WorldWideScience

Sample records for atmospheric diffusion

  1. Handbook on atmospheric diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, S.R.; Briggs, G.A.; Hosker, R.P. Jr.

    1982-01-01

    Basic meteorological concepts are covered as well as plume rise, source effects, and diffusion models. Chapters are included on cooling tower plumes and urban diffusion. Suggestions are given for calculating diffusion in special situations, such as for instantaneous releases over complex terrain, over long distances, and during times when chemical reactions or dry or wet deposition are important. (PSB)

  2. Evaluation of empirical atmospheric diffusion data

    Energy Technology Data Exchange (ETDEWEB)

    Horst, T.W.; Doran, J.C.; Nickola, P.W.

    1979-10-01

    A study has been made of atmospheric diffusion over level, homogeneous terrain of contaminants released from non-buoyant point sources up to 100 m in height. Current theories of diffusion are compared to empirical diffusion data, and specific dispersion estimation techniques are recommended which can be implemented with the on-site meteorological instrumentation required by the Nuclear Regulatory Commission. A comparison of both the recommended diffusion model and the NRC diffusion model with the empirical data demonstrates that the predictions of the recommended model have both smaller scatter and less bias, particularly for ground-level sources.

  3. Hanford 67-series: a volume of atmospheric field diffusion measurements

    Energy Technology Data Exchange (ETDEWEB)

    Nickola, P.W.

    1977-11-01

    This volume documents atmospheric diffusion experiments carried out at the Hanford reservation during the period 1967 to 1973. A total of 103 tracer releases during 54 release periods is tabulated. Multi-tracer releases (generally from different elevations) were made during most of the experimental periods. Release heights varied from ground level to an elevation of 111 m. Tracers were sampled simultaneously on as many as 10 arcs at distances of up to 12.8 km from the tracer release point. As many as 718 field sampling locations were employed during some of the experiments. Vertical profiles of concentration were monitored on towers during 23 of the 54 release periods. Concurrent vertical profiles of mean temperature, of mean wind speed and direction, and of direction standard deviation are also tabled for elevations up to 122 m.

  4. An atmospheric electrical method to determine the eddy diffusion ...

    Indian Academy of Sciences (India)

    in the lowest ∼2 m, the surface electric field and eddy diffusivity/aerosol concentration. The values of eddy diffusivity estimated from this method using some earlier measurements of space charge and surface electric field are in reasonably good ... the electric field and conductivity from a light aircraft while the latter method ...

  5. ANALYTICAL SOLUTIONS OF THE ATMOSPHERIC DIFFUSION EQUATION WITH MULTIPLE SOURCES AND HEIGHT-DEPENDENT WIND SPEED AND EDDY DIFFUSIVITIES. (R825689C048)

    Science.gov (United States)

    AbstractThree-dimensional analytical solutions of the atmospheric diffusion equation with multiple sources and height-dependent wind speed and eddy diffusivities are derived in a systematic fashion. For homogeneous Neumann (total reflection), Dirichlet (total adsorpti...

  6. ANALYTICAL SOLUTIONS OF THE ATMOSPHERIC DIFFUSION EQUATION WITH MULTIPLE SOURCES AND HEIGHT-DEPENDENT WIND SPEED AND EDDY DIFFUSIVITIES. (R825689C072)

    Science.gov (United States)

    AbstractThree-dimensional analytical solutions of the atmospheric diffusion equation with multiple sources and height-dependent wind speed and eddy diffusivities are derived in a systematic fashion. For homogeneous Neumann (total reflection), Dirichlet (total adsorpti...

  7. Diffusion of Sound Waves in a Turbulent Atmosphere

    Science.gov (United States)

    Lyon, Richard H.

    1960-01-01

    The directional and frequency diffusion of a plane monochromatic 2 sound wave in statistically homogeneous, isotropic, and stationary turbulence is analyzed theoretically. The treatment is based on the diffusion equation for the energy density of sound waves, using the scattering cross section derived by Kraichnan for the type of turbulence assumed here. A form for the frequency-wave number spectrum of the turbulence is adopted which contains the pertinent parameters of the flow and is adapted to ease of calculation. A new approach to the evaluation of the characteristic period of the flow is suggested. This spectrum is then related to the scattering cross section. Finally, a diffusion equation is derived as a small-angle scattering approximation to the rigorous transport equation. The rate of spread of the incident wave in frequency and direction is calculated, as well as the power spectrum and autocorrelation for the wave.

  8. Effects on atmospheric diffusion of meterological processes in coastal zones

    Energy Technology Data Exchange (ETDEWEB)

    Raynor, Gilbert S.

    1977-01-01

    Meteorological processes in coastal zones differ from those inland because of the surface discontinuity between land and water. The difference in heating between the two surfaces gives rise to sea or lake breeze circulations which can transport pollutants in nongradient directions and recirculate them over source areas. The step change in surface characteristics at the land-water interface also causes formation of internal boundary layers having different transport velocities and diffusion rates than unmodified air upwind or above the boundary. These features require a more extensive measurement program and more versatile diffusion models than at inland sites.

  9. Numerical simulation and analysis of characteristics of atmospheric diffusion in coastal area of a site

    Science.gov (United States)

    Yang, Zongzhen; Zhang, Xiaofeng; Bao, Xinjie; Chen, Shuyang

    2017-05-01

    A Weather Research and Forecasting Model (WRF) and random walk model have been used to numerical simulate and analysis the characteristics of meso-micro scale wind field and atmospheric diffusion in coastal area of a sit. The results indicated that the atmospheric dispersion in this area is determined both by synoptic scale system and land-sea breeze circulation. Spatial variation of wind field is not obvious in synoptic scale system situation, which leads to the straight dispersion plume. Temporal variation of wind field, particularly the wind direction transition caused by transient of land-sea breezes is obvious. The method of random walk simulation better reflects the characteristics of the air pollutants transportation and diffusion. The atmospheric diffusion parameters obtained with numerical simulation experiment may reflect well the characteristics of the air diffusion in local area.

  10. Optimization and validation of atmospheric advective and diffusive transport simulations

    OpenAIRE

    Rössler, Thomas

    2015-01-01

    Lagrangian particle dispersion models are indispensable tools to study atmospheric transport processesbased on the flow of individual air parcels.In operational uses cases they are used to simulate the spread of radionuclides or volcanic emissionsin emergency situations.Different Lagrangian particle dispersion models have been developed for those studies, like FLEXPART or HYSPLIT.It is very important that the models are verified and their errors are estimated so that the results are reliable....

  11. A study of atmospheric diffusion from the LANDSAT imagery. [pollution transport over the ocean

    Science.gov (United States)

    Dejesusparada, N. (Principal Investigator); Viswanadham, Y.; Torsani, J. A.

    1981-01-01

    LANDSAT multispectral scanner data of the smoke plumes which originated in eastern Cabo Frio, Brazil and crossed over into the Atlantic Ocean, are analyzed to illustrate how high resolution LANDSAT imagery can aid meteorologists in evaluating specific air pollution events. The eleven LANDSAT images selected are for different months and years. The results show that diffusion is governed primarily by water and air temperature differences. With colder water, low level air is very stable and the vertical diffusion is minimal; but water warmer than the air induces vigorous diffusion. The applicability of three empirical methods for determining the horizontal eddy diffusivity coefficient in the Gaussian plume formula was evaluated with the estimated standard deviation of the crosswind distribution of material in the plume from the LANDSAT imagery. The vertical diffusion coefficient in stable conditions is estimated using Weinstock's formulation. These results form a data base for use in the development and validation of meso scale atmospheric diffusion models.

  12. Cleaning of niobium surface by plasma of diffuse discharge at atmospheric pressure

    Science.gov (United States)

    Tarasenko, V. F.; Erofeev, M. V.; Shulepov, M. A.; Ripenko, V. S.

    2017-07-01

    Elements composition of niobium surface before and after plasma treatment by runaway electron preionized diffuse discharge was investigated in atmospheric pressure nitrogen flow by means of an Auger electron spectroscopy. Surface characterizations obtained from Auger spectra show that plasma treatment by diffuse discharge after exposure of 120000 pulses provides ultrafine surface cleaning from carbon contamination. Moreover, the surface free energy of the treated specimens increased up to 3 times, that improve its adhesion property.

  13. Turbulent diffusivity in the free atmosphere inferred from MST radar measurements: a review

    Directory of Open Access Journals (Sweden)

    R. Wilson

    2004-11-01

    Full Text Available The actual impact on vertical transport of small-scale turbulence in the free atmosphere is still a debated issue. Numerous estimates of an eddy diffusivity exist, clearly showing a lack of consensus. MST radars were, and continue to be, very useful for studying atmospheric turbulence, as radar measurements allow one to estimate the dissipation rates of energy (kinetic and potential associated with turbulent events. The two commonly used methods for estimating the dissipation rates, from the backscattered power and from the Doppler width, are discussed. The inference methods of a local diffusivity (local meaning here "within" the turbulent patch by using the dissipation rates are reviewed, with some of the uncertainty causes being stressed. Climatological results of turbulence diffusivity inferred from radar measurements are reviewed and compared.

    As revealed by high resolution MST radar measurements, atmospheric turbulence is intermittent in space and time. Recent theoretical works suggest that the effective diffusivity of such a patchy turbulence is related to statistical parameters describing the morphology of turbulent events: filling factor, lifetime and height of the patches. It thus appears that a statistical description of the turbulent patches' characteristics is required in order to evaluate and parameterize the actual impact of small-scale turbulence on transport of energy and materials. Clearly, MST radars could be an essential tool in that matter.

  14. Turbulent diffusivity in the free atmosphere inferred from MST radar measurements: a review

    Directory of Open Access Journals (Sweden)

    R. Wilson

    2004-11-01

    Full Text Available The actual impact on vertical transport of small-scale turbulence in the free atmosphere is still a debated issue. Numerous estimates of an eddy diffusivity exist, clearly showing a lack of consensus. MST radars were, and continue to be, very useful for studying atmospheric turbulence, as radar measurements allow one to estimate the dissipation rates of energy (kinetic and potential associated with turbulent events. The two commonly used methods for estimating the dissipation rates, from the backscattered power and from the Doppler width, are discussed. The inference methods of a local diffusivity (local meaning here "within" the turbulent patch by using the dissipation rates are reviewed, with some of the uncertainty causes being stressed. Climatological results of turbulence diffusivity inferred from radar measurements are reviewed and compared. As revealed by high resolution MST radar measurements, atmospheric turbulence is intermittent in space and time. Recent theoretical works suggest that the effective diffusivity of such a patchy turbulence is related to statistical parameters describing the morphology of turbulent events: filling factor, lifetime and height of the patches. It thus appears that a statistical description of the turbulent patches' characteristics is required in order to evaluate and parameterize the actual impact of small-scale turbulence on transport of energy and materials. Clearly, MST radars could be an essential tool in that matter.

  15. Diffuse plasma treatment of polyamide 66 fabric in atmospheric pressure air

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lee, E-mail: leeli@mail.hust.edu.cn; Peng, Ming-yang; Teng, Yun; Gao, Guozhen

    2016-01-30

    Graphical abstract: - Highlights: • A cylindrical-electrode nanosecond-pulse diffuse-discharge reactor is presented. • Large-scale non-thermal plasmas were generated steadily in atmospheric air. • Treated PA66 fabric is etched with oxygen-containing group increases. • The hydrophily of treated PA66 fabric improves effectively. • Extending the treatment time is a method to reduce the treatment frequency. - Abstract: The polyamide 66 (PA66) fabrics are hard to be colored or glued in industrial production due to the poor hydrophily. Diffuse plasma is a kind of non-thermal plasma generated at atmospheric pressure in air. This paper proposes that large-scale diffuse plasma generated between wire electrodes can be employed for improving the hydrophily of PA66 fabrics. A repetitive nanosecond-pulse diffuse-discharge reactor using a cylindrical wire electrode configuration is presented, which can generate large-scale non-thermal plasmas steadily at atmospheric pressure without any barrier dielectric. Then the reactor is used to treat PA66 fabrics in different discharge conditions. The hydrophilicity property of modified PA66 is measured by wicking test method. The modified PA66 is also analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) to prove the surface changes in physical microstructure and chemical functional groups, respectively. What's more, the effects of treatment time and treatment frequency on surface modification are investigated and discussed.

  16. Thermal diffusion characteristics of atmosphere-particle two phase flow in dust storm

    Science.gov (United States)

    Wang, Xihua; Wang, Tijian; Tang, Jianping; Gu, Fan

    2005-02-01

    A model, coupling metrological dynamic model MM5 and dust transport model, is developed for the atmosphere-particle two phases flow of dust storm. The simulations of the dust storm events in north China with a geographic information database are performed using the model, and represent an overview of dust transport pathways and particles concentration distribution over the north China. The comparison between computations and practical observations shows that the simulations succeed in description of dust storm evolvement and particle transport behavior. Based on the computations and analysis, the characteristics of particle transport, especially well-concerning the factor of the particle thermal diffusion, are studied. A new definition of mass transfer Grd is put forward to discover the internal principle of particle thermal diffusion at various atmospheric layers. Several phenomena, such as thermal diffusion item QT Grd distribution, and relationships, Particle Grd probability function, are obtained. The investigation indicates particle thermal diffusion can be not ignored in mesoscale atmospheric-particle multiphase flow.

  17. Implicit coupling of turbulent diffusion with chemical reaction mechanisms for prognostic atmospheric dispersion models

    Energy Technology Data Exchange (ETDEWEB)

    Berlowitz, D.R.

    1996-11-01

    In the last few decades the negative impact by humans on the thin atmospheric layer enveloping the earth, the basis for life on this planet, has increased steadily. In order to halt, or at least slow down this development, the knowledge and study of these anthropogenic influence has to be increased and possible remedies have to be suggested. An important tool for these studies are computer models. With their help the atmospheric system can be approximated and the various processes, which have led to the current situation can be quantified. They also serve as an instrument to assess short or medium term strategies to reduce this human impact. However, to assure efficiency as well as accuracy, a careful analysis of the numerous processes involved in the dispersion of pollutants in the atmosphere is called for. This should help to concentrate on the essentials and also prevent excessive usage of sometimes scarce computing resources. The basis of the presented work is the EUMAC Zooming Model (ETM), and particularly the component calculating the dispersion of pollutants in the atmosphere, the model MARS. The model has two main parts: an explicit solver, where the advection and the horizontal diffusion of pollutants are calculated, and an implicit solution mechanism, allowing the joint computation of the change of concentration due to chemical reactions, coupled with the respective influence of the vertical diffusion of the species. The aim of this thesis is to determine particularly the influence of the horizontal components of the turbulent diffusion on the existing implicit solver of the model. Suggestions for a more comprehensive inclusion of the full three dimensional diffusion operator in the implicit solver are made. This is achieved by an appropriate operator splitting. A selection of numerical approaches to tighten the coupling of the diffusion processes with the calculation of the applied chemical reaction mechanisms are examined. (author) figs., tabs., refs.

  18. Developing a passive trap for diffusive atmospheric {sup 14}CO{sub 2} sampling

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Jennifer C.; Xu, Xiaomei [Department of Earth System Science, University of California, Irvine, Irvine, CA (United States); Fahrni, Simon M. [Department of Earth System Science, University of California, Irvine, Irvine, CA (United States); Institute of Particle Physics, ETH, Zurich (Switzerland); Lupascu, Massimo [Department of Earth System Science, University of California, Irvine, Irvine, CA (United States); Department of Geography, National University of Singapore (Singapore); Czimczik, Claudia I. [Department of Earth System Science, University of California, Irvine, Irvine, CA (United States)

    2015-10-15

    {sup 14}C-CO{sub 2} measurement is an unique tool to quantify source-based emissions of CO{sub 2} for both the urban and natural environments. Acquiring a sample that temporally integrates the atmospheric {sup 14}C-CO{sub 2} signature that allows for precise {sup 14}C analysis is often necessary, but can require complex sampling devices, which can be difficult to deploy and maintain, especially for multiple locations. Here we describe our progress in developing a diffusive atmospheric CO{sub 2} molecular sieve trap, which requires no power to operate. We present results from various cleaning procedures, and rigorously tested for blank and memory effects. Traps were tested in the environment along-side conventional sampling flasks for accuracy. Results show that blank and memory effects can be minimized with thorough cleaning and by avoiding overheating, and that diffusively collected air samples agree well with traditionally canister-sampled air.

  19. On the homogeneity of a diffuse barrier discharge in atmospheric air between flat cylindrical electrodes

    Science.gov (United States)

    Malashin, M. V.; Moshkunov, S. I.; Khomich, V. Yu.; Shershunova, E. A.

    2015-05-01

    The degree of homogeneity of a diffuse dielectric barrier discharge in millimeter air gaps under atmospheric pressure has been analyzed. This analysis is based on the glow-brightness distribution in the discharge gap cross section with allowance for a cylindrical electrode shape. It is shown that the degree of discharge homogeneity depends on both the repetition frequency of voltage pulses applied to the discharge gap and the barrier material.

  20. Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: volume 1. Inorganic compounds

    Science.gov (United States)

    Tang, M. J.; Cox, R. A.; Kalberer, M.

    2014-09-01

    Diffusion of gas molecules to the surface is the first step for all gas-surface reactions. Gas phase diffusion can influence and sometimes even limit the overall rates of these reactions; however, there is no database of the gas phase diffusion coefficients of atmospheric reactive trace gases. Here we compile and evaluate, for the first time, the diffusivities (pressure-independent diffusion coefficients) of atmospheric inorganic reactive trace gases reported in the literature. The measured diffusivities are then compared with estimated values using a semi-empirical method developed by Fuller et al. (1966). The diffusivities estimated using Fuller's method are typically found to be in good agreement with the measured values within ±30%, and therefore Fuller's method can be used to estimate the diffusivities of trace gases for which experimental data are not available. The two experimental methods used in the atmospheric chemistry community to measure the gas phase diffusion coefficients are also discussed. A different version of this compilation/evaluation, which will be updated when new data become available, is uploaded online (google.com/site/mingjintang/home/diffusion"target="_blank">https://sites.google.com/site/mingjintang/home/diffusion).

  1. Effect of growth regulators on 'Brookfield' apple gas diffusion and metabolism under controlled atmosphere storage

    Directory of Open Access Journals (Sweden)

    Auri Brackmann

    2014-05-01

    Full Text Available The objective of this work was to evaluate the effect of growth regulators on gas diffusion and on metabolism of 'Brookfield' apple, and to determine their correlation with quality characteristics of fruit stored in controlled atmosphere. A completely randomized design was used with four replicates. After eight months of storage, the effects of water (control, aminoethoxyvinylglycine (AVG, AVG + ethephon, AVG + naphthaleneacetic acid (NAA, ethephon + NAA, sole NAA, 1-MCP, ethylene absorption by potassium permanganate (ABS, AVG + ABS, and of AVG + 1-MCP - applied at different rates and periods - were evaluated on: gas diffusion rate, ethylene production, respiratory rate, internal ethylene concentration, internal CO2 content, mealiness, and intercellular space. Fruit from the control and sole NAA treatments had the highest mealiness occurrence. Growth regulators significantly changed the gaseous diffusion through the pulp of 'Brookfield' apple, mainly in the treatment AVG + ABS, which kept the highest gas diffusion rate. NAA spraying in the field, with or without another growth regulator, increased ripening metabolism by rising ethylene production and respiration rate, and reduced gas diffusion during shelf life. AVG spraying cannot avoid the ethephon effect during the ripening process, and reduces both the internal space and mealiness incidence, but it is not able to induce ethylene production or to increase respiration rates.

  2. Scaling laws of diffusion and time intermittency generated by coherent structures in atmospheric turbulence

    Directory of Open Access Journals (Sweden)

    P. Paradisi

    2012-02-01

    Full Text Available We investigate the time intermittency of turbulent transport associated with the birth-death of self-organized coherent structures in the atmospheric boundary layer. We apply a threshold analysis on the increments of turbulent fluctuations to extract sequences of rapid acceleration events, which is a marker of the transition between self-organized structures.

    The inter-event time distributions show a power-law decay ψ(τ ~ 1/τμ, with a strong dependence of the power-law index μ on the threshold.

    A recently developed method based on the application of event-driven walking rules to generate different diffusion processes is applied to the experimental event sequences. At variance with the power-law index μ estimated from the inter-event time distributions, the diffusion scaling H, defined by ⟨ X2⟩ ~ t2H, is independent from the threshold.

    From the analysis of the diffusion scaling it can also be inferred the presence of different kind of events, i.e. genuinely transition events and spurious events, which all contribute to the diffusion process but over different time scales. The great advantage of event-driven diffusion lies in the ability of separating different regimes of the scaling H. In fact, the greatest H, corresponding to the most anomalous diffusion process, emerges in the long time range, whereas the smallest H can be seen in the short time range if the time resolution of the data is sufficiently accurate.

    The estimated diffusion scaling is also robust under the change of the definition of turbulent fluctuations and, under the assumption of statistically independent events, it corresponds to a self-similar point process with a well-defined power-law index μD ~ 2.1, where D denotes that μD is derived from the diffusion scaling. We argue that

  3. Scaling laws of diffusion and time intermittency generated by coherent structures in atmospheric turbulence

    Science.gov (United States)

    Paradisi, P.; Cesari, R.; Donateo, A.; Contini, D.; Allegrini, P.

    2012-02-01

    We investigate the time intermittency of turbulent transport associated with the birth-death of self-organized coherent structures in the atmospheric boundary layer. We apply a threshold analysis on the increments of turbulent fluctuations to extract sequences of rapid acceleration events, which is a marker of the transition between self-organized structures. The inter-event time distributions show a power-law decay ψ(τ) ~ 1/τμ, with a strong dependence of the power-law index μ on the threshold. A recently developed method based on the application of event-driven walking rules to generate different diffusion processes is applied to the experimental event sequences. At variance with the power-law index μ estimated from the inter-event time distributions, the diffusion scaling H, defined by ⟨ X2⟩ ~ t2H, is independent from the threshold. From the analysis of the diffusion scaling it can also be inferred the presence of different kind of events, i.e. genuinely transition events and spurious events, which all contribute to the diffusion process but over different time scales. The great advantage of event-driven diffusion lies in the ability of separating different regimes of the scaling H. In fact, the greatest H, corresponding to the most anomalous diffusion process, emerges in the long time range, whereas the smallest H can be seen in the short time range if the time resolution of the data is sufficiently accurate. The estimated diffusion scaling is also robust under the change of the definition of turbulent fluctuations and, under the assumption of statistically independent events, it corresponds to a self-similar point process with a well-defined power-law index μD ~ 2.1, where D denotes that μD is derived from the diffusion scaling. We argue that this renewal point process can be associated to birth and death of coherent structures and to turbulent transport near the ground, where the contribution of turbulent coherent structures becomes dominant.

  4. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan

    2014-01-01

    Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating...... current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column......, synchronized with simultaneously recorded current and voltage waveforms. Dynamic details of the novel non-equilibrium discharge are revealed, which is characterized by a sinusoidal current waveform with amplitude stabilized at around 200 mA intermediate between thermal arc and glow discharge, shedding light...

  5. An atmospheric air gas-liquid diffuse discharge excited by bipolar nanosecond pulse in quartz container used for water sterilization

    Science.gov (United States)

    Wang, Sen; Yang, De-Zheng; Wang, Wen-Chun; Zhang, Shuai; Liu, Zhi-Jie; Tang, Kai; Song, Ying

    2013-12-01

    In this Letter, we report that the air gas-liquid diffuse discharge plasma excited by bipolar nanosecond pulse in quartz container with different bottom structures at atmospheric pressure. Optical diagnostic measurements show that bountiful chemically and biologically active species, which are beneficial for effective sterilization in some areas, are produced. Such diffuse plasmas are then used to treat drinking water containing the common microorganisms (Candida albicans and Escherichia coli). It is found that these plasmas can sterilize the microorganisms efficiently.

  6. Evaluation of the impact of atmospheric ozone and aerosols on the horizontal global/diffuse UV Index at Livorno (Italy)

    Science.gov (United States)

    Scaglione, Daniele; Giulietti, Danilo; Morelli, Marco

    2016-08-01

    A study was conducted at Livorno (Italy) to evaluate the impact of atmospheric aerosols and ozone on the solar UV radiation and its diffuse component at ground in clear sky conditions. Solar UV radiation has been quantified in terms of UV Index (UVI), following the ISO 17166:1999/CIE S007/E-1998 international standard. UVI has been calculated by exploiting the libRadtran radiative transfer modelling software as a function of both the Aerosols Optical Depth (AOD) and the Total Ozone Column (TOC). In particular AOD and TOC values have been remotely sensed by the Ozone Monitoring Instrument (OMI) on board the NASA's EOS (Earth Observing System) satellites constellation. An experimental confirmation was also obtained by exploiting global UVI ground-based measurements from the 26/9/14 to 12/8/15 and diffuse UVI ground-based measurements from the 17/5/15 to 12/8/15. For every considered value of Solar Zenith Angle (SZA) and atmospheric condition, estimates and measurements confirm that the diffuse component contributes for more than 50% on the global UV radiation. Therefore an exposure of human skin also to diffuse solar UV radiation can be potentially harmful for health and need to be accurately monitored, e.g. by exploiting innovative applications such as a mobile app with a satellite-based UV dosimeter that has been developed. Global and diffuse UVI variations due to the atmosphere are primarily caused by the TOC variations (typically cyclic): the maximum TOC variation detected by OMI in the area under study leads to a corresponding variation in global and diffuse UVI of about 50%. Aerosols in the area concerned, mainly of maritime nature, have instead weaker effects causing a maximum variation of the global and diffuse UVI respectively of 9% and 35% with an SZA of 20° and respectively of 13% and 10% with an SZA of 60°.

  7. Diffusion

    OpenAIRE

    Gierl, Heribert

    1995-01-01

    Diffusion. - In: Handwörterbuch des Marketing / hrsg. von Bruno Tietz ... - 2., völlig neu gestalt. Aufl. - Stuttgart : Schäffer-Poeschel, 1995. - S. 469-477. - (Enzyklopädie der Betriebswirtschaftslehre ; 4)

  8. Influence of air diffusion on the OH radicals and atomic O distribution in an atmospheric Ar (bio)plasma jet

    OpenAIRE

    Nikiforov, Anton; Li, L.; Britun, N; Snyders, R.; Vanraes, Patrick; Leys, Christophe

    2014-01-01

    Treatment of samples with plasmas in biomedical applications often occurs in ambient air. Admixing air into the discharge region may severely affect the formation and destruction of the generated oxidative species. Little is known about the effects of air diffusion on the spatial distribution of OH radicals and O atoms in the afterglow of atmospheric-pressure plasma jets. In our work, these effects are investigated by performing and comparing measurements in ambient air with measurements in a...

  9. Validation of Ammonia Diffusive and Active Samplers in a Controlled Atmosphere Test Facility Using Traceable Primary Standard Gas Mixtures

    Science.gov (United States)

    Martin, N. A.; Ferracci, V.; Cassidy, N.; Hook, J.; Battersby, R. M.; Tang, Y. S.; Stevens, A. C. M.; Jones, M. R.; Braban, C. F.; Gates, L.; Hangartner, M.; Sacco, P.; Pagani, D.; Hoffnagle, J.

    2016-12-01

    Intensive farming, the increased use of fertilizers, and certain industrial processes are believed to be responsible for increases in the amount fraction of ammonia (NH3) found in Europe. NH3 contributes to eutrophication and acidification of land and freshwater, leading to a loss of biodiversity, undesirable changes to the ecosystem, and to secondary particulate matter (PM) formation. Measurements of ambient ammonia over a wide geographical area, are principally carried out with low-cost diffusive samplers or by active sampling with denuders, with each technique delivering time-integrated values over the monitoring period. The goal of this work was to measure the NH3 diffusive sampling rates of five different designs of commercial diffusive samplers (FSM Radiello radial sampler, Gradko diffusion tube, Gradko DIFRAM-400, Passam ammonia sampler, and CEH ALPHA sampler), together with validation tests with a denuder sampler (CEH DELTA denuder). The would deliver validated improvements in the accuracy of ambient measurements of NH3 in the field through the establishment of metrological traceability using new stable ammonia Primary Standard Gas Mixtures (PSMs), developed by gravimetry at NPL. All devices were simultaneously exposed in a controlled atmosphere test facility (CATFAC) containing traceable amount fractions of ammonia applicable to a range of ambient monitoring conditions, with well-defined conditions of temperature, relative humidity and wind speed. Online continuous monitoring of the test atmospheres was carried out with a calibrated cavity ring-down spectrometer modified to account for cross interference by water. Exposed samplers were analysed by individual manufacturers for ammonium using traceable wet chemical techniques. The measured diffusive sampling rates were then applied to field measurements carried out at the Whim Bog experimental station in Scotland, where there is a facility in place for controlled releases of NH3 and also a background site.

  10. Diffusive transport and evaporation to the atmosphere from a NAPL source in the vadose zone

    DEFF Research Database (Denmark)

    Holtegaard, L.E.; Bjerre, T.; Christophersen, Mette

    2002-01-01

    To evaluate the risks concerned with the presence of volatile organic compounds in the unsaturated zone it is important to know how the compounds are transported in the soil. In this project the effective diffusion coefficient of 3-methylpentane, hexane, methyl-cyclopentane, iso-octane and methyl......-cyclo-hexane has been measured in-situ using a diffusive tracer test (DTT). Furthermore the flux from a NAPL source has been measured in flux chambers. From these results the effective diffusion coefficient has been calculated for CFC113, methyl-cyclo-pentane, benzene, iso-octane, and methyl...

  11. Isotopic composition of carbon in atmospheric air; use of a diffusion model at the water/atmosphere interface in Velenje Basin

    Directory of Open Access Journals (Sweden)

    Tjaša Kanduč

    2015-07-01

    Full Text Available CO2 concentrations (partial pressure of CO2, pCO2, and isotope compositions of carbon dioxide in air (δ13CCO2, temperature (T and relative humidity (H have been measured in the atmosphere in the Velenje Basin. Samples were collected monthly in the calendar year 2011 from 9 locations in the area where the largest thermal power plant in Slovenia with the greatest emission of CO2 to the atmosphere (around 4M t/year is located. Values of pCO2 ranged from 239 to 460 ppm with an average value of 294 ppm, which is below the average atmospheric CO2 pressure (360 ppm. δ13CCO2 ranged from -18.0 to -6.4 ‰, with an average value of -11.7 ‰. These values are similar to those measured in Wroclaw, Poland. We performed the comparison of δ13CCO2 values in atmospheric air with Wroclaw since researchers used similar approach to trace δ13CCO2 around anthropogenic sources. The isotopic composition of dissolved inorganic carbon (δ13CDIC in rivers and lakes from the Velenje basin changes seasonally from -13.5 to -7.1‰. The values of δ13CDIC indicate the occurrence of biogeochemical processes in the surface waters, with dissolution of carbonates and degradation of organic matter being the most important. A concentration and diffusion model was used to calculate the time of equilibration between dissolved inorganic carbon in natural sources (rivers and atmospheric CO2.

  12. Particle pair diffusion of inertial particles such as dust in the atmosphere

    Science.gov (United States)

    Malik, Nadeem; Tereda, Yoseph; Usama, Syed

    2016-04-01

    The transport of particles in turbulent flows is ubiquitous in industrial applications and also in nature such as in dust storms and pollens. The mathematical equations that describe the motion of individual inertial particles (i.e. particles with weight and friction) is not fully developed yet, although simplified descriptions in specific contexts have been proposed, such as by Maxey and Riley [1]. The relative motion of groups of particles is equally important to understand, and this can usually be related to the relative motion of two particles, or pair diffusion. In 1926 Richardson [2] proposed a pioneering theory of pair diffusion of fluid particles based upon the idea of a separation dependent pair diffusivity, K(l), where l is the distance between two particles. Richardson advanced the theory based on a locality hypothesis in which only energy in the turbulent scales similar to the pair separation l is effective in further increasing the pair separation, leading to the famous 4/3-scaling, K˜ l4/3. Recent studies in turbulent particle pair diffusion [3] has suggested that both local and non-local effects govern the pair diffusion process inside the inertial subrange in high Reynolds number turbulence containing generalised power-law energy spectra, E(k)˜ k-p with 1

  13. MODEL FOR UNSTEADY OF DIFFUSION –ADVECTION OF RADON IN SOIL – ATMOSPHERE

    Directory of Open Access Journals (Sweden)

    Parovik R.I.

    2010-04-01

    Full Text Available We consider a mathematical model for unsteady transport of radon from the constant coefficients in the soil – atmosphere. An explicit analytical solution for this model and built at different times of his profiles.

  14. Contribution of atmospheric nitrogen deposition to diffuse pollution in a typical hilly red soil catchment in southern China.

    Science.gov (United States)

    Shen, Jianlin; Liu, Jieyun; Li, Yong; Li, Yuyuan; Wang, Yi; Liu, Xuejun; Wu, Jinshui

    2014-09-01

    Atmospheric nitrogen (N) deposition is currently high and meanwhile diffuse N pollution is also serious in China. The correlation between N deposition and riverine N export and the contribution of N deposition to riverine N export were investigated in a typical hilly red soil catchment in southern China over a two-year period. N deposition was as high as 26.1 to 55.8kgN/(ha·yr) across different land uses in the studied catchment, while the riverine N exports ranged from 7.2 to 9.6kgN/(ha·yr) in the forest sub-catchment and 27.4 to 30.3kgN/(ha·yr) in the agricultural sub-catchment. The correlations between both wet N deposition and riverine N export and precipitation were highly positive, and so were the correlations between NH4(+)-N or NO3(-)-N wet deposition and riverine NH4(+)-N or NO3(-)-N exports except for NH4(+)-N in the agricultural sub-catchment, indicating that N deposition contributed to riverine N export. The monthly export coefficients of atmospheric deposited N from land to river in the forest sub-catchment (with a mean of 14%) presented a significant positive correlation with precipitation, while the monthly contributions of atmospheric deposition to riverine N export (with a mean of 18.7% in the agricultural sub-catchment and a mean of 21.0% in the whole catchment) were significantly and negatively correlated with precipitation. The relatively high contribution of N deposition to diffuse N pollution in the catchment suggests that efforts should be done to control anthropogenic reactive N emissions to the atmosphere in hilly red soil regions in southern China. Copyright © 2014. Published by Elsevier B.V.

  15. Diffusive summer methane flux from lakes to the atmosphere in the Alaskan arctic zone

    Science.gov (United States)

    Sasaki, Masafumi; Kim, Yong-Won; Uchida, Masao; Utsumi, Motoo

    2016-09-01

    Dissolved methane concentrations (DM) in thirty lakes along Dalton Highway were measured in the open water season in 2008 and in 2012 to estimate diffusive flux from lake surfaces and to verify the enhancive effect of thawing permafrost on flux in the Alaskan arctic zone. An inverse relationship between lake size and DM was obtained in lakes in the regions as was found for European boreal lakes. There was no evidence indicating an effect of thawing permafrost on DM in these lakes. DM in lakes in the taiga region, however, were higher than those in the tundra region. All lake images on a map larger than 0.001 km2 were analyzed, and the area and number distributions were obtained in order to calculate regional mass fluxes of diffusive methane. The total area of all lakes (339,733) in the Alaskan Arctic zone (northern region from 64.00°N) is 25.5 × 103 km2. Regional summer diffusive flux of methane from lakes in the Alaskan arctic zone was estimated to be 22 Gg CH4 yr-1. Average diffusive flux density (per lake area) was 0.86 g CH4 m-2 yr-1, which is similar to that in European boreal lakes.

  16. Soil atmosphere exchange of carbonyl sulfide (COS regulated by diffusivity depending on water-filled pore space

    Directory of Open Access Journals (Sweden)

    H. Van Diest

    2008-04-01

    Full Text Available The exchange of carbonyl sulfide (COS between soil and the atmosphere was investigated for three arable soils from Germany, China and Finland and one forest soil from Siberia for parameterization in the relation to ambient carbonyl sulfide (COS concentration, soil water content (WC and air temperature. All investigated soils acted as sinks for COS. A clear and distinct uptake optimum was found for the German, Chinese, Finnish and Siberian soils at 11.5%, 9%, 11.5%, and 9% soil WC, respectively, indicating that the soil WC acts as an important biological and physical parameter for characterizing the exchange of COS between soils and the atmosphere. Different optima of deposition velocities (Vd as observed for the Chinese, Finnish and Siberian boreal soil types in relation to their soil WC, aligned at 19% in relation to the water-filled pore space (WFPS, indicating the dominating role of gas diffusion. This interpretation was supported by the linear correlation between Vd and bulk density. We suggest that the uptake of COS depends on the diffusivity dominated by WFPS, a parameter depending on soil WC, soil structure and porosity of the soil.

  17. Validation of ammonia diffusive and active samplers in a controlled atmosphere test facility using traceable Primary Standard Gas Mixtures

    Science.gov (United States)

    Martin, Nicholas A.; Ferracci, Valerio; Cassidy, Nathan; Hook, Josh; Battersby, Ross M.; Tang, Yuk S.; Stevens, Amy C. M.; Jones, Matthew R.; Braban, Christine F.; Gates, Linda; Hangartner, Markus; Stoll, Jean-Marc; Sacco, Paolo; Pagani, Diego; Hoffnagle, John A.

    2017-04-01

    Intensive animal farming, the increased use of fertilizers, and certain industrial processes are believed to be responsible for the observed increases in the amount fraction of ammonia (NH3) found in Europe. NH3 contributes to eutrophication and acidification of land and freshwater, potentially leading to a loss of biodiversity and undesirable changes to the ecosystem. It also contributes to the formation of secondary particulate matter (PM) formation, which is associated with poor air quality and adverse health outcomes. Measurements of ambient ammonia are principally carried out with low-cost diffusive samplers or by active sampling with denuders, with each method delivering time-integrated values over the monitoring period. However, such techniques have not yet been extensively validated. The goal of this work was to provide improvements in the metrological traceability through the determination of NH3 diffusive sampling rates. Five different designs of commercial diffusive samplers (FSM Radiello radial sampler, Gradko diffusion tube, Gradko DIFRAM-400, Passam ammonia sampler, and CEH ALPHA sampler) were employed, together with a pumped denuder sampler (CEH DELTA denuder) for comparison. All devices were simultaneously exposed for either 28 days or 14 days (dependent on sampler type) in a controlled atmosphere test facility (CATFAC) containing traceable amount fractions of humidified ammonia using new stable ammonia Primary Standard Gas Mixtures developed by gravimetry at NPL, under a wide range of conditions that are relevant to ambient monitoring. Online continuous monitoring of the ammonia test atmospheres was carried out by extractive sampling, employing a calibrated cavity ring-down spectrometer, which had been modified to account for cross interference by water vapour. Each manufacturer extracted the captured ammonia on the exposed samplers in the form of ammonium (NH4+) using their own accredited traceable wet chemical techniques, and then reported data

  18. The effect of atmospheric sulfate reductions on diffuse radiation and photosynthesis in the eastern United States

    Science.gov (United States)

    Keppel-Aleks, G.; Washenfelder, R. A.

    2016-12-01

    Aerosol optical depth (AOD) has been shown to influence ecosystem carbon uptake by increasing the fraction of diffuse light, which increases photosynthesis over a greater fraction of the vegetated canopy. Several modeling studies have hypothesized that this effect may be a significant driver of the historical terrestrial carbon sink, and may therefore be an important climate feedback associated with changing air quality. In this study, we quantify the impact of anthropogenic aerosols on gross primary production (GPP) in the eastern United States. We focus on the eastern U.S. because 1) rapid decreases in SO2 emissions over the past two decades create an opportunity to examine the effects of reduced SO4 mass and aerosol optical depth; 2) SO2 emissions in the United States have been well quantified; 3) carbon fluxes within temperate ecosystems in the eastern United States have been well observed. We use accurate SO2 emission data for 1995-2013 in the Community Earth System Model (CESM) to determine trends in AOD, surface radiation, and photosynthesis. Between 1995 and 2013, U.S. SO2 emissions declined by over 70%, coinciding with observed AOD reductions of 3.0 ± 0.6% y-1 over the eastern U.S. In the Community Earth System Model (CESM), these trends cause diffuse light to decrease regionally by almost 0.6% y-1, leading to declines GPP of 0.07% y-1. Integrated over the analysis period and domain, this represents 0.5 PgC of omitted GPP. A separate upscaling calculation that used published relationships between GPP and diffuse light agreed with the CESM model results within 20%. The agreement between simulated and data-constrained upscaling results strongly suggests that anthropogenic sulfate trends have a small impact on carbon uptake in temperate forests due to scattered light.

  19. Investigation of Boron Thermal Diffusion from Atmospheric Pressure Chemical Vapor Deposited Boron Silicate Glass for N-Type Solar Cell Process Application

    OpenAIRE

    Ikuo Kurachi; Kentaro Yoshioka

    2016-01-01

    An atmospheric pressure chemical vapor deposition (AP-CVD) system has been newly developed for boron silicate glass (BSG) film deposition dedicating to solar cell manufacturing. Using the system, thermal boron diffusion from the BSG film is investigated and confirmed in terms of process stability for surface property before BSG deposition and BSG thickness. No degradation in carrier lifetime is also confirmed. A boron diffusion simulator has been newly developed and demonstrated for optimizat...

  20. The influence of clouds and diffuse radiation on ecosystem-atmosphere CO2 and CO18O exhanges

    Energy Technology Data Exchange (ETDEWEB)

    Still, C.J.; Riley, W.J.; Biraud, S.C.; Noone, D.C.; Buenning, N.H.; Randerson, J.T.; Torn, M.S.; Welker, J.; White, J.W.C.; Vachon, R.; Farquhar, G.D.; Berry, J.A.

    2009-05-01

    This study evaluates the potential impact of clouds on ecosystem CO{sub 2} and CO{sub 2} isotope fluxes ('isofluxes') in two contrasting ecosystems (a broadleaf deciduous forest and a C{sub 4} grassland), in a region for which cloud cover, meteorological, and isotope data are available for driving the isotope-enabled land surface model, ISOLSM. Our model results indicate a large impact of clouds on ecosystem CO{sub 2} fluxes and isofluxes. Despite lower irradiance on partly cloudy and cloudy days, predicted forest canopy photosynthesis was substantially higher than on clear, sunny days, and the highest carbon uptake was achieved on the cloudiest day. This effect was driven by a large increase in light-limited shade leaf photosynthesis following an increase in the diffuse fraction of irradiance. Photosynthetic isofluxes, by contrast, were largest on partly cloudy days, as leaf water isotopic composition was only slightly depleted and photosynthesis was enhanced, as compared to adjacent clear sky days. On the cloudiest day, the forest exhibited intermediate isofluxes: although photosynthesis was highest on this day, leaf-to-atmosphere isofluxes were reduced from a feedback of transpiration on canopy relative humidity and leaf water. Photosynthesis and isofluxes were both reduced in the C{sub 4} grass canopy with increasing cloud cover and diffuse fraction as a result of near-constant light limitation of photosynthesis. These results suggest that some of the unexplained variation in global mean {delta}{sup 18}O of CO{sub 2} may be driven by large-scale changes in clouds and aerosols and their impacts on diffuse radiation, photosynthesis, and relative humidity.

  1. GPU-based parallel computing in real-time modeling of atmospheric transport and diffusion of radioactive material

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Marcelo C. dos; Pereira, Claudio M.N.A.; Schirru, Roberto; Pinheiro, André, E-mail: jovitamarcelo@gmail.com, E-mail: cmnap@ien.gov.br, E-mail: schirru@lmp.ufrj.br, E-mail: apinheiro99@gmail.com [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-07-01

    Atmospheric radionuclide dispersion systems (ARDS) are essential mechanisms to predict the consequences of unexpected radioactive releases from nuclear power plants. Considering, that during an eventuality of an accident with a radioactive material release, an accurate forecast is vital to guide the evacuation plan of the possible affected areas. However, in order to predict the dispersion of the radioactive material and its impact on the environment, the model must process information about source term (radioactive materials released, activities and location), weather condition (wind, humidity and precipitation) and geographical characteristics (topography). Furthermore, ARDS is basically composed of 4 main modules: Source Term, Wind Field, Plume Dispersion and Doses Calculations. The Wind Field and Plume Dispersion modules are the ones that require a high computational performance to achieve accurate results within an acceptable time. Taking this into account, this work focuses on the development of a GPU-based parallel Plume Dispersion module, focusing on the radionuclide transport and diffusion calculations, which use a given wind field and a released source term as parameters. The program is being developed using the C ++ programming language, allied with CUDA libraries. In comparative case study between a parallel and sequential version of the slower function of the Plume Dispersion module, a speedup of 11.63 times could be observed. (author)

  2. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    Science.gov (United States)

    Li, Lee; Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-01

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  3. Multiple tree-ring isotopes as environmental indicators of diffuse atmospheric pollution in a peri-urban area

    Science.gov (United States)

    Doucet, A.; Savard, M. M.; Bégin, C.; Ouarda, T. B.; Marion, J.

    2010-12-01

    The combined analyses of tree-ring δ13C, δ18O, δ15N, 206Pb/207Pb, 206Pb/204Pb and 206Pb/208Pb isotope ratios of three red spruce specimens from the Tantaré ecological reserve located 40 km northwest of Québec City (Canada) were studied with the aim of reconstructing environmental conditions and unravel past air-quality changes of the 1880-2007 period. To separate the tree-ring δ18O and δ13C patterns induced by natural conditions from those generated by anthropogenic perturbations, a linear regression was applied between the most explicative meteorological parameters and the isotopic series for the period of low pollution (1880 to 1909). The model equations were then applied to the most recent part of the series (1910-2007) to verify if climatic conditions have remained the main driver of the tree-ring isotopic variations. The good fit between the modeled and measured δ18O series for the entire studied period suggests that the assimilation of oxygen by red spruce trees is not significantly affected by pollution stress near Québec City. However, the deviation between the measured and modeled δ13C values for the 1944-2007 period indicates that diffuse pollution affected carbon assimilation by the investigated trees. To independently validate if atmospheric pollution could have generated the deviation between the measured and the estimated δ13C values, a linear regression was applied between the portion of the residual δ13C values and atmospheric pollution (Canadian fossil fuel proxy from 1958 to 2000). The nice fit between the modeled δ13C values from the combination of the two regression analyses based on climate and emission proxy strongly supports the hypothesis that there is a natural and an anthropogenic portion in the δ13C variations of the studied specimens. The short-term variations of the red spruce δ15N series are correlated with the instrumentally measured amounts of provincial N emissions for the 1990 to 2006 period (longest measurements

  4. Simulation of the evolution of particle size distributions containing coarse particulate in the atmospheric surface layer with a simple convection-diffusion-sedimentation model

    Science.gov (United States)

    Hubbard, J. A.; Haglund, J. S.; Ezekoye, O. A.

    The Fugitive Dust Model (FDM) and Industrial Source Complex (ISC), widely used coarse particulate dispersion models, have been shown inaccurate due to the neglect of vertical variations in atmospheric wind speed and turbulent diffusivity (Vesovic et al., 2001), omission of the gravitational advection velocity, and an underestimation of the ground deposition velocity (Kim and Larson, 2001). A simple, transient two-dimensional convection-diffusion-sedimentation model is proposed to simulate the evolution in particle size distribution of an aerosol 'puff' containing coarse particulate in the atmospheric surface layer. Monin-Okhubov similarity theory, accompanied by empirical observations made by Businger et al. (1971), is adopted to characterize the surface layer wind speed and turbulent diffusivity profiles over a wide range of atmospheric conditions. A first order analysis of the crossing trajectories effect suggests simulation data presented here are not significantly affected by particle inertia. The model is validated against Suffield experimental data in which coarse particulate deposition was measured out to a distance of 800 m from the source (Walker, 1965). Good agreement is found for the decay in ground deposits with distance from the source for stable atmospheres. Deposition data was also simulated for unstable atmospheric stratification and the current model was determined to modestly underestimate the peak concentration with increasing accuracy further downwind of the release. The current model's effective deposition velocity was compared to that suggested by Kim et al. (2000) and shows improvement with respect to FDM. Lastly, the model was used to simulate the dispersion of nine lognormal aerosol puffs in the lowest 50 m of the atmospheric surface layer for four classes of atmospheric stability. The simulated mass median aerodynamic diameters (MMAD) at multiple downwind sampling locations were calculated and plotted with distance from the source. The

  5. The effect of atmospheric sulfate reductions on diffuse radiation and photosynthesis in the United States during 1995–2013

    National Research Council Canada - National Science Library

    Keppel‐Aleks, G; Washenfelder, R. A

    2016-01-01

    Aerosol optical depth (AOD) has been shown to influence the global carbon sink by increasing the fraction of diffuse light, which increases photosynthesis over a greater fraction of the vegetated canopy...

  6. Dynamics of the atmospheric pressure diffuse dielectric barrier discharge between cylindrical electrodes in roll-to-roll PECVD reactor

    Science.gov (United States)

    Starostin, Sergey A.; Welzel, Stefan; Liu, Yaoge; van der Velden-Schuermans, Bernadette; Bouwstra, Jan B.; van de Sanden, Mauritius C. M.; de Vries, Hindrik W.

    2015-07-01

    The high current diffuse dielectric barrier discharge (DBD) was operated in a bi-axial cylindrical electrode configuration using nitrogen, oxygen and argon gas flow with the addition of tetraethyl orthosilicate as precursor for silica-like film deposition. The behaviour of the transient plasma was visualized by means of fast imaging from two orthogonal directions. The formation and propagation (~3 × 104 m s-1) of lateral ionization waves with the transverse light emission structure similar to the low pressure glow discharge was observed at time scales below 1 µs. Despite plasma non-uniformity at nanosecond time scale the deposition process on the web-rolled polymer results in smooth well adherent films with good film uniformity and excellent gas diffusion barrier properties. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  7. The effect of atmospheric sulfate reductions on diffuse radiation and photosynthesis in the United States during 1995-2013

    Science.gov (United States)

    Keppel-Aleks, G.; Washenfelder, R. A.

    2016-09-01

    Aerosol optical depth (AOD) has been shown to influence the global carbon sink by increasing the fraction of diffuse light, which increases photosynthesis over a greater fraction of the vegetated canopy. Between 1995 and 2013, U.S. SO2 emissions declined by over 70%, coinciding with observed AOD reductions of 3.0 ± 0.6% yr-1 over the eastern U.S. In the Community Earth System Model (CESM), these trends cause diffuse light to decrease regionally by almost 0.6% yr-1, leading to declines in gross primary production (GPP) of 0.07% yr-1. Integrated over the analysis period and domain, this represents 0.5 Pg C of omitted GPP. A separate upscaling calculation that used published relationships between GPP and diffuse light agreed with the CESM model results within 20%. The agreement between simulated and data-constrained upscaling results strongly suggests that anthropogenic sulfate trends have a small impact on carbon uptake in temperate forests due to scattered light.

  8. Atmospheric air diffuse array-needles dielectric barrier discharge excited by positive, negative, and bipolar nanosecond pulses in large electrode gap

    Science.gov (United States)

    Zhang, Li; Yang, De-zheng; Wang, Wen-chun; Liu, Zhi-jie; Wang, Sen; Jiang, Peng-chao; Zhang, Shuai

    2014-09-01

    In this paper, positive, negative, and bipolar nanosecond pulses are employed to generate stable and diffuse discharge plasma using array needles-plate electrode configuration at atmospheric pressure. A comparison study of discharge images, electrical characteristics, optical emission spectra, and plasma vibrational temperature and rotational temperatures in three pulsed polarity discharges is carried on under different discharge conditions. It is found that bipolar pulse is beneficial to the excitation of diffuse dielectric barrier discharge, which can generate a room temperature plasma with more homogeneous and higher discharge intensity compared with unipolar discharges. Under the condition of 6 mm electrode gap distance, 26 kV pulse peak voltage, and 150 Hz pulse repetition rate, the emission intensity of N2 (C3Πu → B3Πg) of the bipolar pulsed discharge is 4 times higher than the unipolar discharge (both positive and negative), while the plasma gas temperature is kept at 300 K, which is about 10-20 K lower than the unipolar discharge plasma.

  9. Effect of nitrogen addition to ozone generation characteristics by diffuse and filamentary dielectric barrier discharges at atmospheric pressure

    Science.gov (United States)

    Osawa, Naoki; Tsuji, Takafumi; Ogiso, Ryota; Yoshioka, Yoshio

    2017-05-01

    Ozone is widely used for gas treatment, advanced oxidation processes, microorganisms inactivation, etc. In this research, we investigated the effect of nitrogen addition to ozone generation characteristics by atmospheric pressure Townsend discharge (APTD) type and filamentary dielectric barrier discharge (DBD) type ozone generators. The result showed that the ozone generated by the filamentary DBD increases rapidly with the increase of O2 content, and is higher than that by the APTD. On the other hand, it is interesting that the ozone generated by the APTD gradually decreases with the increase of O2 content. In order to clarify why the characteristics of ozone generation by the two kinds of discharge modes showed different dependency to the N2 content, we analyzed the exhaust gas composition using FTIR spectroscopy and calculated the rate coefficients using BOLSIG+ code. As a result, we found that although O2 content decreased with increasing N2 content, additional O atoms produced by excited N2 molecules contribute to ozone generation in case of APTD. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  10. Comparative measurements of ambient atmospheric concentrations of ice nucleating particles using multiple immersion freezing methods and a continuous flow diffusion chamber

    Science.gov (United States)

    DeMott, Paul J.; Hill, Thomas C. J.; Petters, Markus D.; Bertram, Allan K.; Tobo, Yutaka; Mason, Ryan H.; Suski, Kaitlyn J.; McCluskey, Christina S.; Levin, Ezra J. T.; Schill, Gregory P.; Boose, Yvonne; Rauker, Anne Marie; Miller, Anna J.; Zaragoza, Jake; Rocci, Katherine; Rothfuss, Nicholas E.; Taylor, Hans P.; Hader, John D.; Chou, Cedric; Huffman, J. Alex; Pöschl, Ulrich; Prenni, Anthony J.; Kreidenweis, Sonia M.

    2017-09-01

    A number of new measurement methods for ice nucleating particles (INPs) have been introduced in recent years, and it is important to address how these methods compare. Laboratory comparisons of instruments sampling major INP types are common, but few comparisons have occurred for ambient aerosol measurements exploring the utility, consistency and complementarity of different methods to cover the large dynamic range of INP concentrations that exists in the atmosphere. In this study, we assess the comparability of four offline immersion freezing measurement methods (Colorado State University ice spectrometer, IS; North Carolina State University cold stage, CS; National Institute for Polar Research Cryogenic Refrigerator Applied to Freezing Test, CRAFT; University of British Columbia micro-orifice uniform deposit impactor-droplet freezing technique, MOUDI-DFT) and an online method (continuous flow diffusion chamber, CFDC) used in a manner deemed to promote/maximize immersion freezing, for the detection of INPs in ambient aerosols at different locations and in different sampling scenarios. We also investigated the comparability of different aerosol collection methods used with offline immersion freezing instruments. Excellent agreement between all methods could be obtained for several cases of co-sampling with perfect temporal overlap. Even for sampling periods that were not fully equivalent, the deviations between atmospheric INP number concentrations measured with different methods were mostly less than 1 order of magnitude. In some cases, however, the deviations were larger and not explicable without sampling and measurement artifacts. Overall, the immersion freezing methods seem to effectively capture INPs that activate as single particles in the modestly supercooled temperature regime (> -20 °C), although more comparisons are needed in this temperature regime that is difficult to access with online methods. Relative to the CFDC method, three immersion freezing

  11. Transitions of an atmospheric-pressure diffuse dielectric barrier discharge in helium for frequencies increasing from kHz to MHz

    Science.gov (United States)

    Boisvert, J.-S.; Margot, J.; Massines, F.

    2017-03-01

    Recent studies have shown that tuning a dielectric barrier discharge (DBD) in the medium-frequency range (MF: from 0.3 to 3 MHz) allows a low-power and a high-power mode to be sustained. In the present article the effect of the driving frequency on a DBD is studied from the low-frequency range (LF: from 30 to 300 kHz) to the high-frequency range (HF: from 3 to 30 MHz). This is achieved using fast imaging together with electrical and spectroscopic diagnostics. At every frequency, a diffuse discharge is sustained. It is observed that at 25 kHz the discharge is an atmospheric-pressure glow discharge (APGD) while at 15 MHz the discharge behaves as a capacitive discharge in the RF-α mode. The usual LF APGD behavior is observed up to 100 kHz. Above 200 kHz, the positive column remains during the whole cycle so that the hybrid mode is sustained. At 5 MHz, the hybrid mode finally turns into the RF-α mode. In addition to the LF APGD, RF-α and hybrid modes obtained when the applied voltage is significantly higher than the ignition value, two other modes can be reached at low applied voltage. A Townsend-like mode is achieved from 50 to 100 kHz while in the medium-frequency range, the Ω mode is sustained. Moreover, only from 1.0 to 2.7 MHz there is a large hysteresis occurring when the discharge transits back and forth from the Ω to the hybrid mode. It is also found that when the frequency increases from 25 kHz to 15 MHz, the rms current increases over two orders of magnitudes while the rms voltage decreases by about 60%. The gas temperature estimated from N2 rotational spectra is always close to room temperature but the discharge is more energy efficient (in the HF range) as a lower fraction of energy turns into gas heating.

  12. Generation of large-scale, barrier-free diffuse plasmas in air at atmospheric pressure using array wire electrodes and nanosecond high-voltage pulses

    Science.gov (United States)

    Teng, Yun; Li, Lee; Liu, Yun-Long; Liu, Lun; Liu, Minghai

    2014-10-01

    This paper introduces a method to generate large-scale diffuse plasmas by using a repetition nanosecond pulse generator and a parallel array wire-electrode configuration. We investigated barrier-free diffuse plasmas produced in the open air in parallel and cross-parallel array line-line electrode configurations. We found that, when the distance between the wire-electrode pair is small, the discharges were almost extinguished. Also, glow-like diffuse plasmas with little discharge weakening were obtained in an appropriate range of line-line distances and with a cathode-grounding cross-electrode configuration. As an example, we produced a large-scale, stable diffuse plasma with volumes as large as 18 × 15 × 15 cm3, and this discharge region can be further expanded. Additionally, using optical and electrical measurements, we showed that the electron temperature was higher than the gas temperature, which was almost the same as room temperature. Also, an array of electrode configuration with more wire electrodes had helped to prevent the transition from diffuse discharge to arc discharge. Comparing the current waveforms of configurations with 1 cell and 9 cells, we found that adding cells significantly increased the conduction current and the electrical energy delivered in the electrode gaps.

  13. In-depth diffusion of oxygen into LDPE exposed to an Ar--O2 atmospheric post-discharge: a complementary approach between AR-XPS and Tof-SIMS techniques

    CERN Document Server

    Rich, Sami Abou; Dufour, Thierry; Wehbe, Nimer; Houssiau, Laurent; Reniers, François

    2016-01-01

    The in-depth oxygen diffusion into a low density polyethylene film is performed in the post-discharge of an atmospheric plasma torch, supplied in argon as carrier gas and with or without oxygen as reactive gas. The chemical and structural properties of the polymer surface and bulk are studied in terms of plasma parameters (treatment time, power, and reactive gas flow rate). A good correlation between XPS and Fourier transform infrared spectroscopy analyses is demonstrated. The penetration depth of oxygen into the bulk of the polymer is investigated by angle resolved-XPS and time-of-flight SIMS. It is shown that, depending on the plasma conditions, oxygen could penetrate up to 20--40 nm into the low density polyethylene during the atmospheric plasma treatment.

  14. Consequences of Windscale accident (October 1957) and study of the validity of the Sutton's mathematical model of atmospheric diffusion (1960); Etude des consequences de l'accident de Windscale (Octobre 1957) et de la validite du modele mathematique de diffusion atmospherique de Sutton (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Doury, A. [Commissariat a l' Energie Atomique (S.C.R.G.R.) Saclay (France).Centre d' Etudes Nucleaires; Martin, J.J. [Electricite de France (EDF)(S.L.P.R.), 37 - Chinon (France)

    1960-07-01

    The reactor accident that happens at the number 1 pile of Windscale in 1957 was followed by a discharge of radioactive products into the atmosphere from the 1.X.1957 at 4.30 PM to the 12.X.1957 at 3.10 PM. On october the 11{sup th} it was possible to say that there was no more risk either of external irradiation or inhalation. But in adopting a M.A.C. of 0,1 {mu}curie of iodine 131 per litre of milk, the Authority had to control the milk delivery till november 23{sup rd} on a 500 km{sup 2} area. On the other hand, this exceptional accident permit to verify that Sutton's atmospheric diffusion model could give an easy means to foresee, with a sufficient approximation, the consequences of a dispersion of radioactive products into the atmosphere. (author) [French] L'accident survenu a la pile numero 1 de Windscale en 1957 a entraine l'emission de matieres radioactives dans l'atmosphere du 10 octobre a 16h30 au 12 octobre a 15h10. Le 11 octobre, on pouvait dire qu'il n'y avait plus de risque d'irradiation externe ni de danger par inhalation. Mais en adoptant une C.M.A. de 0,1 {mu}curie d'iode 131 par litre de lait, les autorites ont du reglementer la consommation du lait jusqu'au 23 novembre sur une etendue d'environ 500 km{sup 2}. D'autre part, cet accident exceptionnel a permis de verifier que le modele de diffusion atmospherique de Sutton pouvait fournir un moyen commode de prevoir avec une approximation suffisante les consequences d'une dispersion de produits radioactifs dans l'atmosphere. (auteur)

  15. Atomic diffusion in stars

    CERN Document Server

    Michaud, Georges; Richer, Jacques

    2015-01-01

    This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling.  In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importanc...

  16. Effects of elevated atmospheric CO2 concentration and temperature on the soil profile methane distribution and diffusion in rice-wheat rotation system.

    Science.gov (United States)

    Yang, Bo; Chen, Zhaozhi; Zhang, Man; Zhang, Heng; Zhang, Xuhui; Pan, Genxing; Zou, Jianwen; Xiong, Zhengqin

    2015-06-01

    The aim of this experiment was to determine the impacts of climate change on soil profile concentrations and diffusion effluxes of methane in a rice-wheat annual rotation ecosystem in Southeastern China. We initiated a field experiment with four treatments: ambient conditions (CKs), CO2 concentration elevated to ~500 μmol/mol (FACE), temperature elevated by ca. 2°C (T) and combined elevation of CO2 concentration and temperature (FACE+T). A multilevel sampling probe was designed to collect the soil gas at four different depths, namely, 7 cm, 15 cm, 30 cm and 50 cm. Methane concentrations were higher during the rice season and decreased with depth, while lower during the wheat season and increased with depth. Compared to CK, mean methane concentration was increased by 42%, 57% and 71% under the FACE, FACE+T and T treatments, respectively, at the 7 cm depth during the rice season (pCO2 concentration and temperature could significantly increase soil profile methane concentrations and their effluxes from a rice-wheat field annual rotation ecosystem (p<0.05). Copyright © 2015. Published by Elsevier B.V.

  17. Accurate gamma and MeV-electron track reconstruction with an ultra-low diffusion Xenon/TMA TPC at 10 atmospheres

    CERN Document Server

    González-Díaz, Diego; Borges, F.I.G.; Camargo, M.; Cárcel, S.; Cebrián, S.; Cervera, A.; Conde, C.A.N.; Dafni, T.; Díaz, J.; Esteve, R.; Fernandes, L.M.P.; Ferrario, P.; Ferreira, A.L.; Freitas, E.D.C.; Gehman, V.M.; Goldschmidt, A.; Gómez-Cadenas, J.J.; Gutiérrez, R.M.; Hauptman, J.; Hernando Morata, J.A.; Herrera, D.C.; Irastorza, I.G.; Labarga, L.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Losada, M.; Luzón, G.; Marí, A.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Miller, T.; Monrabal, F.; Monserrate, M.; Monteiro, C.M.B.; Mora, F.J.; Moutinho, L.M.; Muñoz Vidal, J.; Nebot-Guinot, M.; Nygren, D.; Oliveira, C.A.B.; Pérez, J.; Pérez Aparicio, J.L.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Santos, F.P.; dos Santos, J.M.F.; Serra, L.; Shuman, D.; Simón, A.; Sofka, C.; Sorel, M.; Toledo, J.F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J.F.C.A.; Villar, J.A.; Webb, R.; White, J.T.; Yahlali, N.; Azevedo, C.; Aznar, F.; Calvet, D.; Castel, J.; Ferrer-Ribas, E.; García, J.A.; Giomataris, I.; Gómez, H.; Iguaz, F.J.; Lagraba, A.; Le Coguie, A.; Mols, J.P.; Şahin, Ö.; Rodríguez, A.; Ruiz-Choliz, E.; Segui, L.; Tomás, A.; Veenhof, R.

    2015-01-01

    We report the performance of a 10 atm Xenon/trimethylamine time projection chamber (TPC) for the detection of X-rays (30 keV) and gamma-rays (0.511-1.275 MeV) in conjunction with the accurate tracking of the associated electrons. When operated at such a high pressure and in 1%-admixtures, trimethylamine (TMA) endows Xenon with an extremely low electron diffusion (1.3 +-0.13 mm-sigma (longitudinal), 0.8 +-0.15 mm-sigma (transverse) along 1 m drift) besides forming a convenient Penning-Fluorescent mixture. The TPC, that houses 1.1 kg of gas in its active volume, operated continuously for 100 live-days in charge amplification mode. The readout was performed through the recently introduced microbulk Micromegas technology and the AFTER chip, providing a 3D voxelization of 8mm x 8mm x 1.2mm for approximately 10 cm/MeV-long electron tracks. This work was developed as part of the R&D program of the NEXT collaboration for future detector upgrades in the search of the 0bbnu decay in 136Xe, specifically those based ...

  18. Development of a coupled diffusion denuder system combined with gas chromatography/mass spectrometry for the separation and quantification of molecular iodine and the activated iodine compounds iodine monochloride and hypoiodous acid in the marine atmosphere.

    Science.gov (United States)

    Huang, Ru-Jin; Hoffmann, Thorsten

    2009-03-01

    This study concerns the development of a coupled diffusion denuder system capable of separating and quantifying gaseous molecular iodine (I(2)) and two other highly reactive iodine species, ICl and HOI, which are collectively named activated iodine compounds (AIC). Both I(2) and AIC are key species in the atmospheric chemistry of iodine. 1,3,5-Trimethoxybenzene (1,3,5-TMB)- and alpha-cyclodextrin/(129)I(-) (alpha-CD/(129)I(-))-coated denuders proved to be suitable for the collection of gaseous AIC and I(2), respectively. The experimental collection efficiencies for AIC (tested as ICl) and I(2) agreed well with the theoretical values for gas flow rates in the range between 300 and 1800 mL min(-1). The coupled denuder system (1,3,5-TMB-coated denuder as front-denuder coupled upstream of an alpha-CD/(129)I(-)-coated denuder) was applied successfully to separate test gas mixtures of ICl and I(2) at various mixing ratios in the laboratory. The operation of both denuder systems was demonstrated to be independent of relative humidity (0-100%) and storage period (at least 2 weeks prior to and after sampling). Detection limits were achieved at sub-parts-per-trillion-by-volume (sub-pptv) level. The presented method provides a reliable and practical approach for the speciation of gaseous iodine compounds. In addition, we report for the first time ambient air measurements of AIC mixing ratios, carried out at the atmospheric research station in Mace Head, Ireland. A maximum concentration of AIC of 30.2 pptv was observed for nighttime measurements and 6.0 pptv for daytime measurements. A similar diurnal pattern was found for I(2) with an average concentration level of 23.2 pptv during daytime and 85.1 pptv during nighttime, indicating a strong correlation with AIC.

  19. Analysis of aldehydes in beer by gas-diffusion microextraction: characterization by high-performance liquid chromatography-diode-array detection-atmospheric pressure chemical ionization-mass spectrometry.

    Science.gov (United States)

    Gonçalves, Luís Moreira; Magalhães, Paulo Jorge; Valente, Inês Maria; Pacheco, João Grosso; Dostálek, Pavel; Sýkora, David; Rodrigues, José António; Barros, Aquiles Araújo

    2010-06-11

    In this work, a recently developed extraction technique for sample preparation aiming the analysis of volatile and semi-volatile compounds named gas-diffusion microextraction (GDME) is applied in the chromatographic analysis of aldehydes in beer. Aldehydes-namely acetaldehyde (AA), methylpropanal (MA) and furfural (FA)-were simultaneously extracted and derivatized with 2,4-dinitrophenylhydrazine (DNPH), then the derivatives were separated and analyzed by high-performance liquid chromatography with spectrophotometric detection (HPLC-UV). The identity of the eluted compounds was confirmed by high-performance liquid chromatography-atmospheric pressure chemical ionization-mass-spectrometry detection in the negative ion mode (HPLC-APCI-MS). The developed methodology showed good repeatability (ca. 5%) and linearity as well as good limits of detection (AA-12.3, FA-1.5 and MA 5.4microgL(-1)) and quantification (AA-41, FA-4.9 and MA 18microgL(-1)); it also appears to be competitive in terms of speed and cost of analysis. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Staging atmospheres

    DEFF Research Database (Denmark)

    Bille, Mikkel; Bjerregaard, Peter; Sørensen, Tim Flohr

    2015-01-01

    The article introduces the special issue on staging atmospheres by surveying the philosophical, political and anthropological literature on atmosphere, and explores the relationship between atmosphere, material culture, subjectivity and affect. Atmosphere seems to occupy one of the classic...

  1. Cesium diffusion in graphite

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R.B. III; Davis, W. Jr.; Sutton, A.L. Jr.

    1980-05-01

    Experiments on diffusion of /sup 137/Cs in five types of graphite were performed. The document provides a completion of the report that was started and includes a presentation of all of the diffusion data, previously unpublished. Except for data on mass transfer of /sup 137/Cs in the Hawker-Siddeley graphite, analyses of experimental results were initiated but not completed. The mass transfer process of cesium in HS-1-1 graphite at 600 to 1000/sup 0/C in a helium atmosphere is essentially pure diffusion wherein values of (E/epsilon) and ..delta..E of the equation D/epsilon = (D/epsilon)/sub 0/ exp (-..delta..E/RT) are about 4 x 10/sup -2/ cm/sup 2//s and 30 kcal/mole, respectively.

  2. Diffuse scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kostorz, G. [Eidgenoessische Technische Hochschule, Angewandte Physik, Zurich (Switzerland)

    1996-12-31

    While Bragg scattering is characteristic for the average structure of crystals, static local deviations from the average lattice lead to diffuse elastic scattering around and between Bragg peaks. This scattering thus contains information on the occupation of lattice sites by different atomic species and on static local displacements, even in a macroscopically homogeneous crystalline sample. The various diffuse scattering effects, including those around the incident beam (small-angle scattering), are introduced and illustrated by typical results obtained for some Ni alloys. (author) 7 figs., 41 refs.

  3. Relativistic diffusion.

    Science.gov (United States)

    Haba, Z

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  4. Diffusion of Ca and Mg in Calcite

    Energy Technology Data Exchange (ETDEWEB)

    Cygan, R.T.; Fisler, D.K.

    1999-02-10

    The self-diffusion of Ca and the tracer diffusion of Mg in calcite have been experimentally measured using isotopic tracers of {sup 25}Mg and {sup 44}Ca. Natural single crystals of calcite were coated with a thermally-sputtered oxide thin film and then annealed in a CO{sub 2} gas at one atmosphere total pressure and temperatures from 550 to 800 C. Diffusion coefficient values were derived from the depth profiles obtained by ion microprobe analysis. The resultant activation energies for Mg tracer diffusion and Ca self-diffusion are respectively: E{sub a}(Mg) = 284 {+-} 74 kJ/mol and E{sub a}(Ca) = 271 {+-} 80 kJ/mol. For the temperature ranges in these experiments, the diffusion of Mg is faster than Ca. The results are generally consistent in magnitude with divalent cation diffusion rates obtained in previous studies and provide a means of interpreting the thermal histories of carbonate minerals, the mechanism of dolomitization, and other diffusion-controlled processes. The results indicate that cation diffusion in calcite is relatively slow and cations are the rate-limiting diffusing species for the deformation of calcite and carbonate rocks. Application of the calcite-dolomite geothermometer to metamorphic assemblages will be constrained by cation diffusion and cooling rates. The direct measurement of Mg tracer diffusion in calcite indicates that dolomitization is unlikely to be accomplished by Mg diffusion in the solid state but by a recrystallization process.

  5. A Stochastic Diffusion Model of Climate Change

    CERN Document Server

    Pelletier, J D

    1995-01-01

    We present a model for variations in atmospheric temperature from time scales of one day to one million years based on a stochastic diffusion (random walk) model of the turbulent transport of heat energy vertically in a coupled atmosphere-ocean model. The predictions of the model are supported by station records and paleoclimatic proxy data of temperature variations.

  6. Phenomenology of atmospheric neutrinos

    Directory of Open Access Journals (Sweden)

    Fedynitch Anatoli

    2016-01-01

    Full Text Available The detection of astrophysical neutrinos, certainly a break-through result, introduced new experimental challenges and fundamental questions about acceleration mechanisms of cosmic rays. On one hand IceCube succeeded in finding an unambiguous proof for the existence of a diffuse astrophysical neutrino flux, on the other hand the precise determination of its spectral index and normalization requires a better knowledge about the atmospheric background at hundreds of TeV and PeV energies. Atmospheric neutrinos in this energy range originate mostly from decays of heavy-flavor mesons, which production in the phase space relevant for prompt leptons is uncertain. Current accelerator-based experiments are limited by detector acceptance and not so much by the collision energy. This paper recaps phenomenological aspects of atmospheric leptons and calculation methods, linking recent progress in flux predictions with particle physics at colliders, in particular the Large Hadron Collider.

  7. Atmosphere and Ambient Space

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Atmosphere and Ambient Space This paper explores the relation between atmosphere and ambient space. Atmosphere and ambient space share many salient properties. They are both ontologically indeterminate, constantly varying and formally diffuse and they are both experienced as a subtle, non......-signifying property of a given space. But from a certain point of view, the two concepts also designate quite dissimilar experiences of space. To be ’ambient’ means to surround. Accordingly, ambient space is that space, which surrounds something or somebody. (Gibson 1987: 65) Since space is essentially...... of a surrounding character, all space can thus be described as having a fundamentally ambient character. So what precisely is an ambient space, then? As I will argue in my presentation, ambient space is a sensory effect of spatiality when a space is experienced as being particularly surrounding: a ‘space effect...

  8. Atmospheric Dispositifs

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2015-01-01

    Through the coupling of dispositif with atmosphere this paper engages in a discussion of the atmospherics as both a form of knowledge and a material practice. In doing so the objective is to provide an inventory of tools and methodologies deployed in the construction of atmosphere understood......, the conceptual foundations and protocols for the production of atmosphere in architecture might be found beneath the surface of contemporary debates. In this context, the notion of atmospheric dispositif – illustrated through an oeuvre of the German architect Werner Ruhnau and its theoretical and historical...

  9. Some Aspects of Diffusion Theory

    CERN Document Server

    Pignedoli, A

    2011-01-01

    This title includes: V.C.A. Ferraro: Diffusion of ions in a plasma with applications to the ionosphere; P.C. Kendall: On the diffusion in the atmosphere and ionosphere; F. Henin: Kinetic equations and Brownian motion; T. Kahan: Theorie des reacteurs nucleaires: methodes de resolution perturbationnelles, interactives et variationnelles; C. Cattaneo: Sulla conduzione del calore; C. Agostinelli: Formule di Green per la diffusione del campo magnetico in un fluido elettricamente conduttore; A. Pignedoli: Transformational methods applied to some one-dimensional problems concerning the equations of t

  10. Articulating Atmospheres

    DEFF Research Database (Denmark)

    Kinch, Sofie

    2011-01-01

    This paper presents an architectural approach to designing computational interfaces by articulating the notion of atmosphere in the field of interaction design. It draws upon the concept of kinesthetic interaction and a philosophical notion on atmosphere emphasizing the importance of bodily exper......” implications and qualities of the approach are identified through concrete examples of a design case, which also investigates the qualities and implications of addressing atmospheres both as design concern and user experience.......This paper presents an architectural approach to designing computational interfaces by articulating the notion of atmosphere in the field of interaction design. It draws upon the concept of kinesthetic interaction and a philosophical notion on atmosphere emphasizing the importance of bodily...... experience in space, presented as middle ground experience. In the field of HCI, middle ground experiences complete the unarticulated spectrum between designing for foreground of attention or background awareness. When “Articulating Atmospheres through Middle Ground Experiences in Interaction Design...

  11. Atmospheric electricity

    CERN Document Server

    Chalmers, J Alan

    1957-01-01

    Atmospheric Electricity brings together numerous studies on various aspects of atmospheric electricity. This book is composed of 13 chapters that cover the main problems in the field, including the maintenance of the negative charge on the earth and the origin of the charges in thunderstorms. After a brief overview of the historical developments of atmospheric electricity, this book goes on dealing with the general principles, results, methods, and the MKS system of the field. The succeeding chapters are devoted to some aspects of electricity in the atmosphere, such as the occurrence and d

  12. Atmospheric Neutrinos

    Directory of Open Access Journals (Sweden)

    Takaaki Kajita

    2012-01-01

    Full Text Available Atmospheric neutrinos are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith angle and energy-dependent deficit of muon-neutrino events. It was found that neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. This paper discusses atmospheric neutrino experiments and the neutrino oscillation studies with these neutrinos.

  13. Urban atmospheres.

    Science.gov (United States)

    Gandy, Matthew

    2017-07-01

    What is an urban atmosphere? How can we differentiate an 'atmosphere' from other facets of urban consciousness and experience? This essay explores some of the wider cultural, political, and philosophical connotations of atmospheres as a focal point for critical reflections on space and subjectivity. The idea of an 'affective atmosphere' as a distinctive kind of mood or shared corporeal phenomenon is considered in relation to recent developments in phenomenology, extended conceptions of agency, and new understandings of materialism. The essay draws in particular on the changing characteristics of air and light to reflect on different forms of sensory experience and their wider cultural and political connotations. The argument highlights some of the tensions and anomalies that permeate contemporary understandings of urban atmospheres.

  14. Atmospheric Infancy

    DEFF Research Database (Denmark)

    Roald, Tone; Pedersen, Ida Egmose; Levin, Kasper

    2017-01-01

    In this article we establish intersubjective meaning-making in infancy as atmospheric. Through qualitative descriptions of five mother–infant dyads in a video-recorded, experimental setting when the infant is 4, 7, 10, and 13 months, we discovered atmospheric appearances with a developmental...... pattern of atmospheric variations. These appearances, we argue, are contextual and intersubjective monologues. The monologues are similar to what Daniel Stern describes with his concept of “vitality affects,” but they arise as a unified force that envelops the mother and child. As such, we present a new...

  15. Diffusion archeology for diffusion progression history reconstruction.

    Science.gov (United States)

    Sefer, Emre; Kingsford, Carl

    2016-11-01

    Diffusion through graphs can be used to model many real-world processes, such as the spread of diseases, social network memes, computer viruses, or water contaminants. Often, a real-world diffusion cannot be directly observed while it is occurring - perhaps it is not noticed until some time has passed, continuous monitoring is too costly, or privacy concerns limit data access. This leads to the need to reconstruct how the present state of the diffusion came to be from partial diffusion data. Here, we tackle the problem of reconstructing a diffusion history from one or more snapshots of the diffusion state. This ability can be invaluable to learn when certain computer nodes are infected or which people are the initial disease spreaders to control future diffusions. We formulate this problem over discrete-time SEIRS-type diffusion models in terms of maximum likelihood. We design methods that are based on submodularity and a novel prize-collecting dominating-set vertex cover (PCDSVC) relaxation that can identify likely diffusion steps with some provable performance guarantees. Our methods are the first to be able to reconstruct complete diffusion histories accurately in real and simulated situations. As a special case, they can also identify the initial spreaders better than the existing methods for that problem. Our results for both meme and contaminant diffusion show that the partial diffusion data problem can be overcome with proper modeling and methods, and that hidden temporal characteristics of diffusion can be predicted from limited data.

  16. Diffusion archeology for diffusion progression history reconstruction

    Science.gov (United States)

    Sefer, Emre; Kingsford, Carl

    2015-01-01

    Diffusion through graphs can be used to model many real-world processes, such as the spread of diseases, social network memes, computer viruses, or water contaminants. Often, a real-world diffusion cannot be directly observed while it is occurring — perhaps it is not noticed until some time has passed, continuous monitoring is too costly, or privacy concerns limit data access. This leads to the need to reconstruct how the present state of the diffusion came to be from partial diffusion data. Here, we tackle the problem of reconstructing a diffusion history from one or more snapshots of the diffusion state. This ability can be invaluable to learn when certain computer nodes are infected or which people are the initial disease spreaders to control future diffusions. We formulate this problem over discrete-time SEIRS-type diffusion models in terms of maximum likelihood. We design methods that are based on submodularity and a novel prize-collecting dominating-set vertex cover (PCDSVC) relaxation that can identify likely diffusion steps with some provable performance guarantees. Our methods are the first to be able to reconstruct complete diffusion histories accurately in real and simulated situations. As a special case, they can also identify the initial spreaders better than the existing methods for that problem. Our results for both meme and contaminant diffusion show that the partial diffusion data problem can be overcome with proper modeling and methods, and that hidden temporal characteristics of diffusion can be predicted from limited data. PMID:27821901

  17. FRACTIONAL PEARSON DIFFUSIONS.

    Science.gov (United States)

    Leonenko, Nikolai N; Meerschaert, Mark M; Sikorskii, Alla

    2013-07-15

    Pearson diffusions are governed by diffusion equations with polynomial coefficients. Fractional Pearson diffusions are governed by the corresponding time-fractional diffusion equation. They are useful for modeling sub-diffusive phenomena, caused by particle sticking and trapping. This paper provides explicit strong solutions for fractional Pearson diffusions, using spectral methods. It also presents stochastic solutions, using a non-Markovian inverse stable time change.

  18. Atmospheric neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Kajita, Takaaki [Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo, Kashiwa-no-ha 5-1-5, Kashiwa, Chiba 277-8582 (Japan)

    2004-12-01

    Neutrino oscillation was discovered through the study of atmospheric neutrinos. Atmospheric neutrinos are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron neutrinos and muon neutrinos are produced mainly by the decay chain of charged pions to muons and electrons. Depending on the energy of the neutrinos, atmospheric neutrinos are observed as fully contained events, partially contained events and upward-going muon events. The energy range covered by these events is from a few hundred MeV to >1 TeV. Data from various experiments showed zenith angle- and energy-dependent deficit of {nu}{sub {mu}} events, while {nu}{sub e} events did not show any such effect. It was also shown that the {nu}{sub {mu}} survival probability obeys the sinusoidal function as predicted by neutrino oscillations. Two-flavour {nu}{sub {mu}} {r_reversible} {nu}{sub {tau}} oscillations, with sin{sup 2} 2{theta} > 0.90 and {delta}m{sup 2} in the region of 1.9 x 10{sup -3} to 3.0 x 10{sup -3} eV{sup 2}, explain all these data. Various detailed studies using high statistics atmospheric neutrino data excluded the alternative hypotheses that were proposed to explain the {nu}{sub {mu}} deficit.

  19. Atmospheric thermodynamics

    CERN Document Server

    Iribarne, J V

    1973-01-01

    The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a...

  20. Vulnerability to diffuse pollution of European soils and groundwater

    NARCIS (Netherlands)

    Meinardi CR; Beusen AHW; Bollen MJS; Klepper O; LBG; CWM

    1994-01-01

    From the Atlantic Ocean to the Ural Mountains, European soils and groundwater are threatened by diffuse pollution derived from various chemicals used in modern agriculture and by increased atmospheric deposition of pollutants. The investigated vulnerability of soils (including groundwater) to

  1. Direct measurement of VOC diffusivities in tree tissues

    DEFF Research Database (Denmark)

    Baduru, K.K.; Trapp, Stefan; Burken, Joel G.

    2008-01-01

    fundamental terminal fate processes for VOCs that have been translocated from contaminated soil or groundwater, and diffusion constitutes the mass transfer mechanism to the plant−atmosphere interface. Therefore, VOC diffusion through woody plant tissues, that is, xylem, has a direct impact on contaminant fate......, and tetrachloroethane and aromatic hydrocarbons such as benzene, toluene, and methyl tert-butyl ether. All compounds tested are currently being treated at full scale with tree-based phytoremediation. Diffusivities were determined by modeling the diffusive transport data with a one-dimensional diffusive flux model...

  2. Alarming atmospheres

    DEFF Research Database (Denmark)

    Højlund, Marie; Kinch, Sofie

    2014-01-01

    Nurses working in the Neuro-Intensive Care Unit at Aarhus University Hospital lack the tools to prepare children for the alarming atmosphere they will enter when visiting a hospitalised relative. The complex soundscape dominated by alarms and sounds from equipment is mentioned as the main stressor...

  3. Atmospheric humidity

    Science.gov (United States)

    Water vapor plays a critical role in earth's atmosphere. It helps to maintain a habitable surface temperature through absorption of outgoing longwave radiation, and it transfers trmendous amounts of energy from the tropics toward the poles by absorbing latent heat during evaporation and subsequently...

  4. Line Transport in Turbulent Atmospheres

    Science.gov (United States)

    Nikoghossian, A. G.

    2017-07-01

    The spectral line transfer in turbulent atmospheres with a spatially correlated velocity field is examined. Both the finite and semi-infinite media are treated. In finding the observed intensities we first deal with the problem for determining the mean intensity of radiation emerging from the medium for a fixed value of turbulent velocity at its boundary. A new approach proposed for solving this problem is based on the invariant imbedding technique which yields the solution of the proper problems for a family of media of different optical thicknesses and allows tackling different kinds of inhomogeneous problems. The dependence of the line profile, integral intensity, and the line width on the mean correlation length and the average value of the hydrodynamic velocity is studied. It is shown that the transition from a micro-turbulent regime to a macro-turbulence occurs within a comparatively narrow range of variation in the correlation length . Ambartsumian's principle of invariance is used to solve the problem of diffuse reflection of the line radiation from a one-dimensional semi-infinite turbulent atmosphere. In addition to the observed spectral line profile, statistical averages describing the diffusion process in the atmosphere (mean number of scattering events, average time spent by a diffusing photon in the medium) are determined. The dependence of these quantities on the average hydrodynamic velocity and correlation coefficient is studied.

  5. Atmospheric materiality

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2016-01-01

    A disjunction between the material and the immaterial has been at the heart of the architectural debate for decades. In this dialectic tension, the notion of atmosphere which increasingly claims attention in architectural discourse seems to be parallactic, leading to the re-evaluation of perceptual...... experience and, consequently, to the conceptual and methodological shifts in the production of space, and hence in the way we think about materiality. In this context, architectural space is understood as a contingent construction – a space of engagement that appears to us as a result of continuous...... and complex interferences revealed through our perception; ‘the atmospheric’ is explored as a spatial and affective quality as well as a sensory background, and materiality as a powerful and almost magical agency in shaping of atmosphere. Challenging existing dichotomies and unraveling intrinsic...

  6. Spin-diffusions and diffusive molecular dynamics

    Science.gov (United States)

    Farmer, Brittan; Luskin, Mitchell; Plecháč, Petr; Simpson, Gideon

    2017-12-01

    Metastable configurations in condensed matter typically fluctuate about local energy minima at the femtosecond time scale before transitioning between local minima after nanoseconds or microseconds. This vast scale separation limits the applicability of classical molecular dynamics (MD) methods and has spurned the development of a host of approximate algorithms. One recently proposed method is diffusive MD which aims at integrating a system of ordinary differential equations describing the likelihood of occupancy by one of two species, in the case of a binary alloy, while quasistatically evolving the locations of the atoms. While diffusive MD has shown itself to be efficient and provide agreement with observations, it is fundamentally a model, with unclear connections to classical MD. In this work, we formulate a spin-diffusion stochastic process and show how it can be connected to diffusive MD. The spin-diffusion model couples a classical overdamped Langevin equation to a kinetic Monte Carlo model for exchange amongst the species of a binary alloy. Under suitable assumptions and approximations, spin-diffusion can be shown to lead to diffusive MD type models. The key assumptions and approximations include a well-defined time scale separation, a choice of spin-exchange rates, a low temperature approximation, and a mean field type approximation. We derive several models from different assumptions and show their relationship to diffusive MD. Differences and similarities amongst the models are explored in a simple test problem.

  7. Lung diffusion testing

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003854.htm Lung diffusion testing To use the sharing features on this page, please enable JavaScript. Lung diffusion testing measures how well the lungs exchange gases. This ...

  8. A Student Diffusion Activity

    Science.gov (United States)

    Kutzner, Mickey; Pearson, Bryan

    2017-01-01

    Diffusion is a truly interdisciplinary topic bridging all areas of STEM education. When biomolecules are not being moved through the body by fluid flow through the circulatory system or by molecular motors, diffusion is the primary mode of transport over short distances. The direction of the diffusive flow of particles is from high concentration…

  9. Fractional diffusion equations and anomalous diffusion

    CERN Document Server

    Evangelista, Luiz Roberto

    2018-01-01

    Anomalous diffusion has been detected in a wide variety of scenarios, from fractal media, systems with memory, transport processes in porous media, to fluctuations of financial markets, tumour growth, and complex fluids. Providing a contemporary treatment of this process, this book examines the recent literature on anomalous diffusion and covers a rich class of problems in which surface effects are important, offering detailed mathematical tools of usual and fractional calculus for a wide audience of scientists and graduate students in physics, mathematics, chemistry and engineering. Including the basic mathematical tools needed to understand the rules for operating with the fractional derivatives and fractional differential equations, this self-contained text presents the possibility of using fractional diffusion equations with anomalous diffusion phenomena to propose powerful mathematical models for a large variety of fundamental and practical problems in a fast-growing field of research.

  10. Analysis of the effects of diffuse light on photosynthesis and crop production

    NARCIS (Netherlands)

    Elings, A.; Dueck, T.A.; Meinen, E.; Kempkes, F.L.K.

    2012-01-01

    Abstract: Photosynthetically active solar radiation can be either direct or diffuse. Due to atmospheric scattering, solar radiation is never fully direct. Under heavy overcast conditions however, it can be fully diffuse. Screens and glass that transform direct light into diffuse light are used under

  11. MEASUREMENT OF DIFFUSION COEFFICIENTS OF GAS MOLECULES IN ICE

    OpenAIRE

    サトウ, コウイチ; ウチダ, ツトム; ホンドウ, タケオ; マエ, シンジ; Kouichi, SATOH; Tsutomu, UCHIDA; Takeo, HONDOH; Shinji, MAE

    1994-01-01

    Measurements of diffusion coefficients of He gas and N_2 gas in ice crystals were carried out under the high pressure and atmosphere pressure. The understanding of diffusion phenomena of air molecules in ice is important on studying palaeo-environments by polar ice core analysis. But the measurements of gas molecules diffusion in ice have been done only for He and Ne. Thus we developed an apparatus to measure the diffusion coefficient of gas molecules in ice. In order to estimate the accuracy...

  12. Anisotropy in "isotropic diffusion" measurements due to nongaussian diffusion

    DEFF Research Database (Denmark)

    Jespersen, Sune Nørhøj; Olesen, Jonas Lynge; Ianuş, Andrada

    2017-01-01

    model-free decomposition of diffusion signal kurtosis into terms originating from either ensemble variance of isotropic diffusivity or microscopic diffusion anisotropy. This ability rests on the assumption that diffusion can be described as a sum of multiple Gaussian compartments, but this is often...... dependence of the diffusion tensors, which causes the measured isotropic diffusivity to depend on gradient frame orientation. In turn, this conflates orientation dispersion with ensemble variance in isotropic diffusivity. Second, additional contributions to the apparent variance in isotropic diffusivity...

  13. On the influence of neutral turbulence on ambipolar diffusivities deduced from meteor trail expansion

    Directory of Open Access Journals (Sweden)

    C. M. Hall

    Full Text Available By measuring fading times of radar echoes from underdense meteor trails, it is possible to deduce the ambipolar diffusivities of the ions responsible for these radar echoes. It could be anticipated that these diffusivities increase monotonically with height akin to neutral viscosity. In practice, this is not always the case. Here, we investigate the capability of neutral turbulence to affect the meteor trail diffusion rate.

    Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; turbulence

  14. Li diffusion in zircon

    Science.gov (United States)

    Cherniak, D. J.; Watson, E. B.

    2010-09-01

    Diffusion of Li under anhydrous conditions at 1 atm and under fluid-present elevated pressure (1.0-1.2 GPa) conditions has been measured in natural zircon. The source of diffusant for 1-atm experiments was ground natural spodumene, which was sealed under vacuum in silica glass capsules with polished slabs of zircon. An experiment using a Dy-bearing source was also conducted to evaluate possible rate-limiting effects on Li diffusion of slow-diffusing REE+3 that might provide charge balance. Diffusion experiments performed in the presence of H2O-CO2 fluid were run in a piston-cylinder apparatus, using a source consisting of a powdered mixture of spodumene, quartz and zircon with oxalic acid added to produce H2O-CO2 fluid. Nuclear reaction analysis (NRA) with the resonant nuclear reaction 7Li(p,γ)8Be was used to measure diffusion profiles for the experiments. The following Arrhenius parameters were obtained for Li diffusion normal to the c-axis over the temperature range 703-1.151°C at 1 atm for experiments run with the spodumene source: D_{text{Li}} = 7.17 × 10^{ - 7} { exp }( - 275 ± 11 {text{kJmol}}^{ - 1} /{text{RT}}){text{m}}2 {text{s}}^{ - 1}. Diffusivities are similar for transport parallel to the c-axis, indicating little anisotropy for Li diffusion in zircon. Similar Li diffusivities were also found for experiments run under fluid-present conditions and for the experiment run with the Dy-bearing source. Li diffusion is considerably faster than diffusion of other cations in zircon, with a smaller activation energy for diffusion. Although Li diffusion in zircon is comparatively rapid, zircons will be moderately retentive of Li signatures at mid-crustal metamorphic temperatures, but they are unlikely to retain this information for geologically significant times under high-grade metamorphism.

  15. Measurement of effective gas diffusion coefficients of catalyst layers of PEM fuel cells with a Loschmidt diffusion cell

    OpenAIRE

    Bessarabov, Dmitri; Shen, Jun; Zhou, Jianqin; Astrath, Nelson G.C.; Navessin, Titichai

    2011-01-01

    In this work, using an in-house made Loschmidt diffusion cell, we measure the effective coefficient of dry gas (O2–N2) diffusion in cathode catalyst layers of PEM fuel cells at 25 °C and 1 atmosphere. The thicknesses of the catalyst layers under investigation are from 6 to 29 μm. Each catalyst layer is deposited on an Al2O3 membrane substrate by an automated spray coater. Diffusion signal processing procedure is developed to deduce the effective diffusion coefficient, which is found to be (1....

  16. Metric diffusion along foliations

    CERN Document Server

    Walczak, Szymon M

    2017-01-01

    Up-to-date research in metric diffusion along compact foliations is presented in this book. Beginning with fundamentals from the optimal transportation theory and the theory of foliations; this book moves on to cover Wasserstein distance, Kantorovich Duality Theorem, and the metrization of the weak topology by the Wasserstein distance. Metric diffusion is defined, the topology of the metric space is studied and the limits of diffused metrics along compact foliations are discussed. Essentials on foliations, holonomy, heat diffusion, and compact foliations are detailed and vital technical lemmas are proved to aide understanding. Graduate students and researchers in geometry, topology and dynamics of foliations and laminations will find this supplement useful as it presents facts about the metric diffusion along non-compact foliation and provides a full description of the limit for metrics diffused along foliation with at least one compact leaf on the two dimensions.

  17. Diffusion formalism and applications

    CERN Document Server

    Dattagupta, Sushanta

    2013-01-01

    Within a unifying framework, Diffusion: Formalism and Applications covers both classical and quantum domains, along with numerous applications. The author explores the more than two centuries-old history of diffusion, expertly weaving together a variety of topics from physics, mathematics, chemistry, and biology. The book examines the two distinct paradigms of diffusion-physical and stochastic-introduced by Fourier and Laplace and later unified by Einstein in his groundbreaking work on Brownian motion. The author describes the role of diffusion in probability theory and stochastic calculus and

  18. Inpainting using airy diffusion

    Science.gov (United States)

    Lorduy Hernandez, Sara

    2015-09-01

    One inpainting procedure based on Airy diffusion is proposed, implemented via Maple and applied to some digital images. Airy diffusion is a partial differential equation with spatial derivatives of third order in contrast with the usual diffusion with spatial derivatives of second order. Airy diffusion generates the Airy semigroup in terms of the Airy functions which can be rewritten in terms of Bessel functions. The Airy diffusion can be used to smooth an image with the corresponding noise elimination via convolution. Also the Airy diffusion can be used to erase objects from an image. We build an algorithm using the Maple package ImageTools and such algorithm is tested using some images. Our results using Airy diffusion are compared with the similar results using standard diffusion. We observe that Airy diffusion generates powerful filters for image processing which could be incorporated in the usual packages for image processing such as ImageJ and Photoshop. Also is interesting to consider the possibility to incorporate the Airy filters as applications for smartphones and smart-glasses.

  19. [Simulation of polluted atmospheres for animal experimentation: toxic gases].

    Science.gov (United States)

    Godin, J; Boudène, C

    1976-09-20

    A process for the generation of standardized polluted atmospheres usable for animal exposure is described. It is based on the diffusion of compressed gases across a silicone membrane. This device has been tested with four gases of particular importance in the field of atmospheric pollution (sulfur dioxide, nitrogen oxide, carbon monoxide and ammoniac).

  20. Experimental study of vortex diffusers

    Energy Technology Data Exchange (ETDEWEB)

    Shakerin, S.; Miller, P.L. [National Renewable Energy Lab., Golden, CO (United States)

    1995-11-01

    This report documents experimental research performed on vortex diffusers used in ventilation and air-conditioning systems. The main objectives of the research were (1) to study the flow characteristics of isothermal jets issuing from vortex diffusers, (2) to compare the vortex diffuser`s performance with that of a conventional diffuser, and (3) to prepare a report that disseminates the results to the designers of ventilation and air-conditioning systems. The researchers considered three diffusers: a conventional round ceiling diffuser and two different styles of vortex diffusers. Overall, the vortex diffusers create slightly more induction of ambient air in comparison to the conventional diffuser.

  1. Confusion, Diffusion, and Innovation

    Science.gov (United States)

    Eyestone, Robert

    1977-01-01

    Examines several possible models of public policy diffusion, then presents and illustrates the use of a technique for identifying clusters of similar policies on the bases of their diffusion patterns. Available from: American Political Science Association, 1527 New Hampshire Avenue, N.W., Washington, DC 20036; $10.50 single copy. (JG)

  2. Galactic Diffuse Polarized Emission

    Indian Academy of Sciences (India)

    Diffuse polarized emission by synchrotron is a key tool to investigate magnetic fields in the Milky Way, particularly the ordered component of the large scale structure. Key observables are the synchrotron emission itself and the RM is by Faraday rotation. In this paper the main properties of the radio polarized diffuse emission ...

  3. Speckle reducing anisotropic diffusion.

    Science.gov (United States)

    Yu, Yongjian; Acton, Scott T

    2002-01-01

    This paper provides the derivation of speckle reducing anisotropic diffusion (SRAD), a diffusion method tailored to ultrasonic and radar imaging applications. SRAD is the edge-sensitive diffusion for speckled images, in the same way that conventional anisotropic diffusion is the edge-sensitive diffusion for images corrupted with additive noise. We first show that the Lee and Frost filters can be cast as partial differential equations, and then we derive SRAD by allowing edge-sensitive anisotropic diffusion within this context. Just as the Lee and Frost filters utilize the coefficient of variation in adaptive filtering, SRAD exploits the instantaneous coefficient of variation, which is shown to be a function of the local gradient magnitude and Laplacian operators. We validate the new algorithm using both synthetic and real linear scan ultrasonic imagery of the carotid artery. We also demonstrate the algorithm performance with real SAR data. The performance measures obtained by means of computer simulation of carotid artery images are compared with three existing speckle reduction schemes. In the presence of speckle noise, speckle reducing anisotropic diffusion excels over the traditional speckle removal filters and over the conventional anisotropic diffusion method in terms of mean preservation, variance reduction, and edge localization.

  4. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Fogh Olsen, Ole; Sporring, Jon

    2007-01-01

    . To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features......, while eliminating noise. We call our method diffusion based photon mapping....

  5. Modelling of Innovation Diffusion

    Directory of Open Access Journals (Sweden)

    Arkadiusz Kijek

    2010-01-01

    Full Text Available Since the publication of the Bass model in 1969, research on the modelling of the diffusion of innovation resulted in a vast body of scientific literature consisting of articles, books, and studies of real-world applications of this model. The main objective of the diffusion model is to describe a pattern of spread of innovation among potential adopters in terms of a mathematical function of time. This paper assesses the state-of-the-art in mathematical models of innovation diffusion and procedures for estimating their parameters. Moreover, theoretical issues related to the models presented are supplemented with empirical research. The purpose of the research is to explore the extent to which the diffusion of broadband Internet users in 29 OECD countries can be adequately described by three diffusion models, i.e. the Bass model, logistic model and dynamic model. The results of this research are ambiguous and do not indicate which model best describes the diffusion pattern of broadband Internet users but in terms of the results presented, in most cases the dynamic model is inappropriate for describing the diffusion pattern. Issues related to the further development of innovation diffusion models are discussed and some recommendations are given. (original abstract

  6. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Olsen, Ole Fogh; Sporring, Jon

    2006-01-01

    . To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features......, while eliminating noise. We call our method diffusion based photon mapping....

  7. Diffusivity measurements of volatile organics in levitated viscous aerosol particles

    Science.gov (United States)

    Bastelberger, Sandra; Krieger, Ulrich K.; Luo, Beiping; Peter, Thomas

    2017-07-01

    Field measurements indicating that atmospheric secondary organic aerosol (SOA) particles can be present in a highly viscous, glassy state have spurred numerous studies addressing low diffusivities of water in glassy aerosols. The focus of these studies is on kinetic limitations of hygroscopic growth and the plasticizing effect of water. In contrast, much less is known about diffusion limitations of organic molecules and oxidants in viscous matrices. These may affect atmospheric chemistry and gas-particle partitioning of complex mixtures with constituents of different volatility. In this study, we quantify the diffusivity of a volatile organic in a viscous matrix. Evaporation of single particles generated from an aqueous solution of sucrose and small amounts of volatile tetraethylene glycol (PEG-4) is investigated in an electrodynamic balance at controlled relative humidity (RH) and temperature. The evaporative loss of PEG-4 as determined by Mie resonance spectroscopy is used in conjunction with a radially resolved diffusion model to retrieve translational diffusion coefficients of PEG-4. Comparison of the experimentally derived diffusivities with viscosity estimates for the ternary system reveals a breakdown of the Stokes-Einstein relationship, which has often been invoked to infer diffusivity from viscosity. The evaporation of PEG-4 shows pronounced RH and temperature dependencies and is severely depressed for RH ≲ 30 %, corresponding to diffusivities pollutant molecules such as polycyclic aromatic hydrocarbons (PAHs).

  8. Diffuse ceiling ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen

    Diffuse ceiling ventilation is an innovative ventilation concept where the suspended ceiling serves as air diffuser to supply fresh air into the room. Compared with conventional ventilation systems, diffuse ceiling ventilation can significantly reduce or even eliminate draught risk due to the low...... momentum supply. In addition, this ventilation system uses a ceiling plenum to deliver air and requires less energy consumption for air transport than full-ducted systems. There is a growing interest in applying diffuse ceiling ventilation in offices and other commercial buildings due to the benefits from...... both thermal comfort and energy efficient aspects. The present study aims to characterize the air distribution and thermal comfort in the rooms with diffuse ceiling ventilation. Both the stand-alone ventilation system and its integration with a radiant ceiling system are investigated. This study also...

  9. Diffuse solar radiation and associated meteorological parameters in India

    Directory of Open Access Journals (Sweden)

    A. B. Bhattacharya

    Full Text Available Solar diffuse radiation data including global radiation, shortwave and longwave balances, net radiation and sunshine hours have been extensively analyzed to study the variation of diffuse radiation with turbidity and cloud discharges appearing in the form of atmospherics over the tropics. Results of surface radiation measurements at Calcutta, Poona, Delhi and Madras are presented together with some meteorological parameters. The monthly values of diffuse radiation and the monthly ratios of diffuse to global solar radiation have been examined, with a special emphasis in relation to the noise level of atmospherics at Calcutta in the very low frequency band. The results exhibit some definite seasonal changes which appear to be in close agreement with one another.

  10. Diffuse solar radiation and associated meteorological parameters in India

    Directory of Open Access Journals (Sweden)

    A. B. Bhattacharya

    1996-10-01

    Full Text Available Solar diffuse radiation data including global radiation, shortwave and longwave balances, net radiation and sunshine hours have been extensively analyzed to study the variation of diffuse radiation with turbidity and cloud discharges appearing in the form of atmospherics over the tropics. Results of surface radiation measurements at Calcutta, Poona, Delhi and Madras are presented together with some meteorological parameters. The monthly values of diffuse radiation and the monthly ratios of diffuse to global solar radiation have been examined, with a special emphasis in relation to the noise level of atmospherics at Calcutta in the very low frequency band. The results exhibit some definite seasonal changes which appear to be in close agreement with one another.

  11. OPTIMISATION OF WIND TURBINE WITH DIFFUSER USING CFD TOOL

    OpenAIRE

    Mr. K Prakash, R.Sreeju , S.Vijaychandran, A.R.Sridharan

    2017-01-01

    A wind turbine or wind power plant is a device that converts kinetic energy from the wind into electric current. Mechanical energy is simply created when the wind turbine blades spin and a generator is turned, thus producing electricity. Diffuser can increase turbine power output primarily by increasing mass flow rate through the blades because of controlled diffusion of the turbine wake which which lowers the exit plane pressure considerably below atmospheric, and secondarily by reducing bla...

  12. Sound field modeling in architectural acoustics using a diffusion equation

    OpenAIRE

    Picaut, Judicaël; Valeau, Vincent; Billon, Alexis; Sakout, Anas

    2006-01-01

    A numerical approach is proposed to model the reverberated sound field in rooms. The model is based on the numerical implementation of a diffusion model enabling spatial variations of the sound energy within a room, unlike the statistical theory. The proposed method allows to take into account most of complex phenomena encountered in room acoustics, like mixed reflections on walls (diffuse and specular), low and high absorption on walls, atmospheric attenuation, fitted zones. Moreover, the mo...

  13. Sound field modeling in architectural acoustics using a diffusion equation

    OpenAIRE

    PICAUT, J; VALEAU, V; BILLON, A; SAKOUT, A

    2006-01-01

    A numerical approach is proposed to model the reverberated sound field in rooms. The model is based on the numerical implementation of a diffusion model enabling spatial variations of the sound energy within a room, unlike the statistical theory. The proposed method allows to take into account most of complex phenomena encountered in room acoustics, like mixed reflections on walls (diffuse and specular), low and high absorption on walls, atmospheric attenation, fitted zones. Moreover, the mod...

  14. Diffuse infiltrating lipomatosis

    Energy Technology Data Exchange (ETDEWEB)

    Grabbe, E.; Boecker, W.; Buecheler, E.

    1984-06-01

    Nineteen patients with various types of lipoma in the pelvis are described. Clinical findings, radiological examinations, and follow-up studies constitute a particular type of lipoma, diffuse infiltrating lipomatosis; this can be distinguished from other fatty tumours because of its localisation, extent, therapeutic results and long course. Computed tomography enables us to differentiate simple lipomatosis pelvis from diffuse infiltrating lipomatosis. Histological examination is essential for excluding a liposarcoma. Growth or malignant change of diffuse infiltrating lipomatosis is most easily recognized by computed tomographic serial observation.

  15. Diffuse Ceiling Ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen; Yu, Tao; Heiselberg, Per Kvols

    -cooling period and night cooling potential. The investment cost of this ventilation system is about 5-10% lower than the conventional ones, because the acoustic ceiling could be directly applied as air diffuser and the use of plenum to distribute air reduces the cost of ductwork. There is a growing interest...... in applying diffuse ceiling ventilation in offices and other commercial buildings because of the benefits from both thermal comfort and energy efficiency aspects. The design guide introduces the principle and key characteristics of room air distribution with diffuse ceiling ventilation and the design...

  16. Infrared diffuse interstellar bands

    Science.gov (United States)

    Galazutdinov, G. A.; Lee, Jae-Joon; Han, Inwoo; Lee, Byeong-Cheol; Valyavin, G.; Krełowski, J.

    2017-05-01

    We present high-resolution (R ˜ 45 000) profiles of 14 diffuse interstellar bands in the ˜1.45 to ˜2.45 μm range based on spectra obtained with the Immersion Grating INfrared Spectrograph at the McDonald Observatory. The revised list of diffuse bands with accurately estimated rest wavelengths includes six new features. The diffuse band at 15 268.2 Å demonstrates a very symmetric profile shape and thus can serve as a reference for finding the 'interstellar correction' to the rest wavelength frame in the H range, which suffers from a lack of known atomic/molecular lines.

  17. Theories on diffusion of technology

    DEFF Research Database (Denmark)

    Munch, Birgitte

    Tracing the body of the diffusion proces by analysing the diffusion process from historical, sociological, economic and technical approaches. Discussing central characteristics of the proces of diffusion og CAD/CAM in Denmark....

  18. On Diffusion and Permeation

    KAUST Repository

    Peppin, Stephen S. L.

    2009-01-01

    Diffusion and permeation are discussed within the context of irreversible thermodynamics. A new expression for the generalized Stokes-Einstein equation is obtained which links the permeability to the diffusivity of a two-component solution and contains the poroelastic Biot-Willis coefficient. The theory is illustrated by predicting the concentration and pressure profiles during the filtration of a protein solution. At low concentrations the proteins diffuse independently while at higher concentrations they form a nearly rigid porous glass through which the fluid permeates. The theoretically determined pressure drop is nonlinear in the diffusion regime and linear in the permeation regime, in quantitative agreement with experimental measurements. © 2009 Walter de Gruyter, Berlin, New York.

  19. Isomorphism, Diffusion and Decoupling

    DEFF Research Database (Denmark)

    Boxenbaum, Eva; Jonsson, Stefan

    2017-01-01

    This chapter traces the evolution of the core theoretical constructs of isomorphism, decoupling and diffusion in organizational institutionalism. We first review the original theoretical formulations of these constructs and then examine their evolution in empirical research conducted over the past...

  20. Diffusing Best Practices

    DEFF Research Database (Denmark)

    Pries-Heje, Jan; Baskerville, Richard

    2014-01-01

    Both the practice and the research literature on information systems attach great value to the identification and dissemination of information on “best practices”. In the philosophy of science, this type of knowledge is regarded as technological knowledge because it becomes manifest...... in the successful techniques in one context. While the value for other contexts is unproven, knowledge of best practices circulates under an assumption that the practices will usefully self-diffuse through innovation and adoption in other contexts. We study diffusion of best practices using a design science...... approach. The study context is a design case in which an organization desires to diffuse its best practices across different groups. The design goal is embodied in organizational mechanisms to achieve this diffusion. The study used Theory of Planned Behavior (TPB) as a kernel theory. The artifacts...

  1. Drift-Diffusion Equation

    Directory of Open Access Journals (Sweden)

    K. Banoo

    1998-01-01

    equation in the discrete momentum space. This is shown to be similar to the conventional drift-diffusion equation except that it is a more rigorous solution to the Boltzmann equation because the current and carrier densities are resolved into M×1 vectors, where M is the number of modes in the discrete momentum space. The mobility and diffusion coefficient become M×M matrices which connect the M momentum space modes. This approach is demonstrated by simulating electron transport in bulk silicon.

  2. Atmosphere: Power, Critique, Politics

    DEFF Research Database (Denmark)

    Albertsen, Niels

    2016-01-01

    This paper hans three interrelated parts. First, atmosphere is approached through the concept of power. Atmospheres 'grip' us directly or mediate power indirectly by manipulating moods and evoking emotions. How does atmosphere relate to different conceptions of power? Second, atmospheric powers may...

  3. Advanced manufacturing: Technology diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Tesar, A.

    1995-12-01

    In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.

  4. Brownian yet Non-Gaussian Diffusion: From Superstatistics to Subordination of Diffusing Diffusivities

    Directory of Open Access Journals (Sweden)

    Aleksei V. Chechkin

    2017-04-01

    Full Text Available A growing number of biological, soft, and active matter systems are observed to exhibit normal diffusive dynamics with a linear growth of the mean-squared displacement, yet with a non-Gaussian distribution of increments. Based on the Chubinsky-Slater idea of a diffusing diffusivity, we here establish and analyze a minimal model framework of diffusion processes with fluctuating diffusivity. In particular, we demonstrate the equivalence of the diffusing diffusivity process with a superstatistical approach with a distribution of diffusivities, at times shorter than the diffusivity correlation time. At longer times, a crossover to a Gaussian distribution with an effective diffusivity emerges. Specifically, we establish a subordination picture of Brownian but non-Gaussian diffusion processes, which can be used for a wide class of diffusivity fluctuation statistics. Our results are shown to be in excellent agreement with simulations and numerical evaluations.

  5. Diffuse Attenuation Coef. K490, Aqua MODIS, 0.125 degrees, Indonesia

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — OSU distributes Diffuse Attenuation Coefficient at 490 nm Wavelength data from NASA's Aqua satellite. Measurements are gathered by the Moderate Resolution Imaging...

  6. VIIRSN Level-3 Standard Mapped Image, Diffuse Attenuation K490, 8 Day, 4km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NASA distributes Diffuse Attenuation Coefficient at 490 nm Wavelength data from the NPP-Suomi satellite. Measurements are gathered by the VIIRS instrument carried...

  7. VIIRSN Level-3 Standard Mapped Image, Diffuse Attenuation K490, Monthly, 4km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NASA distributes Diffuse Attenuation Coefficient at 490 nm Wavelength data from the NPP-Suomi satellite. Measurements are gathered by the VIIRS instrument carried...

  8. Diffuse Attenuation Coef. K490, Aqua MODIS, NPP, 0.125 degrees, West US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NASA distributes Diffuse Attenuation Coefficient at 490 nm Wavelength data from NASA's Aqua satellite. Measurements are gathered by the Moderate Resolution Imaging...

  9. Diffuse Attenuation Coef. K490, Aqua MODIS, NPP, 0.125 degrees, East US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NASA distributes Diffuse Attenuation Coefficient at 490 nm Wavelength data from NASA's Aqua satellite. Measurements are gathered by the Moderate Resolution Imaging...

  10. Diffuse Attenuation Coef. K490, Aqua MODIS, NPP, 0.05 degrees, Global, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NASA distributes Diffuse Attenuation Coefficient at 490 nm Wavelength data from NASA's Aqua satellite. Measurements are gathered by the Moderate Resolution Imaging...

  11. Diffuse Attenuation Coef. K490, Aqua MODIS, NPP, 0.125 degrees, Gulf of Mexico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NASA distributes Diffuse Attenuation Coefficient at 490 nm Wavelength data from NASA's Aqua satellite. Measurements are gathered by the Moderate Resolution Imaging...

  12. Bicarbonate diffusion through mucus.

    Science.gov (United States)

    Livingston, E H; Miller, J; Engel, E

    1995-09-01

    The mucus layer overlying duodenal epithelium maintains a pH gradient against high luminal acid concentrations. Despite these adverse conditions, epithelial surface pH remains close to neutrality. The exact nature of the gradient-forming barrier remains unknown. The barrier consists of mucus into which HCO3- is secreted. Quantification of the ability of HCO3- to establish and maintain the gradient depends on accurate measurement of this ion's diffusion coefficient through mucus. We describe new experimental and mathematical methods for diffusion measurement and report diffusion coefficients for HCO3- diffusion through saline, 5% mucin solutions, and rat duodenal mucus. The diffusion coefficients were 20.2 +/- 0.10, 3.02 +/- 0.31, and 1.81 +/- 0.12 x 10(-6) cm2/s, respectively. Modeling of the mucobicarbonate layer with this latter value suggests that for conditions of high luminal acid strength the neutralization of acid by HCO3- occurs just above the epithelial surface. Under these conditions the model predicts that fluid convection toward the lumen could be important in maintaining the pH gradient. In support of this hypothesis we were able to demonstrate a net luminal fluid flux of 5 microliters.min-1.cm-2 after perfusion of 0.15 N HCl in the rat duodenum.

  13. Dispersion of effluents in the atmosphere; Dispersion des effluents dans l`atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This conference day was organized by the `convection` section of the French association of thermal engineers with the support of the environment and energy mastery agency (ADEME). This book of proceedings contains 10 papers entitled: `physical modeling of atmospheric dispersion in wind tunnels. Some industrial examples`; `modeling of the noxious effects of a fire on the environment of an industrial site: importance of thermal engineering related hypotheses`; `atmospheric diffusion of a noxious cloud: fast evaluation method of safety areas around refrigerating installations that use ammonia`; `modeling of atmospheric flows in urban areas in order to study the dispersion of pollutants`; `use of a dispersion parameter to characterize the evolution of a diffusion process downstream of a linear source of passive contaminant placed inside a turbulent boundary layer`; `elements of reflexion around the development of an analytical methodology applied to the elaboration of measurement strategies of air quality in ambient and outdoor atmospheres around industrial sites`; `state-of-the-art about treatment techniques for VOC-rich gaseous effluents`; `characteristics of the time variation of the atmospheric pollution in the Paris region and visualization of its space distribution`; `mass-spectrometry for the measurement of atmospheric pollutants`; `volume variations in natural convection turbulence`. (J.S.)

  14. Atmosphere-Ionosphere Coupling via Atmospheric Waves

    Science.gov (United States)

    Koucka Knizova, Petra; Lastovicka, Jan

    2017-04-01

    The Earth atmosphere and ionosphere is complicated and highly variable system which displays oscillations on wide range scales. The most important factor influencing the ionosphere is certainly the solar and geomagnetic activity. However, the processes even in distant regions in the neutral atmosphere cannot be simply neglected. This contribution reviews aspects of ionospheric variability originating in the lower laying atmosphere. It focuses especially on the generation and propagation of the atmospheric waves from their source region up to the heights of the ionosphere. We will show the role of infrasound, gravity waves, tides and planetary waves in the atmosphere-ionosphere coupling. Particularly gravity waves are of high importance for the ionosphere. Recent theoretical and experimental results will briefly be reviewed.

  15. Global, Diffuse Sky And Direct Beam Radiation Data For Kumasi ...

    African Journals Online (AJOL)

    ... influence of atmospheric effects including the presence of rain cloud cover during the wet season and the presence of the Harmattan dust aerosol during the dry season. Keywords: Global irradiance, diffuse sky irradiance, direct beam irradiance, weather. Journal of the Ghana Institution of Engineers Vol. 5 (1&2) 2007: pp.

  16. Diffusion and mass transfer

    CERN Document Server

    Vrentas, James S

    2013-01-01

    The book first covers the five elements necessary to formulate and solve mass transfer problems, that is, conservation laws and field equations, boundary conditions, constitutive equations, parameters in constitutive equations, and mathematical methods that can be used to solve the partial differential equations commonly encountered in mass transfer problems. Jump balances, Green’s function solution methods, and the free-volume theory for the prediction of self-diffusion coefficients for polymer–solvent systems are among the topics covered. The authors then use those elements to analyze a wide variety of mass transfer problems, including bubble dissolution, polymer sorption and desorption, dispersion, impurity migration in plastic containers, and utilization of polymers in drug delivery. The text offers detailed solutions, along with some theoretical aspects, for numerous processes including viscoelastic diffusion, moving boundary problems, diffusion and reaction, membrane transport, wave behavior, sedime...

  17. Diffusion in flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brogaard Kristensen, S.

    2000-06-01

    This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)

  18. Diffuse Ceiling Ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen; Yu, Tao; Heiselberg, Per Kvols

    -cooling period and night cooling potential. The investment cost of this ventilation system is about 5-10% lower than the conventional ones, because the acoustic ceiling could be directly applied as air diffuser and the use of plenum to distribute air reduces the cost of ductwork. There is a growing interest...... and manufacturers and the users of diffuse ceiling technology. The design guide introduces the principle and key characteristics of room air distribution with diffuse ceiling ventilation. It provides an overview of potential benefit and limitations of this technology. The benefits include high thermal comfort, high...... cooling capacity, energy saving, low investment cost and low noise level; while the limitations include condensation risk and the limit on the room geometry. Furthermore, the crucial design parameters are summarized and their effects on the system performance are discussed. In addition to the stand...

  19. Anomalous diffusion in geophysical and laboratory turbulence

    Directory of Open Access Journals (Sweden)

    A. Tsinober

    1994-01-01

    Full Text Available We present an overview and some new results on anomalous diffusion of passive scalar in turbulent flows (including those used by Richardson in his famous paper in 1926. The obtained results are based on the analysis of the properties of invariant quantities (energy, enstrophy, dissipation, enstrophy generation, helicity density, etc. - i.e. independent of the choice of the system of reference as the most appropriate to describe physical processes - in three different turbulent laboratory flows (grid-flow, jet and boundary layer, see Tsinober et al. (1992 and Kit et al. (1993. The emphasis is made on the relations between the asymptotic properties of the intermittency exponents of higher order moments of different turbulent fields (energy, dissipation, helicity, spontaneous breaking of isotropy and reflexional symmetry and the variability of turbulent diffusion in the atmospheric boundary layer, in the troposphere and in the stratosphere. It is argued that local spontaneous breaking of isotropy of turbulent flow results in anomalous scaling laws for turbulent diffusion (as compared to the scaling law of Richardson which are observed, as a rule, in different atmospheric layers from the atmospheric boundary layer (ABL to the stratosphere. Breaking of rotational symmetry is important in the ABL, whereas reflexional symmetry breaking is dominating in the troposphere locally and in the stratosphere globally. The results are of speculative nature and further analysis is necessary to validate or disprove the claims made, since the correspondence with the experimental results may occur for the wrong reasons as happens from time to time in the field of turbulence.

  20. Anomalous diffusion in geophysical and laboratory turbulence

    Science.gov (United States)

    Tsinober, A.

    We present an overview and some new results on anomalous diffusion of passive scalar in turbulent flows (including those used by Richardson in his famous paper in 1926). The obtained results are based on the analysis of the properties of invariant quantities (energy, enstrophy, dissipation, enstrophy generation, helicity density, etc.) - i.e. independent of the choice of the system of reference as the most appropriate to describe physical processes - in three different turbulent laboratory flows (grid-flow, jet and boundary layer, see Tsinober et al. (1992) and Kit et al. (1993). The emphasis is made on the relations between the asymptotic properties of the intermittency exponents of higher order moments of different turbulent fields (energy, dissipation, helicity, spontaneous breaking of isotropy and reflexional symmetry) and the variability of turbulent diffusion in the atmospheric boundary layer, in the troposphere and in the stratosphere. It is argued that local spontaneous breaking of isotropy of turbulent flow results in anomalous scaling laws for turbulent diffusion (as compared to the scaling law of Richardson) which are observed, as a rule, in different atmospheric layers from the atmospheric boundary layer (ABL) to the stratosphere. Breaking of rotational symmetry is important in the ABL, whereas reflexional symmetry breaking is dominating in the troposphere locally and in the stratosphere globally. The results are of speculative nature and further analysis is necessary to validate or disprove the claims made, since the correspondence with the experimental results may occur for the wrong reasons as happens from time to time in the field of turbulence.

  1. Phase transformation and diffusion

    CERN Document Server

    Kale, G B; Dey, G K

    2008-01-01

    Given that the basic purpose of all research in materials science and technology is to tailor the properties of materials to suit specific applications, phase transformations are the natural key to the fine-tuning of the structural, mechanical and corrosion properties. A basic understanding of the kinetics and mechanisms of phase transformation is therefore of vital importance. Apart from a few cases involving crystallographic martensitic transformations, all phase transformations are mediated by diffusion. Thus, proper control and understanding of the process of diffusion during nucleation, g

  2. Diffusion in advanced materials

    CERN Document Server

    Murch, Graeme; Belova, Irina

    2014-01-01

    In the first chapter Prof. Kozubski and colleagues present atomisticsimulations of superstructure transformations of intermetallic nanolayers.In Chapter 2, Prof. Danielewski and colleagues discuss a formalism for themorphology of the diffusion zone in ternary alloys. In Chapter 3, ProfessorsSprengel and Koiwa discuss the classical contributions of Boltzmann andMatano for the analysis of concentration-dependent diffusion. This isfollowed by Chapter 4 by Professor Cserháti and colleagues on the use of Kirkendall porosity for fabricating hollow hemispheres. In Chapter 5,Professor Morton-Blake rep

  3. SOLITON DIFFUSION IN POLYACETYLENE

    OpenAIRE

    Maki, K.

    1983-01-01

    Making use of the Su, Schrieffer and Heeger (SSH) model for polyacetylene, we study theoretically the soliton difusion in pristine trans-(CH)x. The soliton in the SSH model couples linearly both optical and acoustic phonons. Since the coupling to the optical phonon is stronger, the optical phonon dominates the soliton diffusion in high temperature (T>400K). However, below the room temperature the acoustic phonon dominates the soliton diffusion. For temperature T>To≡2mc2, where m is the solito...

  4. The Trouble with Diffusion

    Directory of Open Access Journals (Sweden)

    R.T. DeHoff

    2002-09-01

    Full Text Available The phenomenological formalism, which yields Fick's Laws for diffusion in single phase multicomponent systems, is widely accepted as the basis for the mathematical description of diffusion. This paper focuses on problems associated with this formalism. This mode of description of the process is cumbersome, defining as it does matrices of interdiffusion coefficients (the central material properties that require a large experimental investment for their evaluation in three component systems, and, indeed cannot be evaluated for systems with more than three components. It is also argued that the physical meaning of the numerical values of these properties with respect to the atom motions in the system remains unknown. The attempt to understand the physical content of the diffusion coefficients in the phenomenological formalism has been the central fundamental problem in the theory of diffusion in crystalline alloys. The observation by Kirkendall that the crystal lattice moves during diffusion led Darken to develop the concept of intrinsic diffusion, i.e., atom motion relative to the crystal lattice. Darken and his successors sought to relate the diffusion coefficients computed for intrinsic fluxes to those obtained from the motion of radioactive tracers in chemically homogeneous samples which directly report the jump frequencies of the atoms as a function of composition and temperature. This theoretical connection between tracer, intrinsic and interdiffusion behavior would provide the basis for understanding the physical content of interdiffusion coefficients. Definitive tests of the resulting theoretical connection have been carried out for a number of binary systems for which all three kinds of observations are available. In a number of systems predictions of intrinsic coefficients from tracer data do not agree with measured values although predictions of interdiffusion coefficients appear to give reasonable agreement. Thus, the complete

  5. Effect of Cr and Ni on diffusion bonding of Fe3Al with steel

    Indian Academy of Sciences (India)

    Unknown

    While using electron beam welding and vacuum diffusion bonding processes, weld crack can be effectively avoided because of the vacuum atmosphere in welding. In addi- tion, the vacuum diffusion bonding of Fe3Al intermetallic with dissimilar materials has been studied (Wang et al. 2001, 2003). But reports on the effect of ...

  6. Atmospheric structure from Phoenix atmospheric entry data

    Science.gov (United States)

    Catling, D. C.

    2008-12-01

    The atmospheric structure at the time of landing of NASA's Phoenix probe has been derived from measurements of the aerodynamic drag of the spacecraft during atmospheric entry and descent. The result provides the first atmospheric structure in Mars' polar environment obtained from in situ measurements. Phoenix was equipped with an inertial measurement unit (IMU) that used accelerometers for linear acceleration measurement in three Cartesian axes and ring-laser gyroscopes to measure the three- dimensional orientation of the probe (Taylor et al., 2008). The temperature structure of the atmosphere along the flight path was calculated via a four-step process: (i) integrating forward the IMU data to obtain the time history of the spacecraft velocity vector relative to the atmosphere as a function of altitude; (ii) calculating atmospheric density from drag, with iteration for aerodynamic coefficient dependence on density; (iii) integrating the hydrostatic equation to derive the vertical pressure; and (iv) calculating atmospheric temperature from the equation of state. Initial profile reconstruction shows reasonable agreement with predictions in the middle atmosphere for the given season and time of day (landing occurred at 16h 33min 37sec in local solar time expressed as a 24-hour clock). However, the derived lower atmospheric structure below ~0.1 mbar is generally warmer than predicted. A possible explanation could be a shallower vertical distribution of dust that usually assumed. References: P. A. Taylor, D. C. Catling, M. Daly, C. S. Dickinson, H. O. Gunnlaugsson, A-M. Harri, C. F. Lange, Temperature, pressure and wind instrumentation on the Phoenix meteorological package, J. Geophys. Res., 113, EA0A10, doi:10.1029/2007JE003015, 2008.

  7. Planetary Atmospheric Electricity

    CERN Document Server

    Leblanc, F; Yair, Y; Harrison, R. G; Lebreton, J. P; Blanc, M

    2008-01-01

    This volume presents our contemporary understanding of atmospheric electricity at Earth and in other solar system atmospheres. It is written by experts in terrestrial atmospheric electricity and planetary scientists. Many of the key issues related to planetary atmospheric electricity are discussed. The physics presented in this book includes ionisation processes in planetary atmospheres, charge generation and separation, and a discussion of electromagnetic signatures of atmospheric discharges. The measurement of thunderstorms and lightning, including its effects and hazards, is highlighted by articles on ground and space based instrumentation, and new missions.Theory and modelling of planetary atmospheric electricity complete this review of the research that is undertaken in this exciting field of space science. This book is an essential research tool for space scientists and geoscientists interested in electrical effects in atmospheres and planetary systems. Graduate students and researchers who are new to t...

  8. Mirador - Atmospheric Composition

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth Science data access made simple. Atmospheric Composition is focused on the composition of Earth's atmosphere in relation to climate prediction, solar effects,...

  9. Diffusion in ceramics

    CERN Document Server

    Pelleg, Joshua

    2016-01-01

    This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...

  10. Osmosis and Diffusion

    Science.gov (United States)

    Sack, Jeff

    2005-01-01

    OsmoBeaker is a CD-ROM designed to enhance the learning of diffusion and osmosis by presenting interactive experimentation to the student. The software provides several computer simulations that take the student through different scenarios with cells, having different concentrations of solutes in them.

  11. Bronnen van diffuse bodembelasting

    NARCIS (Netherlands)

    Lijzen JPA; Ekelenkamp A; LBG; DGM/BO

    1995-01-01

    The aim of this study was to support the policy on preventive soil protection with information on the diffuse (non-local) emissions to soil and the influence on future soil quality. This study is related to inventories on (potential) sources of local soil pollution (e.g. industrial areas,

  12. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Sporring, Jon; Fogh Olsen, Ole

    2008-01-01

    . To address this problem, we introduce a photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way, we preserve important illumination features, while...

  13. National Diffusion Network.

    Science.gov (United States)

    Hartjen, Raymond H.

    1981-01-01

    Address at the 66th Convention of the International Association of Pupil Personnel Workers, Baltimore, Maryland, October 1980, describes the National Diffusion Network, the marketing arm of the Department of Education. State facilitators share innovations in education with school systems. Many adaptions from Maryland schools are usable in other…

  14. Atmospheric refraction : a history

    NARCIS (Netherlands)

    Lehn, WH; van der Werf, S

    2005-01-01

    We trace the history of atmospheric refraction from the ancient Greeks up to the time of Kepler. The concept that the atmosphere could refract light entered Western science in the second century B.C. Ptolemy, 300 years later, produced the first clearly defined atmospheric model, containing air of

  15. Diffuse mode and diffuse-to-filamentary transition in a high pressure nanosecond scale corona discharge under high voltage

    Science.gov (United States)

    Tardiveau, P.; Moreau, N.; Bentaleb, S.; Postel, C.; Pasquiers, S.

    2009-09-01

    The dynamics of a point-to-plane corona discharge induced in high pressure air under nanosecond scale high overvoltage is investigated. The electrical and optical properties of the discharge can be described in space and time with fast and precise current measurements coupled to gated and intensified imaging. Under atmospheric pressure, the discharge exhibits a diffuse pattern like a multielectron avalanche propagating through a direct field ionization mechanism. The diffuse regime can exist since the voltage rise time is much shorter than the characteristic time of the field screening effects, and as long as the local field is higher than the critical ionization field in air. As one of these conditions is not fulfilled, the discharge turns into a multi-channel regime and the diffuse-to-filamentary transition strongly depends on the overvoltage, the point-to-plane gap length and the pressure. When pressure is increased above atmospheric pressure, the diffuse stage and its transition to streamers seem to satisfy similarity rules as the key parameter is the reduced critical ionization field only. However, above 3 bar, neither diffuse avalanche nor streamer filaments are observed but a kind of streamer-leader regime, due to the fact that mechanisms such as photoionization and heat diffusion are not similar to pressure.

  16. Aerosol scattering of ultraviolet sunlight in the tropical maritime atmosphere

    Science.gov (United States)

    Ghazi, A.; Krueger, A. J.; Fraser, R. S.

    1973-01-01

    The effects of atmospheric aerosol scattering on the vertical profile of solar ultraviolet radiation are investigated. Measurements of diffuse and total ultraviolet radiation were made using a rocketborne optical sonde in the marine atmosphere of Antigua. During observations, the sun was at zenith. Vertical profiles of directly transmitted solar radiation were calculated by subtraction of the diffuse component from the total radiance. Using these values of direct downward solar UV-flux, the optical thickness of the atmosphere was derived as a function of altitude. Absorption by ozone was also considered. In the troposphere the values of observed optical thickness were in general equal to or lower than those expected theoretically from Rayleigh scattering alone. The measured radiation profiles were compared with those computed for a multiple scattering model atmosphere. Some computations regarding the interaction of UV-sunlight with maritime aerosols are presented.

  17. Atmospheric Habitable Zones in Y Dwarf Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Yates, Jack S.; Palmer, Paul I. [School of GeoSciences, University of Edinburgh (United Kingdom); Biller, Beth; Cockell, Charles S., E-mail: j.s.yates@ed.ac.uk [Centre for Exoplanet Science, University of Edinburgh (United Kingdom)

    2017-02-20

    We use a simple organism lifecycle model to explore the viability of an atmospheric habitable zone (AHZ), with temperatures that could support Earth-centric life, which sits above an environment that does not support life. To illustrate our model, we use a cool Y dwarf atmosphere, such as WISE J085510.83–0714442.5, whose 4.5–5.2 μ m spectrum shows absorption features consistent with water vapor and clouds. We allow organisms to adapt to their atmospheric environment (described by temperature, convection, and gravity) by adopting different growth strategies that maximize their chance of survival and proliferation. We assume a constant upward vertical velocity through the AHZ. We found that the organism growth strategy is most sensitive to the magnitude of the atmospheric convection. Stronger convection supports the evolution of more massive organisms. For a purely radiative environment, we find that evolved organisms have a mass that is an order of magnitude smaller than terrestrial microbes, thereby defining a dynamical constraint on the dimensions of life that an AHZ can support. Based on a previously defined statistical approach, we infer that there are of the order of 10{sup 9} cool Y brown dwarfs in the Milky Way, and likely a few tens of these objects are within 10 pc from Earth. Our work also has implications for exploring life in the atmospheres of temperate gas giants. Consideration of the habitable volumes in planetary atmospheres significantly increases the volume of habitable space in the galaxy.

  18. Persistent wind-induced enhancement of diffusive CO2 transport in a mountain forest snowpack

    Science.gov (United States)

    D. R. Bowling; W. J. Massman

    2011-01-01

    Diffusion dominates the transport of trace gases between soil and the atmosphere. Pressure gradients induced by atmospheric flow and wind interacting with topographical features cause a small but persistent bulk flow of air within soil or snow. This forcing, called pressure pumping or wind pumping, leads to a poorly quantified enhancement of gas transport beyond the...

  19. The Pearson diffusions: A class of statistically tractable diffusion processes

    DEFF Research Database (Denmark)

    Forman, Julie Lyng; Sørensen, Michael

    The Pearson diffusions is a flexible class of diffusions defined by having linear drift and quadratic squared diffusion coefficient. It is demonstrated that for this class explicit statistical inference is feasible. Explicit optimal martingale estimating func- tions are found, and the corresponding...

  20. Puff-plume atmospheric deposition model for use at SRP in emergency-response situations

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, A.J.; Murphy, C.E. Jr.

    1981-05-01

    An atmospheric transport and diffusion model developed for real-time calculation of the location and concentration of toxic or radioactive materials during an accidental release was improved by including deposition calculations.

  1. Fractal model of anomalous diffusion.

    Science.gov (United States)

    Gmachowski, Lech

    2015-12-01

    An equation of motion is derived from fractal analysis of the Brownian particle trajectory in which the asymptotic fractal dimension of the trajectory has a required value. The formula makes it possible to calculate the time dependence of the mean square displacement for both short and long periods when the molecule diffuses anomalously. The anomalous diffusion which occurs after long periods is characterized by two variables, the transport coefficient and the anomalous diffusion exponent. An explicit formula is derived for the transport coefficient, which is related to the diffusion constant, as dependent on the Brownian step time, and the anomalous diffusion exponent. The model makes it possible to deduce anomalous diffusion properties from experimental data obtained even for short time periods and to estimate the transport coefficient in systems for which the diffusion behavior has been investigated. The results were confirmed for both sub and super-diffusion.

  2. Diffused Religion and Prayer

    Directory of Open Access Journals (Sweden)

    Roberto Cipriani

    2011-06-01

    Full Text Available It is quite likely that the origins of prayer are to be found in ancient mourning and bereavement rites. Primeval ritual prayer was codified and handed down socially to become a deep-rooted feature of people’s cultural behavior, so much so, that it may surface again several years later, in the face of death, danger, need, even in the case of relapse from faith and religious practice. Modes of prayer depend on religious experience, on relations between personal prayer and political action, between prayer and forgiveness, and between prayer and approaches to religions. Various forms of prayer exist, from the covert-hidden to the overt-manifest kind. How can they be investigated? How can one, for instance, explore mental prayer? These issues regard the canon of diffused religion and, therefore, of diffused prayer.

  3. Diffusing Best Practices

    DEFF Research Database (Denmark)

    Pries-Heje, Jan; Baskerville, Richard

    2014-01-01

    Both the practice and the research literature on information systems attach great value to the identification and dissemination of information on “best practices”. In the philosophy of science, this type of knowledge is regarded as technological knowledge because it becomes manifest...... in the successful techniques in one context. While the value for other contexts is unproven, knowledge of best practices circulates under an assumption that the practices will usefully self-diffuse through innovation and adoption in other contexts. We study diffusion of best practices using a design science...... in the presence of two concordant factors. On the context side, the qualities of the selected opinion leader were necessary to provide the subjective norm described in TPB. On the best practice side, the technological qualities of the best practice itself were necessary to instill the ideal attitude (belief...

  4. Improved diffusion Monte Carlo

    OpenAIRE

    Hairer, Martin; Weare, Jonathan

    2012-01-01

    We propose a modification, based on the RESTART (repetitive simulation trials after reaching thresholds) and DPR (dynamics probability redistribution) rare event simulation algorithms, of the standard diffusion Monte Carlo (DMC) algorithm. The new algorithm has a lower variance per workload, regardless of the regime considered. In particular, it makes it feasible to use DMC in situations where the "na\\"ive" generalisation of the standard algorithm would be impractical, due to an exponential e...

  5. Diffusion in hydrogeology

    OpenAIRE

    Barker, John A.

    2016-01-01

    The field of hydrogeology is primarily concerned with the flow of water below the ground surface and with transport, normally of solutes and heat, within that water. Many disciplines have contributed to this endeavor which requires skills from across the spectrum of science, engineering and beyond. The diffusion equation describes not only solute transport but also the flow of water, via Darcy’s law. Of particular interest is transport in fractured rock where most of the flow is through th...

  6. [The diffusion of knowledge].

    Science.gov (United States)

    Ramiro-H, Manuel; Cruz-A, Enrique

    2016-01-01

    Between August 19 and 21, the Feria del Libro de las Ciencias de la Salud (Healthcare Book Fair) took place in the Palacio de Medicina in Mexico City. Archives of Medical Research, Revista Médica del IMSS, and Saber IMSS, three of the main instruments of knowledge diffusion of the Instituto Mexicano del Seguro Social, assisted to this book fair, which was organized by the Facultad de Medicina of UNAM.

  7. Diffuse Ceiling Ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen; Heiselberg, Per; Nielsen, Peter V.

    2014-01-01

    As a novel air distribution system, diffuse ceiling ventilation combines the suspended acoustic ceiling with ventilation supply. Due to the low-impulse supply from the large ceiling area, the system does not generate draught when supplying cold air. However, heat sources play an important role on...... temperature as well as optimizing the radiant cooling potential by combining with thermal mass is conducted and gives a direction for further investigation....

  8. Solute diffusion in liquid metals

    Science.gov (United States)

    Bhat, B. N.

    1973-01-01

    A gas model of diffusion in liquid metals is presented. In this model, ions of liquid metals are assumed to behave like the molecules in a dense gas. Diffusion coefficient of solute is discussed with reference to its mass, ionic size, and pair potential. The model is applied to the case of solute diffusion in liquid silver. An attempt was made to predict diffusion coefficients of solutes with reasonable accuracy.

  9. MAVEN Imaging UV Spectrograph Results on the Mars Atmosphere and Atmospheric Escape

    Science.gov (United States)

    Chaffin, Michael; Schneider, Nick; McClintock, Bill; Stewart, Ian; Deighan, Justin; Jain, Sonal; Clarke, John; Holsclaw, Greg; Montmessin, Franck; Lefevre, Franck; Chaufray, Jean-Yves; Stiepen, Arnaud; Crismani, Matteo; Mayyasi, Majd; Evans, Scott; Stevens, Mike; Yelle, Roger; Jakosky, Bruce

    2016-04-01

    The Imaging Ultraviolet Spectrograph (IUVS) is one of nine science instruments aboard the Mars Atmosphere and Volatile and EvolutioN (MAVEN) spacecraft, whose payload is dedicated to exploring the upper atmosphere of Mars and understanding the magnitude and drivers of Mars' atmospheric escape rate. IUVS uses ultraviolet light to investigate the lower and upper atmosphere and ionosphere of Mars. The instrument is among the most powerful spectrographs sent to another planet, with several key capabilities: (1) separate Far-UV & Mid-UV channels for stray light control, (2) a high resolution echelle mode to resolve deuterium and hydrogen emission, (3) internal instrument pointing and scanning capabilities to allow complete mapping and nearly continuous operation, and (4) optimization for airglow studies. IUVS, along with other MAVEN instruments, obtains a comprehensive picture of the current state of the Mars upper atmosphere and ionosphere and the processes that control atmospheric escape. We present an overview of selected IUVS results, including (1) the discovery of diffuse aurora at Mars, and its contrast with previously detected discrete aurora localized near crustal magnetic fields; (2) widespread detection of mesospheric clouds; (3) Significant seasonal and short-timescale variability in thermospheric composition; (4) Global ozone maps spanning six months of seasonal evolution; and (5) mapping of the Mars H and O coronas, deriving the escape rates of H and O and their variability. This last is of particular importance for understanding the long term evolution of Mars and its atmosphere, with the observed preset escape of H potentially capable of removing a large fraction of Mars' initial water inventory, and the differential escape of O relative to H potentially providing a net source of oxidizing power to the atmosphere and planet at present, in contrast with a photochemical theory that predicts stoichiometrically balanced escape. The atmospheric and escape

  10. Electrophoresis of diffuse soft particles

    NARCIS (Netherlands)

    Duval, J.F.L.; Ohshima, H.

    2006-01-01

    A theory is presented for the electrophoresis of diffuse soft particles in a steady dc electric field. The particles investigated consist of an uncharged impenetrable core and a charged diffuse polyelectrolytic shell, which is to some extent permeable to ions and solvent molecules. The diffuse

  11. Measurement of the Atmospheric $\

    CERN Document Server

    Aartsen, M G; Abdou, Y; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beattie, K; Beatty, J J; Bechet, S; Tjus, J Becker; Becker, K -H; Bell, M; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohaichuk, S; Bohm, C; Bose1, D; Boser, S; Botner, O; Brayeur, L; Brown, A M; Bruijn, R; Brunner, J; Buitink, S; Carson, M; Casey, J; Casier, M; Chirkin, D; Christy, B; Clark, K; Clevermann, F; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; De Ridder, S; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Diaz-Velez, J C; Dreyer, J; Dumm, J P; Dunkman, M; Eagan, R; Eberhardt, B; Eisch, J; Ellsworth, R W; Engdegard, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glusenkamp, T; Goldschmidt, A; Golup, G; Goodman, J A; Gora, D; Grant, D; Gross, A; Grullon, S; Gurtner, M; Ha, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heimann, P; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jlelati, O; Kappes, A; Karg, T; Karle, A; Kiryluk, J; Kislat, F; Klas, J; Klein, S R; Kohne, J -H; Kohnen, G; Kolanoski, H; Kopke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lauer, R; Lesiak-Bzdak, M; Lunemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Meszaros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Panknin, S; Paul, L; Pepper, J A; Heros, C Perez de los; Pieloth, D; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Radel, L; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schoneberg, S; Schonherr, L; Schonwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Seo, S H; Sestayo, Y; Seunarine, S; Sheremata, C; Smith, M W E; Soiron, M; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stoss, A; Strahler, E A; Strom, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Usner, M; van der Drift, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge1, M; Vraeghe, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Wasserman, R; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zilles, A; Zoll, M

    2012-01-01

    We report the first observation in a high energy neutrino telescope of cascades induced by atmospheric electron neutrinos and by neutral current interactions of atmospheric neutrinos of all flavors. Using data recorded during the first year of operation of IceCube's DeepCore low energy extension, a sample of 1029 events is observed in 281 days of data. The number of observed cascades is $N_{\\rm cascade} = 496 \\pm 66 (stat.) \\pm 88(syst.)$ and the rest of the sample consists of residual backgrounds due to atmospheric muons and charged current interactions of atmospheric muon neutrinos. The flux of the atmospheric electron neutrinos is determined in the energy range between approximately 80 GeV and 6 TeV and is consistent with models of atmospheric neutrinos.

  12. Atmospheric Circulation of Exoplanets

    OpenAIRE

    Showman, Adam P.; Cho, James Y-K.; Menou, Kristen

    2009-01-01

    We survey the basic principles of atmospheric dynamics relevant to explaining existing and future observations of exoplanets, both gas giant and terrestrial. Given the paucity of data on exoplanet atmospheres, our approach is to emphasize fundamental principles and insights gained from Solar-System studies that are likely to be generalizable to exoplanets. We begin by presenting the hierarchy of basic equations used in atmospheric dynamics, including the Navier-Stokes, primitive, shallow-wate...

  13. Advanced diffusion processes and phenomena

    CERN Document Server

    Öchsner, Andreas; Belova, Irina

    2014-01-01

    This topical volume on Advanced Diffusion Processes and Phenomena addresses diffusion in a wider sense of not only mass diffusion but also heat diffusion in fluids and solids. Both diffusion phenomena play an important role in the characterization of engineering materials and corresponding structures. Understanding these different transport phenomena at many levels, from atomistic to macro, has therefore long attracted the attention of many researchers in materials science and engineering and related disciplines. The present topical volume captures a representative cross-section of some of the

  14. Designing Dynamic Atmospheres

    DEFF Research Database (Denmark)

    Kinch, Sofie; Højlund, Marie

    2012-01-01

    This paper addresses the notion of atmospheres from a designerly perspective, and discusses temporal challenges facing interaction designers when acknowledging the dynamic character of it. As atmospheres are created in the relation between body, space, and time, a pragmatic approach seems useful,....... The potentials and implica-­‐ tions are presented through a design case, Kidkit, highlighting temporality as design parametre within interaction design.......This paper addresses the notion of atmospheres from a designerly perspective, and discusses temporal challenges facing interaction designers when acknowledging the dynamic character of it. As atmospheres are created in the relation between body, space, and time, a pragmatic approach seems useful...

  15. Atmospheric Measurements Laboratory (AML)

    Data.gov (United States)

    Federal Laboratory Consortium — The Atmospheric Measurements Laboratory (AML) is one of the nation's leading research facilities for understanding aerosols, clouds, and their interactions. The AML...

  16. Atmospheric aerosol formation and its growth during the cold ...

    Indian Academy of Sciences (India)

    mid-point diameter 13 nm and it is due to photo-chemical nucleation, coagulation and coalescence among nucleated clusters. The ratios of real to ... Atmospheric new particle formation processes contribute significantly to the global ..... It is desirable to quantify the influence of mole- cular mass and diffusivity of vapours of ...

  17. Photochemistry of planetary atmospheres. [Mars atmospheric composition

    Science.gov (United States)

    Stief, L. J.

    1973-01-01

    The atmospheric composition of Mars is presented, and the applicability of laboratory data on CO2 absorption cross sections and quantum yields of dissociation is discussed. A summary and critical evaluation are presented on the various mechanisms proposed for converting the photodissociation products CO and O2 back to CO2.

  18. The diffuse ensemble filter

    Directory of Open Access Journals (Sweden)

    X. Yang

    2009-07-01

    Full Text Available A new class of ensemble filters, called the Diffuse Ensemble Filter (DEnF, is proposed in this paper. The DEnF assumes that the forecast errors orthogonal to the first guess ensemble are uncorrelated with the latter ensemble and have infinite variance. The assumption of infinite variance corresponds to the limit of "complete lack of knowledge" and differs dramatically from the implicit assumption made in most other ensemble filters, which is that the forecast errors orthogonal to the first guess ensemble have vanishing errors. The DEnF is independent of the detailed covariances assumed in the space orthogonal to the ensemble space, and reduces to conventional ensemble square root filters when the number of ensembles exceeds the model dimension. The DEnF is well defined only in data rich regimes and involves the inversion of relatively large matrices, although this barrier might be circumvented by variational methods. Two algorithms for solving the DEnF, namely the Diffuse Ensemble Kalman Filter (DEnKF and the Diffuse Ensemble Transform Kalman Filter (DETKF, are proposed and found to give comparable results. These filters generally converge to the traditional EnKF and ETKF, respectively, when the ensemble size exceeds the model dimension. Numerical experiments demonstrate that the DEnF eliminates filter collapse, which occurs in ensemble Kalman filters for small ensemble sizes. Also, the use of the DEnF to initialize a conventional square root filter dramatically accelerates the spin-up time for convergence. However, in a perfect model scenario, the DEnF produces larger errors than ensemble square root filters that have covariance localization and inflation. For imperfect forecast models, the DEnF produces smaller errors than the ensemble square root filter with inflation. These experiments suggest that the DEnF has some advantages relative to the ensemble square root filters in the regime of small ensemble size, imperfect model, and copious

  19. Diffusion in silicon isotope heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Silvestri, Hughes Howland [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    The simultaneous diffusion of Si and the dopants B, P, and As has been studied by the use of a multilayer structure of isotopically enriched Si. This structure, consisting of 5 pairs of 120 nm thick natural Si and 28Si enriched layers, enables the observation of 30Si self-diffusion from the natural layers into the 28Si enriched layers, as well as dopant diffusion from an implanted source in an amorphous Si cap layer, via Secondary Ion Mass Spectrometry (SIMS). The dopant diffusion created regions of the multilayer structure that were extrinsic at the diffusion temperatures. In these regions, the Fermi level shift due to the extrinsic condition altered the concentration and charge state of the native defects involved in the diffusion process, which affected the dopant and self-diffusion. The simultaneously recorded diffusion profiles enabled the modeling of the coupled dopant and self-diffusion. From the modeling of the simultaneous diffusion, the dopant diffusion mechanisms, the native defect charge states, and the self- and dopant diffusion coefficients can be determined. This information is necessary to enhance the physical modeling of dopant diffusion in Si. It is of particular interest to the modeling of future electronic Si devices, where the nanometer-scale features have created the need for precise physical models of atomic diffusion in Si. The modeling of the experimental profiles of simultaneous diffusion of B and Si under p-type extrinsic conditions revealed that both species are mediated by neutral and singly, positively charged Si self-interstitials. The diffusion of As and Si under extrinsic n-type conditions yielded a model consisting of the interstitialcy and vacancy mechanisms of diffusion via singly negatively charged self-interstitials and neutral vacancies. The simultaneous diffusion of P and Si has been modeled on the basis of neutral and singly negatively charged self-interstitials and neutral and singly

  20. Distributed Control Diffusion

    DEFF Research Database (Denmark)

    Schultz, Ulrik Pagh

    2007-01-01

    A self-reconfigurable robot is a robotic device that can change its own shape. Self-reconfigurable robots are commonly built from multiple identical modules that can manipulate each other to change the shape of the robot. The robot can also perform tasks such as locomotion without changing shape....... The prototype relies on a simple virtual machine with a dedicated instruction set, allowing mobile programs to migrate between the modules that constitute a robot. Through a number of simulated experiments, we should how a single rule-based controller program implemented using distributed control diffusion can...

  1. Geologic emissions of methane to the atmosphere.

    Science.gov (United States)

    Etiope, Giuseppe; Klusman, Ronald W

    2002-12-01

    The atmospheric methane budget is commonly defined assuming that major sources derive from the biosphere (wetlands, rice paddies, animals, termites) and that fossil, radiocarbon-free CH4 emission is due to and mediated by anthropogenic activity (natural gas production and distribution, and coal mining). However, the amount of radiocarbon-free CH4 in the atmosphere, estimated at approximately 20% of atmospheric CH4, is higher than the estimates from statistical data of CH4 emission from fossil fuel related anthropogenic sources. This work documents that significant amounts of "old" methane, produced within the Earth crust, can be released naturally into the atmosphere through gas permeable faults and fractured rocks. Major geologic emissions of methane are related to hydrocarbon production in sedimentary basins (biogenic and thermogenic methane) and, subordinately, to inorganic reactions (Fischer-Tropsch type) in geothermal systems. Geologic CH4 emissions include diffuse fluxes over wide areas, or microseepage, on the order of 10(0)-10(2) mg m(-2) day(-1), and localised flows and gas vents, on the order of 10(2) t y(-1), both on land and on the seafloor. Mud volcanoes producing flows of up to 10(3) t y(-1) represent the largest visible expression of geologic methane emission. Several studies have indicated that methanotrophic consumption in soil may be insufficient to consume all leaking geologic CH4 and positive fluxes into the atmosphere can take place in dry or seasonally cold environments. Unsaturated soils have generally been considered a major sink for atmospheric methane, and never a continuous, intermittent, or localised source to the atmosphere. Although geologic CH4 sources need to be quantified more accurately, a preliminary global estimate indicates that there are likely more than enough sources to provide the amount of methane required to account for the suspected missing source of fossil CH4.

  2. Turbulent transport in the atmospheric surface layer

    Energy Technology Data Exchange (ETDEWEB)

    Tagesson, Torbern [Dept. of Physical Geography and Ecosystem Science, Lund Univ., Lund (Sweden)

    2012-04-15

    In the modelling of transport and accumulation of the radioactive isotope carbon-14 (C-14) in the case of a potential release from a future repository of radioactive waste, it is important to describe the transport of the isotope in the atmosphere. This report aims to describe the turbulent transport within the lower part of the atmosphere; the inertial surface layer and the roughness sublayer. Transport in the inertial surface layer is dependent on several factors, whereof some can be neglected under certain circumstances. Under steady state conditions, fully developed turbulent conditions, in flat and horizontal homogeneous areas, it is possible to apply an eddy diffusivity approach for estimating vertical transport of C. The eddy diffusivity model assumes that there is proportionality between the vertical gradient and the transport of C. The eddy diffusivity is depending on the atmospheric turbulence, which is affected by the interaction between mean wind and friction of the ground surface and of the sensible heat flux in the atmosphere. In this report, it is described how eddy diffusivity of the inertial surface layer can be estimated from 3-d wind measurements and measurements of sensible heat fluxes. It is also described how to estimate the eddy diffusivity in the inertial surface layer from profile measurements of temperature and wind speed. Close to the canopy, wind and C profiles are influenced by effects of the surface roughness; this section of the atmosphere is called the roughness sublayer. Its height is up to {approx}3 times the height of the plant canopy. When the mean wind interacts with the canopy, turbulence is not only produced by shear stress and buoyancy, it is additionally created by wakes, which are formed behind the plants. Turbulence is higher than it would be over a flat surface, and the turbulent transport is hereby more efficient. Above the plant canopy, but still within the roughness sublayer, a function that compensates for the effect

  3. Controlled Atmosphere Stunning

    NARCIS (Netherlands)

    Lambooij, E.; Gerritzen, M.A.

    2009-01-01

    Controlled atmosphere (CAS) stunning includes several variations of gaseous mixtures given to induce an anaesthetic state before slaughter poultry. One method of multi phase CAS is to unload the birds out of the crate on a conveyor belt and subject the birds to an atmosphere of 30% O2, 40% CO2 and

  4. Proterozoic atmospheric oxygen

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene

    2014-01-01

    This article is concerned with the evolution of atmospheric oxygen concentrations through the Proterozoic Eon. In particular, this article will seek to place the history of atmospheric oxygenation through the Proterozoic Eon in the context of the evolving physical environment including the history...

  5. The Power of Atmosphere

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2014-01-01

    composed of bubbles of affects – that is, the particles that are charged with power and normativity. References Grtiffero, T. (2014 (2010)). Atmospheres: Aesthetics of Emotional Spaces. Ashgate Philippopoulos-Mihalopoulos, A. (2013). Atmospheres of law: Senses, affects, lawscapes, in Emotion, Space...

  6. Designing Dynamic Atmospheres

    DEFF Research Database (Denmark)

    Højlund, Marie; Kinch, Sofie

    2012-01-01

    This paper addresses the notion of atmospheres from a designerly perspective, and discusses temporal challenges facing interaction designers when acknowledging the dynamic character of it. As atmospheres are created in the relation between body, space, and time, a pragmatic approach seems useful....... The potentials and implications are presented through a design case, Kidkit, highlighting temporality as design parametre within interaction design....

  7. Diffusion in Solids Fundamentals, Methods, Materials, Diffusion-Controlled Processes

    CERN Document Server

    Mehrer, Helmut

    2007-01-01

    Diffusion is a vital topic in solid-state physics and chemistry, physical metallurgy and materials science. Diffusion processes are ubiquitous in solids at elevated temperatures. A thorough understanding of diffusion in materials is crucial for materials development and engineering. This book first gives an account of the central aspects of diffusion in solids, for which the necessary background is a course in solid state physics. It then provides easy access to important information about diffuson in metals, alloys, semiconductors, ion-conducting materials, glasses and nanomaterials. Several diffusion-controlled phenomena, including ionic conduction, grain-boundary and dislocation pipe diffusion, are considered as well. Graduate students in solid-state physics, physical metallurgy, materials science, physical and inorganic chemistry or geophysics will benefit from this book as will physicists, chemists, metallurgists, materials engineers in academic and industrial research laboratories.

  8. Diffusion in Tube Dialyzer

    Directory of Open Access Journals (Sweden)

    Yohannes Nigatie

    2017-09-01

    Full Text Available Nowadays, kidney failure is a problem of many peoples in the world. We know that the main function of kidney is maintaining the chemical quality of blood particularly removing urea through urine. But when they malfunction, the pathologic state known as uremia results in a condition in which the urea is retained in the body. Failure of the kidney results in building up of harmful wastes and excess fluids in the body. Kidney diseases (failures can be due to infections, high blood pressure (hypertension, diabetes, and/or extensive use of medication. The best form of treatment is the implantation of a healthy kidney from a donor. However, this is often not possible due to the limited availability of human organs. Chronic kidney failure requires the treatment using a tube dialyzer called dialysis. Blood is taken out of the body and passes through a special membrane that removes waste and extra fluids. The clean blood is then returned to the body. The process is controlled by a dialysis machine (tube dialyzer which is equipped with a blood pump and monitoring systems to ensure safety. So this article investigates the real application of mathematics (diffusion in medical science, and it also contains the mathematical formulation and interpretation of tube dialyzer in relation to diffusion.

  9. The diffusion of microfinance.

    Science.gov (United States)

    Banerjee, Abhijit; Chandrasekhar, Arun G; Duflo, Esther; Jackson, Matthew O

    2013-07-26

    To study the impact of the choice of injection points in the diffusion of a new product in a society, we developed a model of word-of-mouth diffusion and then applied it to data on social networks and participation in a newly available microfinance loan program in 43 Indian villages. Our model allows us to distinguish information passing among neighbors from direct influence of neighbors' participation decisions, as well as information passing by participants versus nonparticipants. The model estimates suggest that participants are seven times as likely to pass information compared to informed nonparticipants, but information passed by nonparticipants still accounts for roughly one-third of eventual participation. An informed household is not more likely to participate if its informed friends participate. We then propose two new measures of how effective a given household would be as an injection point. We show that the centrality of the injection points according to these measures constitutes a strong and significant predictor of eventual village-level participation.

  10. Atmosphere Impact Losses

    Science.gov (United States)

    Schlichting, Hilke E.; Mukhopadhyay, Sujoy

    2018-02-01

    Determining the origin of volatiles on terrestrial planets and quantifying atmospheric loss during planet formation is crucial for understanding the history and evolution of planetary atmospheres. Using geochemical observations of noble gases and major volatiles we determine what the present day inventory of volatiles tells us about the sources, the accretion process and the early differentiation of the Earth. We further quantify the key volatile loss mechanisms and the atmospheric loss history during Earth's formation. Volatiles were accreted throughout the Earth's formation, but Earth's early accretion history was volatile poor. Although nebular Ne and possible H in the deep mantle might be a fingerprint of this early accretion, most of the mantle does not remember this signature implying that volatile loss occurred during accretion. Present day geochemistry of volatiles shows no evidence of hydrodynamic escape as the isotopic compositions of most volatiles are chondritic. This suggests that atmospheric loss generated by impacts played a major role during Earth's formation. While many of the volatiles have chondritic isotopic ratios, their relative abundances are certainly not chondritic again suggesting volatile loss tied to impacts. Geochemical evidence of atmospheric loss comes from the {}3He/{}^{22}Ne, halogen ratios (e.g., F/Cl) and low H/N ratios. In addition, the geochemical ratios indicate that most of the water could have been delivered prior to the Moon forming impact and that the Moon forming impact did not drive off the ocean. Given the importance of impacts in determining the volatile budget of the Earth we examine the contributions to atmospheric loss from both small and large impacts. We find that atmospheric mass loss due to impacts can be characterized into three different regimes: 1) Giant Impacts, that create a strong shock transversing the whole planet and that can lead to atmospheric loss globally. 2) Large enough impactors (m_{cap} ≳ √{2

  11. Apparent diffusion profile estimation from high angular resolution diffusion images

    Science.gov (United States)

    Descoteaux, Maxime; Angelino, Elaine; Fitzgibbons, Shaun; Deriche, Rachid

    2006-03-01

    High angular resolution diffusion imaging (HARDI) has recently been of great interest to characterize non-Gaussian diffusion process. In the white matter of the brain, this occurs when fiber bundles cross, kiss or diverge within the same voxel. One of the important goal is to better describe the apparent diffusion process in these multiple fiber regions, thus overcoming the limitations of classical diffusion tensor imaging (DTI). In this paper, we design the appropriate mathematical tools to describe noisy HARDI data. Using a meaningful modified spherical harmonics basis to capture the physical constraints of the problem, we propose a new regularization algorithm to estimate a smoother and closer diffusivity profile to the true diffusivities without noise. We exploit properties of the spherical harmonics to define a smoothing term based on the Laplace-Beltrami for functions defined on the unit sphere. An additional contribution of the paper is the derivation of the general transformation taking the spherical harmonics coefficients to the high order tensor independent elements. This allows the careful study of the state of the art high order anisotropy measures computed from either spherical harmonics or tensor coefficients. We analyze their ability to characterize the underlying diffusion process. We are able to recover voxels with isotropic, single fiber anisotropic and multiple fiber anisotropic diffusion. We test and validate the approach on diffusion profiles from synthetic data and from a biological rat phantom.

  12. Modeling Top of Atmosphere Radiance over Heterogeneous Non-Lambertian Rugged Terrain

    NARCIS (Netherlands)

    Mousivand, A.; Verhoef, W.; Menenti, M.; Gorte, B.G.H.

    2015-01-01

    Topography affects the fraction of direct and diffuse radiation received on a pixel and changes the sun–target–sensor geometry, resulting in variations in the observed radiance. Retrieval of surface–atmosphere properties from top of atmosphere radiance may need to account for topographic effects.

  13. Development of electromagnetic cascades in the atmosphere including the Landau-Pomeranchuk-Migdal effect

    Science.gov (United States)

    Streitmatter, R. E.; Stephens, S. A.

    1985-01-01

    Numerical solutions have been obtained for the one-dimensional atmospheric electromagnetic cascade diffusion equations, including the Landau-Pomeranchuk-Migdal and screening effects. Spectra produced by primary gamma rays of various energies are given at a number of deths in the atmosphere.

  14. Multimodel analysis of anisotropic diffusive tracer-gas transport in a deep arid unsaturated zone

    Science.gov (United States)

    Green, Christopher T.; Walvoord, Michelle Ann; Andraski, Brian J.; Striegl, Robert G.; Stonestrom, David A.

    2015-01-01

    Gas transport in the unsaturated zone affects contaminant flux and remediation, interpretation of groundwater travel times from atmospheric tracers, and mass budgets of environmentally important gases. Although unsaturated zone transport of gases is commonly treated as dominated by diffusion, the characteristics of transport in deep layered sediments remain uncertain. In this study, we use a multimodel approach to analyze results of a gas-tracer (SF6) test to clarify characteristics of gas transport in deep unsaturated alluvium. Thirty-five separate models with distinct diffusivity structures were calibrated to the tracer-test data and were compared on the basis of Akaike Information Criteria estimates of posterior model probability. Models included analytical and numerical solutions. Analytical models provided estimates of bulk-scale apparent diffusivities at the scale of tens of meters. Numerical models provided information on local-scale diffusivities and feasible lithological features producing the observed tracer breakthrough curves. The combined approaches indicate significant anisotropy of bulk-scale diffusivity, likely associated with high-diffusivity layers. Both approaches indicated that diffusivities in some intervals were greater than expected from standard models relating porosity to diffusivity. High apparent diffusivities and anisotropic diffusivity structures were consistent with previous observations at the study site of rapid lateral transport and limited vertical spreading of gas-phase contaminants. Additional processes such as advective oscillations may be involved. These results indicate that gases in deep, layered unsaturated zone sediments can spread laterally more quickly, and produce higher peak concentrations, than predicted by homogeneous, isotropic diffusion models.

  15. Diffuse Jovian aurora influenced by plasma injection from Io

    Science.gov (United States)

    Thorne, R. M.; Tsurutani, B. T.

    1979-01-01

    The paper demonstrates that the broad band of whistler-mode waves observed within the high density torus surrounding Io is consistent with electron cyclotron generation. Cyclotron resonant instability of Jovian energetic electrons is enhanced due to the lower resonant electron energy within the equatorial high density plasma torus surrounding the orbit of Io. The higher energy resonant electron scattering and the corresponding energetic electron lifetimes indicate that an efficient local acceleration process is required to replenish the precipitating relativistic electrons. Calculated energy deposition into the Jovian atmosphere should provide a dominant source of middle atmospheric ionization and excite a continuous band of diffuse auroral emission. It is suggested that the diffuse Jovian aurora should be influenced by the variable volcanic activity on Io which is thought to be an important source of plasma, since the cyclotron scattering process is strongly influenced by the ambient equatorial thermal plasma density.

  16. Atmospheric composition change: Ecosystems–Atmosphere interactions

    DEFF Research Database (Denmark)

    Fowler, D.; Pilegaard, Kim; Sutton, M.A.

    2009-01-01

    in the size range 1 nm–10 μm including organic and inorganic chemical species. The main focus of the review is on the exchange between terrestrial ecosystems, both managed and natural and the atmosphere, although some new developments in ocean–atmosphere exchange are included. The material presented is biased...... and techniques in micrometeorology. For some of the compounds there have been paradigm shifts in approach and application of both techniques and assessment. These include flux measurements over marine surfaces and urban areas using micrometeorological methods and the up-scaling of flux measurements using...... aircraft and satellite remote sensing. The application of a flux-based approach in assessment of O3 effects on vegetation at regional scales is an important policy linked development secured through improved quantification of fluxes. The coupling of monitoring, modelling and intensive flux measurement...

  17. Solute diffusivity in undisturbed soil

    DEFF Research Database (Denmark)

    Lægdsmand, Mette; Møldrup, Per; Schjønning, Per

    2012-01-01

    Solute diffusivity in soil plays a major role in many important processes with relation to plant growth and environmental issues. Soil solute diffusivity is affected by the volumetric water content as well as the morphological characteristics of water-filled pores. The solute diffusivity in intact...... tracers) for a better determination of the diffusivity. The diffusivity was higher in the below-till soil than the plowed soil at the same soil water matric potential due to higher water content but also due to higher continuity and lower tortuosity of the soil pores. We measured identical solute...... diffusivities independent of the tracer set used. We analyzed the whole data set using Archie's law and found a linear relation between Archie's exponent and the logarithm of the soil water matric suction in centimeters of water (pF). An analysis of seven data sets from the literature showed...

  18. Apoplastic Diffusion Barriers in Arabidopsis

    Science.gov (United States)

    Schreiber, Lukas; Franke, Rochus Benni; Geldner, Niko; Reina-Pinto, José J.; Kunst, Ljerka

    2013-01-01

    During the development of Arabidopsis and other land plants, diffusion barriers are formed in the apoplast of specialized tissues within a variety of plant organs. While the cuticle of the epidermis is the primary diffusion barrier in the shoot, the Casparian strips and suberin lamellae of the endodermis and the periderm represent the diffusion barriers in the root. Different classes of molecules contribute to the formation of extracellular diffusion barriers in an organ- and tissue-specific manner. Cutin and wax are the major components of the cuticle, lignin forms the early Casparian strip, and suberin is deposited in the stage II endodermis and the periderm. The current status of our understanding of the relationships between the chemical structure, ultrastructure and physiological functions of plant diffusion barriers is discussed. Specific aspects of the synthesis of diffusion barrier components and protocols that can be used for the assessment of barrier function and important barrier properties are also presented. PMID:24465172

  19. Dynamics of Massive Atmospheres

    Science.gov (United States)

    Chemke, Rei; Kaspi, Yohai

    2017-10-01

    The many recently discovered terrestrial exoplanets are expected to hold a wide range of atmospheric masses. Here the dynamic-thermodynamic effects of atmospheric mass on atmospheric circulation are studied using an idealized global circulation model by systematically varying the atmospheric surface pressure. On an Earth analog planet, an increase in atmospheric mass weakens the Hadley circulation and decreases its latitudinal extent. These changes are found to be related to the reduction of the convective fluxes and net radiative cooling (due to the higher atmospheric heat capacity), which, respectively, cool the upper troposphere at mid-low latitudes and warm the troposphere at high latitudes. These together decrease the meridional temperature gradient, tropopause height and static stability. The reduction of these parameters, which play a key role in affecting the flow properties of the tropical circulation, weakens and contracts the Hadley circulation. The reduction of the meridional temperature gradient also decreases the extraction of mean potential energy to the eddy fields and the mean kinetic energy, which weakens the extratropical circulation. The decrease of the eddy kinetic energy decreases the Rhines wavelength, which is found to follow the meridional jet scale. The contraction of the jet scale in the extratropics results in multiple jets and meridional circulation cells as the atmospheric mass increases.

  20. Driven diffusion in nanoscaled materials

    OpenAIRE

    Albers, Tony; Bauer, Michael; Borczyskowski, Christian Von; Gerlach, Frank; Heidernätsch, Mario; Kärger, Jörg; Kondrashova, Daria; Radons, Günter; Schubert, Sebastian; Shakhov, Alexander; Täuber, Daniela; Valiullin, Rustem; Zeigermann, Philipp

    2016-01-01

    Mass transfer processes in which specific interactions with environments lead to complex diffusion patterns, such as the occurrence of transient sub-diffusive behaviors or of heterogeneous diffusion, were studied by means of two different experimental techniques, namely single-particle tracking operating with single molecules and nuclear magnetic resonance operating with large molecular ensembles. As an important point, the combined application of these techniques allowed for a deeper insight...

  1. Fractal model of anomalous diffusion

    OpenAIRE

    Gmachowski, Lech

    2015-01-01

    An equation of motion is derived from fractal analysis of the Brownian particle trajectory in which the asymptotic fractal dimension of the trajectory has a required value. The formula makes it possible to calculate the time dependence of the mean square displacement for both short and long periods when the molecule diffuses anomalously. The anomalous diffusion which occurs after long periods is characterized by two variables, the transport coefficient and the anomalous diffusion exponent. An...

  2. Osmosis and Diffusion Conceptual Assessment

    OpenAIRE

    Fisher, Kathleen M.; Williams, Kathy S; Lineback, Jennifer Evarts

    2011-01-01

    Biology student mastery regarding the mechanisms of diffusion and osmosis is difficult to achieve. To monitor comprehension of these processes among students at a large public university, we developed and validated an 18-item Osmosis and Diffusion Conceptual Assessment (ODCA). This assessment includes two-tiered items, some adopted or modified from the previously published Diffusion and Osmosis Diagnostic Test (DODT) and some newly developed items. The ODCA, a validated instrument containing ...

  3. Diffusion or bulk flow

    DEFF Research Database (Denmark)

    Schulz, Alexander

    2015-01-01

    symplasmic pathway from mesophyll to sieve elements. Crucial for the driving force is the question where water enters the pre-phloem pathway. Surprisingly, the role of PD in water movement has not been addressed so far appropriately. Modeling of assimilate and water fluxes indicates that in symplasmic...... the concentration gradient or bulk flow along a pressure gradient. The driving force seems to depend on the mode of phloem loading. In a majority of plant species phloem loading is a thermodynamically active process, involving the activity of membrane transporters in the sieve-element companion cell complex. Since...... is currently matter of discussion, called passive symplasmic loading. Based on the limited material available, this review compares the different loading modes and suggests that diffusion is the driving force in apoplasmic loaders, while bulk flow plays an increasing role in plants having a continuous...

  4. Hereditary diffuse gastric cancer

    DEFF Research Database (Denmark)

    van der Post, Rachel S; Vogelaar, Ingrid P; Carneiro, Fátima

    2015-01-01

    Germline CDH1 mutations confer a high lifetime risk of developing diffuse gastric (DGC) and lobular breast cancer (LBC). A multidisciplinary workshop was organised to discuss genetic testing, surgery, surveillance strategies, pathology reporting and the patient's perspective on multiple aspects......, including diet post gastrectomy. The updated guidelines include revised CDH1 testing criteria (taking into account first-degree and second-degree relatives): (1) families with two or more patients with gastric cancer at any age, one confirmed DGC; (2) individuals with DGC before the age of 40 and (3......) families with diagnoses of both DGC and LBC (one diagnosis before the age of 50). Additionally, CDH1 testing could be considered in patients with bilateral or familial LBC before the age of 50, patients with DGC and cleft lip/palate, and those with precursor lesions for signet ring cell carcinoma. Given...

  5. Diffusion or bulk flow

    DEFF Research Database (Denmark)

    Schulz, Alexander

    2015-01-01

    is currently matter of discussion, called passive symplasmic loading. Based on the limited material available, this review compares the different loading modes and suggests that diffusion is the driving force in apoplasmic loaders, while bulk flow plays an increasing role in plants having a continuous...... the concentration gradient or bulk flow along a pressure gradient. The driving force seems to depend on the mode of phloem loading. In a majority of plant species phloem loading is a thermodynamically active process, involving the activity of membrane transporters in the sieve-element companion cell complex. Since...... assimilate movement includes an apoplasmic step, this mode is called apoplasmic loading. Well established is also the polymer-trap loading mode, where the phloem-transport sugars are raffinose-family oligomers in herbaceous plants. Also this mode depends on the investment of energy, here for sugar...

  6. Nonlocal diffusion and applications

    CERN Document Server

    Bucur, Claudia

    2016-01-01

    Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrödinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.

  7. Diffuse parenchymal lung disease

    Directory of Open Access Journals (Sweden)

    Sara Tomassetti

    2017-04-01

    Full Text Available Between September 2015 and August 2016 there were >1500 publications in the field of diffuse parenchymal lung diseases (DPLDs. For the Clinical Year in Review session at the European Respiratory Society Congress that was held in London, UK, in September 2016, we selected only five articles. This selection, made from the enormous number of published papers, does not include all the relevant studies that will significantly impact our knowledge in the field of DPLDs in the near future. This review article provides our personal view on the following topics: early diagnosis of idiopathic pulmonary fibrosis, current knowledge on the multidisciplinary team diagnosis of DPLDs and the diagnostic role of transbronchial cryobiopsy in this diagnostic setting, insights on the new entity of interstitial pneumonia with autoimmune features, and new therapeutic approaches for scleroderma-related interstitial lung disease.

  8. Measurement and Analysis of the Diffusible Hydrogen in Underwater Wet Welding Joint

    Directory of Open Access Journals (Sweden)

    Kong Xiangfeng

    2016-01-01

    Full Text Available The diffusible hydrogen in steel weldments is one of the main reasons that led to hydrogen assisted cracking. In this paper, the results of literatures survey and preliminary tests of the diffusible hydrogen in underwater wet welding joint were presented. A fluid-discharge method of for measuring the diffusible hydrogen in weldment was introduced in detail. Two kinds of underwater welding electrode diffusible hydrogen are 26.5 mL/100g and 35.5 mL/100g by fluid-discharge method, which are high levels. The diffusible hydrogen of underwater welding is higher than atmospheric welding, and the result is closely related to welding material. The best way to control the diffusible hydrogen is adjusting welding material and improving fluidity of slag.

  9. Atmospheric refraction: a history

    Science.gov (United States)

    Lehn, Waldemar H.; van der Werf, Siebren

    2005-09-01

    We trace the history of atmospheric refraction from the ancient Greeks up to the time of Kepler. The concept that the atmosphere could refract light entered Western science in the second century B.C. Ptolemy, 300 years later, produced the first clearly defined atmospheric model, containing air of uniform density up to a sharp upper transition to the ether, at which the refraction occurred. Alhazen and Witelo transmitted his knowledge to medieval Europe. The first accurate measurements were made by Tycho Brahe in the 16th century. Finally, Kepler, who was aware of unusually strong refractions, used the Ptolemaic model to explain the first documented and recognized mirage (the Novaya Zemlya effect).

  10. New atmospheric program

    Science.gov (United States)

    The National Science Foundation's Division of Atmospheric Sciences has established an Upper Atmospheric Facilities program within its Centers and Facilities section. The program will support the operation of and the scientific research that uses the longitudinal chain of incoherent scatter radars. The program also will ensure that the chain is maintained as a state-of-the-art research tool available to all interested and qualified scientists.For additional information, contact Richard A. Behnke, Division of Atmospheric Sciences, National Science Foundation, 1800 G Street, N.W., Washington, DC 20550 (telephone: 202-357-7390).

  11. Sodium diffusion in boroaluminosilicate glasses

    DEFF Research Database (Denmark)

    Smedskjaer, Morten M.; Zheng, Qiuju; Mauro, John C.

    2011-01-01

    Understanding the fundamentals of alkali diffusion in boroaluminosilicate (BAS) glasses is of critical importance for advanced glass applications, e.g., the production of chemically strengthened glass covers for personal electronic devices. Here, we investigate the composition dependence...... of isothermal sodium diffusion in BAS glasses by ion exchange, inward diffusion, and tracer diffusion experiments. By varying the [SiO2]/[Al2O3] ratio of the glasses, different structural regimes of sodium behavior are accessed. We show that the mobility of the sodium ions decreases with increasing [SiO2]/[Al2O...

  12. Discovery of atmospheric neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Kajita, Takaaki [Tokyo Univ., Inst. for Cosmic Ray Research, Kashiwa, Chiba (Japan)

    2003-05-01

    Cosmic ray particles entering the atmosphere interact with the air nuclei produce neutrinos. These neutrinos are called atmospheric neutrinos. The atmospheric neutrino anomaly observed in Kamiokande is now understood as due to neutrino oscillations by high statistics measurements of the atmospheric neutrinos in Super-Kamiokande. The studies of the atmospheric neutrinos have matured into detailed studies of neutrino masses and mixings. (author)

  13. RETADD: a Regional Trajectory And Diffusion-Deposition model

    Energy Technology Data Exchange (ETDEWEB)

    Begovich, C. L.; Murphy, B. D.; Nappo, Jr., C. J.

    1978-06-01

    The Regional Trajectory and Diffusion-Deposition Model (RETADD) is based upon a version of the National Oceanic and Atmospheric Administration Air Resources Laboratory's Regional-Continental Scale Transport, Diffusion, and Deposition Model. The FORTRAN IV computer model uses a trajectory analysis technique for estimating the transport and long-range diffusion of material emitted from a point source. The wind trajectory portion of the code uses observed upper air winds to compute the transport of the material. Ground level concentrations and depositions are computed by using the Gaussian plume equation for wind trajectories projected forward in time. Options are included to specify an upper bound for the mixed layer and a chemical decomposition rate for the effluent. The limitations to the technique are discussed, the equations and model are described, and listings of the program, input, and output are included.

  14. Atomic Diffusion, Mixing, and Element Abundances in Main Sequence Stars

    Science.gov (United States)

    Vauclair, S.

    2013-12-01

    Atomic diffusion is now recognized as a standard process working in stars, and gravitational settling is introduced in most stellar evolution codes. Helioseismology proved the importance of the downward diffusion of helium and heavy elements below the solar convective zone. However, in more massive stars, the effect of selective radiative accelerations cannot be neglected. It has been known for a long time that the resulting atomic levitation may, in some cases, lead to abundance variations in stellar atmospheres, as observed in the so-called chemically peculiar stars. But this was only part of the story. We have now discovered that, when acting on important elements like iron or nickel, radiative levitation may also lead to global macroscopic effects inside stars, like extra convective zones, wave excitation by the κ-mechanism, and double-diffusive mixing processes like fingering (thermohaline) convection. This paper presents some links between these processes and their consequences.

  15. Applicability of Simplified Simulation Models for Perforation-Mediated Modified Atmosphere Packaging of Fresh Produce

    Directory of Open Access Journals (Sweden)

    Min-Ji Kwon

    2013-01-01

    Full Text Available The comprehensive mass balances of differential equations involving gas diffusion and hydraulic convection through package perforation, gas permeation through polymeric film, and produce respiration have commonly been used to predict the atmosphere of perforated fresh produce packages. However, the predictions often suffer from instability, and to circumvent this problem, a simplified diffusion model that omits the convective gas transfer and empirical models based on experimental mass transfer data have been developed and investigated previously by several researchers. This study investigated the potential and limitations of the simplified diffusion model and two empirical models for predicting the atmosphere in perforated produce packages. The simplified diffusion model satisfactorily estimated the atmosphere inside the perforated packages of fresh produce under the aerobic conditions examined. Published empirical models of the mass transfer coefficients of the perforation seem to be valid only for the measured conditions and thus should be used carefully for that specific purpose.

  16. An experimental study of diffusion and convection of multicomponent gases through catalytic and non-catalytic membranes

    NARCIS (Netherlands)

    Veldsink, J.W.; Veldsink, J.W.; Versteeg, Geert; van Swaaij, Willibrordus Petrus Maria

    1994-01-01

    Diffusion of binary and ternary gases through catalytic and non-catalytic membranes has been studied experimentally at atmospheric pressure. These experiments were conducted in a modified Wicke-Kallenbach diffusion cell consisting of two continuously stirred gas volumes separated by a membrane. The

  17. Atmospheric energy for subsurface life on Mars?

    Science.gov (United States)

    Weiss, B. P.; Yung, Y. L.; Nealson, K. H.

    2000-01-01

    The location and density of biologically useful energy sources on Mars will limit the biomass, spatial distribution, and organism size of any biota. Subsurface Martian organisms could be supplied with a large energy flux from the oxidation of photochemically produced atmospheric H(2) and CO diffusing into the regolith. However, surface abundance measurements of these gases demonstrate that no more than a few percent of this available flux is actually being consumed, suggesting that biological activity driven by atmospheric H(2) and CO is limited in the top few hundred meters of the subsurface. This is significant because the available but unused energy is extremely large: for organisms at 30-m depth, it is 2,000 times previous estimates of hydrothermal and chemical weathering energy and far exceeds the energy derivable from other atmospheric gases. This also implies that the apparent scarcity of life on Mars is not attributable to lack of energy. Instead, the availability of liquid water may be a more important factor limiting biological activity because the photochemical energy flux can only penetrate to 100- to 1,000-m depth, where most H(2)O is probably frozen. Because both atmospheric and Viking lander soil data provide little evidence for biological activity, the detection of short-lived trace gases will probably be a better indicator of any extant Martian life.

  18. Atmospheric Transport Modeling Resources

    Energy Technology Data Exchange (ETDEWEB)

    Mazzola, Carl A. [Stone and Webster Engineering Corporation, Aiken, SC (United States); Addis, Robert P. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1995-03-01

    The purpose of this publication is to provide DOE and other federal agency emergency managers with an in-depth compilation and description of atmospheric dispersion models available to DOE and other Federal sites.

  19. Atmospheric Heavy Metal Pollution

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 4. Atmospheric Heavy Metal Pollution - Development of Chronological Records and Geochemical Monitoring. Rohit Shrivastav. General Article Volume 6 Issue 4 April 2001 pp 62-68 ...

  20. Students 'Weigh' Atmospheric Pollution.

    Science.gov (United States)

    Caporaloni, Marina

    1998-01-01

    Describes a procedure developed by students that measures the mass concentration of particles in a polluted urban atmosphere. Uses a portable fan and filters of various materials. Compares students' data with official data. (DDR)

  1. Our Changing Atmosphere.

    Science.gov (United States)

    Clearing, 1988

    1988-01-01

    Summarizes what is known about two major variables involved in certain types of chemical pollution that seem to be changing the structure of the Earth's atmosphere. Discusses the greenhouse effect and the ozone layer. (TW)

  2. Transitional Gas Jet Diffusion Flames in Microgravity

    Science.gov (United States)

    Agrawal, Ajay K.; Alammar, Khalid; Gollahalli, S. R.; Griffin, DeVon (Technical Monitor)

    2000-01-01

    Drop tower experiments were performed to identify buoyancy effects in transitional hydrogen gas jet diffusion flames. Quantitative rainbow schlieren deflectometry was utilized to optically visualize the flame and to measure oxygen concentration in the laminar portion of the flame. Test conditions consisted of atmospheric pressure flames burning in quiescent air. Fuel from a 0.3mm inside diameter tube injector was issued at jet exit Reynolds numbers (Re) of 1300 to 1700. Helium mole percentage in the fuel was varied from 0 to 40%. Significant effects of buoyancy were observed in near field of the flame even-though the fuel jets were momentum-dominated. Results show an increase of breakpoint length in microgravity. Data suggest that transitional flames in earth-gravity at Re<1300 might become laminar in microgravity.

  3. Effective diffusion of aircraft emissions at micro- and mesoscales

    Energy Technology Data Exchange (ETDEWEB)

    Gerz, T.; Duerbeck, T.; Konopka, P. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-01

    The project aimed to determine the transport, mixing and effective diffusion of aircraft exhaust from the airplane to the range of atmospheric mesoscale flow, i.e., from seconds and meters to hours and tens of kilometers. By means of a chain of large-eddy simulations the dynamics in the wake embedded in a stably stratified, sheared and turbulent atmosphere is calculated including the dilution of a chemically inert species (e.g. CO{sub 2}) concentration. The numerical data are compared to in-situ measured data. From the concentration fields various dilution and diffusion measures are obtained. It is found that the evolving wingtip vortices produced by the lift of the aircraft distort and attract the exhaust jets immediately. The largest fraction of the exhaust is trapped close to the vortex cores (primary wake) after 20 s where it is not further mixed and diluted with ambient air until the vortices collapse. However, the baroclinic torque at the border between vortex and surrounding air detrains about 10 to 30% of the exhaust mass (depending on atmospheric turbulence and stratification) from the vortices into the so-called secondary wake where it mixes rapidly. In the period between 1.5 and 3 minutes the organized vortices collapse into unorganized turbulence either by small-scale turbulent friction or by a large-scale oscillation driven by atmospheric turbulence. The trapped emissions are now released and further distributed and mixed by turbulence and shear in a stably stratified atmosphere. Under flow conditions typically found at cruising heights the emissions reach background concentrations between 2 and 12 hours for windshear between 0.002 and 0.01 s{sup -1} and the spatial plume extension does not exceed the lower mesoscale range (20 km horizontally and 0.3 km vertically). The outcome of the project in terms of dilution, effective diffusion and entrainment rate is summarized. (orig.) 144 figs., 42 tabs., 497 refs.

  4. Global atmospheric changes.

    OpenAIRE

    Piver, W T

    1991-01-01

    Increasing concentrations of CO2 and other greenhouse gases in the atmosphere can be directly related to global warming. In terms of human health, because a major cause of increasing atmospheric concentrations of CO2 is the increased combustion of fossil fuels, global warming also may result in increases in air pollutants, acid deposition, and exposure to ultraviolet (UV) radiation. To understand better the impacts of global warming phenomena on human health, this review emphasizes the proces...

  5. Putting atomic diffusion theory of magnetic ApBp stars to the test: evaluation of the predictions of time-dependent diffusion models

    Science.gov (United States)

    Kochukhov, O.; Ryabchikova, T. A.

    2018-02-01

    A series of recent theoretical atomic diffusion studies has address the challenging problem of predicting inhomogeneous vertical and horizontal chemical element distributions in the atmospheres of magnetic ApBp stars. Here we critically assess the most sophisticated of such diffusion models - based on a time-dependent treatment of the atomic diffusion in a magnetized stellar atmosphere - by direct comparison with observations as well by testing the widely used surface mapping tools with the spectral line profiles predicted by this theory. We show that the mean abundances of Fe and Cr are grossly underestimated by the time-dependent theoretical diffusion model, with discrepancies reaching a factor of 1000 for Cr. We also demonstrate that Doppler imaging inversion codes, based either on modelling of individual metal lines or line-averaged profiles simulated according to theoretical three-dimensional abundance distribution, are able to reconstruct correct horizontal chemical spot maps despite ignoring the vertical abundance variation. These numerical experiments justify a direct comparison of the empirical two-dimensional Doppler maps with theoretical diffusion calculations. This comparison is generally unfavourable for the current diffusion theory, as very few chemical elements are observed to form overabundance rings in the horizontal field regions as predicted by the theory and there are numerous examples of element accumulations in the vicinity of radial field zones, which cannot be explained by diffusion calculations.

  6. Dynamics in Atmospheric Physics

    Science.gov (United States)

    Lindzen, Richard A.

    2005-08-01

    Motion is manifest in the atmosphere in an almost infinite variety of ways. In Dynamics in Atmospheric Physics, Dr. Richard Lindzen describes the nature of motion in the atmosphere, develops fluid dynamics relevant to the atmosphere, and explores the role of motion in determining the climate and atmospheric composition. The author presents the material in a lecture note style, and the emphasis throughout is on describing phenomena that are at the frontiers of current research, but due attention is given to the methodology of research and to the historical background of these topics. The author's treatment and choice of topics is didactic. Problems at the end of each chapter will help students assimilate the material. In general the discussions emphasize physical concepts, and throughout Dr. Lindzen makes a concerted effort to avoid the notion that dynamic meteorology is simply the derivation of equations and their subsequent solution. His desire is that interested students will delve further into solution details. The book is intended as a text for first year graduate students in the atmospheric sciences. Although the material in the book is self contained, a familiarity with differential equations is assumed; some background in fluid mechanics is helpful.

  7. Impact of aerosols and atmospheric particles on plant leaf proteins

    Science.gov (United States)

    Yan, Xing; Shi, Wen Z.; Zhao, Wen J.; Luo, Na N.

    2014-05-01

    Aerosols and atmospheric particles can diffuse and absorb solar radiation, and directly affect plant photosynthesis and related protein expression. In this study, for the first time, we performed an extensive investigation of the effects of aerosols and atmospheric particles on plant leaf proteins by combining Geographic Information System and proteomic approaches. Data on particles with diameters of 0.1-1.0 μm (PM1) from different locations across the city of Beijing and the aerosol optical depth (AOD) over the past 6 years (2007-2012) were collected. In order to make the study more reliable, we segregated the influence of soil pollution by measuring the heavy metal content. On the basis of AOD and PM1, two regions corresponding to strong and weak diffuse solar radiations were selected for analyzing the changes in the expression of plant proteins. Our results demonstrated that in areas with strong diffuse solar radiations, plant ribulose bisphosphate carboxylase was expressed at higher levels, but oxygen evolved in enhancer protein and light-harvesting complex II protein were expressed at lower levels. The expression of ATP synthase subunit beta and chlorophyll a-b binding protein were similar in both regions. By analyzing the changes in the expression of these leaf proteins and their functions, we conclude that aerosols and atmospheric particles stimulate plant photosynthesis facilitated by diffuse solar radiations.

  8. Models of diffuse solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Boland, John; Ridley, Barbara [Centre for Industrial and Applied Mathematics, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA 5095 (Australia); Brown, Bruce [Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546 (Singapore)

    2008-04-15

    For some locations both global and diffuse solar radiation are measured. However, for many locations, only global is measured, or inferred from satellite data. For modelling solar energy applications, the amount of radiation on a tilted surface is needed. Since only the direct component on a tilted surface can be calculated from trigonometry, we need to have diffuse on the horizontal available. There are regression relationships for estimating the diffuse on a tilted surface from diffuse on the horizontal. Models for estimating the diffuse radiation on the horizontal from horizontal global that have been developed in Europe or North America have proved to be inadequate for Australia [Spencer JW. A comparison of methods for estimating hourly diffuse solar radiation from global solar radiation. Sol Energy 1982; 29(1): 19-32]. Boland et al. [Modelling the diffuse fraction of global solar radiation on a horizontal surface. Environmetrics 2001; 12: 103-16] developed a validated model for Australian conditions. We detail our recent advances in developing the theoretical framework for the approach reported therein, particularly the use of the logistic function instead of piecewise linear or simple nonlinear functions. Additionally, we have also constructed a method, using quadratic programming, for identifying values that are likely to be erroneous. This allows us to eliminate outliers in diffuse radiation values, the data most prone to errors in measurement. (author)

  9. Anomalous diffusion in one dimension

    Science.gov (United States)

    Balakrishnan, V.

    1985-09-01

    In view of the interest in the occurrence of anomalous diffusion ( ∼ t 2H, 0 ∼ t2 H; the diffusive spread of the initial condition is given by xε( t) ∼ tH; and the first passage time from the origin to the point x has a stable Lévy distribution with an exponent equal to H.

  10. Persistent diffusion on a line

    Science.gov (United States)

    Balakrishnan, V.; Chaturvedi, S.

    1988-02-01

    We consider solutions to the telegraph equation describing persistent diffusion on a line under various initial conditions. The first passage time distribution is evaluated in closed form. Biased persistent diffusion is also considered. A direct derivation of the telegraph equation from the stochastic equation for the displacement is presented in an appendix.

  11. Osmosis and Diffusion Conceptual Assessment

    Science.gov (United States)

    Fisher, Kathleen M.; Williams, Kathy S.; Lineback, Jennifer Evarts

    2011-01-01

    Biology student mastery regarding the mechanisms of diffusion and osmosis is difficult to achieve. To monitor comprehension of these processes among students at a large public university, we developed and validated an 18-item Osmosis and Diffusion Conceptual Assessment (ODCA). This assessment includes two-tiered items, some adopted or modified…

  12. Gas Diffusion in the CNS.

    Science.gov (United States)

    Rodriguez-Grande, Beatriz; Konsman, Jan-Pieter

    2018-02-01

    Gases have been long known to have essential physiological functions in the CNS such as respiration or regulation of vascular tone. Since gases have been classically considered to freely diffuse, research in gas biology has so far focused on mechanisms of gas synthesis and gas reactivity, rather than gas diffusion and transport. However, the discovery of gas pores during the last two decades and the characterization of diverse diffusion patterns through different membranes has raised the possibility that modulation of gas diffusion is also a physiologically relevant parameter. Here we review the means of gas movement into and within the brain through "free" diffusion and gas pores, notably aquaporins, discussing the role that gas diffusion may play in the modulation of gas function. We highlight how diffusion is relevant to neuronal signaling, volume transmission, and cerebrovascular control in the case of NO, one of the most extensively studied gases. We point out how facilitated transport can be especially relevant for gases with low permeability in lipid membranes like NH3 and discuss the possible implications of NH3 -permeable channels in physiology and hyperammonemic encephalopathy. We identify novel research questions about how modulation of gas diffusion could intervene in CNS pathologies. This emerging area of research can provide novel and interesting insights in the field of gas biology. © 2017 Wiley Periodicals, Inc.

  13. Spin diffusion in Fermi gases

    DEFF Research Database (Denmark)

    Bruun, Georg

    2011-01-01

    We examine spin diffusion in a two-component homogeneous Fermi gas in the normal phase. Using a variational approach, analytical results are presented for the spin diffusion coefficient and the related spin relaxation time as a function of temperature and interaction strength. For low temperatures...

  14. The diffusion of constitutional rights

    NARCIS (Netherlands)

    Goderis, B.V.G.; Versteeg, M.

    Constitutions are commonly regarded as uniquely national products, shaped by domestic ideals and politics. This paper develops and empirically investigates a novel hypothesis, which is that constitutions are also shaped by transnational influence, or “diffusion.” Constitutional rights can diffuse

  15. Diffusion measurements by Raman spectroscopy

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Shapiro, Alexander; Berg, Rolf W.

    Poster "Diffusion measurements by Raman spectroscopy", See poster at http://www.kemi.dtu.dk/~ajo/rolf/petroday2004.ppt......Poster "Diffusion measurements by Raman spectroscopy", See poster at http://www.kemi.dtu.dk/~ajo/rolf/petroday2004.ppt...

  16. Mobile telecommunications’ diffusion in Russia

    OpenAIRE

    Rachinskiy, Andrey

    2010-01-01

    In the beginning of the 21st century mobile telecommunications spread out rapidly in Russia and became basic commodity Mobile technology arises first in large and rich regions with developed infrastructure Speed of technological diffusion grows over time; regions where mobile technology came lately catch up leaders Infrastructure development positively affects speed of technological diffusion

  17. Modifying glass surfaces via internal diffusion

    DEFF Research Database (Denmark)

    Smedskjaer, M.M.; Yue, Y.Z.; Deubener, J.

    2010-01-01

    The surface chemistry and structure of iron-bearing silicate glasses have been modified by means of heat-treatment around the glass transition temperature under different gaseous media at ambient pressure. When the glasses are heat-treated in atmospheric air, oxidation of Fe2+ to Fe3+ occurs, which...... leads to outward diffusion (OD) of divalent cations (primarily Mg2+), i.e., diffusion from the interior of the glass to the surface, and thereby, to formation of an oxide surface nano-layer. in contrast, when the glasses are heat-treated in H-2/N-2 gas containing 10 vol.% H-2, reduction of Fe3+ to Fe2......- ions in the network and their strong attraction to the modifying ions, whereas the latter is due to the requirement of the charge neutrality. The role of N3- in driving OD is verified by the composition profile of the surface layer of the glass treated in pure N-2 gas. The OD exerts pronounced impacts...

  18. Addimer diffusions on Si(100)

    CERN Document Server

    Lee, G D; Lu, Z Y; Ho, K M

    1999-01-01

    The diffusion pathways along the trough and between the trough and the dimer row on the Si(100) surface are investigated by tight-binding molecular dynamics calculations using the environment dependent tight-binding silicon potential and by ab initio calculations using the Car-Parrinello method. The studies discover new diffusion pathways consisting of rotation of addimer. The calculated energy barrier are in excellent agreement with experiment. The rotational diffusion pathway between the trough and the dimer row is much more energetically favorable than other diffusion pathways by parallel and perpendicular addimer. The new pathway along the trough is nearly same as the energy barrier of the diffusion pathway by dissociation of the addimer.

  19. Heat transfer, diffusion, and evaporation

    Science.gov (United States)

    Nusselt, Wilhelm

    1954-01-01

    Although it has long been known that the differential equations of the heat-transfer and diffusion processes are identical, application to technical problems has only recently been made. In 1916 it was shown that the speed of oxidation of the carbon in iron ore depends upon the speed with which the oxygen of the combustion air diffuses through the core of gas surrounding the carbon surface. The identity previously referred to was then used to calculate the amount of oxygen diffusing to the carbon surface on the basis of the heat transfer between the gas stream and the carbon surface. Then in 1921, H. Thoma reversed that procedure; he used diffusion experiments to determine heat-transfer coefficients. Recently Lohrisch has extended this work by experiment. A technically very important application of the identity of heat transfer and diffusion is that of the cooling tower, since in this case both processes occur simultaneously.

  20. Lithium diffusion in silicate melts

    Science.gov (United States)

    Cunningham, G. J.; Henderson, P.; Lowry, R. K.; Nolan, J.; Reed, S. J. B.; Long, J. V. P.

    1983-10-01

    The diffusion properties of Li in an andesitic and pitchstone melt have been determined over the temperature range 1300-1400°C. The diffusion data have been fitted to an Arrhenius relationship between log D0 and 1/ T, and give relatively small activation energies of diffusion: 21.4±5.8 kcal mol -1 in the andesite and 20.1±2.8 kcal mol -1 in the pitchstone. Li +, unlike several other cations, shows similar diffusivities in these melt compositions to that in a basaltic melt. Despite the similar ionic radius of Li + to that of Co 2+, the diffusion properties of the two ions are very different from each other.

  1. Diffusion in membranes: Toward a two-dimensional diffusion map

    Directory of Open Access Journals (Sweden)

    Toppozini Laura

    2015-01-01

    Full Text Available For decades, quasi-elastic neutron scattering has been the prime tool for studying molecular diffusion in membranes over relevant nanometer distances. These experiments are essential to our current understanding of molecular dynamics of lipids, proteins and membrane-active molecules. Recently, we presented experimental evidence from X-ray diffraction and quasi-elastic neutron scattering demonstrating that ethanol enhances the permeability of membranes. At the QENS 2014/WINS 2014 conference we presented a novel technique to measure diffusion across membranes employing 2-dimensional quasi-elastic neutron scattering. We present results from our preliminary analysis of an experiment on the cold neutron multi-chopper spectrometer LET at ISIS, where we studied the self-diffusion of water molecules along lipid membranes and have the possibility of studying the diffusion in membranes. By preparing highly oriented membrane stacks and aligning them horizontally in the spectrometer, our aim is to distinguish between lateral and transmembrane diffusion. Diffusion may also be measured at different locations in the membranes, such as the water layer and the hydrocarbon membrane core. With a complete analysis of the data, 2-dimensional mapping will enable us to determine diffusion channels of water and ethanol molecules to quantitatively determine nanoscale membrane permeability.

  2. Multidimensional diffusion processes

    CERN Document Server

    Stroock, Daniel W

    1997-01-01

    From the reviews: "… Both the Markov-process approach and the Itô approach … have been immensely successful in diffusion theory. The Stroock-Varadhan book, developed from the historic 1969 papers by its authors, presents the martingale-problem approach as a more powerful - and, in certain regards, more intrinsic-means of studying the foundations of the subject. […] … the authors make the uncompromising decision not "to proselytise by intimidating the reader with myriad examples demonstrating the full scope of the techniques", but rather to persuade the reader "with a careful treatment of just one problem to which they apply". […] Most of the main tools of stochastic-processes theory are used, ..but it is the formidable combination of probability theory with analysis … which is the core of the work. […] I have emphasized the great importance of the Stroock-Varadhan book. It contains a lot more than I have indicated; in particular, its many exercises conain much interesting material. For immediat...

  3. Atmospheric Circulation of Exoplanets

    Science.gov (United States)

    Showman, A. P.; Cho, J. Y.-K.; Menou, K.

    2010-12-01

    We survey the basic principles of atmospheric dynamics relevant to explaining existing and future observations of exoplanets, both gas giant and terrestrial. Given the paucity of data on exoplanet atmospheres, our approach is to emphasize fundamental principles and insights gained from solar system studies that are likely to be generalizable to exoplanets. We begin by presenting the hierarchy of basic equations used in atmospheric dynamics, including the Navier-Stokes, primitive, shallow-water, and two-dimensional nondivergent models. We then survey key concepts in atmospheric dynamics, including the importance of planetary rotation, the concept of balance, and simple scaling arguments to show how turbulent interactions generally produce large-scale east-west banding on rotating planets. We next turn to issues specific to giant planets, including their expected interior and atmospheric thermal structures, the implications for their wind patterns, and mechanisms to pump their east-west jets. Hot Jupiter atmospheric dynamics are given particular attention, as these close-in planets have been the subject of most of the concrete developments in the study of exoplanetary atmospheres. We then turn to the basic elements of circulation on terrestrial planets as inferred from solar system studies, including Hadley cells, jet streams, processes that govern the large-scale horizontal temperature contrasts, and climate, and we discuss how these insights may apply to terrestrial exoplanets. Although exoplanets surely possess a greater diversity of circulation regimes than seen on the planets in our solar system, our guiding philosophy is that the multidecade study of solar system planets reviewed here provides a foundation upon which our understanding of more exotic exoplanetary meteorology must build.

  4. Atmospheric Change on Pluto

    Science.gov (United States)

    Person, Michael

    2013-10-01

    We propose to use SOFIA with HIPO and FLITECAM (FLIPO) to measure the parameters of Pluto's atmosphere (temperature, pressure, possible particulate haze) by observing a stellar occultation by Pluto on 15 November 2014. Due to its highly elliptical orbit and seasonally variable obliquity, Pluto's atmosphere is predicted to condense onto its surface within the next ~10 years and possibly within the next few years and thus frequent observations are critical. Detection of the occultation central flash will allow measurement of the structure of Pluto's lower atmosphere and atmospheric oblateness. We will use FLIPO to measure the refracted starlight contemporaneously at visible and infrared wavelengths; this approach is needed to differentiate between two competing explanations for the deficiency in the observed light refracted from Pluto's lower atmosphere (strong thermal gradients versus variable particulate extinction). Only an airborne platform such as SOFIA has the flexibility to place a large telescope in the center of the shadow path of this brief event while at the same time nearly eliminating the possibility of missing time-critical observations due to unfortunate weather systems. Occultation predictions will be updated throughout the period preceding the observations with the goal of achieving sufficient prediction accuracy at the event time to place SOFIA directly in the path of Pluto's central flash. This SOFIA observation will be combined with our ongoing ground-based observing program whose goal is to measure the temporal variability of Pluto's atmosphere in response to its changing seasonal obliquity (and resulting ice migration) and recession from the sun. For the NASA New Horizons mission to Pluto and the Kuiper Belt, this Pluto occultation event represents the last chance, prior to the spacecraft closest approach to the Pluto/Charon system (July 2015), to provide input to the mission for encounter planning, as well as context and supporting atmospheric

  5. Diffusion-Reorganized Aggregates: Attractors in Diffusion Processes?

    Science.gov (United States)

    Filoche, Marcel; Sapoval, Bernard

    2000-12-01

    A process based on particle evaporation, diffusion, and redeposition is applied iteratively to a two-dimensional object of arbitrary shape. The evolution spontaneously transforms the object morphology, converging to branched structures. Independently of initial geometry, the structures found after a long time present fractal geometry with a fractal dimension around 1.75. The final morphology, which constantly evolves in time, can be considered as the dynamic attractor of this evaporation-diffusion-redeposition operator. The ensemble of these fractal shapes can be considered to be the dynamical equilibrium geometry of a diffusion-controlled self-transformation process.

  6. Determination of Concentration Dependent Diffusion Coefficients of Carbon in Expanded Austenite

    DEFF Research Database (Denmark)

    Hummelshøj, Thomas Strabo; Christiansen, Thomas; Somers, Marcel A. J.

    2008-01-01

    Abstract. In the present paper various experimental procedures to experimentally determine the concentration dependent diffusion coefficient of carbon in expanded austenite are evaluated. To this end thermogravimetric carburization was simulated for various experimental conditions and the evaluated...... composition dependent diffusivity of carbon derived from the simulated experiments was compared with the input data. The most promising procedure for an accurate determination is shown to be stepwise gaseous carburizing of thin foils in a gaseous atmosphere; the finer the stepsize, the more accurate...

  7. Searches for diffuse fluxes of astrophysical neutrinos with the ANTARES telescope

    Directory of Open Access Journals (Sweden)

    Fusco Luigi Antonio

    2017-01-01

    Full Text Available In this proceedings we report on the status of searches for diffuse fluxes of cosmic neutrinos with the ANTARES neutrino telescope data. A complete overview of diffuse neutrino searches will be given, together with the search for a neutrino emission from regions such as the Fermi Bubbles or the Galactic Plane. A non-significant, though intriguing, excess of events above the atmospheric background is observed in all-sky analysis both for the track and shower channels.

  8. Fundamentals of Atmospheric Radiation

    Science.gov (United States)

    Bohren, Craig F.; Clothiaux, Eugene E.

    2006-02-01

    This textbook fills a gap in the literature for teaching material suitable for students of atmospheric science and courses on atmospheric radiation. It covers the fundamentals of emission, absorption, and scattering of electromagnetic radiation from ultraviolet to infrared and beyond. Much of the book applies to planetary atmosphere. The authors are physicists and teach at the largest meteorology department of the US at Penn State. Craig T. Bohren has taught the atmospheric radiation course there for the past 20 years with no book. Eugene Clothiaux has taken over and added to the course notes. Problems given in the text come from students, colleagues, and correspondents. The design of the figures especially for this book is meant to ease comprehension. Discussions have a graded approach with a thorough treatment of subjects, such as single scattering by particles, at different levels of complexity. The discussion of the multiple scattering theory begins with piles of plates. This simple theory introduces concepts in more advanced theories, i.e. optical thickness, single-scattering albedo, asymmetry parameter. The more complicated theory, the two-stream theory, then takes the reader beyond the pile-of-plates theory. Ideal for advanced undergraduate and graduate students of atmospheric science.

  9. Atmospheric pollution in Lisbon urban atmosphere

    Science.gov (United States)

    Oliveira, C.

    2009-04-01

    Lisbon is the capital city of Portugal with about 565,000 residents in 2008 and a population density of 6,600 inhabitants per square kilometre. Like several other major metropolis, the town is surrounded by satellite cities, forming together a region known as "Lisbon Metropolitan Area" with about 3 million inhabitants, a quarter of the overall Portuguese population. Besides their local residents, it is estimated that more than one million citizens come into the Lisbon area every day from the outskirts, leading to elevated traffic densities and intense traffic jams, with important consequences on air pollution levels and obvious negative impacts on human health. Airborne particulate matter limit values are frequently exceeded, making urgent the existence of consistent programs to monitor and help taking measures to control them. Within the Portuguese project PAHLIS (Polycyclic Aromatic Hydrocarbons Contamination in Lisbon Urban Atmosphere) financed by the Portuguese Science Foundation ("Fundação para a Ciência e a Tecnologia"), an aerosol and vapour phase sampling program is being implemented in the city of Lisbon at two selected contrasting zones, namely a typically busy area with intense road traffic and frequent exceedences of the particulate matter standard for the maximum allowable concentration, and a residential quieter area, thus with a cleaner atmosphere characterised as an urban background site. An one month-long sampling campaign was performed during the summer of 2008, where particulate matter was collected in two fractions (coarse 2.5µmcommunication, the results of both organic and inorganic analyses of aerosol samples from these two sites will be presented, compared and discussed. Results of this work are expected to cover a lack of reliable information regarding sources of atmospheric pollutants in Portugal and present, for the first time, systematic data of PAHs levels in Lisbon. Acknowledgement: This work was performed under Project PAHLIS (PTDC

  10. Diffusion tensor optical coherence tomography

    Science.gov (United States)

    Marks, Daniel L.; Blackmon, Richard L.; Oldenburg, Amy L.

    2018-01-01

    In situ measurements of diffusive particle transport provide insight into tissue architecture, drug delivery, and cellular function. Analogous to diffusion-tensor magnetic resonance imaging (DT-MRI), where the anisotropic diffusion of water molecules is mapped on the millimeter scale to elucidate the fibrous structure of tissue, here we propose diffusion-tensor optical coherence tomography (DT-OCT) for measuring directional diffusivity and flow of optically scattering particles within tissue. Because DT-OCT is sensitive to the sub-resolution motion of Brownian particles as they are constrained by tissue macromolecules, it has the potential to quantify nanoporous anisotropic tissue structure at micrometer resolution as relevant to extracellular matrices, neurons, and capillaries. Here we derive the principles of DT-OCT, relating the detected optical signal from a minimum of six probe beams with the six unique diffusion tensor and three flow vector components. The optimal geometry of the probe beams is determined given a finite numerical aperture, and a high-speed hardware implementation is proposed. Finally, Monte Carlo simulations are employed to assess the ability of the proposed DT-OCT system to quantify anisotropic diffusion of nanoparticles in a collagen matrix, an extracellular constituent that is known to become highly aligned during tumor development.

  11. Intensifying the Atmospheric

    DEFF Research Database (Denmark)

    Liebst, Lasse Suonperä

    2012-01-01

    The phenomenological concept of urban atmospheres is more often applied as an aesthetic description of the metropolitan space as such. This conceptualization is supported in this paper; however, I strive to give the concept a post-phenomenological axial turn. While phenomenology, due to its under...... sufficiently intense. All things considered, the paper should be read as a sociological contribution to theoretically reconstruct the concept of urban atmospheres in the light of spatial morphology.......The phenomenological concept of urban atmospheres is more often applied as an aesthetic description of the metropolitan space as such. This conceptualization is supported in this paper; however, I strive to give the concept a post-phenomenological axial turn. While phenomenology, due to its...

  12. Atmospheric pollution; Pollution atmospherique

    Energy Technology Data Exchange (ETDEWEB)

    Lambrozo, J.; Guillossou, G. [EDF-Gas de France, Service des Etudes Medicales, 75 - Paris (France)

    2008-10-15

    The atmosphere is the reservoir of numerous pollutants (nitrogen oxides, sulfur oxides, carbon oxides, particulates, volatile organic compounds, polycyclic aromatic hydrocarbons) from natural origin or anthropogenic origin ( industry, transport, agriculture, district heating). With epidemiologic studies the atmospheric pollution is associated with an increase of respiratory and cardiovascular diseases. At the european level, the technological progress, the legislation have allowed a reduction of pollutant emissions, however these efforts have to be continued because the sanitary impact of atmospheric pollution must not be underestimated, even if the risks appear less important that these ones in relation with tobacco, inside pollution or others factors of cardiovascular risks. Indeed, on these last factors an individual action is possible for the exposure to air pollution people have no control. (N.C.)

  13. Effects of Stress on Permeation and Diffusive Properties of Rocks

    Science.gov (United States)

    Zhang, M.

    2008-12-01

    Safety assessment of facilities associated with geological disposal of various kinds of hazardous wastes, including radioactive nuclear waste, is generally performed by means of mass transport simulations combined with uncertainty and sensitivity analyses. Transport of contaminants, such as radionuclides, through an engineered and natural barrier system is principally controlled by the processes of advection, dispersion, sorption, and chain decay. Among these mechanisms, chain decay can be determined from nuclear physics, sorption can be evaluated from chemical properties of both the nuclides and rock minerals, advection and dispersion are controlled by the permeation and diffusive properties of a rock. Compared to properties related to the former two mechanisms, properties related to the latter two mechanisms are very sensitive to stress conditions. Although the effects of stress conditions on permeation or hydraulic properties of rock specimens are relatively easier to be determined and/or assessed through laboratory permeability tests, diffusion tests on rock specimens under high confining and pore pressure conditions are technically impractical, and most of laboratory diffusion tests have been performed only under atmospheric conditions. In this study, an overview of the studies related to the effects of stress on permeation properties of different types of rock is performed. Some representative experimental results illustrating the effects of stress history on permeability of sedimentary and igneous rocks obtained by the author are also presented. An approach based on empirical equations between rock permeability and porosity, effective diffusion coefficient and porosity, porosity and ground pressure, and diffusive coefficient of an interested tracer in water is proposed to predict the effective diffusion coefficient at depths, i.e., the effects of stress on diffusive properties of rocks. The applicabilities of this newly proposed approach are discussed and

  14. Using Methane Absorption to Probe Jupiter's Atmosphere

    Science.gov (United States)

    1997-01-01

    Mosaics of a belt-zone boundary near Jupiter's equator in near-infrared light moderately absorbed by atmospheric methane (top panel), and strongly absorbed by atmospheric methane (bottom panel). The four images that make up each of these mosaics were taken within a few minutes of each other. Methane in Jupiter's atmosphere absorbs light at specific wavelengths called absorption bands. By detecting light close and far from these absorption bands, Galileo can probe to different depths in Jupiter's atmosphere. Sunlight near 732 nanometers (top panel) is moderately absorbed by methane. Some of the light reflected from clouds deep in Jupiter's troposphere is absorbed, enhancing the higher features. Sunlight at 886 nanometers (bottom panel) is strongly absorbed by methane. Most of the light reflected from the deeper clouds is absorbed, making these clouds invisible. Features in the diffuse cloud layer higher in Jupiter's atmosphere are greatly enhanced.North is at the top. The mosaic covers latitudes -13 to +3 degrees and is centered at longitude 282 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on November 5th, 1996, at a range of 1.2 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  15. Atmospheric Infrared Radiance Variability.

    Science.gov (United States)

    1981-05-27

    ATMOSPHERIC VARIABILITY ON INFRARED RADIANCE PREDICTIONS - T. C. Degges 53 5. ATMOSPHERIC STRUCTURE - C.H. HLmphrey, C.R. Philbrick, S.M. Silverman , T.F. Tuan...variations similar to those shown in Figure 2. In arctic and subarctic regions, sudden warmings and coolings of the winter stratosphere and mesosphere... Silverman \\Jr I",rre. (;.L~~sIalmratorN Hanscom Air Force Base, Manss. T.F. Tuan Universitv of Cincinnati Cincinnati, (tio M. Anapol S.S.G.. Inc. Waltham

  16. Atmosphere and Heritage

    DEFF Research Database (Denmark)

    Ventzel Riis, Nina

    2012-01-01

    -between of the materials. This is what we identify as atmosphere, an enveloping phenomenon that surrounds and affects our sensuous system and well-being when we approach, enter, stay or move in a building. When we leave the building again we carry this atmospheric multi-sensory experience with us without adequate methods...... to describe and document it. In this paper I will introduce both new and traditional approaches to document the architectural heritage with the final conclusion to describe both tangible and intangible values, it requires an objective and geometrical approach as well as a subjective and phenomenological...

  17. Genetics Home Reference: hereditary diffuse gastric cancer

    Science.gov (United States)

    ... Health Conditions Hereditary diffuse gastric cancer Hereditary diffuse gastric cancer Printable PDF Open All Close All Enable Javascript ... view the expand/collapse boxes. Description Hereditary diffuse gastric cancer (HDGC) is an inherited disorder that greatly increases ...

  18. Improved diffuser for augmenting a wind turbine

    Science.gov (United States)

    Foreman, K.M.; Gilbert, B.L.

    A diffuser for augmenting a wind turbine having means for energizing the boundary layer at several locations along the diffuser walls is improved by the addition of a short collar extending radially outward from the outlet of the diffuser.

  19. Changes in the Martian atmosphere induced by auroral electron precipitation

    Science.gov (United States)

    Shematovich, V. I.; Bisikalo, D. V.; Gérard, J.-C.; Hubert, B.

    2017-09-01

    Typical auroral events in the Martian atmosphere, such as discrete and diffuse auroral emissions detected by UV spectrometers onboard ESA Mars Express and NASA MAVEN, are investigated. Auroral electron kinetic energy distribution functions and energy spectra of the upward and downward electron fluxes are obtained by electron transport calculations using the kinetic Monte Carlo model. These characteristics of auroral electron fluxes make it possible to calculate both the precipitation-induced changes in the atmosphere and the observed manifestations of auroral events on Mars. In particular, intensities of discrete and diffuse auroral emissions in the UV and visible wavelength ranges (Soret et al., 2016; Bisikalo et al., 2017; Gérard et al., 2017). For these conditions of auroral events, the analysis is carried out, and the contribution of the fluxes of precipitating electrons to the heating and ionization of the Martian atmosphere is estimated. Numerical calculations show that in the case of discrete auroral events the effect of the residual crustal magnetic field leads to a significant increase in the upward fluxes of electrons, which causes a decrease in the rates of heating and ionization of the atmospheric gas in comparison with the calculations without taking into account the residual magnetic field. It is shown that all the above-mentioned impact factors of auroral electron precipitation processes should be taken into account both in the photochemical models of the Martian atmosphere and in the interpretation of observations of the chemical composition and its variations using the ACS instrument onboard ExoMars.

  20. DIFFUSE AURORA ON GANYMEDE DRIVEN BY ELECTROSTATIC WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, R. P.; Tripathi, A. K.; Halder, S.; II, O. N. Singh, E-mail: rpsiitbhu@yahoo.com, E-mail: aktrip2001@yahoo.co.in, E-mail: h.santanu5791@gmail.com, E-mail: ons_onkaritapd@yahoo.co.in [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005 (UP) (India)

    2016-12-01

    The role of electrostatic electron cyclotron harmonic (ECH) waves in producing diffuse auroral emission O i 1356 Å on Ganymede is investigated. Electron precipitation flux entering the atmosphere of Ganymede due to pitch-angle diffusion by ECH waves into the atmospheric loss-cone is calculated. The analytical yield spectrum approach for electron energy degradation in gases is used for calculating diffuse auroral intensities. It is found that calculated O i 1356 Å intensity resulting from the precipitation of magnetospheric electrons observed near Ganymede is insufficient to account for the observed diffuse auroral intensity. This is in agreement with estimates made in earlier works. Heating and acceleration of ambient electrons by ECH wave turbulence near the magnetic equator on the field line connecting Ganymede and Jupiter are considered. Two electron distribution functions are used to simulate the heating effect by ECH waves. Use of a Maxwellian distribution with temperature 100 eV can produce about 50–70 Rayleigh O i 1356 Å intensities, and the kappa distribution with characteristic energy 50 eV also gives rise to intensities with similar magnitude. Numerical experiments are performed to study the effect of ECH wave spectral intensity profile, ECH wave amplitude, and temperature/characteristic energy of electron distribution functions on the calculated diffuse auroral intensities. The proposed missions, joint NASA/ESA Jupiter Icy Moon Explorer and the present JUNO mission to Jupiter, would provide new data to constrain the ECH wave and other physical parameters near Ganymede. These should help confirm the findings of the present study.

  1. Diffuse Jovian aurora influenced by plasma injection from IO

    Energy Technology Data Exchange (ETDEWEB)

    Thorne, R.M.; Tsurutani, B.T.

    1979-08-01

    Cyclotron resonant instability of Jovian energetic electrons is dramatically enhanced as a consequence of the lower resonant electron energy (E/sub res/proportionalB/sup 2//8..pi..N) within the equatorial high density plasma torus surrounding the orbit of Io. This mechanism accounts adequately for the continuous broad band whistler mode waves observed within the Io torus on Voyager I. The higher energy resonant electrons (approx.100 keV to 1 MeV) can be scattered by the observed low frequency waves (< or approx. =1 kHz) at a rate as high as 10 percent of the limit attainable under strong pitch-angle diffusion; the corresponding energetic electron lifetimes are comparable to a day. This is much shorter than any realistic estimates for radial diffusion transport near Io. Thus an efficient local acceleration process is required to continually replenish the precipitating relativistic electrons. Concomitant energy deposition into the Jovian atmosphere is estimated to be approx.5 to 15 ergs cm/sup -2/ sec/sup -1/ over a broad invariant latitude range mapping from the Io plasma torus (65/sup 0/< or approx. =..lambda..< or approx. =75/sup 0/). This intense precipitation should both provide a dominant source of middle atmospheric ionization and excite a continuous band of diffuse auroral emission. In the absence of significant extinction, H Ly..cap alpha.. intensity is estimated to be 30 to 100 kR in approximate agreement with the Voyager Extreme Ultraviolet observations. Total power dissipation over the diffuse auroral zone should be at least 10/sup 13/ watts. Because the cyclotron resonant scattering process is strongly influenced by the ambient equatorial thermal plasma density we suggest that the diffuse Jovian aurora should be influenced by the variable volcanic activity on Io which is thought to be an important source of plasma.

  2. Oxygen diffusion in Bi2O3-doped ZnO

    OpenAIRE

    Antônio Claret Soares Sabioni; Daniel,Antônio Márcio J.M.; Wilmar Barbosa Ferraz; Rafael Witter Dias Pais; Anne-Marie Huntz; François Jomard

    2008-01-01

    In order to clarify the influence of Bi-doping on oxygen diffusion in ZnO, the bulk and grain boundary oxygen diffusion coefficients were measured in Bi2O3-doped ZnO polycrystals by means of the gas-solid exchange method using the isotope 18O as the oxygen tracer. The experiments were performed on ZnO sintered samples containing 0.1, 0.3 and 0.5 mol% Bi2O3. The diffusion annealings were performed at 942, 1000 and 1092 °C, in an Ar+18O2 atmosphere under an oxygen partial pressure of 0.2 atm. A...

  3. Diffusion of single oxidation pond

    Directory of Open Access Journals (Sweden)

    Song Ruo-Yuan

    2016-01-01

    Full Text Available The hydraulic characteristic of an oxidation pond was studied by the tracer experiment, and an empirical formula of Peclet number was obtained, which can be well applied to the model of plug flow reactor with longitudinal diffusion.

  4. Fractional-calculus diffusion equation.

    Science.gov (United States)

    Ajlouni, Abdul-Wali Ms; Al-Rabai'ah, Hussam A

    2010-05-21

    Sequel to the work on the quantization of nonconservative systems using fractional calculus and quantization of a system with Brownian motion, which aims to consider the dissipation effects in quantum-mechanical description of microscale systems. The canonical quantization of a system represented classically by one-dimensional Fick's law, and the diffusion equation is carried out according to the Dirac method. A suitable Lagrangian, and Hamiltonian, describing the diffusive system, are constructed and the Hamiltonian is transformed to Schrodinger's equation which is solved. An application regarding implementation of the developed mathematical method to the analysis of diffusion, osmosis, which is a biological application of the diffusion process, is carried out. Schrödinger's equation is solved. The plot of the probability function represents clearly the dissipative and drift forces and hence the osmosis, which agrees totally with the macro-scale view, or the classical-version osmosis.

  5. Simulation of multivariate diffusion bridges

    DEFF Research Database (Denmark)

    Bladt, Mogens; Finch, Samuel; Sørensen, Michael

    We propose simple methods for multivariate diffusion bridge simulation, which plays a fundamental role in simulation-based likelihood and Bayesian inference for stochastic differential equations. By a novel application of classical coupling methods, the new approach generalizes a previously...... proposed simulation method for one-dimensional bridges to the mulit-variate setting. First a method of simulating approzimate, but often very accurate, diffusion bridges is proposed. These approximate bridges are used as proposal for easily implementable MCMC algorithms that produce exact diffusion bridges....... The new method is much more generally applicable than previous methods. Another advantage is that the new method works well for diffusion bridges in long intervals because the computational complexity of the method is linear in the length of the interval. In a simulation study the new method performs well...

  6. Fractional-calculus diffusion equation

    Science.gov (United States)

    2010-01-01

    Background Sequel to the work on the quantization of nonconservative systems using fractional calculus and quantization of a system with Brownian motion, which aims to consider the dissipation effects in quantum-mechanical description of microscale systems. Results The canonical quantization of a system represented classically by one-dimensional Fick's law, and the diffusion equation is carried out according to the Dirac method. A suitable Lagrangian, and Hamiltonian, describing the diffusive system, are constructed and the Hamiltonian is transformed to Schrodinger's equation which is solved. An application regarding implementation of the developed mathematical method to the analysis of diffusion, osmosis, which is a biological application of the diffusion process, is carried out. Schrödinger's equation is solved. Conclusions The plot of the probability function represents clearly the dissipative and drift forces and hence the osmosis, which agrees totally with the macro-scale view, or the classical-version osmosis. PMID:20492677

  7. Nonlinear Diffusion and Transient Osmosis

    National Research Council Canada - National Science Library

    Akira Igarashi Lamberto Rondon Antonio Botrugno Marco Pizzi

    2011-01-01

    We investigate both analytically and numerically the concentration dynamics of a solution in two containers connected by a narrow and short channel, in which diffusion obeys a porous medium equation...

  8. Ergodic Control of Switching Diffusions

    National Research Council Canada - National Science Library

    Ghosh, Mrinal K; Arapostathis, Aristotle; Marcus, Steven I

    1996-01-01

    We study the ergodic control problem of switching diffusions representing a typical hybrid system that arises in numerous applications such as fault tolerant control systems, flexible manufacturing systems, etc...

  9. Kurtosis as a diffuseness measure

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2016-01-01

    This study presents a kurtosis analysis of room impulse responses as a potential room diffuseness measure. In the early part of an impulse response, sound pressure samples do not constitute a Gaussian distribution due to the direct sound and strong reflections. Such deterministic reflections...... are extreme events, which prevent the pressure samples from being normally distributed, leading to a high kurtosis. As the reflections are sparser and stronger, the sound field becomes less diffuse and the kurtosis systematically increases, indicating that it can be used as a diffuseness measure. The kurtosis...... converges to zero, as the reflection overlap becomes heavier, which is an important condition for a perfect diffuse field. Two rooms are analyzed. A small rectangular room shows that a non-uniform surface absorption distribution tends to increase the kurtosis significantly. A full scale reverberation...

  10. Geometric diffusion of quantum trajectories

    Science.gov (United States)

    Yang, Fan; Liu, Ren-Bao

    2015-07-01

    A quantum object can acquire a geometric phase (such as Berry phases and Aharonov-Bohm phases) when evolving along a path in a parameter space with non-trivial gauge structures. Inherent to quantum evolutions of wavepackets, quantum diffusion occurs along quantum trajectories. Here we show that quantum diffusion can also be geometric as characterized by the imaginary part of a geometric phase. The geometric quantum diffusion results from interference between different instantaneous eigenstate pathways which have different geometric phases during the adiabatic evolution. As a specific example, we study the quantum trajectories of optically excited electron-hole pairs in time-reversal symmetric insulators, driven by an elliptically polarized terahertz field. The imaginary geometric phase manifests itself as elliptical polarization in the terahertz sideband generation. The geometric quantum diffusion adds a new dimension to geometric phases and may have applications in many fields of physics, e.g., transport in topological insulators and novel electro-optical effects.

  11. Atmospheric and aerosol chemistry

    Energy Technology Data Exchange (ETDEWEB)

    McNeill, V. Faye [Columbia Univ., New York, NY (United States). Dept. of Chemical Engineering; Ariya, Parisa A. (ed.) [McGill Univ. Montreal, QC (Canada). Dept. of Chemistry; McGill Univ. Montreal, QC (Canada). Dept. of Atmospheric and Oceanic Sciences

    2014-09-01

    This series presents critical reviews of the present position and future trends in modern chemical research. Short and concise reports on chemistry, each written by the world renowned experts. Still valid and useful after 5 or 10 years. More information as well as the electronic version of the whole content available at: springerlink.com. Christian George, Barbara D'Anna, Hartmut Herrmann, Christian Weller, Veronica Vaida, D. J. Donaldson, Thorsten Bartels-Rausch, Markus Ammann Emerging Areas in Atmospheric Photochemistry. Lisa Whalley, Daniel Stone, Dwayne Heard New Insights into the Tropospheric Oxidation of Isoprene: Combining Field Measurements, Laboratory Studies, Chemical Modelling and Quantum Theory. Neil M. Donahue, Allen L. Robinson, Erica R. Trump, Ilona Riipinen, Jesse H. Kroll Volatility and Aging of Atmospheric Organic Aerosol. P. A. Ariya, G. Kos, R. Mortazavi, E. D. Hudson, V. Kanthasamy, N. Eltouny, J. Sun, C. Wilde Bio-Organic Materials in the Atmosphere and Snow: Measurement and Characterization V. Faye McNeill, Neha Sareen, Allison N. Schwier Surface-Active Organics in Atmospheric Aerosols.

  12. Astronomy and Atmospheric Optics

    Science.gov (United States)

    Cowley, Les; Gaina, Alex

    2011-12-01

    The authors discusse the insuccess of the observation of the Total Eclipse of the Moon from 10 december 2011 in Romania and relate them with meteoconditions. Only a very short part of the last penumbral phase was observed, while the inital part and the totality was not observed due to very dense clouds. The change in color and brightness during this phase was signaled. Meanwhile, there is an area of science where clouds are of great use and interest. This area is Atmospheric optics, while the science which study clouds is meteorology. Clouds in combination with Solar and Moon light could give rise to a variety of strange, rare and unobvious phenomena in the atmosphere (sky), sometimes confused with Unidentified Flying Objects (UFO). The importance of meteorology for astronomy and atmospheric optics is underlined and an invitation to astronomers to use unfavourable days for athmospheric observations was sent. The web address of the site by Les Cowley, designed for atmospheric optics phenomena is contained in the text of the entry.

  13. Results from atmospheric neutrinos

    Indian Academy of Sciences (India)

    With the announcement of new evidence for muon neutrino disappearance observed by the super-Kamiokande experiment, the more than a decade old atmospheric neutrino anomaly moved from a possible indication for neutrino oscillations to an apparently inescapable fact. The evidence is reviewed, and new indications ...

  14. MHD wave transmission in the Sun's atmosphere

    Science.gov (United States)

    Stangalini, M.; Del Moro, D.; Berrilli, F.; Jefferies, S. M.

    2011-10-01

    Magnetohydrodynamics (MHD) wave propagation inside the Sun's atmosphere is closely related to the magnetic field topology. For example, magnetic fields are able to lower the cutoff frequency for acoustic waves, thus allowing the propagation of waves that would otherwise be trapped below the photosphere into the upper atmosphere. In addition, MHD waves can be either transmitted or converted into other forms of waves at altitudes where the sound speed equals the Alfvén speed. We take advantage of the large field-of-view provided by the IBIS experiment to study the wave propagation at two heights in the solar atmosphere, which is probed using the photospheric Fe 617.3 nm spectral line and the chromospheric Ca 854.2 nm spectral line, and its relationship to the local magnetic field. Among other things, we find substantial leakage of waves with five-minute periods in the chromosphere at the edges of a pore and in the diffuse magnetic field surrounding it. By using spectropolarimetric inversions of Hinode SOT/SP data, we also find a relationship between the photospheric power spectrum and the magnetic field inclination angle. In particular, we identify well-defined transmission peaks around 25° for five-minute waves and around 15° for three-minute waves. We propose a very simple model based on wave transmission theory to explain this behavior. Finally, our analysis of both the power spectra and chromospheric amplification spectra suggests the presence of longitudinal acoustic waves along the magnetic field lines.

  15. Research Clusters and Technology Diffusion

    OpenAIRE

    Deng, Paul

    2011-01-01

    Much of the debate over income convergence hinges on whether technology diffusion is “global” or “local”. In this paper, I address this question in a developing country setting and focus on the role of major research clusters in promoting domestic technology diffusion. I identify four de facto research centers in China and investigate whether the effect of R&D spillovers from these research clusters is related to both geographic and technological distances. I find that firms’ productivity gai...

  16. Diffusion in a Curved Tube

    OpenAIRE

    Ogawa, Naohisa

    2011-01-01

    The diffusion of particles in confining walls forming a tube is discussed. Such a transport phenomenon is observed in biological cells and porous media. We consider the case in which the tube is winding with curvature and torsion, and the thickness of the tube is sufficiently small compared with its curvature radius. We discuss how geomerical quantities appear in a quasi-one-dimensional diffusion equation.

  17. Boron diffusion in silicon devices

    Science.gov (United States)

    Rohatgi, Ajeet; Kim, Dong Seop; Nakayashiki, Kenta; Rounsaville, Brian

    2010-09-07

    Disclosed are various embodiments that include a process, an arrangement, and an apparatus for boron diffusion in a wafer. In one representative embodiment, a process is provided in which a boric oxide solution is applied to a surface of the wafer. Thereafter, the wafer is subjected to a fast heat ramp-up associated with a first heating cycle that results in a release of an amount of boron for diffusion into the wafer.

  18. HELIUM ATMOSPHERES ON WARM NEPTUNE- AND SUB-NEPTUNE-SIZED EXOPLANETS AND APPLICATIONS TO GJ 436b

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Renyu; Yung, Yuk L. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Seager, Sara, E-mail: renyu.hu@jpl.nasa.gov [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2015-07-01

    Warm Neptune- and sub-Neptune-sized exoplanets in orbits smaller than Mercury’s are thought to have experienced extensive atmospheric evolution. Here we propose that a potential outcome of this atmospheric evolution is the formation of helium-dominated atmospheres. The hydrodynamic escape rates of Neptune- and sub-Neptune-sized exoplanets are comparable to the diffusion-limited escape rate of hydrogen, and therefore the escape is heavily affected by diffusive separation between hydrogen and helium. A helium atmosphere can thus be formed—from a primordial hydrogen–helium atmosphere—via atmospheric hydrodynamic escape from the planet. The helium atmosphere has very different abundances of major carbon and oxygen species from those of a hydrogen atmosphere, leading to distinctive transmission and thermal emission spectral features. In particular, the hypothesis of a helium-dominated atmosphere can explain the thermal emission spectrum of GJ 436b, a warm Neptune-sized exoplanet, while also being consistent with the transmission spectrum. This model atmosphere contains trace amounts of hydrogen, carbon, and oxygen, with the predominance of CO over CH{sub 4} as the main form of carbon. With our atmospheric evolution model, we find that if the mass of the initial atmosphere envelope is 10{sup −3} planetary mass, hydrodynamic escape can reduce the hydrogen abundance in the atmosphere by several orders of magnitude in ∼10 billion years. Observations of exoplanet transits may thus detect signatures of helium atmospheres and probe the evolutionary history of small exoplanets.

  19. ESA Atmospheric Toolbox

    Science.gov (United States)

    Niemeijer, Sander

    2017-04-01

    The ESA Atmospheric Toolbox (BEAT) is one of the ESA Sentinel Toolboxes. It consists of a set of software components to read, analyze, and visualize a wide range of atmospheric data products. In addition to the upcoming Sentinel-5P mission it supports a wide range of other atmospheric data products, including those of previous ESA missions, ESA Third Party missions, Copernicus Atmosphere Monitoring Service (CAMS), ground based data, etc. The toolbox consists of three main components that are called CODA, HARP and VISAN. CODA provides interfaces for direct reading of data from earth observation data files. These interfaces consist of command line applications, libraries, direct interfaces to scientific applications (IDL and MATLAB), and direct interfaces to programming languages (C, Fortran, Python, and Java). CODA provides a single interface to access data in a wide variety of data formats, including ASCII, binary, XML, netCDF, HDF4, HDF5, CDF, GRIB, RINEX, and SP3. HARP is a toolkit for reading, processing and inter-comparing satellite remote sensing data, model data, in-situ data, and ground based remote sensing data. The main goal of HARP is to assist in the inter-comparison of datasets. By appropriately chaining calls to HARP command line tools one can pre-process datasets such that two datasets that need to be compared end up having the same temporal/spatial grid, same data format/structure, and same physical unit. The toolkit comes with its own data format conventions, the HARP format, which is based on netcdf/HDF. Ingestion routines (based on CODA) allow conversion from a wide variety of atmospheric data products to this common format. In addition, the toolbox provides a wide range of operations to perform conversions on the data such as unit conversions, quantity conversions (e.g. number density to volume mixing ratios), regridding, vertical smoothing using averaging kernels, collocation of two datasets, etc. VISAN is a cross-platform visualization and

  20. Oxygen diffusion in Bi2O3-doped ZnO

    Directory of Open Access Journals (Sweden)

    Antônio Claret Soares Sabioni

    2008-06-01

    Full Text Available In order to clarify the influence of Bi-doping on oxygen diffusion in ZnO, the bulk and grain boundary oxygen diffusion coefficients were measured in Bi2O3-doped ZnO polycrystals by means of the gas-solid exchange method using the isotope 18O as the oxygen tracer. The experiments were performed on ZnO sintered samples containing 0.1, 0.3 and 0.5 mol% Bi2O3. The diffusion annealings were performed at 942, 1000 and 1092 °C, in an Ar+18O2 atmosphere under an oxygen partial pressure of 0.2 atm. After the diffusion annealings, the 18O diffusion profiles were established by secondary ion mass spectrometry (SIMS. The results show an increase in the oxygen diffusion in the Bi2O3-doped ZnO, when compared to the oxygen diffusion in the undoped ZnO polycrystal under the same experimental conditions, both in bulk and in grain-boundaries. Moreover, it was observed that the higher the Bi2O3 concentration, the higher the oxygen diffusion. These results suggest that the incorporation of Bi2O3 increases the interstitial oxygen concentration which agrees with an interstitial diffusion mechanism both in bulk and in grain-boundaries.

  1. About "axial" and "radial" diffusivities.

    Science.gov (United States)

    Wheeler-Kingshott, Claudia A M; Cercignani, Mara

    2009-05-01

    This article presents the potential problems arising from the use of "axial" and "radial" diffusivities, derived from the eigenvalues of the diffusion tensor, and their interpretation in terms of the underlying biophysical properties, such as myelin and axonal density. Simulated and in vivo data are shown. The simulations demonstrate that a change in "radial" diffusivity can cause a fictitious change in "axial" diffusivity and vice versa in voxels characterized by crossing fibers. The in vivo data compare the direction of the principle eigenvector in four different subjects, two healthy and two affected by multiple sclerosis, and show that the angle, alpha, between the principal eigenvectors of corresponding voxels of registered datasets is greater than 45 degrees in areas of low anisotropy, severe pathology, and partial volume. Also, there are areas of white matter pathology where the "radial" diffusivity is 10% greater than that of the corresponding normal tissue and where the direction of the principal eigenvector is altered by more than 45 degrees compared to the healthy case. This should strongly discourage researchers from interpreting changes of the "axial" and "radial" diffusivities on the basis of the underlying tissue structure, unless accompanied by a thorough investigation of their mathematical and geometrical properties in each dataset studied. (c) 2009 Wiley-Liss, Inc.

  2. Lead diffusion in monazite; Diffusion du plomb dans la monazite

    Energy Technology Data Exchange (ETDEWEB)

    Gardes, E

    2006-06-15

    Proper knowledge of the diffusion rates of lead in monazite is necessary to understand the U-Th-Pb age anomalies of this mineral, which is one of the most used in geochronology after zircon. Diffusion experiments were performed in NdPO{sub 4} monocrystals and in Nd{sub 0.66}Ca{sub 0.17}Th{sub 0.17}PO{sub 4} polycrystals from Nd{sub 0.66}Pb{sub 0.17}Th{sub 0.17}PO{sub 4} thin films to investigate Pb{sup 2+} + Th{sup 4+} {r_reversible} 2 Nd{sup 3+} and Pb{sup 2+} {r_reversible} Ca{sup 2+} exchanges. Diffusion annealings were run between 1200 and 1500 Celsius degrees, at room pressure, for durations ranging from one hour to one month. The diffusion profiles were analysed using TEM (transmission electronic microscopy) and RBS (Rutherford backscattering spectroscopy). The diffusivities extracted for Pb{sup 2+} + Th{sup 4+} {r_reversible} 2 Nd{sup 3+} exchange follow an Arrhenius law with parameters E equals 509 {+-} 24 kJ mol{sup -1} and log(D{sub 0} (m{sup 2}s{sup -1})) equals -3.41 {+-} 0.77. Preliminary data for Pb{sup 2+} {r_reversible} Ca{sup 2+} exchange are in agreement with this result. The extrapolation of our data to crustal temperatures yields very slow diffusivities. For instance, the time necessary for a 50 {mu}m grain to lose all of its lead at 800 Celsius degrees is greater than the age of the Earth. From these results and other evidence from the literature, we conclude that most of the perturbations in U-Th-Pb ages of monazite cannot be attributed to lead diffusion, but rather to interactions with fluids. (author)

  3. Dynamic simulation for distortion image with turbulence atmospheric transmission effects

    Science.gov (United States)

    Du, Huijie; Fei, Jindong; Qing, Duzheng; Zhao, Hongming; Yu, Hong; Cheng, Chen

    2013-09-01

    The imaging through atmospheric turbulence is an inevitable problem encountered by infrared imaging sensors working in the turbulence atmospheric environment. Before light-rays enter the window of the imaging sensors, the atmospheric turbulence will randomly interfere with the transmission of the light waves came from the objects, causing the distribution of image intensity values on the focal plane to diffuse, the peak value to decrease, the image to get blurred, and the pixels to deviate, and making image identification very difficult. Owing to the fact of the long processing time and that the atmospheric turbulent flow field is unknown and hard to be described by mathematical models, dynamic simulation for distortion Image with turbulence atmospheric transmission effects is much more difficult and challenging in the world. This paper discusses the dynamic simulation for distortion Image of turbulence atmospheric transmission effect. First of all, with the data and the optical transmission model of the turbulence atmospheric, the ray-tracing method is applied to obtain the propagation path of optical ray which propagates through the high-speed turbulent flow field, and then to calculate the OPD from the reference wave to the reconverted wave front and obtain the point spread function (PSF). Secondly, infrared characteristics models of typical scene were established according to the theory of infrared physics and heat conduction, and then the dynamic infrared image was generated by OpenGL. The last step is to obtain the distortion Image with turbulence atmospheric transmission effects .With the data of atmospheric transmission computation, infrared simulation image of every frame was processed according to the theory of image processing and the real-time image simulation, and then the dynamic distortion simulation images with effects of blurring, jitter and shifting were obtained. Above-mentioned simulation method can provide the theoretical bases for recovering

  4. Drug diffusion across skin with diffusivity spatially modulated

    Science.gov (United States)

    Montoya Arroyave, Isabel

    2014-05-01

    A diffusion and delivery model of a drug across the skin with diffusivity spatially modulated is formulated and solved analytically using computer algebra. The model is developed using one-dimensional diffusion equation with a diffusivity which is a function of position in the skin; with an initial condition which is describing that the drug is initially contained inside a therapeutic patch; with a boundary condition according to which the change in concentration in the patch is minimal, such that assumption of zero flux at the patch-skin interface is valid; and with other boundary condition according to which the microcirculation in the capillaries just below the dermis carries the drug molecules away from the site at a very fast rate, maintaining the inner concentration at 0. The model is solved analytically by the method of the Laplace transform, with Bromwich integral and residue theorem. The concentration profile of the drug in the skin is expressed as an infinite series of Bessel functions. The corresponding total amount of delivered drug is expressed as an infinite series of decreasing exponentials. Also, the corresponding effective time for the therapeutic patch is determined. All computations were performed using computer algebra software, specifically Maple. The analytical results obtained are important for understanding and improving currentapplications of therapeutic patches. For future research it is interesting to consider more general models of spatial modulation of the diffusivity and the possible application of other computer algebra software such as Mathematica and Maxima.

  5. Mars Atmospheric History Derived from Upper-Atmospheric Structure of 38Ar/36Ar Measured From MAVEN

    Science.gov (United States)

    Jakosky, Bruce; Slipski, Marek; Benna, Mehdi; Mahaffy, Paul; Elrod, Meredith K.; Yelle, Roger; Stone, Shane; Alsaeed, Noora

    2016-10-01

    Measurements of the structure of the Martian upper atmosphere made from MAVEN observations allow us to derive homopause and exobase altitudes in the Mars upper atmosphere and to determine the isotopic fractionation that occurs between them. Fractionation in the ratio of 38Ar/36Ar occurs between the homopause and exobase due to diffusive separation. This fractionation, combined with measurements of the bulk atmospheric ratio, is used to determine the total amount of argon lost to space by pick-up-ion sputtering. Our analysis is based on Rayleigh distillation, modified by replenishment of gas to the atmosphere by outgassing, impact, and crustal weathering. Approximately 80 % of the 36Ar that was ever in the atmosphere has been removed through time. This high value requires that a major fraction of Mars atmospheric gas has been lost to space. It points strongly to loss to space as having been the dominant mechanism driving the transition in Martian climate from an early, warm, wet environment to today's cold, dry, thin atmosphere.

  6. Applications of theoretical methods in atmospheric science

    DEFF Research Database (Denmark)

    Johnson, Matthew Stanley; Goodsite, Michael E.

    2008-01-01

    in addressing an issue of primary concern: understanding photochemical reaction rates at the various conditions found in the atmosphere. Atmospheric science includes both atmospheric chemistry and atmospheric physics, meteorology, climatology and the study of extraterrestrial atmospheres....

  7. Anomalous diffusion and diffusion anomaly in confined Janus dumbbells

    Science.gov (United States)

    Krott, Leandro B.; Gavazzoni, Cristina; Bordin, José Rafael

    2016-12-01

    Self-assembly and dynamical properties of Janus nanoparticles have been studied by molecular dynamic simulations. The nanoparticles are modeled as dimers and they are confined between two flat parallel plates to simulate a thin film. One monomer from the dumbbells interacts by a standard Lennard-Jones potential and the other by a two-length scales shoulder potential, typically used for anomalous fluids. Here, we study the effects of removing the Brownian effects, typical from colloidal systems immersed in aqueous solution, and consider a molecular system, without the drag force and the random collisions from the Brownian motion. Self-assembly and diffusion anomaly are preserved in relation to the Brownian system. Additionally, a superdiffusive regime associated to a collective reorientation in a highly structured phase is observed. Diffusion anomaly and anomalous diffusion are explained in the two length scale framework.

  8. Atmospheric lepton fluxes

    Directory of Open Access Journals (Sweden)

    Gaisser Thomas K.

    2015-01-01

    Full Text Available This review of atmospheric muons and neutrinos emphasizes the high energy range relevant for backgrounds to high-energy neutrinos of astrophysical origin. After a brief historical introduction, the main distinguishing features of atmospheric νμ and νe are discussed, along with the implications of the muon charge ratio for the νµ / ν̅µ ratio. Methods to account for effects of the knee in the primary cosmic-ray spectrum and the energy-dependence of hadronic interactions on the neutrino fluxes are discussed and illustrated in the context of recent results from IceCube. A simple numerical/analytic method is proposed for systematic investigation of uncertainties in neutrino fluxes arising from uncertainties in the primary cosmic-ray spectrum/composition and hadronic interactions.

  9. Habituating alarming atmospheres

    DEFF Research Database (Denmark)

    Højlund, Marie

    This paper proposes embodied rhythmic sound habituation as a possible resource when designing contextualized technologies in critical atmospheres. The main contribution is collating the concept of rhythm as presented by Henri Lefebvre with the concept of sound habituation to help operationalize...... essential dynamic parameters when designing atmospheres. This research is based on the development of the novel research artefact Kidkit, designed for children, who are going to meet a hospitalized relative with fatal injuries in a Neuro–Intensive Care Unit. Sounds from hospital equipment have important...... functionality for the staff, but are stressful for visitors and patients, as they are designed to demand attention even though they have no direct functional meaning to them. By introducing sounds from the ward, integrated in the furniture as simple sound sample triggers, KidKit invites children to become...

  10. Atmosphere beyond Poetics

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2014-01-01

    , the notion of atmosphere is presented as parallactic for designing experience in architectural fields, since it transgresses formal and material boundaries of bodies, opening a new gap that exposes the orthodox space-body-environment relationships to questions. It leads to the dissolution...... of the architectural ‘object’ and its fixity and offers a new understanding of context and space – approached as a field of dynamic relationships. It calls for a re-evaluation of perceptual experience, offering to architecture an expanded domain in which architecture manifests itself, including qualities – besides...... poetics and beauty – that architecture has long resisted. That is, it defines space as a contingent construction, performative and intensely affective. Accordingly, the intention is to critically analyse what the term atmosphere entails in architecture, and to expand its notion in terms of affective...

  11. Contaminants in the Atmosphere

    DEFF Research Database (Denmark)

    Skov, H.; Bossi, R.; Wåhlin, P.

    This report presents the results of atmospheric monitoring in Nuuk, Greenland. A long series of heavy metals and persistent organic Pollutants (POPs) have been measured and model calculations have been carried out supporting the interpretation of the results. Financially, the Danish Environmental...... Protection Agency supported this work with means from the MIKA/DANCEA funds for Environmental Support to the Arctic Region and the work is part of the Danish contribution to Arctic Monitoring and Assessment Programme, AMAP......This report presents the results of atmospheric monitoring in Nuuk, Greenland. A long series of heavy metals and persistent organic Pollutants (POPs) have been measured and model calculations have been carried out supporting the interpretation of the results. Financially, the Danish Environmental...

  12. Haze in Pluto's atmosphere

    Science.gov (United States)

    Cheng, A. F.; Summers, M. E.; Gladstone, G. R.; Strobel, D. F.; Young, L. A.; Lavvas, P.; Kammer, J. A.; Lisse, C. M.; Parker, A. H.; Young, E. F.; Stern, S. A.; Weaver, H. A.; Olkin, C. B.; Ennico, K.

    2017-07-01

    Haze in Pluto's atmosphere was detected in images by both the Long Range Reconnaissance Imager (LORRI) and the Multispectral Visible Imaging Camera (MVIC) on New Horizons. LORRI observed haze up to altitudes of at least 200 km above Pluto's surface at solar phase angles from ∼20° to ∼169°. The haze is structured with about ∼20 layers, and the extinction due to haze is greater in the northern hemisphere than at equatorial or southern latitudes. However, more haze layers are discerned at equatorial latitudes. A search for temporal variations found no evidence for motions of haze layers (temporal changes in layer altitudes) on time scales of 2 to 5 hours, but did find evidence of changes in haze scale height above 100 km altitude. An ultraviolet extinction attributable to the atmospheric haze was also detected by the ALICE ultraviolet spectrograph on New Horizons. The haze particles are strongly forward-scattering in the visible, and a microphysical model of haze is presented which reproduces the visible phase function just above the surface with 0.5 μm spherical particles, but also invokes fractal aggregate particles to fit the visible phase function at 45 km altitude and account for UV extinction. A model of haze layer generation by orographic excitation of gravity waves is presented. This model accounts for the observed layer thickness and distribution with altitude. Haze particles settle out of the atmosphere and onto Pluto's surface, at a rate sufficient to alter surface optical properties on seasonal time scales. Pluto's regional scale albedo contrasts may be preserved in the face of the haze deposition by atmospheric collapse.

  13. Diffuse and vascular hepatic diseases; Diffuse und vaskulaere Lebererkrankungen

    Energy Technology Data Exchange (ETDEWEB)

    Kreimeyer, S.; Grenacher, L. [Universitaetsklinikum Heidelberg, Abteilung Diagnostische und Interventionelle Radiologie, Heidelberg (Germany)

    2011-08-15

    In addition to focal liver lesions, diffuse and vascular disorders of the liver represent a wide spectrum of liver diseases which are from the radiological point of view often difficult or nearly impossible to diagnose. Classical diagnostic methods are computed tomography and magnetic resonance imaging in addition to ultrasound. Diffuse parenchymal damage caused by diseases of various etiologies is therefore difficult to evaluate because it often lacks characteristic morphological features. For hepatic steatosis, hemochromatosis/siderosis as an example of a diffuse storage disease and sarcoidosis and candidiasis as infectious/inflammatory diseases, an image-based diagnosis is appropriate in some cases. For most diffuse liver diseases, however only nonspecific changes are visualized. Vascular pathologies of the liver, such as the Budd-Chiari syndrome and portal vein thrombosis, however, can usually be diagnosed very clearly using radiology and there is also a very effective interventional radiological treatment. Chronic diseases very often culminate in liver cirrhosis which is highly associated with an increased risk of liver cancer. (orig.) [German] Neben den fokalen Leberlaesionen stellen diffuse und vaskulaere Lebererkrankungen ein weites Spektrum an Erkrankungen der Leber dar, die radiologisch oft schwer oder gar nicht diagnostizierbar sind. Klassische diagnostische Verfahren sind dabei neben dem Ultraschall die Computertomographie und die Magnetresonanztomographie. Diffuse Parenchymschaeden, bedingt durch Erkrankungen unterschiedlichster Aetiologie, sind deshalb schwierig evaluierbar, weil haeufig charakteristische bildmorphologische Merkmale fehlen. Die Steatosis hepatis, die Haemochromatose/Siderose als Beispiel der Speicherkrankheiten sowie die Sarkoidose und die Candidose als infektioes-entzuendliche Erkrankungen sind einer bildbasierten Diagnosestellung z. T. zugaenglich, bei den meisten diffusen Lebererkrankungen jedoch zeigen sich lediglich unspezifische

  14. DREAMING OF ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Waldmann, I. P., E-mail: ingo@star.ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT (United Kingdom)

    2016-04-01

    Here, we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrieval of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated, and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst-case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep-belief neural (DBN) networks trained to accurately recognize molecular signatures for a wide range of planets, atmospheric thermal profiles, and compositions. Reconstructions of the learned features, also referred to as the “dreams” of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work toward retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data, and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.

  15. Dreaming of Atmospheres

    Science.gov (United States)

    Waldmann, I. P.

    2016-04-01

    Here, we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrieval of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated, and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst-case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep-belief neural (DBN) networks trained to accurately recognize molecular signatures for a wide range of planets, atmospheric thermal profiles, and compositions. Reconstructions of the learned features, also referred to as the “dreams” of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work toward retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data, and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.

  16. Balancing atmospheric carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Goreau, T.J. (Discovery Bay Marine Laboratory, Univ. of the West Indies (JM))

    1990-01-01

    Rising carbon dioxide and global temperatures are causing increasing worldwide concern, and pressure towards an international law of the atmosphere is rapidly escalating, yet widespread misconceptions about the greenhouse effect's inevitability, time scale, and causes have inhibited effective consensus and action. Observations from Antarctic ice cores, Amazonian rain forests, and Carribean coral reefs suggest that the biological effects of climate change may be more severe than climate models predict. Efforts to limit emissions from fossil-fuel combustion alone are incapable of stabilizing levels of carbon dioxide in the atmosphere. Stabilizing atmospheric carbon dioxide requires coupled measures to balance sources and sinks of the gas, and will only be viable with large-scale investments in increased sustainable productivity on degraded tropical soils, and in long-term research on renewable energy and biomass product development in the developing countries. A mechanism is outlined which directly links fossil-fuel combustion sources of carbon dioxide to removal via increasing biotic productivity and storage. A preliminary cost-benefit analysis suggests that such measures are very affordable, costing far less than inaction. (With 88 refs.).

  17. Evolution of the atmosphere.

    Science.gov (United States)

    Nunn, J F

    1998-01-01

    Planetary atmospheres depend fundamentally upon their geochemical inventory, temperature and the ability of their gravitational field to retain gases. In the case of Earth and other inner planets, early outgassing released mainly carbon dioxide and water vapour. The secondary veneer of comets and meteorites added further volatiles. Photodissociation caused secondary changes, including the production of traces of oxygen from water. Earth's gravity cannot retain light gases, including hydrogen. but retains oxygen. Water vapour generally does not pass the cold trap at the stratopause. In the archaean, early evolution of life, probably in hydrothermal vents, and the subsequent development of photosynthesis in surface waters, produced oxygen, at 3500 Ma or even earlier, becoming a significant component of the atmosphere from about 2000 Ma. Thereafter banded iron formations became rare, and iron was deposited in oxidized red beds. Atmospheric levels of carbon dioxide and oxygen have varied during the Phanerozoic: major changes may have caused extinctions. particularly the Permian/Triassic. The declining greenhouse effect due to the long-term decrease in carbon dioxide has largely offset increasing solar luminosity, and changes in carbon dioxide levels relate strongly to cycles of glaciation.

  18. Displacement Ventilation by Different Types of Diffusers

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Hoff, Lars; Pedersen, Lars Germann

    The paper describes measuring results of the air movement from three different types of diffusers for displacement ventilation. Two of the diffusers are lowlevel wall mounted diffusers, one with a low and one with a high initial entrainment. The third diffuser is of the floor mounted type....

  19. Determination of the Atmospheric Neutrino Fluxes from Atmospheric Neutrino Data

    NARCIS (Netherlands)

    Gonzalez-Garcia, M. C.; Maltoni, M.; Rojo, J.

    2006-01-01

    The precise knowledge of the atmospheric neutrino fluxes is a key ingredient in the interpretation of the results from any atmospheric neutrino experiment. In the standard atmospheric neutrino data analysis, these fluxes are theoretical inputs obtained from sophisticated numerical calculations based

  20. Diagrammatic Analysis of Nonhomogeneous Diffusion

    Directory of Open Access Journals (Sweden)

    Julio A. Hernández

    2014-01-01

    Full Text Available By virtue of its complexity, realistic approaches to describe diffusion in cellular media require the employment of computational methods. Among others, this type of studies has shown that the apparent diffusion coefficient of a macromolecular solute through a cytoplasmic-like medium exhibits a power-law dependence with the excluded volume. Power laws are ubiquitous findings in diverse systems, such as metabolic processes, population dynamics, and communication networks, and have been the object of many interpretative formal approaches. This study introduces a diagrammatic algorithm, inspired in previous ones employed to analyze multicyclic chemical systems, to derive expressions for nonhomogeneous diffusion coefficients and to study the effects of volume exclusion. A most noteworthy result of this work is that midsize diagrams of nonhomogeneous diffusion are already able to exhibit an approximate power-law dependence of the diffusion coefficient with the excluded volume. The employment of the diagrammatic method for the analysis of simple situations may thus prove useful to interpret some properties of larger network systems.

  1. Assessment of diffusive isotopic fractionation in polar firn, and application to ice core trace gas records

    DEFF Research Database (Denmark)

    Buizert, C.; Sowers, T.; Blunier, T.

    2013-01-01

    During rapid variations of the atmospheric mixing ratio of a trace gas, diffusive transport in the porous firn layer atop ice sheets and glaciers alters the isotopic composition of that gas relative to the overlying atmosphere. Records of past atmospheric trace gas isotopic composition from ice...... from ice cores; (5) arguably gives more accurate results than a combined firn densification-firn air transport modeling study would. We apply the method to records of CH, CO and NO mixing ratios, and we find that the correction is particularly important for C - . We apply the correction to C - records...

  2. Results from the first ARM diffuse horizontal shortwave irradiance comparison

    Energy Technology Data Exchange (ETDEWEB)

    Michalsky, J J.(New York, State Univ Of); Dolce, R (Zipp and Zonen, Inc.); Dutton, E. G.(NOAA/CMDL); Haeffelin, Martial (VISITORS); Major, G (Budabest University of Economic Sciences); Schlemmer, J A.; Slater, Donald W.(BATTELLE (PACIFIC NW LAB)); Hickey, J R.(The Eppley Laboratory, Inc.); Jeffries, W Q.(Yankee Environmental Systems); Los, A (Kipp and Zonen, Inc.); Mathias, D (Carter-Scott Design); McArthur, LJ B.(Meteorlogical Service of Canada); Philipona, R (Physikalish - Meteorologiisches Observatorium and World); Reda, I (National Renewable Energy Laboratory); Stoffel, T (National Renewable Energy Laboratory)

    2003-02-07

    The first intensive observation period (IOP) dedicated exclusively to the measurement of diffuse horizontal shortwave irradiance was held in the Fall 2001 at the central facility of the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site with the cooperation of the Baseline Surface Radiation Network (BSRN) community. Fourteen simultaneous measurements were obtained over a two-week period under mostly clear skies with low to moderate aerosol loading. Overcast data were obtained during the morning of one day. The purpose of the comparison was to assess the level of agreement in diffuse irradiance measurements among most commercial pyranometers and a few prototypes calibrated independently using current practices. The hope was to achieve a consensus for this measurement with the goal of improving the uncertainty of shortwave diffuse irradiance measurements. All diffuse broadband measurements were made using the same type of two-axis tracker with the direct beam blocked by shading balls. Tracking was very good during the IOP with no outages associated with tracker problems. Five of the measurements are reproducible to about 2 W/m2 at the 95% confidence level. Four more agree with the most consistent group to about 4 W/m2 at the 95% confidence level after correction for thermal offsets. The prototypes agree less well with the most consistent group.

  3. Diffuse sound field: challenges and misconceptions

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2016-01-01

    Diffuse sound field is a popular, yet widely misused concept. Although its definition is relatively well established, acousticians use this term for different meanings. The diffuse sound field is defined by a uniform sound pressure distribution (spatial diffusion or homogeneity) and uniform...... incident intensity distribution (directional diffusion or isotropy). In practice, reverberation chambers are assumed to be acoustically diffuse, and important acoustic quantities measured in there, i.e., sound absorption, scattering, transmission, and power, etc. However, the measured quantities vary...... of mixing and diffuse sound field. Acousticians often refer diffuse reflections from surfaces to diffuseness in rooms, and vice versa. Subjective aspects of diffuseness have not been much investigated. Finally, ways to realize a diffuse sound field in a finite space are discussed....

  4. Diffuse sound field: challenges and misconceptions

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2016-01-01

    Diffuse sound field is a popular, yet widely misused concept. Although its definition is relatively well established, acousticians use this term for different meanings. The diffuse sound field is defined by a uniform sound pressure distribution (spatial diffusion or homogeneity) and uniform...... of mixing and diffuse sound field. Acousticians often refer diffuse reflections from surfaces to diffuseness in rooms, and vice versa. Subjective aspects of diffuseness have not been much investigated. Finally, ways to realize a diffuse sound field in a finite space are discussed....... incident intensity distribution (directional diffusion or isotropy). In practice, reverberation chambers are assumed to be acoustically diffuse, and important acoustic quantities measured in there, i.e., sound absorption, scattering, transmission, and power, etc. However, the measured quantities vary...

  5. Atmospheric Climate Experiment Plus

    Science.gov (United States)

    Lundahl, K.

    ACE+ is an atmospheric sounding mission using radio occultation techniques and is a combination of the two Earth Explorer missions ACE and WATS earlier proposed to ESA. ACE was highly rated by ESA in the Call for Earth Explorer Opportunity Missions in 1999 and was prioritised as number three and selected as a "hot-stand-by". A phase A study was carried out during 2000 and 2001. ACE will observe atmospheric parameters using radio occultations from an array of 6 micro-satellites which track the L- band signal of GPS satellites to map the detailed refractivity and thermal structure of the global atmosphere from surface to space. Water vapour and wind in Atmospheric Troposphere and Stratosphere WATS was the response to ESA's Call for Ideas for the next Earth Explorer Core Missions in 2001. WATS combines ACE GPS atmospheric occultations and LEO-LEO cross-link occultations. Cross-links strongly enhance the capability of measuring humidity relative to the ACE mission. The Earth Science Advisory Committée at ESA noted that the LEO-GNSS occultation technique is already well established through several missions in recent years and could not recommend WATS for a Phase A study as an Earth Explorer Core Mission. The ESAC was, however, deeply impressed by the LEO-LEO component of the WATS proposal and would regard it as regrettable if this science would be lost and encourages the ACE/WATS team to explore other means to achieve its scientific goal. ACE+ is therefore the response to ESA's 2nd Call for Earth Explorer Opportunity Missions in 2001 and will contribute in a significant manner to ESA's Living Planet Programme. ACE+ will considerably advance our knowledge about atmosphere physics and climate change processes. The mission will demonstrate a highly innovative approach using radio occultations for globally measuring profiles of humidity and temperature throughout the atmosphere and stratosphere. A constellation of 4 small satellites, tracking L-band GPS/GALILEO signals and

  6. The nitrogen cycle: Atmosphere interactions

    Science.gov (United States)

    Levine, J. S.

    1984-01-01

    Atmospheric interactions involving the nitrogen species are varied and complex. These interactions include photochemical reactions, initiated by the absorption of solar photons and chemical kinetic reactions, which involve both homogeneous (gas-to-gas reactions) and heterogeneous (gas-to-particle) reactions. Another important atmospheric interaction is the production of nitrogen oxides by atmospheric lightning. The nitrogen cycle strongly couples the biosphere and atmosphere. Many nitrogen species are produced by biogenic processes. Once in the atmosphere nitrogen oxides are photochemically and chemically transformed to nitrates, which are returned to the biosphere via precipitation, dry deposition and aerosols to close the biosphere-atmosphere nitrogen cycle. The sources, sinks and photochemistry/chemistry of the nitrogen species; atmospheric nitrogen species; souces and sinks of nitrous oxide; sources; sinks and photochemistry/chemistry of ammonia; seasonal variation of the vertical distribution of ammonia in the troposphere; surface and atmospheric sources of the nitrogen species, and seasonal variation of ground level ammonia are summarized.

  7. NOAA's Tropical Atmosphere Ocean Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Realtime El Nino and La Nina data from the tropical Pacific Ocean is provided by the Tropical Atmosphere Ocean / Triangle Trans-Ocean buoy network (TAO/TRITON) of...

  8. Enhanced lifetime hybrid-diffuser cesium reservoir photocathode

    Science.gov (United States)

    Montgomery, Eric J.; Pan, Zhigang; Riddick, Blake C.; O'Shea, Patrick G.; Feldman, Donald W.; Jensen, Kevin L.; Ives, R. Lawrence; Falce, Louis R.

    2013-01-01

    A novel self-healing hybrid-diffuser cesium reservoir photocathode is demonstrated. The model-driven design optimizes operating temperature to match diffusion and evaporation rates and maximize quantum efficiency of the cesiated tungsten surface. A sintered-wire tungsten emitter promotes surface uniformity. Cesium loss is less than 0.023 µg/cm2/hr at 125°C, and conservatively extrapolated reservoir lifetime exceeds 30,000 hours. Contamination robustness to a direct atmospheric leak with room-temperature contamination by over 200 Langmuirs of oxidizing gases is excellent, with 90% of maximum QE repeatedly restored via in situ self-healing recesiation under gentle 90°C heating.

  9. The Reactive-Diffusive Length of OH Radical in Squalane

    Science.gov (United States)

    Lee, L.; Wilson, K. R.

    2015-12-01

    With the technique of core-shell particle configuration, we have measured the radical penetration length in a reactive matrix by observing the transmission efficiency of OH radical through squalane shell of various thickness ranging from 0 nm (without coating) to 16 nm. The result indicates a penetration depth of 2.2 nm. Our data suggest that the OH concentration profile in squalane as a function of the distance from the squalane/air interface can be satisfactorily described by the analytical solution to diffusion equation with an added chemical loss term experienced by the OH radical. This allowed an almost unambiguous determination of either OH diffusivity or OH reactivity given that one of the value is known in systems where radical chain propagation is not a significant factor and can shed new lights on the lifetime alteration of particulate matters in the atmosphere where possible coating processes are abundant.

  10. Comparing diffuse radiation models with one predictor for partitioning incident PAR radiation into its diffuse component in the eastern Mediterranean basin

    Energy Technology Data Exchange (ETDEWEB)

    Jacovides, C.P.; Asimakopoulos, D.N.; Kaltsounides, N.A. [Department of Environmental Physics and Meteorology, Athens University Campus, Builds PHYS-V, Athens 157 84 (Greece); Boland, J. [School of Mathematics and Statistics and Institute for Sustainable Systems and Technologies, University of South Australia (Australia)

    2010-08-15

    In the photosynthesis process, solar radiation energy is converted to chemical energy by using atmospheric CO{sub 2}. That is, almost all living species depend on energy produced through photosynthesis for their nourishing components thus making photosynthesis vital to the earth's life. Nevertheless, the knowledge of photosynthetic photon flux density Q{sub P} (PAR, 400-700 nm) is important in several applications dealing with plants physiology, biomass production, natural illumination in greenhouses and agricultural research. This study aiming to explore the applicability of several diffuse radiation empirical models, hourly measurements of diffuse PAR and global PAR irradiation collected at Athens (37 N, 23 E, 250 m above MSL) from 1 January 2000 to 31 December 2002, are employed. These data were used to establish an empirical model relating the spectral diffuse fraction, k{sub dP} (ratio of the diffuse-to-global PAR) with the fractional transmission of global PAR k{sub tP} (ratio of the global PAR-to-extraterrestrial solar PAR). The performance of the proposed empirical model was further compared with those of twelve other diffuse-global correlation models available in the literature in terms of the widely used statistical indicators mbe, rmse and t-test. From the overall analysis, it can be concluded that the proposed model predicts diffuse PAR values accurately, whereas most of the candidate empirical models examined here appear to be location-independent for the diffuse PAR predictions. (author)

  11. Diffusion of ultrasound in concrete.

    Science.gov (United States)

    Anugonda, P; Wiehn, J S; Turner, J A

    2001-10-01

    The propagation and scattering of ultrasound in concrete is discussed. The heterogeneous composition of concrete causes the ultrasound to scatter considerably. In the limit of many scattering events, the ultrasonic energy density in circular cylinders of concrete is shown to evolve in accordance with a one-dimensional diffusion equation. The ultrasonic diffusivity and dissipation are measured experimentally over the frequency range of 100-900 kHz. Theoretical descriptions of the diffusivity are in accord with the experimental values. Such frequencies are well above typical frequencies used for concrete inspection. Thus, it is anticipated that the use of these higher frequencies will result in new techniques for characterizing material properties and damage in concrete structures.

  12. Diffusion inside living human cells

    DEFF Research Database (Denmark)

    Leijnse, N.; Jeon, J. -H.; Loft, Steffen

    2012-01-01

    Naturally occurring lipid granules diffuse in the cytoplasm and can be used as tracers to map out the viscoelastic landscape inside living cells. Using optical trapping and single particle tracking we found that lipid granules exhibit anomalous diffusion inside human umbilical vein endothelial...... cells. For these cells the exact diffusional pattern of a particular granule depends on the physiological state of the cell and on the localization of the granule within the cytoplasm. Granules located close to the actin rich periphery of the cell move less than those located towards to the center...... of the cell or within the nucleus. Also, granules in cells which are stressed by intense laser illumination or which have attached to a surface for a long period of time move in a more restricted fashion than those within healthy cells. For granules diffusing in healthy cells, in regions away from the cell...

  13. Nonlinear Diffusion and Transient Osmosis

    Science.gov (United States)

    Akira, Igarashi; Lamberto, Rondoni; Antonio, Botrugno; Marco, Pizzi

    2011-08-01

    We investigate both analytically and numerically the concentration dynamics of a solution in two containers connected by a narrow and short channel, in which diffusion obeys a porous medium equation. We also consider the variation of the pressure in the containers due to the flow of matter in the channel. In particular, we identify a phenomenon, which depends on the transport of matter across nano-porous membranes, which we call “transient osmosis". We find that nonlinear diffusion of the porous medium equation type allows numerous different osmotic-like phenomena, which are not present in the case of ordinary Fickian diffusion. Experimental results suggest one possible candidate for transiently osmotic processes.

  14. Atmospheric corrosion of mild steel

    OpenAIRE

    Morcillo, M.; de la Fuente, D.; Díaz, I.; Cano, H.

    2011-01-01

    The atmospheric corrosion of mild steel is an extensive topic that has been studied by many authors in different regions throughout the world. This compilation paper incorporates relevant publications on the subject, in particular about the nature of atmospheric corrosion products, mechanisms of atmospheric corrosion and kinetics of the atmospheric corrosion process, paying special attention to two matters upon which relatively less information has been published: a) the morphology of steel c...

  15. Atmospheric corrosion of mild steel

    OpenAIRE

    Morcillo, Manuel; Fuente, Daniel de la; Díaz, Iván; Cano, H.

    2011-01-01

    The atmospheric corrosion of mild steel is an extensive topic that has been studied by many authors in different regions throughout the world. This compilation paper incorporates relevant publications on the subject, in particular about the nature of atmospheric corrosion products, mechanisms of atmospheric corrosion and kinetics of the atmospheric corrosion process, paying special attention to two matters upon which relatively less information has been published: a) the morpholog...

  16. LSM-YSZ Reactions in Different Atmospheres

    DEFF Research Database (Denmark)

    Chen, Ming; Liu, Yi-Lin; Hagen, Anke

    2009-01-01

    The influences of the oxygen partial pressure and the LSM/YSZ ratio on the LSM-YSZ interface reactions at 1,000 °C were investigated. Both pellets and diffusion couples were employed in the study. The equilibrium thermodynamics of the LSM-YSZ reactions was clarified based on the pellet study......-powder reaction. LSM reacts differently with YSZ in different atmospheres. In air, m-ZrO2 (monoclinic) is formed; while in N2, SrZrO3 and/or La2Zr2O7 are formed depending on the initial LSM/YSZ ratio. The reactions are reversible with varying P(O2) i.e. treating the sample in air after the heat treatment in N2...

  17. A passive sampler for atmospheric ozone

    Energy Technology Data Exchange (ETDEWEB)

    Grosjean, D.; Hisham, M.W.M. (DGA, Inc., Ventura, CA (United States))

    1992-02-01

    A simple, cost-effective passive sampler has been developed for the determination of atmospheric ozone. This passive sampler is based on a colorant which fades upon reaction with ozone, whose concentration can be determined by reflectance measurement of the color change. Direct, on-site measurements are possible, and no chemical analyses are needed. Sampler design and validation studies have been carried out and included quantitative determination of color change vs exposure time (1-8 days), color change vs. ozone concentration (30-350 ppb), and response to changes in sampler configuration that modify the passive sampling rate. With indigo carmine as the colorant, the detection limits are 30 ppb. day and 120 ppb. day using a plastic grid and Teflon filter, respectively, as diffusion barriers. Interferences from nitrogen dioxide, formaldehyde and peroxyacetyl nitrate are 15, 4 and 16%, respectively, thus resulting in a negligible bias when measuring ozone in ambient air.

  18. Absorption of Soluble Gases by Atmospheric Nanoaerosols

    CERN Document Server

    Elperin, Tov; Krasovitov, Boris; Lushnikov, Alexey

    2012-01-01

    We investigate mass transfer during absorption of atmospheric trace soluble gases by a single droplet whose size is comparable to the molecular mean free path in air at normal conditions. It is assumed that the trace reactant diffuses to the droplet surface and then reacts with the substances inside the droplet according to the first order rate law. Our analysis applies a flux-matching theory of transport processes in gases and assumes constant thermophysical properties of the gases and liquids. We derive an integral equation of Volterra type for the transient molecular flux density to a liquid droplet and solve it numerically. Numerical calculations are performed for absorption of sulfur dioxide (SO2), dinitrogen trioxide (N2O3) and chlorine (Cl2) by liquid nanoaerosols accompanied by chemical dissociation reaction. It is shown that during gas absorption by nanoaerosols the kinetic effects play significant role, and neglecting kinetic effects leads to significant overestimation of the soluble gas flux into a...

  19. Diffusing diffusivity: a new derivation and comparison with simulations

    Indian Academy of Sciences (India)

    Rohit Jain

    Abstract. Many experiments are now available where it has been shown that the probability distribution function (pdf) for the position of a Brownian particle diffusing in a heterogeneous medium is not Gaussian. However, in spite of this non-Gaussianity, the mean square displacement (MSD) still remains Fickian, i.e.,. 〈 x2〉.

  20. Innovation Diffusion: Assessment of Strategies within the Diffusion Simulation Game

    Science.gov (United States)

    Enfield, Jacob; Myers, Rodney D.; Lara, Miguel; Frick, Theodore W.

    2012-01-01

    Educators increasingly view the high level of engagement and experiential learning offered by games as a means to promote learning. However, as with any designed learning experience, player experiences should provide an accurate representation of content to be learned. In this study, the authors investigated the DIFFUSION SIMULATION GAME (DSG) to…

  1. the Martian atmospheric boundary layer

    DEFF Research Database (Denmark)

    Petrosyan, A.; Galperin, B.; Larsen, Søren Ejling

    2011-01-01

    The planetary boundary layer (PBL) represents the part of the atmosphere that is strongly influenced by the presence of the underlying surface and mediates the key interactions between the atmosphere and the surface. On Mars, this represents the lowest 10 km of the atmosphere during the daytime...

  2. Impacts of small-scale variability on the determination of bulk thermal diffusivity in snowpacks

    Science.gov (United States)

    Oldroyd, H. J.; Higgins, C. W.; Huwald, H.; Selker, J. S.; Parlange, M. B.

    2012-04-01

    Thermal diffusivity of snow is an important physical property associated with key hydrological phenomena such as snowmelt and heat and water vapor exchange with the atmosphere. These phenomena have broad implications in studies of climate and heat and water budgets on many scales. Furthermore, sub grid scale phenomena may enhance these heat and mass exchanges in the snow pack due to its porous nature. We hypothesize that the heat transfer effects of these small-scale variabilities may be seen as an increased bulk thermal diffusivity of the snow. Direct measurements of snow thermal diffusivity require coupled measurements of thermal conductivity and density, which are nonstationary due to snow metamorphism. Furthermore, thermal conductivity measurements are typically obtained with specialized heating probes or plates and snow density measurements require digging snow pits. Therefore, direct measurements are difficult to obtain with high enough temporal resolution such that direct comparisons with atmospheric conditions can be made. This study uses highly resolved temperature measurements from the Plaine Morte glacier in Switzerland as initial and boundary conditions to numerically solve the 1D heat equation and iteratively optimize for thermal diffusivity. The method uses flux boundary conditions to constrain thermal diffusivity such that spuriously high values in thermal diffusivity are eliminated. Additionally, a t-test ensuring statistical significance between solutions of varied thermal diffusivity results in further constraints on thermal diffusivity that eliminate spuriously low values. The results show that time resolved thermal diffusivity can be determined from easily implemented and inexpensive temperature measurements of seasonal snow with good agreement to widely used parameterizations based on snow density. This high time resolution further affords the ability to explore possible turbulence-induced enhancements to heat and mass transfer in the snow.

  3. A Framework to Analyze Cerebral Mean Diffusivity Using Surface Guided Diffusion Mapping in Diffusion Tensor Imaging

    Directory of Open Access Journals (Sweden)

    Oh-Hun eKwon

    2015-07-01

    Full Text Available The mean diffusivity (MD value has been used to describe microstructural properties in Diffusion Tensor Imaging (DTI in cortical gray matter (GM. Recently, researchers have applied a cortical surface generated from the T1-weighted volume. When the DTI data are analyzed using the cortical surface, it is important to assign an accurate MD value from the volume space to the vertex of the cortical surface, considering the anatomical correspondence between the DTI and the T1-weighted image. Previous studies usually interpolated the MD value using the nearest-neighbor (NN method or the trilinear method, even though there are geometric distortions in diffusion-weighted volumes. Here we introduce a Surface Guided Diffusion Mapping (SGDM method to compensate for such geometric distortions. We compared our SGDM method with results using NN and trilinear methods by investigating differences in the interpolated MD value. We also interpolated the tissue classification results of non-diffusion-weighted volumes to the cortical midsurface. The CSF probability values provided by the SGDM method were lower than those produced by the NN and trilinear methods. The MD values provided by the NN and trilinear methods were significantly greater than those of the SGDM method in regions suffering from geometric distortion. These results indicate that the NN and trilinear methods assigned the MD value in the CSF region to the cortical midsurface (GM region. Our results suggest that the SGDM method is an effective way to correct such mapping errors.

  4. Evaluation protocol for the WIND system atmospheric models

    Energy Technology Data Exchange (ETDEWEB)

    Fast, J.D.

    1991-12-31

    Atmospheric transport and diffusion models have been developed for real-time calculations of the location and concentration of toxic or radioactive materials during a accidental release at the Savannah River Site (SRS). These models are have been incorporated into an automated menu-driven computer based system called the WIND (Weather INformation and Display) system. In an effort to establish more formal quality assurance procedures for the WIND system atmospheric codes, a software evaluation protocol is being developed. An evaluation protocol is necessary to determine how well they may perform in emergency response (real-time) situations. The evaluation of high-impact software must be conducted in accordance with WSRC QA Manual, 1Q, QAP 20-1. This report will describe the method that will be used to evaluate the atmospheric models. The evaluation will determine the effectiveness of the atmospheric models in emergency response situations, which is not necessarily the same procedure used for research purposes. The format of the evaluation plan will provide guidance for the evaluation of atmospheric models that may be added to the WIND system in the future. The evaluation plan is designed to provide the user with information about the WIND system atmospheric models that is necessary for emergency response situations.

  5. Evaluation protocol for the WIND system atmospheric models

    Energy Technology Data Exchange (ETDEWEB)

    Fast, J.D.

    1991-01-01

    Atmospheric transport and diffusion models have been developed for real-time calculations of the location and concentration of toxic or radioactive materials during a accidental release at the Savannah River Site (SRS). These models are have been incorporated into an automated menu-driven computer based system called the WIND (Weather INformation and Display) system. In an effort to establish more formal quality assurance procedures for the WIND system atmospheric codes, a software evaluation protocol is being developed. An evaluation protocol is necessary to determine how well they may perform in emergency response (real-time) situations. The evaluation of high-impact software must be conducted in accordance with WSRC QA Manual, 1Q, QAP 20-1. This report will describe the method that will be used to evaluate the atmospheric models. The evaluation will determine the effectiveness of the atmospheric models in emergency response situations, which is not necessarily the same procedure used for research purposes. The format of the evaluation plan will provide guidance for the evaluation of atmospheric models that may be added to the WIND system in the future. The evaluation plan is designed to provide the user with information about the WIND system atmospheric models that is necessary for emergency response situations.

  6. Diffusion probe for gas sampling in undisturbed soil

    DEFF Research Database (Denmark)

    Petersen, Søren O

    2014-01-01

    Soil-atmosphere fluxes of trace gases such as methane (CH4) and nitrous oxide (N2O) are determined by complex interactions between biological activity and soil conditions. Soil gas concentration profiles may, in combination with other information about soil conditions, help to understand emission...... controls. This note describes a simple and robust diffusion probe for soil gas sampling as part of flux monitoring programs. It can be deployed with minimum disturbance of in-situ conditions, also at sites with a high or fluctuating water table. Separate probes are used for each sampling depth...

  7. Metal Accretion onto White Dwarfs. I. The Approximate Approach Based on Estimates of Diffusion Timescales

    Science.gov (United States)

    Fontaine, G.; Brassard, P.; Dufour, P.; Tremblay, P.-E.

    2015-06-01

    The accretion-diffusion picture is the model par excellence for describing the presence of planetary debris polluting the atmospheres of relatively cool white dwarfs. Some important insights into the process may be derived using an approximate approach which combines static stellar models with estimates of diffusion timescales at the base of the outer convection zone or, in its absence, at the photosphere. Until recently, and to our knowledge, values of diffusion timescales in white dwarfs have all been obtained on the basis of the same physics as that developed initially by Paquette et al., including their diffusion coefficients and thermal diffusion coefficients. In view of the recent exciting discoveries of a plethora of metals (including some never seen before) polluting the atmospheres of an increasing number of cool white dwarfs, we felt that a new look at the estimates of settling timescales would be worthwhile. We thus provide improved estimates of diffusion timescales for all 27 elements from Li to Cu in the periodic table in a wide range of the surface gravity-effective temperature domain and for both DA and non-DA stars.

  8. The Reactive-Diffusive Length of OH and Ozone in Model Organic Aerosols.

    Science.gov (United States)

    Lee, Lance; Wilson, Kevin

    2016-09-01

    A key step in the heterogeneous oxidation of atmospheric aerosols is the reaction of ozone (O3) and hydroxyl radicals (OH) at the gas-particle interface. The formation of reaction products and free radical intermediates and their spatial distribution inside the particle is a sensitive function of the length over which these oxidants diffuse prior to reaction. The reactive-diffusive length of OH and ozone at organic aerosol interfaces is determined by observing the change in the effective uptake coefficient for size-selected model aerosols comprising a reactive core and a thin nanometer-sized (0-12 nm) organic shell. The core and shell materials are selected so that they are immiscible and adopt an assumed core-shell configuration. The results indicate a reactive-diffusive length of 1.4 nm for hydroxyl (OH) radicals in squalane and 1.0 nm for ozone in squalene. Measurements for a purely diffusive system allow for an estimate for diffusion constant (1.6 × 10(-6) cm(2)/s) of ozone in squalane to be determined. The reactive-diffusive length offers a simple first order estimate of how shielding of aerosols by immiscible layers can alter estimates of oxidative lifetimes of aerosols in the atmosphere.

  9. Atmospheric Composition Instrumentation.

    Science.gov (United States)

    1977-12-26

    9fI urpAt .~~~ — 7. A THOR(a) 9. CON I RACT OR GRANT HUM BER(.) ! ~~~~~~~~ /otis 7 ~~ ~~F 1962~~~ 4~~~~~~ 1 H 9. FoRMING ORGANIZATION NAN NO...objective of the Upper Atmosphere Re- search Program is the acquisition of 1- nowledge of the ohysica] and chemica ) properties and phenomena of the vitally

  10. Atmospheric gas phase reactions

    Science.gov (United States)

    Platt, Ulrich

    This chapter introduces the underlying physicochemical principles and the relevance of atmospheric gas phase reactions. In particular, reaction orders, the concept of elementary reactions, definition of and factors determining reaction rates (kinetic theory of chemical reactions), and photochemical reactions are discussed. Sample applications of the pertinent reaction pathways in tropospheric chemistry are presented, particularly reactions involving free radicals (OH, NO3, halogen oxides) and their roles in the self-cleaning of the troposphere. The cycles of nitrogen and sulfur species as well as the principles of tropospheric ozone formation are introduced. Finally, the processes governing the stratospheric ozone layer (Chapman Cycle and extensions) are discussed.

  11. MOBILE ATMOSPHERIC SENSING

    Directory of Open Access Journals (Sweden)

    L. Wang

    2017-11-01

    Full Text Available Atmospheric quality dramatically deteriorates over the past decades around themetropolitan areas of China. Due to the coal combustion, industrial air pollution, vehicle waste emission, etc., the public health suffers from exposure to such air pollution as fine particles of particulates, sulfur and carbon dioxide, etc. Many meteorological stations have been built to monitor the condition of air quality over the city. However, they are installed at fixed sites and cover quite a small region. The monitoring results of these stations usually do NOT coincide with the public perception of the air quality. This paper is motivated to mimic the human breathing along the citys transportation network by the mobile sensing vehicle of atmospheric quality. To obtain the quantitative perception of air quality, the Environmental Monitoring Vehicle of Wuhan University (EMV-WHU has been developed to automatically collect the data of air pollutants. The EMV-WHU is equipped with GPS/IMU, sensors of PM2.5, carbon dioxide, anemometer, temperature, humidity, noise, and illumination, as well as the visual and infrared camera. All the devices and sensors are well collaborated with the customized synchronization mechanism. Each sort of atmospheric data is accompanied with the uniform spatial and temporal label of high precision. Different spatial and data-mining techniques, such as spatial correlation analysis, logistic regression, spatial clustering, are employed to provide the periodic report of the roadside air quality. With the EMV-WHU, constant collection of the atmospheric data along the Luoyu Road of Wuhan city has been conducted at the daily peak and non-peak time for half a year. Experimental results demonstrated that the EMV is very efficient and accurate for the perception of air quality. Comparative findings with the meteorological stations also show the intelligence of big data analysis and mining of all sorts of EMV measurement of air quality. It is

  12. Rectenna related atmospheric effects

    Science.gov (United States)

    Lee, J.

    1980-01-01

    Possible meteorological effects arising from the existence and operations of a solar power satellite (SPS) system rectenna are examined. Analysis and model simulations in some chosen site situations and meteorological conditions indicate that the meteorological effects of the construction and operation of a rectenna are small, particularly outside the boundary of the structure. From weather and climate points of view, installation of an SPS rectenna seems likely to have effects comparable with those due to other nonindustrial land use changes covering the same area. The absorption and scattering of microwave radiation in the troposphere would have negligible atmospheric effects.

  13. Atmospheric pseudohalogen chemistry

    OpenAIRE

    Lary, D. J.

    2004-01-01

    There are at least three reasons why hydrogen cyanide is likely to be significant for atmospheric chemistry. The first is well known, HCN is a product and marker of biomass burning. However, if a detailed ion chemistry of lightning is considered then it is almost certain than in addition to lightning producing NOx, it also produces HOx and HCN. Unlike NOx and HOx, HCN is long-lived and could therefore ...

  14. Summary of the March 25--26, 1991 atmospheric model working meeting

    Energy Technology Data Exchange (ETDEWEB)

    Ramsdell, J.V.

    1992-07-01

    Atmospheric transport and diffusion calculations for the initial phase of the Hanford Environmental Dose Reconstruction (HEDR) Project were made using the MESOILT2 computer code (Ramsdell and Burk 1991). This code implemented a Lagrangian trajectory, puff dispersion model using components from other models designed primarily for regulatory applications. Uncertainty in the dispersion calculations was estimated following model calculations. The results of the atmospheric dispersion calculations were summarized in frequency distributions by location for use in preliminary dose calculations.

  15. In vivo facilitated diffusion model.

    Directory of Open Access Journals (Sweden)

    Maximilian Bauer

    Full Text Available Under dilute in vitro conditions transcription factors rapidly locate their target sequence on DNA by using the facilitated diffusion mechanism. However, whether this strategy of alternating between three-dimensional bulk diffusion and one-dimensional sliding along the DNA contour is still beneficial in the crowded interior of cells is highly disputed. Here we use a simple model for the bacterial genome inside the cell and present a semi-analytical model for the in vivo target search of transcription factors within the facilitated diffusion framework. Without having to resort to extensive simulations we determine the mean search time of a lac repressor in a living E. coli cell by including parameters deduced from experimental measurements. The results agree very well with experimental findings, and thus the facilitated diffusion picture emerges as a quantitative approach to gene regulation in living bacteria cells. Furthermore we see that the search time is not very sensitive to the parameters characterizing the DNA configuration and that the cell seems to operate very close to optimal conditions for target localization. Local searches as implied by the colocalization mechanism are only found to mildly accelerate the mean search time within our model.

  16. [Thermal diffusivity of dental cements].

    Science.gov (United States)

    Paroussis, D; Kakaboura, A; Chrysafidis, C; Mauroyiannakis, E

    1990-08-01

    Thermal insulative efficiency, is one of the desirable properties of the dental cements. In this study, the thermal diffusivity of three types of dental cements, were measured. Thermal diffusivity was determined by the following method. Two thermo-couples were used and connected to a chart record, the first was embedded in the cylindrical block of the cement specimen and the other in a mixing of ice and water (reference thermocouple). All them were set in a apparatus consisting of a double cooling bath. Calculation of thermal diffusivity were based on the curve provided of the record during cooling of the cement and a theoretical mathematic model. Values were ranged from 2,985 to 3,934 cm2.sec-1. ZOE cement exhibited the highest value, the glass-ionomers the lowest and the poly-carboxylates were average. The results showed that the thermal diffusivity of the cements is dependent from the type of the cement but the differences between them were not statistically significant. Additionally, the values obtained were about the same as the dentin, so the dental cements may consider as good thermal insulators.

  17. Essays on diffusion and categories

    NARCIS (Netherlands)

    van Hugten, Joeri

    2015-01-01

    Essay’ derives from the French ‘to try’. Accordingly, in this book, I try three new interpretations of diffusion and categories. That is, I try to divide observations into groups in a new way. Some ways of dividing lead to confusion and frustration. For example, people’s default division seems to be

  18. Diffuse Deckenlüftung

    DEFF Research Database (Denmark)

    Zhang, Chen; Yu, Tao; Heiselberg, Per Kvols

    Akustikdecke direkt als Luftverteiler verwendet werden kann. Durch den Einsatz eines Hohlraums für die Luftverteilung fallen zudem auch die Kosten für Luftkanäle niedriger aus. Das Interesse daran, die diffuse Deckenlüftung in Büros und anderen Gewerbegebäuden einzusetzen, wächst aufgrund der Vorteile in Bezug...

  19. Branching diffusion with particle interactions

    OpenAIRE

    Engländer, János; Zhang, Liang

    2016-01-01

    A $d$-dimensional branching diffusion, $Z$, is investigated, where the linear attraction or repulsion between particles is competing with an Ornstein-Uhlenbeck drift, with parameter $b$ (we take $b>0$ for inward O-U and $b0$) or repulsion ($\\gamma 0$, while escapes to infinity exponentially fast (rate $|b|$) when $b

  20. Nonlinear diffusion and superconducting hysteresis

    Energy Technology Data Exchange (ETDEWEB)

    Mayergoyz, I.D. [Univ. of Maryland, College Park, MD (United States)

    1996-12-31

    Nonlinear diffusion of electromagnetic fields in superconductors with ideal and gradual resistive transitions is studied. Analytical results obtained for linear and nonlinear polarizations of electromagnetic fields are reported. These results lead to various extensions of the critical state model for superconducting hysteresis.

  1. Rotational diffusion in dense suspensions

    NARCIS (Netherlands)

    Hagen, M. H. J.; Frenkel, D.; Lowe, C.P.

    1999-01-01

    We have computed the rotational diffusion coefficient for a suspension of hard spheres. We find excellent agreement with experimental results over a density range up to, and including, the colloidal crystal. However, we find that theories derived to second order in the volume fraction overestimate

  2. Tactile perception of thermal diffusivity

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.|info:eu-repo/dai/nl/262668424; Kappers, A.M.L.|info:eu-repo/dai/nl/07445370X

    2009-01-01

    The thermal diffusivity of an object is a parameter that controls the rate at which heat is extracted from the hand when it touches that object. It is an important feature for distinguishing materials by means of touch. In order to quantitatively describe the ability of human observers to

  3. Diffusion LMS Over Multitask Networks

    Science.gov (United States)

    Chen, Jie; Richard, Cedric; Sayed, Ali H.

    2015-06-01

    The diffusion LMS algorithm has been extensively studied in recent years. This efficient strategy allows to address distributed optimization problems over networks in the case where nodes have to collaboratively estimate a single parameter vector. Problems of this type are referred to as single-task problems. Nevertheless, there are several problems in practice that are multitask-oriented in the sense that the optimum parameter vector may not be the same for every node. This brings up the issue of studying the performance of the diffusion LMS algorithm when it is run, either intentionally or unintentionally, in a multitask environment. In this paper, we conduct a theoretical analysis on the stochastic behavior of diffusion LMS in the case where the so-called single-task hypothesis is violated. We explain under what conditions diffusion LMS continues to deliver performance superior to non-cooperative strategies in the multitask environment. When the conditions are violated, we explain how to endow the nodes with the ability to cluster with other similar nodes to remove bias. We propose an unsupervised clustering strategy that allows each node to select, via adaptive adjustments of combination weights, the neighboring nodes with which it can collaborate to estimate a common parameter vector. Simulations are presented to illustrate the theoretical results, and to demonstrate the efficiency of the proposed clustering strategy. The framework is applied to a useful problem involving a multi-target tracking task.

  4. Absorbing-and-diffusing coating

    OpenAIRE

    Tkalich, N. V.; Mokeev, Yu. G.; Onipko, A. F.; Vashchenko, V. F.; Topchev, M. D.; Glebov, V. V.; Ivanchenko, Dmitrij D.; Kolchigin, Nikolay N.; Yevdokimov, V. V.

    2003-01-01

    The paper presents the results of complex experimental research of the absorbing-and-diffusing material "Contrast". It is shown to be an efficient wideband-camouflage material in the radiolocation and the video bands. Ways for improving the material characteristics are outlined.

  5. Permeation as a Diffusion Process

    CERN Document Server

    Eisenberg, Bob

    2008-01-01

    The paper shows how the diffusive movement of ions through a channel protein can be described as a chemical reaction over an arbitrary shaped potential barrier. The result is simple and intuitive but without approximation beyond the electrodiffusion description of ion movement.

  6. Atmospheric mercury—An overview

    Science.gov (United States)

    Schroeder, William H.; Munthe, John

    This paper presents a broad overview and synthesis of current knowledge and understanding pertaining to all major aspects of mercury in the atmosphere. The significant physical, chemical, and toxicological properties of this element and its environmentally relebant species encountered in the atmosphere are examined. Atmospheric pathways and processes considered herein include anthropogenic as well as natural sources of Hg emissions to the atmosphere, aerial transport and dispersion (including spatial and temporal variability), atmospheric transformations (both physical and chemical types), wet and dry removal/deposition processes to Earth's surface. In addition, inter-compartmental (air-water/soil/vegetation) transfer and biogeochemical cycling of mercury are considered and discussed. The section on numerical modelling deals with atmospheric transport models as well as process-oriented models. Important gaps in our current knowledge of mercury in the atmospheric environment are identified, and suggestions for future areas of research are offered.

  7. Analysis of Finite Difference Discretization Schemes for Diffusion in Spheres with Variable Diffusivity.

    Science.gov (United States)

    Versypt, Ashlee N Ford; Braatz, Richard D

    2014-12-04

    Two finite difference discretization schemes for approximating the spatial derivatives in the diffusion equation in spherical coordinates with variable diffusivity are presented and analyzed. The numerical solutions obtained by the discretization schemes are compared for five cases of the functional form for the variable diffusivity: (I) constant diffusivity, (II) temporally-dependent diffusivity, (III) spatially-dependent diffusivity, (IV) concentration-dependent diffusivity, and (V) implicitly-defined, temporally- and spatially-dependent diffusivity. Although the schemes have similar agreement to known analytical or semi-analytical solutions in the first four cases, in the fifth case for the variable diffusivity, one scheme produces a stable, physically reasonable solution, while the other diverges. We recommend the adoption of the more accurate and stable of these finite difference discretization schemes to numerically approximate the spatial derivatives of the diffusion equation in spherical coordinates for any functional form of variable diffusivity, especially cases where the diffusivity is a function of position.

  8. Turbulent diffusion of small particles

    Energy Technology Data Exchange (ETDEWEB)

    Margolin, L.G.

    1977-11-01

    The diffusion of small, spherical, rigid particles suspended in an incompressible turbulent fluid, but not interacting with each other, was studied. As a stochastic process, the turbulent fluid velocity field is assumed to be homogeneous, isotropic and stationary. Assuming the Stokes regime, a particle of equation of motion is used which includes only the effects of Stokes drag and a virtual mass force and an exact solution is found for the particle velocity correlation function, for all times and initial conditions, in terms of a fluid velocity correlation function measured along the motion of the particle. This shows that for times larger than a certain time scale, the particle velocity correlation becomes stationary. The effect of small shears in the fluid velocity was considered, under the additional restrictions of a certain high frequency regime for the turbulence. The shears convected past the particle much faster than the growth of the boundary layer. New force terms due to the presence of such shears are calculated and incorporated into the equation of motion. A perturbation solution to this equation is constructed, and the resultant particle velocity correlation function and diffusion coefficient are calculated. To lowest order, the particle diffusivity is found to be unaltered by the presence of small mean flow shears. The last model treated is one in which particles traverse a turbulent fluid with a large mean velocity. Among other restrictions, linearized form drag is assumed. The diffusion coefficient for such particles was calculated, and found to be much smaller than the passive scalar diffusion coefficient. This agrees within 5 percent with the experimental results of Snyder and Lumley.

  9. Eddy diffusion coefficients and their upper limits based on application of the similarity theory

    Directory of Open Access Journals (Sweden)

    M. N. Vlasov

    2015-07-01

    Full Text Available The equation for the diffusion velocity in the mesosphere and the lower thermosphere (MLT includes the terms for molecular and eddy diffusion. These terms are very similar. For the first time, we show that, by using the similarity theory, the same formula can be obtained for the eddy diffusion coefficient as the commonly used formula derived by Weinstock (1981. The latter was obtained by taking, as a basis, the integral function for diffusion derived by Taylor (1921 and the three-dimensional Kolmogorov kinetic energy spectrum. The exact identity of both formulas means that the eddy diffusion and heat transport coefficients used in the equations, both for diffusion and thermal conductivity, must meet a criterion that restricts the outer eddy scale to being much less than the scale height of the atmosphere. This requirement is the same as the requirement that the free path of molecules must be much smaller than the scale height of the atmosphere. A further result of this criterion is that the eddy diffusion coefficients Ked, inferred from measurements of energy dissipation rates, cannot exceed the maximum value of 3.2 × 106 cm2 s−1 for the maximum value of the energy dissipation rate of 2 W kg−1 measured in the mesosphere and the lower thermosphere (MLT. This means that eddy diffusion coefficients larger than the maximum value correspond to eddies with outer scales so large that it is impossible to use these coefficients in eddy diffusion and eddy heat transport equations. The application of this criterion to the different experimental data shows that some reported eddy diffusion coefficients do not meet this criterion. For example, the large values of these coefficients (1 × 107 cm2 s−1 estimated in the Turbulent Oxygen Mixing Experiment (TOMEX do not correspond to this criterion. The Ked values inferred at high latitudes by Lübken (1997 meet this criterion for summer and winter polar data, but the Ked values for summer at low latitudes

  10. The design, construction, and calibration of a spectral diffuse/global irradiance meter

    Science.gov (United States)

    Crowther, Blake Glenn

    1997-10-01

    Vicarious calibration methods have been developed to calibrate radiometric sensors in-flight. One such method, the irradiance-based method, requires the measurement of the diffuse-to-global (diffuse-to-total) irradiance ratio. Diffuse/global irradiance measurements may also be used to deduce atmospheric descriptors and provide a comparison with atmospheric modeling predictions. I describe the design, construction, calibration, and application of a spectral diffuse/global irradiance meter that can accomplish these objectives in this dissertation. I develop general integrating sphere theory, modeling methods, and describe the resultant computer model. The model results agreed with theory to better than 1% for a simple unbaffled integrating sphere. I applied the model to design an interior baffled integrating sphere-based cosine collector. I developed a method of tolerating the thermal expansion of Spectralonoler and the collector was constructed. Measurements of the collector angular response agreed with the model predictions to better than 4% for input zenith angles from 0o to 70o. The resulting instrument is automated and collects diffuse and global irradiance from 300 nm to 1100 nm. It has a nominal 12 nm full-width at half-maximum bandpass and has a minimum sampling interval of 1 nm. I estimate the uncertainty of the measurements to be 3.2%. The largest contributor to the total uncertainty is the measurement uncertainty of the diffuse irradiance at 2.5%. The instrument was used in a field experiment. Optical depths derived from the diffuse/global irradiance measurements agreed with those derived from a solar radiometer to within 0.008. Diffuse-to-global irradiance measurements made by the instrument were compared with an independent method and found to generally agree within 6%. The measurements were consistently lower than radiative transfer modeling estimates. Top of the atmosphere relative radiances computed from the two independent diffuse

  11. Vapor scavenging by atmospheric aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, E.

    1996-05-01

    Particle growth due to vapor scavenging was studied using both experimental and computational techniques. Vapor scavenging by particles is an important physical process in the atmosphere because it can result in changes to particle properties (e.g., size, shape, composition, and activity) and, thus, influence atmospheric phenomena in which particles play a role, such as cloud formation and long range transport. The influence of organic vapor on the evolution of a particle mass size distribution was investigated using a modified version of MAEROS (a multicomponent aerosol dynamics code). The modeling study attempted to identify the sources of organic aerosol observed by Novakov and Penner (1993) in a field study in Puerto Rico. Experimentally, vapor scavenging and particle growth were investigated using two techniques. The influence of the presence of organic vapor on the particle`s hydroscopicity was investigated using an electrodynamic balance. The charge on a particle was investigated theoretically and experimentally. A prototype apparatus--the refractive index thermal diffusion chamber (RITDC)--was developed to study multiple particles in the same environment at the same time.

  12. Test of the diffusing-diffusivity mechanism using near-wall colloidal dynamics

    Science.gov (United States)

    Matse, Mpumelelo; Chubynsky, Mykyta V.; Bechhoefer, John

    2017-10-01

    The mechanism of diffusing diffusivity predicts that, in environments where the diffusivity changes gradually, the displacement distribution becomes non-Gaussian, even though the mean-square displacement grows linearly with time. Here, we report single-particle tracking measurements of the diffusion of colloidal spheres near a planar substrate. Because the local effective diffusivity is known, we have been able to carry out a direct test of this mechanism for diffusion in inhomogeneous media.

  13. Dopant diffusion during optical fibre drawing.

    Science.gov (United States)

    Lyytikainen, K; Huntington, S; Carter, A; McNamara, P; Fleming, S; Abramczyk, J; Kaplin, I; Schötz, G

    2004-03-22

    Diffusion of Ge and F was studied during drawing of silica optical fibres. Preforms were drawn using various draw conditions and fibres analysed using the etching and Atomic Force Microscope (AFM) technique. The results were confirmed by comparison with fibre Refractive Index Profiles (RIP). Both Ge and F were found to diffuse at high temperature, 2100 degrees C, and low draw speed, 10m/min. Diffusion simulations showed that most diffusion occurred in the neck-down region. The draw temperature and preform feed rate had a comparable effect on diffusion, whereas preform diameter did not significantly affect the diffusion.

  14. Diffraction and diffusion in room acoustics

    DEFF Research Database (Denmark)

    Rindel, Jens Holger; Rasmussen, Birgit

    1996-01-01

    Diffraction and diffusion are two phenomena that are both related to the wave nature of sound. Diffraction due to the finite size of reflecting surfaces and the design of single reflectors and reflector arrays are discussed. Diffusion is the result of scattering of sound reflected from surfaces...... that are not plane but curved or irregular. The importance of diffusion has been demonstrated in concert halls. Methods for the design of diffusing surfaces and the development of new types of diffusers are reviewed. Finally, the importance of diffraction and diffusion in room acoustic computer models is discussed....

  15. Representative Atmospheric Plume Development for Elevated Releases

    Energy Technology Data Exchange (ETDEWEB)

    Eslinger, Paul W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lowrey, Justin D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McIntyre, Justin I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miley, Harry S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Prichard, Andrew W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-02-01

    An atmospheric explosion of a low-yield nuclear device will produce a large number of radioactive isotopes, some of which can be measured with airborne detection systems. However, properly equipped aircraft may not arrive in the region where an explosion occurred for a number of hours after the event. Atmospheric conditions will have caused the radioactive plume to move and diffuse before the aircraft arrives. The science behind predicting atmospheric plume movement has advanced enough that the location of the maximum concentrations in the plume can be determined reasonably accurately in real time, or near real time. Given the assumption that an aircraft can follow a plume, this study addresses the amount of atmospheric dilution expected to occur in a representative plume as a function of time past the release event. The approach models atmospheric transport of hypothetical releases from a single location for every day in a year using the publically available HYSPLIT code. The effective dilution factors for the point of maximum concentration in an elevated plume based on a release of a non-decaying, non-depositing tracer can vary by orders of magnitude depending on the day of the release, even for the same number of hours after the release event. However, the median of the dilution factors based on releases for 365 consecutive days at one site follows a power law relationship in time, as shown in Figure S-1. The relationship is good enough to provide a general rule of thumb for estimating typical future dilution factors in a plume starting at the same point. However, the coefficients of the power law function may vary for different release point locations. Radioactive decay causes the effective dilution factors to decrease more quickly with the time past the release event than the dilution factors based on a non-decaying tracer. An analytical expression for the dilution factors of isotopes with different half-lives can be developed given the power law expression

  16. Planetary Atmospheres and Evolution of Complex Life

    Science.gov (United States)

    Catling, D.

    2014-04-01

    Let us define "complex life" as actively mobile organisms exceeding tens of centimeter size scale with specialized, differentiated anatomy comparable to advanced metazoans. Such organisms on any planet will need considerable energy for growth and metabolism, and an atmosphere is likely to play a key role. The history of life on Earth suggests that there were at least two major hurdles to overcome before complex life developed. The first was biological. Large, three-dimensional multicellular animals and plants are made only of eukaryotic cells, which are the only type that can develop into a large, diverse range of cell types unlike the cells of microbes. Exactly how eukaryotes allow 3D multicellularity and how they originated are matters of debate. But the internal structure and bigger and more modular genomes of eukaryotes are important factors. The second obstacle for complex life was having sufficient free, diatomic oxygen (O2). Aerobic metabolism provides about an order of magnitude more energy for a given intake of food than anaerobic metabolism, so anaerobes don't grow multicellular beyond filaments because of prohibitive growth efficiencies. A precursor to a 2.4 Ga rise of oxygen was the evolution of water-splitting, oxygen-producing photosynthesis. But although the atmosphere became oxidizing at 2.4 Ga, sufficient atmospheric O2 did not occur until about 0.6 Ga. Earth-system factors were involved including planetary outgassing (as affected by size and composition), hydrogen escape, and processing of organic carbon. An atmosphere rich in O2 provides the largest feasible energy source per electron transfer in the Periodic Table, which suggests that O2 would be important for complex life on exoplanets. But plentiful O2 is unusual in a planetary atmosphere because O2 is easily consumed in chemical reactions with reducing gases or surface materials. Even with aerobic metabolism, the partial pressure of O2 (pO2) must exceed 10^3 Pa to allow organisms that rely on

  17. Caustics of atmospheric waves

    Science.gov (United States)

    Godin, Oleg A.

    2015-04-01

    Much like light and sound, acoustic-gravity waves in inhomogeneous atmosphere often have a caustic or caustics, where the ray theory predicts unphysical, divergent values of the wave amplitude and needs to be modified. Increase of the wave magnitude in the vicinity of a caustic makes such vicinities of primary interest in a number of problems, where a signal needs to be separated from a background noise. The value of wave focusing near caustics should be carefully quantified in order to evaluate possible nonlinearities promoted by the focusing. Physical understanding of the wave field in the vicinity of a caustic is also important for understanding of the wave reflection from and transmission (tunneling) through the caustic. To our knowledge, in contrast to caustics of acoustic, electromagnetic, and seismic waves as well as gravity waves in incompressible fluids, asymptotics of acoustic-gravity waves in the vicinity of a caustic have never been studied systematically. In this paper, we fill this gap. Atmospheric waves are considered as linear acoustic-gravity waves in a neutral, horizontally stratified, moving ideal gas of variable composition. Air temperature and wind velocity are assumed to be gradually varying functions of height, and slowness of these variations determines the large parameter of the problem. The scale height of the atmosphere can be large or small compared to the vertical wavelength. It is found that the uniform asymptotics of the wave field in the presence of a simple caustic can be expressed in terms of the Airy function and its derivative. As for the acoustic waves, the argument of the Airy function is expressed in terms of the eikonal calculated in the ray, or WKB, approximation. The geometrical, or Berry, phase, which arises in the consistent WKB approximation for acoustic-gravity waves, plays an important role in the caustic asymptotics. In the uniform asymptotics, the terms with the Airy function and its derivative are weighted by cosine

  18. Anisotropic diffusion phantoms based on microcapillaries

    Science.gov (United States)

    Vellmer, Sebastian; Edelhoff, Daniel; Suter, Dieter; Maximov, Ivan I.

    2017-06-01

    Diffusion MRI is an efficient and widely used technique for the investigation of tissue structure and organisation in vivo. Multiple phenomenological and biophysical diffusion models are intensively exploited for the analysis of the diffusion experiments. However, the verification of the applied diffusion models remains challenging. In order to provide a ;gold standard; and to assess the accuracy of the derived parameters and the limitations of the diffusion models, anisotropic diffusion phantoms with well known architecture are demanded. In the present work we built four anisotropic diffusion phantoms consisting of hollow microcapillaries with very small inner diameters of 5, 10 and 20 μ m and outer diameters of 90 and 150 μ m. For testing the suitability of these phantoms, we performed diffusion measurements on all of them and evaluated the resulting data with a set of popular diffusion models, such as diffusion tensor and diffusion kurtosis imaging, a two compartment model with intra- and extra-capillary water spaces using bi-exponential fitting, and time-dependent diffusion coefficients in Mitra's limit. The perspectives and limitations of these diffusion phantoms are presented and discussed.

  19. Future Atmospheric Neutrino Detectors

    CERN Document Server

    Geiser, A

    2000-01-01

    Future experiments focusing on atmospheric neutrino detection are reviewed. One of the main goals of these experiments is the detection of an unambiguous oscillation pattern (nu_mu reappearance) to prove the oscillation hypothesis. Further goals include the discrimination of nu_mu - nu_tau and nu_mu - nu_sterile oscillations, and the detection of a potential small nu_mu - nu_e contribution. The search for matter effects in three or more flavour oscillations can be used to constrain hybrid oscillation models and potentially measure the sign of delta m^2. The detectors and measurement techniques proposed to achieve these goals are described, and their physics reach is discussed.

  20. Phytoremediation of Atmospheric Methane

    Science.gov (United States)

    2013-04-15

    photosynthetically fixing it into their tissues.  To calculate the atmospheric conductance or mass transfer  coefficient in vegetated fields of  maize  we used...uptake through aerodynamic and leaf boundary layers and the stomata of  maize  at  field scale as determined by continuous stable isotope measurements... digestion  with specific homing endonucleases (Figure 4).  Completion of the triple vector construction of mmoX, Y and Z in E. coli was confirmed by PCR

  1. Time Resolved Thermal Diffusivity of Seasonal Snow Determined from Inexpensive, Easily-Implemented Temperature Measurements

    Science.gov (United States)

    Oldroyd, H. J.; Higgins, C. W.; Huwald, H.; Selker, J. S.; Parlange, M. B.

    2011-12-01

    Thermal diffusivity of snow is an important physical property associated with key hydrological phenomena such as snow melt and heat and water vapor exchange with the atmosphere. These phenomena have broad implications in studies of climate and heat and water budgets on many scales. However, direct measurements of snow thermal diffusivity require coupled point measurements of thermal conductivity and density, which are nonstationary due to snow metamorphism. Furthermore, thermal conductivity measurements are typically obtained with specialized heating probes or plates and snow density measurements require digging snow pits. Therefore, direct measurements are difficult to obtain with high enough temporal resolution such that direct comparisons with atmospheric conditions can be made. This study uses highly resolved (7.5 to 10 cm for depth and 1min for time) temperature measurements from the Plaine Morte glacier in Switzerland as initial and boundary conditions to numerically solve the 1D heat equation and iteratively optimize for thermal diffusivity. The method uses flux boundary conditions to constrain thermal diffusivity such that spuriously high values in thermal diffusivity are eliminated. Additionally, a t-test ensuring statistical significance between solutions of varied thermal diffusivity result in further constraints on thermal diffusivity that eliminate spuriously low values. The results show that time resolved (1 minute) thermal diffusivity can be determined from easily implemented and inexpensive temperature measurements of seasonal snow with good agreement to widely used parameterizations based on snow density. This high time resolution further affords the ability to explore possible turbulence-induced enhancements to heat and mass transfer in the snow.

  2. Theory and experiments on surface diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Silvestri, W.L.

    1998-11-01

    The following topics were dealt with: adatom formation and self-diffusion on the Ni(100) surface, helium atom scattering measurements, surface-diffusion parameter measurements, embedded atom method calculations.

  3. Atmospheric propagation of THz radiation.

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, Michael Clement; Mangan, Michael A.; Foltynowicz, Robert J.

    2005-11-01

    In this investigation, we conduct a literature study of the best experimental and theoretical data available for thin and thick atmospheres on THz radiation propagation from 0.1 to 10 THz. We determined that for thick atmospheres no data exists beyond 450 GHz. For thin atmospheres data exists from 0.35 to 1.2 THz. We were successful in using FASE code with the HITRAN database to simulate the THz transmission spectrum for Mauna Kea from 0.1 to 2 THz. Lastly, we successfully measured the THz transmission spectra of laboratory atmospheres at relative humidities of 18 and 27%. In general, we found that an increase in the water content of the atmosphere led to a decrease in the THz transmission. We identified two potential windows in an Albuquerque atmosphere for THz propagation which were the regions from 1.2 to 1.4 THz and 1.4 to 1.6 THz.

  4. Nanoparticle Diffusion in Polymer Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Kalathi, Jagannathan [Columbia University, New York; Yamamoto, Umi [University of Illinois, Urbana-Champaign; Schweizer, Kenneth [University of Illinois; Grest, Gary S. [Sandia National Laboratories (SNL); Kumar, Sanat [Columbia University, New York

    2014-01-01

    Large-scale molecular dynamics simulations show that nanoparticle (NP) diffusivity in weakly interacting mixtures of NPs and polymer melts has two very different classes of behavior depending on their size. NP relaxation times and their diffusivities are completely described by the local, Rouse dynamics of the polymer chains for NPs smaller than the polymer entanglement mesh size. The motion of larger NPs, which are comparable to the entanglement mesh size, is significantly slowed by chain entanglements, and is not describable by the Stokes-Einstein relationship. Our results are in essentially quantitative agreement with a force-level generalized Langevin equation theory for all the NP sizes and chain lengths explored, and imply that for these lightly entangled systems, activated NP hopping is not important.

  5. Some Remarks on Diffusion Distances

    Directory of Open Access Journals (Sweden)

    Maxim J. Goldberg

    2010-01-01

    Full Text Available As a diffusion distance, we propose to use a metric (closely related to cosine similarity which is defined as the 2 distance between two 2-normalized vectors. We provide a mathematical explanation as to why the normalization makes diffusion distances more meaningful. Our proposal is in contrast to that made some years ago by R. Coifman which finds the 2 distance between certain 1 unit vectors. In the second part of the paper, we give two proofs that an extension of mean first passage time to mean first passage cost satisfies the triangle inequality; we do not assume that the underlying Markov matrix is diagonalizable. We conclude by exhibiting an interesting connection between the (normalized mean first passage time and the discretized solution of a certain Dirichlet-Poisson problem and verify our result numerically for the simple case of the unit circle.

  6. Information filtering via preferential diffusion

    CERN Document Server

    Lu, Linyuan

    2011-01-01

    Recommender systems have shown great potential to address information overload problem, namely to help users in finding interesting and relevant objects within a huge information space. Some physical dynamics, including heat conduction process and mass or energy diffusion on networks, have recently found applications in personalized recommendation. Most of the previous studies focus overwhelmingly on recommendation accuracy as the only important factor, while overlook the significance of diversity and novelty which indeed provide the vitality of the system. In this paper, we propose a recommendation algorithm based on the preferential diffusion process on user-object bipartite network. Numerical analyses on two benchmark datasets, MovieLens and Netflix, indicate that our method outperforms the state-of-the-art methods. Specifically, it can not only provide more accurate recommendations, but also generate more diverse and novel recommendations by accurately recommending unpopular objects.

  7. Information filtering via preferential diffusion

    Science.gov (United States)

    Lü, Linyuan; Liu, Weiping

    2011-06-01

    Recommender systems have shown great potential in addressing the information overload problem, namely helping users in finding interesting and relevant objects within a huge information space. Some physical dynamics, including the heat conduction process and mass or energy diffusion on networks, have recently found applications in personalized recommendation. Most of the previous studies focus overwhelmingly on recommendation accuracy as the only important factor, while overlooking the significance of diversity and novelty that indeed provide the vitality of the system. In this paper, we propose a recommendation algorithm based on the preferential diffusion process on a user-object bipartite network. Numerical analyses on two benchmark data sets, MovieLens and Netflix, indicate that our method outperforms the state-of-the-art methods. Specifically, it can not only provide more accurate recommendations, but also generate more diverse and novel recommendations by accurately recommending unpopular objects.

  8. Massively parallel diffuse optical tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sandusky, John V.; Pitts, Todd A.

    2017-09-05

    Diffuse optical tomography systems and methods are described herein. In a general embodiment, the diffuse optical tomography system comprises a plurality of sensor heads, the plurality of sensor heads comprising respective optical emitter systems and respective sensor systems. A sensor head in the plurality of sensors heads is caused to act as an illuminator, such that its optical emitter system transmits a transillumination beam towards a portion of a sample. Other sensor heads in the plurality of sensor heads act as observers, detecting portions of the transillumination beam that radiate from the sample in the fields of view of the respective sensory systems of the other sensor heads. Thus, sensor heads in the plurality of sensors heads generate sensor data in parallel.

  9. Kick synchronization versus diffusive synchronization

    OpenAIRE

    Mauroy, Alexandre; Sacré, Pierre; Sepulchre, Rodolphe

    2012-01-01

    The paper provides an introductory discussion about two fundamental models of oscillator synchronization: the (continuous-time) diffusive model, that dominates the mathematical literature on synchronization, and the (hybrid) kick model, that accounts for most popular examples of synchronization, but for which only few theoretical results exist. The paper stresses fundamental differences between the two models, such as the different contraction measures underlying the analysis, as well as impo...

  10. Diffusion of the 65Zn radiotracer in ZnO polycrystalline ceramics

    Directory of Open Access Journals (Sweden)

    Maria Auxiliadora das Neves Nogueira

    2003-06-01

    Full Text Available Zinc self-diffusion coefficients were measured in polycrystalline ZnO of high density (>99% of the theoretical density and of high purity (> 99.999%. The diffusion experiments were performed from 1006 to 1377 °C, in oxygen atmosphere, for times between 16 and 574 h. The diffusion profiles were established by means of Residual Activity Method using the 65Zn radioactive isotope as zinc tracer. In our experimental conditions, the zinc volume diffusion coefficients can be described by the following Arrhenius relationship: D(cm²/s = 1.57×10-3 exp[(-2.66 ± 0.26 eV/kT]. In the same experimental conditions, the grain-boundary diffusion coefficients are approximately 4 orders of magnitude greater than the volume diffusion coefficients, and can be described by the Arrhenius relation: D'delta (cm³/s = 1.59×10-6 exp[(-2.44 ± 0.45 eV/kT], where D' is the grain-boundary diffusion coefficient and delta is the grain boundary width.

  11. Study of Te diffused into GaSb by photoluminescence and HRXRD

    Energy Technology Data Exchange (ETDEWEB)

    Vargas-Sanabria, R.; Rosendo, E.; Rosendo-Francisco, P. [FC, UAEMex, Instituto Literario 100 Col. Centro, Toluca (Mexico); Martinez, J.; Diaz, T.; Juarez, H.; Garcia, G. [CIDS-ICUAP, 14 Sur y San Claudio, Col San Manuel, Puebla (Mexico); Rubin, M. [FCC-BUAP, 14 Sur y San Claudio, Col San Manuel, Puebla (Mexico); de Anda, F. [IICO-UASLP Ave. Karakorum 1470, Lomas Cuarta (Mexico)

    2007-04-15

    Photoluminescence (PL) and High Resolution X-Ray Diffraction (HRXRD) measurements were used to study the diffusion of Te on GaSb-p thin films deposited on GaSb-n substrates by Liquid Phase Epitaxy (LPE). The studied samples consist of an n-type layer on a p-type layer to carry out the diffusion. The diffusion process was done through thermic treatment at 450 C and 2, 4 and 6 hours in to the hydrogen atmosphere. After carrying out the heat treatment, the n-type layer was removed with the purpose of studying the diffusion behavior of Te. The PL spectra show that when the time of diffusion increases, the signal produced by the excitonic transitions increases its intensity, this can be attributed to the increase of the concentration of Te in the GaSb-p film. The X-ray spectra show that in agreement it increases the time of diffusion, the amount of Te increases until having a single peak to 6 hrs of diffusion. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. The renewal equation for persistent diffusion

    Science.gov (United States)

    Balakrishnan, V.; Lakshmibala, S.; Van Den Broeck, C.

    1988-11-01

    Persistent diffusion in one dimension, in which the velocity of the diffusing particle is a dichotomic Markov process, is considered. The flow is non-Markovian, but the position and the velocity together constitute a Markovian diffusion process. We solve the coupled forward Kolmogorov equations and the coupled backward Kolmogorov equations with appropriate initial conditions, to establish a generalized (matrix) form of the renewal equation connecting the probability densities and first passage time distributions for persistent diffusion.

  13. Optimal network modularity for information diffusion.

    Science.gov (United States)

    Nematzadeh, Azadeh; Ferrara, Emilio; Flammini, Alessandro; Ahn, Yong-Yeol

    2014-08-22

    We investigate the impact of community structure on information diffusion with the linear threshold model. Our results demonstrate that modular structure may have counterintuitive effects on information diffusion when social reinforcement is present. We show that strong communities can facilitate global diffusion by enhancing local, intracommunity spreading. Using both analytic approaches and numerical simulations, we demonstrate the existence of an optimal network modularity, where global diffusion requires the minimal number of early adopters.

  14. Diffusion of hydrogen (1); eicosane (2)

    Science.gov (United States)

    Winkelmann, J.

    This document is part of Subvolume A `Gases in Gases, Liquids and their Mixtures' of Volume 15 `Diffusion in Gases, Liquids and Electrolytes' of Landolt-Börnstein Group IV `Physical Chemistry'. It is part of the chapter of the chapter `Diffusion in Pure Gases' and contains data on diffusion of (1) hydrogen; (2) eicosane

  15. Diffusion of carbon dioxide (1); eicosane (2)

    Science.gov (United States)

    Winkelmann, J.

    This document is part of Subvolume A `Gases in Gases, Liquids and their Mixtures' of Volume 15 `Diffusion in Gases, Liquids and Electrolytes' of Landolt-Börnstein Group IV `Physical Chemistry'. It is part of the chapter of the chapter `Diffusion in Pure Gases' and contains data on diffusion of (1) carbon dioxide; (2) eicosane

  16. Diffusion of carbon monoxide (1); eicosane (2)

    Science.gov (United States)

    Winkelmann, J.

    This document is part of Subvolume A `Gases in Gases, Liquids and their Mixtures' of Volume 15 `Diffusion in Gases, Liquids and Electrolytes' of Landolt-Börnstein Group IV `Physical Chemistry'. It is part of the chapter of the chapter `Diffusion in Pure Gases' and contains data on diffusion of (1) carbon monoxide; (2) eicosane

  17. Modelling the Diffusion of Scientific Publications

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); D. Fok (Dennis)

    2007-01-01

    textabstractThis paper illustrates that salient features of a panel of time series of annual citations can be captured by a Bass type diffusion model. We put forward an extended version of this diffusion model, where we consider the relation between key characteristics of the diffusion process and

  18. Modeling the diffusion of scientific publications

    NARCIS (Netherlands)

    D. Fok (Dennis); Ph.H.B.F. Franses (Philip Hans)

    2005-01-01

    textabstractThis paper illustrates that salient features of a panel of time series of annual citations can be captured by a Bass type diffusion model. We put forward an extended version of this diffusion model, where we consider the relation between key characteristics of the diffusion process and

  19. First search for atmospheric and extraterrestrial neutrino-induced cascades with the IceCube detector

    NARCIS (Netherlands)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S.W.; Bay, R.; Alba, J.L.B.; Beattie, K.; Beatty, J.J.; Bechet, S.; Becker, J.K.; Becker, K.H.; Benabderrahmane, M.L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D.Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D.J.; Bohm, C.; Bose, D.; Boser, S.; Botner, O.; Braun, J.; Brown, A.M.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D.F.; D'Agostino, M.V.; Danninger, M.; Daughhetee, J.; Davis, J.C.; Clercq, C. De; Demirors, L.; Depaepe, O.; Descamps, F.; Desiati, P.; Vries-Uiterweerd, G. de; DeYoung, T.; Diaz-Velez, J.C.; Dierckxsens, M.; Dreyer, J.; Dumm, J.P.; Ehrlich, R.; Eisch, J.; Ellsworth, R.W.; Engdegard, O.; Euler, S.; Evenson, P.A.; Fadiran, O.; Fazely, A.R.; Fedynitch, A.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Foerster, M.M.; Fox, B.D.; Franckowiak, A.; Franke, R.; Gaisser, T.K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glusenkamp, T.; Goldschmidt, A.; Goodman, J.A.; Grant, D.; Griesel, T.; Gross, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Herquet, P.; Hickford, S.; Lafebre, S.J.

    2011-01-01

    We report on the first search for atmospheric and for diffuse astrophysical neutrino-induced showers (cascades) in the IceCube detector using 257 days of data collected in the year 2007-2008 with 22 strings active. A total of 14 events with energies above 16 TeV remained after event selections in

  20. A subsidiary fast-diffusing substitution mechanism of Al in forsterite investigated using diffusion experiments under controlled thermodynamic conditions

    Science.gov (United States)

    Zhukova, Irina; O'Neill, Hugh; Campbell, Ian H.

    2017-07-01

    Diffusion of Al in synthetic forsterite was studied at atmospheric pressure from 1100 to 1500 °C in air along [100] with activities of SiO2, MgO and Al2O3 (aSiO2, aMgO and aAl2O3) buffered. At low aSiO2, the buffer was forsterite + spinel + periclase (fo + sp + per) at all temperatures, while at high aSiO2 and subsolidus conditions a variety of three-phase assemblages containing forsterite and two other phases from spinel, cordierite, protoenstatite or sapphirine were used at 1100-1350 °C. Experiments at high aSiO2 and 1400 °C used forsterite + protoenstatite + melt (fo + en + melt), and at 1500 °C, fo + melt. The resulting diffusion profiles were analysed by LA-ICP-MS in scanning mode. Diffusion profiles in the high aSiO2 experiments were generally several hundred microns in length, but diffusion at low aSiO2 was three orders of magnitude slower than in high aSiO2 experiments carried out at the same temperature, producing short profiles only a few microns in length and close to the spatial resolution of the analytical method. Interface concentrations of Al in the forsterite, obtained by extrapolating the diffusion profiles to the crystal/buffer interface, were only a fraction of those expected at equilibrium, and varied among the differing buffer assemblages according to (aAl2O3)1/2 and (aSiO2)3/4, pointing to the substitution of Al in forsterite by an octahedral-site, vacancy-coupled (OSVC) component with the stoichiometry Al 4/3 3+ vac2/3SiO4, whereas the main substitution expected from previous equilibrium studies would be the coupled substitution of 2 Al for Mg + Si, giving the stoichiometry MgAl2O4. It is proposed that this latter substitution is not seen on the length scales of the present experiments because it requires replacement of Si by Al on tetrahedral sites, and is accordingly rate-limited by the slow diffusivity of Si. Instead, diffusion of Al by the OSVC mechanism is relatively fast, and at high aSiO2, even faster than Fe-Mg interdiffusion.

  1. Simple simulation of diffusion bridges with application to likelihood inference for diffusions

    DEFF Research Database (Denmark)

    Bladt, Mogens; Sørensen, Michael

    2014-01-01

    With a view to statistical inference for discretely observed diffusion models, we propose simple methods of simulating diffusion bridges, approximately and exactly. Diffusion bridge simulation plays a fundamental role in likelihood and Bayesian inference for diffusion processes. First a simple me...

  2. Pacific Northwest Laboratory annual report for 1985 to the DOE Office of Energy Research. Part 3. Atmospheric sciences

    Energy Technology Data Exchange (ETDEWEB)

    Elderkin, C.E.

    1986-02-01

    The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales. In 1985, this research has examined the transport and diffusion of atmospheric contaminants in areas of complex terrain, summarized the field studies and analyses of dry deposition and resuspension conducted in past years, and begun participation in a large, multilaboratory program to assess the precipitation scavenging processes important to the transformation and wet deposition of chemicals composing ''acid rain.'' The description of atmospheric research at PNL is organized in terms of the following study areas: Atmospheric Studies in Complex Terrain; Dispersion, Deposition, and Resuspension of Atmospheric Contaminants; and Processing of Emissions by Clouds and Precipitation (PRECP).

  3. Ultrafast demagnetization by hot electrons: Diffusion or super-diffusion?

    Directory of Open Access Journals (Sweden)

    G. Salvatella

    2016-09-01

    Full Text Available Ultrafast demagnetization of ferromagnetic metals can be achieved by a heat pulse propagating in the electron gas of a non-magnetic metal layer, which absorbs a pump laser pulse. Demagnetization by electronic heating is investigated on samples with different thicknesses of the absorber layer on nickel. This allows us to separate the contribution of thermalized hot electrons compared to non-thermal electrons. An analytical model describes the demagnetization amplitude as a function of the absorber thickness. The observed change of demagnetization time can be reproduced by diffusive heat transport through the absorber layer.

  4. Atmospheric noble gases in Mid-Ocean Ridge Basalts: Identification of atmospheric contamination processes

    Science.gov (United States)

    Roubinet, Claire; Moreira, Manuel A.

    2018-02-01

    Noble gases in oceanic basalts always show the presence in variable proportions of a component having elemental and isotopic compositions that are similar to those of the atmosphere and distinct from the mantle composition. Although this component could be mantle-derived (e.g. subduction of air or seawater-derived noble gases trapped in altered oceanic crust and sediments), it is most often suggested that this air component is added after sample collection and probably during storage at ambient air, although the mechanism remains unknown. In an attempt to reduce this atmospheric component observed in MORBs, four experimental protocols have been followed in this study. These protocols are based on the hypothesis that air can be removed from the samples, as it appears to be sheltered in distinct vesicles compared to those filled with mantle gases. All of the protocols involve a glove box filled with nitrogen, and in certain cases, the samples are stored under primary vacuum (lower than 10-2 mbar) to pump air out or, alternatively, under high pressure of N2 to expel atmospheric noble gases. In all protocols, three components are observed: atmospheric, fractionated atmospheric and magmatic. The fractionated air component seems to be derived from the non-vitreous part of the pillow-lava, which has cooled more slowly. This component is enriched in Ne relative to Ar, reflecting a diffusive process. This contaminant has already been observed in other studies and thus seems to be relatively common. Although it is less visible, unfractionated air has also been detected in some crushing steps, which tends to indicate that despite the experiments, air is still present in the vesicles. This result is surprising, since studies have demonstrated that atmospheric contamination could be limited if samples were stored under nitrogen quickly after their recovery from the seafloor. Thus, the failure of the protocols could be explained by the insufficient duration of these protocols or

  5. Uphill diffusion of Si-interstitial during boron diffusion in silicon

    Science.gov (United States)

    Dung, Vu Ba

    2017-10-01

    The phenomenon of uphill diffusion has been considered because of its frequent appearance in multicomponent systems. Several studies have been carried out to recommend the treatment for uphill diffusion and it is found that the diffusion flux of any component coupled with its partner species is the cause of uphill diffusion. In this paper, a new diffusion equation system based on irreversible thermodynamics theory is presented. With the system, uphill diffusion in ternary systems in silicon (simultaneous diffusion of boron, Si-interstitial and vacancy in silicon) can be treated.

  6. Research of Innovation Diffusion on Industrial Networks

    Directory of Open Access Journals (Sweden)

    Yongtai Chen

    2014-01-01

    Full Text Available The real value of innovation consists in its diffusion on industrial network. The factors which affect the diffusion of innovation on industrial network are the topology of industrial network and rules of diffusion. Industrial network is a complex network which has scale-free and small-world characters; its structure has some affection on threshold, length of path, enterprise’s status, and information share of innovation diffusion. Based on the cost and attitude to risk of technical innovation, we present the “avalanche” diffusing model of technical innovation on industrial network.

  7. Heavy-tailed fractional Pearson diffusions.

    Science.gov (United States)

    Leonenko, N N; Papić, I; Sikorskii, A; Šuvak, N

    2017-11-01

    We define heavy-tailed fractional reciprocal gamma and Fisher-Snedecor diffusions by a non-Markovian time change in the corresponding Pearson diffusions. Pearson diffusions are governed by the backward Kolmogorov equations with space-varying polynomial coefficients and are widely used in applications. The corresponding fractional reciprocal gamma and Fisher-Snedecor diffusions are governed by the fractional backward Kolmogorov equations and have heavy-tailed marginal distributions in the steady state. We derive the explicit expressions for the transition densities of the fractional reciprocal gamma and Fisher-Snedecor diffusions and strong solutions of the associated Cauchy problems for the fractional backward Kolmogorov equation.

  8. Nonstationary Markovian replication process causing diverse diffusions

    Science.gov (United States)

    Choi, Yichul; Kim, Hyun-Joo

    2017-10-01

    We introduce a single generative mechanism that can be used to describe diverse nonstationary diffusions. A nonstationary Markovian replication process for steps is considered for which we derive analytically the time evolution of the probability distribution of the walker's displacement and the generalized telegrapher equation with time-varying coefficients, and we find that diffusivity can be determined by temporal changes of replication of an immediate step. By controlling the replications, we realize diverse diffusions such as alternating diffusion, superdiffusion, subdiffusion, and marginal diffusion, which originate from oscillating, increasing, decreasing, and slowly increasing or decreasing replications with time, respectively.

  9. Correlation Structure of Fractional Pearson Diffusions.

    Science.gov (United States)

    Leonenko, Nikolai N; Meerschaert, Mark M; Sikorskii, Alla

    2013-09-01

    The stochastic solution to a diffusion equations with polynomial coefficients is called a Pearson diffusion. If the first time derivative is replaced by a Caputo fractional derivative of order less than one, the stochastic solution is called a fractional Pearson diffusion. This paper develops an explicit formula for the covariance function of a fractional Pearson diffusion in steady state, in terms of Mittag-Leffler functions. That formula shows that fractional Pearson diffusions are long range dependent, with a correlation that falls off like a power law, whose exponent equals the order of the fractional derivative.

  10. Organic chemistry in Titan's atmosphere

    Science.gov (United States)

    Scattergood, T.

    1982-01-01

    Laboratory photochemical simulations and other types of chemical simulations are discussed. The chemistry of methane, which is the major known constituent of Titan's atmosphere was examined with stress on what can be learned from photochemistry and particle irradiation. The composition of dust that comprises the haze layer was determined. Isotope fractionation in planetary atmospheres is also discussed.

  11. Remote measurement of atmospheric pollutants

    Science.gov (United States)

    Allario, F.; Hoell, J.; Seals, R. K.

    1979-01-01

    The concentration and vertical distribution of atmospheric ammonia and ozone are remotely sensed, using dual-C02-laser multichannel infrared Heterodyne Spectrometer (1HS). Innovation makes atmospheric pollution measurements possible with nearly-quantum-noise-limited sensitivity and ultrafine spectral resolution.

  12. Atmospheres of hot alien Worlds

    NARCIS (Netherlands)

    Brogi, Matteo

    2014-01-01

    This thesis presents observations of exoplanets orbiting very close to their parent star, with a particular focus on a novel technique for characterizing their atmospheres. This is based on the use of high-resolution spectroscopy from the ground. The first detection of the atmosphere of a

  13. atmospheric transparency under harmattan conditions

    African Journals Online (AJOL)

    2006-05-20

    May 20, 2006 ... air, the transparency of the atmosphere is also strongly dependent on the elevation angle of the sun. Hence, to contrast the atmospheric transmission characteristics in the two harmattan conditions, measurements made at the same solar elevation (42. °) and optical air mass (m, = 1.5) have been used.

  14. Aspects of diffusion in the stadium billiard

    Science.gov (United States)

    Lozej, Črt; Robnik, Marko

    2018-01-01

    We perform a detailed numerical study of diffusion in the ɛ stadium of Bunimovich, and propose an empirical model of the local and global diffusion for various values of ɛ with the following conclusions: (i) the diffusion is normal for all values of ɛ (≤0.3 ) and all initial conditions, (ii) the diffusion constant is a parabolic function of the momentum (i.e., we have inhomogeneous diffusion), (iii) the model describes the diffusion very well including the boundary effects, (iv) the approach to the asymptotic equilibrium steady state is exponential, (v) the so-called random model (Robnik et al., 1997) is confirmed to apply very well, (vi) the diffusion constant extracted from the distribution function in momentum space and the one derived from the second moment agree very well. The classical transport time, an important parameter in quantum chaos, is thus determined.

  15. Particle diffusion in an inhomogeneous medium

    Energy Technology Data Exchange (ETDEWEB)

    Bringuier, E, E-mail: eric.bringuier@upmc.fr [UFR de Physique, Universite Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05 (France)

    2011-07-15

    This paper is an elementary introduction to particle diffusion in a medium where the coefficient of diffusion varies with position. The introduction is aimed at third-year university courses. We start from a simple model of particles hopping on a discrete lattice, in one or more dimensions, and then take the continuous-space limit so as to obtain the differential equation of diffusion. The discrete-step model is next adapted to investigate diffusion by continuous-length steps; the coefficient of diffusion is related to the mean free path. In both the discrete- and continuous-step models, the diffusion law has the Fokker-Planck (instead of Fick) pattern if the jumps are not biased and occur equally likely in all directions. Lastly, three experimental examples of diffusion in inhomogeneous media are examined; the observed law can be of a Fokker-Planck, Fick or hybrid type.

  16. Diffusion of Implanted Radioisotopes in Solids

    CERN Multimedia

    2002-01-01

    Implantation of radioisotopes into metal and semiconductor samples is performed. The implanted isotope or its decay-product should have a half-life long enough for radiotracer diffusion experiments. Such radioisotopes are utilized to investigate basic diffusion properties in semiconductors and metals and to improve our understanding of the atomic mechanisms of diffusion. For suitably chosen systems the combination of on-line production and clean implantation of radioisotopes at the ISOLDE facility opens new possibilities for diffusion studies in solids. \\\\ \\\\ The investigations are concentrated on diffusion studies of $^{195}$Au in amorphous materials. The isotope $^{195}$Au was obtained from the mass 195 of the mercury beam. $^{195}$Hg decays into $^{195}$Au which is a very convenient isotope for diffusion experiments. \\\\ \\\\ It was found that $^{195}$Au is a slow diffusor in amorphous Co-Zr alloys, whereas Co is a fast diffusor in the same matrix. The ``asymmetry'' in the diffusion behaviour is of considerab...

  17. Probing the diffuse interstellar medium with diffuse interstellar bands

    Science.gov (United States)

    Theodorus van Loon, Jacco; Bailey, Mandy; Farhang, Amin; Javadi, Atefeh; Khosroshahi, Habib

    2015-08-01

    For a century already, a large number of absorption bands have been known at optical wavelengths, called the diffuse interstellar bands (DIBs). While their carriers remain unidentified, the relative strengths of these bands in various environments make them interesting new probes of the diffuse interstellar medium (ISM). We present the results from two large, dedicated campaigns to map the ISM using DIBs measured in the high signal-to-noise spectra of hundreds of early-type stars: [1] in and around the Local Bubble using ESO's New Technology Telescope and the Isaac Newton Telescope, and [2] across both Magellanic Clouds using the Very Large Telescope and the Anglo-Australian Telescope. We discuss the implications for the structure and dynamics of the ISM, as well as the constraints these maps place on the nature of the carriers of the DIBs. Partial results have appeared in the recent literature (van Loon et al. 2013; Farhang et al. 2015a,b; Bailey, PhD thesis 2014) with the remainder being prepared for publication now.

  18. Fast-tracking morphogen diffusion.

    Science.gov (United States)

    Cinquin, Olivier

    2006-02-07

    The readout of morphogen concentrations has been proposed to be an essential mechanism allowing embryos to specify cell identities [Wolpert Trends Genet 12 (1996) 359], but theoretical and experimental results have led to conflicting ideas as to how useful concentration gradients can be established. In particular, it has been pointed out that some models of passive extracellular diffusion exhibit traveling waves of receptor saturation, inadequate for the establishment of positional information. Two alternative (but not mutually exclusive) models are proposed here, which are based on recent experimental results highlighting the roles of extracellular glycoproteins and morphogen oligomerization. In the first model, inspired from the interactions of Dally and Dally-like with Wingless and Decapentaplegic in the third-instar Drosophila wing disc, two morphogen populations are considered: one in a cell-membrane phase, and another one in an extracellular matrix phase, which does not interact with receptors; in the second model, inspired from biochemical studies of Sonic Hedgehog, morphogen oligomers are considered to diffuse freely without interacting with receptors. The existence of a dynamic sub-population of freely diffusing morphogen allows the system to establish a gradient of bound receptor that is suitable for the specification of positional information. Recent experimental results are discussed within the framework of these models, as well as further possible experiments. The role of Notum in the setup of the Wg gradient is also shown to be likely not to involve a gradient in Notum distribution, even though Notum is only expressed close to the source of Wg synthesis.

  19. Magnetic fields in diffuse media

    CERN Document Server

    Pino, Elisabete; Melioli, Claudio

    2015-01-01

    This volume presents the current knowledge of magnetic fields in diffuse astrophysical media. Starting with an overview of 21st century instrumentation to observe astrophysical magnetic fields, the chapters cover observational techniques, origin of magnetic fields, magnetic turbulence, basic processes in magnetized fluids, the role of magnetic fields for cosmic rays, in the interstellar medium and for star formation. Written by a group of leading experts the book represents an excellent overview of the field. Nonspecialists will find sufficient background to enter the field and be able to appreciate the state of the art.

  20. Characteristics of nickel and iron diffusion in molten lead–17lithium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yun, E-mail: gao.y.ad@m.titech.ac.jp [Tokyo Institute of Technology, 2-12-1-N1-18, Ookayama, Meguro, Tokyo (Japan); Takahashi, Minoru; Nomura, Masao [Tokyo Institute of Technology, 2-12-1-N1-18, Ookayama, Meguro, Tokyo (Japan); Nozawa, Takashi [Japan Atomic Energy Agency, 2-166 Oaza-Obuchi-Aza-Omotedate, Rokkasho-mura, Aomori (Japan)

    2016-11-01

    Highlights: • The characteristics of nickel (Ni) and iron (Fe) diffusion in molten lead–17lithium (Pb–17Li) alloy were investigated experimentally with the long capillary method. • The chromatography was adopted to measure the concentration distributions of Ni and Fe in the diffusing specimens by ICP-MS. • Arrhenius correlations of diffusion coefficient of both impurities in Pb–17Li were obtained. - Abstract: Diffusion characteristics of transition metals – nickel (Ni) and iron (Fe) diffusion in the molten lead–17lithium (Pb–17Li) were investigated experimentally under the argon atmosphere in the temperature range from 300 °C to 600 °C by using the long capillary method. The axial concentration distributions of Ni and Fe in Pb–17Li specimens were measured by ICP-MS, and the diffusion coefficients of Ni and Fe were determined based on the Fick's second law. The Arrhenius correlations of diffusion coefficient of Ni and Fe were obtained as D{sub Ni} =7.37 × 10{sup −5}exp (−4.66 × 10{sup 3}/RT) (300 °C ≤ T ≤ 450 °C) [cm{sup 2}/s], D{sub Fe} =3.21 × 10{sup −4}exp (−2.64 × 10{sup 4}/RT) (450 °C ≤ T ≤ 600 °C) [cm{sup 2}/s]. It is found that the diffusion coefficient of Ni is one order magnitude bigger than that of Fe in Pb–17Li. The diffusion coefficient of Fe in Pb–17Li was approximately in the same order as that in lead–bismuth eutectic reported by authors.

  1. AICE Survey of USSR Air Pollution Literature, Volume 13: Technical Papers from the Leningrad International Symposium on the Meteorological Aspects of Atmospheric Pollution, Part 2.

    Science.gov (United States)

    Nuttonson, M. Y., Ed.

    Twelve papers were translated from Russian: Automation of Information Processing Involved in Experimental Studies of Atmospheric Diffusion, Micrometeorological Characteristics of Atmospheric Pollution Conditions, Study of theInfluence of Irregularities of the Earth's Surface on the Air Flow Characteristics in a Wind Tunnel, Use of Parameters of…

  2. Consumption and diffusion of dissolved oxygen in sedimentary rocks.

    Science.gov (United States)

    Manaka, M; Takeda, M

    2016-10-01

    Fe(II)-bearing minerals (e.g., biotite, chlorite, and pyrite) are a promising reducing agent for the consumption of atmospheric oxygen in repositories for the geological disposal of high-level radioactive waste. To estimate effective diffusion coefficients (D e , in m 2 s -1 ) for dissolved oxygen (DO) and the reaction rates for the oxidation of Fe(II)-bearing minerals in a repository environment, we conducted diffusion-chemical reaction experiments using intact rock samples of Mizunami sedimentary rock. In addition, we conducted batch experiments on the oxidation of crushed sedimentary rock by DO in a closed system. From the results of the diffusion-chemical reaction experiments, we estimated the values of D e for DO to lie within the range 2.69×10 -11 diffusion-chemical reaction experiments). Many of these values are within the range of previously published rates for reaction between O 2(aq) and Fe(II) surface complexes. The average value for the total concentration of reactive sites was about 10 -4 molm -2 from batch experiments. In contrast, the value of reactive sites estimated from the physical surface area was about 10 -8 molm -2 , indicating that the reaction within intact rock is limited to the sites that originally existed with accessible porosity for O 2(aq) . This difference arises because the batch experiments used powdered samples, meaning that new sites which formed during milling were added to the original reaction sites. On the basis of these observations and interpretations, diffusion-chemical reaction experiments make it possible to determine the values of the kinetic parameter and diffusivity for an intact rock sample simultaneously. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. An asixymmetric diffusion experiment for the determination of diffusion and sorption coefficients of rock samples

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, M.; Hiratsuka, T.; Ito, K.; Finsterle, S.

    2011-02-01

    Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an

  4. Ultraviolet spectrophotometer for measuring columnar atmospheric ozone from aircraft

    Science.gov (United States)

    Hanser, F. A.; Sellers, B.; Briehl, D. C.

    1978-01-01

    An ultraviolet spectrophotometer (UVS) to measure downward solar fluxes from an aircraft or other high altitude platform is described. The UVS uses an ultraviolet diffuser to obtain large angular response with no aiming requirement, a twelve-position filter wheel with narrow (2-nm) and broad (20-nm) bandpass filters, and an ultraviolet photodiode. The columnar atmospheric ozone above the UVS (aircraft) is calculated from the ratios of the measured ultraviolet fluxes. Comparison with some Dobson station measurements gives agreement to 2%. Some UVS measured ozone profiles over the Pacific Ocean for November 1976 are shown to illustrate the instrument's performance.

  5. A largely diffuse small room

    Science.gov (United States)

    Massenburg, George; D'Antonio, Peter

    2005-09-01

    An 8 m×10 m rectangular room is described that will have broad bandwidth diffusion completely covering 5 of its 6 surfaces, i.e., all walls and ceiling surfaces. The dimensions of the room were optimized for minimal standard deviation of the modal response. The wall surfaces are treated with a large prime, single period, number theoretic diffusor 1.2 m deep that wraps around the entire room. The ceiling consists of a 12×13 low frequency diffusor 2 m deep, which is further treated with mid-high frequency diffusors to form a nested, diffractal surface. These surfaces will be described further and illustrated. The room is intended to be deployed as a monitor room for mixing surround sound. It is hoped that the unique combination of a reduced number of specular surfaces and very neutral, wide-band ambience will improve localization (particularly for virtual sources) and offer greater support for (and speed up) the balancing/mixing of multitrack sources. The perceived effectiveness of the diffusor in the ceiling, particularly in the 2 low octaves will be described. The room will also be used as a massively diffuse recording room for various musical formats.

  6. The Foundations of Diffusion Revisited

    Energy Technology Data Exchange (ETDEWEB)

    van Milligen, B. Ph. [Asociacion EURATOM-CIEMAT; Carreras, Benjamin A [ORNL; Sanchez, Raul [Universidad Carlos III, Madrid, Spain

    2005-12-01

    Diffusion is essentially the macroscopic manifestation of random (Brownian) microscopic motion. This idea has been generalized in the continuous time random walk formalism, which under quite general conditions leads to a generalized master equation (GME) that provides a useful modelling framework for transport. Here we review some of the basic ideas underlying this formalism from the perspective of transport in (magnetic confinement) plasmas. Under some specific conditions, the fluid limit of the GME corresponds to the Fokker-Planck (FP) diffusion equation in inhomogeneous systems, which reduces to Fick's law when the system is homogeneous. It is suggested that the FP equation may be preferable in fusion plasmas due to the inhomogeneity of the system, which would imply that part of the observed inward convection ('pinch') can be ascribed to this inhomogeneity. The GME also permits a mathematically sound approach to more complex transport issues, such as the incorporation of critical gradients and non-local transport mechanisms. A toy model incorporating these ingredients was shown to possess behaviour that bears a striking similarity to certain unusual phenomena observed in fusion plasmas.

  7. The foundations of diffusion revisited

    Energy Technology Data Exchange (ETDEWEB)

    Milligen, B Ph van [Asociacion EURATOM-CIEMAT para Fusion, Avda. Complutense 22, 28040 Madrid (Spain); Carreras, B A [Fusion Energy Division, Oak Ridge National Laboratory, PO Box 2001, Oak Ridge TN 37831-2001 (United States); Sanchez, R [Departamento de FIsica, Universidad Carlos III, Avda. de la Universidad 30, 28911 Leganes (Spain)

    2005-12-15

    Diffusion is essentially the macroscopic manifestation of random (Brownian) microscopic motion. This idea has been generalized in the continuous time random walk formalism, which under quite general conditions leads to a generalized master equation (GME) that provides a useful modelling framework for transport. Here we review some of the basic ideas underlying this formalism from the perspective of transport in (magnetic confinement) plasmas. Under some specific conditions, the fluid limit of the GME corresponds to the Fokker-Planck (FP) diffusion equation in inhomogeneous systems, which reduces to Fick's law when the system is homogeneous. It is suggested that the FP equation may be preferable in fusion plasmas due to the inhomogeneity of the system, which would imply that part of the observed inward convection ('pinch') can be ascribed to this inhomogeneity. The GME also permits a mathematically sound approach to more complex transport issues, such as the incorporation of critical gradients and non-local transport mechanisms. A toy model incorporating these ingredients was shown to possess behaviour that bears a striking similarity to certain unusual phenomena observed in fusion plasmas.

  8. The foundations of diffusion revisited

    Energy Technology Data Exchange (ETDEWEB)

    Milligen, B. P. van; Carreras, B. A.; Sanchez, R.

    2005-07-01

    Fick's Law lies at the basis of the study of particle and heat transport in many fields of physics. The detailed analysis of transport in magnetically confined plasmas has revealed a very rich phenomenology, including some rather unusual behaviour, such as an unexpected scaling of confinement with system size, power degradation, stiff profiles, rapid transient phenomena (cold and heat pulses) and non-local behaviour, and profile peaking during off axis fueling. It has been extremely difficult to capture these phenomena in the standard transport modelling framework, i.e. local Fickian transport. Ad-hoc modifications of the standard transport paradigm have been proposed, but no unified framework has emerged that is capable of reproducing all phenomena. In the present talk, we review the foundations of the diffusive transport paradigm in terms of the Continuous Time Random Walk (CTRW), which is a generalization of standard Brownian motion. Using a simplified one-dimensional single-field model that incorporates a critical gradient mechanism, we will present a number of highly suggestive results, demonstrating that all mentioned phenomena arise in a natural fashion in this type of model. In addition, we discuss the fluid limit and show that the model produces a radially increasing effective diffusion and an inward directed pinch, very similar to the actual situation in confined plasmas. Finally, we will discuss the general relevance of this type of model for a more profound understanding of transport in magnetic confinement systems, while indicating future developments in this line of investigation. (Author)

  9. Spectral clustering with epidemic diffusion

    Science.gov (United States)

    Smith, Laura M.; Lerman, Kristina; Garcia-Cardona, Cristina; Percus, Allon G.; Ghosh, Rumi

    2013-10-01

    Spectral clustering is widely used to partition graphs into distinct modules or communities. Existing methods for spectral clustering use the eigenvalues and eigenvectors of the graph Laplacian, an operator that is closely associated with random walks on graphs. We propose a spectral partitioning method that exploits the properties of epidemic diffusion. An epidemic is a dynamic process that, unlike the random walk, simultaneously transitions to all the neighbors of a given node. We show that the replicator, an operator describing epidemic diffusion, is equivalent to the symmetric normalized Laplacian of a reweighted graph with edges reweighted by the eigenvector centralities of their incident nodes. Thus, more weight is given to edges connecting more central nodes. We describe a method that partitions the nodes based on the componentwise ratio of the replicator's second eigenvector to the first and compare its performance to traditional spectral clustering techniques on synthetic graphs with known community structure. We demonstrate that the replicator gives preference to dense, clique-like structures, enabling it to more effectively discover communities that may be obscured by dense intercommunity linking.

  10. Containment atmosphere response (CAR) program. Second status report. [HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Landoni, J.A.

    1980-03-01

    This report contains a summary of the work performed under the Containment Atmosphere Response (CAR) Program of the High-Temperature Gas-Cooled Reactor (HTGR) Safety Research Task since the publication of the previous status report (February 1978). The work concentrated on development of models describing containment phenomena during core heatup in support of probabilistic risk assessment studies. Models were completed for fission product iodine sorption on coated surfaces, diffusivity and retentivity of untreated concrete, iodine interaction with condensing steam on the containment atmosphere boundaries, and the cleanup filter system. These models were incorporated into a new computer program called CARCAS, a substantial extension of the CNTB computer program, and applied to Accident Initiation and Progression Analysis for Phase II core heatup sequences. Development was begun on models describing the postulated behavior of particulate fission products or aerosols within and leaking out of the containment.

  11. Chasing Neoproterozoic Atmospheric Oxygen Ghosts

    Science.gov (United States)

    Bjerrum, C. J.; Canfield, D. E.; Dahl, T. W.

    2016-12-01

    Increasing atmospheric oxygen has been considered a necessary condition for the evolution of animal life for over half a century. While direct proxies for atmospheric oxygen are difficult to obtain, a number of indirect proxies have been giving us a ghost image of rising atmospheric oxygen at the close of the Precambrian. In this context, redox sensitive elements and isotopes represent the hallmark for a significant reduction in anoxic areas of the world ocean, implicating a significant rise of atmospheric oxygen during the Neoproterozoic. Here, we test to what degree redox sensitive elements in ancient marine sediments are proxies of atmospheric oxygen. We model the redox-chemical evolution of the shelf seas and ocean using a combination of 3D high resolution shelf sea models and a simpler global ocean biogeochemical model including climate weathering feedbacks, a free sea level and parameterized icecaps. We find that ecosystem evolution would have resulted in reorganization of the nutrient and redox balance of the shelf-ocean system causing a significant increase in oxygenated areas that permitted a boosting of trace metal concentrations in the remaining anoxic areas. While this reorganization takes place there is limited net change in the modelled atmospheric oxygen, warning us against interpreting changing trace metal concentrations and isotopes as reflecting a rise in atmospheric oxygen.

  12. Controllable uncertain opinion diffusion under confidence bound and unpredicted diffusion probability

    Science.gov (United States)

    Yan, Fuhan; Li, Zhaofeng; Jiang, Yichuan

    2016-05-01

    The issues of modeling and analyzing diffusion in social networks have been extensively studied in the last few decades. Recently, many studies focus on uncertain diffusion process. The uncertainty of diffusion process means that the diffusion probability is unpredicted because of some complex factors. For instance, the variety of individuals' opinions is an important factor that can cause uncertainty of diffusion probability. In detail, the difference between opinions can influence the diffusion probability, and then the evolution of opinions will cause the uncertainty of diffusion probability. It is known that controlling the diffusion process is important in the context of viral marketing and political propaganda. However, previous methods are hardly feasible to control the uncertain diffusion process of individual opinion. In this paper, we present suitable strategy to control this diffusion process based on the approximate estimation of the uncertain factors. We formulate a model in which the diffusion probability is influenced by the distance between opinions, and briefly discuss the properties of the diffusion model. Then, we present an optimization problem at the background of voting to show how to control this uncertain diffusion process. In detail, it is assumed that each individual can choose one of the two candidates or abstention based on his/her opinion. Then, we present strategy to set suitable initiators and their opinions so that the advantage of one candidate will be maximized at the end of diffusion. The results show that traditional influence maximization algorithms are not applicable to this problem, and our algorithm can achieve expected performance.

  13. Saturn: atmosphere, ionosphere, and magnetosphere.

    Science.gov (United States)

    Gombosi, Tamas I; Ingersoll, Andrew P

    2010-03-19

    The Cassini spacecraft has been in orbit around Saturn since 30 June 2004, yielding a wealth of data about the Saturn system. This review focuses on the atmosphere and magnetosphere and briefly outlines the state of our knowledge after the Cassini prime mission. The mission has addressed a host of fundamental questions: What processes control the physics, chemistry, and dynamics of the atmosphere? Where does the magnetospheric plasma come from? What are the physical processes coupling the ionosphere and magnetosphere? And, what are the rotation rates of Saturn's atmosphere and magnetosphere?

  14. Scientific investigations of atmospheric processes

    Science.gov (United States)

    1994-01-01

    Research was performed in atmospheric, dynamical, and thermodynamical processes and in other disciplines necessary to accomplish the following tasks: develop procedures for combining generalized radiative transfer codes with dynamic atmospheric model codes; perform diagnostic analysis of atmospheric processes to gain a better understanding of the evolution and development of mesoscale circulation systems and their precipitation structures; and to develop algorithms and software necessary to graphically display diagnostic sets on the MSFC McIDAS and EADS to facilitate scientific study and sensor capability evaluation. Research activities during this reporting period are detailed.

  15. Hydrodynamics of oceans and atmospheres

    CERN Document Server

    Eckart, Carl

    1960-01-01

    Hydrodynamics of Oceans and Atmospheres is a systematic account of the hydrodynamics of oceans and atmospheres. Topics covered range from the thermodynamic functions of an ideal gas and the thermodynamic coefficients for water to steady motions, the isothermal atmosphere, the thermocline, and the thermosphere. Perturbation equations, field equations, residual equations, and a general theory of rays are also presented. This book is comprised of 17 chapters and begins with an introduction to the basic equations and their solutions, with the aim of illustrating the laws of dynamics. The nonlinear

  16. Diffusion creep of fine-grained garnetite: Implications for the flow strength of subducting slabs

    Science.gov (United States)

    Wang, Zichao; Ji, Shaocheng

    2000-08-01

    Creep experiments were performed on synthetic fine-grained garnetite to investigate the flow strength of the Earth's subducting slabs. Experiments were conducted at temperatures (T) of 1373-1543 K and total pressure (P) of 0.1 MPa in controlled atmospheres of fO2 =10-17-10-8 MPa. The mechanical data indicate a grain-size sensitive diffusion flow and the creep behavior can be described by an equation of the form: FD1 ɛ.=(5.32±3.10)×10-6Td2.5±0.3fO20σ1.1±0.2exp(-347±46kJ/molRT) where T in Kelvin, d in meter, σ and fO2 in MPa. Based on the diffusivities (D) calculated from creep and diffusion experiments, we proposed that grain boundary diffusion is the dominant mechanism for high temperature creep of the fine-grained garnetite. Normalized creep strength of the garnetite is found to be comparable to those of feldspar and olivine in diffusion creep regime, suggesting that garnetite may not form a strong layer in the subducted oceanic lithosphere if it deforms by grain boundary diffusion creep.

  17. Origins of atmospheric aerosols. Basic concepts on aerosol main physical properties; L`aerosol atmospherique: ses origines quelques notions sur les principales proprietes physiques des aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Renoux, A. [Paris-12 Univ., 94 - Creteil (France). Laboratoire de Physique des aerosols et de transferts des contaminations

    1996-12-31

    Natural and anthropogenic sources of atmospheric aerosols are reviewed and indications of their concentrations and granulometry are given. Calculation of the lifetime of an atmospheric aerosol of a certain size is presented and the various modes of aerosol granulometry and their relations with photochemical and physico-chemical processes in the atmosphere are discussed. The main physical, electrical and optical properties of aerosols are also presented: diffusion coefficient, dynamic mobility and relaxation time, Stokes number, limit rate of fall, electrical mobility, optical diffraction

  18. A Monte Carlo study of radon detection in cylindrical diffusion chambers

    Energy Technology Data Exchange (ETDEWEB)

    Rickards, Jorge, E-mail: rickards@fisica.unam.m [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Ciudad Universitaria, Delegacion Coyoacan, 04520 Mexico, D.F. (Mexico); Golzarri, Jose-Ignacio, E-mail: golzarri@fisica.unam.m [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Ciudad Universitaria, Delegacion Coyoacan, 04520 Mexico, D.F. (Mexico); Espinosa, Guillermo, E-mail: espinosa@fisica.unam.m [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Ciudad Universitaria, Delegacion Coyoacan, 04520 Mexico, D.F. (Mexico)

    2010-05-15

    The functioning of radon diffusion chambers was studied using the Monte Carlo code RAMMX developed here. The alpha particles from radon are assumed randomly produced in the volume of the cylinder, and those from the progeny are assumed to originate randomly at the cylindrical surface. The energy spectrum, the distribution of incident angles, and the distribution of path lengths of the alpha particles on the detector were obtained. These quantities vary depending on input parameters such as initial alpha particle energy, radius and depth of the diffusion chamber, detector size and atmospheric pressure. The calculated energy spectrum for both {sup 222}Rn and {sup 220}Rn was compared with experiment, permitting the identification of each peak and its origin, and a better understanding of radon monitoring. Three aspects not considered in previous calculations are progeny alphas coming from surfaces of the monitor, taking into account the atmospheric pressure, and including the isotope {sup 220}Rn.

  19. On diffusion theory in inhomogeneous media: Thin-film source of diffusant

    Science.gov (United States)

    Kesarev, A. G.; Kondrat'ev, V. V.; Lomaev, I. L.

    2017-09-01

    Using asymptotic methods in the theory of differential equations, the original solution of the atomic diffusion problem in the semi-infinite inhomogeneous medium has been obtained for the thin-film (instantaneous) source of diffusant and arbitrary coordinate dependence of the diffusion coefficient. We have mathematically estimated the applicability of this solution and compared it numerically with the known exact solution for a particular case of the exponential coordinate dependence of the diffusion coefficient and a trivial case of the constant diffusion coefficient. Based on our analysis, the ranges of annealing times and depths of diffusant penetration for which the suggested approach proves to be correct have been established.

  20. Mass diffusion cloaking and focusing with metamaterials

    Science.gov (United States)

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2017-08-01

    Recent advances in the design of metamaterials that control diffusive transport processes have enabled efficient devices to manipulate heat conduction. In contrast, control of mass diffusion with metamaterial devices has been largely unexplored. Mass diffusion is critically important in multiple research areas ranging from electronic and energy materials to chemical and biological systems. In this work, we introduce a physical approach to design mass diffusion metamaterial devices that take into account the fundamental physical mechanisms behind mass transport. We demonstrate that mass concentration discontinuities arising from different material solubilities are critical physical factors that need to be incorporated for the accurate design and characterization of mass diffusion metamaterial devices. We employ our approach to devise and analyze cloaking and focusing of molecules and show how the difference in solubilities is critically important for the efficiency of the metamaterials. This work provides physical insights and guidelines to understand and design mass diffusion in metamaterial devices.

  1. 2015 MICCAI Workshop on Computational Diffusion MRI

    CERN Document Server

    Ghosh, Aurobrata; Kaden, Enrico; Rathi, Yogesh; Reisert, Marco

    2016-01-01

    These Proceedings of the 2015 MICCAI Workshop “Computational Diffusion MRI” offer a snapshot of the current state of the art on a broad range of topics within the highly active and growing field of diffusion MRI. The topics vary from fundamental theoretical work on mathematical modeling, to the development and evaluation of robust algorithms, new computational methods applied to diffusion magnetic resonance imaging data, and applications in neuroscientific studies and clinical practice. Over the last decade interest in diffusion MRI has exploded. The technique provides unique insights into the microstructure of living tissue and enables in-vivo connectivity mapping of the brain. Computational techniques are key to the continued success and development of diffusion MRI and to its widespread transfer into clinical practice. New processing methods are essential for addressing issues at each stage of the diffusion MRI pipeline: acquisition, reconstruction, modeling and model fitting, image processing, fiber t...

  2. Diffusers in silicon-photodiode radiometers.

    Science.gov (United States)

    Boivin, L P

    1982-03-01

    The problems encountered when making radiometric measurements with silicon-photodiode radiometers not incorporating diffusers are discussed, with special attention given to the case where laser beams are involved. A diffuserless radiometer head design is presented which eliminates most of these problems. These problems can also be avoided by using a diffuser. A radiometer head incorporating a diffuser is described, and its properties are studied for three types of diffuser: flashed opal, type-2250 translucent Plexiglas, and a three-piece ground and etched quartz. Graphical data are given for the spatial uniformity, angular response variation, and spectral attenuation associated with radiometer heads incorporating these three types of diffuser. It is shown that, for a wide range of radiometric and photometric applications, the quartz diffuser is the most desirable, although its use results in a somewhat limited angular field of view.

  3. Venus: Jet-setting atmosphere

    Science.gov (United States)

    Hauchecorne, Alain

    2017-09-01

    A fast equatorial jet in the Venusian cloud layer has been revealed by the Akatsuki orbiter by tracking cloud movement in near-infrared images. The findings suggest that the Venusian atmosphere is more variable than previously thought.

  4. [Characteristics of Winter Atmospheric Mixing Layer Height in Beijing-Tianjin-Hebei Region and Their Relationship with the Atmospheric Pollution].

    Science.gov (United States)

    Li, Meng; Tang, Gui-qian; Huang, Jun; Liu, Zi-rui; An, Jun-lin; Wang, Yue-si

    2015-06-01

    Atmospheric mixing layer height (MLH) is one of the main factors affecting the atmospheric diffusion and plays an important role in air quality assessment and distribution of the pollutants. Based on the ceilometers data, this paper has made synchronous observation on MLH in Beijing-Tianjin-Hebei region (Beijing, Tianjin, Shijiazhuang and Qinhuangdao) in heavy polluted February 2014 and analyzed the respective overall change and its regional features. Results show that in February 2014,the average of mixing layer height in Qinhuangdao is the highest, up to 865 +/- 268 m, and in Shijiazhuang is the lowest (568 +/- 207 m), Beijing's and Tianjin's are in between, 818 +/- 319 m and 834 +/- 334 m respectively; Combined with the meteorological data, we find that radiation and wind speed are main factors of the mixing layer height; The relationship between the particle concentration and mixing layer height in four sites suggests that mixing layer is less than 800 m, concentration of fine particulate matter in four sites will exceed the national standard (GB 3095-2012, 75 microg x m(-3)). During the period of observation, the proportion of days that mixing layer is less than 800 m in Beijing, Tianjin, Shijiazhuang and Qinhuangdao are 50%, 43%, 80% and 50% respectively. Shijiazhuang though nearly formation contaminant concentration is high, within the atmospheric mixed layer pollutant load is not high. Unfavorable atmospheric diffusion conditions are the main causes of heavy pollution in Shijiazhuang for a long time. The results of the study are of great significance for cognitive Beijing-Tianjin-Hebei area pollution distribution, and can provide a scientific reference for reasonable distribution of regional pollution sources.

  5. Unstructured Polyhedral Mesh Thermal Radiation Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, T.S.; Zika, M.R.; Madsen, N.K.

    2000-07-27

    Unstructured mesh particle transport and diffusion methods are gaining wider acceptance as mesh generation, scientific visualization and linear solvers improve. This paper describes an algorithm that is currently being used in the KULL code at Lawrence Livermore National Laboratory to solve the radiative transfer equations. The algorithm employs a point-centered diffusion discretization on arbitrary polyhedral meshes in 3D. We present the results of a few test problems to illustrate the capabilities of the radiation diffusion module.

  6. Diffusion bonding of Stratapax for drill bits

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, J.N.; Finger, J.T.

    1983-01-01

    A process has been developed for the diffusion bonding of General Electric's Stratapax drill blanks to support studs for cutter assemblies in drill bits. The diffusion bonding process is described and bond strength test data are provided for a variety of materials. The extensive process details, provided in the Appendices, should be sufficient to enable others to successfully build diffusion-bonded drill bit cutter assemblies.

  7. Diffuse lipomatosis of the thyroid gland

    Directory of Open Access Journals (Sweden)

    Olfa Ben Gamra

    2016-11-01

    Full Text Available Diffuse thyroïd lipomatosis is an extremely rare histopathological condition characterized by diffuse fatty infiltration in thyroïd stroma. We report a case of 67 year old female who presented a plunging goiter. She underwent a thyroïdectomy. Histopathologic study concluded to the diagnosis of diffuse thyroïd lipomatosis. No recurrence was observed.

  8. Atmospheric Research 2016 Technical Highlights

    Science.gov (United States)

    Platnick, Steven

    2017-01-01

    Atmospheric research in the Earth Sciences Division (610) consists of research and technology development programs dedicated to advancing knowledge and understanding of the atmosphere and its interaction with the climate of Earth. The Divisions goals are to improve understanding of the dynamics and physical properties of precipitation, clouds, and aerosols; atmospheric chemistry, including the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and radiative properties of Earth's atmosphere and the influence of solar variability on the Earth's climate. Major research activities are carried out in the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office. The overall scope of the research covers an end-to-end process, starting with the identification of scientific problems, leading to observation requirements for remote-sensing platforms, technology and retrieval algorithm development; followed by flight projects and satellite missions; and eventually, resulting in data processing, analyses of measurements, and dissemination from flight projects and missions. Instrument scientists conceive, design, develop, and implement ultraviolet, infrared, optical, radar, laser, and lidar technology to remotely sense the atmosphere. Members of the various laboratories conduct field measurements for satellite sensor calibration and data validation, and carry out numerous modeling activities. These modeling activities include climate model simulations, modeling the chemistry and transport of trace species on regional-to-global scales, cloud resolving models, and developing the next-generation Earth system models. Satellite missions, field campaigns, peer-reviewed publications, and successful proposals are essential at every stage of the research process to meeting our goals and maintaining leadership of the

  9. Fungistatic Effects of Controlled Atmospheres

    Science.gov (United States)

    Littlefield, Neil A.; Wankier, Bartley N.; Salunkhe, D. K.; Mcgill, J. N.

    1966-01-01

    The fungistatic effects of controlled atmospheres composed of increased CO2 and decreased O2 was studied in a manner such that the condition of stored fruit was not a factor in the growth of the fungi. Varying concentrations of O2 and CO2 were used. The fungi used were Botrytis alli, Rhizopus nigricans, and Penicillium expansum. The results showed that controlled atmospheres, within the limits of concentrations usable for fruit storage, are effective fungistatic agents. PMID:5951331

  10. Atmospheric science and power production

    Energy Technology Data Exchange (ETDEWEB)

    Randerson, D. (ed.)

    1984-07-01

    This is the third in a series of scientific publications sponsored by the US Atomic Energy Commission and the two later organizations, the US Energy Research and Development Adminstration, and the US Department of Energy. The first book, Meteorology and Atomic Energy, was published in 1955; the second, in 1968. The present volume is designed to update and to expand upon many of the important concepts presented previously. However, the present edition draws heavily on recent contributions made by atmospheric science to the analysis of air quality and on results originating from research conducted and completed in the 1970s. Special emphasis is placed on how atmospheric science can contribute to solving problems relating to the fate of combustion products released into the atmosphere. The framework of this book is built around the concept of air-quality modeling. Fundamentals are addressed first to equip the reader with basic background information and to focus on available meteorological instrumentation and to emphasize the importance of data management procedures. Atmospheric physics and field experiments are described in detail to provide an overview of atmospheric boundary layer processes, of how air flows around obstacles, and of the mechanism of plume rise. Atmospheric chemistry and removal processes are also detailed to provide fundamental knowledge on how gases and particulate matter can be transformed while in the atmosphere and how they can be removed from the atmosphere. The book closes with a review of how air-quality models are being applied to solve a wide variety of problems. Separate analytics have been prepared for each chapter.

  11. Using a simple apparatus to measure direct and diffuse photosynthetically active radiation at remote locations.

    Directory of Open Access Journals (Sweden)

    Michael J Cruse

    Full Text Available Plant canopy interception of photosynthetically active radiation (PAR drives carbon dioxide (CO2, water and energy cycling in the soil-plant-atmosphere system. Quantifying intercepted PAR requires accurate measurements of total incident PAR above canopies and direct beam and diffuse PAR components. While some regional data sets include these data, e.g. from Atmospheric Radiation Measurement (ARM Program sites, they are not often applicable to local research sites because of the variable nature (spatial and temporal of environmental variables that influence incoming PAR. Currently available instrumentation that measures diffuse and direct beam radiation separately can be cost prohibitive and require frequent adjustments. Alternatively, generalized empirical relationships that relate atmospheric variables and radiation components can be used but require assumptions that increase the potential for error. Our goal here was to construct and test a cheaper, highly portable instrument alternative that could be used at remote field sites to measure total, diffuse and direct beam PAR for extended time periods without supervision. The apparatus tested here uses a fabricated, solar powered rotating shadowband and other commercially available parts to collect continuous hourly PAR data. Measurements of total incident PAR had nearly a one-to-one relationship with total incident radiation measurements taken at the same research site by an unobstructed point quantum sensor. Additionally, measurements of diffuse PAR compared favorably with modeled estimates from previously published data, but displayed significant differences that were attributed to the important influence of rapidly changing local environmental conditions. The cost of the system is about 50% less than comparable commercially available systems that require periodic, but not continual adjustments. Overall, the data produced using this apparatus indicates that this instrumentation has the

  12. Spectral Analysis and Computation of Effective Diffusivities for Steady Random Flows

    Science.gov (United States)

    2016-04-28

    Such methods have been extended to steady flows where particles diffuse according to linear collisions [42], solute transport in porous media [8...application to solute transport in porous media . Ann. Appl. Probab., 9(4):951–1020, 1999. [9] L. Biferale, A. Crisanti, M. Vergassola, and A. Vulpiani. Eddy...and M. G. Forest. An anelastic, scale-separated model for mixing, with application to atmospheric transport phenomena . Phys. Fluids, 11(4):880–892

  13. /sup 15/N/sub 2/ diffusion in soil during biological dinitrogen fixation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, M.P. (Lyon-1 Univ., 69 - Villeurbanne (France). Dept. de Biologie Vegetale); Warembourg, F.R. (Centre National de la Recherche Scientifique, 34 - Montpellier (France). Centre d' Etudes Phytosociologiques et Ecologiques Louis-Emberger)

    1983-01-01

    The kinetic of /sup 15/N/sub 2/ diffusion has been measured in a system similar to that for the estimation of N/sub 2/ fixation in plant microorganism associations cultivated in soil. The /sup 15/N/sub 2/ enrichment of the soil atmosphere reached an homogenous value one hour after injection of /sup 15/N/sub 2/ and is identical to that obtained by calculation, indicating that no adsorption occurs in the soil particles.

  14. Diffusions conditioned on occupation measures

    Science.gov (United States)

    Angeletti, Florian; Touchette, Hugo

    2016-02-01

    A Markov process fluctuating away from its typical behavior can be represented in the long-time limit by another Markov process, called the effective or driven process, having the same stationary states as the original process conditioned on the fluctuation observed. We construct here this driven process for diffusions spending an atypical fraction of their evolution in some region of state space, corresponding mathematically to stochastic differential equations conditioned on occupation measures. As an illustration, we consider the Langevin equation conditioned on staying for a fraction of time in different intervals of the real line, including the positive half-line which leads to a generalization of the Brownian meander problem. Other applications related to quasi-stationary distributions, metastable states, noisy chemical reactions, queues, and random walks are discussed.

  15. Word diffusion and climate science.

    Directory of Open Access Journals (Sweden)

    R Alexander Bentley

    Full Text Available As public and political debates often demonstrate, a substantial disjoint can exist between the findings of science and the impact it has on the public. Using climate-change science as a case example, we reconsider the role of scientists in the information-dissemination process, our hypothesis being that important keywords used in climate science follow "boom and bust" fashion cycles in public usage. Representing this public usage through extraordinary new data on word frequencies in books published up to the year 2008, we show that a classic two-parameter social-diffusion model closely fits the comings and goings of many keywords over generational or longer time scales. We suggest that the fashions of word usage contributes an empirical, possibly regular, correlate to the impact of climate science on society.

  16. Multitask Diffusion Adaptation Over Networks

    Science.gov (United States)

    Chen, Jie; Richard, Cedric; Sayed, Ali H.

    2014-08-01

    Adaptive networks are suitable for decentralized inference tasks, e.g., to monitor complex natural phenomena. Recent research works have intensively studied distributed optimization problems in the case where the nodes have to estimate a single optimum parameter vector collaboratively. However, there are many important applications that are multitask-oriented in the sense that there are multiple optimum parameter vectors to be inferred simultaneously, in a collaborative manner, over the area covered by the network. In this paper, we employ diffusion strategies to develop distributed algorithms that address multitask problems by minimizing an appropriate mean-square error criterion with $\\ell_2$-regularization. The stability and convergence of the algorithm in the mean and in the mean-square sense is analyzed. Simulations are conducted to verify the theoretical findings, and to illustrate how the distributed strategy can be used in several useful applications related to spectral sensing, target localization, and hyperspectral data unmixing.

  17. Innovation and creativity : Beyond diffusion

    DEFF Research Database (Denmark)

    Michelsen, Anders Ib

    2009-01-01

    of postwar systems theory and introduce Castoriadis' philosophy as an interesting option in this regard. It proceeds in four parts: (a) First, it debates the limits of the commonplace metaphor of diffusion and adoption in today's debate on innovation. (b) Second, it will present aspects of Castoriadis......The article confronts Cornelius Castoriadis' philosophy of  'the imaginary institution of society' with issues of innovation in a knowledge society and outlines a new notion of innovation as creative organization. It will take a critical approach to innovation from a historical perspective......'s thought as an alternative, in particular his debate on imagination and the proto-institution of legein/teukhein — ordered action. (c) On this background it will treat a case from the Danish innovation industry, the firm Zentropa WorkZ's programme of 'Dramatic Innovation' as an interesting example...

  18. Microscopic dynamics underlying anomalous diffusion

    Science.gov (United States)

    Kaniadakis, G.; Lapenta, G.

    2000-09-01

    The time-dependent Tsallis statistical distribution describing anomalous diffusion is usually obtained in the literature as the solution of a nonlinear Fokker-Planck (FP) equation [A.R. Plastino and A. Plastino, Physica A 222, 347 (1995)]. The scope of the present paper is twofold. First, we show that this distribution can be obtained also as a solution of the nonlinear porous media equation. Second, we prove that the time-dependent Tsallis distribution can be obtained also as a solution of a linear FP equation [G. Kaniadakis and P. Quarati, Physica A 237, 229 (1997)] with coefficients depending on the velocity, which describes a generalized Brownian motion. This linear FP equation is shown to arise from a microscopic dynamics governed by a standard Langevin equation in the presence of multiplicative noise.

  19. Wanted: Scalable Tracers for Diffusion Measurements

    Science.gov (United States)

    2015-01-01

    Scalable tracers are potentially a useful tool to examine diffusion mechanisms and to predict diffusion coefficients, particularly for hindered diffusion in complex, heterogeneous, or crowded systems. Scalable tracers are defined as a series of tracers varying in size but with the same shape, structure, surface chemistry, deformability, and diffusion mechanism. Both chemical homology and constant dynamics are required. In particular, branching must not vary with size, and there must be no transition between ordinary diffusion and reptation. Measurements using scalable tracers yield the mean diffusion coefficient as a function of size alone; measurements using nonscalable tracers yield the variation due to differences in the other properties. Candidate scalable tracers are discussed for two-dimensional (2D) diffusion in membranes and three-dimensional diffusion in aqueous solutions. Correlations to predict the mean diffusion coefficient of globular biomolecules from molecular mass are reviewed briefly. Specific suggestions for the 3D case include the use of synthetic dendrimers or random hyperbranched polymers instead of dextran and the use of core–shell quantum dots. Another useful tool would be a series of scalable tracers varying in deformability alone, prepared by varying the density of crosslinking in a polymer to make say “reinforced Ficoll” or “reinforced hyperbranched polyglycerol.” PMID:25319586

  20. Cloaking through cancellation of diffusive wave scattering

    Science.gov (United States)

    Chen, P. Y.; Guenneau, S.; Bağcı, H.; Salama, K. N.; Alù, A.

    2016-01-01

    A new cloaking mechanism, which makes enclosed objects invisible to diffusive photon density waves, is proposed. First, diffusive scattering from a basic core–shell geometry, which represents the cloaked structure, is studied. The conditions of scattering cancellation in a quasi-static scattering regime are derived. These allow for tailoring the diffusivity constant of the shell enclosing the object so that the fields scattered from the shell and the object cancel each other. This means that the photon flow outside the cloak behaves as if the cloaked object were not present. Diffusive light invisibility may have potential applications in hiding hot spots in infrared thermography or tissue imaging. PMID:27616925

  1. Theory of diffusive light scattering cancellation cloaking

    CERN Document Server

    Farhat, Mohamed; Guenneau, Sebastien; Bagci, Hakan; Salama, Khaled Nabil; Alu, Andrea

    2016-01-01

    We report on a new concept of cloaking objects in diffusive light regime using the paradigm of the scattering cancellation and mantle cloaking techniques. We show numerically that an object can be made completely invisible to diffusive photon density waves, by tailoring the diffusivity constant of the spherical shell enclosing the object. This means that photons' flow outside the object and the cloak made of these spherical shells behaves as if the object were not present. Diffusive light invisibility may open new vistas in hiding hot spots in infrared thermography or tissue imaging.

  2. Diffusion in condensed matter methods, materials, models

    CERN Document Server

    Kärger, Jörg

    2005-01-01

    Diffusion as the process of particle transport due to stochastic movement is a phenomenon of crucial relevance for a large variety of processes and materials. This comprehensive, handbook- style survey of diffusion in condensed matter gives detailed insight into diffusion as the process of particle transport due to stochastic movement. Leading experts in the field describe in 23 chapters the different aspects of diffusion, covering microscopic and macroscopic experimental techniques and exemplary results for various classes of solids, liquids and interfaces as well as several theoretical concepts and models. Students and scientists in physics, chemistry, materials science, and biology will benefit from this detailed compilation.

  3. NMR-based diffusion pore imaging.

    Science.gov (United States)

    Laun, Frederik Bernd; Kuder, Tristan Anselm; Wetscherek, Andreas; Stieltjes, Bram; Semmler, Wolfhard

    2012-08-01

    Nuclear magnetic resonance (NMR) diffusion experiments offer a unique opportunity to study boundaries restricting the diffusion process. In a recent Letter [Phys. Rev. Lett. 107, 048102 (2011)], we introduced the idea and concept that such diffusion experiments can be interpreted as NMR imaging experiments. Consequently, images of closed pores, in which the spins diffuse, can be acquired. In the work presented here, an in-depth description of the diffusion pore imaging technique is provided. Image artifacts due to gradient profiles of finite duration, field inhomogeneities, and surface relaxation are considered. Gradients of finite duration lead to image blurring and edge enhancement artifacts. Field inhomogeneities have benign effects on diffusion pore images, and surface relaxation can lead to a shrinkage and shift of the pore image. The relation between boundary structure and the imaginary part of the diffusion weighted signal is analyzed, and it is shown that information on pore coherence can be obtained without the need to measure the phase of the diffusion weighted signal. Moreover, it is shown that quite arbitrary gradient profiles can be used for diffusion pore imaging. The matrices required for numerical calculations are stated and provided as supplemental material.

  4. Fractional diffusion equations coupled by reaction terms

    Science.gov (United States)

    Lenzi, E. K.; Menechini Neto, R.; Tateishi, A. A.; Lenzi, M. K.; Ribeiro, H. V.

    2016-09-01

    We investigate the behavior for a set of fractional reaction-diffusion equations that extend the usual ones by the presence of spatial fractional derivatives of distributed order in the diffusive term. These equations are coupled via the reaction terms which may represent reversible or irreversible processes. For these equations, we find exact solutions and show that the spreading of the distributions is asymptotically governed by the same the long-tailed distribution. Furthermore, we observe that the coupling introduced by reaction terms creates an interplay between different diffusive regimes leading us to a rich class of behaviors related to anomalous diffusion.

  5. Thermo-diffusion in inertially confined plasmas

    CERN Document Server

    Kagan, Grigory

    2013-01-01

    In a plasma of multiple ion species, thermodynamic forces such as pressure and temperature gradients can drive ion species separation via inter-species diffusion. Unlike its neutral mix counterpart, plasma thermo-diffusion is found comparable to, or even much larger than, baro-diffusion. It is shown that such a strong effect is due to the long-range nature of the Coulomb potential, as opposed to short-range interactions in neutral gases. A special composition of the tritium and 3He fuel is identified to have vanishing net diffusion during adiabatic compression, and hence provides an experimental test in which yield degradation is minimized during ICF implosions.

  6. Enhancing Rotational Diffusion Using Oscillatory Shear

    KAUST Repository

    Leahy, Brian D.

    2013-05-29

    Taylor dispersion - shear-induced enhancement of translational diffusion - is an important phenomenon with applications ranging from pharmacology to geology. Through experiments and simulations, we show that rotational diffusion is also enhanced for anisotropic particles in oscillatory shear. This enhancement arises from variations in the particle\\'s rotation (Jeffery orbit) and depends on the strain amplitude, rate, and particle aspect ratio in a manner that is distinct from the translational diffusion. This separate tunability of translational and rotational diffusion opens the door to new techniques for controlling positions and orientations of suspended anisotropic colloids. © 2013 American Physical Society.

  7. Aspects of atmospheric turbulence related to scintillometry

    NARCIS (Netherlands)

    Braam, M.

    2014-01-01

    Aspects of atmospheric turbulence related to scintillometry Atmospheric turbulence is the main vertical transport mechanism in the atmospheric boundary layer. The surface fluxes related to this turbulent transport are the sensible (

  8. Data summary for evaluation of the transport and diffusion climatology of the United States east and Gulf Coasts

    Energy Technology Data Exchange (ETDEWEB)

    Raynor, G S; Hayes, J V

    1979-07-01

    A study of the atmospheric transport and diffusion climatology of the United States east and Gulf coasts was conducted as part of a larger coastal meteorology and diffusion program to aid in planning and site selection. Synoptic data were obtained from thirty coastal stations from Maine to Texas and analyzed in terms of conditions important to emission transport and diffusion. The thirty stations included four pairs with one of each pair at a greater distance from the coast than the other but near the same latitude. For each station, wind directions were classified into eight groups with reference to orientation of the local coastline. For some studies, these were combined into three groups - onshore, alongshore and offshore. Wind speeds were divided into four classes. A diffusion class for each observation was computed by a modified Pasquill method. This gave eight classes which were combined into three - unstable, neutral and stable - for some studies. A diffusion rating was derived from combinations of wind speed and diffusion class ranging from very good to very poor. Finally, the joint frequency distributions of wind direction and diffusion rating were calculated for each station. Data were then classified by season, time of day, wind direction, wind speed, diffusion class and combinations of these variables and the percent of hours in each subgroup determined. Results are presented in a series of tables.

  9. Radiation Belt Electron Dynamics: Modeling Atmospheric Losses

    Science.gov (United States)

    Selesnick, R. S.

    2003-01-01

    The first year of work on this project has been completed. This report provides a summary of the progress made and the plan for the coming year. Also included with this report is a preprint of an article that was accepted for publication in Journal of Geophysical Research and describes in detail most of the results from the first year of effort. The goal for the first year was to develop a radiation belt electron model for fitting to data from the SAMPEX and Polar satellites that would provide an empirical description of the electron losses into the upper atmosphere. This was largely accomplished according to the original plan (with one exception being that, for reasons described below, the inclusion of the loss cone electrons in the model was deferred). The main concerns at the start were to accurately represent the balance between pitch angle diffusion and eastward drift that determines the dominant features of the low altitude data, and then to accurately convert the model into simulated data based on the characteristics of the particular electron detectors. Considerable effort was devoted to achieving these ends. Once the model was providing accurate results it was applied to data sets selected from appropriate periods in 1997, 1998, and 1999. For each interval of -30 to 60 days, the model parameters were calculated daily, thus providing good short and long term temporal resolution, and for a range of radial locations from L = 2.7 to 3.9. .

  10. Improved Correction of IR Loss in Diffuse Shortwave Measurements: An ARM Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Younkin, K; Long, CN

    2003-11-01

    Simple single black detector pyranometers, such as the Eppley Precision Spectral Pyranometer (PSP) used by the Atmospheric Radiation Measurement (ARM) Program, are known to lose energy via infrared (IR) emission to the sky. This is especially a problem when making clear-sky diffuse shortwave (SW) measurements, which are inherently of low magnitude and suffer the greatest IR loss. Dutton et al. (2001) proposed a technique using information from collocated pyrgeometers to help compensate for this IR loss. The technique uses an empirically derived relationship between the pyrgeometer detector data (and alternatively the detector data plus the difference between the pyrgeometer case and dome temperatures) and the nighttime pyranometer IR loss data. This relationship is then used to apply a correction to the diffuse SW data during daylight hours. We developed an ARM value-added product (VAP) called the SW DIFF CORR 1DUTT VAP to apply the Dutton et al. correction technique to ARM PSP diffuse SW measurements.

  11. The role of oxygen in the deposition of copper–calcium thin film as diffusion barrier for copper metallization

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhinong, E-mail: znyu@bit.edu.cn [School of Optoelectronics and Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing 100081 (China); Ren, Ruihuang [School of Optoelectronics and Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing 100081 (China); Xue, Jianshe; Yao, Qi; Li, Zhengliang; Hui, Guanbao [Beijing BOE Optoelectronics Technology Co., Ltd, Beijing 100176 (China); Xue, Wei [School of Optoelectronics and Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing 100081 (China)

    2015-02-15

    Highlights: • The CuCa film as the diffusion barrier of Cu film improves the adhesion of Cu film. • The introduction of oxygen into the deposition of CuCa film is necessary to improve the adhesion of Cu film. • The CuCa alloy barrier layer deposited at oxygen atmosphere has perfect anti-diffusion between Cu film and substrate. - Abstract: The properties of copper (Cu) metallization based on copper–calcium (CuCa) diffusion barrier as a function of oxygen flux in the CuCa film deposition were investigated in view of adhesion, diffusion and electronic properties. The CuCa film as the diffusion barrier of Cu film improves the adhesion of Cu film, however, and increases the resistance of Cu film. The introduction of oxygen into the deposition of CuCa film induces the improvement of adhesion and crystallinity of Cu film, but produces a slight increase of resistance. The increased resistance results from the partial oxidation of Cu film. The annealing process in vacuum further improves the adhesion, crystallinity and conductivity of Cu film. X-ray diffraction (XRD) and Auger electron spectroscopy (AES) show that the CuCa alloy barrier layer deposited at oxygen atmosphere has perfect anti-diffusion between Cu film and substrate due to the formation of Ca oxide in the interface of CuCa/substrate.

  12. Summary of the March 25--26, 1991 atmospheric model working meeting. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Ramsdell, J.V.

    1992-07-01

    Atmospheric transport and diffusion calculations for the initial phase of the Hanford Environmental Dose Reconstruction (HEDR) Project were made using the MESOILT2 computer code (Ramsdell and Burk 1991). This code implemented a Lagrangian trajectory, puff dispersion model using components from other models designed primarily for regulatory applications. Uncertainty in the dispersion calculations was estimated following model calculations. The results of the atmospheric dispersion calculations were summarized in frequency distributions by location for use in preliminary dose calculations.

  13. Brown dwarf Atmosphere Monitoring (BAM): Characterizing the Coolest Atmosphere

    Science.gov (United States)

    Patience, Jennifer

    2014-10-01

    Using the G141 WFC3/IR grism, we propose a HST spectrophotometric monitoring study of the coolest variable brown dwarf (~650K) identified as part of our Brown dwarf Atmosphere Monitoring (BAM) program. The proposed observations will enable exploration of the dynamic atmospheric evolution of a benchmark T8.5 binary brown dwarf system, which we have discovered to exhibit the second-largest amplitude variation amongst all currently known brown dwarf variables. The close binarity of this system requires the exquisite stability of the HST point spread function to enable resolved monitoring of both components and to discriminate the source of the variability - the second component is a planetary mass object based on evolutionary models. This BAM follow-up study is designed to characterize both the longitudinal and vertical structure of the atmospheric properties of this system via multi-wavelength observations covering the entire spectral range of the WFC3/IR detector. Additionally, by monitoring the target over two separate epochs we will measure the evolution of atmospheric features giving rise to the flux variations. The proposed program will provide a comprehensive dataset serving as a benchmark comparison to directly imaged planets, intensely irradiated Hot Jupiters, and synthetic atmospheric models incorporating different physical processes.

  14. From State Dependent Diffusion to Constant Diffusion in Stochastic Differential Equations by the Lamperti Transform

    DEFF Research Database (Denmark)

    Møller, Jan Kloppenborg; Madsen, Henrik

    This report describes methods to eliminate state dependent diffusion terms in Stochastic Differential Equations (SDEs). Transformations that leave the diffusion term of SDEs constant is important for simulation, and estimation. It is important for simulation because the Euler approximation...

  15. The deep atmosphere of Venus and the possible role of density-driven separation of CO2 and N2

    Science.gov (United States)

    Lebonnois, Sebastien; Schubert, Gerald

    2017-07-01

    With temperatures around 700 K and pressures of around 75 bar, the deepest 12 km of the atmosphere of Venus are so hot and dense that the atmosphere behaves like a supercritical fluid. The Soviet VeGa-2 probe descended through the atmosphere in 1985 and obtained the only reliable temperature profile for the deep Venusian atmosphere thus far. In this temperature profile, the atmosphere appears to be highly unstable at altitudes below 7 km, contrary to expectations. We argue that the VeGa-2 temperature profile could be explained by a change in the atmospheric gas composition, and thus molecular mass, with depth. We propose that the deep atmosphere consists of a non-homogeneous layer in which the abundance of N2--the second most abundant constituent of the Venusian atmosphere after CO2--gradually decreases to near-zero at the surface. It is difficult to explain a decline in N2 towards the surface with known nitrogen sources and sinks for Venus. Instead we suggest, partly based on experiments on supercritical fluids, that density-driven separation of N2 from CO2 can occur under the high pressures of Venus's deep atmosphere, possibly by molecular diffusion, or by natural density-driven convection. If so, the amount of nitrogen in the atmosphere of Venus is 15% lower than commonly assumed. We suggest that similar density-driven separation could occur in other massive planetary atmospheres.

  16. Diffuse vacuum arc with cerium oxide hot cathode

    Science.gov (United States)

    Amirov, R. Kh; Vorona, N. A.; Gavrikov, A. V.; Liziakin, G. D.; Polistchook, V. P.; Samoylov, I. S.; Smirnov, V. P.; Usmanov, R. A.; Yartsev, I. M.; Ivanov, A. S.

    2016-11-01

    Diffuse vacuum arc with hot cathode is one of the perspective plasma sources for the development of spent nuclear fuel plasma reprocessing technology. Experimental data is known for such type of discharges on metal cathodes. In this work discharge with cerium dioxide hot cathode was studied. Cerium dioxide properties are similar to uranium dioxide. Its feature as dielectric is that it becomes conductive in oxygen-free atmosphere. Vacuum arc was studied at following parameters: cathode temperatures were between 2.0 and 2.2 kK, discharge currents was between 30 and 65 A and voltages was in range from 15 to 25 V. Power flows from plasma to cathode were estimated in achieved regimes. Analysis of generated plasma component composition was made by radiation spectrum diagnostics. These results were compared with calculations of equilibrium gaseous phase above solid sample of cerium dioxide in close to experimental conditions. Cerium dioxide vacuum evaporation rate and evaporation rate in arc were measured.

  17. Atmospheric Research 2014 Technical Highlights

    Science.gov (United States)

    Platnick, Steven

    2015-01-01

    Atmospheric research in the Earth Sciences Division (610) consists of research and technology development programs dedicated to advancing knowledge and understanding of the atmosphere and its interaction with the climate of Earth. The Division's goals are to improve understanding of the dynamics and physical properties of precipitation, clouds, and aerosols; atmospheric chemistry, including the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and radiative properties of Earth's atmosphere and the influence of solar variability on the Earth's climate. Major research activities are carried out in the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office. The overall scope of the research covers an end-to-end process, starting with the identification of scientific problems, leading to observation requirements for remote-sensing platforms, technology and retrieval algorithm development; followed by flight projects and satellite missions; and eventually, resulting in data processing, analyses of measurements, and dissemination from flight projects and missions. Instrument scientists conceive, design, develop, and implement ultraviolet, infrared, optical, radar, laser, and lidar technology to remotely sense the atmosphere. Members of the various Laboratories conduct field measurements for satellite sensor calibration and data validation, and carry out numerous modeling activities. These modeling activities include climate model simulations, modeling the chemistry and transport of trace species on regional-to-global scales, cloud resolving models, and developing the next-generation Earth system models. Satellite missions, field campaigns, peer-reviewed publications, and successful proposals are essential at every stage of the research process to meeting our goals and maintaining leadership of the

  18. Sound, infrasound, and sonic boom absorption by atmospheric clouds.

    Science.gov (United States)

    Baudoin, Michaël; Coulouvrat, François; Thomas, Jean-Louis

    2011-09-01

    This study quantifies the influence of atmospheric clouds on propagation of sound and infrasound, based on an existing model [Gubaidulin and Nigmatulin, Int. J. Multiphase Flow 26, 207-228 (2000)]. Clouds are considered as a dilute and polydisperse suspension of liquid water droplets within a mixture of dry air and water vapor, both considered as perfect gases. The model is limited to low and medium altitude clouds, with a small ice content. Four physical mechanisms are taken into account: viscoinertial effects, heat transfer, water phase changes (evaporation and condensation), and vapor diffusion. Physical properties of atmospheric clouds (altitude, thickness, water content and droplet size distribution) are collected, along with values of the thermodynamical coefficients. Different types of clouds have been selected. Quantitative evaluation shows that, for low audible and infrasound frequencies, absorption within clouds is several orders of magnitude larger than classical absorption. The importance of phase changes and vapor diffusion is outlined. Finally, numerical simulations for nonlinear propagation of sonic booms indicate that, for thick clouds, attenuation can lead to a very large decay of the boom at the ground level. © 2011 Acoustical Society of America

  19. Accounting for diffusion in agent based models of reaction-diffusion systems with application to cytoskeletal diffusion.

    Directory of Open Access Journals (Sweden)

    Mohammad Azimi

    Full Text Available Diffusion plays a key role in many biochemical reaction systems seen in nature. Scenarios where diffusion behavior is critical can be seen in the cell and subcellular compartments where molecular crowding limits the interaction between particles. We investigate the application of a computational method for modeling the diffusion of molecules and macromolecules in three-dimensional solutions using agent based modeling. This method allows for realistic modeling of a system of particles with different properties such as size, diffusion coefficients, and affinity as well as the environment properties such as viscosity and geometry. Simulations using these movement probabilities yield behavior that mimics natural diffusion. Using this modeling framework, we simulate the effects of molecular crowding on effective diffusion and have validated the results of our model using Langevin dynamics simulations and note that they are in good agreement with previous experimental data. Furthermore, we investigate an extension of this framework where single discrete cells can contain multiple particles of varying size in an effort to highlight errors that can arise from discretization that lead to the unnatural behavior of particles undergoing diffusion. Subsequently, we explore various algorithms that differ in how they handle the movement of multiple particles per cell and suggest an algorithm that properly accommodates multiple particles of various sizes per cell that can replicate the natural behavior of these particles diffusing. Finally, we use the present modeling framework to investigate the effect of structural geometry on the directionality of diffusion in the cell cytoskeleton with the observation that parallel orientation in the structural geometry of actin filaments of filopodia and the branched structure of lamellipodia can give directionality to diffusion at the filopodia-lamellipodia interface.

  20. Effects of different diffuser types on the diffusivity in reverberation chambers

    DEFF Research Database (Denmark)

    Nolan, Melanie; Vercammen, Martijn; Jeong, Cheol-Ho

    2015-01-01

    field diffusivity is characterized based on the equivalent sound absorption area of a highly sound absorptive sample and the diffuse field factor, which is the ratio of the measured spatial standard variation of the reverberation time to the theoretical spatial standard variation under diffuse field...

  1. Organic chemistry in the atmosphere. [laboratory modeling of Titan atmosphere

    Science.gov (United States)

    Sagan, C.

    1974-01-01

    The existence of an at least moderately complex organic chemistry on Titan is stipulated based on clear evidence of methane, and at least presumptive evidence of hydrogen in its atmosphere. The ratio of methane to hydrogen is the highest of any atmosphere in the solar system. Irradiation of hydrogen/methane mixtures produces aromatic and aliphatic hydrocarbons. A very reasonable hypothesis assumes that the red cloud cover of Titan is made of organic chemicals. Two-carbon hydrocarbons experimentally produced from irradiated mixtures of methane, ammonia, water, and hydrogen bear out the possible organic chemistry of the Titanian environment.

  2. Work on Planetary Atmospheres and Planetary Atmosphere Probes

    Science.gov (United States)

    Lester, Peter

    1999-01-01

    A summary final report of work accomplished is presented. Work was performed in the following areas: (1) Galileo Probe science analysis, (2) Galileo probe Atmosphere Structure Instrument, (3) Mars Pathfinder Atmosphere Structure/Meteorology instrument, (4) Mars Pathfinder data analysis, (5) Science Definition for future Mars missions, (6) Viking Lander data analysis, (7) winds in Mars atmosphere Venus atmospheric dynamics, (8) Pioneer Venus Probe data analysis, (9) Pioneer Venus anomaly analysis, (10) Discovery Venus Probe Titan probe instrument design, and (11) laboratory studies of Titan probe impact phenomena. The work has resulted in more than 10 articles published in archive journals, 2 encyclopedia articles, and many working papers. This final report is organized around the four planets on which there was activity, Jupiter, Mars, Venus, and Titan, with a closing section on Miscellaneous Activities. A major objective was to complete the fabrication, test, and evaluation of the atmosphere structure experiment on the Galileo probe, and to receive, analyze and interpret data received from the spacecraft. The instrument was launched on April 14, 1989. Calibration data were taken for all experiment sensors. The data were analyzed, fitted with algorithms, and summarized in a calibration report for use in analyzing and interpreting data returned from Jupiter's atmosphere. The sensors included were the primary science pressure, temperature and acceleration sensors, and the supporting engineering temperature sensors. Computer programs were written to decode the Experiment Data Record and convert the digital numbers to physical quantities, i.e., temperatures, pressures, and accelerations. The project office agreed to obtain telemetry of checkout data from the probe. Work to extend programs written for use on the Pioneer Venus project included: (1) massive heat shield ablation leading to important mass loss during entry; and (2) rapid planet rotation, which introduced

  3. Atmospheric Chemistry Over Southern Africa

    Science.gov (United States)

    Gatebe, Charles K.; Levy, Robert C.; Thompson, Anne M.

    2011-01-01

    During the southern African dry season, regional haze from mixed industrial pollution, biomass burning aerosol and gases from domestic and grassland fires, and biogenic sources from plants and soils is worsened by a semi-permanent atmosphere gyre over the subcontinent. These factors were a driver of several major international field campaigns in the 1990s and early 2000s, and attracted many scientists to the region. Some researchers were interested in understanding fundamental processes governing chemistry of the atmosphere and interaction with climate change. Others found favorable conditions for evaluating satellite-derived measurements of atmospheric properties and a changing land surface. With that background in mind a workshop on atmospheric chemistry was held in South Africa. Sponsored by the International Commission for Atmospheric Chemistry and Global Pollution (ICACGP; http://www.icacgp.org/), the workshop received generous support from the South African power utility, Eskom, and the Climatology Research Group of the University of the Witwatersrand, Johannesburg, South Africa. The purpose of the workshop was to review some earlier findings as well as more recent findings on southern African climate vulnerability, chemical changes due to urbanization, land-use modification, and how these factors interact. Originally proposed by John Burrows, president of ICACGP, the workshop was the first ICACGP regional workshop to study the interaction of air pollution with global chemical and climate change. Organized locally by the University of the Witwatersrand, the workshop attracted more than 60 delegates from South Africa, Mozambique, Botswana, Zimbabwe, France, Germany, Canada, and the United States. More than 30 presentations were given, exploring both retrospective and prospective aspects of the science. In several talks, attention was focused on southern African chemistry, atmospheric pollution monitoring, and climate processes as they were studied in the field

  4. PASCAL - Planetary Atmospheres Spectral Catalog

    Science.gov (United States)

    Rothman, Laurence; Gordon, Iouli

    2010-05-01

    Spectroscopic observation of planetary atmospheres, stellar atmospheres, comets, and the interstellar medium is the most powerful tool for extracting detailed information concerning the properties of these objects. The HITRAN molecular spectroscopic database1 has traditionally served researchers involved with terrestrial atmospheric problems, such as remote-sensing of constituents in the atmosphere, pollution monitoring at the surface, identification of sources seen through the atmosphere, and numerous environmental issues. A new thrust of the HITRAN program is to extend this longstanding database to have capabilities for studying the above-mentioned planetary and astronomical systems. The new extension is called PASCAL (Planetary Atmospheres Spectral Catalog). The methodology and structure are basically identical to the construction of the HITRAN and HITEMP databases. We will acquire and assemble spectroscopic parameters for gases and spectral bands of molecules that are germane to the studies of planetary atmospheres. These parameters include the types of data that have already been considered for transmission and radiance algorithms, such as line position, intensity, broadening coefficients, lower-state energies, and temperature dependence values. Additional parameters beyond what is currently considered for the terrestrial atmosphere will be archived. Examples are collision-broadened halfwidths due to various foreign partners, collision-induced absorption, and temperature dependence factors. New molecules (and their isotopic variants), not currently included in the HITRAN database, will be incorporated. That includes hydrocarbons found on Titan but not archived in HITRAN (such as C3H4, C4H2, C3H8). Other examples include sulfur-bearing molecules such as SO and CS. A further consideration will be spectral bands that arise as opportunities to study exosolar planets. The task involves acquiring the best high-resolution data, both experimental and theoretical

  5. Discretization methods for extremely anisotropic diffusion

    NARCIS (Netherlands)

    B. van Es (Bram); B. Koren (Barry); H.J. de Blank

    2013-01-01

    textabstractIn fusion plasmas there is extreme anisotropy due to the high temperature and large magnetic field strength. This causes diffusive processes, heat diffusion and energy/momentum loss due to viscous friction, to effectively be aligned with the magnetic field lines. This alignment leads

  6. Diffusion and scattering in multifractal clouds

    Energy Technology Data Exchange (ETDEWEB)

    Lovejoy, S. [McGill Univ., Montreal, Quebec (Canada); Schertzer, D. [Universite Pierre et Marie Curie, Paris (France); Waston, B. [St. Lawrence Univ., Canton, NY (United States)] [and others

    1996-04-01

    This paper describes investigations of radiative properties of multifractal clouds using two different approaches. In the first, diffusion is considered by examining the scaling properties of one dimensional random walks on media with multifractal diffusivities. The second approach considers the scattering statistics associated with radiative transport.

  7. Quantifying brain microstructure with diffusion MRI

    DEFF Research Database (Denmark)

    Novikov, Dmitry S.; Jespersen, Sune N.; Kiselev, Valerij G.

    2016-01-01

    We review, systematize and discuss models of diffusion in neuronal tissue, by putting them into an overarching physical context of coarse-graining over an increasing diffusion length scale. From this perspective, we view research on quantifying brain microstructure as occurring along the three ma...

  8. Simultaneous measurements of thermal conductivity and diffusivity ...

    Indian Academy of Sciences (India)

    Abstract. Measurements of thermal conductivity and thermal diffusivity of twin pellets of Se80Te20–xInx. (x = 2, 4, 6 and 10) glasses, prepared under a load of 5 tons were carried out at room temperature using transient plane source (TPS) technique. The measured values of both thermal conductivity and diffusivity were used ...

  9. Acetylene diffusion in Na-Y zeolite

    Indian Academy of Sciences (India)

    Study of diffusivity of acetylene adsorbed in Na-Y zeolite by quasi-elastic neutron scattering (QENS) measurements at temperatures of 300, 325 and 350 K is reported. A model in which the acetylene molecules undergo random-walk diffusion characterized by a Gaussian distribution of jump lengths inside zeolite cages ...

  10. Diffusion Does Not Equal Instructional Change.

    Science.gov (United States)

    Myers, Charles

    1979-01-01

    Examines eight reasons diffusion efforts fail to produce instructional change. Recommends a model for change which focuses on teachers, the instructional program, and the school system and uses a team of an internal change agent, external change agent, and a consultant or diffuser. (CK)

  11. Integrated Temperature Sensors based on Heat Diffusion

    NARCIS (Netherlands)

    Van Vroonhoven, C.P.L.

    2015-01-01

    This thesis describes the theory, design and implementation of a new class of integrated temperature sensors, based on heat diffusion. In such sensors, temperature is sensed by measuring the time it takes for heat to diffuse through silicon. An on-chip thermal delay can be determined by geometry and

  12. Si diffusion in GaAs

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Theoretical studies are carried out to ascertain the dominant mechanism of Si diffusion in GaAs. Lattice dynamical model calculations have shown that the most probable diffusion mechanism is through a single vacancy even though several experiments cannot fix the mechanism as substitutional, substitutional–.

  13. Multicomponent diffusivities from the free volume theory

    NARCIS (Netherlands)

    Wesselingh, J.A; Bollen, A.M

    In this paper the free volume theory of diffusion is extended to multicomponent mixtures. The free volume is taken to be accessible for any component according to its surface. fraction. The resulting equations predict multicomponent (Maxwell-Stefan) diffusivities in simple liquid mixtures from pure

  14. Finite-difference schemes for anisotropic diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Es, Bram van, E-mail: es@cwi.nl [Centrum Wiskunde and Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands)

    2014-09-01

    In fusion plasmas diffusion tensors are extremely anisotropic due to the high temperature and large magnetic field strength. This causes diffusion, heat conduction, and viscous momentum loss, to effectively be aligned with the magnetic field lines. This alignment leads to different values for the respective diffusive coefficients in the magnetic field direction and in the perpendicular direction, to the extent that heat diffusion coefficients can be up to 10{sup 12} times larger in the parallel direction than in the perpendicular direction. This anisotropy puts stringent requirements on the numerical methods used to approximate the MHD-equations since any misalignment of the grid may cause the perpendicular diffusion to be polluted by the numerical error in approximating the parallel diffusion. Currently the common approach is to apply magnetic field-aligned coordinates, an approach that automatically takes care of the directionality of the diffusive coefficients. This approach runs into problems at x-points and at points where there is magnetic re-connection, since this causes local non-alignment. It is therefore useful to consider numerical schemes that are tolerant to the misalignment of the grid with the magnetic field lines, both to improve existing methods and to help open the possibility of applying regular non-aligned grids. To investigate this, in this paper several discretization schemes are developed and applied to the anisotropic heat diffusion equation on a non-aligned grid.

  15. Self-diffusion in remodeling and growth

    KAUST Repository

    Epstein, Marcelo

    2011-07-16

    Self-diffusion, or the flux of mass of a single species within itself, is viewed as an independent phenomenon amenable to treatment by the introduction of an auxiliary field of diffusion velocities. The theory is shown to be heuristically derivable as a limiting case of that of an ordinary binary mixture. © 2011 Springer Basel AG.

  16. Generalized multibaker maps exhibiting transient diffusion

    CERN Document Server

    Kaufmann, Z

    1998-01-01

    Generalized multibaker maps are introduced to study properties of deterministic diffusion. Emphasis is put on transient diffusion modeling systems which are spatially extended only in certain directions and escape of particles is allowed in other ones. Effects of nonlinearity are investigated by varying a control parameter.

  17. [Study of multicomponent diffusion and transport phenomena

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The major activities in this period are the percolation threshold in electronic conduction in [beta]-alumina type solid electrolytes, mixed alkali effects in ion conducting binary glasses, chemical diffusion problems, semiconductors, and relaxation process in diffusion. The last one constitutes the recent progress.

  18. Atmosphere in a Test Tube

    Science.gov (United States)

    Claudi, R.; Pace, E.; Ciaravella, A.; Micela, G.; Piccioni, G.; Billi, D.; Cestelli Guidi, M.; Coccola, L.; Erculiani, M. S.; Fedel, M.; Galletta, G.; Giro, E.; La Rocca, N.; Morosinotto, T.; Poletto, L.; Schierano, D.; Stefani, S.

    The ancestor philosophers' dream of thousand of new world is finally realised: more than 1800 extrasolar planets have been discovered in the neighborhood of our Sun. Most of them are very different from those we used to know in our Solar System. Others orbit the Habitable Zone (HZ) of their parent stars. Space missions, as JWST and the very recently proposed ARIEL, or ground based instruments, like SPHERE@VLT, GPI@GEMINI and EPICS@ELT, have been proposed and built to measure the atmospheric transmission, reflection and emission spectra over a wide wavelength range of these new worlds. In order to interpret the spectra coming out by this new instrumentation, it is important to know in detail the optical characteristics of gases in the typical physical conditions of the planetary atmospheres and how those characteristics could be affected by radiation driven photochemical and bio-chemical reaction. Insights in this direction can be achieved from laboratory studies of simulated planetary atmosphere of different pressure and temperature conditions under the effects of radiation sources, used as proxies of different bands of the stellar emission. ''Atmosphere in a Test Tube'' is a collaboration among several Italian astronomical, biological and engineering institutes in order to share their experiencece in performing laboratory experiments on several items concerning extrasolar planet atmospheres.

  19. A theory of atmospheric oxygen.

    Science.gov (United States)

    Laakso, T A; Schrag, D P

    2017-05-01

    Geological records of atmospheric oxygen suggest that pO 2 was less than 0.001% of present atmospheric levels (PAL) during the Archean, increasing abruptly to a Proterozoic value between 0.1% and 10% PAL, and rising quickly to modern levels in the Phanerozoic. Using a simple model of the biogeochemical cycles of carbon, oxygen, sulfur, hydrogen, iron, and phosphorous, we demonstrate that there are three stable states for atmospheric oxygen, roughly corresponding to levels observed in the geological record. These stable states arise from a series of specific positive and negative feedbacks, requiring a large geochemical perturbation to the redox state to transition from one to another. In particular, we show that a very low oxygen level in the Archean (i.e., 10 -7 PAL) is consistent with the presence of oxygenic photosynthesis and a robust organic carbon cycle. We show that the Snowball Earth glaciations, which immediately precede both transitions, provide an appropriate transient increase in atmospheric oxygen to drive the atmosphere either from its Archean state to its Proterozoic state, or from its Proterozoic state to its Phanerozoic state. This hypothesis provides a mechanistic explanation for the apparent synchronicity of the Proterozoic Snowball Earth events with both the Great Oxidation Event, and the Neoproterozoic oxidation. © 2017 John Wiley & Sons Ltd.

  20. Atmospheric chemistry over southern Africa

    Science.gov (United States)

    Gatebe, Charles K.; Levy, Robert C.; Thompson, Anne M.

    2012-03-01

    Changing Chemistry in a Changing Climate: Human and Natural Impacts Over Southern Africa (C4-SAR); Midrand, South Africa, 31 May to 3 June 2011 During the southern African dry season, regional haze from mixed industrial pollution, biomass burning aerosol and gases from domestic and grassland fires, and biogenic sources from plants and soils is worsened by a semipermanent atmospheric gyre over the subcontinent. These factors were a driver of several major international field campaigns in the 1990s and early 2000s and attracted many scientists to the region. Some researchers were interested in understanding fundamental processes governing chemistry of the atmosphere and interaction with climate change. Others found favorable conditions for evaluating satellite- derived measurements of atmospheric properties and a changing land surface. With that background in mind a workshop on atmospheric chemistry was held in South Africa. Sponsored by the International Commission on Atmospheric Chemistry and Global Pollution (ICACGP; http://www.icacgp.org/), the workshop received generous support from Eskom, the South African power utility; and the Climatology Research Group of the University of the Witwatersrand, Johannesburg, South Africa.

  1. Infrared Measurements of Atmospheric Constituents

    Science.gov (United States)

    Murcray, Frank J.

    1998-01-01

    This research program studies atmospheric trace gas concentrations and altitude distributions, particularly for those gases that are important in stratospheric chemistry and radiative balance. Measurements are made with infrared remote sensing instruments, either ground based or balloon-borne. Most of the ground based instruments are part of the Network for Detection of Stratospheric Change (NDSC), including a very high spectral resolution solar absorption spectrometer at Mauna Loa Observatory and similar system at McMurdo Station, Antarctica (operated in collaboration with the New Zealand NIWA). Additionally, we are deriving stratospheric constituent data from the spectra obtained at the DOE Atmospheric Radiation Measurements (ARM) program's site in north-central Oklahoma. We have an atmospheric emission spectrometer system at the South Pole (with additional support from NSF), and an identical NSF support instrument at Eureka, NWT, Canada. Our balloon-borne instruments include a very high resolution solar absorption spectrometer system, a smaller, slightly lower resolution solar spectrometer system, a high resolution atmospheric emission spectrometer, and several medium resolution emission spectrometers (CAESRs) that are usually flown piggyback. During the past year, we participated in the MANTRA balloon flight from Saskatoon, Saskatchewan, with the high resolution solar spectrometer system. Several of our instruments were extensively compared to (UARS) Upper Atmosphere Research Satellite observations, and so provide a data set with known connections to UARS. In the longer term, the data can be used to relate UARS data to (EOS) Earth Observing System and (ADEOS) Advanced Airborne Earth Observing System.

  2. Atmospheric corrosion of mild steel

    Directory of Open Access Journals (Sweden)

    Morcillo, M.

    2011-10-01

    Full Text Available The atmospheric corrosion of mild steel is an extensive topic that has been studied by many authors in different regions throughout the world. This compilation paper incorporates relevant publications on the subject, in particular about the nature of atmospheric corrosion products, mechanisms of atmospheric corrosion and kinetics of the atmospheric corrosion process, paying special attention to two matters upon which relatively less information has been published: a the morphology of steel corrosion products and corrosion product layers; and b long-term atmospheric corrosion ( > 10 years.

    La corrosión atmosférica del acero suave es un tema de gran amplitud que ha sido tratado por muchos autores en numerosas regiones del mundo. Este artículo de compilación incorpora publicaciones relevantes sobre esta temática, en particular sobre la naturaleza de los productos de corrosión atmosférica, mecanismos y cinética de los procesos de corrosión atmosférica, prestando una atención especial a dos aspectos sobre los que la información publicada ha sido menos abundante: a morfología de los productos de corrosión del acero y capas de productos de corrosión, y b corrosión atmosférica a larga duración (> 10 años.

  3. Temporal correlation measurements of pulsed dual CO2 lidar returns. [for atmospheric pollution detection

    Science.gov (United States)

    Menyuk, N.; Killinger, D. K.

    1981-01-01

    A pulsed dual-laser direct-detection differential-absorption lidar DIAL system, operating near 10.6 microns, is used to measure the temporal correlation and statistical properties of backscattered returns from specular and diffuse topographic targets. Results show that atmospheric-turbulence fluctuations can effectively be frozen for pulse separation times on the order of 1-3 msec or less. The diffuse target returns, however, yielded a much lower correlation than that obtained with the specular targets; this being due to uncorrelated system noise effects and different statistics for the two types of target returns.

  4. Atmospheric CO2 capture by algae: Negative carbon dioxide emission path.

    Science.gov (United States)

    Moreira, Diana; Pires, José C M

    2016-09-01

    Carbon dioxide is one of the most important greenhouse gas, which concentration increase in the atmosphere is associated to climate change and global warming. Besides CO2 capture in large emission point sources, the capture of this pollutant from atmosphere may be required due to significant contribution of diffuse sources. The technologies that remove CO2 from atmosphere (creating a negative balance of CO2) are called negative emission technologies. Bioenergy with Carbon Capture and Storage may play an important role for CO2 mitigation. It represents the combination of bioenergy production and carbon capture and storage, keeping carbon dioxide in geological reservoirs. Algae have a high potential as the source of biomass, as they present high photosynthetic efficiencies and high biomass yields. Their biomass has a wide range of applications, which can improve the economic viability of the process. Thus, this paper aims to assess the atmospheric CO2 capture by algal cultures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Tracer diffusion of 60Co into SUS-304

    Science.gov (United States)

    Hoshi, Michio; Tachikawa, Enzo; Sagawa, Chiaki; Yonezawa, Chushiro; Goto, Satoshi

    1984-04-01

    A piece of stainless steel 304 was thermal annealed either in a 60Co solution at 280°C, or in a He atmosphere at 300 or 600°C after being smeared with a 60Co solution. The depth profile of 60Co in SUS was determined with these samples, together with those sampled from the water cleaning system in the Japan Power Demonstration Reactor and those exposed to a high-temperature water ( ~ 280°C) circulating OWL-loop installed in the Japan Material Testing Reactor, in order to determine the apparent values of the volume and grain boundary diffusion constants. The results have been compared with those of the previous measurements on Ni, Cr, and Fe above 500°C. A consistency has been noticed between both results at 600°C, while the present values at 280 and 300°C are much larger than those expected from the extrapolation of the previous measurements. Although this inconsistency is ascribed to the contribution of the dislocation pipe diffusion at such a low temperature, an attempt has been made to apply the present values to estimate how deep 60Co would penetrate SUS—one of the main constructing materials of the primary cooling system—in the life time of a power reactor.

  6. Global Banning of a Diffused Controversial Practice

    DEFF Research Database (Denmark)

    Gurses, Kerem; Giones, Ferran; Mehta, Kandarpkumar

    2017-01-01

    We study the deinstitutionalization of a controversial practice that had previously reached a level of international diffusion. We draw on international diffusion and deinstitutionalization theory to study the emergence and diffusion of the third-party ownership practice in the soccer industry. We...... use an inductive case study combining archival and interview data to study the determinants of the international diffusion of a controversial practice at a global scale, the contestation, and finally the deinstitutionalization process that resulted from the ban of the practice. We find...... that the opacity of the practice can be a diffusion driver, locally and at the international level, nevertheless the opacity also may lead to different meaning creation attempts and potential discursive battles between actors, and eventually to deinstitutionalization of the practice. This article advances our...

  7. Preliminary report on the diffusion of solids

    Science.gov (United States)

    Van Orstrand, C. E.; Dewey, F.P.

    1916-01-01

    Although 19 years has elapsed since Roberts-Austen published his classical paper on the diffusion of solid metals, no attempt seems to have been made to verify his important results and conclusions or to extend the investigations to minerals and to the great number of solids in which diffusion may be expected to occur. Progress has been made by means of chemical and electrical methods in the detection of diffusion in a number of metals in the solid state, some progress has been made in explaining the phenomena of diffusion on the basis of osmotic pressure and the kinetic theory, and recent measurements of the vapor pressures of solids have contributed indirectly to the progress of the science, but investigators have not undertaken the difficult and essential task of making definitive determinations of the coefficients of diffusivity at various pressures and temperatures.

  8. Diffuse bile duct tumors: guidelines for management.

    Science.gov (United States)

    Saunders, K; Longmire, W; Tompkins, R; Chavez, M; Cates, J; Roslyn, J

    1991-12-01

    The majority of patients with bile duct cancer have small focal adenocarcinomas localized to the upper, middle, or lower third of the bile duct. In contrast, a small subgroup of patients have been identified with bile duct tumors that are diffuse, involving multiple segments of the extrahepatic biliary tract. Among 186 patients with documented bile duct cancer treated at the UCLA Medical Center between 1954 and 1988, 13 patients (7%) had diffuse lesions. Patients with diffuse tumors had markedly poorer survival rates than did those with focal lesions. As diffuse tumors are not amenable to resection, surgical management consists primarily of establishing suitable biliary drainage. All patients with bile duct cancer should undergo careful intraoperative evaluation to exclude a diffuse lesion before tumor resection.

  9. Fast diffusion of water nanodroplets on graphene

    CERN Document Server

    Ma, Ming; Michaelides, Angelos; Aeppli, Gabriel

    2016-01-01

    Diffusion across surfaces generally involves motion on a vibrating but otherwise stationary substrate. Here, using molecular dynamics, we show that a layered material such as graphene opens up a new mechanism for surface diffusion whereby adsorbates are carried by propagating ripples via a motion similar to surfing. For water nanodroplets, we demonstrate that the mechanism leads to exceedingly fast diffusion that is 2-3 orders of magnitude faster than the self-diffusion of water molecules in liquid water. We also reveal the underlying principles that regulate this new mechanism for diffusion and show how it also applies to adsorbates other than water, thus opening up the prospect of achieving fast and controllable motion of adsorbates across material surfaces more generally.

  10. Principles and limitations of NMR diffusion measurements

    Directory of Open Access Journals (Sweden)

    Hrabe Jan

    2007-01-01

    Full Text Available Diffusion spectroscopy, imaging and particularly diffusion tensor imaging have become popular thanks to their numerous clinical and research applications which span from brain stroke evaluation to fiber tracking. With a few exceptions, these methods are rooted in the classic Stejskal-Tanner formula for the diffusion-attenuated signal, usually obtained by solving the Bloch-Torrey partial differential equations. Here we derive the Stejskal-Tanner formula in the simplest possible manner, avoiding integrals and differential equations. This approach makes it easy to understand the origin of the diffusion signal attenuation, the effects of various diffusion sequence parameters, and also the numerous important pitfalls, which are discussed in the last section.

  11. Effectiveness of polycrystalline silicon diffusion sources

    Science.gov (United States)

    Josquin, W. J. M. J.; Boudewijn, P. R.; Tamminga, Y.

    1983-11-01

    Boron and arsenic concentration profiles, diffused from polycrystalline silicon (polysilicon) into the underlying-single crystalline silicon (mono) substrate, were analyzed by Rutherford backscattering spectrometry and secondary ion mass spectrometry for various levels of oxygen concentration at the poly/mono interface. In contrast with previous reports it was found that chemically grown interfacial oxide layers of about 1.4-nm thickness provide more effective diffusion sources than oxygen-free interfaces. This surprising phenomenon is caused by the strong correlation between the crystalline structure of the polysilicon layer and the diffusion rates of dopant species in that layer. It is shown that the small amount of oxide at the poly/mono interface prevents the epitaxial realignment of the polysilicon, thereby maintaining high diffusion rates in the polysilicon, without offering a significant barrier to the diffusion of boron and arsenic across the interface.

  12. Titania and silica powders produced in a counterflow diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    Rulison, A.J.; Miquel, P.F.; Katz, J.L. [Department of Chemical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    1996-12-01

    Earlier publications describe the counterflow diffusion flame burner and its unique capability to produce oxide particles having certain structures, such as spheres of one material coated with another, spheres of one composition with attached bulbs of another composition, and uniform multicomponent mixtures. Here we describe the production and properties of bulk quantities of powders produced using this burner. Measurements were made of specific surface area and, for titania, of phase composition. It was found that the controls over powder characteristics used in other forms of flame-synthesis are equally effective in the counterflow diffusion flame burner. We found that the specific surface area of both silica and titania powders decrease with increasing precursor concentrations. Transmission electron microscopy analysis of the titania powders indicates that the mean size of the particles that comprise these powders increases with increasing concentration. These trends are consistent with the collision-coalescence theory of particle growth. In addition, the crystalline phase of titania can be controlled by selecting the appropriate feed stream. For example, over the ranges TiCl{sub 4} precursor concentrations tested, feeding it only into the {ital oxidizer} stream yields mainly {ital anatase} TiO{sub 2} powders, while feeding only into the {ital fuel} stream yields mainly {ital rutile} TiO{sub 2} powders. These trends can be explained by the known atmosphere-dependent anatase-rutile transformation. The present data demonstrate that, in addition to its unique capability to produce certain particle shapes and morphologies, the counterflow diffusion flame burner can be manipulated to produce either of the major commercial titania phases, and also silica, with a wide range of specific surface areas. {copyright} {ital 1996 Materials Research Society.}

  13. Validation of parachlorobenzotrifluoride, benzotrifluoride, and monochlorotoluene on diffusive samplers.

    Science.gov (United States)

    Yost, C; Harper, M

    2000-01-01

    Three solvents (OXSOL 10, monochlorotoluene or mixed isomers of 1- chloro-2-methyl benzene and 1-chloro-4-methyl benzene; OXSOL 100, parachlorobenzotrifluoride or 1-chloro-4-(trifluoromethyl) benzene; and OXSOL 2000, benzotrifluoride or trifluoromethyl benzene) produced by Occidental Chemical Corporation (Niagara Falls, NY) were considered as candidates for SKC, Inc.'s on-going diffusive sampler validation program. The 575-series diffusive sampler contains coconut-shell charcoal (575-001) or Anasorb 747 (575-002). Both samplers were used in this study. Desorption efficiency was tested at loadings equivalent to eight-hour time-weighted average (TWA) exposures to 0.01-2 times the Occidental Chemical Corporation in-house limit values (respectively: 50 ppm, 25 ppm, and 100 ppm,. All results met the National Institute for Occupational Safety and Health (NIOSH) criteria of > 75 percent, and, except for the lower loadings of parachlorobenzotrifluoride, the results were in the range of 90-110 percent. The calculated uptake rates were verified for different periods of exposure, up to eight hours, and found to be within 5 percent of the calculated for all three compounds on both samplers. A detailed comparison of the results from different time periods indicated no significant reverse diffusion effects for any combination of sampler and analyte. Samplers exposed to standard atmospheres of each compound were stored for three weeks at ambient temperatures and reanalyzed with results between 94 and 107 percent of expected. Based on full validation of samplers for the lower homologue (benzene), the bi-level theory of sample validation as endorsed by international validation protocols establishes this as a complete validation of the featured samplers for sampling vapors of these chemicals in air.

  14. Forecasting Plant Productivity and Health Using Diffuse-to-Global Irradiance Ratios Extracted from the OMI Aerosol Product

    Science.gov (United States)

    Knowlton, Kelly; Andrews, Jane C.; Ryan, Robert E.

    2007-01-01

    Atmospheric aerosols are a major contributor to diffuse irradiance. This Candidate Solution suggests using the OMI (Ozone Monitoring Instrument) aerosol product as input into a radiative transfer model, which would calculate the ratio of diffuse to global irradiance at the Earth s surface. This ratio can significantly influence the rate of photosynthesis in plants; increasing the ratio of diffuse to global irradiance can accelerate photosynthesis, resulting in greater plant productivity. Accurate values of this ratio could be useful in predicting crop productivity, thereby improving forecasts of regional food resources. However, disagreements exist between diffuse-to-global irradiance values measured by different satellites and ground sensors. OMI, with its unique combination of spectral bands, high resolution, and daily global coverage, may be able to provide more accurate aerosol measurements than other comparable sensors.

  15. Ultrafast palladium diffusion in germanium

    KAUST Repository

    Tahini, Hassan Ali

    2015-01-01

    The slow transport of dopants through crystal lattices has hindered the development of novel devices. Typically atoms are contained within deep potential energy wells which necessitates multiple attempts to hop between minimum energy positions. This is because the bonds that constrain atoms are strongest at the minimum positions. As they hop between sites the bonds must be broken, only to re-form as the atoms slide into adjacent minima. Here we demonstrate that the Pd atoms introduced into the Ge lattice behave differently. They retain bonds as the atoms shift across so that at the energy maximum between sites Pd still exhibits strong bonding characteristics. This reduces the energy maximum to almost nothing (a migration energy of only 0.03 eV) and means that the transport of Pd through the Ge lattice is ultrafast. We scrutinize the bonding characteristics at the atomic level using quantum mechanical simulation tools and demonstrate why Pd behaves so differently to other metals we investigated (i.e. Li, Cu, Ag, Pt and Au). Consequently, this fundamental understanding can be extended to systems where extremely rapid diffusion is desired, such as radiation sensors, batteries and solid oxide fuel cells.

  16. Tactile perception of thermal diffusivity.

    Science.gov (United States)

    Tiest, Wouter M Bergmann; Kappers, Astrid M L

    2009-04-01

    The thermal diffusivity of an object is a parameter that controls the rate at which heat is extracted from the hand when it touches that object. It is an important feature for distinguishing materials by means of touch. In order to quantitatively describe the ability of human observers to discriminate between materials on the basis of heat extraction rate, we conducted an experiment in which this heat extraction was performed in a controlled way. In different conditions, subjects were repeatedly asked to select from two stimuli the one that cooled faster. The discrimination threshold was around 43% of the extraction rate. A rate that was twice as slow also yielded twice the absolute threshold. When we halved the temperature difference between the beginning and end of the stimulus, the threshold did not change as much. In separate experiments, we investigated the different cues that were available in the stimulus: initial cooling rate and end temperature. Both cues were used for discrimination, but cooling rate seemed to be the most important.

  17. Lagrangian Modeling of the Atmosphere

    Science.gov (United States)

    Schultz, Colin

    2013-08-01

    Like watching a balloon borne by the breeze, a Lagrangian model tracks a parcel of air as it flows through the atmosphere. Whether running forward or backward in time, Lagrangian models offer a powerful tool for tracking and understanding the fates, or origins, of atmospheric flows. In the AGU monograph Lagrangian Modeling of the Atmosphere, editors John Lin, Dominik Brunner, Christoph Gerbig, Andreas Stohl, Ashok Luhar, and Peter Webley explore the nuances of the modeling technique. In this interview Eos talks to Lin about the growing importance of Lagrangian modeling as the world settles on climate change mitigation strategies, the societal value of operational modeling, and how recent advances are making it possible to run these complex calculations at home.

  18. Terrestrial atmosphere, water and astrobiology

    Directory of Open Access Journals (Sweden)

    Coradini M.

    2010-12-01

    Full Text Available Primitive life, defined as a chemical system capable to transfer its molecular information via self-replication and also capable to evolve, originated about 4 billion years ago from the processing of organic molecules by liquid water. Terrestrial atmosphere played a key role in the process by allowing the permanent presence of liquid water and by participating in the production of carbon-based molecules. Water molecules exhibit specific properties mainly due to a dense network of hydrogen bonds. The carbon-based molecules were either home made in the atmosphere and/or in submarine hydrothermal systems or delivered by meteorites and micrometeorites. The search for possible places beyond the earth where the trilogy atmosphere/water/life could exist is the main objective of astrobiology. Within the Solar System, exploration missions are dedicated to Mars, Europa, Titan and the icy bodies. The discovery of several hundreds of extrasolar planets opens the quest to the whole Milky Way.

  19. Atmospheric radon: origin and transfer

    Energy Technology Data Exchange (ETDEWEB)

    Segovia, N.; Tamez, E.; Pena, P.; Gaso, I. [Instituto Nacional de Investigaciones Nucleares, Mexico City (Mexico); Mireles, F.; Davila, I.; Quirino, L. [Universidad Autonoma de Zacatecas (Mexico). Centro Regional de Estudios Nucleares

    1994-12-31

    Atmospheric indoor and outdoor radon surveys have been performed in several locations of Mexico. In order to estimate the radon transfer from different origins to the atmosphere, soil and ground water, together with the exhalation rate from bare and coated building materials have also been studied. The radon detection was performed with SSNTD, an automatic silicon-based radon monitor and the liquid scintillation technique. The results from several years of monitoring indicate that the atmospheric radon behaviour is different for the countryside as compared with more complex inhabited regions; transfer from soil being inhibited by the specific structures of the cities. The effect of wall coatings reduced from 50% to 90% the radon exhalation from bare building materials. A low radon content was observed in the ground water samples studied. (Author).

  20. Measurement of atmospheric vinyl chloride.

    Science.gov (United States)

    Lande, S S

    1979-02-01

    Methods for atmospheric vinyl chloride measurement have been reviewed. The lowest detection limits and most specific measurement are achieved by scrubbing atmospheric samples with activated charcoal, desorbing the vinyl chloride, and assaying it by gas chromatography (GC). NIOSH currently recommends collecting samples using tubes packed with 150 mg of coconut shell charcoal, desorbing with carbon disulfide, and analyzing by GC equipped with flame-ionization detection (FID); the method is capable of detecting less than 1 ppm vinyl chloride and has an apparent recovery of abo the ppb level with no loss of accuracy or precision. Some field methods, such as infrared analysis and conductivity measurement, are capable of detecting 1 ppm or lower but are subject to interferences by other contaminants; th-y could be useful for evaluating sources of vinyl chloride leaks and for continuous monitoring. Permeation tubes are superior to gravimetric or volumetric methods for generating atmospheres of known vinyl chloride concentration.