution and dust grain size

    NARCIS (Netherlands)

    Offer, Z.Y.; Goossens, D.

    2004-01-01

    At Sede Boqer (northern Negev desert, Israel), aeolian dust dynamics have been measured during the period 1988–2000. This study focuses on temporal records of the vertical and horizontal dust flux, the vertical distribution of the dust particles in the atmosphere, and the grain size of the

  7. Atmospheric deposition of 137Cs between 1994 and 2002 at Cienfuegos, Cuba

    International Nuclear Information System (INIS)

    Alonso-Hernandez, C.M.; Cartas-Aguila, H.; Diaz-Asencio, M.; Munoz-Caravaca, A.; Martin-Perez, J.; Sibello-Hernandez, R.

    2006-01-01

    Levels of 137 Cs in total atmospheric deposition have been measured in the Cienfuegos region (Cuba) between 1994 and 2002. Samples were collected every three months, evaporated to dryness to obtain residual samples, and measured by gamma spectrometry. The 137 Cs mean concentration in total deposition was 0.24 Bq m -2 and data ranged between -2 . Precipitation rates and raintime have proved to be the most important factors controlling the concentration and depositional flux of 137 Cs in the atmosphere over Cienfuegos, showing a high correlation coefficient (R = 0.93)

  8. HTO deposition by vapor exchange between atmosphere and soil

    International Nuclear Information System (INIS)

    Bunnenberg, C.

    1989-01-01

    HTO deposition to soils occurs by vapor exchange between atmosphere and soil-air, when the concentration gradient is directed downwards, and it is principally independent from simultaneous transport of H 2 O. In relatively dry top soil, which is frequently the case, as it tries to attain equilibrium with the air humidity, HTO diffuses into deeper soil driven by the same mechanisms that caused the deposition process. The resulting HTO profile is depending on the atmospheric supply and the soil physical conditions, and it is the source for further tritium pathways, namely root uptake by plants and reemission from soil back into the ground-level air. Simulation experiments with soil columns exposed to HTO labeled atmospheres have proved the theoretical expectation that under certain boundary conditions the HTO profile can be described by an error function. The key parameter is the effective diffusion coefficient, which in turn is a function of the sorption characteristics of the particular soil. (orig.) [de

  9. Coupling the Mars Dust and Water Cycles: Investigating the Role of Clouds in Controlling the Vertical Distribution of Dust During N. H. Summer

    Science.gov (United States)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Wilson, R. J.

    2014-01-01

    The dust cycle is critically important for the current climate of Mars. The radiative effects of dust impact the thermal and dynamical state of the atmosphere (Gierasch and Goody, 1968; Haberle et al., 1982; Zurek et al., 1992). Although dust is present in the Martian atmosphere throughout the year, the level of dustiness varies with season. The atmosphere is generally the dustiest during northern fall and winter and the least dusty during northern spring and summer (Smith, 2004). Dust particles are lifted into the atmosphere by dust storms that range in size from meters to thousands of kilometers across (Cantor et al., 2001). During some years, regional storms combine to produce hemispheric or planet encircling dust clouds that obscure the surface and raise atmospheric temperatures by as much as 40 K (Smith et al., 2002). Key recent observations of the vertical distribution of dust indicate that elevated layers of dust exist in the tropics and sub-tropics throughout much of the year (Heavens et al., 2011). These observations have brought particular focus on the processes that control the vertical distribution of dust in the Martian atmosphere. The goal of this work is to further our understanding of how clouds in particular control the vertical distribution of dust, particularly during N. H. spring and summer

  10. Atmospheric bulk deposition of polycyclic aromatic hydrocarbons in Shanghai: Temporal and spatial variation, and global comparison

    International Nuclear Information System (INIS)

    Feng, Daolun; Liu, Ying; Gao, Yi; Zhou, Jinxing; Zheng, Lirong; Qiao, Gang; Ma, Liming; Lin, Zhifen; Grathwohl, Peter

    2017-01-01

    Atmospheric deposition leads to accumulation of atmospheric polycyclic aromatic hydrocarbons (PAHs) on urban surfaces and topsoils. To capture the inherent variability of atmospheric deposition of PAHs in Shanghai's urban agglomeration, 85 atmospheric bulk deposition samples and 7 surface soil samples were collected from seven sampling locations during 2012–2014. Total fluxes of 17 PAHs were 587-32,300 ng m −2 day −1 , with a geometric mean of 2600 ng m −2 day −1 . The deposition fluxes were categorized as moderate to high on a global scale. Phenanthrene, fluoranthene and pyrene were major contributors. The spatial distribution of deposition fluxes revealed the influence of urbanization/industrialization and the relevance of local emissions. Meteorological conditions and more heating demand in cold season lead to a significant increase of deposition rates. Atmospheric deposition is the principal pathway of PAHs input to topsoils and the annual deposition load in Shanghai amounts to ∼4.5 tons (0.7 kg km −2 ) with a range of 2.5–10 tons (0.4–1.6 kg km −2 ). - Highlights: • PAH deposition flux in Shanghai is categorized as moderate to high on global scale. • Their spatial distribution reveals the influence of urbanization/industrialization. • Atmospheric deposition is the principal pathway of PAHs input to local topsoils. • Other pathways have to be considered for PAH input in urban soil. - Atmospheric deposition of PAHs revealed the influence of urbanization and industrialization and the relevance of local emissions on Shanghai topsoils.

  11. Use of MODIS Satellite Images and an Atmospheric Dust Transport Model To Evaluate Juniperus spp. Pollen Phenology and Dispersal

    Science.gov (United States)

    Luvall, J. C.; Sprigg, W. A.; Levetin, Estelle; Huete, Alfredo; Nickovic, S.; Pejanovic, G. A.; Vukovic, A.; VandeWater, P. K.; Myers, O. B.; Budge, A. M.; hide

    2011-01-01

    Pollen can be transported great distances. Van de Water et. al., 2003 reported Juniperus spp. pollen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. The DREAM (Dust REgional Atmospheric Model, Nickovic et al. 2001) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and quantities of dust. We are modifying the DREAM model to incorporate pollen transport. Pollen release will be estimated based on MODIS derived phenology of Juniperus spp. communities. Ground based observational records of pollen release timing and quantities will be used as verification. This information will be used to support the Centers for Disease Control and Prevention's National Environmental Public Health Tracking Program and the State of New Mexico environmental public health decision support for asthma and allergies alerts.

  12. Identification sources of pollen spectra in dry and wet atmospheric deposition in the forest-steppe zone of Altai Krai (Russia)

    Science.gov (United States)

    Ryabchinskaya, Natalia; Nenasheva, Galina; Malygina, Natalia

    2015-04-01

    Pollen spectra circulating in the atmosphere contain the important information about primary biological aerosol particles (PBAP), worldwide interest in which has significantly increased in recent decades [Despres, 2012]. It is related to the fact that many researchers suggest primary aerosols as a condensation nucleus significantly affected on the formation of clouds and precipitation and, consequently, on the hydrological cycle and climate, especially at the regional level [Andreae et al., 2008; Poschlet et al., 2010; Prenni et al., 2009]. We present the comparison of pollen spectra obtained during the dry and wet atmospheric deposition in Altai Krai (Russia) and identification of the sources/regions of their receipts. Altai Krai is located in the center of the Eurasian continent, at the border of several natural and climatic zones. A significant part of the region's territory is characterized as a forest-steppe zone with a lot of natural and anthropogenic landscapes, accompanied by continental climate. It provides a rich diversity of natural vegetation and cultural associations. During last 10 years pollen grains has been monitored in the airspace of Barnaul city (the capital of Altai Krai) located in the central part of the forest-steppe zone). During the monitoring, the attempts to determine the origin of pollen spectra (local or introduced) were made as well. In the long-term average dates of the first wave of dusting in the spring season 2014 Burkard pollen traps were used in order to monitor the airspace in Barnaul, namely dry deposition of pollen grains [Nenasheva, 2013]. To estimate the wet deposition PBAP (pollen), which can reach 80% in the middle latitudes, precipitation sampler were installed close to Burkard pollen traps in order to sample precipitation. The samples were filtered through a filter having a pore diameter of 1 µm, then prepared and examined for the presence of pollen grains. The comparison of the results of pollen analysis of 10 samples

  13. Modeling the Transport and Radiative Forcing of Taklimakan Dust over the Tibetan Plateau: A case study in the summer of 2006

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Siyu; Huang, J.; Zhao, Chun; Qian, Yun; Leung, Lai-Yung R.; Yang, Ben

    2013-01-30

    The Weather Research and Forecasting model with chemistry (WRF-Chem) is used to investigate an intense dust storm event during 26 to 30 July 2006 that originated over the Taklimakan Desert (TD) and transported to the northern slope of Tibetan Plateau (TP). The dust storm is initiated by the approach of a strong cold frontal system over the TD. In summer, the meridional transport of TD dust to the TP is favored by the thermal effect of the TP and the weakening of the East Asian westerly winds. During this dust storm, the transport of TD dust over the TP is further enhanced by the passage of the cold front. As a result, TD dust breaks through the planetary boundary layer and extends to the upper troposphere over the northern TP. TD dust flux arrived at the TP with a value of 6.6 Gg/day in this 5 day event but decays quickly during the southward migration over the TP due to dry deposition. The simulations show that TD dust cools the atmosphere near the surface and heats the atmosphere above with a maximum heating rate of 0.11 K day-1 at ~7 km over the TP. The event-averaged net radiative forcings of TD dust over the TP are -3.97, 1.61, and -5.58 Wm-2 at the top of the atmosphere (TOA), in the atmosphere, and at the surface, respectively. The promising performance of WRF-Chem in simulating dust and its radiative forcing provides confidence for use in further investigation of climatic impact of TD dust over the TP.

  14. Intercontinental Transport and Climatic Impact of Saharan and Sahelian Dust

    Directory of Open Access Journals (Sweden)

    N'Datchoh Evelyne Touré

    2012-01-01

    Full Text Available The Sahara and Sahel regions of Africa are important sources of dust particles into the atmosphere. Dust particles from these regions are transported over the Atlantic Ocean to the Eastern American Coasts. This transportation shows temporal and spatial variability and often reaches its peak during the boreal summer (June-July-August. The regional climate model (RegCM 4.0, containing a module of dust emission, transport, and deposition processes, is used in this study. Saharan and Sahelian dusts emissions, transports, and climatic impact on precipitations during the spring (March-April-May and summer (June-July-August were studied using this model. The results showed that the simulation were coherent with observations made by the MISR satellite and the AERONET ground stations, within the domain of Africa (Banizoumba, Cinzana, and M’Bour and Ragged-point (Barbados Islands. The transport of dust particles was predominantly from North-East to South-West over the studied period (2005–2010. The seasonality of dust plumes’ trajectories was influenced by the altitudes reached by dusts in the troposphere. The impact of dusts on climate consisted of a cooling effect both during the boreal summer and spring over West Africa (except Southern-Guinea and Northern-Liberia, Central Africa, South-America, and Caribbean where increased precipitations were observed.

  15. The impact of dust storms on the Arabian Peninsula and the Red Sea

    KAUST Repository

    Jish Prakash, P.

    2015-01-12

    Located in the dust belt, the Arabian Peninsula is a major source of atmospheric dust. Frequent dust outbreaks and some 15 to 20 dust storms per year have profound effects on all aspects of human activity and natural processes in this region. To quantify the effect of severe dust events on radiation fluxes and regional climate characteristics, we simulated the storm that occurred from 18 to 20 March 2012 using a regional weather research forecast model fully coupled with the chemistry/aerosol module (WRF–Chem). This storm swept over a remarkably large area affecting the entire Middle East, northeastern Africa, Afghanistan, and Pakistan. It was caused by a southward propagating cold front, and the associated winds activated the dust production in river valleys of the lower Tigris and Euphrates in Iraq; the coastal areas in Kuwait, Iran, and the United Arab Emirates; the Rub al Khali, An Nafud, and Ad Dahna deserts; and along the Red Sea coast on the west side of the Arabian Peninsula. Our simulation results compare well with available ground-based and satellite observations. We estimate the total amount of dust generated by the storm to have reached 94 Mt. Approximately 78% of this dust was deposited within the calculation domain. The Arabian Sea and Persian Gulf received 5.3 Mt and the Red Sea 1.2 Mt of dust. Dust particles bring nutrients to marine ecosystems, which is especially important for the oligotrophic Northern Red Sea. However, their contribution to the nutrient balance in the Red Sea remains largely unknown. By scaling the effect of one storm to the number of dust storms observed annually over the Red Sea, we estimate the annual dust deposition to the Red Sea, associated with major dust storms, to be 6 Mt.

  16. The impact of dust storms on the Arabian Peninsula and the Red Sea

    KAUST Repository

    Jish Prakash, P.; Stenchikov, Georgiy L.; Kalenderski, Stoitchko; Osipov, Sergey; Bangalath, Hamza Kunhu

    2015-01-01

    Located in the dust belt, the Arabian Peninsula is a major source of atmospheric dust. Frequent dust outbreaks and some 15 to 20 dust storms per year have profound effects on all aspects of human activity and natural processes in this region. To quantify the effect of severe dust events on radiation fluxes and regional climate characteristics, we simulated the storm that occurred from 18 to 20 March 2012 using a regional weather research forecast model fully coupled with the chemistry/aerosol module (WRF–Chem). This storm swept over a remarkably large area affecting the entire Middle East, northeastern Africa, Afghanistan, and Pakistan. It was caused by a southward propagating cold front, and the associated winds activated the dust production in river valleys of the lower Tigris and Euphrates in Iraq; the coastal areas in Kuwait, Iran, and the United Arab Emirates; the Rub al Khali, An Nafud, and Ad Dahna deserts; and along the Red Sea coast on the west side of the Arabian Peninsula. Our simulation results compare well with available ground-based and satellite observations. We estimate the total amount of dust generated by the storm to have reached 94 Mt. Approximately 78% of this dust was deposited within the calculation domain. The Arabian Sea and Persian Gulf received 5.3 Mt and the Red Sea 1.2 Mt of dust. Dust particles bring nutrients to marine ecosystems, which is especially important for the oligotrophic Northern Red Sea. However, their contribution to the nutrient balance in the Red Sea remains largely unknown. By scaling the effect of one storm to the number of dust storms observed annually over the Red Sea, we estimate the annual dust deposition to the Red Sea, associated with major dust storms, to be 6 Mt.

  17. Lichen-based critical loads for atmospheric nitrogen deposition in Western Oregon and Washington forests, USA

    Science.gov (United States)

    Linda H. Geiser; Sarah E. Jovan; Doug A. Glavich; Matthew K. Porter

    2010-01-01

    Critical loads (CLs) define maximum atmospheric deposition levels apparently preventative of ecosystem harm. We present first nitrogen CLs for northwestern North America's maritime forests. Using multiple linear regression, we related epiphytic-macrolichen community composition to: 1) wet deposition from the National Atmospheric Deposition Program, 2) wet, dry,...

  18. Neutron activation analysis on sediments from Victoria Land, Antarctica. Multi-elemental characterization of potential atmospheric dust sources

    International Nuclear Information System (INIS)

    Baccolo, G.; Maggi, V.; Baroni, C.; Clemenza, M.; Motta, A.; Nastasi, M.; Previtali, E.; University of Milano-Bicocca, Milan; Delmonte, B.; Salvatore, M.C.

    2014-01-01

    The elemental composition of 40 samples of mineral sediments collected in Victoria Land, Antarctica, in correspondence of ice-free sites, is presented. Concentration of 36 elements was determined by instrumental neutron activation analysis, INAA. The selection of 6 standard reference materials and the development of a specific analytical procedure allowed to reduce measurements uncertainties and to verify the reproducibility of the results. The decision to analyze sediment samples from Victoria Land ice-free areas is related to recent investigations regarding mineral dust content in the TALos Dome ICE core (159deg11'E; 72deg49'S, East Antarctica, Victoria Land), in which a coarse local fraction of dust was recognized. The characterization of Antarctic potential source areas of atmospheric mineral dust is the first step to identify the active sources of dust for the Talos Dome area and to reconstruct the atmospheric pathways followed by air masses in this region during different climatic periods. Principal components analysis was used to identify elements and samples correlations; attention was paid specially to rare earth elements (REE) and incompatible/compatible elements (ICE) in respect to iron, which proved to be the most discriminating elemental groups. The analysis of REE and ICE concentration profiles supported evidences of chemical weathering in ice-free areas of Victoria Land, whereas cold and dry climate conditions of the Talos Dome area and in general of East Antarctica. (author)

  19. CV-Dust: Atmospheric aerosol in the Cape Verde region: carbon and soluble fractions of PM10

    Science.gov (United States)

    Pio, C.; Nunes, T.; Cardoso, J.; Caseiro, A.; Custódio, D.; Cerqueira, M.; Patoilo, D.; Almeida, S. M.; Freitas, M. C.

    2012-04-01

    Every year, billions of tons of eroded mineral soils from the Saharan Desert and the Sahel region, the largest dust source in the world, cross Mediterranean towards Europe, western Asia and the tropical North Atlantic Ocean as far as the Caribbean and South America. Many aspects of the direct and indirect effects of dust on climate are not well understood and the bulk and surface chemistry of the mineral dust particles determines interactions with gaseous and other particle species. The quantification of the magnitude of warming or cooling remains open because of the strong variability of the atmospheric dust burden and the lack of representative data for the spatial and temporal distribution of the dust composition. CV-Dust is a project that aims at provide a detailed data on the size distribution and the size-resolved chemical and mineralogical composition of dust emitted from North Africa using a natural laboratory like Cape Verde. This archipelago is located in an area of massive dust transport from land to ocean, and is thus ideal to set up sampling devices that are able to characterize and quantify dust transported from Africa. Moreover, Cape Verde's future economic prospects depend heavily on the encouragement of tourism, therefore it is essential to elucidate the role of Saharan dust may play in the degradation of Cape Verde air quality. The main objectives of CV-Dust project are: 1) to characterize the chemical and mineralogical composition of dust transported from Africa by setting up an orchestra of aerosol sampling devices in the strategic archipelago of Cape Verde; 2) to identify the sources of particles in Cape Verde by using receptor models; 3) to elucidate the role Saharan dust may play in the degradation of Cape Verde air quality; 4) to model processes governing dust production, transport, interaction with the radiation field and removal from the atmosphere. Here we present part of the data obtained throughout the last year, involving a set of more

  20. Simulating Mars' Dust Cycle with a Mars General Circulation Model: Effects of Water Ice Cloud Formation on Dust Lifting Strength and Seasonality

    Science.gov (United States)

    Kahre, Melinda A.; Haberle, Robert; Hollingsworth, Jeffery L.

    2012-01-01

    The dust cycle is critically important for the current climate of Mars. The radiative effects of dust impact the thermal and dynamical state of the atmosphere [1,2,3]. Although dust is present in the Martian atmosphere throughout the year, the level of dustiness varies with season. The atmosphere is generally the dustiest during northern fall and winter and the least dusty during northern spring and summer [4]. Dust particles are lifted into the atmosphere by dust storms that range in size from meters to thousands of kilometers across [5]. Regional storm activity is enhanced before northern winter solstice (Ls200 degrees - 240 degrees), and after northern solstice (Ls305 degrees - 340 degrees ), which produces elevated atmospheric dust loadings during these periods [5,6,7]. These pre- and post- solstice increases in dust loading are thought to be associated with transient eddy activity in the northern hemisphere with cross-equatorial transport of dust leading to enhanced dust lifting in the southern hemisphere [6]. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles [8,9,10]. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading.

  1. Carbon isotope analysis of n-alkanes in dust from the lower atmosphere over the eastern Atlantic

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schefuß, E.; Ratmeyer, V.; Stuut, J-B.W.; Jansen, J.H.F.

    2003-01-01

    Atmospheric dust samples collected along a transect off the West African coast have been investigated for their lipid content and compound-specific stable carbon isotope compositions. The saturated hydrocarbon fractions of the organic solvent extracts consist mainly of long-chain n-alkanes derived

  2. Atmospheric bulk deposition of polycyclic aromatic hydrocarbons in Shanghai: Temporal and spatial variation, and global comparison.

    Science.gov (United States)

    Feng, Daolun; Liu, Ying; Gao, Yi; Zhou, Jinxing; Zheng, Lirong; Qiao, Gang; Ma, Liming; Lin, Zhifen; Grathwohl, Peter

    2017-11-01

    Atmospheric deposition leads to accumulation of atmospheric polycyclic aromatic hydrocarbons (PAHs) on urban surfaces and topsoils. To capture the inherent variability of atmospheric deposition of PAHs in Shanghai's urban agglomeration, 85 atmospheric bulk deposition samples and 7 surface soil samples were collected from seven sampling locations during 2012-2014. Total fluxes of 17 PAHs were 587-32,300 ng m -2 day -1 , with a geometric mean of 2600 ng m -2 day -1 . The deposition fluxes were categorized as moderate to high on a global scale. Phenanthrene, fluoranthene and pyrene were major contributors. The spatial distribution of deposition fluxes revealed the influence of urbanization/industrialization and the relevance of local emissions. Meteorological conditions and more heating demand in cold season lead to a significant increase of deposition rates. Atmospheric deposition is the principal pathway of PAHs input to topsoils and the annual deposition load in Shanghai amounts to ∼4.5 tons (0.7 kg km -2 ) with a range of 2.5-10 tons (0.4-1.6 kg km -2 ). Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Origin of Harmattan dust settled in Northern Ghana – Long transported or local dust?

    DEFF Research Database (Denmark)

    Lyngsie, Gry; Awadzi, Theodore W; Breuning-Madsen, Henrik

    2011-01-01

    is that the majority of dust deposited in northern Ghana may not be from the original Harmattan source in the Bodélé Depression. The aim of this study is therefore to investigate the origin of deposited dust in Tamale, Ghana. This is examined by comparing wind data, grain size distribution, mineralogical......The Harmattan is a dry, dust-laden continental wind which has its origin in the Bodélé Depression in the Chad basin. In Ghana the Harmattan can be experienced from November to March, when the Harmattan replaces the dominant south westerly maritime Monsoon wind. The hypothesis of this study...... and geochemical data from dust samples deposited during the Harmattan and Monsoon seasons, and topsoil. This study shows that despite a clear difference between the wind directions in the Harmattan and Monsoon seasons in Tamale, northern Ghana, no distinct differences are observed between the mineral or elemental...

  4. Atmospheric Dust in the Upper Colorado River Basin: Integrated Analysis of Digital Imagery, Total Suspended Particulate, and Meteorological Data

    Science.gov (United States)

    Urban, F. E.; Reynolds, R. L.; Neff, J. C.; Fernandez, D. P.; Reheis, M. C.; Goldstein, H.; Grote, E.; Landry, C.

    2012-12-01

    Improved measurement and observation of dust emission and deposition in the American west would advance understanding of (1) landscape conditions that promote or suppress dust emission, (2) dynamics of dryland and montane ecosystems, (3) premature melting of snow cover that provides critical water supplies, and (4) possible effects of dust on human health. Such understanding can be applied to issues of land management, water-resource management, as well as the safety and well-being of urban and rural inhabitants. We have recently expanded the scope of particulate measurement in the Upper Colorado River basin through the establishment of total-suspended-particulate (TSP) measurement stations located in Utah and Colorado with bi-weekly data (filter) collection, along with protocols for characterizing dust-on-snow (DOS) layers in Colorado mountains. A sub-network of high-resolution digital cameras has been co-located with several of the TSP stations, as well as at other strategic locations. These real-time regional dust-event detection cameras are internet-based and collect digital imagery every 6-15 minutes. Measurements of meteorological conditions to support these collections and observations are provided partly by CLIM-MET stations, four of which were deployed in 1998 in the Canyonlands (Utah) region. These stations provide continuous, near real-time records of the complex interaction of wind, precipitation, vegetation, as well as dust emission and deposition, in different land-use settings. The complementary datasets of dust measurement and observation enable tracking of individual regional dust events. As an example, the first DOS event of water year 2012 (Nov 5, 2011), as documented at Senator Beck Basin, near Silverton, Colorado, was also recorded by the camera at Island-in-the-Sky (200 km to the northwest), as well as in aeolian activity and wind data from the Dugout Ranch CLIM-MET station (170 km to the west-northwest). At these sites, strong winds and the

  5. Experimental Constraints On Transparency of The 1052;1040;rtian Atmosphere Out of Dust Storm

    Science.gov (United States)

    Korablev, O.; Moroz, V. I.; Rodin, A. V.

    In the absence of a dust storm so-called permanent dust haze with = 0.2 in the atmo- sphere of Mars determines its thermal structure, as it has been shown by Gierasch and Goody [1972 JAS 29, 400] and is confirmed by modern Mars GCMs that include dust cycle. Dust loading varies substantially with the season and geographic location, and only the data of mapping instruments are adequate to characterize it. Presently, these are the data of thermal IR instruments, benefiting from being insensitive to condensa- tional clouds: TES/MGS and IRTM/Viking. In calm atmospheric conditions (aphelion season) a typical value of 9-µm optical depth 9 of 0.05-0.15 is observed by these instruments [Smith et al. 2000, 2001 JGR 105, 9539; JGR 106, 23929; Martin and Richardson 1993 JGR 98, 10941]. In order to quantify the typical optical depth of the permanent dust haze, we will discuss, among others, the following two questions: 1) How to agree the above values and reliable measurements from the surface (VL, Pathfinder) which give the typical optical depth (out of dust storms) of = 0.5 from one side, and some ground-based observations (in UV-visible range) that frequently reveal < 0.02 on the other side. 2) What is the relationship between 9 and the visi- ble optical depth? Comparison of IRTM and VL measurements (the only simultaneous observations available so far) suggest vis/9 = 2.5, that contradict to vis/9 = 0.9 that follow from IRIS/Mariner 9 mineralogy model, which is confirmed by recent re- analysis of IRIS data.

  6. Identifying sources of aeolian mineral dust: Present and past

    Science.gov (United States)

    Muhs, Daniel R; Prospero, Joseph M; Baddock, Matthew C; Gill, Thomas E

    2014-01-01

    Aeolian mineral dust is an important component of the Earth’s environmental systems, playing roles in the planetary radiation balance, as a source of fertilizer for biota in both terrestrial and marine realms and as an archive for understanding atmospheric circulation and paleoclimate in the geologic past. Crucial to understanding all of these roles of dust is the identification of dust sources. Here we review the methods used to identify dust sources active at present and in the past. Contemporary dust sources, produced by both glaciogenic and non-glaciogenic processes, can be readily identified by the use of Earth-orbiting satellites. These data show that present dust sources are concentrated in a global dust belt that encompasses large topographic basins in low-latitude arid and semiarid regions. Geomorphic studies indicate that specific point sources for dust in this zone include dry or ephemeral lakes, intermittent stream courses, dune fields, and some bedrock surfaces. Back-trajectory analyses are also used to identify dust sources, through modeling of wind fields and the movement of air parcels over periods of several days. Identification of dust sources from the past requires novel approaches that are part of the geologic toolbox of provenance studies. Identification of most dust sources of the past requires the use of physical, mineralogical, geochemical, and isotopic analyses of dust deposits. Physical properties include systematic spatial changes in dust deposit thickness and particle size away from a source. Mineralogy and geochemistry can pinpoint dust sources by clay mineral ratios and Sc-Th-La abundances, respectively. The most commonly used isotopic methods utilize isotopes of Nd, Sr, and Pb and have been applied extensively in dust archives of deep-sea cores, ice cores, and loess. All these methods have shown that dust sources have changed over time, with far more abundant dust supplies existing during glacial periods. Greater dust supplies in

  7. Decadal trends in atmospheric deposition in a high elevation station: Effects of climate and pollution on the long-range flux of metals and trace elements over SW Europe

    Science.gov (United States)

    Camarero, Lluís; Bacardit, Montserrat; de Diego, Alberto; Arana, Gorka

    2017-10-01

    Atmospheric deposition collected at remote, high elevation stations is representative of long-range transport of elements. Here we present time-series of Al, Fe, Ti, Mn, Zn, Ni, Cu, As, Cd and Pb deposition sampled in the Central Pyrenees at 2240 m a.s.l, representative of the fluxes of these elements over South West Europe. Trace element deposition did not show a simple trend. Rather, there was statistical evidence of several underlying factors governing the variability of the time-series recorded: seasonal cycles, trends, the effects of the amount of precipitation, climate-controlled export of dust, and changes in anthropogenic emissions. Overall, there were three main modes of variation in deposition. The first mode was related to North Atlantic Oscillation (NAO), and affected Al, Fe, Ti, Mn and Pb. We interpret this as changes in the dust export from Northern Africa under the different meteorological conditions that the NAO index indicates. The second mode was an upward trend related to a rise in the frequency of precipitation events (that also lead to an increase in the amount). More frequent events might cause a higher efficiency in the scavenging of aerosols. As, Cu and Ni responded to this. And finally, the third mode of variation was related to changes in anthropogenic emissions of Pb and Zn.

  8. A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos

    Science.gov (United States)

    Clancy, R. T.; Lee, S. W.; Gladstone, G. R.; McMillan, W. W.; Rousch, T.

    1995-01-01

    We propose key modifications to the Toon et al. (1977) model of the particle size distribution and composition of Mars atmospheric dust, based on a variety of spacecraft and wavelength observations of the dust. A much broader (r(sub eff)variance-0.8 micron), smaller particle size (r(sub mode)-0.02 microns) distribution coupled with a "palagonite-like" composition is argued to fit the complete ultraviolet-to-30-micron absorption properties of the dust better than the montmorillonite-basalt r(sub eff)variance= 0.4 micron, r(sub mode)= 0.40 micron dust model of Toon et al. Mariner 9 (infrared interferometer spectrometer) IRIS spectra of high atmospheric dust opacities during the 1971 - 1972 Mars global dust storm are analyzed in terms of the Toon et al. dust model, and a Hawaiian palagonite sample with two different size distribution models incorporating smaller dust particle sizes. Viking Infrared Thermal Mapper (IRTM) emission-phase-function (EPF) observations at 9 microns are analyzed to retrieve 9-micron dust opacities coincident with solar band dust opacities obtained from the same EPF sequences. These EPF dust opacities provide an independent measurement of the visible/9-microns extinction opacity ratio (> or equal to 2) for Mars atmospheric dust, which is consistent with a previous measurement by Martin (1986). Model values for the visible/9-microns opacity ratio and the ultraviolet and visible single-scattering albedos are calculated for the palagonite model with the smaller particle size distributions and compared to the same properties for the Toon et al. model of dust. The montmorillonite model of the dust is found to fit the detailed shape of the dust 9-micron absorption well. However, it predicts structured, deep absorptions at 20 microns which are not observed and requires a separate ultraviolet-visible absorbing component to match the observed behavior of the dust in this wavelength region. The modeled palagonite does not match the 8- to 9-micron

  9. Studies of the long-range transport of atmospheric pollutant using nuclear-related analytical techniques. Appendix 7

    International Nuclear Information System (INIS)

    Yang Shaojin

    1995-01-01

    Atmospheric aerosol and rainwater samples collected in the different Western Pacific areas were analyzed by instrumental neutron activation and proton induced x-ray emission to (1) determine the atmospheric concentrations of trace elements over the Western Pacific and (2) to estimate the atmospheric deposition of trace elements and dust-soil material to this region. High abundance of pollutant and crustal elements relative to oceanic sources was observed. Some characteristics of marine atmosphere relating to long-range transport of crustal and anthropogenic elements from continent to the remote ocean are discussed. The total dust-soil particle mass is estimated to be 0.066-1.2 μg/m 3 over the Western Pacific Ocean areas. Atmospheric inputs of dust-soil particles control the marine particle concentrations of crustal elements. A total of 99 atmospheric samples with the 'Gent' filter unit were collected during October 1993 and September 1994 at a western suburb of Beijing, China (40 deg. N,116 deg. E), and completed the analysis of these filters by both INAA and PIXE. (author)

  10. Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-Dust model – Part 2: Experimental campaigns in Northern Africa

    Directory of Open Access Journals (Sweden)

    K. Haustein

    2012-03-01

    Full Text Available The new NMMB/BSC-Dust model is intended to provide short to medium-range weather and dust forecasts from regional to global scales. It is an online model in which the dust aerosol dynamics and physics are solved at each model time step. The companion paper (Pérez et al., 2011 develops the dust model parameterizations and provides daily to annual evaluations of the model for its global and regional configurations. Modeled aerosol optical depth (AOD was evaluated against AERONET Sun photometers over Northern Africa, Middle East and Europe with correlations around 0.6–0.7 on average without dust data assimilation. In this paper we analyze in detail the behavior of the model using data from the Saharan Mineral dUst experiment (SAMUM-1 in 2006 and the Bodélé Dust Experiment (BoDEx in 2005. AOD from satellites and Sun photometers, vertically resolved extinction coefficients from lidars and particle size distributions at the ground and in the troposphere are used, complemented by wind profile data and surface meteorological measurements. All simulations were performed at the regional scale for the Northern African domain at the expected operational horizontal resolution of 25 km. Model results for SAMUM-1 generally show good agreement with satellite data over the most active Saharan dust sources. The model reproduces the AOD from Sun photometers close to sources and after long-range transport, and the dust size spectra at different height levels. At this resolution, the model is not able to reproduce a large haboob that occurred during the campaign. Some deficiencies are found concerning the vertical dust distribution related to the representation of the mixing height in the atmospheric part of the model. For the BoDEx episode, we found the diurnal temperature cycle to be strongly dependant on the soil moisture, which is underestimated in the NCEP analysis used for model initialization. The low level jet (LLJ and the dust AOD over the Bodélé are

  11. Radioecological impact of Saharan dusts fallout. Case study of a major event on the 21. of february 2004 in south part of France

    International Nuclear Information System (INIS)

    Masson, O.; Pourcelot, L.; Gurriaran, R.; Paulat, P.

    2005-01-01

    Lithometeors, Sirocco or more commonly 'red mud' are all in fact related to a single phenomenon which affects France every year: the wind transport and deposit of desert particles from the Sahara. On the 21. of February 2004, the southern part of France is swept by a weather event of wind transport of Saharan particles. The recordings of atmospheric dust contamination and the deposit of dust, which results from it, make an episode of exceptional width. In a few hours, the thickness of the deposit exceeds 1 mm (up to 4 mm in Corsica) with a maximum density of surface charge of 50 g.m -2 (50 tons per km 2 ). The loads of the PM 10 type particles in the air, recorded by associations of monitoring of the quality of the air, indicate concentrations multiplied to the maximum by 10 and an influence on the ground of the plume ranging between 300 000 and 350 000 km 2 . To the end, 2 million tons are deposited on a portion of the territory located at the south of a line from Nantes to Besancon. This event also had a significant radio-ecological impact, leading to significant 137 Cs, (239+240) Pu, 241 Am, activity levels of 38 Bq. kg -1 sec, 1 Bq. kg -1 sec and 0,46 Bq. kg -1 sec, respectively. Quality of air monitoring organisations recorded 10-fold increases in the concentration of charged PM 10 2 type particles within the cloud; ground coverage stretched over a 300 000 km 2 surface area. Across this whole area, the artificial radioactivity deposits are estimated to 37.10 10 Bq. In term of flow of deposit, this episode represents, with him only, i.e. in a few hours, a 137 Cs deposition equivalent to that recorded on average in a cumulated time of one year. Data from this study show that these weather-climatic episodes generate today, environmental samples which on average, present the highest levels and flux of artificial radioactivities, more than those in the sediments of the Rhone river deposited by flood events, for example. Changes in artificial radionuclide activity

  12. Elevated atmospheric deposition and dynamics of mercury in a remote upland forest of southwestern China

    International Nuclear Information System (INIS)

    Fu Xuewu; Feng Xinbin; Zhu Wanze; Rothenberg, S.; Yao Heng; Zhang Hui

    2010-01-01

    Mt. Gongga area in southwest China was impacted by Hg emissions from industrial activities and coal combustion, and annual means of atmospheric TGM and PHg concentrations at a regional background station were 3.98 ng m -3 and 30.7 pg m -3 , respectively. This work presents a mass balance study of Hg in an upland forest in this area. Atmospheric deposition was highly elevated in the study area, with the annual mean THg deposition flux of 92.5 μg m -2 yr -1 . Total deposition was dominated by dry deposition (71.8%), and wet deposition accounted for the remaining 28.2%. Forest was a large pool of atmospheric Hg, and nearly 76% of the atmospheric input was stored in forest soil. Volatilization and stream outflow were identified as the two major pathways for THg losses from the forest, which yielded mean output fluxes of 14.0 and 8.6 μg m -2 yr -1 , respectively. - Upland forest ecosystem is a great sink of atmospheric mercury in southwest China.

  13. Palaeo-dust records: A window to understanding past environments

    Science.gov (United States)

    Marx, Samuel K.; Kamber, Balz S.; McGowan, Hamish A.; Petherick, Lynda M.; McTainsh, Grant H.; Stromsoe, Nicola; Hooper, James N.; May, Jan-Hendrik

    2018-06-01

    Dust entrainment, transport over vast distances and subsequent deposition is a fundamental part of the Earth system. Yet the role and importance of dust has been underappreciated, due largely to challenges associated with recognising dust in the landscape and interpreting its depositional history. Despite these challenges, interest in dust is growing. Technical advances in remote sensing and modelling have improved understanding of dust sources and production, while advances in sedimentology, mineralogy and geochemistry (in particular) have allowed dust to be more easily distinguished within sedimentary deposits. This has facilitated the reconstruction of records of dust emissions through time. A key advance in our understanding of dust has occurred following the development of methods to geochemically provenance (fingerprint) dust to its source region. This ability has provided new information on dust transport pathways, as well as the reach and impact of dust. It has also expanded our understanding of the processes driving dust emissions over decadal to millennial timescales through linking dust deposits directly to source area conditions. Dust provenance studies have shown that dust emission, transport and deposition are highly sensitive to variability in climate. They also imply that dust emissions are not simply a function of the degree of aridity in source areas, but respond to a more complex array of conditions, including sediment availability. As well as recording natural variability, dust records are also shown to sensitively track the impact of human activity. This is reflected by both changing dust emission rates and changing dust chemistry. Specific examples of how dust responds to, and records change, are provided with our work on dust emissions from Australia, the most arid inhabited continent and the largest dust source in the Southern Hemisphere. These case studies show that Australian dust emissions reflect hydro-climate variability, with

  14. Simulation of windblown dust transport from a mine tailings impoundment using a computational fluid dynamics model

    Science.gov (United States)

    Stovern, Michael; Felix, Omar; Csavina, Janae; Rine, Kyle P.; Russell, MacKenzie R.; Jones, Robert M.; King, Matt; Betterton, Eric A.; Sáez, A. Eduardo

    2014-01-01

    Mining operations are potential sources of airborne particulate metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, due to potential deleterious effects on human health and ecology. Dust emissions and dispersion of dust and aerosol from the Iron King Mine tailings in Dewey-Humboldt, Arizona, a Superfund site, are currently being investigated through in situ field measurements and computational fluid dynamics modeling. These tailings are heavily contaminated with lead and arsenic. Using a computational fluid dynamics model, we model dust transport from the mine tailings to the surrounding region. The model includes gaseous plume dispersion to simulate the transport of the fine aerosols, while individual particle transport is used to track the trajectories of larger particles and to monitor their deposition locations. In order to improve the accuracy of the dust transport simulations, both regional topographical features and local weather patterns have been incorporated into the model simulations. Results show that local topography and wind velocity profiles are the major factors that control deposition. PMID:25621085

  15. Simulation of windblown dust transport from a mine tailings impoundment using a computational fluid dynamics model.

    Science.gov (United States)

    Stovern, Michael; Felix, Omar; Csavina, Janae; Rine, Kyle P; Russell, MacKenzie R; Jones, Robert M; King, Matt; Betterton, Eric A; Sáez, A Eduardo

    2014-09-01

    Mining operations are potential sources of airborne particulate metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, due to potential deleterious effects on human health and ecology. Dust emissions and dispersion of dust and aerosol from the Iron King Mine tailings in Dewey-Humboldt, Arizona, a Superfund site, are currently being investigated through in situ field measurements and computational fluid dynamics modeling. These tailings are heavily contaminated with lead and arsenic. Using a computational fluid dynamics model, we model dust transport from the mine tailings to the surrounding region. The model includes gaseous plume dispersion to simulate the transport of the fine aerosols, while individual particle transport is used to track the trajectories of larger particles and to monitor their deposition locations. In order to improve the accuracy of the dust transport simulations, both regional topographical features and local weather patterns have been incorporated into the model simulations. Results show that local topography and wind velocity profiles are the major factors that control deposition.

  16. Acid atmospheric deposition in a forested mountain catchment

    Czech Academy of Sciences Publication Activity Database

    Křeček, J.; Palán, L.; Stuchlík, Evžen

    2017-01-01

    Roč. 10, č. 4 (2017), s. 680-686 ISSN 1971-7458 Institutional support: RVO:60077344 Keywords : mountain water shed * spruce forests * acid atmospheric deposition * water resources recharge Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Marine biology, freshwater biology, limnology Impact factor: 1.623, year: 2016

  17. Retrieving atmospheric dust opacity on Mars by imaging spectroscopy at large angles

    Science.gov (United States)

    Douté, S.; Ceamanos, X.; Appéré, T.

    2013-09-01

    We propose a new method to retrieve the optical depth of Martian aerosols (AOD) from OMEGA and CRISM hyperspectral imagery at a reference wavelength of 1 μm. Our method works even if the underlying surface is completely made of minerals, corresponding to a low contrast between surface and atmospheric dust, while being observed at a fixed geometry. Minimizing the effect of the surface reflectance properties on the AOD retrieval is the second principal asset of our method. The method is based on the parametrization of the radiative coupling between particles and gas determining, with local altimetry, acquisition geometry, and the meteorological situation, the absorption band depth of gaseous CO2. Because the last three factors can be predicted to some extent, we can define a new parameter β that expresses specifically the strength of the gas-aerosols coupling while directly depending on the AOD. Combining estimations of β and top of the atmosphere radiance values extracted from the observed spectra within the CO2 gas band at 2 μm, we evaluate the AOD and the surface reflectance by radiative transfer inversion. One should note that practically β can be estimated for a large variety of mineral or icy surfaces with the exception of CO2 ice when its 2 μm solid band is not sufficiently saturated. Validation of the proposed method shows that it is reliable if two conditions are fulfilled: (i) the observation conditions provide large incidence or/and emergence angles (ii) the aerosols are vertically well mixed in the atmosphere. Experiments conducted on OMEGA nadir looking observations as well as CRISM multi-angular acquisitions with incidence angles higher than 65° in the first case and 33° in the second case produce very satisfactory results. Finally in a companion paper the method is applied to monitoring atmospheric dust spring activity at high southern latitudes on Mars using OMEGA.

  18. Application of aerosol speciation data as an in situ dust proxy for validation of the Dust Regional Atmospheric Model (DREAM)

    Science.gov (United States)

    Shaw, Patrick

    The Dust REgional Atmospheric Model (DREAM) predicts concentrations of mineral dust aerosols in time and space, but validation is challenging with current in situ particulate matter (PM) concentration measurements. Measured levels of ambient PM often contain anthropogenic components as well as windblown mineral dust. In this study, two approaches to model validation were performed with data from preexisting air quality monitoring networks: using hourly concentrations of total PM with aerodynamic diameter less than 2.5 μm (PM 2.5); and using a daily averaged speciation-derived soil component. Validation analyses were performed for point locations within the cities of El Paso (TX), Austin (TX), Phoenix (AZ), Salt Lake City (UT) and Bakersfield (CA) for most of 2006. Hourly modeled PM 2.5 did not validate at all with hourly observations among the sites (combined R hourly values). Aerosol chemical speciation data distinguished between mineral (soil) dust from anthropogenic ambient PM. As expected, statistically significant improvements in correlation among all stations (combined R = 0.16, N = 343 daily values) were found when the soil component alone was used to validate DREAM. The validation biases that result from anthropogenic aerosols were also reduced using the soil component. This is seen in the reduction of the root mean square error between hourly in situ versus hourly modeled (RMSE hourly = 18.6 μg m -3) and 24-h in situ speciation values versus daily averaged observed (RMSE soil = 12.0 μg m -3). However, the lack of a total reduction in RMSE indicates there is still room for improvement in the model. While the soil component is the theoretical proxy of choice for a dust transport model, the current sparse and infrequent sampling is not ideal for routine hourly air quality forecast validation.

  19. LADEE LUNAR DUST EXPERIMENT

    Data.gov (United States)

    National Aeronautics and Space Administration — This archive bundle includes data taken by the Lunar Dust Experiment (LDEX) instrument aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft....

  20. Atmospheric Electricity Effects of Eastern Mediterranean Dust Storms

    Science.gov (United States)

    Katz, Shai; Yair, Yoav; Yaniv, Roy; Price, Colin

    2016-04-01

    We present atmospheric electrical measurements conducted at the Wise Observatory (WO) in Mizpe-Ramon (30035'N, 34045'E) and Mt. Hermon (30024'N, 35051'E), Israel, during two massive and unique dust storms that occurred over the Eastern Mediterranean region on February 10-11 and September 08-12, 2015. The first event transported Saharan dust from Egypt and the Sinai Peninsula in advance of a warm front of a Cyprus low pressure system. In the second event, dust particles were transported from the Syrian desert, which dominates the north-east border with Iraq, through flow associated with a shallow Persian trough system. In both events the concentrations of PM10 particles measured by the air-quality monitoring network of the Israeli Ministry of the Environment in Beer-Sheba reached values > 2200 μg m-3. Aerosol Optical Thickness (AOT) obtained from the AERONET station in Sde-Boker reached values up to 4.0. The gradual intensification of the first event reached peak values on the February 11th > 1200 μg m-3 and an AOT ~ 1.8, while the second dust storm commenced on September 8th with a sharp increase reaching peak values of 2225 μg m-3 and AOT of 4.0. Measurements of the fair weather vertical electric field (Ez) and of the vertical current density (Jz) were conducted continuously with a 1 minute temporal resolution. During the February event, very large fluctuations in the electrical parameters were measured at the WO. The Ez values changed between +1000 and +8000 V m-1 while the Jz fluctuated between -10 and +20 pA m-2 (this is an order of magnitude larger compared to the fair weather current density of ~2 pA m-2. In contrast, during the September event, Ez values registered at WO were between -430 and +10 V m-1 while the Jz fluctuated between -6 and +3 pA m2. For the September event the Hermon site showed Ez and Jz values fluctuating between -460 and +570 V m-1 and -14.5 and +18 pA m-2 respectively. The electric field and current variability, amplitude and the

  1. A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations.

    Science.gov (United States)

    Csavina, Janae; Field, Jason; Taylor, Mark P; Gao, Song; Landázuri, Andrea; Betterton, Eric A; Sáez, A Eduardo

    2012-09-01

    Contaminants can be transported rapidly and over relatively long distances by atmospheric dust and aerosol relative to other media such as water, soil and biota; yet few studies have explicitly evaluated the environmental implications of this pathway, making it a fundamental but understudied transport mechanism. Although there are numerous natural and anthropogenic activities that can increase dust and aerosol emissions and contaminant levels in the environment, mining operations are notable with respect to the quantity of particulates generated, the global extent of area impacted, and the toxicity of contaminants associated with the emissions. Here we review (i) the environmental fate and transport of metals and metalloids in dust and aerosol from mining operations, (ii) current methodologies used to assess contaminant concentrations and particulate emissions, and (iii) the potential health and environmental risks associated with airborne contaminants from mining operations. The review evaluates future research priorities based on the available literature and suggest that there is a particular need to measure and understand the generation, fate and transport of airborne particulates from mining operations, specifically the finer particle fraction. More generally, our findings suggest that mining operations play an important but underappreciated role in the generation of contaminated atmospheric dust and aerosol and the transport of metal and metalloid contaminants, and highlight the need for further research in this area. The role of mining activities in the fate and transport of environmental contaminants may become increasingly important in the coming decades, as climate change and land use are projected to intensify, both of which can substantially increase the potential for dust emissions and transport. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. A Review on the Importance of Metals and Metalloids in Atmospheric Dust and Aerosol from Mining Operations

    Science.gov (United States)

    Csavina, Janae; Field, Jason; Taylor, Mark P.; Gao, Song; Landázuri, Andrea; Betterton, Eric A.; Sáez, A. Eduardo

    2012-01-01

    Contaminants can be transported rapidly and over relatively long distances by atmospheric dust and aerosol relative to other media such as water, soil and biota; yet few studies have explicitly evaluated the environmental implications of this pathway, making it a fundamental but understudied transport mechanism. Although there are numerous natural and anthropogenic activities that can increase dust and aerosol emissions and contaminant levels in the environment, mining operations are notable with respect to the quantity of particulates generated, the global extent of area impacted, and the toxicity of contaminants associated with the emissions. Here we review (i) the environmental fate and transport of metals and metalloids in dust and aerosol from mining operations, (ii) current methodologies used to assess contaminant concentrations and particulate emissions, and (iii) the potential health and environmental risks associated with airborne contaminants from mining operations. The review evaluates future research priorities based on the available literature and suggest that there is a particular need to measure and understand the generation, fate and transport of airborne particulates from mining operations, specifically the finer particle fraction. More generally, our findings suggest that mining operations play an important but underappreciated role in the generation of contaminated atmospheric dust and aerosol and the transport of metal and metalloid contaminants, and highlight the need for further research in this area. The role of mining activities in the fate and transport of environmental contaminants may become increasingly important in the coming decades, as climate change and land use are projected to intensify, both of which can substantially increase the potential for dust emissions and transport. PMID:22766428

  3. Source apportionment of atmospheric bulk deposition in the Belgrade urban area using Positive Matrix factorization

    Science.gov (United States)

    Tasić, M.; Mijić, Z.; Rajšić, S.; Stojić, A.; Radenković, M.; Joksić, J.

    2009-04-01

    The primary objective of the present study was to assess anthropogenic impacts of heavy metals to the environment by determination of total atmospheric deposition of heavy metals. Atmospheric depositions (wet + dry) were collected monthly, from June 2002 to December 2006, at three urban locations in Belgrade, using bulk deposition samplers. Concentrations of Fe, Al, Pb, Zn, Cu, Ni, Mn, Cr, V, As and Cd were analyzed using atomic absorption spectrometry. Based upon these results, the study attempted to examine elemental associations in atmospheric deposition and to elucidate the potential sources of heavy metal contaminants in the region by the use of multivariate receptor model Positive Matrix Factorization (PMF).

  4. Source apportionment of atmospheric bulk deposition in the Belgrade urban area using Positive Matrix factorization

    International Nuclear Information System (INIS)

    Tasic, M; Mijic, Z; Rajsic, S; Stojic, A; Radenkovic, M; Joksic, J

    2009-01-01

    The primary objective of the present study was to assess anthropogenic impacts of heavy metals to the environment by determination of total atmospheric deposition of heavy metals. Atmospheric depositions (wet + dry) were collected monthly, from June 2002 to December 2006, at three urban locations in Belgrade, using bulk deposition samplers. Concentrations of Fe, Al, Pb, Zn, Cu, Ni, Mn, Cr, V, As and Cd were analyzed using atomic absorption spectrometry. Based upon these results, the study attempted to examine elemental associations in atmospheric deposition and to elucidate the potential sources of heavy metal contaminants in the region by the use of multivariate receptor model Positive Matrix Factorization (PMF).

  5. Recent trends of plutonium deposition observed in Japan: comparison with naturallithogenic radionuclides, thorium isotopes

    International Nuclear Information System (INIS)

    Hirose, K.; Igarashi, Y.; Aoyama, M.

    2005-01-01

    Plutonium in monthly deposition samples from 2000 to end of 2003 collected to Tsukuba (the Meteorological Research Institute), Japan is reported, together with monthly thorium deposition. The annual deposition of 239,240 Pri during the past 18 years. ranged from 1.7 to 7.8 mBq m -2 y -1 shows no systematic inter-annual variation. However, a maximum annual 239,240 Pu deposition (7.8 mBq m -2 y -1 ) was observed in 2002. On the other hand, monthly 239,240 Pu depositions show a typical seasonal variation with a maximum in spring season (March to April), which corresponds to the seasonal cycle of generation of dust storms in the East Asian arid area. Thorium, which is a typical lithogenic radionuclide, reflects soil-derived particles in the atmospheric dust. The monthly Th deposition showed a typical seasonal trend with a maximum in spring and minimum in summer. The 230 Th/ 232 Th activity ratios in the deposition samples significantly differed from that in surface soils collected in Tsukuba area, which means that a significant part of thorium in deposition samples is not derived from suspension of local soil particles. The result reveals that the resent 239,240 Pu deposition observed in Japan are attributed to resuspension of deposited plutonium; resuspended plutonium originates from the East Asian continent desert and arid areas. These findings suggest that a significant amount of soil dust observed in Tsukuba is attributable to the long-range transport of continental dust from the East Asian arid areas. Plutonium in deposition samples as does thorium would become a proxy of the environmental change in the Asian continent.

  6. Following Saharan Dust Outbreak Toward The Amazon Basin

    Science.gov (United States)

    Ben Ami, Y.; Koren, I.; Rudich, Y.; Flores, M.

    2008-12-01

    The role of the Amazon rainforest on earth climatic system is well recognized. To keep forest wellbeing and the fragile balance between the rainforest and the atmosphere, the Amazon must contain a satisfactory amount of nutrients to support the plants. The extensive rain and floods wash most of the soluble nutrients from the rainforest soil, leaving behind acidic kaolinite clay or sandy soil, with limited minerals for plant growth. It was suggested that lack of mineral in the soil may be replenished by deposition of Saharan mineral dust. Using remote sensing data (from the A-train satellites constellation) following with in-situ measurements (as part of the AMazonian Aerosol CharacteriZation Experiment (AMZE) campaign), ground-based data (from AErosol RObotic NETwork (AERONET)) and back trajectory calculations, we analyzed Saharan dust transport toward the Amazon basin during the AMZE period (Feb 7 to Mar 14, 2008). Dust mass, sink, vertical distribution and surface wind speeds were analyzed over the Bodele depression (located in Chad), where most of the dust is emitted, along the Atlantic Ocean and near the Brazilian coastline. Using an integrated data analysis approach we followed dust packages from their emission in the Sahara to their sink in the Amazon forest.

  7. The early summertime Saharan heat low: sensitivity of the radiation budget and atmospheric heating to water vapour and dust aerosol

    Science.gov (United States)

    Alamirew, Netsanet K.; Todd, Martin C.; Ryder, Claire L.; Marsham, John H.; Wang, Yi

    2018-01-01

    The Saharan heat low (SHL) is a key component of the west African climate system and an important driver of the west African monsoon across a range of timescales of variability. The physical mechanisms driving the variability in the SHL remain uncertain, although water vapour has been implicated as of primary importance. Here, we quantify the independent effects of variability in dust and water vapour on the radiation budget and atmospheric heating of the region using a radiative transfer model configured with observational input data from the Fennec field campaign at the location of Bordj Badji Mokhtar (BBM) in southern Algeria (21.4° N, 0.9° E), close to the SHL core for June 2011. Overall, we find dust aerosol and water vapour to be of similar importance in driving variability in the top-of-atmosphere (TOA) radiation budget and therefore the column-integrated heating over the SHL (˜ 7 W m-2 per standard deviation of dust aerosol optical depth - AOD). As such, we infer that SHL intensity is likely to be similarly enhanced by the effects of dust and water vapour surge events. However, the details of the processes differ. Dust generates substantial radiative cooling at the surface (˜ 11 W m-2 per standard deviation of dust AOD), presumably leading to reduced sensible heat flux in the boundary layer, which is more than compensated by direct radiative heating from shortwave (SW) absorption by dust in the dusty boundary layer. In contrast, water vapour invokes a radiative warming at the surface of ˜ 6 W m-2 per standard deviation of column-integrated water vapour in kg m-2. Net effects involve a pronounced net atmospheric radiative convergence with heating rates on average of 0.5 K day-1 and up to 6 K day-1 during synoptic/mesoscale dust events from monsoon surges and convective cold-pool outflows (haboobs). On this basis, we make inferences on the processes driving variability in the SHL associated with radiative and advective heating/cooling. Depending on the

  8. Wet and Dry Atmospheric Depositions of Inorganic Nitrogen during Plant Growing Season in the Coastal Zone of Yellow River Delta

    Directory of Open Access Journals (Sweden)

    Junbao Yu

    2014-01-01

    Full Text Available The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD using automatic sampling equipment. The results showed that SO42- and Na+ were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m−2, in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3-–N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4+–N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3-–N and NH4+–N was ~31.38% and ~20.50% for the contents of NO3-–N and NH4+–N in 0–10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD.

  9. Wet and dry atmospheric depositions of inorganic nitrogen during plant growing season in the coastal zone of Yellow River Delta.

    Science.gov (United States)

    Yu, Junbao; Ning, Kai; Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei; Gao, Yongjun

    2014-01-01

    The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO4 (2-) and Na(+) were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m(-2), in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3 (-)-N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4 (+)-N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3 (-)-N and NH4 (+)-N was ~31.38% and ~20.50% for the contents of NO3 (-)-N and NH4 (+)-N in 0-10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD.

  10. Recently deglaciated high-altitude soils of the Himalaya: diverse environments, heterogenous bacterial communities and long-range dust inputs from the upper troposphere.

    Science.gov (United States)

    Stres, Blaz; Sul, Woo Jun; Murovec, Bostjan; Tiedje, James M

    2013-01-01

    The Himalaya with its altitude and geographical position forms a barrier to atmospheric transport, which produces much aqueous-particle monsoon precipitation and makes it the largest continuous ice-covered area outside polar regions. There is a paucity of data on high-altitude microbial communities, their native environments and responses to environmental-spatial variables relative to seasonal and deglaciation events. Soils were sampled along altitude transects from 5000 m to 6000 m to determine environmental, spatial and seasonal factors structuring bacterial communities characterized by 16 S rRNA gene deep sequencing. Dust traps and fresh-snow samples were used to assess dust abundance and viability, community structure and abundance of dust associated microbial communities. Significantly different habitats among the altitude-transect samples corresponded to both phylogenetically distant and closely-related communities at distances as short as 50 m showing high community spatial divergence. High within-group variability that was related to an order of magnitude higher dust deposition obscured seasonal and temporal rearrangements in microbial communities. Although dust particle and associated cell deposition rates were highly correlated, seasonal dust communities of bacteria were distinct and differed significantly from recipient soil communities. Analysis of closest relatives to dust OTUs, HYSPLIT back-calculation of airmass trajectories and small dust particle size (4-12 µm) suggested that the deposited dust and microbes came from distant continental, lacustrine and marine sources, e.g. Sahara, India, Caspian Sea and Tibetan plateau. Cyanobacteria represented less than 0.5% of microbial communities suggesting that the microbial communities benefitted from (co)deposited carbon which was reflected in the psychrotolerant nature of dust-particle associated bacteria. The spatial, environmental and temporal complexity of the high-altitude soils of the Himalaya

  11. Atmospheric Deposition: Sampling Procedures, Analytical Methods, and Main Recent Findings from the Scientific Literature

    Directory of Open Access Journals (Sweden)

    M. Amodio

    2014-01-01

    Full Text Available The atmosphere is a carrier on which some natural and anthropogenic organic and inorganic chemicals are transported, and the wet and dry deposition events are the most important processes that remove those chemicals, depositing it on soil and water. A wide variety of different collectors were tested to evaluate site-specificity, seasonality and daily variability of settleable particle concentrations. Deposition fluxes of POPs showed spatial and seasonal variations, diagnostic ratios of PAHs on deposited particles, allowed the discrimination between pyrolytic or petrogenic sources. Congener pattern analysis and bulk deposition fluxes in rural sites confirmed long-range atmospheric transport of PCDDs/Fs. More and more sophisticated and newly designed deposition samplers have being used for characterization of deposited mercury, demonstrating the importance of rain scavenging and the relatively higher magnitude of Hg deposition from Chinese anthropogenic sources. Recently biological monitors demonstrated that PAH concentrations in lichens were comparable with concentrations measured in a conventional active sampler in an outdoor environment. In this review the authors explore the methodological approaches used for the assessment of atmospheric deposition, from the analysis of the sampling methods, the analytical procedures for chemical characterization of pollutants and the main results from the scientific literature.

  12. Dust, Elemental Carbon and Other Impurities on Central Asian Glaciers: Origin and Radiative Forcing

    Science.gov (United States)

    Schmale, J.; Flanner, M.; Kang, S.; Sprenger, M.; Zhang, Q.; Li, Y.; Guo, J.; Schwikowski, M.

    2015-12-01

    In Central Asia, more than 60 % of the population depends on water stored in glaciers and mountain snow. While temperature, precipitation and dynamic processes are key drivers of glacial change, deposition of light absorbing impurities such as mineral dust and black carbon can lead to accelerated melting through surface albedo reduction. Here, we discuss the origin of deposited mineral dust and black carbon and their impacts on albedo change and radiative forcing (RF). 218 snow samples were taken from 13 snow pits on 4 glaciers, Abramov (Pamir), Suek, Glacier No. 354 and Golubin (Tien Shan), representing deposition between summer 2012 and 2014. They were analyzed for elemental and organic carbon by a thermo-optical method, mineral dust by gravimetry, and iron by ICP-MS. Back trajectory ensembles were released every 6 hours with the Lagranto model for the covered period at all sites. Boundary layer "footprints" were calculated to estimate general source regions and combined with MODIS fire counts for potential fire contributions. Albedo reduction due to black carbon and mineral dust was calculated with the Snow-Ice-Aerosol-Radiative model (SNICAR), and surface spectral irradiances were derived from atmospheric radiative transfer calculations to determine the RF under clear-sky and all sky conditions using local radiation measurements. Dust contributions came from Central Asia, the Arabian Peninsula, the Sahara and partly the Taklimakan. Fire contributions were higher in 2014 and generally came from the West and North. We find that EC exerts roughly 3 times more RF than mineral dust in fresh and relatively fresh snow (~5 W/m2) and up to 6 times more in snow that experienced melting (> 10 W/m2) even though EC concentrations (average per snow pit from 90 to 700 ng/g) were up to two orders of magnitude lower than mineral dust (10 to 140 μg/g).

  13. Atmospheric deposition and environmental quality in Italy

    International Nuclear Information System (INIS)

    Mosello, R.

    1993-01-01

    For Italy's Po River hydrological basin, artificial reservoirs have a great importance; water reserve is about 1600 million cubic meters for the hydroelectric reservoirs and about 76 million cubic meters for irrigation. Relevant to studies on water quality and acidification in the Po River Basin, this paper reviews some aspects of research on atmospheric deposition, i.e., geographical variability, long term trends, and effects on surface waters

  14. Bioavailable atmospheric phosphorous supply to the global ocean: a 3-D global modeling study

    Science.gov (United States)

    Myriokefalitakis, Stelios; Nenes, Athanasios; Baker, Alex R.; Mihalopoulos, Nikolaos; Kanakidou, Maria

    2016-12-01

    The atmospheric cycle of phosphorus (P) is parameterized here in a state-of-the-art global 3-D chemistry transport model, taking into account primary emissions of total P (TP) and soluble P (DP) associated with mineral dust, combustion particles from natural and anthropogenic sources, bioaerosols, sea spray and volcanic aerosols. For the present day, global TP emissions are calculated to be roughly 1.33 Tg-P yr-1, with the mineral sources contributing more than 80 % to these emissions. The P solubilization from mineral dust under acidic atmospheric conditions is also parameterized in the model and is calculated to contribute about one-third (0.14 Tg-P yr-1) of the global DP atmospheric source. To our knowledge, a unique aspect of our global study is the explicit modeling of the evolution of phosphorus speciation in the atmosphere. The simulated present-day global annual DP deposition flux is 0.45 Tg-P yr-1 (about 40 % over oceans), showing a strong spatial and temporal variability. Present-day simulations of atmospheric P aerosol concentrations and deposition fluxes are satisfactory compared with available observations, indicating however an underestimate of about 70 % on current knowledge of the sources that drive the P atmospheric cycle. Sensitivity simulations using preindustrial (year 1850) anthropogenic and biomass burning emission scenarios showed a present-day increase of 75 % in the P solubilization flux from mineral dust, i.e., the rate at which P is converted into soluble forms, compared to preindustrial times, due to increasing atmospheric acidity over the last 150 years. Future reductions in air pollutants due to the implementation of air-quality regulations are expected to decrease the P solubilization flux from mineral dust by about 30 % in the year 2100 compared to the present day. Considering, however, that all the P contained in bioaerosols is readily available for uptake by marine organisms, and also accounting for all other DP sources, a total

  15. Immersion freezing by natural dust based on a soccer ball model with the Community Atmospheric Model version 5: climate effects

    Science.gov (United States)

    Wang, Yong; Liu, Xiaohong

    2014-12-01

    We introduce a simplified version of the soccer ball model (SBM) developed by Niedermeier et al (2014 Geophys. Res. Lett. 41 736-741) into the Community Atmospheric Model version 5 (CAM5). It is the first time that SBM is used in an atmospheric model to parameterize the heterogeneous ice nucleation. The SBM, which was simplified for its suitable application in atmospheric models, uses the classical nucleation theory to describe the immersion/condensation freezing by dust in the mixed-phase cloud regime. Uncertain parameters (mean contact angle, standard deviation of contact angle probability distribution, and number of surface sites) in the SBM are constrained by fitting them to recent natural dust (Saharan dust) datasets. With the SBM in CAM5, we investigate the sensitivity of modeled cloud properties to the SBM parameters, and find significant seasonal and regional differences in the sensitivity among the three SBM parameters. Changes of mean contact angle and the number of surface sites lead to changes of cloud properties in Arctic in spring, which could be attributed to the transport of dust ice nuclei to this region. In winter, significant changes of cloud properties induced by these two parameters mainly occur in northern hemispheric mid-latitudes (e.g., East Asia). In comparison, no obvious changes of cloud properties caused by changes of standard deviation can be found in all the seasons. These results are valuable for understanding the heterogeneous ice nucleation behavior, and useful for guiding the future model developments.

  16. Immersion freezing by natural dust based on a soccer ball model with the Community Atmospheric Model version 5: climate effects

    International Nuclear Information System (INIS)

    Wang, Yong; Liu, Xiaohong

    2014-01-01

    We introduce a simplified version of the soccer ball model (SBM) developed by Niedermeier et al (2014 Geophys. Res. Lett. 41 736–741) into the Community Atmospheric Model version 5 (CAM5). It is the first time that SBM is used in an atmospheric model to parameterize the heterogeneous ice nucleation. The SBM, which was simplified for its suitable application in atmospheric models, uses the classical nucleation theory to describe the immersion/condensation freezing by dust in the mixed-phase cloud regime. Uncertain parameters (mean contact angle, standard deviation of contact angle probability distribution, and number of surface sites) in the SBM are constrained by fitting them to recent natural dust (Saharan dust) datasets. With the SBM in CAM5, we investigate the sensitivity of modeled cloud properties to the SBM parameters, and find significant seasonal and regional differences in the sensitivity among the three SBM parameters. Changes of mean contact angle and the number of surface sites lead to changes of cloud properties in Arctic in spring, which could be attributed to the transport of dust ice nuclei to this region. In winter, significant changes of cloud properties induced by these two parameters mainly occur in northern hemispheric mid-latitudes (e.g., East Asia). In comparison, no obvious changes of cloud properties caused by changes of standard deviation can be found in all the seasons. These results are valuable for understanding the heterogeneous ice nucleation behavior, and useful for guiding the future model developments. (letter)

  17. The deposition of radioiodine onto rice plant from atmosphere

    International Nuclear Information System (INIS)

    Uchida, Shigeo; Muramatsu, Yasuyuki; Yoshida, Satoshi; Sumiya, Misako; Ohmomo, Yoichiro.

    1994-01-01

    Radiation dose estimations are usually made with the aid of assessment models in which model parameters such as the transfer factors of radionuclides from one environmental compartment to another are involved. In simple models the parameters are often described as the concentration ratio of a radionuclide between two compartments, when the system is under equilibrium condition. In this paper, the authors introduce the values of the parameters of radioiodine obtained by tracer experiments. Laboratory experiments on the transfer parameters of radionuclides from the atmosphere to rice plant were carried out in the atmosphere-to-crops system (deposition pathway). It is known that the typical chemical species of gaseous iodine in the atmosphere are elemental iodine (I 2 ) and methyliodide (CH 3 I). The deposition characteristics of both chemical species of gaseous iodine to rice grains were obtained. Mass normalized deposition velocity (V D ) and grain number normalized deposition velocity (V S ) of gaseous elemental iodine (I 2 ) and also methyliodide (CH 3 I) on unhulled rice were measured. Both V D and V S of methyliodide were about one percent of those of elemental iodine. Distribution pattern of methyliodide between unhulled rice and brown rice was significantly lower than that of elemental one. For wet deposition, we investigated the retention of radioiodines (iodide [I - ] and iodate [IO 3 - ] on rice grains and their translocation from the surface of the grains to brown rice. Though the ears were dipped into the solution containing 125 I - or 125 IO 3 - more than 15 min., both iodine species in the solutions were hardly taken up to the rice grains. The transfer rates of iodide and iodate, which are defined as 'the amount of the iodine in brown rice' divided by 'the amount of iodide in unhulled rice' were about 0.015 and 0.04, respectively. The rates were not changed with time after the radioiodine application. (author)

  18. Atmospheric heavy metal deposition in the Copenhagen area

    DEFF Research Database (Denmark)

    Andersen, Allan; Hovmand, Mads Frederik; Johnsen, Ib

    1978-01-01

    Atmospheric dry and wet deposition (bulk precipitation) of the heavy metals Cu, Pb, Zn, Ni, V and Fe over the Copenhagen area was measured by sampling in plastic funnels from 17 stations during a twelve-month period. Epigeic bryophytes from 100 stations in the area were analysed for the heavy...

  19. Temporal and spatial characteristics of dust devils and their contribution to the aerosol budget in East Asia-An analysis using a new parameterization scheme for dust devils

    Science.gov (United States)

    Tang, Yaoguo; Han, Yongxiang; Liu, Zhaohuan

    2018-06-01

    Dust aerosols are the main aerosol components of the atmosphere that affect climate change, but the contribution of dust devils to the atmospheric dust aerosol budget is uncertain. In this study, a new parameterization scheme for dust devils was established and coupled with WRF-Chem, and the diurnal and monthly variations and the contribution of dust devils to the atmospheric dust aerosol budget in East Asia was simulated. The results show that 1) both the diurnal and monthly variations in dust devil emissions in East Asia had unimodal distributions, with peaks in the afternoon and the summer that were similar to the observations; 2) the simulated dust devils occurred frequently in deserts, including the Gobi. The distributed area and the intensity center of the dust devil moved from east to west during the day; 3) the ratio between the availability of convective buoyancy relative to the frictional dissipation was the main factor that limited the presence of dust devils. The position of the dust devil formation, the surface temperature, and the boundary layer height determined the dust devil intensity; 4) the contribution of dust devils to atmospheric dust aerosols determined in East Asia was 30.4 ± 13%, thereby suggesting that dust devils contribute significantly to the total amount of atmospheric dust aerosols. Although the new parameterization scheme for dust devils was rough, it was helpful for understanding the distribution of dust devils and their contribution to the dust aerosol budget.

  20. Potential geographic distribution of atmospheric nitrogen deposition from intensive livestock production in North Carolina, USA

    International Nuclear Information System (INIS)

    Costanza, Jennifer K.; Marcinko, Sarah E.; Goewert, Ann E.; Mitchell, Charles E.

    2008-01-01

    To examine the consequences of increased spatial aggregation of livestock production facilities, we estimated the annual production of nitrogen in livestock waste in North Carolina, USA, and analyzed the potential distribution of atmospheric nitrogen deposition from confined animal feeding operations ('CAFO') lagoons. North Carolina is a national center for industrial livestock production. Livestock is increasingly being raised in CAFOs, where waste is frequently held, essentially untreated, in open-air lagoons. Reduced nitrogen in lagoons is volatilized as ammonia (NH 3 ), transported atmospherically, and deposited to other ecosystems. The Albemarle-Pamlico Sound, NC, is representative of nitrogen-sensitive coastal waters, and is a major component of the second largest estuarine complex in the U.S. We used GIS to model the area of water in the Sound within deposition range of CAFOs. We also evaluated the number of lagoons within deposition range of each 1 km 2 grid cell of the state. We considered multiple scenarios of atmospheric transport by varying distance and directionality. Modeled nitrogen deposition rates were particularly elevated for the Coastal Plain. This pattern matches empirical data, suggesting that observed regional patterns of reduced nitrogen deposition can be largely explained by two factors: limited atmospheric transport distance, and spatial aggregation of CAFOs. Under our medium-distance scenario, a small portion (roughly 22%) of livestock production facilities contributes disproportionately to atmospheric deposition of nitrogen to the Albemarle-Pamlico Sound. Furthermore, we estimated that between 14-37% of the state receives 50% of the state's atmospheric nitrogen deposition from CAFO lagoons. The estimated total emission from livestock is 134,000 t NH 3 yr -1 , 73% of which originates from the Coastal Plain. Stronger waste management and emission standards for CAFOs, particularly those on the Coastal Plain nearest to sensitive water bodies

  1. Quantification of the dry aeolian deposition of dust on horizontal surfaces: an experimental comparison of theory and measurements

    NARCIS (Netherlands)

    Goossens, D.

    2005-01-01

    Eight techniques to quantify the deposition of aeolian dust on horizontal surfaces were tested in a wind tunnel. The tests included three theoretical techniques and five measurement techniques. The theoretical techniques investigated were: the gradient technique, the inferential technique without

  2. Numerical investigation of dust pollution on a solar photovoltaic (PV) system mounted on an isolated building

    International Nuclear Information System (INIS)

    Lu, Hao; Lu, Lin; Wang, Yuanhao

    2016-01-01

    Highlights: • Effects of dust pollution on PV panels mounted on building roofs were investigated by CFD. • The dust deposition rates first increased and then decreased with the increase of dust size. • The gravity has different influences on dust deposition rates of large and small dusts. • The influence of released dust number on dust deposition rate is less than 8%. • A simple model was developed to estimate the PV efficiency reduction ratio by dust pollution. - Abstract: Dust deposition on a solar photovoltaic (PV) system mounted on the windward roof of an isolated building was investigated by CFD simulation. The SST k-ω turbulence model with UDF inlet profiles and the discrete particle model (DPM) were adopted to simulate the wind flow fields and the dust deposition behavior, respectively. The CFD wind flow velocity profiles around the building were in good agreement with experimental results reported in the literature. The effects of various dust particle sizes, differing quantities of released dust particles, and the force of gravity on the rates of dust deposition upon the PV panels were investigated in detail. It was found that the dust deposition rate first rose and then declined with the increase of dust particle size. The maximum deposition rate was about 0.28% for 10 μm dust, and the minimum deposition rate was about 0.13% for 50 μm dust. Gravity also had a significant effect on the rate of dust deposition for large-particle dust (d_p > 5 μm), and the rate could reach 75% for 50 μm dust. However, the effect of gravity on dust deposition was less than 5% for small-particle dust (d_p < 5 μm). The effect of releasing differing quantities of dust particles on the dust deposition rate was less than 8%. Moreover, the mechanisms by which dust was deposited on the PV roof were analyzed and discussed. Finally, a simple empirical model was developed to estimate the PV efficiency reduction ratios in relation to exposure time, as based on this

  3. Effect of argon addition into oxygen atmosphere on YBCO thin films deposition

    International Nuclear Information System (INIS)

    Mozhaev, P. B.; Borisenko, I. V.; Ovsyannikov, G. A.; Kuehle, A.; Bindslev-Hansen, J.; Johannes, L.; Skov, J. L.

    2002-01-01

    Multicomponent nature of the YBa 2 Cu 3 O x (YBCO) high-temperature superconductor makes difficult fabrication of smooth thin films: every local deviation from stoichiometry can result in seeding of a non-superconducting oxide particle. High density of such particles on typical YBCO thin film surface, however, presumes overall non-stoichiometry of the film. Such an effect can result from (i) non-uniform material transport from target to substrate, and (ii) re-evaporation or re-sputtering from the growing film surface. The first reason is more usual for laser ablation deposition technique, the second is typical for long sputtering deposition processes. Substitution of oxygen with argon in the deposition atmosphere improves surface quality of YBCO thin films deposited both by laser ablation and DC-sputtering at high pressure techniques. In the first case, the ablated species are scattered different ways in the oxygen atmosphere. Addition of argon decreases the inelastic scattering of barium; the proper part of Ar in the deposition atmosphere makes scattering and, hence, transport of all atoms uniform. The YBCO films deposited by DC-sputtering at high pressure technique are Ba-deficient also, but the reason is re-sputtering of Ba from the growing film as a result of negative oxygen ions bombardment. Such bombardment can lead also to chemical interaction of the deposited material with the substrate, as in the case of deposition of YBCO thin film on the CeO 2 buffer layer on sapphire. Substitution of oxygen with argon not only suppresses ion bombardment of the film, but also increases discharge stability due to presence of positive Ar + ions. The limiting factor of argon substitution is sufficient oxygenation of the growing oxide film. When oxygen partial pressure is too small, the superconducting quality of the YBCO thin film decreases and such a decrease cannot be overcome by prolonged oxygenation after deposition. (Authors)

  4. Toward Synchronous Evaluation of Source Apportionments for Atmospheric Concentration and Deposition of Sulfate Aerosol Over East Asia

    Science.gov (United States)

    Itahashi, S.

    2018-03-01

    Source apportionments for atmospheric concentration, dry deposition, and wet deposition of sulfate aerosol (SO42-) were synchronously evaluated over East Asia, a main source of anthropogenic sulfur dioxide (SO2) emissions. Estimating dry deposition was difficult owing to the difficulty of measuring deposition velocity directly; therefore, sensitivity simulations using two dry deposition schemes were conducted. Moreover, sensitivity simulations for different emission inventories, the largest uncertainty source in the air quality model, were also conducted. In total, four experimental settings were used. Model performance was verified for atmospheric concentration and wet deposition using a ground-based observation network in China, Korea, and Japan, and all four model settings captured the observations. The underestimation of wet deposition over China was improved by an adjusted approach that linearly scaled the modeled precipitation values to observations. The synchronous evaluation of source apportionments for atmospheric concentration and dry and wet deposition showed the dominant contribution of anthropogenic emissions from China to the atmospheric concentration and deposition in Japan. The contributions of emissions from volcanoes were more important for wet deposition than for atmospheric concentration. Differences in the dry deposition scheme and emission inventory did not substantially influence the relative ratio of source apportionments over Japan. Because the dry deposition was more attributed to local factors, the differences in dry deposition may be an important determinant of the source contributions from China to Japan. Verification of these findings, including the dry deposition velocity, is necessary for better understanding of the behavior of sulfur compound in East Asia.

  5. Simulating the dust effect on the energy performance of photovoltaic generators based on experimental measurements

    International Nuclear Information System (INIS)

    Kaldellis, J.K.; Kapsali, M.

    2011-01-01

    One of the least analyzed side effects of atmospheric air pollution is the degradation of PV-panels' performance due to the deposition of solid particles varying in composition, size and type. In the current study, the experimental data concerning the effect of three representative air pollutants (i.e. red soil, limestone and carbonaceous fly-ash particles) on the energy performance of PV installations are analyzed. According to the results obtained, a considerable reduction of PVs' energy performance is recorded, depending strongly on particles' composition and source. Subsequently, a theoretical model has been developed in order to be used as an analytical tool for obtaining reliable results concerning the expected effect of regional air pollution on PVs' performance. Furthermore, experimental results concerning the dust effect on PVs' energy yield in an aggravated - from air pollution - urban environment are used to validate the proposed theoretical model. -- Highlights: → The effect of dust deposition on PVs energy efficiency is experimentally examined. → Based on the results, a considerable reduction of PVs energy performance is recorded. → The effect strongly depends on the dust composition and on the type of the pollutant. → A theoretical model is developed for predicting the dust deposition effect on PVs energy yield. → The model is validated on the basis of experiments conducted in urban environment.

  6. Wet and Dry Atmospheric Mercury Deposition Accumulates in Watersheds of the Northeastern United States

    Science.gov (United States)

    Boyer, E. W.; Grant, C.; Grimm, J.; Drohan, P. J.; Bennett, J.; Lawler, D.

    2013-12-01

    Mercury emissions to the atmosphere from coal-fired power plants and other sources such as waste incineration can be deposited to landscapes in precipitation and in dry fallout. Some mercury reaches watersheds and streams, where it can accumulate in sediments and biota. Human exposure to mercury occurs primarily through fish consumption, and currently mercury fish eating advisories are in place for many of the streams and lakes in the state. Here, we explored mercury in air, soils, water, and biota. To quantify atmospheric mercury deposition, we measured both wet and dry mercury deposition at over 10 locations in Pennsylvania, from which we present variation in mercury deposition and initial assessments of factors affecting the patterns. Further, we simulated mercury deposition at unmonitored locations in Pennsylvania and the northeastern United States over space and time with a high-resolution modeling technique that reflects storm tracks and air flow patterns. To consider mercury accumulation in watersheds, we collected data on soil mercury concentrations in a set of soil samples, and collected baseline data on mercury in streams draining 35 forested watersheds across Pennsylvania, spanning gradients of atmospheric deposition, climate and geology. Mercury concentrations were measured in stream water under base-flow conditions, in streambed sediments, aquatic mosses, and in fish tissues from brook trout. Results indicate that wet and dry atmospheric deposition is a primary source of mercury that is accumulating in watersheds of Pennsylvania and the northeastern United States.

  7. Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in Shanghai: the spatio-temporal variation and source identification

    Science.gov (United States)

    Cheng, Chen; Bi, Chunjuan; Wang, Dongqi; Yu, Zhongjie; Chen, Zhenlou

    2018-03-01

    This study investigated the dry and wet deposition fluxes of atmospheric polycyclic aromatic hydrocarbons (PAHs) in Shanghai, China. The flux sources were traced based on composition and spatio-temporal variation. The results show that wet deposition concentrations of PAHs ranged from 0.07 to 0.67 mg·L-1 and were correlated with temperature ( P<0.05). Dry deposition of PAHs concentrations ranged from 3.60-92.15 mg·L-1 and were higher in winter and spring than in summer and autumn. The annual PAH average fluxes were 0.631 mg·m-2·d-1 and 4.06 mg·m-2·d-1 for wet and dry deposition, respectively. The highest wet deposition of PAH fluxes was observed in summer, while dry deposition fluxes were higher in winter and spring. Atmospheric PAHs were deposited as dry deposition in spring and winter, yet wet deposition was the dominant pathway during summer. Total atmospheric PAH fluxes were higher in the northern areas than in the southern areas of Shanghai, and were also observed to be higher in winter and spring. Annual deposition of atmospheric PAHs was about 10.8 t in across all of Shanghai. Wet deposition of PAHs was primarily composed of two, three, or four rings, while dry deposition of PAHs was composed of four, five, or six rings. The atmospheric PAHs, composed of four, five, or six rings, primarily existed in the form of particulates. Coal combustion and vehicle emissions were the dominant sources of PAH in the observed area of downtown Shanghai. In suburban areas, industrial pollution, from sources such as coke oven, incinerator, and oil fired power plant, was as significant as vehicle emissions in contributing to the deposition of PAHs.

  8. Deposition Uniformity of Coal Dust on Filters and Its Effect on the Accuracy of FTIR Analyses for Silica.

    Science.gov (United States)

    Miller, Arthur L; Drake, Pamela L; Murphy, Nathaniel C; Cauda, Emanuele G; LeBouf, Ryan F; Markevicius, Gediminas

    Miners are exposed to silica-bearing dust which can lead to silicosis, a potentially fatal lung disease. Currently, airborne silica is measured by collecting filter samples and sending them to a laboratory for analysis. Since this may take weeks, a field method is needed to inform decisions aimed at reducing exposures. This study investigates a field-portable Fourier transform infrared (FTIR) method for end-of-shift (EOS) measurement of silica on filter samples. Since the method entails localized analyses, spatial uniformity of dust deposition can affect accuracy and repeatability. The study, therefore, assesses the influence of radial deposition uniformity on the accuracy of the method. Using laboratory-generated Minusil and coal dusts and three different types of sampling systems, multiple sets of filter samples were prepared. All samples were collected in pairs to create parallel sets for training and validation. Silica was measured by FTIR at nine locations across the face of each filter and the data analyzed using a multiple regression analysis technique that compared various models for predicting silica mass on the filters using different numbers of "analysis shots." It was shown that deposition uniformity is independent of particle type (kaolin vs. silica), which suggests the role of aerodynamic separation is negligible. Results also reflected the correlation between the location and number of shots versus the predictive accuracy of the models. The coefficient of variation (CV) for the models when predicting mass of validation samples was 4%-51% depending on the number of points analyzed and the type of sampler used, which affected the uniformity of radial deposition on the filters. It was shown that using a single shot at the center of the filter yielded predictivity adequate for a field method, (93% return, CV approximately 15%) for samples collected with 3-piece cassettes.

  9. Two dimensional radial gas flows in atmospheric pressure plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Kim, Gwihyun; Park, Seran; Shin, Hyunsu; Song, Seungho; Oh, Hoon-Jung; Ko, Dae Hong; Choi, Jung-Il; Baik, Seung Jae

    2017-12-01

    Atmospheric pressure (AP) operation of plasma-enhanced chemical vapor deposition (PECVD) is one of promising concepts for high quality and low cost processing. Atmospheric plasma discharge requires narrow gap configuration, which causes an inherent feature of AP PECVD. Two dimensional radial gas flows in AP PECVD induces radial variation of mass-transport and that of substrate temperature. The opposite trend of these variations would be the key consideration in the development of uniform deposition process. Another inherent feature of AP PECVD is confined plasma discharge, from which volume power density concept is derived as a key parameter for the control of deposition rate. We investigated deposition rate as a function of volume power density, gas flux, source gas partial pressure, hydrogen partial pressure, plasma source frequency, and substrate temperature; and derived a design guideline of deposition tool and process development in terms of deposition rate and uniformity.

  10. Atmospheric pulsed laser deposition of plasmonic nanoparticle films of silver with flowing gas and flowing atmospheric plasma

    Science.gov (United States)

    Khan, T. M.; Pokle, A.; Lunney, J. G.

    2018-04-01

    Two methods of atmospheric pulsed laser deposition of plasmonic nanoparticle films of silver are described. In both methods the ablation plume, produced by a 248 nm, 20 ns excimer laser in gas, is strongly confined near the target and forms a nanoparticle aerosol. For both the flowing gas, and the atmospheric plasma from a dielectric barrier discharge plasma source, the aerosol is entrained in the flow and carried to a substrate for deposition. The nanoparticle films produced by both methods were examined by electron microscopy and optical absorption spectroscopy. With plasma assistance, the deposition rate was significantly enhanced and the film morphology altered. With argon gas, isolated nanoparticles of 20 nm size were obtained, whereas in argon plasma, the nanoparticles are aggregated in clusters of 90 nm size. Helium gas also leads to the deposition of isolated nanoparticles, but with helium plasma, two populations of nanoparticles are observed: one of rounded particles with a mean size of 26 nm and the other of faceted particles with a mean size 165 nm.

  11. Observed 20th Century Desert Dust Variability: Impact on Climate and Biogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mahowald, Natalie [Cornell University; Kloster, Silvia [Cornell University; Engelstaedter, S. [Cornell University; Moore, Jefferson Keith [University of California, Irvine; Mukhopadhyay, S. [Harvard University; McConnell, J. R. [Desert Research Institute, Reno, NV; Albani, S. [Cornell University; Doney, Scott C. [Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA; Bhattacharya, A. [Harvard University; Curran, M. A. J. [Antarctic Climate and Ecosystems Cooperative Research Centre; Flanner, Mark G. [University of Michigan; Hoffman, Forrest M [ORNL; Lawrence, David M. [National Center for Atmospheric Research (NCAR); Lindsay, Keith [National Center for Atmospheric Research (NCAR); Mayewski, P. A. [University of Maine; Neff, Jason [University of Colorado, Boulder; Rothenberg, D. [Cornell University; Thomas, E. [British Antarctic Survey, Cambridge, UK; Thornton, Peter E [ORNL; Zender, Charlie S. [University of California, Irvine

    2010-01-01

    Desert dust perturbs climate by directly and indirectly interacting with incoming solar and outgoing long wave radiation, thereby changing precipitation and temperature, in addition to modifying ocean and land biogeochemistry. While we know that desert dust is sensitive to perturbations in climate and human land use, previous studies have been unable to determine whether humans were increasing or decreasing desert dust in the global average. Here we present observational estimates of desert dust based on paleodata proxies showing a doubling of desert dust during the 20th century over much, but not all the globe. Large uncertainties remain in estimates of desert dust variability over 20th century due to limited data. Using these observational estimates of desert dust change in combination with ocean, atmosphere and land models, we calculate the net radiative effect of these observed changes (top of atmosphere) over the 20th century to be -0.14 {+-} 0.11 W/m{sup 2} (1990-1999 vs. 1905-1914). The estimated radiative change due to dust is especially strong between the heavily loaded 1980-1989 and the less heavily loaded 1955-1964 time periods (-0.57 {+-} 0.46 W/m{sup 2}), which model simulations suggest may have reduced the rate of temperature increase between these time periods by 0.11 C. Model simulations also indicate strong regional shifts in precipitation and temperature from desert dust changes, causing 6 ppm (12 PgC) reduction in model carbon uptake by the terrestrial biosphere over the 20th century. Desert dust carries iron, an important micronutrient for ocean biogeochemistry that can modulate ocean carbon storage; here we show that dust deposition trends increase ocean productivity by an estimated 6% over the 20th century, drawing down an additional 4 ppm (8 PgC) of carbon dioxide into the oceans. Thus, perturbations to desert dust over the 20th century inferred from observations are potentially important for climate and biogeochemistry, and our understanding

  12. Comparison of mercury mass loading in streams to atmospheric deposition in watersheds of Western North America: Evidence for non-atmospheric mercury sources

    Science.gov (United States)

    Domagalski, Joseph L.; Majewski, Michael S.; Alpers, Charles N.; Eckley, Chris S.; Eagles-Smith, Collin A.; Schenk, Liam N.; Wherry, Susan

    2016-01-01

    Annual stream loads of mercury (Hg) and inputs of wet and dry atmospheric Hg deposition to the landscape were investigated in watersheds of the Western United States and the Canadian-Alaskan Arctic. Mercury concentration and discharge data from flow gauging stations were used to compute annual mass loads with regression models. Measured wet and modeled dry deposition were compared to annual stream loads to compute ratios of Hg stream load to total Hg atmospheric deposition. Watershed land uses or cover included mining, undeveloped, urbanized, and mixed. Of 27 watersheds that were investigated, 15 had some degree of mining, either of Hg or precious metals (gold or silver), where Hg was used in the amalgamation process. Stream loads in excess of annual Hg atmospheric deposition (ratio > 1) were observed in watersheds containing Hg mines and in relatively small and medium-sized watersheds with gold or silver mines, however, larger watersheds containing gold or silver mines, some of which also contain large dams that trap sediment, were sometimes associated with lower load ratios (watersheds with natural vegetation tended to have low ratios of stream load to Hg deposition (watersheds (Mackenzie and Yukon Rivers) had a relatively elevated ratio of stream load to atmospheric deposition (0.27 and 0.74), possibly because of melting glaciers or permafrost releasing previously stored Hg to the streams. Overall, our research highlights the important role of watershed characteristics in determining whether a landscape is a net source of Hg or a net sink of atmospheric Hg.

  13. Dispersion, deposition and resuspension of atmospheric contaminants

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The following topics are discussed: dry deposition, oil shale fugitive air emissions, particle resuspension and translocation, theoretical studies and applications, and processing of emissions by clouds and precipitation. The concentration of contaminant species in air is governed by the rate of input from sources, the rate of dilution or dispersion as a result of air turbulence, and the rate of removal to the surface by wet and dry deposition processes. Once on the surface, contaminants also may be resuspended, depending on meteorological and surface conditions. An understanding of these processes is necessary for accurate prediction of exposures of hazardous or harmful contaminants to humans, animals, and crops. In the field, plume dispersion and plume depletion by dry deposition were studied by the use of tracers. Dry deposition was investigated for particles of both respiration and inhalation interest. Complementary dry deposition studies of particles to rock canopies were conducted under controlled conditions in a wind tunnel. Because of increasing concern about hazardous, organic gases in the atmosphere some limited investigations of the dry deposition of nitrobenzene to a lichen mat were conducted in a stirred chamber. Resuspension was also studied using tracers and contaminated surfaces and in the wind tunnel. The objective of the resuspension studies was to develop and verify models for predicting the airborne concentrations of contaminants over areas with surface contamination, develop resuspension rate predictors for downwind transport, and develop predictors for resuspension input to the food chain. These models will be of particular relevance to the evaluation of deposition and resuspension of both radionuclides and chemical contaminants

  14. Ensemble mean climatology of snow darkening effect due to deposition of dust, black carbon, and organic carbon as simulated with the NASA GEOS-5 Earth System Model

    Science.gov (United States)

    Yasunari, T. J.; Lau, W. K.; Mahanama, S. P.; Colarco, P. R.; Koster, R. D.; Kim, K.; da Silva, A.

    2013-12-01

    The importance of the snow darkening effect (SDE) caused by solar absorbing aerosols such as dust and black carbon (BC) on climate has been discussed in previous studies. We have developed a snow darkening package for the catchment land surface model coupled to the NASA Goddard Earth Observing System, version 5 (GEOS-5), Earth System Model. Our snow darkening package includes the schemes for snow albedo and mass concentration calculations in polluted snow by dust, BC, and organic carbon (OC) depositions. The snow darkening package is currently available for seasonal snowpack over the model-defined land areas, excluding sea ice and inland of the ice sheets. The depositions of the solar absorbing aerosols are obtained from the GOCART aerosol module in the GEOS-5. Here we show the preliminary results of ensemble mean climatology (EMC) of the full SDE (i.e., dust+BC+OC). Ensemble simulations covering 10-year of 2002-2011 were carried out with the GEOS-5 including and excluding the full SDE for which each has 10 ensemble members. Shortwave radiative forcing (RF) at the top of atmosphere under all-sky condition for the 10-member EMC of the full SDE was relatively larger over Europe, Central Asia (CA), the Himalayas, the Tibetan Plateau (TP), East Asia (EA), Eastern Siberia (ES), the US, and Canadian Arctic. The RF was the strongest over the Himalayas and the TP in the northern hemisphere. The increases of surface air temperature also well correspond to the RF pattern. Larger reductions of snow water equivalent in seasonal snowpack were seen over the Himalayas, the TP, Alaska, Western Canada, and Arctic regions. We will discuss more on the day of the presentation.

  15. Mosses as an integrating tool for monitoring PAH atmospheric deposition: comparison with total deposition and evaluation of bioconcentration factors. A year-long case-study.

    Science.gov (United States)

    Foan, Louise; Domercq, Maria; Bermejo, Raúl; Santamaría, Jesús Miguel; Simon, Valérie

    2015-01-01

    Polycyclic aromatic hydrocarbon (PAH) atmospheric deposition was evaluated at a remote site in Northern Spain using moss biomonitoring with Hylocomium splendens (Hedw.) Schimp., and by measuring the total deposition fluxes of PAHs. The year-long study allowed seasonal variations of PAH content in mosses to be observed, and these followed a similar trend to those of PAH fluxes in total deposition. Generally, atmospheric deposition of PAHs is greater in winter than in summer, due to more PAH emissions from domestic heating, less photoreactivity of the compounds, and intense leaching of the atmosphere by wet deposition. However, fractionation of these molecules between the environmental compartments occurs: PAH fluxes in total deposition and PAH concentrations in mosses are correlated with their solubility (r=0.852, pPAH fluxes can be estimated with moss biomonitoring data if the bioconcentration or 'enriching' factors are known. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. The impact of climate and composition on playa surface roughness: Investigation of atmospheric mineral dust emission mechanisms

    Science.gov (United States)

    Tollerud, H. J.; Fantle, M. S.

    2011-12-01

    Atmospheric mineral dust has a wide range of impacts, including the transport of elements in geochemical cycles, health hazards from small particles, and climate forcing via the reflection of sunlight from dust particles. In particular, the mineral dust component of climate forcing is one of the most uncertain elements in the IPCC climate forcing summary. Mineral dust is also an important component of geochemical cycles. For instance, dust inputs to the ocean potentially affect the iron cycle by stimulating natural iron fertilization, which could then modify climate via the biological pump. Also dust can transport nutrients over long distances and fertilize nutrient-poor regions, such as island ecosystems or the Amazon rain forest. However, there are still many uncertainties in quantifying dust emissions from source regions. One factor that influences dust emission is surface roughness and texture, since a weak, unconsolidated surface texture is more easily ablated by wind than a strong, hard crust. We are investigating the impact of processes such as precipitation, groundwater evaporation, and wind on surface roughness in a playa dust source region. We find that water has a significant influence on surface roughness. We utilize ESA's Advanced Synthetic Aperture Radar (ASAR) instrument to measure roughness in the playa. A map of roughness indicates where the playa surface is smooth (on the scale of centimeters) and potentially very strong, and where it is rough and might be more sensitive to disturbance. We have analyzed approximately 40 ASAR observations of the Black Rock Desert from 2007-2011. In general, the playa is smoother and more variable over time relative to nearby areas. There is also considerable variation within the playa. While the playa roughness maps changed significantly between summers and between observations during the winters, over the course of each summer, the playa surface maintained essentially the same roughness pattern. This suggests that

  17. Atmospheric deposition, CO2, and change in the land carbon sink

    DEFF Research Database (Denmark)

    Martinez-Fernandez, Cristina; Vicca, Sara; Janssens, Ivan A.

    2017-01-01

    Concentrations of atmospheric carbon dioxide (CO2) have continued to increase whereas atmospheric deposition of sulphur and nitrogen has declined in Europe and the USA during recent decades. Using time series of flux observations from 23 forests distributed throughout Europe and the USA, and gene...... show the need to include the effects of changing atmospheric composition, beyond CO2, to assess future dynamics of carbon-climate feedbacks not currently considered in earth system/climate modelling....

  18. Worldwide dispersion and deposition of radionuclides produced in atmospheric tests.

    Science.gov (United States)

    Bennett, Burton G

    2002-05-01

    Radionuclides produced in atmospheric nuclear tests were widely dispersed in the global environment. From the many measurements of the concentrations in air and the deposition amounts, much was learned of atmospheric circulation and environmental processes. Based on these results and the reported fission and total yields of individual tests, it has been possible to devise an empirical model of the movement and residence times of particles in the various atmospheric regions. This model, applied to all atmospheric weapons tests, allows extensive calculations of air concentrations and deposition amounts for the entire range of radionuclides produced throughout the testing period. Especially for the shorter-lived fission radionuclides, for which measurement results at the time of the tests are less extensive, a more complete picture of levels and isotope ratios can be obtained, forming a basis for improved dose estimations. The contributions to worldwide fallout can be inferred from individual tests, from tests at specific sites, or by specific countries. Progress was also made in understanding the global hydrological and carbon cycles from the tritium and 14C measurements. A review of the global measurements and modeling results is presented in this paper. In the future, if injections of materials into the atmosphere occur, their anticipated motions and fates can be predicted from the knowledge gained from the fallout experience.

  19. Development of A Microbalance System For Water and Dust Detection In Mars

    Science.gov (United States)

    Battaglia, R.; Palomba, E.; Palumbo, P.; Colangeli, L.

    .e. the caps, the regolith and the ice hazes. Ice hazes, in fact, provide a mechanism for scavenging water vapor in the thin Mars atmosphere and may play a key role in the seasonal cycle of water on Mars. A focused investigation, made in different regions, possibly in different seasons, and spanning several days is desirable for solving the question of linkage of water cycle with these sources. The objective of our research program is the development and pro- duction of a microbalance measurement system . It will be able to measure in situ, for the first time, directly and quantitatively, the cumulative dust mass flux and the water vapour abundance in a Martian environment. A preliminary study of this process at Mars average conditions showed that available microbalances can detect water ice condensed on their surface in few seconds, after dew or frost point is reached and similar evaluations have been made with respect to expected dust deposition rate on Mars surface, based on data from MAE experiment onboard the Sojourner rover. The measuring system will be devoted to study the dynamic of the Martian water and dust cycles. In detail, our goals are: - Study of the Martian water and dust cycles (seasonal, diurnal) and their links; - Investigation of the brines formation and evaporation mech- anisms and their interaction with the regolith; - Investigation of mechanism of diurnal water release by the regolith and its weight as water atmospheric reservoir; - Study of the dust settling rates and their possible correlation with environmental conditions at the landing sites (temperature, pressure, winds); - Study of the local dust storm and devils raising mechanisms; - Investigation of the main modes of aeolian transport of grains and dust raising. We discuss the use of microbalances for the scientific applica- tions to Martian environment studies

  20. Watershed-scale changes in terrestrial nitrogen cycling during a period of decreased atmospheric nitrate and sulfur deposition

    Science.gov (United States)

    Sabo, Robert D.; Scanga, Sara E.; Lawrence, Gregory B.; Nelson, David M.; Eshleman, Keith N.; Zabala, Gabriel A.; Alinea, Alexandria A.; Schirmer, Charles D.

    2016-01-01

    Recent reports suggest that decreases in atmospheric nitrogen (N) deposition throughout Europe and North America may have resulted in declining nitrate export in surface waters in recent decades, yet it is unknown if and how terrestrial N cycling was affected. During a period of decreased atmospheric N deposition, we assessed changes in forest N cycling by evaluating trends in tree-ring δ15N values (between 1980 and 2010; n = 20 trees per watershed), stream nitrate yields (between 2000 and 2011), and retention of atmospherically-deposited N (between 2000 and 2011) in the North and South Tributaries (North and South, respectively) of Buck Creek in the Adirondack Mountains, USA. We hypothesized that tree-ring δ15N values would decline following decreases in atmospheric N deposition (after approximately 1995), and that trends in stream nitrate export and retention of atmospherically deposited N would mirror changes in tree-ring δ15N values. Three of the six sampled tree species and the majority of individual trees showed declining linear trends in δ15N for the period 1980–2010; only two individual trees showed increasing trends in δ15N values. From 1980 to 2010, trees in the watersheds of both tributaries displayed long-term declines in tree-ring δ15N values at the watershed scale (R = −0.35 and p = 0.001 in the North and R = −0.37 and p <0.001 in the South). The decreasing δ15N trend in the North was associated with declining stream nitrate concentrations (−0.009 mg N L−1 yr−1, p = 0.02), but no change in the retention of atmospherically deposited N was observed. In contrast, nitrate yields in the South did not exhibit a trend, and the watershed became less retentive of atmospherically deposited N (−7.3% yr−1, p < 0.001). Our δ15N results indicate a change in terrestrial N availability in both watersheds prior to decreases in atmospheric N deposition, suggesting that decreased atmospheric N deposition was not the sole driver of

  1. Lead isotopes combined with a sequential extraction procedure for source apportionment in the dry deposition of Asian dust and non-Asian dust

    International Nuclear Information System (INIS)

    Lee, Pyeong-Koo; Yu, Soonyoung

    2016-01-01

    Lead isotopic compositions were determined in leachates that were generated using sequential extractions of dry deposition samples of Asian dust (AD) and non-Asian dust (NAD) and Chinese desert soils, and used to apportion Pb sources. Results showed significant differences in "2"0"6Pb/"2"0"7Pb and "2"0"6Pb/"2"0"4Pb isotopic compositions in non-residual fractions between the dry deposition samples and the Chinese desert soils while "2"0"6Pb/"2"0"7Pb and "2"0"6Pb/"2"0"4Pb isotopic compositions in residual fraction of the dry deposition of AD and NAD were similar to the mean "2"0"6Pb/"2"0"7Pb and "2"0"6Pb/"2"0"4Pb in residual fraction of the Alashan Plateau soil. These results indicate that the geogenic materials of the dry deposition of AD and NAD were largely influenced by the Alashan Plateau soil, while the secondary sources of the dry deposition were different from those of the Chinese desert soils. In particular, the lead isotopic compositions in non-residual fractions of the dry deposition were homogenous, which implies that the non-residual four fractions (F1 to F4) shared the primary anthropogenic origin. "2"0"6Pb/"2"0"7Pb values and the predominant wind directions in the study area suggested that airborne particulates of heavily industrialized Chinese cities were one of the main Pb sources. Source apportionment calculations showed that the average proportion of anthropogenic Pb in the dry deposition of AD and NAD was 87% and 95% respectively in total Pb extraction, 92% and 97% in non-residual fractions, 15% and 49% in residual fraction. Approximately 81% and 80% of the anthropogenic Pb was contributed by coal combustion in China in the dry deposition of AD and NAD respectively while the remainder was derived from industrial Pb contamination. The research result proposes that sequential extractions with Pb isotope analysis are a useful tool for the discrimination of anthropogenic and geogenic origins in highly contaminated AD and NAD. - Highlights:

  2. Inorganic chemical composition and chemical reactivity of settled dust generated by the World Trade Center building collapse: Chapter 12

    Science.gov (United States)

    Plumlee, Geoffrey S.; Hageman, Philip L.; Lamothe, Paul J.; Ziegler, Thomas L.; Meeker, Gregory P.; Theodorakos, Peter M.; Brownfield, Isabelle; Adams, Monique G.; Swayze, Gregg A.; Hoefen, Todd M.; Taggart, Joseph E.; Clark, Roger N.; Wilson, S.; Sutley, Stephen J.

    2009-01-01

    Samples of dust deposited around lower Manhattan by the September 11, 2001, World Trade Center (WTC) collapse have inorganic chemical compositions that result in part from the variable chemical contributions of concrete, gypsum wallboard, glass fibers, window glass, and other materials contained in the buildings. The dust deposits were also modified chemically by variable interactions with rain water or water used in street washing and fire fighting. Chemical leach tests using deionized water as the extraction fluid show the dust samples can be quite alkaline, due primarily to reactions with calcium hydroxide in concrete particles. Calcium and sulfate are the most soluble components in the dust, but many other elements are also readily leached, including metals such as Al, Sb, Mo Cr, Cu, and Zn. Indoor dust samples produce leachates with higher pH, alkalinity, and dissolved solids than outdoor dust samples, suggesting most outdoor dust had reacted with water and atmospheric carbon dioxide prior to sample collection. Leach tests using simulated lung fluids as the extracting fluid suggest that the dust might also be quite reactive in fluids lining the respiratory tract, resulting in dissolution of some particles and possible precipitation of new phases such as phosphates, carbonates, and silicates. Results of these chemical characterization studies can be used by health scientists as they continue to track and interpret health effects resulting from the short-term exposure to the initial dust cloud and the longer-term exposure to dusts resuspended during cleanup.

  3. Atmospheric processing of combustion aerosols as a source of soluble iron to the open ocean

    OpenAIRE

    伊藤, 彰記; ITO, Akinori

    2015-01-01

    The majority of bioavailable iron (Fe) from the atmosphere is delivered from arid and semiarid regions to the oceans because the global deposition of iron from combustion sources is small compared with that from mineral dust. Atmospheric processing of mineral aerosols by inorganic and organic acids from anthropogenic and natural sources has been shown to increase the iron solubility of soils (initially < 0.5%) up to about 10%. On the other hand, atmospheric observations have shown that iron i...

  4. Ice formation via deposition nucleation on mineral dust and organics: dependence of onset relative humidity on total particulate surface area

    International Nuclear Information System (INIS)

    Kanji, Zamin A; Florea, Octavian; Abbatt, Jonathan P D

    2008-01-01

    We present ice nucleation results for Arizona test dust, kaolinite, montmorillonite, silica, silica coated with a hydrophobic octyl chain, oxalic acid dihydrate, Gascoyne leonardite (a humic material), and Aldrich humic acid (sodium salt). The focus was on deposition mode nucleation below water saturation at 233 K. Particles were deposited onto a hydrophobic cold stage by atomization of a slurry/solution and exposed to a constant partial pressure of water vapor. By lowering the temperature of the stage, the relative humidity with respect to ice (RH i ) was gradually increased until ice nucleation was observed using digital photography. Different numbers of particles were deposited onto the cold stage by varying the atomization solution concentration and deposition time. For the same total particulate surface area, mineral dust particles nucleated ice at lower supersaturations than all other materials. The most hydrophobic materials, i.e. Gascoyne leonardite and octyl silica, were the least active. For our limit of detection of one ice crystal, the ice onset RH i values were dependent on the total surface area of the particulates, indicating that no unique threshold RH i for ice nucleation prevails

  5. Ice formation via deposition nucleation on mineral dust and organics: dependence of onset relative humidity on total particulate surface area

    Energy Technology Data Exchange (ETDEWEB)

    Kanji, Zamin A; Florea, Octavian; Abbatt, Jonathan P D [Department of Chemistry, University of Toronto, 80 St George Street, Toronto, ON, M5S 3H6 (Canada)], E-mail: zkanji@chem.utoronto.ca

    2008-04-15

    We present ice nucleation results for Arizona test dust, kaolinite, montmorillonite, silica, silica coated with a hydrophobic octyl chain, oxalic acid dihydrate, Gascoyne leonardite (a humic material), and Aldrich humic acid (sodium salt). The focus was on deposition mode nucleation below water saturation at 233 K. Particles were deposited onto a hydrophobic cold stage by atomization of a slurry/solution and exposed to a constant partial pressure of water vapor. By lowering the temperature of the stage, the relative humidity with respect to ice (RH{sub i}) was gradually increased until ice nucleation was observed using digital photography. Different numbers of particles were deposited onto the cold stage by varying the atomization solution concentration and deposition time. For the same total particulate surface area, mineral dust particles nucleated ice at lower supersaturations than all other materials. The most hydrophobic materials, i.e. Gascoyne leonardite and octyl silica, were the least active. For our limit of detection of one ice crystal, the ice onset RH{sub i} values were dependent on the total surface area of the particulates, indicating that no unique threshold RH{sub i} for ice nucleation prevails.

  6. Investigation of spatial and temporal metal atmospheric deposition in France through lichen and moss bioaccumulation over one century.

    Science.gov (United States)

    Agnan, Y; Séjalon-Delmas, N; Claustres, A; Probst, A

    2015-10-01

    Lichens and mosses were used as biomonitors to assess the atmospheric deposition of metals in forested ecosystems in various regions of France. The concentrations of 17 metals/metalloids (Al, As, Cd, Co, Cr, Cs, Cu, Fe, Mn, Ni, Pb, Sb, Sn, Sr, Ti, V, and Zn) indicated overall low atmospheric contamination in these forested environments, but a regionalism emerged from local contributions (anthropogenic activities, as well as local lithology). Taking into account the geochemical background and comparing to Italian data, the elements from both natural and anthropogenic activities, such as Cd, Pb, or Zn, did not show any obvious anomalies. However, elements mainly originating from lithogenic dust (e.g., Al, Fe, Ti) were more prevalent in sparse forests and in the Southern regions of France, whereas samples from dense forests showed an accumulation of elements from biological recycling (Mn and Zn). The combination of enrichment factors and Pb isotope ratios between current and herbarium samples indicated the historical evolution of metal atmospheric contamination: the high contribution of coal combustion beginning 150 years ago decreased at the end of the 20th century, and the influence of car traffic during the latter observed period decreased in the last few decades. In the South of France, obvious local influences were well preserved during the last century. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts

    NARCIS (Netherlands)

    Phoenix, G.K.; Hicks, W.K.; Cinderby, S.; Kuylenstierna, J.C.I.; Stock, W.D.; Dentener, F.J.; Giller, K.E.; Austin, A.T.; Lefroy, R.D.B.; Gimeno, B.S.; Ashmore, M.R.; Ineson, P.

    2006-01-01

    Increased atmospheric nitrogen (N) deposition is known to reduce plant diversity in natural and semi-natural ecosystems, yet our understanding of these impacts comes almost entirely from studies in northern Europe and North America. Currently, we lack an understanding of the threat of N deposition

  8. Water Ice Clouds and Dust in the Martian Atmosphere Observed by Mars Climate Sounder

    Science.gov (United States)

    Benson, Jennifer L.; Kass, David; Heavens, Nicholas; Kleinbohl, Armin

    2011-01-01

    The water ice clouds are primarily controlled by the temperature structure and form at the water condensation level. Clouds in all regions presented show day/night differences. Cloud altitude varies between night and day in the SPH and tropics: (1) NPH water ice opacity is greater at night than day at some seasons (2) The diurnal thermal tide controls the daily variability. (3) Strong day/night changes indicate that the amount of gas in the atmosphere varies significantly. See significant mixtures of dust and ice at the same altitude planet-wide (1) Points to a complex radiative and thermal balance between dust heating (in the visible) and ice heating or cooling in the infrared. Aerosol layering: (1) Early seasons reveal a zonally banded spatial distribution (2) Some localized longitudinal structure of aerosol layers (3) Later seasons show no consistent large scale organization

  9. The Mars Dust Cycle: Investigating the Effects of Radiatively Active Water Ice Clouds on Surface Stresses and Dust Lifting Potential with the NASA Ames Mars General Circulation Model

    Science.gov (United States)

    Kahre, Melinda A.; Hollingsworth, Jeffery

    2012-01-01

    The dust cycle is a critically important component of Mars' current climate system. Dust is present in the atmosphere of Mars year-round but the dust loading varies with season in a generally repeatable manner. Dust has a significant influence on the thermal structure of the atmosphere and thus greatly affects atmospheric circulation. The dust cycle is the most difficult of the three climate cycles (CO2, water, and dust) to model realistically with general circulation models. Until recently, numerical modeling investigations of the dust cycle have typically not included the effects of couplings to the water cycle through cloud formation. In the Martian atmosphere, dust particles likely provide the seed nuclei for heterogeneous nucleation of water ice clouds. As ice coats atmospheric dust grains, the newly formed cloud particles exhibit different physical and radiative characteristics. Thus, the coupling between the dust and water cycles likely affects the distributions of dust, water vapor and water ice, and thus atmospheric heating and cooling and the resulting circulations. We use the NASA Ames Mars GCM to investigate the effects of radiatively active water ice clouds on surface stress and the potential for dust lifting. The model includes a state-of-the-art water ice cloud microphysics package and a radiative transfer scheme that accounts for the radiative effects of CO2 gas, dust, and water ice clouds. We focus on simulations that are radiatively forced by a prescribed dust map, and we compare simulations that do and do not include radiatively active clouds. Preliminary results suggest that the magnitude and spatial patterns of surface stress (and thus dust lifting potential) are substantial influenced by the radiative effects of water ice clouds.

  10. Effects of atmospheric deposition of pesticides on terrestrial organisms in the Netherlands

    NARCIS (Netherlands)

    Jong FMW de; Luttik R; SEC

    2004-01-01

    At present there is much focus on the atmospheric dispersal of pesticides. However, there is very little known about the effects of atmospheric deposition, especially in terrestrial ecosystems. In the study described here, a start has been made to clarify the possible effects on terrestrial

  11. CO2 deficit in temperate forest soils receiving high atmospheric N-deposition.

    Science.gov (United States)

    Fleischer, Siegfried

    2003-02-01

    Evidence is provided for an internal CO2 sink in forest soils, that may have a potential impact on the global CO2-budget. Lowered CO2 fraction in the soil atmosphere, and thus lowered CO2 release to the aboveground atmosphere, is indicated in high N-deposition areas. Also at forest edges, especially of spruce forest, where additional N-deposition has occurred, the soil CO2 is lowered, and the gradient increases into the closed forest. Over the last three decades the capacity of the forest soil to maintain the internal sink process has been limited to a cumulative supply of approximately 1000 and 1500 kg N ha(-1). Beyond this limit the internal soil CO2 sink becomes an additional CO2 source, together with nitrogen leaching. This stage of "nitrogen saturation" is still uncommon in closed forests in southern Scandinavia, however, it occurs in exposed forest edges which receive high atmospheric N-deposition. The soil CO2 gradient, which originally increases from the edge towards the closed forest, becomes reversed.

  12. Grain size effect on Sr and Nd isotopic compositions in eolian dust. Implications for tracing dust provenance and Nd model age

    International Nuclear Information System (INIS)

    Feng Jinliang; Zhu Liping; Zhen Xiaolin; Hu Zhaoguo

    2009-01-01

    Strontium (Sr) and neodymium (Nd) isotopic compositions enable identification of dust sources and reconstruction of atmospheric dispersal pathways. The Sr and Nd isotopic compositions in eolian dust change systematically with grain size in ways not yet fully understood. This study demonstrates the grain size effect on the Sr and Nd isotopic compositions in loess and 2006 dust fall, based on analyses of seven separated grain size fractions. The analytical results indicate that Sr isotopic ratios strongly depend on the grain size fractions in samples from all types of eolian dust. In contrast, the Nd isotopic ratios exhibit little variation in loess, although they vary significantly with grain size in samples from a 2006 dust fall. Furthermore, Nd model ages tend to increase with increasing grain size in samples from all types of eolian dust. Comparatively, Sr isotopic compositions exhibit high sensitively to wind sorting, while Nd isotopic compositions show greater sensitively to dust origin. The principal cause for the different patterns of Sr and Nd isotopic composition variability with grain size appears related to the different geochemical behaviors between rubidium (Rb) and Sr, and the similar geochemical behaviors between samarium (Sm) and Nd. The Nd isotope data indicate that the various grain size fractions in loess have similar origins for each sample. In contrast, various provenance components may separate into different grain size fractions for the studied 2006 dust fall. The Sr and Nd isotope compositions further confirm that the 2006 dust fall and Pleistocene loess in Beijing have different sources. The loess deposits found in Beijing and those found on the Chinese Loess Plateau also derive from different sources. Variations between Sr and Nd isotopic compositions and Nd model ages with grain size need to be considered when directly comparing analyses of eolian dust of different grain size. (author)

  13. Investigation of deposition characteristics and properties of high-rate deposited silicon nitride films prepared by atmospheric pressure plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Kakiuchi, H.; Nakahama, Y.; Ohmi, H.; Yasutake, K.; Yoshii, K.; Mori, Y.

    2005-01-01

    Silicon nitride (SiN x ) films have been prepared at extremely high deposition rates by the atmospheric pressure plasma chemical vapor deposition (AP-PCVD) technique on Si(001) wafers from gas mixtures containing He, H 2 , SiH 4 and N 2 or NH 3 . A 150 MHz very high frequency (VHF) power supply was used to generate high-density radicals in the atmospheric pressure plasma. Deposition rate, composition and morphology of the SiN x films prepared with various deposition parameters were studied by scanning electron microscopy and Auger electron spectroscopy. Fourier transformation infrared (FTIR) absorption spectroscopy was also used to characterize the structure and the chemical bonding configurations of the films. Furthermore, etching rate with buffered hydrofluoric acid (BHF) solution, refractive index and capacitance-voltage (C-V) characteristics were measured to evaluate the dielectric properties of the films. It was found that effective passivation of dangling bonds and elimination of excessive hydrogen atoms at the film-growing surface seemed to be the most important factor to form SiN x film with a dense Si-N network. The C-V curve of the optimized film showed good interface properties, although further improvement was necessary for use in the industrial metal-insulator-semiconductor (MIS) applications

  14. Final report on dust monitoring near Kellingley coal mine, North Yorkshire

    International Nuclear Information System (INIS)

    Vallack, H.W.

    1992-06-01

    Dust deposition was monitored at a residential location near Kellingley Coal Mine over two four-weekly periods (November/December 1991 and March/April 1992) using a wet Frisbee dust deposit gauge. The mean rates of dust deposition for both periods (696.4 and 415.5 mg m -2 day -1 respectively) were well in excess of a proposed acceptable upper limit (195 mg m -2 day -1 ) for residential conditions. Mean estimated coal dust content during both periods (80.9 and 49.7 per cent) was also high. It is concluded that coal dust from Kellingley Coal Mine gave rise to excessively high levels of dust deposition at the monitoring site, especially during the first four-weekly period. The situation would appear to have deteriorated since a similar monitoring exercise was carried out in 1989. 4 refs, 2 figs, 2 tabs

  15. Deposition velocity of gaseous organic iodine from the atmosphere to rice plants

    International Nuclear Information System (INIS)

    Muramatsu, Yasuyuki; Shigeo-Uchida; Sumiya, Misako; Ohmomo, Yoichiro

    1996-01-01

    To obtain parameter values for the assessment of 129 I transfer from the atmosphere to rice, deposition of CH 3 I to rice plants has been studied. The mass normalized deposition velocity (V D ) of CH 3 I for rough (unhulled) rice was 0.00048 cm 3 g -1 s -1 , which is about 1/300 of that of I 2 . Translocation of iodine, deposited as CH 3 I on leaves and stems, to rice grain was negligibly small. Distribution of iodine between hull and inner part of the grain was found to depend also on the chemical forms of atmospheric iodine to be deposited. The ratio of the iodine distribution in a grain exposed to CH 3 I was as follows: rough rice: brown rice (hulled rice):polished rice = 1.0:0.49:0.38. The distribution ratio in polished grains for CH 3 I exposed rice was about 20 times higher than that for I 2 . 22 refs., 1 fig., 6 tabs

  16. Model Simulations of a Mesocosm Experiment Investigating the Response of a Low Nutrient Low Chlorophyll (LNLC Marine Ecosystem to Atmospheric Deposition Events

    Directory of Open Access Journals (Sweden)

    Kostas P. Tsiaras

    2017-05-01

    Full Text Available Atmospheric deposition of nitrogen and phosphorus represents an important source of nutrients, enhancing the marine productivity in oligotrophic areas, e.g., the Mediterranean. A comprehensive biogeochemical model (ERSEM was setup and customized to simulate a mesocosm experiment, where dissolved inorganic nitrogen and phosphorus by means of atmospheric dust (single addition/SA and repetitive addition/RA in three successive doses was added in controlled tanks and compared with a control (blank, all with Cretan Sea (Eastern Mediterranean water. Observations on almost all components of the pelagic ecosystem in a ten-day period allowed investigating the effect of atmospheric deposition and the pathways of the added nutrients. The model was able to reasonably capture the observed variability of different ecosystem components and reproduce the main features of the experiment. An enhancement of primary production and phytoplankton biomass with added nutrients was simulated, in agreement with observations. A significant increase of bacterial production was also reproduced, while the model underestimated the observed increase and variability in bacterial biomass, but this deviation could be partly removed considering a lower carbon conversion factor from cell abundance data. A slightly stronger overall response was simulated with the single dust addition, compared to the repetitive that showed a few days delay. The simulated carbon pathways indicated that nutrient additions did not modify the microbial food web structure, but just increased its trophic status. Changes in model assumptions and parameter set that were necessary to reproduce the observed variability in the mesocosm experiment were discussed through a series of sensitivity simulations. Bacterial production was assumed to be mostly affected by the in situ produced labile organic matter, while it was further stimulated by the addition of inorganic nutrients, adopting a function of external

  17. Comparison of mercury mass loading in streams to atmospheric deposition in watersheds of Western North America: Evidence for non-atmospheric mercury sources

    Science.gov (United States)

    Domagalski, Joseph L.; Majewski, Michael S.; Alpers, Charles N.; Eckley, Chris S.; Eagles-Smith, Collin A.; Schenk, Liam N.; Wherry, Susan

    2016-01-01

    Annual stream loads of mercury (Hg) and inputs of wet and dry atmospheric Hg deposition to the landscape were investigated in watersheds of the Western United States and the Canadian-Alaskan Arctic. Mercury concentration and discharge data from flow gauging stations were used to compute annual mass loads with regression models. Measured wet and modeled dry deposition were compared to annual stream loads to compute ratios of Hg stream load to total Hg atmospheric deposition. Watershed land uses or cover included mining, undeveloped, urbanized, and mixed. Of 27 watersheds that were investigated, 15 had some degree of mining, either of Hg or precious metals (gold or silver), where Hg was used in the amalgamation process. Stream loads in excess of annual Hg atmospheric deposition (ratio > 1) were observed in watersheds containing Hg mines and in relatively small and medium-sized watersheds with gold or silver mines, however, larger watersheds containing gold or silver mines, some of which also contain large dams that trap sediment, were sometimes associated with lower load ratios (< 0.2). In the non-Arctic regions, watersheds with natural vegetation tended to have low ratios of stream load to Hg deposition (< 0.1), whereas urbanized areas had higher ratios (0.34–1.0) because of impervious surfaces. This indicated that, in ecosystems with natural vegetation, Hg is retained in the soil and may be transported subsequently to streams as a result of erosion or in association with dissolved organic carbon. Arctic watersheds (Mackenzie and Yukon Rivers) had a relatively elevated ratio of stream load to atmospheric deposition (0.27 and 0.74), possibly because of melting glaciers or permafrost releasing previously stored Hg to the streams. Overall, our research highlights the important role of watershed characteristics in determining whether a landscape is a net source of Hg or a net sink of atmospheric Hg.

  18. High-resolution regional modeling of summertime transport and impact of African dust over the Red Sea and Arabian Peninsula

    KAUST Repository

    Kalenderski, Stoitchko Dimitrov

    2016-05-23

    Severe dust outbreaks and high dust loading over Eastern Africa and the Red Sea are frequently detected in the summer season. Observations suggest that small-scale dynamic and orographic effects, from both the Arabian and African sides, strongly contribute to dust plume formation. To better understand these processes, we present here the first high resolution modeling study of a dust outbreak in June 2012 developed over East Africa, the Red Sea, and the Arabian Peninsula. Using the Weather Research and Forecasting model coupled with Chemistry component (WRF-Chem), we identified several dust generating dynamical processes that range from convective to synoptic scales, including synoptic cyclones, nocturnal low-level jets, and cold pools of mesoscale convective systems. The simulations reveal an eastward transport of African dust across the Red Sea. Over the northern part of the Red Sea, most of the dust transport occurs above 2 km height, whereas across the central and southern parts of the sea, dust is mostly transported below 2 km height. Dust is the dominant contributor (87%) to the aerosol optical depth, producing a domain average cooling effect of -12.1 W m-2 at the surface, a warming of 7.1 W m-2 in the atmosphere, and a residual cooling of -4.9 W m-2 at the top of the atmosphere. Both dry and wet deposition processes contribute significantly to dust removal from the atmosphere. Model results compare well with available ground-based and satellite observations, but generally underestimate the observed maximum values of aerosol optical depth. The satellite-retrieved mean optical depth at some locations are underestimated by a factor of two. A sensitive experiment suggests that these large local differences may result from poor characterization of dust emissions in some areas of the modeled domain. In this case study we successfully simulate the major fine-scale dust generating dynamical processes, explicitly resolving convection and haboob

  19. Optimizing best management practices to control anthropogenic sources of atmospheric phosphorus deposition to inland lakes.

    Science.gov (United States)

    Weiss, Lee; Thé, Jesse; Winter, Jennifer; Gharabaghi, Bahram

    2018-04-18

    Excessive phosphorus loading to inland freshwater lakes around the globe has resulted in nuisance plant growth along the waterfronts, degraded habitat for cold water fisheries, and impaired beaches, marinas and waterfront property. The direct atmospheric deposition of phosphorus can be a significant contributing source to inland lakes. The atmospheric deposition monitoring program for Lake Simcoe, Ontario indicates roughly 20% of the annual total phosphorus load (2010-2014 period) is due to direct atmospheric deposition (both wet and dry deposition) on the lake. This novel study presents a first-time application of the Genetic Algorithm (GA) methodology to optimize the application of best management practices (BMPs) related to agriculture and mobile sources to achieve atmospheric phosphorus reduction targets and restore the ecological health of the lake. The novel methodology takes into account the spatial distribution of the emission sources in the airshed, the complex atmospheric long-range transport and deposition processes, cost and efficiency of the popular management practices and social constraints related to the adoption of BMPs. The optimization scenarios suggest that the optimal overall capital investment of approximately $2M, $4M, and $10M annually can achieve roughly 3, 4 and 5 tonnes reduction in atmospheric P load to the lake, respectively. The exponential trend indicates diminishing returns for the investment beyond roughly $3M per year and that focussing much of this investment in the upwind, nearshore area will significantly impact deposition to the lake. The optimization is based on a combination of the lowest-cost, most-beneficial and socially-acceptable management practices that develops a science-informed promotion of implementation/BMP adoption strategy. The geospatial aspect to the optimization (i.e. proximity and location with respect to the lake) will help land managers to encourage the use of these targeted best practices in areas that

  20. Meridional transport and deposition of atmospheric 10Be

    Directory of Open Access Journals (Sweden)

    J. Feichter

    2009-01-01

    Full Text Available 10Be concentrations measured in ice cores exhibit larger temporal variability than expected based on theoretical production calculations. To investigate whether this is due to atmospheric transport a general circulation model study is performed with the 10Be production divided into stratospheric, tropospheric tropical, tropospheric subtropical and tropospheric polar sources. A control run with present day 10Be production rate is compared with a run during a geomagnetic minimum. The present 10Be production rate is 4–5 times higher at high latitudes than in the tropics whereas during a period of no geomagnetic dipole field it is constant at all latitudes. The 10Be deposition fluxes, however, show a very similar latitudinal distribution in both the present day and the geomagnetic minimum run indicating that 10Be is well mixed in the atmosphere before its deposition. This is also confirmed by the fact that the contribution of 10Be produced in the stratosphere is dominant (55%–70% and relatively constant at all latitudes. The contribution of stratospheric 10Be is approximately 70% in Greenland and 60% in Antarctica reflecting the weaker stratosphere-troposphere air exchange in the Southern Hemisphere.

  1. Multi-year Surface Deposition of {sup 210}Pb and {sup 210}Po at Lisbon - Atmospheric Depositions of {sup 210}Pb and {sup 210}Po in Lisbon, Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Fernando P.; Oliveira, Joao M.; Alberto, G. [Instituto Superior Tecnico/ Campus Tecnologico e Nuclear, Universidade Tecnica de Lisboa, E.N. 10, 2686-953 Sacavem (Portugal)

    2014-07-01

    The long lived radon daughters {sup 210}Pb and {sup 210}Po were determined in samples of total atmospheric depositions obtained with surface collectors continuously operated during 5 years, near Lisbon. The average annual {sup 210}Pb flux was 66±12 Bq m{sup -2}, and the average annual {sup 210}Po flux was 8±3 Bq m{sup -2}, with an overall {sup 210}Po/{sup 210}Pb activity ratio of 0.15±0.06. Direct determination of the {sup 210}Pb atmospheric flux was compared with the {sup 210}Pb excess determined in soil surface layers along with atmospheric depositions of {sup 137}Cs. The deposition of atmospheric {sup 210}Pb was positively correlated with seasonal rainfall, while {sup 210}Po was mainly originated in soil particles re-suspension throughout the year and also in seasonal forest fires. Unusually high {sup 210}Po/{sup 210}Pb activity ratios, higher than unity, were occasionally recorded in atmospheric depositions and the sources and causes are discussed. Long time-series of {sup 210}Pb and {sup 210}Po deposition fluxes, as presented herein are useful to test and constrain parameters of the atmospheric Global Circulation Models. (authors)

  2. Deposition of heavy metals from dust fallout in selected areas of Eastern Slovakia

    Directory of Open Access Journals (Sweden)

    Pavel Slančo

    2005-11-01

    Full Text Available The paper deals with an evaluation of the deposition of selected heavy metals in the form of a detailed analysis of the dust fallout. The loaded areas of Nižná Slaná and Jelšava with the mining and mineral processing industry of siderite ore and magnesite, the area of Krompachy with the copper metal works, the municipal and industrial environs of Košice and relatively clean area of the National Park of Slovak Paradise were monitored and compared. The results have shown significant differences in the qualitative and quantitative effect on the monitored areas. The values of heavy metals content in the dust fallout of the loaded areas exceeded by order the values detected in the Slovak Paradise. As to the mining areas of Nižná Slaná and Jelšava, the highest content of heavy metals was recorded in the case of Mn and As. The metallurgical area of Krompachy is mostly loaded by Cu, Pb, As and Cd..

  3. Dust in Snow in the Colorado River Basin: Spatial Variability in Dust Concentrations, Radiative Forcing, and Snowmelt Rates

    Science.gov (United States)

    Skiles, M.; Painter, T.; Deems, J. S.; Landry, C.; Bryant, A.

    2012-12-01

    Since the disturbance of the western US that began with the Anglo settlement in the mid 19th century, the mountain snow cover of the Colorado River Basin (CRB) has been subject to five-fold greater dust loading. This dust deposition accelerates snowmelt through its direct reduction of albedo and its further reduction of albedo by accelerating the growth of snow effective grain size. We have previously quantified the impacts of dust in snow using a 6-year record of dust concentration and energy balance fluxes at the alpine and subalpine towers in the Senator Beck Basin Study Area (SBBSA), San Juan Mountains in southwestern Colorado, USA. Dust loading exhibited interannual variability, and end of year dust concentrations were not necessarily related to the number of dust deposition events. Radiative forcing enhanced springtime melt by 21 to 51 days with the magnitude of advanced loss being linearly related to total dust concentration at the end of snow cover. To expand our understanding of dust on snow deposition patterns we utilize collections of dust concentration at the Colorado Dust on Snow (CODOS) study sites, established in 2009 along the western side of the CRB, to assess spatial variability in dust loading. In situ sampling of dust stratigraphy and concentration occurs twice each season, once over peak snow water equivalent (15 April), and again during melt (15 May). Dust loading occurs at all sites; dust concentrations are always higher in May, vary between sites, and the highest and lowest dust years were 2009 and 2012, respectively. In the absence of regular sampling and energy balance instrumentation these sites do not allow us to quantify the advanced melt due to dust. To facilitate this a new energy balance site, Grand Mesa Study plot (GMSP), was established for water year 2010 in west central Colorado, 150 km north of SBBSA. Back trajectories indicate similar Colorado Plateau dust sources at both SBBSA and GMSP, yet GMSP exhibits slightly lower dust

  4. Recently deglaciated high-altitude soils of the Himalaya: diverse environments, heterogenous bacterial communities and long-range dust inputs from the upper troposphere.

    Directory of Open Access Journals (Sweden)

    Blaz Stres

    Full Text Available The Himalaya with its altitude and geographical position forms a barrier to atmospheric transport, which produces much aqueous-particle monsoon precipitation and makes it the largest continuous ice-covered area outside polar regions. There is a paucity of data on high-altitude microbial communities, their native environments and responses to environmental-spatial variables relative to seasonal and deglaciation events.Soils were sampled along altitude transects from 5000 m to 6000 m to determine environmental, spatial and seasonal factors structuring bacterial communities characterized by 16 S rRNA gene deep sequencing. Dust traps and fresh-snow samples were used to assess dust abundance and viability, community structure and abundance of dust associated microbial communities. Significantly different habitats among the altitude-transect samples corresponded to both phylogenetically distant and closely-related communities at distances as short as 50 m showing high community spatial divergence. High within-group variability that was related to an order of magnitude higher dust deposition obscured seasonal and temporal rearrangements in microbial communities. Although dust particle and associated cell deposition rates were highly correlated, seasonal dust communities of bacteria were distinct and differed significantly from recipient soil communities. Analysis of closest relatives to dust OTUs, HYSPLIT back-calculation of airmass trajectories and small dust particle size (4-12 µm suggested that the deposited dust and microbes came from distant continental, lacustrine and marine sources, e.g. Sahara, India, Caspian Sea and Tibetan plateau. Cyanobacteria represented less than 0.5% of microbial communities suggesting that the microbial communities benefitted from (codeposited carbon which was reflected in the psychrotolerant nature of dust-particle associated bacteria.The spatial, environmental and temporal complexity of the high-altitude soils of the

  5. Investigating the size, shape and surface roughness dependence of polarization lidars with light-scattering computations on real mineral dust particles: Application to dust particles' external mixtures and dust mass concentration retrievals

    Science.gov (United States)

    Mehri, Tahar; Kemppinen, Osku; David, Grégory; Lindqvist, Hannakaisa; Tyynelä, Jani; Nousiainen, Timo; Rairoux, Patrick; Miffre, Alain

    2018-05-01

    Our understanding of the contribution of mineral dust to the Earth's radiative budget is limited by the complexity of these particles, which present a wide range of sizes, are highly-irregularly shaped, and are present in the atmosphere in the form of particle mixtures. To address the spatial distribution of mineral dust and atmospheric dust mass concentrations, polarization lidars are nowadays frequently used, with partitioning algorithms allowing to discern the contribution of mineral dust in two or three-component particle external mixtures. In this paper, we investigate the dependence of the retrieved dust backscattering (βd) vertical profiles with the dust particle size and shape. For that, new light-scattering numerical simulations are performed on real atmospheric mineral dust particles, having determined mineralogy (CAL, DOL, AGG, SIL), derived from stereogrammetry (stereo-particles), with potential surface roughness, which are compared to the widely-used spheroidal mathematical shape model. For each dust shape model (smooth stereo-particles, rough stereo-particles, spheroids), the dust depolarization, backscattering Ångström exponent, lidar ratio are computed for two size distributions representative of mineral dust after long-range transport. As an output, two Saharan dust outbreaks involving mineral dust in two, then three-component particle mixtures are studied with Lyon (France) UV-VIS polarization lidar. If the dust size matters most, under certain circumstances, βd can vary by approximately 67% when real dust stereo-particles are used instead of spheroids, corresponding to variations in the dust backscattering coefficient as large as 2 Mm- 1·sr- 1. Moreover, the influence of surface roughness in polarization lidar retrievals is for the first time discussed. Finally, dust mass-extinction conversion factors (ηd) are evaluated for each assigned shape model and dust mass concentrations are retrieved from polarization lidar measurements. From

  6. Modulation of ice ages via precession and dust-albedo feedbacks

    Directory of Open Access Journals (Sweden)

    Ralph Ellis

    2016-11-01

    Full Text Available We present here a simple and novel proposal for the modulation and rhythm of ice-ages and interglacials during the late Pleistocene. While the standard Milankovitch-precession theory fails to explain the long intervals between interglacials, these can be accounted for by a novel forcing and feedback system involving CO2, dust and albedo. During the glacial period, the high albedo of the northern ice sheets drives down global temperatures and CO2 concentrations, despite subsequent precessional forcing maxima. Over the following millennia more CO2 is sequestered in the oceans and atmospheric concentrations eventually reach a critical minima of about 200 ppm, which combined with arid conditions, causes a die-back of temperate and boreal forests and grasslands, especially at high altitude. The ensuing soil erosion generates dust storms, resulting in increased dust deposition and lower albedo on the northern ice sheets. As northern hemisphere insolation increases during the next Milankovitch cycle, the dust-laden ice-sheets absorb considerably more insolation and undergo rapid melting, which forces the climate into an interglacial period. The proposed mechanism is simple, robust, and comprehensive in its scope, and its key elements are well supported by empirical evidence.

  7. Shifts in lake N: P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition

    Science.gov (United States)

    Elser, J.J.; Andersen, T.; Baron, Jill S.; Bergstrom, A.-K.; Jansson, M.; Kyle, M.; Nydick, K.R.; Steger, L.; Hessen, D.O.

    2009-01-01

    Human activities have more than doubled the amount of nitrogen (N) circulating in the biosphere. One major pathway of this anthropogenic N input into ecosystems has been increased regional deposition from the