Solution of time dependent atmospheric diffusion equation with a proposed diffusion coefficient
International Nuclear Information System (INIS)
Mayhoub, A.B.; Essa, KH.S.M.; Aly, SH.
2004-01-01
One-dimensional model for the dispersion of passive atmospheric contaminant (not included chemical reactions) in the atmospheric boundary layer is considered. On the basis of the gradient transfer theory (K-theory), the time dependent diffusion equation represents the dispersion of the pollutants is solved analytically. The solution depends on diffusion coefficient K', which is expressed in terms of the friction velocity 'u the vertical coordinate -L and the depth of the mixing layer 'h'. The solution is obtained to either the vertical coordinate 'z' is less or greater than the mixing height 'h'. The obtained solution may be applied to study the atmospheric dispersion of pollutants
International Nuclear Information System (INIS)
Mayhoub, A.B.; Etman, S.M.
1997-01-01
One dimensional model for the dispersion of a passive atmospheric contaminant (neglecting chemical reactions) in the atmospheric boundary layer is introduced. The differential equation representing the dispersion of pollutants is solved on the basis of gradient-transfer theory (K- theory). The present approach deals with a more appropriate and realistic profile for the diffusion coefficient K, which is expressed in terms of the friction velocity U, the vertical coordinate z and the depth of the mixing layer h, which is taken time dependent. After some mathematical simplification, the equation analytic obtained solution can be easily applied to case study concerning atmospheric dispersion of pollutants
International Nuclear Information System (INIS)
Esmail, S.F.H.
2011-01-01
The mathematical formulation of numerous physical problems a results in differential equations actually partial or ordinary differential equations.In our study we are interested in solutions of partial differential equations.The aim of this work is to calculate the concentrations of the pollution, by solving the atmospheric diffusion equation(ADE) using different mathematical methods of solution. It is difficult to solve the general form of ADE analytically, so we use some assumptions to get its solution.The solutions of it depend on the eddy diffusivity profiles(k) and the wind speed u. We use some physical assumptions to simplify its formula and solve it. In the present work, we solve the ADE analytically in three dimensions using Green's function method, Laplace transform method, normal mode method and these separation of variables method. Also, we use ADM as a numerical method. Finally, comparisons are made with the results predicted by the previous methods and the observed data.
Fractional Diffusion Equations and Anomalous Diffusion
Evangelista, Luiz Roberto; Kaminski Lenzi, Ervin
2018-01-01
Preface; 1. Mathematical preliminaries; 2. A survey of the fractional calculus; 3. From normal to anomalous diffusion; 4. Fractional diffusion equations: elementary applications; 5. Fractional diffusion equations: surface effects; 6. Fractional nonlinear diffusion equation; 7. Anomalous diffusion: anisotropic case; 8. Fractional Schrödinger equations; 9. Anomalous diffusion and impedance spectroscopy; 10. The Poisson–Nernst–Planck anomalous (PNPA) models; References; Index.
Degenerate nonlinear diffusion equations
Favini, Angelo
2012-01-01
The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...
Directory of Open Access Journals (Sweden)
K. Banoo
1998-01-01
equation in the discrete momentum space. This is shown to be similar to the conventional drift-diffusion equation except that it is a more rigorous solution to the Boltzmann equation because the current and carrier densities are resolved into M×1 vectors, where M is the number of modes in the discrete momentum space. The mobility and diffusion coefficient become M×M matrices which connect the M momentum space modes. This approach is demonstrated by simulating electron transport in bulk silicon.
Wu Zhuo Qun; Li Hui Lai; Zhao Jun Ning
2001-01-01
Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which
Fractional diffusion equations and anomalous diffusion
Evangelista, Luiz Roberto
2018-01-01
Anomalous diffusion has been detected in a wide variety of scenarios, from fractal media, systems with memory, transport processes in porous media, to fluctuations of financial markets, tumour growth, and complex fluids. Providing a contemporary treatment of this process, this book examines the recent literature on anomalous diffusion and covers a rich class of problems in which surface effects are important, offering detailed mathematical tools of usual and fractional calculus for a wide audience of scientists and graduate students in physics, mathematics, chemistry and engineering. Including the basic mathematical tools needed to understand the rules for operating with the fractional derivatives and fractional differential equations, this self-contained text presents the possibility of using fractional diffusion equations with anomalous diffusion phenomena to propose powerful mathematical models for a large variety of fundamental and practical problems in a fast-growing field of research.
The generalized Airy diffusion equation
Directory of Open Access Journals (Sweden)
Frank M. Cholewinski
2003-08-01
Full Text Available Solutions of a generalized Airy diffusion equation and an associated nonlinear partial differential equation are obtained. Trigonometric type functions are derived for a third order generalized radial Euler type operator. An associated complex variable theory and generalized Cauchy-Euler equations are obtained. Further, it is shown that the Airy expansions can be mapped onto the Bessel Calculus of Bochner, Cholewinski and Haimo.
Atmospheric turbulence and diffusion research
International Nuclear Information System (INIS)
Hosker, R.P. Jr.
1993-01-01
The Atmospheric Turbulence and Diffusion Division (well known in the atmospheric dispersion community as the Atmospheric Turbulence and Diffusion Laboratory, ATDL) is one of several field facilities of NOAAs Air Resources Laboratory, headquartered in Silver Spring, Maryland. The laboratory conducts research on matters of atmospheric diffusion and turbulent exchange, concerning air quality. ATDD focuses attention on the physics of the lower atmosphere, with special emphasis on the processes contributing to atmospheric transport, dispersion, deposition, and air-surface exchange, and on the development of predictive capabilities using the results of this research. Research is directed toward issues of national and global importance related to the missions of DOE, to DOE's Oak Ridge Field Office, and to NOAA. The program is divided into four major projects: plume transport and diffusion in the planetary boundary layer, complex topography, canopy micrometeorology, and air-surface exchange
An atmospheric electrical method to determine the eddy diffusion ...
Indian Academy of Sciences (India)
Keywords. Atmospheric electrical profiles; electrode layer; ion–aerosol balance equations. ... eddy diffusion theory (K-theory) in our model equations. K-theory is appropriate for near neutral ...... limit of strong turbulent mixing; J. Geophys. Res.
International Nuclear Information System (INIS)
Essa, K.S.M.
2009-01-01
The analytical solution of the atmospheric diffusion equation for a point source gives the ground-level concentration profiles. It depends on the wind speed ua nd vertical dispersion coefficient σ z expressed by Pasquill power laws. Both σ z and u are functions of downwind distance, stability and source elevation, while for the ground-level emission u is constant. In the neutral and stable conditions, the Gaussian plume model and finite difference numerical methods with wind speed in power law and the vertical dispersion coefficient in exponential law are estimated. This work shows that the estimated ground-level concentrations of the Gaussian model for high-level source and numerical finite difference method are very match fit to the observed ground-level concentrations of the Gaussian model
Atmospheric diffusion of large clouds
Energy Technology Data Exchange (ETDEWEB)
Crawford, T. V. [Univ. of California, Lawrence Radiation Lab., Livermore, California (United States)
1967-07-01
Clouds of pollutants travel within a coordinate system that is fixed to the earth's surface, and they diffuse and grow within a coordinate system fixed to the cloud's center. This paper discusses an approach to predicting the cloud's properties, within the latter coordinate system, on space scales of a few hundred meters to a few hundred kilometers and for time periods of a few days. A numerical cloud diffusion model is presented which starts with a cloud placed arbitrarily within the troposphere. Similarity theories of atmospheric turbulence are used to predict the horizontal diffusivity as a function of initial cloud size, turbulent atmospheric dissipation, and time. Vertical diffusivity is input as a function of time and height. Therefore, diurnal variations of turbulent diffusion in the boundary layer and effects of temperature inversions, etc. can be modeled. Nondiffusive cloud depletion mechanisms, such as dry deposition, washout, and radioactive decay, are also a part of this numerical model. An effluent cloud, produced by a reactor run at the Nuclear Rocket Development Station, Nevada, is discussed in this paper. Measurements on this cloud, for a period of two days, are compared to calculations with the above numerical cloud diffusion model. In general, there is agreement. within a factor of two, for airborne concentrations, cloud horizontal area, surface air concentrations, and dry deposition as airborne concentration decreased by seven orders of magnitude during the two-day period. (author)
Derivation of the neutron diffusion equation
International Nuclear Information System (INIS)
Mika, J.R.; Banasiak, J.
1994-01-01
We discuss the diffusion equation as an asymptotic limit of the neutron transport equation for large scattering cross sections. We show that the classical asymptotic expansion procedure does not lead to the diffusion equation and present two modified approaches to overcome this difficulty. The effect of the initial layer is also discussed. (authors). 9 refs
Numerical solutions of diffusive logistic equation
International Nuclear Information System (INIS)
Afrouzi, G.A.; Khademloo, S.
2007-01-01
In this paper we investigate numerically positive solutions of a superlinear Elliptic equation on bounded domains. The study of Diffusive logistic equation continues to be an active field of research. The subject has important applications to population migration as well as many other branches of science and engineering. In this paper the 'finite difference scheme' will be developed and compared for solving the one- and three-dimensional Diffusive logistic equation. The basis of the analysis of the finite difference equations considered here is the modified equivalent partial differential equation approach, developed from many authors these years
Symmetry properties of fractional diffusion equations
Energy Technology Data Exchange (ETDEWEB)
Gazizov, R K; Kasatkin, A A; Lukashchuk, S Yu [Ufa State Aviation Technical University, Karl Marx strausse 12, Ufa (Russian Federation)], E-mail: gazizov@mail.rb.ru, E-mail: alexei_kasatkin@mail.ru, E-mail: lsu@mail.rb.ru
2009-10-15
In this paper, nonlinear anomalous diffusion equations with time fractional derivatives (Riemann-Liouville and Caputo) of the order of 0-2 are considered. Lie point symmetries of these equations are investigated and compared. Examples of using the obtained symmetries for constructing exact solutions of the equations under consideration are presented.
Fractional Diffusion Limit for Collisional Kinetic Equations
Mellet, Antoine
2010-08-20
This paper is devoted to diffusion limits of linear Boltzmann equations. When the equilibrium distribution function is a Maxwellian distribution, it is well known that for an appropriate time scale, the small mean free path limit gives rise to a diffusion equation. In this paper, we consider situations in which the equilibrium distribution function is a heavy-tailed distribution with infinite variance. We then show that for an appropriate time scale, the small mean free path limit gives rise to a fractional diffusion equation. © 2010 Springer-Verlag.
Exponential attractors for a nonclassical diffusion equation
Directory of Open Access Journals (Sweden)
Qiaozhen Ma
2009-01-01
Full Text Available In this article, we prove the existence of exponential attractors for a nonclassical diffusion equation in ${H^{2}(Omega}cap{H}^{1}_{0}(Omega$ when the space dimension is less than 4.
Fractional Diffusion Limit for Collisional Kinetic Equations
Mellet, Antoine; Mischler, Sté phane; Mouhot, Clé ment
2010-01-01
This paper is devoted to diffusion limits of linear Boltzmann equations. When the equilibrium distribution function is a Maxwellian distribution, it is well known that for an appropriate time scale, the small mean free path limit gives rise to a
Diffusive limits for linear transport equations
International Nuclear Information System (INIS)
Pomraning, G.C.
1992-01-01
The authors show that the Hibert and Chapman-Enskog asymptotic treatments that reduce the nonlinear Boltzmann equation to the Euler and Navier-Stokes fluid equations have analogs in linear transport theory. In this linear setting, these fluid limits are described by diffusion equations, involving familiar and less familiar diffusion coefficients. Because of the linearity extant, one can carry out explicitly the initial and boundary layer analyses required to obtain asymptotically consistent initial and boundary conditions for the diffusion equations. In particular, the effects of boundary curvature and boundary condition variation along the surface can be included in the boundary layer analysis. A brief review of heuristic (nonasymptotic) diffusion description derivations is also included in our discussion
Diffusion equation and non-holonomy
International Nuclear Information System (INIS)
Gomes, Luiz Carlos; Lobo, R.; Simao, F.R.A.
1980-01-01
The diffusion equation for particles in a Riemannian space subject to a single constraint is discussed. The implications of the holonomy and non-holonomy of this single constraint is also discussed. (L.C.) [pt
Diffusive instabilities in hyperbolic reaction-diffusion equations
Zemskov, Evgeny P.; Horsthemke, Werner
2016-03-01
We investigate two-variable reaction-diffusion systems of the hyperbolic type. A linear stability analysis is performed, and the conditions for diffusion-driven instabilities are derived. Two basic types of eigenvalues, real and complex, are described. Dispersion curves for both types of eigenvalues are plotted and their behavior is analyzed. The real case is related to the Turing instability, and the complex one corresponds to the wave instability. We emphasize the interesting feature that the wave instability in the hyperbolic equations occurs in two-variable systems, whereas in the parabolic case one needs three reaction-diffusion equations.
Diffusion phenomenon for linear dissipative wave equations
Said-Houari, Belkacem
2012-01-01
In this paper we prove the diffusion phenomenon for the linear wave equation. To derive the diffusion phenomenon, a new method is used. In fact, for initial data in some weighted spaces, we prove that for {equation presented} decays with the rate {equation presented} [0,1] faster than that of either u or v, where u is the solution of the linear wave equation with initial data {equation presented} [0,1], and v is the solution of the related heat equation with initial data v 0 = u 0 + u 1. This result improves the result in H. Yang and A. Milani [Bull. Sci. Math. 124 (2000), 415-433] in the sense that, under the above restriction on the initial data, the decay rate given in that paper can be improved by t -γ/2. © European Mathematical Society.
Reaction diffusion equations with boundary degeneracy
Directory of Open Access Journals (Sweden)
Huashui Zhan
2016-03-01
Full Text Available In this article, we consider the reaction diffusion equation $$ \\frac{\\partial u}{\\partial t} = \\Delta A(u,\\quad (x,t\\in \\Omega \\times (0,T, $$ with the homogeneous boundary condition. Inspired by the Fichera-Oleinik theory, if the equation is not only strongly degenerate in the interior of $\\Omega$, but also degenerate on the boundary, we show that the solution of the equation is free from any limitation of the boundary condition.
Some basic mathematical methods of diffusion theory. [emphasis on atmospheric applications
Giere, A. C.
1977-01-01
An introductory treatment of the fundamentals of diffusion theory is presented, starting with molecular diffusion and leading up to the statistical methods of turbulent diffusion. A multilayer diffusion model, designed to permit concentration and dosage calculations downwind of toxic clouds from rocket vehicles, is described. The concepts and equations of diffusion are developed on an elementary level, with emphasis on atmospheric applications.
Fractional diffusion equation for heterogeneous medium
International Nuclear Information System (INIS)
Polo L, M. A.; Espinosa M, E. G.; Espinosa P, G.; Del Valle G, E.
2011-11-01
The asymptotic diffusion approximation for the Boltzmann (transport) equation was developed in 1950 decade in order to describe the diffusion of a particle in an isotropic medium, considers that the particles have a diffusion infinite velocity. In this work is developed a new approximation where is considered that the particles have a finite velocity, with this model is possible to describe the behavior in an anomalous medium. According with these ideas the model was obtained from the Fick law, where is considered that the temporal term of the current vector is not negligible. As a result the diffusion equation of fractional order which describes the dispersion of particles in a highly heterogeneous or disturbed medium is obtained, i.e., in a general medium. (Author)
Iterative solutions of finite difference diffusion equations
International Nuclear Information System (INIS)
Menon, S.V.G.; Khandekar, D.C.; Trasi, M.S.
1981-01-01
The heterogeneous arrangement of materials and the three-dimensional character of the reactor physics problems encountered in the design and operation of nuclear reactors makes it necessary to use numerical methods for solution of the neutron diffusion equations which are based on the linear Boltzmann equation. The commonly used numerical method for this purpose is the finite difference method. It converts the diffusion equations to a system of algebraic equations. In practice, the size of this resulting algebraic system is so large that the iterative methods have to be used. Most frequently used iterative methods are discussed. They include : (1) basic iterative methods for one-group problems, (2) iterative methods for eigenvalue problems, and (3) iterative methods which use variable acceleration parameters. Application of Chebyshev theorem to iterative methods is discussed. The extension of the above iterative methods to multigroup neutron diffusion equations is also considered. These methods are applicable to elliptic boundary value problems in reactor design studies in particular, and to elliptic partial differential equations in general. Solution of sample problems is included to illustrate their applications. The subject matter is presented in as simple a manner as possible. However, a working knowledge of matrix theory is presupposed. (M.G.B.)
Energy Technology Data Exchange (ETDEWEB)
Wang, Chi-Jen [Iowa State Univ., Ames, IA (United States)
2013-01-01
In this thesis, we analyze both the spatiotemporal behavior of: (A) non-linear “reaction” models utilizing (discrete) reaction-diffusion equations; and (B) spatial transport problems on surfaces and in nanopores utilizing the relevant (continuum) diffusion or Fokker-Planck equations. Thus, there are some common themes in these studies, as they all involve partial differential equations or their discrete analogues which incorporate a description of diffusion-type processes. However, there are also some qualitative differences, as shall be discussed below.
Particle Simulation of Fractional Diffusion Equations
Allouch, Samer
2017-07-12
This work explores different particle-based approaches to the simulation of one-dimensional fractional subdiffusion equations in unbounded domains. We rely on smooth particle approximations, and consider four methods for estimating the fractional diffusion term. The first method is based on direct differentiation of the particle representation, it follows the Riesz definition of the fractional derivative and results in a non-conservative scheme. The other three methods follow the particle strength exchange (PSE) methodology and are by construction conservative, in the sense that the total particle strength is time invariant. The first PSE algorithm is based on using direct differentiation to estimate the fractional diffusion flux, and exploiting the resulting estimates in an integral representation of the divergence operator. Meanwhile, the second one relies on the regularized Riesz representation of the fractional diffusion term to derive a suitable interaction formula acting directly on the particle representation of the diffusing field. A third PSE construction is considered that exploits the Green\\'s function of the fractional diffusion equation. The performance of all four approaches is assessed for the case of a one-dimensional diffusion equation with constant diffusivity. This enables us to take advantage of known analytical solutions, and consequently conduct a detailed analysis of the performance of the methods. This includes a quantitative study of the various sources of error, namely filtering, quadrature, domain truncation, and time integration, as well as a space and time self-convergence analysis. These analyses are conducted for different values of the order of the fractional derivatives, and computational experiences are used to gain insight that can be used for generalization of the present constructions.
Particle Simulation of Fractional Diffusion Equations
Allouch, Samer; Lucchesi, Marco; Maî tre, O. P. Le; Mustapha, K. A.; Knio, Omar
2017-01-01
This work explores different particle-based approaches to the simulation of one-dimensional fractional subdiffusion equations in unbounded domains. We rely on smooth particle approximations, and consider four methods for estimating the fractional diffusion term. The first method is based on direct differentiation of the particle representation, it follows the Riesz definition of the fractional derivative and results in a non-conservative scheme. The other three methods follow the particle strength exchange (PSE) methodology and are by construction conservative, in the sense that the total particle strength is time invariant. The first PSE algorithm is based on using direct differentiation to estimate the fractional diffusion flux, and exploiting the resulting estimates in an integral representation of the divergence operator. Meanwhile, the second one relies on the regularized Riesz representation of the fractional diffusion term to derive a suitable interaction formula acting directly on the particle representation of the diffusing field. A third PSE construction is considered that exploits the Green's function of the fractional diffusion equation. The performance of all four approaches is assessed for the case of a one-dimensional diffusion equation with constant diffusivity. This enables us to take advantage of known analytical solutions, and consequently conduct a detailed analysis of the performance of the methods. This includes a quantitative study of the various sources of error, namely filtering, quadrature, domain truncation, and time integration, as well as a space and time self-convergence analysis. These analyses are conducted for different values of the order of the fractional derivatives, and computational experiences are used to gain insight that can be used for generalization of the present constructions.
Evaluation of empirical atmospheric diffusion data
International Nuclear Information System (INIS)
Horst, T.W.; Doran, J.C.; Nickola, P.W.
1979-10-01
A study has been made of atmospheric diffusion over level, homogeneous terrain of contaminants released from non-buoyant point sources up to 100 m in height. Current theories of diffusion are compared to empirical diffusion data, and specific dispersion estimation techniques are recommended which can be implemented with the on-site meteorological instrumentation required by the Nuclear Regulatory Commission. A comparison of both the recommended diffusion model and the NRC diffusion model with the empirical data demonstrates that the predictions of the recommended model have both smaller scatter and less bias, particularly for groundlevel sources
Evaluation of empirical atmospheric diffusion data
Energy Technology Data Exchange (ETDEWEB)
Horst, T.W.; Doran, J.C.; Nickola, P.W.
1979-10-01
A study has been made of atmospheric diffusion over level, homogeneous terrain of contaminants released from non-buoyant point sources up to 100 m in height. Current theories of diffusion are compared to empirical diffusion data, and specific dispersion estimation techniques are recommended which can be implemented with the on-site meteorological instrumentation required by the Nuclear Regulatory Commission. A comparison of both the recommended diffusion model and the NRC diffusion model with the empirical data demonstrates that the predictions of the recommended model have both smaller scatter and less bias, particularly for ground-level sources.
Solutions for a non-Markovian diffusion equation
International Nuclear Information System (INIS)
Lenzi, E.K.; Evangelista, L.R.; Lenzi, M.K.; Ribeiro, H.V.; Oliveira, E.C. de
2010-01-01
Solutions for a non-Markovian diffusion equation are investigated. For this equation, we consider a spatial and time dependent diffusion coefficient and the presence of an absorbent term. The solutions exhibit an anomalous behavior which may be related to the solutions of fractional diffusion equations and anomalous diffusion.
Entropy methods for diffusive partial differential equations
Jüngel, Ansgar
2016-01-01
This book presents a range of entropy methods for diffusive PDEs devised by many researchers in the course of the past few decades, which allow us to understand the qualitative behavior of solutions to diffusive equations (and Markov diffusion processes). Applications include the large-time asymptotics of solutions, the derivation of convex Sobolev inequalities, the existence and uniqueness of weak solutions, and the analysis of discrete and geometric structures of the PDEs. The purpose of the book is to provide readers an introduction to selected entropy methods that can be found in the research literature. In order to highlight the core concepts, the results are not stated in the widest generality and most of the arguments are only formal (in the sense that the functional setting is not specified or sufficient regularity is supposed). The text is also suitable for advanced master and PhD students and could serve as a textbook for special courses and seminars.
Atmospheric horizontal divergence and diffusion
International Nuclear Information System (INIS)
Castans, M.
1981-01-01
The action of horizontal divergence on diffusion near the ground is established through.a very simple flow model. The shape of the well-known Pasquill-Gifford-Turner curves, that apparently take account in some way of divergence, is justified. The possibility of explaining the discre--pancies between the conventional straight line model and experimental results, mainly under low-wind-speed satable conditions, is considered. Some hints for further research are made. (auth.)
Diffusive retention of atmospheric gases in chert
Pettitt, E.; Cherniak, D. J.; Watson, E. B.; Schaller, M. F.
2016-12-01
Throughout Earth's history, the volatile contents (N2, CO2, Ar) of both deep and shallow terrestrial reservoirs has been dynamic. Volatiles are important chemical constituents because they play a significant role in regulating Earth's climate, mediating the evolution of complex life, and controlling the properties of minerals and rocks. Estimating levels of atmospheric volatiles in the deep geological past requires interrogation of materials that have acquired and retained a chemical memory from that time. Cherts have the potential to trap atmospheric components during formation and later release those gases for analysis in the laboratory. However, cherts have been underexploited in this regard, partly because their ability to retain a record of volatile components has not been adequately evaluated. Before cherts can be reliably used as indicators of past levels of major atmospheric gases, it is crucial that we understand the diffusive retentiveness of these cryptocrystalline silica phases. As the first step toward quantifying the diffusivity and solubility of carbon dioxide and nitrogen in chert, we have performed 1-atmosphere diffusive-uptake experiments at temperatures up to 450°C. Depth profiles of in-diffusing gases are measured by nuclear reaction analysis (NRA) to help us understand the molecular-scale transport of volatiles and thus the validity of using chert-bound volatiles to record information about Earth history. Data collected to date suggest that at least some cherts are ideal storage containers and can retain volatiles for a geologically long time. In addition to these diffusion experiments, preliminary online-crush fast-scan measurements using a quadrupole mass spectrometer indicate that atmospheric volatiles are released upon crushing various chert samples. By coupling such volatile-release measurements made by mass spectrometry with diffusion experiments, we are uniquely able to address the storage and fidelity of volatiles bound in crustal
Data of atmospheric diffusion experiments (Tsukuba, 1989)
International Nuclear Information System (INIS)
Hayashi, Takashi; Chino, Masamichi; Yamazawa, Hiromi; Moriuchi, Shigeru; Ishikawa, Hirohiko; Adachi, Takashi; Kojima, Hiromi
1999-08-01
The data were obtained in the atmospheric diffusion experiments in the Tsukuba area, 1989 which were a part of the Experiment to Demonstrate the Propriety of Atmospheric Dispersion Evaluation Method for Safety Analysis, entrusted with the Science and Technology Agency. The experiments were conducted by JAERI in cooperation with the Japan Weather Association. The report contains tracer concentration data of surface sampling points and meteorological data. (author)
Differential constraints and exact solutions of nonlinear diffusion equations
International Nuclear Information System (INIS)
Kaptsov, Oleg V; Verevkin, Igor V
2003-01-01
The differential constraints are applied to obtain explicit solutions of nonlinear diffusion equations. Certain linear determining equations with parameters are used to find such differential constraints. They generalize the determining equations used in the search for classical Lie symmetries
Atmospheric diffusion wind tunnel with automatic measurement
Energy Technology Data Exchange (ETDEWEB)
Maki, S; Sakai, J; Murata, E
1974-01-01
A wind tunnel which permits estimates of atmospheric diffusion is described. Smoke from power plant smoke stacks, for example, can be simulated and traced to determine the manner of diffusion in the air as well as the grade of dilution. The wind tunnel is also capable of temperature controlled diffusion tests in which temperature distribution inside the wind tunnel is controlled. A minimum wind velocity of 10 cm can be obtained with accuracy within plus or minus 0.05 percent using a controlled direct current motor; diffusion tests are often made at low wind velocity. Fully automatic measurements can be obtained by using a minicomputer so that the operation and reading of the measuring instruments can be remotely controlled from the measuring chamber. (Air Pollut. Abstr.)
Atmospheric transport, diffusion, and deposition of radioactivity
International Nuclear Information System (INIS)
Crawford, T.V.
1969-01-01
From a meteorological standpoint there are two types of initial sources for atmospheric diffusion from Plowshare applications. One is the continuous point-source plume - a slow, small leak from an underground engineering application. The other is the large cloud produced almost instantaneously from a cratering application. For the purposes of this paper the effluent from neither type has significant fall speed. Both are carried by the prevailing wind, but the statistics of diffusion for each type are different. The use of constant altitude, isobaric and isentropic techniques for predicting the mean path of the effluent is briefly discussed. Limited data are used to assess the accuracy of current trajectory forecast techniques. Diffusion of continuous point-source plumes has been widely studied; only a brief review is given of the technique used and the variability of their results with wind speed and atmospheric stability. A numerical model is presented for computing the diffusion of the 'instantaneously-produced' large clouds. This model accounts for vertical and diurnal changes in atmospheric turbulence, wet and dry deposition, and radioactivity decay. Airborne concentrations, cloud size, and deposition on the ground are calculated. Pre- and post-shot calculations of cloud center, ground level concentration of gross radioactivity, and dry and wet deposition of iodine-131 are compared with measurements on Cabriolet and Buggy. (author)
Atmospheric transport, diffusion, and deposition of radioactivity
Energy Technology Data Exchange (ETDEWEB)
Crawford, T V [Lawrence Radiation Laboratory, Livermore, CA (United States)
1969-07-01
From a meteorological standpoint there are two types of initial sources for atmospheric diffusion from Plowshare applications. One is the continuous point-source plume - a slow, small leak from an underground engineering application. The other is the large cloud produced almost instantaneously from a cratering application. For the purposes of this paper the effluent from neither type has significant fall speed. Both are carried by the prevailing wind, but the statistics of diffusion for each type are different. The use of constant altitude, isobaric and isentropic techniques for predicting the mean path of the effluent is briefly discussed. Limited data are used to assess the accuracy of current trajectory forecast techniques. Diffusion of continuous point-source plumes has been widely studied; only a brief review is given of the technique used and the variability of their results with wind speed and atmospheric stability. A numerical model is presented for computing the diffusion of the 'instantaneously-produced' large clouds. This model accounts for vertical and diurnal changes in atmospheric turbulence, wet and dry deposition, and radioactivity decay. Airborne concentrations, cloud size, and deposition on the ground are calculated. Pre- and post-shot calculations of cloud center, ground level concentration of gross radioactivity, and dry and wet deposition of iodine-131 are compared with measurements on Cabriolet and Buggy. (author)
THE LOS ALAMOS NATIONAL LABORATORY ATMOSPHERIC TRANSPORT AND DIFFUSION MODELS
Energy Technology Data Exchange (ETDEWEB)
M. WILLIAMS [and others
1999-08-01
The LANL atmospheric transport and diffusion models are composed of two state-of-the-art computer codes. The first is an atmospheric wind model called HOThlAC, Higher Order Turbulence Model for Atmospheric circulations. HOTMAC generates wind and turbulence fields by solving a set of atmospheric dynamic equations. The second is an atmospheric diffusion model called RAPTAD, Random Particle Transport And Diffusion. RAPTAD uses the wind and turbulence output from HOTMAC to compute particle trajectories and concentration at any location downwind from a source. Both of these models, originally developed as research codes on supercomputers, have been modified to run on microcomputers. Because the capability of microcomputers is advancing so rapidly, the expectation is that they will eventually become as good as today's supercomputers. Now both models are run on desktop or deskside computers, such as an IBM PC/AT with an Opus Pm 350-32 bit coprocessor board and a SUN workstation. Codes have also been modified so that high level graphics, NCAR Graphics, of the output from both models are displayed on the desktop computer monitors and plotted on a laser printer. Two programs, HOTPLT and RAPLOT, produce wind vector plots of the output from HOTMAC and particle trajectory plots of the output from RAPTAD, respectively. A third CONPLT provides concentration contour plots. Section II describes step-by-step operational procedures, specifically for a SUN-4 desk side computer, on how to run main programs HOTMAC and RAPTAD, and graphics programs to display the results. Governing equations, boundary conditions and initial values of HOTMAC and RAPTAD are discussed in Section III. Finite-difference representations of the governing equations, numerical solution procedures, and a grid system are given in Section IV.
Solution of diffusion equation in deformable spheroids
Energy Technology Data Exchange (ETDEWEB)
Ayyoubzadeh, Seyed Mohsen [Department of Energy Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Safari, Mohammad Javad, E-mail: iFluka@gmail.com [Department of Energy Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Vosoughi, Naser [Department of Energy Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)
2011-05-15
Research highlights: > Developing an explicit solution for the diffusion equation in spheroidal geometry. > Proving an orthogonality relation for spheroidal eigenfunctions. > Developing a relation for the extrapolation distance in spheroidal geometry. > Considering the sphere and slab as limiting cases for a spheroid. > Cross-validation of the analytical solution with Monte Carlo simulations. - Abstract: The time-dependent diffusion of neutrons in a spheroid as a function of the focal distance has been studied. The solution is based on an orthogonal basis and an extrapolation distanced related boundary condition for the spheroidal geometry. It has been shown that spheres and disks are two limiting cases for the spheroids, for which there is a smooth transition for the systems properties between these two limits. Furthermore, it is demonstrated that a slight deformation from a sphere does not affect the fundamental mode properties, to the first order. The calculations for both multiplying and non-multiplying media have been undertaken, showing good agreement with direct Monte Carlo simulations.
Neutron transport equation - indications on homogenization and neutron diffusion
International Nuclear Information System (INIS)
Argaud, J.P.
1992-06-01
In PWR nuclear reactor, the practical study of the neutrons in the core uses diffusion equation to describe the problem. On the other hand, the most correct method to describe these neutrons is to use the Boltzmann equation, or neutron transport equation. In this paper, we give some theoretical indications to obtain a diffusion equation from the general transport equation, with some simplifying hypothesis. The work is organised as follows: (a) the most general formulations of the transport equation are presented: integro-differential equation and integral equation; (b) the theoretical approximation of this Boltzmann equation by a diffusion equation is introduced, by the way of asymptotic developments; (c) practical homogenization methods of transport equation is then presented. In particular, the relationships with some general and useful methods in neutronic are shown, and some homogenization methods in energy and space are indicated. A lot of other points of view or complements are detailed in the text or the remarks
Results of atmospheric diffusion experiments, vol.3
International Nuclear Information System (INIS)
Kakuta, Michio; Hayashi, Takashi; Adachi, Takashi.
1988-02-01
An extensive study on 'Emergency monitoring and prediction code system' has been carried in JAERI since 1980. Six series of field experiments on atmospheric diffusion were conducted to develop and verify the prediction models for environmental concentration distribution following accidental release of radioactivity. Results of field experiments (Inland complex terrain, surface and elevated point sources) conducted in 15 - 19th October 1984 (TSUKUBA84) and in 6 - 10th November 1985 (TSUKUBA85) are contained in this volume. (author)
Study of ODE limit problems for reaction-diffusion equations
Directory of Open Access Journals (Sweden)
Jacson Simsen
2018-01-01
Full Text Available In this work we study ODE limit problems for reaction-diffusion equations for large diffusion and we study the sensitivity of nonlinear ODEs with respect to initial conditions and exponent parameters. Moreover, we prove continuity of the flow and weak upper semicontinuity of a family of global attractors for reaction-diffusion equations with spatially variable exponents when the exponents go to 2 in \\(L^{\\infty}(\\Omega\\ and the diffusion coefficients go to infinity.
Exact analytical solutions for nonlinear reaction-diffusion equations
International Nuclear Information System (INIS)
Liu Chunping
2003-01-01
By using a direct method via the computer algebraic system of Mathematica, some exact analytical solutions to a class of nonlinear reaction-diffusion equations are presented in closed form. Subsequently, the hyperbolic function solutions and the triangular function solutions of the coupled nonlinear reaction-diffusion equations are obtained in a unified way
Speed ot travelling waves in reaction-diffusion equations
International Nuclear Information System (INIS)
Benguria, R.D.; Depassier, M.C.; Mendez, V.
2002-01-01
Reaction diffusion equations arise in several problems of population dynamics, flame propagation and others. In one dimensional cases the systems may evolve into travelling fronts. Here we concentrate on a reaction diffusion equation which arises as a simple model for chemotaxis and present results for the speed of the travelling fronts. (Author)
Diffusion equations and the time evolution of foreign exchange rates
Energy Technology Data Exchange (ETDEWEB)
Figueiredo, Annibal; Castro, Marcio T. de [Institute of Physics, Universidade de Brasília, Brasília DF 70910-900 (Brazil); Fonseca, Regina C.B. da [Department of Mathematics, Instituto Federal de Goiás, Goiânia GO 74055-110 (Brazil); Gleria, Iram, E-mail: iram@fis.ufal.br [Institute of Physics, Federal University of Alagoas, Brazil, Maceió AL 57072-900 (Brazil)
2013-10-01
We investigate which type of diffusion equation is most appropriate to describe the time evolution of foreign exchange rates. We modify the geometric diffusion model assuming a non-exponential time evolution and the stochastic term is the sum of a Wiener noise and a jump process. We find the resulting diffusion equation to obey the Kramers–Moyal equation. Analytical solutions are obtained using the characteristic function formalism and compared with empirical data. The analysis focus on the first four central moments considering the returns of foreign exchange rate. It is shown that the proposed model offers a good improvement over the classical geometric diffusion model.
Diffusion equations and the time evolution of foreign exchange rates
Figueiredo, Annibal; de Castro, Marcio T.; da Fonseca, Regina C. B.; Gleria, Iram
2013-10-01
We investigate which type of diffusion equation is most appropriate to describe the time evolution of foreign exchange rates. We modify the geometric diffusion model assuming a non-exponential time evolution and the stochastic term is the sum of a Wiener noise and a jump process. We find the resulting diffusion equation to obey the Kramers-Moyal equation. Analytical solutions are obtained using the characteristic function formalism and compared with empirical data. The analysis focus on the first four central moments considering the returns of foreign exchange rate. It is shown that the proposed model offers a good improvement over the classical geometric diffusion model.
Diffusion equations and the time evolution of foreign exchange rates
International Nuclear Information System (INIS)
Figueiredo, Annibal; Castro, Marcio T. de; Fonseca, Regina C.B. da; Gleria, Iram
2013-01-01
We investigate which type of diffusion equation is most appropriate to describe the time evolution of foreign exchange rates. We modify the geometric diffusion model assuming a non-exponential time evolution and the stochastic term is the sum of a Wiener noise and a jump process. We find the resulting diffusion equation to obey the Kramers–Moyal equation. Analytical solutions are obtained using the characteristic function formalism and compared with empirical data. The analysis focus on the first four central moments considering the returns of foreign exchange rate. It is shown that the proposed model offers a good improvement over the classical geometric diffusion model.
Verification of atmospheric diffusion models with data of atmospheric diffusion experiments
International Nuclear Information System (INIS)
Hato, Shinji; Homma, Toshimitsu
2009-02-01
The atmospheric diffusion experiments were implemented by Japan Atomic Energy Research Institute (JAERI) around Mount Tsukuba in 1989 and 1990, and the tracer gas concentration were monitored. In this study, the Gauss Plume Model and RAMS/HYPACT that are meteorological forecast code and atmospheric diffusion code with detailed physical law are made a comparison between monitored concentration. In conclusion, the Gauss Plume Model is better than RAM/HYPACT even complex topography if the estimation is around tens of kilometer form release point and the change in weather is constant for short time. This reason is difference of wind between RAMS and observation. (author)
Nodal spectrum method for solving neutron diffusion equation
International Nuclear Information System (INIS)
Sanchez, D.; Garcia, C. R.; Barros, R. C. de; Milian, D.E.
1999-01-01
Presented here is a new numerical nodal method for solving static multidimensional neutron diffusion equation in rectangular geometry. Our method is based on a spectral analysis of the nodal diffusion equations. These equations are obtained by integrating the diffusion equation in X, Y directions and then considering flat approximations for the current. These flat approximations are the only approximations that are considered in this method, as a result the numerical solutions are completely free from truncation errors. We show numerical results to illustrate the methods accuracy for coarse mesh calculations
Nonlinear analysis of a reaction-diffusion system: Amplitude equations
Energy Technology Data Exchange (ETDEWEB)
Zemskov, E. P., E-mail: zemskov@ccas.ru [Russian Academy of Sciences, Dorodnicyn Computing Center (Russian Federation)
2012-10-15
A reaction-diffusion system with a nonlinear diffusion term is considered. Based on nonlinear analysis, the amplitude equations are obtained in the cases of the Hopf and Turing instabilities in the system. Turing pattern-forming regions in the parameter space are determined for supercritical and subcritical instabilities in a two-component reaction-diffusion system.
International Nuclear Information System (INIS)
Tamura, Junji; Kido, Hiroko; Hato, Shinji; Homma, Toshimitsu
2009-03-01
Straight-line or segmented plume models as atmospheric diffusion models are commonly used in probabilistic accident consequence assessment (PCA) codes due to cost and time savings. The PCA code, OSCAAR developed by Japan Atomic Energy Research Institute (Present; Japan Atomic Energy Agency) uses the variable puff trajectory model to calculate atmospheric transport and dispersion of released radionuclides. In order to investigate uncertainties involved with the structure of the atmospheric dispersion/deposition model in OSCAAR, we have introduced the more sophisticated computer codes that included regional meteorological models RAMS and atmospheric transport model HYPACT, which were developed by Colorado State University, and comparative analyses between OSCAAR and RAMS/HYPACT have been performed. In this study, model verification of OSCAAR and RAMS/HYPACT was conducted using data of long term atmospheric diffusion experiments, which were carried out in Tokai-mura, Ibaraki-ken. The predictions by models and the results of the atmospheric diffusion experiments indicated relatively good agreements. And it was shown that model performance of OSCAAR was the same degree as it of RAMS/HYPACT. (author)
Amplitude equations for a sub-diffusive reaction-diffusion system
International Nuclear Information System (INIS)
Nec, Y; Nepomnyashchy, A A
2008-01-01
A sub-diffusive reaction-diffusion system with a positive definite memory operator and a nonlinear reaction term is analysed. Amplitude equations (Ginzburg-Landau type) are derived for short wave (Turing) and long wave (Hopf) bifurcation points
Rancho Seco building wake effects on atmospheric diffusion
International Nuclear Information System (INIS)
Start, G.E.; Cate, J.H.; Dickson, C.R.; Ricks, N.R.; Ackerman, G.R.; Sagendorf, J.F.
1977-11-01
A series of 23 paired gaseous tracer releases at the Rancho Seco Nuclear Power Station in 1975 was the third of several tests designed to investigate the diffusion characteristics of the atmosphere under conditions of low windspeed and temperature inversion. This test also evaluated the effects of flow around buildings upon dilution of pollutants. Gaseous tracers were laterally dispersed about six times more than the expected amounts from Pasquill--Gifford curves of sigma-y. Most of this increase could be related to observed variance of the horizontal wind direction (meandering). For ground-level releases the effective sigma-z values were 16 times greater than the corresponding values from the Pasquill--Gifford curves. Measured ground-level axial concentrations were about 75 times smaller than predicted by the Gaussian diffusion equation for a ground-level release when Pasquill--Gifford values of sigma-y and sigma-z were used
Energy Technology Data Exchange (ETDEWEB)
Ho, C.-L. [Department of Physics, Tamkang University, Tamsui 25137, Taiwan (China); Lee, C.-C., E-mail: chieh.no27@gmail.com [Center of General Education, Aletheia University, Tamsui 25103, Taiwan (China)
2016-01-15
We consider solvability of the generalized reaction–diffusion equation with both space- and time-dependent diffusion and reaction terms by means of the similarity method. By introducing the similarity variable, the reaction–diffusion equation is reduced to an ordinary differential equation. Matching the resulting ordinary differential equation with known exactly solvable equations, one can obtain corresponding exactly solvable reaction–diffusion systems. Several representative examples of exactly solvable reaction–diffusion equations are presented.
International Nuclear Information System (INIS)
Premuda, F.
1983-01-01
Two lines in improved neutron diffusion theory extending the efficiency of finite-difference diffusion codes to the field of optically small systems, are here reviewed. The firs involves the nodal solution for tensorial diffusion equation in slab geometry and tensorial formulation in parallelepiped and cylindrical gemometry; the dependence of critical eigenvalue from small slab thicknesses is also analitically investigated and finally a regularized tensorial diffusion equation is derived for slab. The other line refer to diffusion models formally unchanged with respect to the classical one, but where new size-dependent RTGB definitions for diffusion parameters are adopted, requiring that they allow to reproduce, in diffusion approach, the terms of neutron transport global balance; the trascendental equation for the buckling, arising in slab, sphere and parallelepiped geometry from the above requirement, are reported and the sizedependence of the new diffusion coefficient and extrapolated end point is investigated
Final report [on solving the multigroup diffusion equations
International Nuclear Information System (INIS)
Birkhoff, G.
1975-01-01
Progress achieved in the development of variational methods for solving the multigroup neutron diffusion equations is described. An appraisal is made of the extent to which improved variational methods could advantageously replace difference methods currently used
Diffusive Wave Approximation to the Shallow Water Equations: Computational Approach
Collier, Nathan; Radwan, Hany; Dalcin, Lisandro; Calo, Victor M.
2011-01-01
We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity
Fractal diffusion equations: Microscopic models with anomalous diffusion and its generalizations
International Nuclear Information System (INIS)
Arkhincheev, V.E.
2001-04-01
To describe the ''anomalous'' diffusion the generalized diffusion equations of fractal order are deduced from microscopic models with anomalous diffusion as Comb model and Levy flights. It is shown that two types of equations are possible: with fractional temporal and fractional spatial derivatives. The solutions of these equations are obtained and the physical sense of these fractional equations is discussed. The relation between diffusion and conductivity is studied and the well-known Einstein relation is generalized for the anomalous diffusion case. It is shown that for Levy flight diffusion the Ohm's law is not applied and the current depends on electric field in a nonlinear way due to the anomalous character of Levy flights. The results of numerical simulations, which confirmed this conclusion, are also presented. (author)
The numerical simulation of convection delayed dominated diffusion equation
Directory of Open Access Journals (Sweden)
Mohan Kumar P. Murali
2016-01-01
Full Text Available In this paper, we propose a fitted numerical method for solving convection delayed dominated diffusion equation. A fitting factor is introduced and the model equation is discretized by cubic spline method. The error analysis is analyzed for the consider problem. The numerical examples are solved using the present method and compared the result with the exact solution.
Higher Order and Fractional Diffusive Equations
Directory of Open Access Journals (Sweden)
D. Assante
2015-07-01
Full Text Available We discuss the solution of various generalized forms of the Heat Equation, by means of different tools ranging from the use of Hermite-Kampé de Fériet polynomials of higher and fractional order to operational techniques. We show that these methods are useful to obtain either numerical or analytical solutions.
Galerkin method for solving diffusion equations
International Nuclear Information System (INIS)
Tsapelkin, E.S.
1975-01-01
A programme for the solution of the three-dimensional two-group multizone neutron diffusion problem in (x, y, z)-geometry is described. The programme XYZ-5 gives the currents of both groups, the effective neutron multiplication coefficient and several integral properties of the reactor. The solution was found with the Galerkin method using speciallly constructed and chosen coordinate functions. The programme is written in ALGOL-60 and consists of 5 parts. Its text is given
New variable separation approach: application to nonlinear diffusion equations
International Nuclear Information System (INIS)
Zhang Shunli; Lou, S Y; Qu Changzheng
2003-01-01
The concept of the derivative-dependent functional separable solution (DDFSS), as a generalization to the functional separable solution, is proposed. As an application, it is used to discuss the generalized nonlinear diffusion equations based on the generalized conditional symmetry approach. As a consequence, a complete list of canonical forms for such equations which admit the DDFSS is obtained and some exact solutions to the resulting equations are described
Semianalytic Solution of Space-Time Fractional Diffusion Equation
Directory of Open Access Journals (Sweden)
A. Elsaid
2016-01-01
Full Text Available We study the space-time fractional diffusion equation with spatial Riesz-Feller fractional derivative and Caputo fractional time derivative. The continuation of the solution of this fractional equation to the solution of the corresponding integer order equation is proved. The series solution of this problem is obtained via the optimal homotopy analysis method (OHAM. Numerical simulations are presented to validate the method and to show the effect of changing the fractional derivative parameters on the solution behavior.
Similarity Solutions for Multiterm Time-Fractional Diffusion Equation
Elsaid, A.; Abdel Latif, M. S.; Maneea, M.
2016-01-01
Similarity method is employed to solve multiterm time-fractional diffusion equation. The orders of the fractional derivatives belong to the interval (0,1] and are defined in the Caputo sense. We illustrate how the problem is reduced from a multiterm two-variable fractional partial differential equation to a multiterm ordinary fractional differential equation. Power series solution is obtained for the resulting ordinary problem and the convergence of the series solution is discussed. Based on ...
The Dirichlet problem of a conformable advection-diffusion equation
Directory of Open Access Journals (Sweden)
Avci Derya
2017-01-01
Full Text Available The fractional advection-diffusion equations are obtained from a fractional power law for the matter flux. Diffusion processes in special types of porous media which has fractal geometry can be modelled accurately by using these equations. However, the existing nonlocal fractional derivatives seem complicated and also lose some basic properties satisfied by usual derivatives. For these reasons, local fractional calculus has recently been emerged to simplify the complexities of fractional models defined by nonlocal fractional operators. In this work, the conformable, a local, well-behaved and limit-based definition, is used to obtain a local generalized form of advection-diffusion equation. In addition, this study is devoted to give a local generalized description to the combination of diffusive flux governed by Fick’s law and the advection flux associated with the velocity field. As a result, the constitutive conformable advection-diffusion equation can be easily achieved. A Dirichlet problem for conformable advection-diffusion equation is derived by applying fractional Laplace transform with respect to time t and finite sin-Fourier transform with respect to spatial coordinate x. Two illustrative examples are presented to show the behaviours of this new local generalized model. The dependence of the solution on the fractional order of conformable derivative and the changing values of problem parameters are validated using graphics held by MATLcodes.
Feynman-Kac equations for reaction and diffusion processes
Hou, Ru; Deng, Weihua
2018-04-01
This paper provides a theoretical framework for deriving the forward and backward Feynman-Kac equations for the distribution of functionals of the path of a particle undergoing both diffusion and reaction processes. Once given the diffusion type and reaction rate, a specific forward or backward Feynman-Kac equation can be obtained. The results in this paper include those for normal/anomalous diffusions and reactions with linear/nonlinear rates. Using the derived equations, we apply our findings to compute some physical (experimentally measurable) statistics, including the occupation time in half-space, the first passage time, and the occupation time in half-interval with an absorbing or reflecting boundary, for the physical system with anomalous diffusion and spontaneous evanescence.
Linear fractional diffusion-wave equation for scientists and engineers
Povstenko, Yuriy
2015-01-01
This book systematically presents solutions to the linear time-fractional diffusion-wave equation. It introduces the integral transform technique and discusses the properties of the Mittag-Leffler, Wright, and Mainardi functions that appear in the solutions. The time-nonlocal dependence between the flux and the gradient of the transported quantity with the “long-tail” power kernel results in the time-fractional diffusion-wave equation with the Caputo fractional derivative. Time-nonlocal generalizations of classical Fourier’s, Fick’s and Darcy’s laws are considered and different kinds of boundary conditions for this equation are discussed (Dirichlet, Neumann, Robin, perfect contact). The book provides solutions to the fractional diffusion-wave equation with one, two and three space variables in Cartesian, cylindrical and spherical coordinates. The respective sections of the book can be used for university courses on fractional calculus, heat and mass transfer, transport processes in porous media and ...
Intermittent Motion, Nonlinear Diffusion Equation and Tsallis Formalism
Directory of Open Access Journals (Sweden)
Ervin K. Lenzi
2017-01-01
Full Text Available We investigate an intermittent process obtained from the combination of a nonlinear diffusion equation and pauses. We consider the porous media equation with reaction terms related to the rate of switching the particles from the diffusive mode to the resting mode or switching them from the resting to the movement. The results show that in the asymptotic limit of small and long times, the spreading of the system is essentially governed by the diffusive term. The behavior exhibited for intermediate times depends on the rates present in the reaction terms. In this scenario, we show that, in the asymptotic limits, the distributions for this process are given by in terms of power laws which may be related to the q-exponential present in the Tsallis statistics. Furthermore, we also analyze a situation characterized by different diffusive regimes, which emerges when the diffusive term is a mixing of linear and nonlinear terms.
Atmospheric diffusion study and its application to nuclear energy
International Nuclear Information System (INIS)
Chino, Masamichi
1990-01-01
The report reviews studies on atmospheric diffusion of radioactive substances released from a smokestack. Smoke containing radioactive substances, or radioactive plume, diffuses into air while being affected by atmospheric turbulent flows in various ways depending on the scale of the plume. The diffusion of a radioactive plume released from a smokestack is discussed first, focusing on the diffusion process in the vicinity of the smokestack, in the atmospheric boundary layer and in the troposphere. Many theoretical studies have been conducted by using the Gaussian plume model, though it is too simple to take into account the topographic effects and unstationary atmospheric conditions. Various numerical calculation models (designed for numerical calculation by a computer) have recently been developed, particularly for the implementation of environmental impact evaluation. Diagnostic and forecast type models are available for atmospheric air flow calculation. Other models available for diffusion analysis include the puff model, segment model, PIC (particle in cell)model, and random walk model. (N.K.)
Stochastic differential equations and diffusion processes
Ikeda, N
1989-01-01
Being a systematic treatment of the modern theory of stochastic integrals and stochastic differential equations, the theory is developed within the martingale framework, which was developed by J.L. Doob and which plays an indispensable role in the modern theory of stochastic analysis.A considerable number of corrections and improvements have been made for the second edition of this classic work. In particular, major and substantial changes are in Chapter III and Chapter V where the sections treating excursions of Brownian Motion and the Malliavin Calculus have been expanded and refined. Sectio
Multi-diffusive nonlinear Fokker–Planck equation
International Nuclear Information System (INIS)
Ribeiro, Mauricio S; Casas, Gabriela A; Nobre, Fernando D
2017-01-01
Nonlinear Fokker–Planck equations, characterized by more than one diffusion term, have appeared recently in literature. Here, it is shown that these equations may be derived either from approximations in a master equation, or from a Langevin-type approach. An H-theorem is proven, relating these Fokker–Planck equations to an entropy composed by a sum of contributions, each of them associated with a given diffusion term. Moreover, the stationary state of the Fokker–Planck equation is shown to coincide with the equilibrium state, obtained by extremization of the entropy, in the sense that both procedures yield precisely the same equation. Due to the nonlinear character of this equation, the equilibrium probability may be obtained, in most cases, only by means of numerical approaches. Some examples are worked out, where the equilibrium probability distribution is computed for nonlinear Fokker–Planck equations presenting two diffusion terms, corresponding to an entropy characterized by a sum of two contributions. It is shown that the resulting equilibrium distribution, in general, presents a form that differs from a sum of the equilibrium distributions that maximizes each entropic contribution separately, although in some cases one may construct such a linear combination as a good approximation for the equilibrium distribution. (paper)
Unconditionally stable diffusion-acceleration of the transport equation
International Nuclear Information System (INIS)
Larson, E.W.
1982-01-01
The standard iterative procedure for solving fixed-source discrete-ordinates problems converges very slowly for problems in optically thick regions with scattering ratios c near unity. The diffusion-synthetic acceleration method has been proposed to make use of the fact that for this class of problems, the diffusion equation is often an accurate approximation to the transport equation. However, stability difficulties have historically hampered the implementation of this method for general transport differencing schemes. In this article we discuss a recently developed procedure for obtaining unconditionally stable diffusion-synthetic acceleration methods for various transport differencing schemes. We motivate the analysis by first discussing the exact transport equation; then we illustrate the procedure by deriving a new stable acceleration method for the linear discontinuous transport differencing scheme. We also provide some numerical results
Unconditionally stable diffusion-acceleration of the transport equation
International Nuclear Information System (INIS)
Larsen, E.W.
1982-01-01
The standard iterative procedure for solving fixed-source discrete-ordinates problems converges very slowly for problems in optically large regions with scattering ratios c near unity. The diffusion-synthetic acceleration method has been proposed to make use of the fact that for this class of problems the diffusion equation is often an accurate approximation to the transport equation. However, stability difficulties have historically hampered the implementation of this method for general transport differencing schemes. In this article we discuss a recently developed procedure for obtaining unconditionally stable diffusion-synthetic acceleration methods for various transport differencing schemes. We motivate the analysis by first discussing the exact transport equation; then we illustrate the procedure by deriving a new stable acceleration method for the linear discontinuous transport differencing scheme. We also provide some numerical results
Fractional Number Operator and Associated Fractional Diffusion Equations
Rguigui, Hafedh
2018-03-01
In this paper, we study the fractional number operator as an analog of the finite-dimensional fractional Laplacian. An important relation with the Ornstein-Uhlenbeck process is given. Using a semigroup approach, the solution of the Cauchy problem associated to the fractional number operator is presented. By means of the Mittag-Leffler function and the Laplace transform, we give the solution of the Caputo time fractional diffusion equation and Riemann-Liouville time fractional diffusion equation in infinite dimensions associated to the fractional number operator.
Separating variables in two-way diffusion equations
International Nuclear Information System (INIS)
Fisch, N.J.; Kruskal, M.D.
1979-10-01
It is shown that solutions to a class of diffusion equations of the two-way type may be found by a method akin to separation of variables. The difficulty with such equations is that the boundary data must be specified partly as initial and partly as final conditions. In contrast to the one-way diffusion equation, where the solution separates only into decaying eigenfunctions, the two-way equations separate into both decaying and growing eigenfunctions. Criteria are set forth for the existence of linear eigenfunctions, which may not be found directly by separating variables. A speculation with interesting ramifications is that the growing and decaying eigenfunctions are separately complete in an appropriate half of the problem domain
Analytical solution to the hybrid diffusion-transport equation
International Nuclear Information System (INIS)
Nanneh, M.M.; Williams, M.M.R.
1986-01-01
A special integral equation was derived in previous work using a hybrid diffusion-transport theory method for calculating the flux distribution in slab lattices. In this paper an analytical solution of this equation has been carried out on a finite reactor lattice. The analytical results of disadvantage factors are shown to be accurate in comparison with the numerical results and accurate transport theory calculations. (author)
Solutions for a diffusion equation with a backbone term
International Nuclear Information System (INIS)
Tateishi, A A; Lenzi, E K; Ribeiro, H V; Evangelista, L R; Mendes, R S; Da Silva, L R
2011-01-01
We investigate the diffusion equation ∂ t ρ=D y ∂ y 2 ρ+D x ∂ x 2 ρ+ D-bar x δ(y)∂ x μ ρ subjected to the boundary conditions ρ(±∞,y;t)=0 and ρ(x,±∞;t)=0, and the initial condition ρ(x,y;0)= ρ-hat (x,y). We obtain exact solutions in terms of the Green function approach and analyze the mean square displacement in the x and y directions. This analysis shows an anomalous spreading of the system which is characterized by different diffusive regimes connected to anomalous diffusion
Explosive instabilities of reaction-diffusion equations including pinch effects
International Nuclear Information System (INIS)
Wilhelmsson, H.
1992-01-01
Particular solutions of reaction-diffusion equations for temperature are obtained for explosively unstable situations. As a result of the interplay between inertial, diffusion, pinch and source processes certain 'bell-shaped' distributions may grow explosively in time with preserved shape of the spatial distribution. The effect of the pinch, which requires a density inhomogeneity, is found to diminish the effect of diffusion, or inversely to support the inertial and source processes in creating the explosion. The results may be described in terms of elliptic integrals or. more simply, by means of expansions in the spatial coordinate. An application is the temperature evolution of a burning fusion plasma. (au) (18 refs.)
Liquefaction of Saturated Soil and the Diffusion Equation
Sawicki, Andrzej; Sławińska, Justyna
2015-06-01
The paper deals with the diffusion equation for pore water pressures with the source term, which is widely promoted in the marine engineering literature. It is shown that such an equation cannot be derived in a consistent way from the mass balance and the Darcy law. The shortcomings of the artificial source term are pointed out, including inconsistencies with experimental data. It is concluded that liquefaction and the preceding process of pore pressure generation and the weakening of the soil skeleton should be described by constitutive equations within the well-known framework of applied mechanics. Relevant references are provided
High order backward discretization of the neutron diffusion equation
Energy Technology Data Exchange (ETDEWEB)
Ginestar, D.; Bru, R.; Marin, J. [Universidad Politecnica de Valencia (Spain). Departamento de Matematica Aplicada; Verdu, G.; Munoz-Cobo, J.L. [Universidad Politecnica de Valencia (Spain). Departamento de Ingenieria Quimica y Nuclear; Vidal, V. [Universidad Politecnica de Valencia (Spain). Departamento de Sistemas Informaticos y Computacion
1997-11-21
Fast codes capable of dealing with three-dimensional geometries, are needed to be able to simulate spatially complicated transients in a nuclear reactor. We propose a new discretization technique for the time integration of the neutron diffusion equation, based on the backward difference formulas for systems of stiff ordinary differential equations. This method needs to solve a system of linear equations for each integration step, and for this purpose, we have developed an iterative block algorithm combined with a variational acceleration technique. We tested the algorithm with two benchmark problems, and compared the results with those provided by other codes, concluding that the performance and overall agreement are very good. (author).
Similarity Solutions for Multiterm Time-Fractional Diffusion Equation
Directory of Open Access Journals (Sweden)
A. Elsaid
2016-01-01
Full Text Available Similarity method is employed to solve multiterm time-fractional diffusion equation. The orders of the fractional derivatives belong to the interval (0,1] and are defined in the Caputo sense. We illustrate how the problem is reduced from a multiterm two-variable fractional partial differential equation to a multiterm ordinary fractional differential equation. Power series solution is obtained for the resulting ordinary problem and the convergence of the series solution is discussed. Based on the obtained results, we propose a definition for a multiterm error function with generalized coefficients.
Mixed and mixed-hybrid elements for the diffusion equation
International Nuclear Information System (INIS)
Coulomb, F.; Fedon-Magnaud, C.
1987-04-01
To solve the diffusion equation, one often uses a Lagrangian finite element method. We want to introduce the mixed elements which allow a simultaneous approximation of the same order for the flux and its gradient. Though the linear systems are not positive definite, it is possible to make them so by eliminating some of the unknowns
On the numerical solution of the neutron fractional diffusion equation
International Nuclear Information System (INIS)
Maleki Moghaddam, Nader; Afarideh, Hossein; Espinosa-Paredes, Gilberto
2014-01-01
Highlights: • The new version of neutron diffusion equation which established on the fractional derivatives is presented. • The Neutron Fractional Diffusion Equation (NFDE) is solved in the finite differences frame. • NFDE is solved using shifted Grünwald-Letnikov definition of fractional operators. • The results show that “K eff ” strongly depends on the order of fractional derivative. - Abstract: In order to core calculation in the nuclear reactors there is a new version of neutron diffusion equation which is established on the fractional partial derivatives, named Neutron Fractional Diffusion Equation (NFDE). In the NFDE model, neutron flux in each zone depends directly on the all previous zones (not only on the nearest neighbors). Under this circumstance, it can be said that the NFDE has the space history. We have developed a one-dimension code, NFDE-1D, which can simulate the reactor core using arbitrary exponent of differential operators. In this work a numerical solution of the NFDE is presented using shifted Grünwald-Letnikov definition of fractional derivative in finite differences frame. The model is validated with some numerical experiments where different orders of fractional derivative are considered (e.g. 0.999, 0.98, 0.96, and 0.94). The results show that the effective multiplication factor (K eff ) depends strongly on the order of fractional derivative
Comparison of Fully-Compressible Equation Sets for Atmospheric Dynamics
Ahmad, Nashat N.
2016-01-01
Traditionally, the equation for the conservation of energy used in atmospheric models is based on potential temperature and is used in place of the total energy conservation. This paper compares the application of the two equations sets for both the Euler and the Navier-Stokes solutions using several benchmark test cases. A high-resolution wave-propagation method which accurately takes into account the source term due to gravity is used for computing the non-hydrostatic atmospheric flows. It is demonstrated that there is little to no difference between the results obtained using the two different equation sets for Euler as well as Navier-Stokes solutions.
Numerical solution of a reaction-diffusion equation
International Nuclear Information System (INIS)
Moyano, Edgardo A.; Scarpettini, Alberto F.
2000-01-01
The purpose of the present work to continue the observations and the numerical experiences on a reaction-diffusion model, that is a simplified form of the neutronic flux equation. The model is parabolic, nonlinear, with Dirichlet boundary conditions. The purpose is to approximate non trivial solutions, asymptotically stables for t → ∞, that is solutions that tend to the elliptic problem, in the Lyapunov sense. It belongs to the so-called reaction-diffusion equations of semi linear kind, that is, linear equations in the heat operator and they have a nonlinear reaction function, in this case f (u, a, b) = u (a - b u), being u concentration, a and b parameters. The study of the incidence of these parameters take an interest to the neutronic flux physics. So that we search non trivial, positive and bounded solutions. The used algorithm is based on the concept of monotone and ordered sequences, and on the existence theorem of Amann and Sattinger. (author)
Traveling wavefront solutions to nonlinear reaction-diffusion-convection equations
International Nuclear Information System (INIS)
Indekeu, Joseph O; Smets, Ruben
2017-01-01
Physically motivated modified Fisher equations are studied in which nonlinear convection and nonlinear diffusion is allowed for besides the usual growth and spread of a population. It is pointed out that in a large variety of cases separable functions in the form of exponentially decaying sharp wavefronts solve the differential equation exactly provided a co-moving point source or sink is active at the wavefront. The velocity dispersion and front steepness may differ from those of some previously studied exact smooth traveling wave solutions. For an extension of the reaction-diffusion-convection equation, featuring a memory effect in the form of a maturity delay for growth and spread, also smooth exact wavefront solutions are obtained. The stability of the solutions is verified analytically and numerically. (paper)
Traveling wavefront solutions to nonlinear reaction-diffusion-convection equations
Indekeu, Joseph O.; Smets, Ruben
2017-08-01
Physically motivated modified Fisher equations are studied in which nonlinear convection and nonlinear diffusion is allowed for besides the usual growth and spread of a population. It is pointed out that in a large variety of cases separable functions in the form of exponentially decaying sharp wavefronts solve the differential equation exactly provided a co-moving point source or sink is active at the wavefront. The velocity dispersion and front steepness may differ from those of some previously studied exact smooth traveling wave solutions. For an extension of the reaction-diffusion-convection equation, featuring a memory effect in the form of a maturity delay for growth and spread, also smooth exact wavefront solutions are obtained. The stability of the solutions is verified analytically and numerically.
Dynamical symmetries of semi-linear Schrodinger and diffusion equations
International Nuclear Information System (INIS)
Stoimenov, Stoimen; Henkel, Malte
2005-01-01
Conditional and Lie symmetries of semi-linear 1D Schrodinger and diffusion equations are studied if the mass (or the diffusion constant) is considered as an additional variable. In this way, dynamical symmetries of semi-linear Schrodinger equations become related to the parabolic and almost-parabolic subalgebras of a three-dimensional conformal Lie algebra (conf 3 ) C . We consider non-hermitian representations and also include a dimensionful coupling constant of the non-linearity. The corresponding representations of the parabolic and almost-parabolic subalgebras of (conf 3 ) C are classified and the complete list of conditionally invariant semi-linear Schrodinger equations is obtained. Possible applications to the dynamical scaling behaviour of phase-ordering kinetics are discussed
Innovation diffusion equations on correlated scale-free networks
Energy Technology Data Exchange (ETDEWEB)
Bertotti, M.L., E-mail: marialetizia.bertotti@unibz.it [Free University of Bozen–Bolzano, Faculty of Science and Technology, Bolzano (Italy); Brunner, J., E-mail: johannes.brunner@tis.bz.it [TIS Innovation Park, Bolzano (Italy); Modanese, G., E-mail: giovanni.modanese@unibz.it [Free University of Bozen–Bolzano, Faculty of Science and Technology, Bolzano (Italy)
2016-07-29
Highlights: • The Bass diffusion model can be formulated on scale-free networks. • In the trickle-down version, the hubs adopt earlier and act as monitors. • We improve the equations in order to describe trickle-up diffusion. • Innovation is generated at the network periphery, and hubs can act as stiflers. • We compare diffusion times, in dependence on the scale-free exponent. - Abstract: We introduce a heterogeneous network structure into the Bass diffusion model, in order to study the diffusion times of innovation or information in networks with a scale-free structure, typical of regions where diffusion is sensitive to geographic and logistic influences (like for instance Alpine regions). We consider both the diffusion peak times of the total population and of the link classes. In the familiar trickle-down processes the adoption curve of the hubs is found to anticipate the total adoption in a predictable way. In a major departure from the standard model, we model a trickle-up process by introducing heterogeneous publicity coefficients (which can also be negative for the hubs, thus turning them into stiflers) and a stochastic term which represents the erratic generation of innovation at the periphery of the network. The results confirm the robustness of the Bass model and expand considerably its range of applicability.
Innovation diffusion equations on correlated scale-free networks
International Nuclear Information System (INIS)
Bertotti, M.L.; Brunner, J.; Modanese, G.
2016-01-01
Highlights: • The Bass diffusion model can be formulated on scale-free networks. • In the trickle-down version, the hubs adopt earlier and act as monitors. • We improve the equations in order to describe trickle-up diffusion. • Innovation is generated at the network periphery, and hubs can act as stiflers. • We compare diffusion times, in dependence on the scale-free exponent. - Abstract: We introduce a heterogeneous network structure into the Bass diffusion model, in order to study the diffusion times of innovation or information in networks with a scale-free structure, typical of regions where diffusion is sensitive to geographic and logistic influences (like for instance Alpine regions). We consider both the diffusion peak times of the total population and of the link classes. In the familiar trickle-down processes the adoption curve of the hubs is found to anticipate the total adoption in a predictable way. In a major departure from the standard model, we model a trickle-up process by introducing heterogeneous publicity coefficients (which can also be negative for the hubs, thus turning them into stiflers) and a stochastic term which represents the erratic generation of innovation at the periphery of the network. The results confirm the robustness of the Bass model and expand considerably its range of applicability.
Diffusion model of solid particles in a gaseous atmosphere. Pt. 1
International Nuclear Information System (INIS)
Fernandez Ruiz, J.L.
1987-01-01
Starting from Voinov and Garipov's lagrangian statements on the problem of dynamic evolution of bubbles in liquids, this work is trying to determine some diffusion equations of solid particles in little dense matter like gases or liquids, aiming at applying it to the tracing of matter in atmospheric diffusion and the tracing of corpuscles in liquids. All the resulting equations lead to a solution given as a tensor θ ij related to the velocity states v i defined as v i = , and to the potential from which derive. One has had in mind the factor of mutual correlation between the diffusing particles. This increases the scope of application of these equations to Chemistry and to Biomedical Sciences. (author)
International Nuclear Information System (INIS)
Pierantozzi, T.; Vazquez, L.
2005-01-01
Through fractional calculus and following the method used by Dirac to obtain his well-known equation from the Klein-Gordon equation, we analyze a possible interpolation between the Dirac and the diffusion equations in one space dimension. We study the transition between the hyperbolic and parabolic behaviors by means of the generalization of the D'Alembert formula for the classical wave equation and the invariance under space and time inversions of the interpolating fractional evolution equations Dirac like. Such invariance depends on the values of the fractional index and is related to the nonlocal property of the time fractional differential operator. For this system of fractional evolution equations, we also find an associated conserved quantity analogous to the Hamiltonian for the classical Dirac case
Support Operators Method for the Diffusion Equation in Multiple Materials
Energy Technology Data Exchange (ETDEWEB)
Winters, Andrew R. [Los Alamos National Laboratory; Shashkov, Mikhail J. [Los Alamos National Laboratory
2012-08-14
A second-order finite difference scheme for the solution of the diffusion equation on non-uniform meshes is implemented. The method allows the heat conductivity to be discontinuous. The algorithm is formulated on a one dimensional mesh and is derived using the support operators method. A key component of the derivation is that the discrete analog of the flux operator is constructed to be the negative adjoint of the discrete divergence, in an inner product that is a discrete analog of the continuum inner product. The resultant discrete operators in the fully discretized diffusion equation are symmetric and positive definite. The algorithm is generalized to operate on meshes with cells which have mixed material properties. A mechanism to recover intermediate temperature values in mixed cells using a limited linear reconstruction is introduced. The implementation of the algorithm is verified and the linear reconstruction mechanism is compared to previous results for obtaining new material temperatures.
Maximum Principles for Discrete and Semidiscrete Reaction-Diffusion Equation
Directory of Open Access Journals (Sweden)
Petr Stehlík
2015-01-01
Full Text Available We study reaction-diffusion equations with a general reaction function f on one-dimensional lattices with continuous or discrete time ux′ (or Δtux=k(ux-1-2ux+ux+1+f(ux, x∈Z. We prove weak and strong maximum and minimum principles for corresponding initial-boundary value problems. Whereas the maximum principles in the semidiscrete case (continuous time exhibit similar features to those of fully continuous reaction-diffusion model, in the discrete case the weak maximum principle holds for a smaller class of functions and the strong maximum principle is valid in a weaker sense. We describe in detail how the validity of maximum principles depends on the nonlinearity and the time step. We illustrate our results on the Nagumo equation with the bistable nonlinearity.
Discrete formulation for two-dimensional multigroup neutron diffusion equations
Energy Technology Data Exchange (ETDEWEB)
Vosoughi, Naser E-mail: vosoughi@mehr.sharif.edu; Salehi, Ali A.; Shahriari, Majid
2003-02-01
The objective of this paper is to introduce a new numerical method for neutronic calculation in a reactor core. This method can produce the final finite form of the neutron diffusion equation by classifying the neutronic variables and using two kinds of cell complexes without starting from the conventional differential form of the neutron diffusion equation. The method with linear interpolation produces the same convergence as the linear continuous finite element method. The quadratic interpolation is proven; the convergence order depends on the shape of the dual cell. The maximum convergence order is achieved by choosing the dual cell based on two Gauss' points. The accuracy of the method was examined with a well-known IAEA two-dimensional benchmark problem. The numerical results demonstrate the effectiveness of the new method.
Discrete formulation for two-dimensional multigroup neutron diffusion equations
International Nuclear Information System (INIS)
Vosoughi, Naser; Salehi, Ali A.; Shahriari, Majid
2003-01-01
The objective of this paper is to introduce a new numerical method for neutronic calculation in a reactor core. This method can produce the final finite form of the neutron diffusion equation by classifying the neutronic variables and using two kinds of cell complexes without starting from the conventional differential form of the neutron diffusion equation. The method with linear interpolation produces the same convergence as the linear continuous finite element method. The quadratic interpolation is proven; the convergence order depends on the shape of the dual cell. The maximum convergence order is achieved by choosing the dual cell based on two Gauss' points. The accuracy of the method was examined with a well-known IAEA two-dimensional benchmark problem. The numerical results demonstrate the effectiveness of the new method
Nonlocal Symmetries to Systems of Nonlinear Diffusion Equations
International Nuclear Information System (INIS)
Qu Changzheng; Kang Jing
2008-01-01
In this paper, we study potential symmetries to certain systems of nonlinear diffusion equations. Those systems have physical applications in soil science, mathematical biology, and invariant curve flows in R 3 . Lie point symmetries of the potential system, which cannot be projected to vector fields of the given dependent and independent variables, yield potential symmetries. The class of the system that admits potential symmetries is expanded.
Attractor of reaction-diffusion equations in Banach spaces
Directory of Open Access Journals (Sweden)
José Valero
2001-04-01
Full Text Available In this paper we prove first some abstract theorems on existence of global attractors for differential inclusions generated by w-dissipative operators. Then these results are applied to reaction-diffusion equations in which the Babach space Lp is used as phase space. Finally, new results concerning the fractal dimension of the global attractor in the space L2 are obtained.
Domain decomposition method for solving the neutron diffusion equation
International Nuclear Information System (INIS)
Coulomb, F.
1989-03-01
The aim of this work is to study methods for solving the neutron diffusion equation; we are interested in methods based on a classical finite element discretization and well suited for use on parallel computers. Domain decomposition methods seem to answer this preoccupation. This study deals with a decomposition of the domain. A theoretical study is carried out for Lagrange finite elements and some examples are given; in the case of mixed dual finite elements, the study is based on examples [fr
HEXAN - a hexagonal nodal code for solving the diffusion equation
International Nuclear Information System (INIS)
Makai, M.
1982-07-01
This report describes the theory of and provides a user's manual for the HEXAN program, which is a nodal program for the solution of the few-group diffusion equation in hexagonal geometry. Based upon symmetry considerations, the theory provides an analytical solution in a homogeneous node. WWER and HTGR test problem solutions are presented. The equivalence of the finite-difference scheme and the response matrix method is proven. The properties of a symmetric node's response matrix are investigated. (author)
The Multigroup Neutron Diffusion Equations/1 Space Dimension
Energy Technology Data Exchange (ETDEWEB)
Linde, Sven
1960-06-15
A description is given of a program for the Ferranti Mercury computer which solves the one-dimensional multigroup diffusion equations in plane, cylindrical or spherical geometry, and also approximates automatically a two-dimensional solution by separating the space variables. In section A the method of calculation is outlined and the preparation of data for two group problems is described. The spatial separation of two-dimensional equations is considered in section B. Section C covers the multigroup equations. These parts are self contained and include all information required for the use of the program. Details of the numerical methods are given in section D. Three sample problems are solved in section E. Punching and operating instructions are given in an appendix.
A mixed finite element method for nonlinear diffusion equations
Burger, Martin; Carrillo, José
2010-01-01
We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model. © American Institute of Mathematical Sciences.
Solution of 3-dimensional diffusion equation by finite Fourier transformation
International Nuclear Information System (INIS)
Krishnani, P.D.
1978-01-01
Three dimensional diffusion equation in Cartesian co-ordinates is solved by using the finite Fourier transformation. This method is different from the usual Fourier transformation method in the sense that the solutions are obtained without performing the inverse Fourier transformation. The advantage has been taken of the fact that the flux is finite and integrable in the finite region. By applying this condition, a two-dimensional integral equation, involving flux and its normal derivative at the boundary, is obtained. By solving this equation with given boundary conditions, all of the boundary values are determined. In order to calculate the flux inside the region, flux is expanded into three-dimensional Fourier series. The Fourier coefficients of the flux in the region are calculated from the boundary values. The advantage of this method is that the integrated flux is obtained without knowing the fluxes inside the region as in the case of finite difference method. (author)
The Multigroup Neutron Diffusion Equations/1 Space Dimension
International Nuclear Information System (INIS)
Linde, Sven
1960-06-01
A description is given of a program for the Ferranti Mercury computer which solves the one-dimensional multigroup diffusion equations in plane, cylindrical or spherical geometry, and also approximates automatically a two-dimensional solution by separating the space variables. In section A the method of calculation is outlined and the preparation of data for two group problems is described. The spatial separation of two-dimensional equations is considered in section B. Section C covers the multigroup equations. These parts are self contained and include all information required for the use of the program. Details of the numerical methods are given in section D. Three sample problems are solved in section E. Punching and operating instructions are given in an appendix
The chemical evolution of white dwarf atmospheres: Diffusion and accretion
International Nuclear Information System (INIS)
Vauclair, G.; Vauclair, S.; Greenstein, J.L.
1979-01-01
A study of diffusion processes in white dwarfs is presented. We are especially interested in the estimate of the diffusion time scales for C, N, O, Mg, and Ca along the cooling sequence. The effect of the radiative acceleration is important in hot white dwarfs while in cooler ones the thermal diffusion dominates the gravitational settling. In hot white dwarfs, there should be an observable amount of CNO elements unless they have previously left the stars by a selective wind. Observational tests of this result are discussed. The diffusion time scales are always short compared to the evolutionary time scales. It is shown that in both hydrogen and helium envelopes, the convection zone, even at its maximum depth, is not able to bring back to the stellar surface the metals which have previously diffused downwards. The diffusion alone predicts a complete absence of metals in white dwarf atmospheres and envelopes. As metals are observed in white dwarfs, at least at effective temperatures lower than 15,000 K, there must be some mechanism competing with diffusion. We investigate the competition between diffusion and accretion and propose a general scheme for the chemical evolution of white dwarf atmospheres along the cooling sequence. (orig.)
International Nuclear Information System (INIS)
Ohmori, Shousuke; Yamazaki, Yoshihiro
2016-01-01
Ultradiscrete equations are derived from a set of reaction–diffusion partial differential equations, and cellular automaton rules are obtained on the basis of the ultradiscrete equations. Some rules reproduce the dynamical properties of the original reaction–diffusion equations, namely, bistability and pulse annihilation. Furthermore, other rules bring about soliton-like preservation and periodic pulse generation with a pacemaker, which are not obtained from the original reaction–diffusion equations. (author)
An inverse diffusivity problem for the helium production–diffusion equation
International Nuclear Information System (INIS)
Bao, Gang; Xu, Xiang
2012-01-01
Thermochronology is a technique for the extraction of information about the thermal history of rocks. Such information is crucial for determining the depth below the surface at which rocks were located at a given time (Bao G et al 2011 Commun. Comput. Phys. 9 129). Mathematically, extracting the time–temperature path can be formulated as an inverse diffusivity problem for the helium production–diffusion equation which is the underlying process of thermochronology. In this paper, to reconstruct the diffusivity which depends on space only and accounts for the structural information of rocks, a local Hölder conditional stability is obtained by a Carleman estimate. A uniqueness result is also proven for extracting the thermal history, i.e. identifying the time-dependant part of the diffusion coefficient, provided that it is analytical with respect to time. Numerical examples are presented to illustrate the validity and effectiveness of the proposed regularization scheme. (paper)
Srivastava, R. C.; Coen, J. L.
1992-01-01
The traditional explicit growth equation has been widely used to calculate the growth and evaporation of hydrometeors by the diffusion of water vapor. This paper reexamines the assumptions underlying the traditional equation and shows that large errors (10-30 percent in some cases) result if it is used carelessly. More accurate explicit equations are derived by approximating the saturation vapor-density difference as a quadratic rather than a linear function of the temperature difference between the particle and ambient air. These new equations, which reduce the error to less than a few percent, merit inclusion in a broad range of atmospheric models.
A comparison of certain variational solutions of neutron diffusion equation
International Nuclear Information System (INIS)
Altiparmakov, D.V.; Milgram, M.S.
1987-01-01
Using the R-function theory and the variational method of Kantorovich, an approximate solution of the neutron diffusion equation is constructed for a homogeneous spatial domain of arbitrary shape. Calculations have been carried out by five different types of trial functions for certain characteristic domains of polygonal shape (square, triangle, hexagon, rhombus nad L-shaped domain). In the case of non-convex polygons, the consequence of the R-function solution is very poor and a separate treatment of singularity seems to be necessary. Compared to the R-function solution, the singular function development is mathematically more complicated but superior in respect to convergence rate. (author)
A Hennart nodal method for the diffusion equation
International Nuclear Information System (INIS)
Lesaint, P.; Noceir, S.; Verwaerde, D.
1995-01-01
A modification of the Hennart nodal method for neutron diffusion problems is presented. The final system of equations obtained by this method is not positive definite. However, a flux elimination technique leads to a simple positive definite system, which can be solved by the traditional iterative methods. Calculations of a two-dimensional International Atomic Energy Agency benchmark problem are performed and compared with results of the original Hennart nodal method and some finite element methods. The high computational efficiency of this modified nodal method is clearly demonstrated
Multigrid solution of diffusion equations on distributed memory multiprocessor systems
International Nuclear Information System (INIS)
Finnemann, H.
1988-01-01
The subject is the solution of partial differential equations for simulation of the reactor core on high-performance computers. The parallelization and implementation of nodal multigrid diffusion algorithms on array and ring configurations of the DIRMU multiprocessor system is outlined. The particular iteration scheme employed in the nodal expansion method appears similarly efficient in serial and parallel environments. The combination of modern multi-level techniques with innovative hardware (vector-multiprocessor systems) provides powerful tools needed for real time simulation of physical systems. The parallel efficiencies range from 70 to 90%. The same performance is estimated for large problems on large multiprocessor systems being designed at present. (orig.) [de
On the solutions of fractional reaction-diffusion equations
Directory of Open Access Journals (Sweden)
Jagdev Singh
2013-05-01
Full Text Available In this paper, we obtain the solution of a fractional reaction-diffusion equation associated with the generalized Riemann-Liouville fractional derivative as the time derivative and Riesz-Feller fractional derivative as the space-derivative. The results are derived by the application of the Laplace and Fourier transforms in compact and elegant form in terms of Mittag-Leffler function and H-function. The results obtained here are of general nature and include the results investigated earlier by many authors.
Diffusive Wave Approximation to the Shallow Water Equations: Computational Approach
Collier, Nathan
2011-05-14
We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity. This robust adaptive time discretization corrects the initial time step size to achieve a user specified bound on the discretization error and allows time step size variations of several orders of magnitude. In particular, in the one dimensional results presented in this work feature a change of four orders of magnitudes for the time step over the entire simulation.
Chaotic dynamics and diffusion in a piecewise linear equation
International Nuclear Information System (INIS)
Shahrear, Pabel; Glass, Leon; Edwards, Rod
2015-01-01
Genetic interactions are often modeled by logical networks in which time is discrete and all gene activity states update simultaneously. However, there is no synchronizing clock in organisms. An alternative model assumes that the logical network is preserved and plays a key role in driving the dynamics in piecewise nonlinear differential equations. We examine dynamics in a particular 4-dimensional equation of this class. In the equation, two of the variables form a negative feedback loop that drives a second negative feedback loop. By modifying the original equations by eliminating exponential decay, we generate a modified system that is amenable to detailed analysis. In the modified system, we can determine in detail the Poincaré (return) map on a cross section to the flow. By analyzing the eigenvalues of the map for the different trajectories, we are able to show that except for a set of measure 0, the flow must necessarily have an eigenvalue greater than 1 and hence there is sensitive dependence on initial conditions. Further, there is an irregular oscillation whose amplitude is described by a diffusive process that is well-modeled by the Irwin-Hall distribution. There is a large class of other piecewise-linear networks that might be analyzed using similar methods. The analysis gives insight into possible origins of chaotic dynamics in periodically forced dynamical systems
Chaotic dynamics and diffusion in a piecewise linear equation
Shahrear, Pabel; Glass, Leon; Edwards, Rod
2015-03-01
Genetic interactions are often modeled by logical networks in which time is discrete and all gene activity states update simultaneously. However, there is no synchronizing clock in organisms. An alternative model assumes that the logical network is preserved and plays a key role in driving the dynamics in piecewise nonlinear differential equations. We examine dynamics in a particular 4-dimensional equation of this class. In the equation, two of the variables form a negative feedback loop that drives a second negative feedback loop. By modifying the original equations by eliminating exponential decay, we generate a modified system that is amenable to detailed analysis. In the modified system, we can determine in detail the Poincaré (return) map on a cross section to the flow. By analyzing the eigenvalues of the map for the different trajectories, we are able to show that except for a set of measure 0, the flow must necessarily have an eigenvalue greater than 1 and hence there is sensitive dependence on initial conditions. Further, there is an irregular oscillation whose amplitude is described by a diffusive process that is well-modeled by the Irwin-Hall distribution. There is a large class of other piecewise-linear networks that might be analyzed using similar methods. The analysis gives insight into possible origins of chaotic dynamics in periodically forced dynamical systems.
Parallel solutions of the two-group neutron diffusion equations
International Nuclear Information System (INIS)
Zee, K.S.; Turinsky, P.J.
1987-01-01
Recent efforts to adapt various numerical solution algorithms to parallel computer architectures have addressed the possibility of substantially reducing the running time of few-group neutron diffusion calculations. The authors have developed an efficient iterative parallel algorithm and an associated computer code for the rapid solution of the finite difference method representation of the two-group neutron diffusion equations on the CRAY X/MP-48 supercomputer having multi-CPUs and vector pipelines. For realistic simulation of light water reactor cores, the code employees a macroscopic depletion model with trace capability for selected fission product transients and critical boron. In addition to this, moderator and fuel temperature feedback models are also incorporated into the code. The validity of the physics models used in the code were benchmarked against qualified codes and proved accurate. This work is an extension of previous work in that various feedback effects are accounted for in the system; the entire code is structured to accommodate extensive vectorization; and an additional parallelism by multitasking is achieved not only for the solution of the matrix equations associated with the inner iterations but also for the other segments of the code, e.g., outer iterations
On Solution of a Fractional Diffusion Equation by Homotopy Transform Method
International Nuclear Information System (INIS)
Salah, A.; Hassan, S.S.A.
2012-01-01
The homotopy analysis transform method (HATM) is applied in this work in order to find the analytical solution of fractional diffusion equations (FDE). These equations are obtained from standard diffusion equations by replacing a second-order space derivative by a fractional derivative of order α and a first order time derivative by a fractional derivative. Furthermore, some examples are given. Numerical results show that the homotopy analysis transform method is easy to implement and accurate when applied to a fractional diffusion equations.
International Nuclear Information System (INIS)
Nadler, Boaz; Schuss, Zeev; Singer, Amit; Eisenberg, R S
2004-01-01
Ionic diffusion through and near small domains is of considerable importance in molecular biophysics in applications such as permeation through protein channels and diffusion near the charged active sites of macromolecules. The motion of the ions in these settings depends on the specific nanoscale geometry and charge distribution in and near the domain, so standard continuum type approaches have obvious limitations. The standard machinery of equilibrium statistical mechanics includes microscopic details, but is also not applicable, because these systems are usually not in equilibrium due to concentration gradients and to the presence of an external applied potential, which drive a non-vanishing stationary current through the system. We present a stochastic molecular model for the diffusive motion of interacting particles in an external field of force and a derivation of effective partial differential equations and their boundary conditions that describe the stationary non-equilibrium system. The interactions can include electrostatic, Lennard-Jones and other pairwise forces. The analysis yields a new type of Poisson-Nernst-Planck equations, that involves conditional and unconditional charge densities and potentials. The conditional charge densities are the non-equilibrium analogues of the well studied pair correlation functions of equilibrium statistical physics. Our proposed theory is an extension of equilibrium statistical mechanics of simple fluids to stationary non-equilibrium problems. The proposed system of equations differs from the standard Poisson-Nernst-Planck system in two important aspects. First, the force term depends on conditional densities and thus on the finite size of ions, and second, it contains the dielectric boundary force on a discrete ion near dielectric interfaces. Recently, various authors have shown that both of these terms are important for diffusion through confined geometries in the context of ion channels
International Nuclear Information System (INIS)
Zhou, Xiafeng; Guo, Jiong; Li, Fu
2015-01-01
Highlights: • NEMs are innovatively applied to solve convection diffusion equation. • Stability, accuracy and numerical diffusion for NEM are analyzed for the first time. • Stability and numerical diffusion depend on the NEM expansion order and its parity. • NEMs have higher accuracy than both second order upwind and QUICK scheme. • NEMs with different expansion orders are integrated into a unified discrete form. - Abstract: The traditional finite difference method or finite volume method (FDM or FVM) is used for HTGR thermal-hydraulic calculation at present. However, both FDM and FVM require the fine mesh sizes to achieve the desired precision and thus result in a limited efficiency. Therefore, a more efficient and accurate numerical method needs to be developed. Nodal expansion method (NEM) can achieve high accuracy even on the coarse meshes in the reactor physics analysis so that the number of spatial meshes and computational cost can be largely decreased. Because of higher efficiency and accuracy, NEM can be innovatively applied to thermal-hydraulic calculation. In the paper, NEMs with different orders of basis functions are successfully developed and applied to multi-dimensional steady convection diffusion equation. Numerical results show that NEMs with three or higher order basis functions can track the reference solutions very well and are superior to second order upwind scheme and QUICK scheme. However, the false diffusion and unphysical oscillation behavior are discovered for NEMs. To explain the reasons for the above-mentioned behaviors, the stability, accuracy and numerical diffusion properties of NEM are analyzed by the Fourier analysis, and by comparing with exact solutions of difference and differential equation. The theoretical analysis results show that the accuracy of NEM increases with the expansion order. However, the stability and numerical diffusion properties depend not only on the order of basis functions but also on the parity of
Energy Technology Data Exchange (ETDEWEB)
Zhou, Xiafeng, E-mail: zhou-xf11@mails.tsinghua.edu.cn; Guo, Jiong, E-mail: guojiong12@tsinghua.edu.cn; Li, Fu, E-mail: lifu@tsinghua.edu.cn
2015-12-15
Highlights: • NEMs are innovatively applied to solve convection diffusion equation. • Stability, accuracy and numerical diffusion for NEM are analyzed for the first time. • Stability and numerical diffusion depend on the NEM expansion order and its parity. • NEMs have higher accuracy than both second order upwind and QUICK scheme. • NEMs with different expansion orders are integrated into a unified discrete form. - Abstract: The traditional finite difference method or finite volume method (FDM or FVM) is used for HTGR thermal-hydraulic calculation at present. However, both FDM and FVM require the fine mesh sizes to achieve the desired precision and thus result in a limited efficiency. Therefore, a more efficient and accurate numerical method needs to be developed. Nodal expansion method (NEM) can achieve high accuracy even on the coarse meshes in the reactor physics analysis so that the number of spatial meshes and computational cost can be largely decreased. Because of higher efficiency and accuracy, NEM can be innovatively applied to thermal-hydraulic calculation. In the paper, NEMs with different orders of basis functions are successfully developed and applied to multi-dimensional steady convection diffusion equation. Numerical results show that NEMs with three or higher order basis functions can track the reference solutions very well and are superior to second order upwind scheme and QUICK scheme. However, the false diffusion and unphysical oscillation behavior are discovered for NEMs. To explain the reasons for the above-mentioned behaviors, the stability, accuracy and numerical diffusion properties of NEM are analyzed by the Fourier analysis, and by comparing with exact solutions of difference and differential equation. The theoretical analysis results show that the accuracy of NEM increases with the expansion order. However, the stability and numerical diffusion properties depend not only on the order of basis functions but also on the parity of
An inherently parallel method for solving discretized diffusion equations
International Nuclear Information System (INIS)
Eccleston, B.R.; Palmer, T.S.
1999-01-01
A Monte Carlo approach to solving linear systems of equations is being investigated in the context of the solution of discretized diffusion equations. While the technique was originally devised decades ago, changes in computer architectures (namely, massively parallel machines) have driven the authors to revisit this technique. There are a number of potential advantages to this approach: (1) Analog Monte Carlo techniques are inherently parallel; this is not necessarily true to today's more advanced linear equation solvers (multigrid, conjugate gradient, etc.); (2) Some forms of this technique are adaptive in that they allow the user to specify locations in the problem where resolution is of particular importance and to concentrate the work at those locations; and (3) These techniques permit the solution of very large systems of equations in that matrix elements need not be stored. The user could trade calculational speed for storage if elements of the matrix are calculated on the fly. The goal of this study is to compare the parallel performance of Monte Carlo linear solvers to that of a more traditional parallelized linear solver. The authors observe the linear speedup that they expect from the Monte Carlo algorithm, given that there is no domain decomposition to cause significant communication overhead. Overall, PETSc outperforms the Monte Carlo solver for the test problem. The PETSc parallel performance improves with larger numbers of unknowns for a given number of processors. Parallel performance of the Monte Carlo technique is independent of the size of the matrix and the number of processes. They are investigating modifications to the scheme to accommodate matrix problems with positive off-diagonal elements. They are also currently coding an on-the-fly version of the algorithm to investigate the solution of very large linear systems
Derivation of a volume-averaged neutron diffusion equation; Atomos para el desarrollo de Mexico
Energy Technology Data Exchange (ETDEWEB)
Vazquez R, R.; Espinosa P, G. [UAM-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico D.F. 09340 (Mexico); Morales S, Jaime B. [UNAM, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, Jiutepec, Morelos 62550 (Mexico)]. e-mail: rvr@xanum.uam.mx
2008-07-01
This paper presents a general theoretical analysis of the problem of neutron motion in a nuclear reactor, where large variations on neutron cross sections normally preclude the use of the classical neutron diffusion equation. A volume-averaged neutron diffusion equation is derived which includes correction terms to diffusion and nuclear reaction effects. A method is presented to determine closure-relationships for the volume-averaged neutron diffusion equation (e.g., effective neutron diffusivity). In order to describe the distribution of neutrons in a highly heterogeneous configuration, it was necessary to extend the classical neutron diffusion equation. Thus, the volume averaged diffusion equation include two corrections factor: the first correction is related with the absorption process of the neutron and the second correction is a contribution to the neutron diffusion, both parameters are related to neutron effects on the interface of a heterogeneous configuration. (Author)
Modeling Effectivity of Atmospheric Advection-Diffusion Processes
International Nuclear Information System (INIS)
Brojewski, R.
1999-01-01
Some methods of solving the advection-diffusion problems useful in the field of atmospheric physics are presented and analyzed in the paper. The most effective one ( from the point of view of computer applications) was chosen. This is the method of problem decomposition with respect to the directions followed by secondary decomposition of the problem with respect to the physical phenomena. Introducing some corrections to the classical numerical methods of solving the problems, a hybrid composed of the finite element method for the advection problems and the implicit method with averaging for the diffusion processes was achieved. This hybrid method and application of the corrections produces a very effective means for solving the problems of substance transportation in atmosphere. (author)
From baking a cake to solving the diffusion equation
Olszewski, Edward A.
2006-06-01
We explain how modifying a cake recipe by changing either the dimensions of the cake or the amount of cake batter alters the baking time. We restrict our consideration to the génoise and obtain a semiempirical relation for the baking time as a function of oven temperature, initial temperature of the cake batter, and dimensions of the unbaked cake. The relation, which is based on the diffusion equation, has three parameters whose values are estimated from data obtained by baking cakes in cylindrical pans of various diameters. The relation takes into account the evaporation of moisture at the top surface of the cake, which is the dominant factor affecting the baking time of a cake.
Guiding brine shrimp through mazes by solving reaction diffusion equations
Singal, Krishma; Fenton, Flavio
Excitable systems driven by reaction diffusion equations have been shown to not only find solutions to mazes but to also to find the shortest path between the beginning and the end of the maze. In this talk we describe how we can use the Fitzhugh-Nagumo model, a generic model for excitable media, to solve a maze by varying the basin of attraction of its two fixed points. We demonstrate how two dimensional mazes are solved numerically using a Java Applet and then accelerated to run in real time by using graphic processors (GPUs). An application of this work is shown by guiding phototactic brine shrimp through a maze solved by the algorithm. Once the path is obtained, an Arduino directs the shrimp through the maze using lights from LEDs placed at the floor of the Maze. This method running in real time could be eventually used for guiding robots and cars through traffic.
Parabolic equations in biology growth, reaction, movement and diffusion
Perthame, Benoît
2015-01-01
This book presents several fundamental questions in mathematical biology such as Turing instability, pattern formation, reaction-diffusion systems, invasion waves and Fokker-Planck equations. These are classical modeling tools for mathematical biology with applications to ecology and population dynamics, the neurosciences, enzymatic reactions, chemotaxis, invasion waves etc. The book presents these aspects from a mathematical perspective, with the aim of identifying those qualitative properties of the models that are relevant for biological applications. To do so, it uncovers the mechanisms at work behind Turing instability, pattern formation and invasion waves. This involves several mathematical tools, such as stability and instability analysis, blow-up in finite time, asymptotic methods and relative entropy properties. Given the content presented, the book is well suited as a textbook for master-level coursework.
Local multiplicative Schwarz algorithms for convection-diffusion equations
Cai, Xiao-Chuan; Sarkis, Marcus
1995-01-01
We develop a new class of overlapping Schwarz type algorithms for solving scalar convection-diffusion equations discretized by finite element or finite difference methods. The preconditioners consist of two components, namely, the usual two-level additive Schwarz preconditioner and the sum of some quadratic terms constructed by using products of ordered neighboring subdomain preconditioners. The ordering of the subdomain preconditioners is determined by considering the direction of the flow. We prove that the algorithms are optimal in the sense that the convergence rates are independent of the mesh size, as well as the number of subdomains. We show by numerical examples that the new algorithms are less sensitive to the direction of the flow than either the classical multiplicative Schwarz algorithms, and converge faster than the additive Schwarz algorithms. Thus, the new algorithms are more suitable for fluid flow applications than the classical additive or multiplicative Schwarz algorithms.
Image recovery using diffusion equation embedded neural network
International Nuclear Information System (INIS)
Torkamani-Azar, F.
2001-01-01
Artificial neural networks with their inherent parallelism have been shown to perform well in many processing applications. In this paper, a new self-organizing approach for the recovery of gray level images degraded by additive noise based on embedding the diffusion equation in a neural network (without using a priori knowledge about the image point spread function, noise or original image) is described which enhances and restores gray levels of degraded images and is for application in low-level processing. Two learning features have been proposed which would be effective in the practical implementation of such a network. The recovery procedure needs some parameter estimation such as different error goals. While the required computation is not excessive, the procedure dose not require too many iterations and convergence is very fast. In addition, through the simulation the new network showed that it has superior ability to give a better quality result with a minimum of the sum of the squared error
Atmospheric turbidity and the diffuse irradiance in Lagos, Nigeria
International Nuclear Information System (INIS)
Maduekwe, A.A.L.; Chendo, M.A.C.
1994-06-01
The relationships between the total hemispherical irradiance reaching the earth surface in Lagos, Nigeria and the turbidity coefficients at two wavelengths namely λ(500) and λ(880) measured with a Volz sun photometer have been investigated. Using simple piecewise linear regression relationships between the atmospheric turbidity using Angstrom turbidity coefficients and the diffuse components of solar radiation are presented. (author). 18 refs, 11 figs, 3 tabs
Improvement of wind tunnel experiment method for atmospheric diffusion
International Nuclear Information System (INIS)
Nakai, Masayuki; Sada, Koichi
1987-01-01
A wind direction fluctuation vane was added to CRIEPI's large - scale atmospheric diffusion wind tunnel for the purpose of increasing and controlling turbulence intensity. When the wind direction fluctuation vane was operated lateral plume spread and lateral turbulence intersity became greater than for cases when it was not operated. Use of the vane improved the ability of the wind tunnel to simulate plane spread under natural conditions. (author)
Diffusion from a point source in an urban atmosphere
International Nuclear Information System (INIS)
Essa, K.S.M.; El-Otaify, M.S.
2005-01-01
In the present paper, a model for the diffusion of material from a point source in an urban atmosphere is incorporated. The plume is assumed to have a well-defined edge at which the concentration falls to zero. The vertical wind shear is estimated using logarithmic law, by employing most of the available techniques of stability categories. The concentrations estimated from the model were compared favorably with the field observations of other investigators
Data of long term atmospheric diffusion experiments (Winter, 1992)
Energy Technology Data Exchange (ETDEWEB)
Hayashi, Takashi; Chino, Masamichi; Yamazawa, Hiromi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others
1998-10-01
The data were obtained in the long-term atmospheric diffusion experiments in the Tokai area, autumn, 1991 which were a part of the Evaluation Safety Demonstration Experiments of Environmental Radiation entrusted with the Science and Technology Agency. The experiments were conducted by JAERI in cooperation with the Japan Weather Association. The report includes tracer concentration data of surface sampling points and meteorological data. (author)
Measurements and theoretical calculations of diffused radiation and atmosphere lucidity
International Nuclear Information System (INIS)
Pelece, I.; Iljins, U.; Ziemelis, I.
2009-01-01
Align with other environment friendly renewable energy sources solar energy is widely used in the world. Also in Latvia solar collectors are used. However, in Latvia because of its geographical and climatic conditions there are some specific features in comparison with traditional solar energy using countries. These features lead to the necessity to pay more attention to diffused irradiance. Another factor affecting the received irradiance of any surface is lucidity of atmosphere. This factor has not been studied in Latvia yet. This article deals with evaluation of diffused irradiance, and also of lucidity of atmosphere. The diffused irradiance can be measured directly or as a difference between the global irradiance and the beam one. The lucidity of atmosphere can be calculated from the measurements of both global and beam irradiance, if the height of the sun is known. Therefore, measurements of both global and beam irradiance have been carried out, and the diffused irradiance calculated as a difference between the global irradiance and the beam one. For measuring of the global irradiance the dome solarimeter has been used. For measuring of the direct irradiance tracking to sun pirheliometer has been used. The measurements were performed in Riga from October 2008 till March 2009. The measurements were executed automatically after every 5 minutes. The obtained results have been analyzed taking into account also the data on nebulosity from the State agency Latvian Environment, Geology and Meteorology Agency. Also efforts to calculate theoretically the diffused irradiance from the height of the sun and the data of the nebulosity have been done. These calculated values have been compared with the measured ones. Good accordance is obtained. (author)
Persistency of atmospheric diffusion conditions in Angra dos Reis - Brazil
International Nuclear Information System (INIS)
Nicolli, D.
1981-12-01
Based on a 2 year observation period, the diffusion conditions at the Almirante Alvaro Alberto N.P.P. site, in Angra dos Reis, are analized with respect to persistency as a function of the wind direction, the Pasquill stability class and the time of the day. The Pasquill stability class relates to the bulk vertical temperature gradient measured between 2m and 50m in the atmosphere; the wind direction is measured at 50m height. The persistency is defined in this report as the probability that the wind direction will remain longer than a given time in a sector without change in the diffusion category by more than a certain stage. During the day the persistency is mostly affected by the sea breeze with predominance of the unstable and neutral categories. At night the stable categories dominate. The alternating sea and land breezes disturb daily the trade wind field resulting in low persistency of the diffusion conditions. (Author) [pt
Superstatistical generalised Langevin equation: non-Gaussian viscoelastic anomalous diffusion
Ślęzak, Jakub; Metzler, Ralf; Magdziarz, Marcin
2018-02-01
Recent advances in single particle tracking and supercomputing techniques demonstrate the emergence of normal or anomalous, viscoelastic diffusion in conjunction with non-Gaussian distributions in soft, biological, and active matter systems. We here formulate a stochastic model based on a generalised Langevin equation in which non-Gaussian shapes of the probability density function and normal or anomalous diffusion have a common origin, namely a random parametrisation of the stochastic force. We perform a detailed analysis demonstrating how various types of parameter distributions for the memory kernel result in exponential, power law, or power-log law tails of the memory functions. The studied system is also shown to exhibit a further unusual property: the velocity has a Gaussian one point probability density but non-Gaussian joint distributions. This behaviour is reflected in the relaxation from a Gaussian to a non-Gaussian distribution observed for the position variable. We show that our theoretical results are in excellent agreement with stochastic simulations.
Diffusion-equation representations of landform evolution in the simplest circumstances: Appendix C
Hanks, Thomas C.
2009-01-01
The diffusion equation is one of the three great partial differential equations of classical physics. It describes the flow or diffusion of heat in the presence of temperature gradients, fluid flow in porous media in the presence of pressure gradients, and the diffusion of molecules in the presence of chemical gradients. [The other two equations are the wave equation, which describes the propagation of electromagnetic waves (including light), acoustic (sound) waves, and elastic (seismic) waves radiated from earthquakes; and LaPlace’s equation, which describes the behavior of electric, gravitational, and fluid potentials, all part of potential field theory. The diffusion equation reduces to LaPlace’s equation at steady state, when the field of interest does not depend on t. Poisson’s equation is LaPlace’s equation with a source term.
A multigroup flux-limited asymptotic diffusion Fokker-Planck equation
International Nuclear Information System (INIS)
Liu Chengan
1987-01-01
A more perfrect flux-limited method is applied to combine with asymptotic diffusion theory of the radiation transpore, and the high peaked component in the scattering angle is treated with Fokker-Planck methods, thus the flux-limited asymptotic diffusion Fokker-Planck equation has been founded. Since the equation is of diffusion form, it retains the simplity and the convenience of the classical diffusion theory, and improves precision in describing radiation transport problems
Hybrid diffusion-P3 equation in N-layered turbid media: steady-state domain.
Shi, Zhenzhi; Zhao, Huijuan; Xu, Kexin
2011-10-01
This paper discusses light propagation in N-layered turbid media. The hybrid diffusion-P3 equation is solved for an N-layered finite or infinite turbid medium in the steady-state domain for one point source using the extrapolated boundary condition. The Fourier transform formalism is applied to derive the analytical solutions of the fluence rate in Fourier space. Two inverse Fourier transform methods are developed to calculate the fluence rate in real space. In addition, the solutions of the hybrid diffusion-P3 equation are compared to the solutions of the diffusion equation and the Monte Carlo simulation. For the case of small absorption coefficients, the solutions of the N-layered diffusion equation and hybrid diffusion-P3 equation are almost equivalent and are in agreement with the Monte Carlo simulation. For the case of large absorption coefficients, the model of the hybrid diffusion-P3 equation is more precise than that of the diffusion equation. In conclusion, the model of the hybrid diffusion-P3 equation can replace the diffusion equation for modeling light propagation in the N-layered turbid media for a wide range of absorption coefficients.
Development of regional meteorological and atmospheric diffusion simulation system
International Nuclear Information System (INIS)
Kubota, Ryuji; Iwashige, Kengo; Kasano, Toshio
2002-01-01
Regional atmospheric diffusion online network (RADON) with atmospheric diffusion analysis code (ADAC) : a simulation program of diffusion of radioactive materials, volcanic ash, pollen, NOx and SOx was developed. This system can be executed in personal computer (PC) and note PC on Windows. Emission data consists of online, offline and default data. It uses the meteorology data sources such as meteorological forecasting mesh data, automated meteorological data acquisition system (AMeDAS) data, meteorological observation data in site and municipality observation data. The meteorological forecasting mesh data shows forecasting value of temperature, wind speed, wind direction and humidity in about two days. The nuclear environmental monitoring center retains the online data (meteorological data, emission source data, monitoring station data) in its PC server and can run forecasting or repeating calculation using these data and store and print out the calculation results. About 30 emission materials can be calculated simultaneously. This system can simulate a series of weather from the past and real time to the future. (S.Y.)
Boundary conditions for the diffusion equation in radiative transfer
International Nuclear Information System (INIS)
Haskell, R.C.; Svaasand, L.O.; Tsay, T.; Feng, T.; McAdams, M.S.; Tromberg, B.J.
1994-01-01
Using the method of images, we examine the three boundary conditions commonly applied to the surface of a semi-infinite turbid medium. We find that the image-charge configurations of the partial-current and extrapolated-boundary conditions have the same dipole and quadrupole moments and that the two corresponding solutions to the diffusion equation are approximately equal. In the application of diffusion theory to frequency-domain photon-migration (FDPM) data, these two approaches yield values for the scattering and absorption coefficients that are equal to within 3%. Moreover, the two boundary conditions can be combined to yield a remarkably simple, accurate, and computationally fast method for extracting values for optical parameters from FDPM data. FDPM data were taken both at the surface and deep inside tissue phantoms, and the difference in data between the two geometries is striking. If one analyzes the surface data without accounting for the boundary, values deduced for the optical coefficients are in error by 50% or more. As expected, when aluminum foil was placed on the surface of a tissue phantom, phase and modulation data were closer to the results for an infinite-medium geometry. Raising the reflectivity of a tissue surface can, in principle, eliminate the effect of the boundary. However, we find that phase and modulation data are highly sensitive to the reflectivity in the range of 80--100%, and a minimum value of 98% is needed to mimic an infinite-medium geometry reliably. We conclude that noninvasive measurements of optically thick tissue require a rigorous treatment of the tissue boundary, and we suggest a unified partial-current--extrapolated boundary approach
Atmospheric Diffusion Investigations at Studsvik and Aagesta 1960-1963
Energy Technology Data Exchange (ETDEWEB)
Haeggblom, L E; Gyllander, Ch; Widemo, U
1969-12-15
During the years 1960-1963 an extensive research programme concerning diffusion behaviour in air was carried out at Studsvik and Agesta. The cost, setting up, operation and experimental part was born by AB Atomenergi (the Swedish atomic energy company) while the Swedish Meteorological and Hydrological Institute (SMHI) processed the results and did the scientific analysis. The following report is a revision and amplification of the material which was presented in internal half-yearly reports from SMHI and in Docent Ulf Hoegstroems dissertation 'An experimental study on atmospheric diffusion'. The chief aim of this report is to make this material available by means of diagrams and tables. Values for diffusion parameters {sigma}{sub z} and {sigma}{sub y} and the resulting concentration-distribution in plumes are shown for different weather conditions during a release period of 1 h, for stack heights of 25, 50, 75 and 100 m and for release at ground level. The method and calculation principles are described, and different factors such as the stability parameter {lambda}, the effect of the stack and the width of the plume are presented. The data is also used for calculating release from buildings and for diffusion for short sampling periods.
Atmospheric Diffusion Investigations at Studsvik and Aagesta 1960-1963
International Nuclear Information System (INIS)
Haeggblom, L.E.; Gyllander, Ch.; Widemo, U.
1969-12-01
During the years 1960-1963 an extensive research programme concerning diffusion behaviour in air was carried out at Studsvik and Agesta. The cost, setting up, operation and experimental part was born by AB Atomenergi (the Swedish atomic energy company) while the Swedish Meteorological and Hydrological Institute (SMHI) processed the results and did the scientific analysis. The following report is a revision and amplification of the material which was presented in internal half-yearly reports from SMHI and in Docent Ulf Hoegstroems dissertation 'An experimental study on atmospheric diffusion'. The chief aim of this report is to make this material available by means of diagrams and tables. Values for diffusion parameters σ z and σ y and the resulting concentration-distribution in plumes are shown for different weather conditions during a release period of 1 h, for stack heights of 25, 50, 75 and 100 m and for release at ground level. The method and calculation principles are described, and different factors such as the stability parameter λ, the effect of the stack and the width of the plume are presented. The data is also used for calculating release from buildings and for diffusion for short sampling periods
Parallel computing for homogeneous diffusion and transport equations in neutronics
International Nuclear Information System (INIS)
Pinchedez, K.
1999-06-01
Parallel computing meets the ever-increasing requirements for neutronic computer code speed and accuracy. In this work, two different approaches have been considered. We first parallelized the sequential algorithm used by the neutronics code CRONOS developed at the French Atomic Energy Commission. The algorithm computes the dominant eigenvalue associated with PN simplified transport equations by a mixed finite element method. Several parallel algorithms have been developed on distributed memory machines. The performances of the parallel algorithms have been studied experimentally by implementation on a T3D Cray and theoretically by complexity models. A comparison of various parallel algorithms has confirmed the chosen implementations. We next applied a domain sub-division technique to the two-group diffusion Eigen problem. In the modal synthesis-based method, the global spectrum is determined from the partial spectra associated with sub-domains. Then the Eigen problem is expanded on a family composed, on the one hand, from eigenfunctions associated with the sub-domains and, on the other hand, from functions corresponding to the contribution from the interface between the sub-domains. For a 2-D homogeneous core, this modal method has been validated and its accuracy has been measured. (author)
Directory of Open Access Journals (Sweden)
Lihong Zhang
2017-11-01
Full Text Available In this article, a family of nonlinear diffusion equations involving multi-term Caputo-Fabrizio time fractional derivative is investigated. Some maximum principles are obtained. We also demonstrate the application of the obtained results by deriving some estimation for solution to reaction-diffusion equations.
Diffusion phenomenon for linear dissipative wave equations in an exterior domain
Ikehata, Ryo
Under the general condition of the initial data, we will derive the crucial estimates which imply the diffusion phenomenon for the dissipative linear wave equations in an exterior domain. In order to derive the diffusion phenomenon for dissipative wave equations, the time integral method which was developed by Ikehata and Matsuyama (Sci. Math. Japon. 55 (2002) 33) plays an effective role.
Mixed, Nonsplit, Extended Stability, Stiff Integration of Reaction Diffusion Equations
Alzahrani, Hasnaa H.
2016-01-01
A tailored integration scheme is developed to treat stiff reaction-diffusion prob- lems. The construction adapts a stiff solver, namely VODE, to treat reaction im- plicitly together with explicit treatment of diffusion. The second-order Runge
Study on monostable and bistable reaction-diffusion equations by iteration of travelling wave maps
Yi, Taishan; Chen, Yuming
2017-12-01
In this paper, based on the iterative properties of travelling wave maps, we develop a new method to obtain spreading speeds and asymptotic propagation for monostable and bistable reaction-diffusion equations. Precisely, for Dirichlet problems of monostable reaction-diffusion equations on the half line, by making links between travelling wave maps and integral operators associated with the Dirichlet diffusion kernel (the latter is NOT invariant under translation), we obtain some iteration properties of the Dirichlet diffusion and some a priori estimates on nontrivial solutions of Dirichlet problems under travelling wave transformation. We then provide the asymptotic behavior of nontrivial solutions in the space-time region for Dirichlet problems. These enable us to develop a unified method to obtain results on heterogeneous steady states, travelling waves, spreading speeds, and asymptotic spreading behavior for Dirichlet problem of monostable reaction-diffusion equations on R+ as well as of monostable/bistable reaction-diffusion equations on R.
Exact solution of the nucleons diffusion equation with increase inelastic cross section
International Nuclear Information System (INIS)
Portella, H.M.
1985-01-01
The successive aproximations method is applied to obtain an exact and compact analytical solution of the differential equation wich describes the diffusion of nucleonic component in the atmosphere, when the inelastic cross section of the air interaction nucleon-nucleus increases with the energy. The result is compared with the experimental data wich have been obtained in Chacaltaya (x=540g/cm 2 ) by the Brazil - Japan cooperation using emulsion chambers. The value of the constant a measurement of the variation of the cross section with the energy, that makes the best adjustment of the result found out with the experimental data is between 0.05 and 0.06. (M.C.K.) [pt
Frank, T. D.
2008-02-01
We discuss two central claims made in the study by Bassler et al. [K.E. Bassler, G.H. Gunaratne, J.L. McCauley, Physica A 369 (2006) 343]. Bassler et al. claimed that Green functions and Langevin equations cannot be defined for nonlinear diffusion equations. In addition, they claimed that nonlinear diffusion equations are linear partial differential equations disguised as nonlinear ones. We review bottom-up and top-down approaches that have been used in the literature to derive Green functions for nonlinear diffusion equations and, in doing so, show that the first claim needs to be revised. We show that the second claim as well needs to be revised. To this end, we point out similarities and differences between non-autonomous linear Fokker-Planck equations and autonomous nonlinear Fokker-Planck equations. In this context, we raise the question whether Bassler et al.’s approach to financial markets is physically plausible because it necessitates the introduction of external traders and causes. Such external entities can easily be eliminated when taking self-organization principles and concepts of nonextensive thermostatistics into account and modeling financial processes by means of nonlinear Fokker-Planck equations.
Tayebi, A.; Shekari, Y.; Heydari, M. H.
2017-07-01
Several physical phenomena such as transformation of pollutants, energy, particles and many others can be described by the well-known convection-diffusion equation which is a combination of the diffusion and advection equations. In this paper, this equation is generalized with the concept of variable-order fractional derivatives. The generalized equation is called variable-order time fractional advection-diffusion equation (V-OTFA-DE). An accurate and robust meshless method based on the moving least squares (MLS) approximation and the finite difference scheme is proposed for its numerical solution on two-dimensional (2-D) arbitrary domains. In the time domain, the finite difference technique with a θ-weighted scheme and in the space domain, the MLS approximation are employed to obtain appropriate semi-discrete solutions. Since the newly developed method is a meshless approach, it does not require any background mesh structure to obtain semi-discrete solutions of the problem under consideration, and the numerical solutions are constructed entirely based on a set of scattered nodes. The proposed method is validated in solving three different examples including two benchmark problems and an applied problem of pollutant distribution in the atmosphere. In all such cases, the obtained results show that the proposed method is very accurate and robust. Moreover, a remarkable property so-called positive scheme for the proposed method is observed in solving concentration transport phenomena.
International Nuclear Information System (INIS)
Ceolin, Celina; Vilhena, Marco T.; Petersen, Claudio Z.
2009-01-01
In this work we report an analytical solution for the monoenergetic neutron diffusion kinetic equation in cartesian geometry. Bearing in mind that the equation for the delayed neutron precursor concentration is a first order linear differential equation in the time variable, to make possible the application of the GITT approach to the kinetic equation, we introduce a fictitious diffusion term multiplied by a positive small value ε. By this procedure, we are able to solve this set of equations. Indeed, applying the GITT technique to the modified diffusion kinetic equation, we come out with a matrix differential equation which has a well known analytical solution when ε goes to zero. We report numerical simulations as well study of numerical convergence of the results attained. (author)
Periodic solutions in reaction–diffusion equations with time delay
International Nuclear Information System (INIS)
Li, Li
2015-01-01
Spatial diffusion and time delay are two main factors in biological and chemical systems. However, the combined effects of them on diffusion systems are not well studied. As a result, we investigate a nonlinear diffusion system with delay and obtain the existence of the periodic solutions using coincidence degree theory. Moreover, two numerical examples confirm our theoretical results. The obtained results can also be applied in other related fields
Darboux transformations for (1+2)-dimensional Fokker-Planck equations with constant diffusion matrix
International Nuclear Information System (INIS)
Schulze-Halberg, Axel
2012-01-01
We construct a Darboux transformation for (1+2)-dimensional Fokker-Planck equations with constant diffusion matrix. Our transformation is based on the two-dimensional supersymmetry formalism for the Schrödinger equation. The transformed Fokker-Planck equation and its solutions are obtained in explicit form.
On the integrability of the generalized Fisher-type nonlinear diffusion equations
International Nuclear Information System (INIS)
Wang Dengshan; Zhang Zhifei
2009-01-01
In this paper, the geometric integrability and Lax integrability of the generalized Fisher-type nonlinear diffusion equations with modified diffusion in (1+1) and (2+1) dimensions are studied by the pseudo-spherical surface geometry method and prolongation technique. It is shown that the (1+1)-dimensional Fisher-type nonlinear diffusion equation is geometrically integrable in the sense of describing a pseudo-spherical surface of constant curvature -1 only for m = 2, and the generalized Fisher-type nonlinear diffusion equations in (1+1) and (2+1) dimensions are Lax integrable only for m = 2. This paper extends the results in Bindu et al 2001 (J. Phys. A: Math. Gen. 34 L689) and further provides the integrability information of (1+1)- and (2+1)-dimensional Fisher-type nonlinear diffusion equations for m = 2
Hanford 67-series: a volume of atmospheric field diffusion measurements
International Nuclear Information System (INIS)
Nickola, P.W.
1977-11-01
This volume documents atmospheric diffusion experiments carried out at the Hanford reservation during the period 1967 to 1973. A total of 103 tracer releases during 54 release periods is tabulated. Multi-tracer releases (generally from different elevations) were made during most of the experimental periods. Release heights varied from ground level to an elevation of 111 m. Tracers were sampled simultaneously on as many as 10 arcs at distances of up to 12.8 km from the tracer release point. As many as 718 field sampling locations were employed during some of the experiments. Vertical profiles of concentration were monitored on towers during 23 of the 54 release periods. Concurrent vertical profiles of mean temperature, of mean wind speed and direction, and of direction standard deviation are also tabled for elevations up to 122 m
Equivalence groups of (2+1) dimensional diffusion equation
Özer, Saadet
2017-01-01
If a given set of differential equations contain somearbitrary functions, parameters, we have in fact a family of sets of equationsof the same structure. Almost all field equations of classical physichs havethis property, representing different materials with various paramaters. Equivalence groups are defined as the groupof transformations which leave a given family of differential equationsinvariant. Therefore, equivalence group of family of differential equations isan important area within...
Solution of two energy-group neutron diffusion equation by triangular elements
International Nuclear Information System (INIS)
Correia Filho, A.
1981-01-01
The application of the triangular finite elements of first order in the solution of two energy-group neutron diffusion equation in steady-state conditions is aimed at. The EFTDN (triangular finite elements in neutrons diffusion) computer code in FORTRAN IV language is developed. The discrete formulation of the diffusion equation is obtained applying the Galerkin method. The power method is used to solve the eigenvalues' problem and the convergence is accelerated through the use of Chebshev polynomials. For the equation systems solution the Gauss method is applied. The results of the analysis of two test-problems are presented. (Author) [pt
Wang, Xiaohu; Lu, Kening; Wang, Bixiang
2018-01-01
In this paper, we study the Wong-Zakai approximations given by a stationary process via the Wiener shift and their associated long term behavior of the stochastic reaction-diffusion equation driven by a white noise. We first prove the existence and uniqueness of tempered pullback attractors for the Wong-Zakai approximations of stochastic reaction-diffusion equation. Then, we show that the attractors of Wong-Zakai approximations converges to the attractor of the stochastic reaction-diffusion equation for both additive and multiplicative noise.
Lin, Guoxing
2018-05-01
Anomalous diffusion exists widely in polymer and biological systems. Pulsed-field gradient (PFG) anomalous diffusion is complicated, especially in the anisotropic case where limited research has been reported. A general PFG signal attenuation expression, including the finite gradient pulse (FGPW) effect for free general anisotropic fractional diffusion { 0 integral modified-Bloch equation, were extended to obtain general PFG signal attenuation expressions for anisotropic anomalous diffusion. Various cases of PFG anisotropic anomalous diffusion were investigated, including coupled and uncoupled anisotropic anomalous diffusion. The continuous-time random walk (CTRW) simulation was also carried out to support the theoretical results. The theory and the CTRW simulation agree with each other. The obtained signal attenuation expressions and the three-dimensional fractional modified-Bloch equations are important for analyzing PFG anisotropic anomalous diffusion in NMR and MRI.
Diffusion equation and spin drag in spin-polarized transport
DEFF Research Database (Denmark)
Flensberg, Karsten; Jensen, Thomas Stibius; Mortensen, Asger
2001-01-01
We study the role of electron-electron interactions for spin-polarized transport using the Boltzmann equation, and derive a set of coupled transport equations. For spin-polarized transport the electron-electron interactions are important, because they tend to equilibrate the momentum of the two-s...
Use of radon-222 as a tracer in the study of atmospheric diffusion
International Nuclear Information System (INIS)
Ikebe, Y.; Yamada, H.; Nishimura, T.; Kojima, S.; Shimo, M.; Yamanishi, H.; Tojyo, K.; Iida, T.; Chino, M.
1991-01-01
222 Rn is one of the most useful tracer for studying the atmospheric diffusion. In this report, first we report analytical treatments about temporal variation of Rn concentration in the atmosphere to clarify origin and transport of Rn. Secondly we report the numerical simulation of the behavior of Rn. The results is compared with the observed Rn concentration for confirming the validity of the simulation. Based on the results of numerical analysis of a diffusion equation, we assumed that Rn concentration measured at Nagoya can be divided into the following two components: (I) Rn atom originated near from the measuring site, which is denoted by 'diurnal variation component'. For this, it was shown that the measured temporal variation can be explained by using ordinary non-steady state one dimensional diffusion equation. (II) Rn atoms originated far from the measuring site (including Chinese Continent), which is denoted by 'background component'. For this component, we propose a one layer transport model using air mass trajectory technique. By this model we can explain well the temporal variation of back-ground component and seasonal variation of Rn at Nagoya. A numerical simulation of the temporal variation of Rn was carried out for meso-regional scale (200kmx200kmx1km). The results was compared with the continuous measurements of Rn concentration at Nagoya, and fairly good agreements was obtained. We have obtained horizontal distributions of Rn around Nagoya (150kmx150km) for each season by using a passive method. The linear relationship between Rn concentration and measured Rn exhalation rate supports the transport model mentioned above and gives us other interesting informations. (author)
A nonlinear equation for ionic diffusion in a strong binary electrolyte
Ghosal, Sandip; Chen, Zhen
2010-01-01
The problem of the one-dimensional electro-diffusion of ions in a strong binary electrolyte is considered. The mathematical description, known as the Poisson–Nernst–Planck (PNP) system, consists of a diffusion equation for each species augmented by transport owing to a self-consistent electrostatic field determined by the Poisson equation. This description is also relevant to other important problems in physics, such as electron and hole diffusion across semiconductor junctions and the diffusion of ions in plasmas. If concentrations do not vary appreciably over distances of the order of the Debye length, the Poisson equation can be replaced by the condition of local charge neutrality first introduced by Planck. It can then be shown that both species diffuse at the same rate with a common diffusivity that is intermediate between that of the slow and fast species (ambipolar diffusion). Here, we derive a more general theory by exploiting the ratio of the Debye length to a characteristic length scale as a small asymptotic parameter. It is shown that the concentration of either species may be described by a nonlinear partial differential equation that provides a better approximation than the classical linear equation for ambipolar diffusion, but reduces to it in the appropriate limit. PMID:21818176
Polyanin, A. D.; Sorokin, V. G.
2017-12-01
The paper deals with nonlinear reaction-diffusion equations with one or several delays. We formulate theorems that allow constructing exact solutions for some classes of these equations, which depend on several arbitrary functions. Examples of application of these theorems for obtaining new exact solutions in elementary functions are provided. We state basic principles of construction, selection, and use of test problems for nonlinear partial differential equations with delay. Some test problems which can be suitable for estimating accuracy of approximate analytical and numerical methods of solving reaction-diffusion equations with delay are presented. Some examples of numerical solutions of nonlinear test problems with delay are considered.
Non-probabilistic solutions of imprecisely defined fractional-order diffusion equations
International Nuclear Information System (INIS)
Chakraverty, S.; Tapaswini, Smita
2014-01-01
The fractional diffusion equation is one of the most important partial differential equations (PDEs) to model problems in mathematical physics. These PDEs are more practical when those are combined with uncertainties. Accordingly, this paper investigates the numerical solution of a non-probabilistic viz. fuzzy fractional-order diffusion equation subjected to various external forces. A fuzzy diffusion equation having fractional order 0 < α ≤ 1 with fuzzy initial condition is taken into consideration. Fuzziness appearing in the initial conditions is modelled through convex normalized triangular and Gaussian fuzzy numbers. A new computational technique is proposed based on double parametric form of fuzzy numbers to handle the fuzzy fractional diffusion equation. Using the single parametric form of fuzzy numbers, the original fuzzy diffusion equation is converted first into an interval-based fuzzy differential equation. Next, this equation is transformed into crisp form by using the proposed double parametric form of fuzzy numbers. Finally, the same is solved by Adomian decomposition method (ADM) symbolically to obtain the uncertain bounds of the solution. Computed results are depicted in terms of plots. Results obtained by the proposed method are compared with the existing results in special cases. (general)
Global dynamics of a nonlocal delayed reaction-diffusion equation on a half plane
Hu, Wenjie; Duan, Yueliang
2018-04-01
We consider a delayed reaction-diffusion equation with spatial nonlocality on a half plane that describes population dynamics of a two-stage species living in a semi-infinite environment. A Neumann boundary condition is imposed accounting for an isolated domain. To describe the global dynamics, we first establish some a priori estimate for nontrivial solutions after investigating asymptotic properties of the nonlocal delayed effect and the diffusion operator, which enables us to show the permanence of the equation with respect to the compact open topology. We then employ standard dynamical system arguments to establish the global attractivity of the nontrivial equilibrium. The main results are illustrated by the diffusive Nicholson's blowfly equation and the diffusive Mackey-Glass equation.
An Efficient Implicit FEM Scheme for Fractional-in-Space Reaction-Diffusion Equations
Burrage, Kevin; Hale, Nicholas; Kay, David
2012-01-01
Fractional differential equations are becoming increasingly used as a modelling tool for processes associated with anomalous diffusion or spatial heterogeneity. However, the presence of a fractional differential operator causes memory (time
Numerical Solutions for Convection-Diffusion Equation through Non-Polynomial Spline
Directory of Open Access Journals (Sweden)
Ravi Kanth A.S.V.
2016-01-01
Full Text Available In this paper, numerical solutions for convection-diffusion equation via non-polynomial splines are studied. We purpose an implicit method based on non-polynomial spline functions for solving the convection-diffusion equation. The method is proven to be unconditionally stable by using Von Neumann technique. Numerical results are illustrated to demonstrate the efficiency and stability of the purposed method.
Mixed, Nonsplit, Extended Stability, Stiff Integration of Reaction Diffusion Equations
Alzahrani, Hasnaa H.
2016-07-26
A tailored integration scheme is developed to treat stiff reaction-diffusion prob- lems. The construction adapts a stiff solver, namely VODE, to treat reaction im- plicitly together with explicit treatment of diffusion. The second-order Runge-Kutta- Chebyshev (RKC) scheme is adjusted to integrate diffusion. Spatial operator is de- scretised by second-order finite differences on a uniform grid. The overall solution is advanced over S fractional stiff integrations, where S corresponds to the number of RKC stages. The behavior of the scheme is analyzed by applying it to three simple problems. The results show that it achieves second-order accuracy, thus, preserving the formal accuracy of the original RKC. The presented development sets the stage for future extensions, particularly, to multidimensional reacting flows with detailed chemistry.
International Nuclear Information System (INIS)
Chakraverty, S.; Nayak, S.
2013-01-01
Highlights: • Uncertain neutron diffusion equation of bare square homogeneous reactor is studied. • Proposed interval arithmetic is extended for fuzzy numbers. • The developed fuzzy arithmetic is used to handle uncertain parameters. • Governing differential equation is modelled by modified fuzzy finite element method. • Fuzzy critical eigenvalues and effective multiplication factors are investigated. - Abstract: The scattering of neutron collision inside a reactor depends upon geometry of the reactor, diffusion coefficient and absorption coefficient etc. In general these parameters are not crisp and hence we get uncertain neutron diffusion equation. In this paper we have investigated the above equation for a bare square homogeneous reactor. Here the uncertain governing differential equation is modelled by a modified fuzzy finite element method. Using modified fuzzy finite element method, obtained eigenvalues and effective multiplication factors are studied. Corresponding results are compared with the classical finite element method in special cases and various uncertain results have been discussed
Horowitz, Jordan M
2015-07-28
The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.
Gyrya, V.; Lipnikov, K.
2017-11-01
We present the arbitrary order mimetic finite difference (MFD) discretization for the diffusion equation with non-symmetric tensorial diffusion coefficient in a mixed formulation on general polygonal meshes. The diffusion tensor is assumed to be positive definite. The asymmetry of the diffusion tensor requires changes to the standard MFD construction. We present new approach for the construction that guarantees positive definiteness of the non-symmetric mass matrix in the space of discrete velocities. The numerically observed convergence rate for the scalar quantity matches the predicted one in the case of the lowest order mimetic scheme. For higher orders schemes, we observed super-convergence by one order for the scalar variable which is consistent with the previously published result for a symmetric diffusion tensor. The new scheme was also tested on a time-dependent problem modeling the Hall effect in the resistive magnetohydrodynamics.
A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations
Boudin , Laurent; Grec , Bérénice; Salvarani , Francesco
2012-01-01
International audience; We consider the Maxwell-Stefan model of diffusion in a multicomponent gaseous mixture. After focusing on the main differences with the Fickian diffusion model, we study the equations governing a three-component gas mixture. We provide a qualitative and quantitative mathematical analysis of the model. The main properties of the standard explicit numerical scheme are also analyzed. We eventually include some numerical simulations pointing out the uphill diffusion phenome...
Application of finite Fourier transformation for the solution of the diffusion equation
International Nuclear Information System (INIS)
Kobayashi, Keisuke
1991-01-01
The application of the finite Fourier transformation to the solution of the neutron diffusion equation in one dimension, two dimensional x-y and triangular geometries is discussed. It can be shown that the equation obtained by the Nodal Green's function method in Cartesian coordinates can be derived as a special case of the finite Fourier transformation method. (author)
Local Fractional Series Expansion Method for Solving Wave and Diffusion Equations on Cantor Sets
Directory of Open Access Journals (Sweden)
Ai-Min Yang
2013-01-01
Full Text Available We proposed a local fractional series expansion method to solve the wave and diffusion equations on Cantor sets. Some examples are given to illustrate the efficiency and accuracy of the proposed method to obtain analytical solutions to differential equations within the local fractional derivatives.
Fifth-order amplitude equation for traveling waves in isothermal double diffusive convection
International Nuclear Information System (INIS)
Mendoza, S.; Becerril, R.
2009-01-01
Third-order amplitude equations for isothermal double diffusive convection are known to hold the tricritical condition all along the oscillatory branch, predicting that stable traveling waves exist Only at the onset of the instability. In order to properly describe stable traveling waves, we perform a fifth-order calculation and present explicitly the corresponding amplitude equation.
International Nuclear Information System (INIS)
Ozgener, B.
1998-01-01
A boundary integral equation (BIE) is developed for the application of the boundary element method to the multigroup neutron diffusion equations. The developed BIE contains no explicit scattering term; the scattering effects are taken into account by redefining the unknowns. Boundary elements of the linear and constant variety are utilised for validation of the developed boundary integral formulation
International Nuclear Information System (INIS)
Jakab, J.
1979-05-01
Local approximations of neutron flux density by 2nd degree polynomials are used in calculating light water reactors. The calculations include spatial kinetics tasks for the models of two- and three-dimensional reactors in the Cartesian geometry. The resulting linear algebraic equations are considered to be formally identical to the results of the differential method of diffusion equation solution. (H.S.)
Hosseini, Kamyar; Mayeli, Peyman; Bekir, Ahmet; Guner, Ozkan
2018-01-01
In this article, a special type of fractional differential equations (FDEs) named the density-dependent conformable fractional diffusion-reaction (DDCFDR) equation is studied. Aforementioned equation has a significant role in the modelling of some phenomena arising in the applied science. The well-organized methods, including the \\exp (-φ (\\varepsilon )) -expansion and modified Kudryashov methods are exerted to generate the exact solutions of this equation such that some of the solutions are new and have been reported for the first time. Results illustrate that both methods have a great performance in handling the DDCFDR equation.
On the Fractional Nagumo Equation with Nonlinear Diffusion and Convection
Directory of Open Access Journals (Sweden)
Abdon Atangana
2014-01-01
Full Text Available We presented the Nagumo equation using the concept of fractional calculus. With the help of two analytical techniques including the homotopy decomposition method (HDM and the new development of variational iteration method (NDVIM, we derived an approximate solution. Both methods use a basic idea of integral transform and are very simple to be used.
An Application of Equivalence Transformations to Reaction Diffusion Equations
Directory of Open Access Journals (Sweden)
Mariano Torrisi
2015-10-01
Full Text Available In this paper, we consider a quite general class of advection reaction diffusion systems. By using an equivalence generator, derived in a previous paper, the authors apply a projection theorem to determine some special forms of the constitutive functions that allow the extension by one of the two-dimensional principal Lie algebra. As an example, a special case is discussed at the end of the paper.
General solution of the aerosol dynamic equation: growth and diffusion processes
International Nuclear Information System (INIS)
Elgarayhi, A.; Elhanbaly, A.
2004-01-01
The dispersion of aerosol particles in a fluid media is studied considering the main mechanism for condensation and diffusion. This has been done when the technique of Lie is used for solving the aerosol dynamic equation. This method is very useful in sense that it reduces the partial differential equation to some ordinary differential equations. So, different classes of similarity solutions have been obtained. The quantity of well-defined physical interest is the mean particle volume has been calculated
International Nuclear Information System (INIS)
Takeshi, Y.; Keisuke, K.
1983-01-01
The multigroup neutron diffusion equation for two-dimensional triangular geometry is solved by the finite Fourier transformation method. Using the zero-th-order equation of the integral equation derived by this method, simple algebraic expressions for the flux are derived and solved by the alternating direction implicit method. In sample calculations for a benchmark problem of a fast breeder reactor, it is shown that the present method gives good results with fewer mesh points than the usual finite difference method
Traveling Wave Solutions of Reaction-Diffusion Equations Arising in Atherosclerosis Models
Directory of Open Access Journals (Sweden)
Narcisa Apreutesei
2014-05-01
Full Text Available In this short review article, two atherosclerosis models are presented, one as a scalar equation and the other one as a system of two equations. They are given in terms of reaction-diffusion equations in an infinite strip with nonlinear boundary conditions. The existence of traveling wave solutions is studied for these models. The monostable and bistable cases are introduced and analyzed.
Liu, Ping; Shi, Junping
2018-01-01
The bifurcation of non-trivial steady state solutions of a scalar reaction-diffusion equation with nonlinear boundary conditions is considered using several new abstract bifurcation theorems. The existence and stability of positive steady state solutions are proved using a unified approach. The general results are applied to a Laplace equation with nonlinear boundary condition and bistable nonlinearity, and an elliptic equation with superlinear nonlinearity and sublinear boundary conditions.
Utilization of Weibull equation to obtain soil-water diffusivity in horizontal infiltration
International Nuclear Information System (INIS)
Guerrini, I.A.
1982-06-01
Water movement was studied in horizontal infiltration experiments using laboratory columns of air-dry and homogeneous soil to obtain a simple and suitable equation for soil-water diffusivity. Many water content profiles for each one of the ten soil columns utilized were obtained through gamma-ray attenuation technique using a 137 Cs source. During the measurement of a particular water content profile, the soil column was held in the same position in order to measure changes in time and so to reduce the errors in water content determination. The Weibull equation utilized was excellent in fitting water content profiles experimental data. The use of an analytical function for ν, the Boltzmann variable, according to Weibull model, allowed to obtain a simple equation for soil water diffusivity. Comparisons among the equation here obtained for diffusivity and others solutions found in literature were made, and the unsuitability of a simple exponential variation of diffusivity with water content for the full range of the latter was shown. The necessity of admitting the time dependency for diffusivity was confirmed and also the possibility fixing that dependency on a well known value extended to generalized soil water infiltration studies was found. Finally, it was shown that the soil water diffusivity function given by the equation here proposed can be obtained just by the analysis of the wetting front advance as a function of time. (Author) [pt
International Nuclear Information System (INIS)
Kobayashi, Keisuke; Ishibashi, Hideo
1978-01-01
A two-dimensional neutron diffusion equation for a triangular region is shown to be solved by the finite Fourier transformation. An application of the Fourier transformation to the diffusion equation for triangular region yields equations whose unknowns are the expansion coefficients of the neutron flux and current in Fourier series or Legendre polynomials expansions only at the region boundary. Some numerical calculations have revealed that the present technique gives accurate results. It is shown also that the solution using the expansion in Legendre polynomials converges with relatively few terms even if the solution in Fourier series exhibits the Gibbs' phenomenon. (auth.)
A perturbational h4 exponential finite difference scheme for the convective diffusion equation
International Nuclear Information System (INIS)
Chen, G.Q.; Gao, Z.; Yang, Z.F.
1993-01-01
A perturbational h 4 compact exponential finite difference scheme with diagonally dominant coefficient matrix and upwind effect is developed for the convective diffusion equation. Perturbations of second order are exerted on the convective coefficients and source term of an h 2 exponential finite difference scheme proposed in this paper based on a transformation to eliminate the upwind effect of the convective diffusion equation. Four numerical examples including one- to three-dimensional model equations of fluid flow and a problem of natural convective heat transfer are given to illustrate the excellent behavior of the present exponential schemes. Besides, the h 4 accuracy of the perturbational scheme is verified using double precision arithmetic
Statistical equilibrium equations for trace elements in stellar atmospheres
Kubat, Jiri
2010-01-01
The conditions of thermodynamic equilibrium, local thermodynamic equilibrium, and statistical equilibrium are discussed in detail. The equations of statistical equilibrium and the supplementary equations are shown together with the expressions for radiative and collisional rates with the emphasize on the solution for trace elements.
International Nuclear Information System (INIS)
Wareing, T.A.
1993-01-01
New methods are presented for diffusion-synthetic accelerating the S N equations in slab and x-y geometries with the corner balance spatial differencing scheme. With the standard diffusion-synthetic acceleration method, the discretized diffusion problem is derived from the discretized S N problem to insure stability through consistent differencing. The major difference between our new methods and standard diffusion-synthetic acceleration is that the discretized diffusion problem is derived from a discretization of the P 1 equations, independently of the discretized S N problem. We present theoretical and numerical results to show that these new methods are unconditionally efficient in slab and x-y geometries with rectangular spatial meshes and isotropic scattering. (orig.)
A Nonlinear Diffusion Equation-Based Model for Ultrasound Speckle Noise Removal
Zhou, Zhenyu; Guo, Zhichang; Zhang, Dazhi; Wu, Boying
2018-04-01
Ultrasound images are contaminated by speckle noise, which brings difficulties in further image analysis and clinical diagnosis. In this paper, we address this problem in the view of nonlinear diffusion equation theories. We develop a nonlinear diffusion equation-based model by taking into account not only the gradient information of the image, but also the information of the gray levels of the image. By utilizing the region indicator as the variable exponent, we can adaptively control the diffusion type which alternates between the Perona-Malik diffusion and the Charbonnier diffusion according to the image gray levels. Furthermore, we analyze the proposed model with respect to the theoretical and numerical properties. Experiments show that the proposed method achieves much better speckle suppression and edge preservation when compared with the traditional despeckling methods, especially in the low gray level and low-contrast regions.
Energy Technology Data Exchange (ETDEWEB)
Cargo, P.; Samba, G
2007-07-01
We consider the P{sub n} model to approximate the transport equation in one dimension of space. In a diffusive regime, the solution of this system is solution of a diffusion equation. We are looking for a numerical scheme having the diffusion limit property: in a diffusive regime, it gives the solution of the limiting diffusion equation on a mesh at the diffusion scale. The numerical scheme proposed is an extension of the Godunov type scheme proposed by L. Gosse to solve the P{sub 1} model without absorption term. Moreover, it has the well-balanced property: it preserves the steady solutions of the system. (authors)
DEFF Research Database (Denmark)
Møller, Jan Kloppenborg; Madsen, Henrik
the Lamperti transform. This note gives an example driven introduction to the Lamperti transform. The general applicability of the Lamperti transform is limited to univariate diffusion processes, but for a restricted class of multivariate diffusion processes Lamperti type transformations are available...
International Nuclear Information System (INIS)
Larroche, O.
2007-01-01
A locally split-step explicit (LSSE) algorithm was developed for efficiently solving a multi-dimensional advection-diffusion type equation involving a highly inhomogeneous and highly anisotropic diffusion tensor, which makes the problem very ill-conditioned for standard implicit methods involving the iterative solution of large linear systems. The need for such an optimized algorithm arises, in particular, in the frame of thermonuclear fusion applications, for the purpose of simulating fast charged-particle slowing-down with an ion Fokker-Planck code. The LSSE algorithm is presented in this paper along with the results of a model slowing-down problem to which it has been applied
International Nuclear Information System (INIS)
Azmy, Y. Y.
2004-01-01
An approach is developed for solving the neutron diffusion equation on combinatorial geometry computational cells, that is computational cells composed by combinatorial operations involving simple-shaped component cells. The only constraint on the component cells from which the combinatorial cells are assembled is that they possess a legitimate discretization of the underlying diffusion equation. We use the Finite Difference (FD) approximation of the x, y-geometry diffusion equation in this work. Performing the same combinatorial operations involved in composing the combinatorial cell on these discrete-variable equations yields equations that employ new discrete variables defined only on the combinatorial cell's volume and faces. The only approximation involved in this process, beyond the truncation error committed in discretizing the diffusion equation over each component cell, is a consistent-order Legendre series expansion. Preliminary results for simple configurations establish the accuracy of the solution to the combinatorial geometry solution compared to straight FD as the system dimensions decrease. Furthermore numerical results validate the consistent Legendre-series expansion order by illustrating the second order accuracy of the combinatorial geometry solution, the same as standard FD. Nevertheless the magnitude of the error for the new approach is larger than FD's since it incorporates the additional truncated series approximation. (authors)
Simulate-HEX - The multi-group diffusion equation in hexagonal-z geometry
International Nuclear Information System (INIS)
Lindahl, S. O.
2013-01-01
The multigroup diffusion equation is solved for the hexagonal-z geometry by dividing each hexagon into 6 triangles. In each triangle, the Fourier solution of the wave equation is approximated by 8 plane waves to describe the intra-nodal flux accurately. In the end an efficient Finite Difference like equation is obtained. The coefficients of this equation depend on the flux solution itself and they are updated once per power/void iteration. A numerical example demonstrates the high accuracy of the method. (authors)
Liu, Ping; Wang, Ya-Xiong; Ren, Bo; Li, Jin-Hua
2016-12-01
Exact solutions of the atmospheric (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations are researched by Combining function expansion and symmetry method. By function expansion, several expansion coefficient equations are derived. Symmetries and similarity solutions are researched in order to obtain exact solutions of the INHB equations. Three types of symmetry reduction equations and similarity solutions for the expansion coefficient equations are proposed. Non-traveling wave solutions for the INHB equations are obtained by symmetries of the expansion coefficient equations. Making traveling wave transformations on expansion coefficient equations, we demonstrate some traveling wave solutions of the INHB equations. The evolutions on the wind velocities, temperature perturbation and pressure perturbation are demonstrated by figures, which demonstrate the periodic evolutions with time and space. Supported by the National Natural Science Foundation of China under Grant Nos. 11305031 and 11305106, and Training Programme Foundation for Outstanding Young Teachers in Higher Education Institutions of Guangdong Province under Grant No. Yq2013205
Energy Technology Data Exchange (ETDEWEB)
Holden, Helge; Karlsen, Kenneth H.; Lie, Knut-Andreas
1999-10-01
We present and analyze a numerical method for the solution of a class of scalar, multi-dimensional, nonlinear degenerate convection-diffusion equations. The method is based on operator splitting to separate the convective and the diffusive terms in the governing equation. The nonlinear, convective part is solved using front tracking and dimensional splitting, while the nonlinear diffusion equation is solved by a suitable difference scheme. We verify L{sup 1} compactness of the corresponding set of approximate solutions and derive precise entropy estimates. In particular, these results allow us to pass to the limit in our approximations and recover an entropy solution of the problem in question. The theory presented covers a large class of equations. Important subclasses are hyperbolic conservation laws, porous medium type equations, two-phase reservoir flow equations, and strongly degenerate equations coming from the recent theory of sedimentation-consolidation processes. A thorough numerical investigation of the method analyzed in this paper (and similar methods) is presented in a companion paper. (author)
Second order time evolution of the multigroup diffusion and P1 equations for radiation transport
International Nuclear Information System (INIS)
Olson, Gordon L.
2011-01-01
Highlights: → An existing multigroup transport algorithm is extended to be second-order in time. → A new algorithm is presented that does not require a grey acceleration solution. → The two algorithms are tested with 2D, multi-material problems. → The two algorithms have comparable computational requirements. - Abstract: An existing solution method for solving the multigroup radiation equations, linear multifrequency-grey acceleration, is here extended to be second order in time. This method works for simple diffusion and for flux-limited diffusion, with or without material conduction. A new method is developed that does not require the solution of an averaged grey transport equation. It is effective solving both the diffusion and P 1 forms of the transport equation. Two dimensional, multi-material test problems are used to compare the solution methods.
International Nuclear Information System (INIS)
Gao Zhi; Shen Yi-Qing
2012-01-01
The high resolution numerical perturbation (NP) algorithm is analyzed and tested using various convective-diffusion equations. The NP algorithm is constructed by splitting the second order central difference schemes of both convective and diffusion terms of the convective-diffusion equation into upstream and downstream parts, then the perturbation reconstruction functions of the convective coefficient are determined using the power-series of grid interval and eliminating the truncated errors of the modified differential equation. The important nature, i.e. the upwind dominance nature, which is the basis to ensuring that the NP schemes are stable and essentially oscillation free, is firstly presented and verified. Various numerical cases show that the NP schemes are efficient, robust, and more accurate than the original second order central scheme
An Efficient Implicit FEM Scheme for Fractional-in-Space Reaction-Diffusion Equations
Burrage, Kevin
2012-01-01
Fractional differential equations are becoming increasingly used as a modelling tool for processes associated with anomalous diffusion or spatial heterogeneity. However, the presence of a fractional differential operator causes memory (time fractional) or nonlocality (space fractional) issues that impose a number of computational constraints. In this paper we develop efficient, scalable techniques for solving fractional-in-space reaction diffusion equations using the finite element method on both structured and unstructured grids via robust techniques for computing the fractional power of a matrix times a vector. Our approach is show-cased by solving the fractional Fisher and fractional Allen-Cahn reaction-diffusion equations in two and three spatial dimensions, and analyzing the speed of the traveling wave and size of the interface in terms of the fractional power of the underlying Laplacian operator. © 2012 Society for Industrial and Applied Mathematics.
Directory of Open Access Journals (Sweden)
Qian Zhang
2014-01-01
Full Text Available The paper presents a framework for the construction of Monte Carlo finite volume element method (MCFVEM for the convection-diffusion equation with a random diffusion coefficient, which is described as a random field. We first approximate the continuous stochastic field by a finite number of random variables via the Karhunen-Loève expansion and transform the initial stochastic problem into a deterministic one with a parameter in high dimensions. Then we generate independent identically distributed approximations of the solution by sampling the coefficient of the equation and employing finite volume element variational formulation. Finally the Monte Carlo (MC method is used to compute corresponding sample averages. Statistic error is estimated analytically and experimentally. A quasi-Monte Carlo (QMC technique with Sobol sequences is also used to accelerate convergence, and experiments indicate that it can improve the efficiency of the Monte Carlo method.
Dimensional reduction of a general advection–diffusion equation in 2D channels
Kalinay, Pavol; Slanina, František
2018-06-01
Diffusion of point-like particles in a two-dimensional channel of varying width is studied. The particles are driven by an arbitrary space dependent force. We construct a general recurrence procedure mapping the corresponding two-dimensional advection-diffusion equation onto the longitudinal coordinate x. Unlike the previous specific cases, the presented procedure enables us to find the one-dimensional description of the confined diffusion even for non-conservative (vortex) forces, e.g. caused by flowing solvent dragging the particles. We show that the result is again the generalized Fick–Jacobs equation. Despite of non existing scalar potential in the case of vortex forces, the effective one-dimensional scalar potential, as well as the corresponding quasi-equilibrium and the effective diffusion coefficient can be always found.
On the solution of reaction-diffusion equations with double diffusivity
Directory of Open Access Journals (Sweden)
B. D. Aggarwala
1987-01-01
Full Text Available In this paper, solution of a pair of Coupled Partial Differential equations is derived. These equations arise in the solution of problems of flow of homogeneous liquids in fissured rocks and heat conduction involving two temperatures. These equations have been considered by Hill and Aifantis, but the technique we use appears to be simpler and more direct, and some new results are derived. Also, discussion about the propagation of initial discontinuities is given and illustrated with graphs of some special cases.
A Bloch-Torrey Equation for Diffusion in a Deforming Media
International Nuclear Information System (INIS)
Rohmer, Damien; Gullberg, Grant T.
2006-01-01
Diffusion Tensor Magnetic Resonance Imaging (DTMRI)technique enables the measurement of diffusion parameters and therefore, informs on the structure of the biological tissue. This technique is applied with success to the static organs such as brain. However, the diffusion measurement on the dynamically deformable organs such as the in-vivo heart is a complex problem that has however a great potential in the measurement of cardiac health. In order to understand the behavior of the Magnetic Resonance (MR)signal in a deforming media, the Bloch-Torrey equation that leads the MR behavior is expressed in general curvilinear coordinates. These coordinates enable to follow the heart geometry and deformations through time. The equation is finally discredited and presented in a numerical formulation using implicit methods, in order to get a stable scheme that can be applied to any smooth deformations. Diffusion process enables the link between the macroscopic behavior of molecules and the microscopic structure in which they evolve. The measurement of diffusion in biological tissues is therefore of major importance in understanding the complex underlying structure that cannot be studied directly. The Diffusion Tensor Magnetic Resonance Imaging(DTMRI) technique enables the measurement of diffusion parameters and therefore provides information on the structure of the biological tissue. This technique has been applied with success to static organs such as the brain. However, diffusion measurement of dynamically deformable organs such as the in-vivo heart remains a complex problem, which holds great potential in determining cardiac health. In order to understand the behavior of the magnetic resonance (MR) signal in a deforming media, the Bloch-Torrey equation that defines the MR behavior is expressed in general curvilinear coordinates. These coordinates enable us to follow the heart geometry and deformations through time. The equation is finally discredited and presented in a
How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems
Cortazar, C.; Elgueta, M.; Rossi, J. D.; Wolanski, N.
2006-01-01
We present a model for nonlocal diffusion with Neumann boundary conditions in a bounded smooth domain prescribing the flux through the boundary. We study the limit of this family of nonlocal diffusion operators when a rescaling parameter related to the kernel of the nonlocal operator goes to zero. We prove that the solutions of this family of problems converge to a solution of the heat equation with Neumann boundary conditions.
FEM for time-fractional diffusion equations, novel optimal error analyses
Mustapha, Kassem
2016-01-01
A semidiscrete Galerkin finite element method applied to time-fractional diffusion equations with time-space dependent diffusivity on bounded convex spatial domains will be studied. The main focus is on achieving optimal error results with respect to both the convergence order of the approximate solution and the regularity of the initial data. By using novel energy arguments, for each fixed time $t$, optimal error bounds in the spatial $L^2$- and $H^1$-norms are derived for both cases: smooth...
Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue
2018-01-01
This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0 . Furthermore, we prove the global existence and uniqueness of C^{α ,β } -solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1 -space. The exponential convergence rate is also derived.
Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue
2018-06-01
This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0. Furthermore, we prove the global existence and uniqueness of C^{α ,β }-solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1-space. The exponential convergence rate is also derived.
Energy Technology Data Exchange (ETDEWEB)
Bailey, T S; Adams, M L [Texas A M Univ., Dept. of Nuclear Engineering, College Station, TX (United States); Yang, B; Zika, M R [Lawrence Livermore National Lab., Livermore, CA (United States)
2005-07-01
We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses piecewise linear weight and basis functions in the finite element approximation, and it can be applied on arbitrary polygonal (2-dimensional) or polyhedral (3-dimensional) grids. We show that this new PWL method gives solutions comparable to those from Palmer's finite-volume method. However, since the PWL method produces a symmetric positive definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids. (authors)
Application of Fokker-Planck equation in positron diffusion trapping model
International Nuclear Information System (INIS)
Bartosova, I.; Ballo, P.
2015-01-01
This paper is a theoretical prelude to future work involving positron diffusion in solids for the purpose of positron annihilation lifetime spectroscopy (PALS). PALS is a powerful tool used to study defects present in materials. However, the behavior of positrons in solids is a process hard to describe. Various models have been established to undertake this task. Our preliminary model is based on the Diffusion Trapping Model (DTM) described by partial differential Fokker-Planck equation and is solved via time discretization. Fokker-Planck equation describes the time evolution of the probability density function of velocity of a particle under the influence of various forces. (authors)
Simulation of the diffusion equation on a type-II quantum computer
International Nuclear Information System (INIS)
Berman, G.P.; Kamenev, D.I.; Ezhov, A.A.; Yepez, J.
2002-01-01
A lattice-gas algorithm for the one-dimensional diffusion equation is realized using radio frequency pulses in a one-dimensional spin system. The model is a large array of quantum two-qubit nodes interconnected by the nearest-neighbor classical communication channels. We present a quantum protocol for implementation of the quantum collision operator and a method for initialization and reinitialization of quantum states. Numerical simulations of the quantum-classical dynamics are in good agreement with the analytic solution for the diffusion equation
A Fully Discrete Galerkin Method for a Nonlinear Space-Fractional Diffusion Equation
Directory of Open Access Journals (Sweden)
Yunying Zheng
2011-01-01
Full Text Available The spatial transport process in fractal media is generally anomalous. The space-fractional advection-diffusion equation can be used to characterize such a process. In this paper, a fully discrete scheme is given for a type of nonlinear space-fractional anomalous advection-diffusion equation. In the spatial direction, we use the finite element method, and in the temporal direction, we use the modified Crank-Nicolson approximation. Here the fractional derivative indicates the Caputo derivative. The error estimate for the fully discrete scheme is derived. And the numerical examples are also included which are in line with the theoretical analysis.
Biswas, Samir Kumar; Kanhirodan, Rajan; Vasu, Ram Mohan; Roy, Debasish
2011-08-01
We explore a pseudodynamic form of the quadratic parameter update equation for diffuse optical tomographic reconstruction from noisy data. A few explicit and implicit strategies for obtaining the parameter updates via a semianalytical integration of the pseudodynamic equations are proposed. Despite the ill-posedness of the inverse problem associated with diffuse optical tomography, adoption of the quadratic update scheme combined with the pseudotime integration appears not only to yield higher convergence, but also a muted sensitivity to the regularization parameters, which include the pseudotime step size for integration. These observations are validated through reconstructions with both numerically generated and experimentally acquired data.
An analytical solution for the two-group kinetic neutron diffusion equation in cylindrical geometry
International Nuclear Information System (INIS)
Fernandes, Julio Cesar L.; Vilhena, Marco Tullio; Bodmann, Bardo Ernst
2011-01-01
Recently the two-group Kinetic Neutron Diffusion Equation with six groups of delay neutron precursor in a rectangle was solved by the Laplace Transform Technique. In this work, we report on an analytical solution for this sort of problem but in cylindrical geometry, assuming a homogeneous and infinite height cylinder. The solution is obtained applying the Hankel Transform to the Kinetic Diffusion equation and solving the transformed problem by the same procedure used in the rectangle. We also present numerical simulations and comparisons against results available in literature. (author)
Generalized Analytical Treatment Of The Source Strength In The Solution Of The Diffusion Equation
International Nuclear Information System (INIS)
Essa, Kh.S.M.; EI-Otaify, M.S.
2007-01-01
The source release strength (which is an integral part of the mathematical formulation of the diffusion equation) together with the boundary conditions leads to three different forms of the diffusion equation. The obtained forms have been solved analytically under different boundary conditions, by using transformation of axis, cosine, and Fourier transformation. Three equivalent alternative mathematical formulations of the problem have been obtained. The estimated solution of the concentrations at the ground source has been used for comparison with observed concentrations data for SF 6 tracer experiments in low wind and unstable conditions at lIT Delhi sports ground. A good agreement between estimated and observed concentrations is found
NUMERICAL METHODS FOR SOLVING THE MULTI-TERM TIME-FRACTIONAL WAVE-DIFFUSION EQUATION.
Liu, F; Meerschaert, M M; McGough, R J; Zhuang, P; Liu, Q
2013-03-01
In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian.
NUMERICAL METHODS FOR SOLVING THE MULTI-TERM TIME-FRACTIONAL WAVE-DIFFUSION EQUATION
Liu, F.; Meerschaert, M.M.; McGough, R.J.; Zhuang, P.; Liu, Q.
2013-01-01
In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and technique...
A moving mesh finite difference method for equilibrium radiation diffusion equations
Energy Technology Data Exchange (ETDEWEB)
Yang, Xiaobo, E-mail: xwindyb@126.com [Department of Mathematics, College of Science, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); Huang, Weizhang, E-mail: whuang@ku.edu [Department of Mathematics, University of Kansas, Lawrence, KS 66045 (United States); Qiu, Jianxian, E-mail: jxqiu@xmu.edu.cn [School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computing, Xiamen University, Xiamen, Fujian 361005 (China)
2015-10-01
An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.
Construction and analysis of lattice Boltzmann methods applied to a 1D convection-diffusion equation
International Nuclear Information System (INIS)
Dellacherie, Stephane
2014-01-01
To solve the 1D (linear) convection-diffusion equation, we construct and we analyze two LBM schemes built on the D1Q2 lattice. We obtain these LBM schemes by showing that the 1D convection-diffusion equation is the fluid limit of a discrete velocity kinetic system. Then, we show in the periodic case that these LBM schemes are equivalent to a finite difference type scheme named LFCCDF scheme. This allows us, firstly, to prove the convergence in L∞ of these schemes, and to obtain discrete maximum principles for any time step in the case of the 1D diffusion equation with different boundary conditions. Secondly, this allows us to obtain most of these results for the Du Fort-Frankel scheme for a particular choice of the first iterate. We also underline that these LBM schemes can be applied to the (linear) advection equation and we obtain a stability result in L∞ under a classical CFL condition. Moreover, by proposing a probabilistic interpretation of these LBM schemes, we also obtain Monte-Carlo algorithms which approach the 1D (linear) diffusion equation. At last, we present numerical applications justifying these results. (authors)
Solutions of diffusion equations in two-dimensional cylindrical geometry by series expansions
International Nuclear Information System (INIS)
Ohtani, Nobuo
1976-01-01
A solution of the multi-group multi-regional diffusion equation in two-dimensional cylindrical (rho-z) geometry is obtained in the form of a regionwise double series composed of Bessel and trigonometrical functions. The diffusion equation is multiplied by weighting functions, which satisfy the homogeneous part of the diffusion equation, and the products are integrated over the region for obtaining the equations to determine the fluxes and their normal derivatives at the region boundaries. Multiplying the diffusion equation by each function of the set used for the flux expansion, then integrating the products, the coefficients of the double series of the flux inside each region are calculated using the boundary values obtained above. Since the convergence of the series thus obtained is slow especially near the region boundaries, a method for improving the convergence has been developed. The double series of the flux is separated into two parts. The normal derivative at the region boundary of the first part is zero, and that of the second part takes the value which is obtained in the first stage of this method. The second part is replaced by a continuous function, and the flux is represented by the sum of the continuous function and the double series. A sample critical problem of a two-group two-region system is numerically studied. The results show that the present method yields very accurately the flux integrals in each region with only a small number of expansion terms. (auth.)
A moving mesh finite difference method for equilibrium radiation diffusion equations
International Nuclear Information System (INIS)
Yang, Xiaobo; Huang, Weizhang; Qiu, Jianxian
2015-01-01
An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation
Solution of two group neutron diffusion equation by using homotopy analysis method
International Nuclear Information System (INIS)
Cavdar, S.
2010-01-01
The Homotopy Analysis Method (HAM), proposed in 1992 by Shi Jun Liao and has been developed since then, is based on differential geometry as well as homotopy which is a fundamental concept in topology. It has proved to be useful for obtaining series solutions of many such problems involving algebraic, linear/non-linear, ordinary/partial differential equations, differential-integral equations, differential-difference equations, and coupled equations of them. Briefly, through HAM, it is possible to construct a continuous mapping of an initial guess approximation to the exact solution of the equation of concern. An auxiliary linear operator is chosen to construct such kind of a continuous mapping and an auxiliary parameter is used to ensure the convergence of series solution. We present the solutions of two-group neutron diffusion equation through HAM in this work. We also compare the results with that obtained by other well-known solution analytical and numeric methods.
New diffusion-like solutions of one-speed transport equations in spherical geometry
International Nuclear Information System (INIS)
Sahni, D.C.
1988-01-01
Stationary, one-speed, spherically symmetric transport equations are considered in a conservative medium. Closed-form expressions are obtained for the angular flux ψ(r, μ) that yield a total flux varying as 1/r by using Sonine transforms. Properties of this solution are studied and it is shown that the solution can not be identified as a diffusion mode solution of the transport equation. Limitations of the Sonine transform technique are noted. (author)
Molecular dynamics on diffusive time scales from the phase-field-crystal equation.
Chan, Pak Yuen; Goldenfeld, Nigel; Dantzig, Jon
2009-03-01
We extend the phase-field-crystal model to accommodate exact atomic configurations and vacancies by requiring the order parameter to be non-negative. The resulting theory dictates the number of atoms and describes the motion of each of them. By solving the dynamical equation of the model, which is a partial differential equation, we are essentially performing molecular dynamics simulations on diffusive time scales. To illustrate this approach, we calculate the two-point correlation function of a fluid.
Agarwal, P.; El-Sayed, A. A.
2018-06-01
In this paper, a new numerical technique for solving the fractional order diffusion equation is introduced. This technique basically depends on the Non-Standard finite difference method (NSFD) and Chebyshev collocation method, where the fractional derivatives are described in terms of the Caputo sense. The Chebyshev collocation method with the (NSFD) method is used to convert the problem into a system of algebraic equations. These equations solved numerically using Newton's iteration method. The applicability, reliability, and efficiency of the presented technique are demonstrated through some given numerical examples.
Reduced equations of motion for quantum systems driven by diffusive Markov processes.
Sarovar, Mohan; Grace, Matthew D
2012-09-28
The expansion of a stochastic Liouville equation for the coupled evolution of a quantum system and an Ornstein-Uhlenbeck process into a hierarchy of coupled differential equations is a useful technique that simplifies the simulation of stochastically driven quantum systems. We expand the applicability of this technique by completely characterizing the class of diffusive Markov processes for which a useful hierarchy of equations can be derived. The expansion of this technique enables the examination of quantum systems driven by non-Gaussian stochastic processes with bounded range. We present an application of this extended technique by simulating Stark-tuned Förster resonance transfer in Rydberg atoms with nonperturbative position fluctuations.
Spectral and evolutionary analysis of advection-diffusion equations and the shear flow paradigm
International Nuclear Information System (INIS)
Thyagaraja, A.; Loureiro, N.; Knight, P.J.
2002-01-01
Advection-diffusion equations occur in a wide variety of fields in many contexts of active and passive transport in fluids and plasmas. The effects of sheared advective flows in the presence of irreversible processes such as diffusion and viscosity are of considerable current interest in tokamak and astrophysical contexts, where they are thought to play a key role in both transport and the dynamical structures characteristic of electromagnetic plasma turbulence. In this paper we investigate the spectral and evolutionary properties of relatively simple, linear, advection-diffusion equations. We apply analytical approaches based on standard Green's function methods to obtain insight into the nature of the spectra when the advective and diffusive effects occur separately and in combination. In particular, the physically interesting limit of small (but finite) diffusion is studied in detail. The analytical work is extended and supplemented by numerical techniques involving a direct solution of the eigenvalue problem as well as evolutionary studies of the initial value problem using a parallel code, CADENCE. The three approaches are complementary and entirely consistent with each other when appropriate comparison is made. They reveal different aspects of the properties of the advection-diffusion equation, such as the ability of sheared flows to generate a direct cascade to high wave numbers transverse to the advection and the consequent enhancement of even small amounts of diffusivity. The invariance properties of the spectra in the low diffusivity limit and the ability of highly sheared, jet-like flows to 'confine' transport to low shear regions are demonstrated. The implications of these properties in a wider context are discussed and set in perspective. (author)
Applicability of the Fokker-Planck equation to the description of diffusion effects on nucleation
Sorokin, M. V.; Dubinko, V. I.; Borodin, V. A.
2017-01-01
The nucleation of islands in a supersaturated solution of surface adatoms is considered taking into account the possibility of diffusion profile formation in the island vicinity. It is shown that the treatment of diffusion-controlled cluster growth in terms of the Fokker-Planck equation is justified only provided certain restrictions are satisfied. First of all, the standard requirement that diffusion profiles of adatoms quickly adjust themselves to the actual island sizes (adiabatic principle) can be realized only for sufficiently high island concentration. The adiabatic principle is essential for the probabilities of adatom attachment to and detachment from island edges to be independent of the adatom diffusion profile establishment kinetics, justifying the island nucleation treatment as the Markovian stochastic process. Second, it is shown that the commonly used definition of the "diffusion" coefficient in the Fokker-Planck equation in terms of adatom attachment and detachment rates is justified only provided the attachment and detachment are statistically independent, which is generally not the case for the diffusion-limited growth of islands. We suggest a particular way to define the attachment and detachment rates that allows us to satisfy this requirement as well. When applied to the problem of surface island nucleation, our treatment predicts the steady-state nucleation barrier, which coincides with the conventional thermodynamic expression, even though no thermodynamic equilibrium is assumed and the adatom diffusion is treated explicitly. The effect of adatom diffusional profiles on the nucleation rate preexponential factor is also discussed. Monte Carlo simulation is employed to analyze the applicability domain of the Fokker-Planck equation and the diffusion effect beyond it. It is demonstrated that a diffusional cloud is slowing down the nucleation process for a given monomer interaction with the nucleus edge.
The precise time-dependent solution of the Fokker–Planck equation with anomalous diffusion
Energy Technology Data Exchange (ETDEWEB)
Guo, Ran; Du, Jiulin, E-mail: jiulindu@aliyun.com
2015-08-15
We study the time behavior of the Fokker–Planck equation in Zwanzig’s rule (the backward-Ito’s rule) based on the Langevin equation of Brownian motion with an anomalous diffusion in a complex medium. The diffusion coefficient is a function in momentum space and follows a generalized fluctuation–dissipation relation. We obtain the precise time-dependent analytical solution of the Fokker–Planck equation and at long time the solution approaches to a stationary power-law distribution in nonextensive statistics. As a test, numerically we have demonstrated the accuracy and validity of the time-dependent solution. - Highlights: • The precise time-dependent solution of the Fokker–Planck equation with anomalous diffusion is found. • The anomalous diffusion satisfies a generalized fluctuation–dissipation relation. • At long time the time-dependent solution approaches to a power-law distribution in nonextensive statistics. • Numerically we have demonstrated the accuracy and validity of the time-dependent solution.
Evans functions and bifurcations of nonlinear waves of some nonlinear reaction diffusion equations
Zhang, Linghai
2017-10-01
The main purposes of this paper are to accomplish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear system of reaction diffusion equations ut =uxx + α [ βH (u - θ) - u ] - w, wt = ε (u - γw) and to establish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ], under different conditions on the model constants. To establish the bifurcation for the system, we will study the existence and instability of a standing pulse solution if 0 1; the existence and instability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and 0 traveling wave front as well as the existence and instability of a standing pulse solution if 0 traveling wave front as well as the existence and instability of an upside down standing pulse solution if 0 traveling wave back of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ] -w0, where w0 = α (β - 2 θ) > 0 is a positive constant, if 0 motivation to study the existence, stability, instability and bifurcations of the nonlinear waves is to study the existence and stability/instability of infinitely many fast/slow multiple traveling pulse solutions of the nonlinear system of reaction diffusion equations. The existence and stability of infinitely many fast multiple traveling pulse solutions are of great interests in mathematical neuroscience.
Bifurcation Analysis of Gene Propagation Model Governed by Reaction-Diffusion Equations
Directory of Open Access Journals (Sweden)
Guichen Lu
2016-01-01
Full Text Available We present a theoretical analysis of the attractor bifurcation for gene propagation model governed by reaction-diffusion equations. We investigate the dynamical transition problems of the model under the homogeneous boundary conditions. By using the dynamical transition theory, we give a complete characterization of the bifurcated objects in terms of the biological parameters of the problem.
The precise time-dependent solution of the Fokker–Planck equation with anomalous diffusion
International Nuclear Information System (INIS)
Guo, Ran; Du, Jiulin
2015-01-01
We study the time behavior of the Fokker–Planck equation in Zwanzig’s rule (the backward-Ito’s rule) based on the Langevin equation of Brownian motion with an anomalous diffusion in a complex medium. The diffusion coefficient is a function in momentum space and follows a generalized fluctuation–dissipation relation. We obtain the precise time-dependent analytical solution of the Fokker–Planck equation and at long time the solution approaches to a stationary power-law distribution in nonextensive statistics. As a test, numerically we have demonstrated the accuracy and validity of the time-dependent solution. - Highlights: • The precise time-dependent solution of the Fokker–Planck equation with anomalous diffusion is found. • The anomalous diffusion satisfies a generalized fluctuation–dissipation relation. • At long time the time-dependent solution approaches to a power-law distribution in nonextensive statistics. • Numerically we have demonstrated the accuracy and validity of the time-dependent solution
Boundedness for a system of reaction-diffusion equations with more general Arrhenius term. Pt. 1
International Nuclear Information System (INIS)
Okoya, S.S.
1992-11-01
In this paper, we consider an extended model of a coupled nonlinear reaction-diffusion equation with Neumann-Neumann boundary conditions. We obtain upper linear growth bound for one of the components. We also find the corresponding bound for the case of Dirichlet-Dirichlet boundary conditions. (author). 12 refs
Three-dimensional h-adaptivity for the multigroup neutron diffusion equations
Wang, Yaqi; Bangerth, Wolfgang; Ragusa, Jean
2009-01-01
diffusion equation for reactor applications. In order to follow the physics closely, energy group-dependent meshes are employed. We present a novel algorithm for assembling the terms coupling shape functions from different meshes and show how it can be made
International Nuclear Information System (INIS)
Buckel, G.; Wouters, R. de; Pilate, S.
1977-01-01
The synthesis code KASY for an approximate solution of the three-dimensional neutron diffusion equation is described; the state of the art as well as envisaged program extensions and the application to tasks from the field of reactor designing are dealt with. (RW) [de
A asymptotic numerical method for the steady-state convection diffusion equation
International Nuclear Information System (INIS)
Wu Qiguang
1988-01-01
In this paper, A asymptotic numerical method for the steady-state Convection diffusion equation is proposed, which need not take very fine mesh size in the neighbourhood of the boundary layer. Numerical computation for model problem show that we can obtain the numerical solution in the boundary layer with moderate step size
Iterative method for obtaining the prompt and delayed alpha-modes of the diffusion equation
International Nuclear Information System (INIS)
Singh, K.P.; Degweker, S.B.; Modak, R.S.; Singh, Kanchhi
2011-01-01
Highlights: → A method for obtaining α-modes of the neutron diffusion equation has been developed. → The difference between the prompt and delayed modes is more pronounced for the higher modes. → Prompt and delayed modes differ more in reflector region. - Abstract: Higher modes of the neutron diffusion equation are required in some applications such as second order perturbation theory, and modal kinetics. In an earlier paper we had discussed a method for computing the α-modes of the diffusion equation. The discussion assumed that all neutrons are prompt. The present paper describes an extension of the method for finding the α-modes of diffusion equation with the inclusion of delayed neutrons. Such modes are particularly suitable for expanding the time dependent flux in a reactor for describing transients in a reactor. The method is illustrated by applying it to a three dimensional heavy water reactor model problem. The problem is solved in two and three neutron energy groups and with one and six delayed neutron groups. The results show that while the delayed α-modes are similar to λ-modes they are quite different from prompt modes. The difference gets progressively larger as we go to higher modes.
Solution of the diffusion equation in the GPT theory by the Laplace transform technique
International Nuclear Information System (INIS)
Lemos, R.S.M.; Vilhena, M.T.; Segatto, C.F.; Silva, M.T.
2003-01-01
In this work we present a analytical solution to the auxiliary and importance functions attained from the solution of a multigroup diffusion problem in a multilayered slab by the Laplace Transform technique. We also obtain the the transcendental equation for the effective multiplication factor, resulting from the application of the boundary and interface conditions. (author)
Instability of traveling waves of the convective-diffusive Cahn-Hilliard equation
International Nuclear Information System (INIS)
Gao Hongjun; Liu Changchun
2004-01-01
In this paper we study the instability of the traveling waves of the convective-diffusive Cahn-Hilliard equation. We prove that it is nonlinearly unstable under H 2 perturbations, for some traveling wave solution that is asymptotic to a constant as x→∞
Multigrid solution of the convection-diffusion equation with high-Reynolds number
Energy Technology Data Exchange (ETDEWEB)
Zhang, Jun [George Washington Univ., Washington, DC (United States)
1996-12-31
A fourth-order compact finite difference scheme is employed with the multigrid technique to solve the variable coefficient convection-diffusion equation with high-Reynolds number. Scaled inter-grid transfer operators and potential on vectorization and parallelization are discussed. The high-order multigrid method is unconditionally stable and produces solution of 4th-order accuracy. Numerical experiments are included.
A family of analytical solutions of a nonlinear diffusion-convection equation
Hayek, Mohamed
2018-01-01
Despite its popularity in many engineering fields, the nonlinear diffusion-convection equation has no general analytical solutions. This work presents a family of closed-form analytical traveling wave solutions for the nonlinear diffusion-convection equation with power law nonlinearities. This kind of equations typically appears in nonlinear problems of flow and transport in porous media. The solutions that are addressed are simple and fully analytical. Three classes of analytical solutions are presented depending on the type of the nonlinear diffusion coefficient (increasing, decreasing or constant). It has shown that the structure of the traveling wave solution is strongly related to the diffusion term. The main advantage of the proposed solutions is that they are presented in a unified form contrary to existing solutions in the literature where the derivation of each solution depends on the specific values of the diffusion and convection parameters. The proposed closed-form solutions are simple to use, do not require any numerical implementation, and may be implemented in a simple spreadsheet. The analytical expressions are also useful to mathematically analyze the structure and properties of the solutions.
Energy Technology Data Exchange (ETDEWEB)
Schunert, Sebastian; Hammer, Hans; Lou, Jijie; Wang, Yaqi; Ortensi, Javier; Gleicher, Frederick; Baker, Benjamin; DeHart, Mark; Martineau, Richard
2016-11-01
The common definition of the diffusion coeffcient as the inverse of three times the transport cross section is not compat- ible with voids. Morel introduced a non-local tensor diffusion coeffcient that remains finite in voids[1]. It can be obtained by solving an auxiliary transport problem without scattering or fission. Larsen and Trahan successfully applied this diffusion coeffcient for enhancing the accuracy of diffusion solutions of very high temperature reactor (VHTR) problems that feature large, optically thin channels in the z-direction [2]. It is demonstrated that a significant reduction of error can be achieved in particular in the optically thin region. Along the same line of thought, non-local diffusion tensors are applied modeling the TREAT reactor confirming the findings of Larsen and Trahan [3]. Previous work of the authors have introduced a flexible Nonlinear-Diffusion Acceleration (NDA) method for the first order S N equations discretized with the discontinuous finite element method (DFEM), [4], [5], [6]. This NDA method uses a scalar diffusion coeffcient in the low-order system that is obtained as the flux weighted average of the inverse transport cross section. Hence, it su?ers from very large and potentially unbounded diffusion coeffcients in the low order problem. However, it was noted that the choice of the diffusion coeffcient does not influence consistency of the method at convergence and hence the di?usion coeffcient is essentially a free parameter. The choice of the di?usion coeffcient does, however, affect the convergence behavior of the nonlinear di?usion iterations. Within this work we use Morel’s non-local di?usion coef- ficient in the aforementioned NDA formulation in lieu of the flux weighted inverse of three times the transport cross section. The goal of this paper is to demonstrate that significant en- hancement of the spectral properties of NDA can be achieved in near void regions. For testing the spectral properties of the NDA
Advanced diffusion model in compacted bentonite based on modified Poisson-Boltzmann equations
International Nuclear Information System (INIS)
Yotsuji, K.; Tachi, Y.; Nishimaki, Y.
2012-01-01
Document available in extended abstract form only. Diffusion and sorption of radionuclides in compacted bentonite are the key processes in the safe geological disposal of radioactive waste. JAEA has developed the integrated sorption and diffusion (ISD) model for compacted bentonite by coupling the pore water chemistry, sorption and diffusion processes in consistent way. The diffusion model accounts consistently for cation excess and anion exclusion in narrow pores in compacted bentonite by the electric double layer (EDL) theory. The firstly developed ISD model could predict the diffusivity of the monovalent cation/anion in compacted bentonite as a function of dry density. This ISD model was modified by considering the visco-electric effect, and applied for diffusion data for various radionuclides measured under wide range of conditions (salinity, density, etc.). This modified ISD model can give better quantitative agreement with diffusion data for monovalent cation/anion, however, the model predictions still disagree with experimental data for multivalent cation and complex species. In this study we extract the additional key factors influencing diffusion model in narrow charged pores, and the effects of these factors were investigated to reach a better understanding of diffusion processes in compacted bentonite. We investigated here the dielectric saturation effect and the excluded volume effect into the present ISD model and numerically solved these modified Poisson-Boltzmann equations. In the vicinity of the negatively charged clay surfaces, it is necessary to evaluate concentration distribution of electrolytes considering the dielectric saturation effects. The Poisson-Boltzmann (P-B) equation coupled with the dielectric saturation effects was solved numerically by using Runge-Kutta and Shooting methods. Figure 1(a) shows the concentration distributions of Na + as numerical solutions of the modified and original P-B equations for 0.01 M pore water, 800 kg m -3
Splitting Method for Solving the Coarse-Mesh Discretized Low-Order Quasi-Diffusion Equations
International Nuclear Information System (INIS)
Hiruta, Hikaru; Anistratov, Dmitriy Y.; Adams, Marvin L.
2005-01-01
In this paper, the development is presented of a splitting method that can efficiently solve coarse-mesh discretized low-order quasi-diffusion (LOQD) equations. The LOQD problem can reproduce exactly the transport scalar flux and current. To solve the LOQD equations efficiently, a splitting method is proposed. The presented method splits the LOQD problem into two parts: (a) the D problem that captures a significant part of the transport solution in the central parts of assemblies and can be reduced to a diffusion-type equation and (b) the Q problem that accounts for the complicated behavior of the transport solution near assembly boundaries. Independent coarse-mesh discretizations are applied: the D problem equations are approximated by means of a finite element method, whereas the Q problem equations are discretized using a finite volume method. Numerical results demonstrate the efficiency of the methodology presented. This methodology can be used to modify existing diffusion codes for full-core calculations (which already solve a version of the D problem) to account for transport effects
Rarefied gas flows through a curved channel: Application of a diffusion-type equation
Aoki, Kazuo; Takata, Shigeru; Tatsumi, Eri; Yoshida, Hiroaki
2010-11-01
Rarefied gas flows through a curved two-dimensional channel, caused by a pressure or a temperature gradient, are investigated numerically by using a macroscopic equation of convection-diffusion type. The equation, which was derived systematically from the Bhatnagar-Gross-Krook model of the Boltzmann equation and diffuse-reflection boundary condition in a previous paper [K. Aoki et al., "A diffusion model for rarefied flows in curved channels," Multiscale Model. Simul. 6, 1281 (2008)], is valid irrespective of the degree of gas rarefaction when the channel width is much shorter than the scale of variations of physical quantities and curvature along the channel. Attention is also paid to a variant of the Knudsen compressor that can produce a pressure raise by the effect of the change of channel curvature and periodic temperature distributions without any help of moving parts. In the process of analysis, the macroscopic equation is (partially) extended to the case of the ellipsoidal-statistical model of the Boltzmann equation.
An alternative atmospheric diffusion model for control room habitability assessments
International Nuclear Information System (INIS)
Ramsdell, J.V. Jr.
1990-01-01
The US Nuclear Regulatory (NRC) staff uses procedures to evaluate control room designs for compliance with General Design Criterion 19 of the Code of Federal Regulations, Appendix A, 10 CRF Part 50. These procedures deal primarily with radiation protection. However, other hazardous materials, for example, chlorine, pose a potential threat to control room habitability. The NRC is considering changes in their current procedures to update methods and extend their applicability. Two changes to the current procedures are suggested: using a puff diffusion model to estimate concentrations at air intakes and using a new method to estimate diffusion coefficients
Effects on atmospheric diffusion of meterological processes in coastal zones
International Nuclear Information System (INIS)
Raynor, G.S.
1977-01-01
Meteorological processes in coastal zones differ from those inland because of the surface discontinuity between land and water. The difference in heating between the two surfaces gives rise to sea or lake breeze circulations which can transport pollutants in nongradient directions and recirculate them over source areas. The step change in surface characteristics at the land-water interface also causes formation of internal boundary layers having different transport velocities and diffusion rates than unmodified air upwind or above the boundary. These features require a more extensive measurement program and more versatile diffusion models than at inland sites
International Nuclear Information System (INIS)
Lim, S C; Teo, L P
2009-01-01
Single-file diffusion behaves as normal diffusion at small time and as subdiffusion at large time. These properties can be described in terms of fractional Brownian motion with variable Hurst exponent or multifractional Brownian motion. We introduce a new stochastic process called Riemann–Liouville step fractional Brownian motion which can be regarded as a special case of multifractional Brownian motion with a step function type of Hurst exponent tailored for single-file diffusion. Such a step fractional Brownian motion can be obtained as a solution of the fractional Langevin equation with zero damping. Various kinds of fractional Langevin equations and their generalizations are then considered in order to decide whether their solutions provide the correct description of the long and short time behaviors of single-file diffusion. The cases where the dissipative memory kernel is a Dirac delta function, a power-law function and a combination of these functions are studied in detail. In addition to the case where the short time behavior of single-file diffusion behaves as normal diffusion, we also consider the possibility of a process that begins as ballistic motion
Ramezani, Maziar; Pasang, Timotius; Chen, Zhan; Neitzert, Thomas; Au, Dominique
2015-01-01
Although the cost of the heat treatment process is only a minor portion of the total production cost, it is arguably the most important and crucial stage on the determination of material quality. In the study of the carbon diffusion in H13 steel during austenitization, a series of heat treatment experiments had been conducted under different atmospheric conditions and length of treatment. Four austenitization atmospheric conditions were studied, i.e., heat treatment without atmospheric contro...
International Nuclear Information System (INIS)
Li, Gongsheng; Zhang, Dali; Jia, Xianzheng; Yamamoto, Masahiro
2013-01-01
This paper deals with an inverse problem of simultaneously identifying the space-dependent diffusion coefficient and the fractional order in the 1D time-fractional diffusion equation with smooth initial functions by using boundary measurements. The uniqueness results for the inverse problem are proved on the basis of the inverse eigenvalue problem, and the Lipschitz continuity of the solution operator is established. A modified optimal perturbation algorithm with a regularization parameter chosen by a sigmoid-type function is put forward for the discretization of the minimization problem. Numerical inversions are performed for the diffusion coefficient taking on different functional forms and the additional data having random noise. Several factors which have important influences on the realization of the algorithm are discussed, including the approximate space of the diffusion coefficient, the regularization parameter and the initial iteration. The inversion solutions are good approximations to the exact solutions with stability and adaptivity demonstrating that the optimal perturbation algorithm with the sigmoid-type regularization parameter is efficient for the simultaneous inversion. (paper)
Marin, D.; Ribeiro, M. A.; Ribeiro, H. V.; Lenzi, E. K.
2018-07-01
We investigate the solutions for a set of coupled nonlinear Fokker-Planck equations coupled by the diffusion coefficient in presence of external forces. The coupling by the diffusion coefficient implies that the diffusion of each species is influenced by the other and vice versa due to this term, which represents an interaction among them. The solutions for the stationary case are given in terms of the Tsallis distributions, when arbitrary external forces are considered. We also use the Tsallis distributions to obtain a time dependent solution for a linear external force. The results obtained from this analysis show a rich class of behavior related to anomalous diffusion, which can be characterized by compact or long-tailed distributions.
Singular solution of the Feller diffusion equation via a spectral decomposition
Gan, Xinjun; Waxman, David
2015-01-01
Feller studied a branching process and found that the distribution for this process approximately obeys a diffusion equation [W. Feller, in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability (University of California Press, Berkeley and Los Angeles, 1951), pp. 227-246]. This diffusion equation and its generalizations play an important role in many scientific problems, including, physics, biology, finance, and probability theory. We work under the assumption that the fundamental solution represents a probability density and should account for all of the probability in the problem. Thus, under the circumstances where the random process can be irreversibly absorbed at the boundary, this should lead to the presence of a Dirac delta function in the fundamental solution at the boundary. However, such a feature is not present in the standard approach (Laplace transformation). Here we require that the total integrated probability is conserved. This yields a fundamental solution which, when appropriate, contains a term proportional to a Dirac delta function at the boundary. We determine the fundamental solution directly from the diffusion equation via spectral decomposition. We obtain exact expressions for the eigenfunctions, and when the fundamental solution contains a Dirac delta function at the boundary, every eigenfunction of the forward diffusion operator contains a delta function. We show how these combine to produce a weight of the delta function at the boundary which ensures the total integrated probability is conserved. The solution we present covers cases where parameters are time dependent, thereby greatly extending its applicability.
Enhanced finite difference scheme for the neutron diffusion equation using the importance function
International Nuclear Information System (INIS)
Vagheian, Mehran; Vosoughi, Naser; Gharib, Morteza
2016-01-01
Highlights: • An enhanced finite difference scheme for the neutron diffusion equation is proposed. • A seven-step algorithm is considered based on the importance function. • Mesh points are distributed through entire reactor core with respect to the importance function. • The results all proved that the proposed algorithm is highly efficient. - Abstract: Mesh point positions in Finite Difference Method (FDM) of discretization for the neutron diffusion equation can remarkably affect the averaged neutron fluxes as well as the effective multiplication factor. In this study, by aid of improving the mesh point positions, an enhanced finite difference scheme for the neutron diffusion equation is proposed based on the neutron importance function. In order to determine the neutron importance function, the adjoint (backward) neutron diffusion calculations are performed in the same procedure as for the forward calculations. Considering the neutron importance function, the mesh points can be improved through the entire reactor core. Accordingly, in regions with greater neutron importance, density of mesh elements is higher than that in regions with less importance. The forward calculations are then performed for both of the uniform and improved non-uniform mesh point distributions and the results (the neutron fluxes along with the corresponding eigenvalues) for the two cases are compared with each other. The results are benchmarked against the reference values (with fine meshes) for Kang and Rod Bundle BWR benchmark problems. These benchmark cases revealed that the improved non-uniform mesh point distribution is highly efficient.
DIFFUSE DBD IN ATMOSPHERIC AIR AT DIFFERENT APPLIED PULSE WIDTHS
Directory of Open Access Journals (Sweden)
Ekaterina Alexandrovna Shershunova
2015-02-01
Full Text Available The paper deals with the realization and the diagnostics of the volume diffuse dielectric barrier discharge in 1-mm air gap when applying high voltage rectangular pulses to the electrodes. The effect of the applied pulse width on the discharge dissipated energy was studied in detail. It was found experimentally, the energy stayed nearly constant with the pulse elongation from 600 ns to 1 ms.
Energy Technology Data Exchange (ETDEWEB)
Ganev, K; Yordanov, D
1983-01-01
The formulation of a diffusion problem for numerical models, in which the near earth layer of the atmosphere (PSA) is considered parametrically relative to the zones of pollution (the protected zones) which are also located in the near earth layer of atmosphere, is examined. In modeling atmospheric pollution, the semiempirical equation of turublent diffusion is the starting point. The results are cited of numerical calculations of the functions of the effect for the city of Sofia (the case of an even relief and the disposition of the protected zone totally within the region for which the problem is being solved). The isolines of the integral function of the effect relative to the near earth layer of the atmosphere above the city of Sofia are cited for different meteorological conditions.
Liang, Yingjie; Chen, Wen; Magin, Richard L.
2016-07-01
Analytical solutions to the fractional diffusion equation are often obtained by using Laplace and Fourier transforms, which conveniently encode the order of the time and the space derivatives (α and β) as non-integer powers of the conjugate transform variables (s, and k) for the spectral and the spatial frequencies, respectively. This study presents a new solution to the fractional diffusion equation obtained using the Laplace transform and expressed as a Fox's H-function. This result clearly illustrates the kinetics of the underlying stochastic process in terms of the Laplace spectral frequency and entropy. The spectral entropy is numerically calculated by using the direct integration method and the adaptive Gauss-Kronrod quadrature algorithm. Here, the properties of spectral entropy are investigated for the cases of sub-diffusion and super-diffusion. We find that the overall spectral entropy decreases with the increasing α and β, and that the normal or Gaussian case with α = 1 and β = 2, has the lowest spectral entropy (i.e., less information is needed to describe the state of a Gaussian process). In addition, as the neighborhood over which the entropy is calculated increases, the spectral entropy decreases, which implies a spatial averaging or coarse graining of the material properties. Consequently, the spectral entropy is shown to provide a new way to characterize the temporal correlation of anomalous diffusion. Future studies should be designed to examine changes of spectral entropy in physical, chemical and biological systems undergoing phase changes, chemical reactions and tissue regeneration.
Analysis of nonlinear parabolic equations modeling plasma diffusion across a magnetic field
International Nuclear Information System (INIS)
Hyman, J.M.; Rosenau, P.
1984-01-01
We analyse the evolutionary behavior of the solution of a pair of coupled quasilinear parabolic equations modeling the diffusion of heat and mass of a magnetically confined plasma. The solutions's behavior, due to the nonlinear diffusion coefficients, exhibits many new phenomena. In short time, the solution converges into a highly organized symmetric pattern that is almost completely independent of initial data. The asymptotic dynamics then become very simple and take place in a finite dimensional space. These conclusions are backed by extensive numerical experimentation
Cooper, Samuel J; Niania, Mathew; Hoffmann, Franca; Kilner, John A
2017-05-17
A novel two-step Isotopic Exchange (IE) technique has been developed to investigate the influence of oxygen containing components of ambient air (such as H 2 O and CO 2 ) on the effective surface exchange coefficient (k*) of a common mixed ionic electronic conductor material. The two step 'back-exchange' technique was used to introduce a tracer diffusion profile, which was subsequently measured using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). The isotopic fraction of oxygen in a dense sample as a function of distance from the surface, before and after the second exchange step, could then be used to determine the surface exchange coefficient in each atmosphere. A new analytical solution was found to the diffusion equation in a semi-infinite domain with a variable surface exchange boundary, for the special case where D* and k* are constant for all exchange steps. This solution validated the results of a numerical, Crank-Nicolson type finite-difference simulation, which was used to extract the parameters from the experimental data. When modelling electrodes, D* and k* are important input parameters, which significantly impact performance. In this study La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ (LSCF6428) was investigated and it was found that the rate of exchange was increased by around 250% in ambient air compared to high purity oxygen at the same pO 2 . The three experiments performed in this study were used to validate the back-exchange approach and show its utility.
The characteristic features of the atmospheric diffusion of pollutants
International Nuclear Information System (INIS)
Schultz, H.
1986-01-01
The publication facilitates access to the development and effects of air pollution caused by the major emission sources by way of discussing the atmospheric dispersion of pollutants and the processes involved. Apart from the physical ratings of atmospheric pollutants the author focuses on the meteorological parameters determining the dispersion process as well as on the unavoidable statistical variations. Representative realistic maximum and minimum values indicating the relation between emissions from the relevant sources and the resulting air pollution allow an expeditious evaluation of possible environmental impacts classified by the different types of pollutants. The publication not only discusses the direct incorporation, that is the breathing of contaminated air or the absorption of food grown or produced in contaminated regions but also refers to radiation doses which due to the presence of radioactive substances accumulate in the human organism. Comprehensive references are annexed to facilitate access to relevant problems connected with the subject discussed. (orig./HP) [de
A Bloch-Torrey Equation for Diffusion in a Deforming Media
Energy Technology Data Exchange (ETDEWEB)
Rohmer, Damien; Gullberg, Grant T.
2006-12-29
Diffusion Tensor Magnetic Resonance Imaging (DTMRI)technique enables the measurement of diffusion parameters and therefore,informs on the structure of the biological tissue. This technique isapplied with success to the static organs such as brain. However, thediffusion measurement on the dynamically deformable organs such as thein-vivo heart is a complex problem that has however a great potential inthe measurement of cardiac health. In order to understand the behavior ofthe Magnetic Resonance (MR)signal in a deforming media, the Bloch-Torreyequation that leads the MR behavior is expressed in general curvilinearcoordinates. These coordinates enable to follow the heart geometry anddeformations through time. The equation is finally discretized andpresented in a numerical formulation using implicit methods, in order toget a stable scheme that can be applied to any smooth deformations.Diffusion process enables the link between the macroscopic behavior ofmolecules and themicroscopic structure in which they evolve. Themeasurement of diffusion in biological tissues is therefore of majorimportance in understanding the complex underlying structure that cannotbe studied directly. The Diffusion Tensor Magnetic ResonanceImaging(DTMRI) technique enables the measurement of diffusion parametersand therefore provides information on the structure of the biologicaltissue. This technique has been applied with success to static organssuch as the brain. However, diffusion measurement of dynamicallydeformable organs such as the in-vivo heart remains a complex problem,which holds great potential in determining cardiac health. In order tounderstand the behavior of the magnetic resonance (MR) signal in adeforming media, the Bloch-Torrey equation that defines the MR behavioris expressed in general curvilinear coordinates. These coordinates enableus to follow the heart geometry and deformations through time. Theequation is finally discretized and presented in a numerical formulationusing
From quantum stochastic differential equations to Gisin-Percival state diffusion
Parthasarathy, K. R.; Usha Devi, A. R.
2017-08-01
Starting from the quantum stochastic differential equations of Hudson and Parthasarathy [Commun. Math. Phys. 93, 301 (1984)] and exploiting the Wiener-Itô-Segal isomorphism between the boson Fock reservoir space Γ (L2(R+ ) ⊗(Cn⊕Cn ) ) and the Hilbert space L2(μ ) , where μ is the Wiener probability measure of a complex n-dimensional vector-valued standard Brownian motion {B (t ) ,t ≥0 } , we derive a non-linear stochastic Schrödinger equation describing a classical diffusion of states of a quantum system, driven by the Brownian motion B. Changing this Brownian motion by an appropriate Girsanov transformation, we arrive at the Gisin-Percival state diffusion equation [N. Gisin and J. Percival, J. Phys. A 167, 315 (1992)]. This approach also yields an explicit solution of the Gisin-Percival equation, in terms of the Hudson-Parthasarathy unitary process and a randomized Weyl displacement process. Irreversible dynamics of system density operators described by the well-known Gorini-Kossakowski-Sudarshan-Lindblad master equation is unraveled by coarse-graining over the Gisin-Percival quantum state trajectories.
A study of atmospheric diffusion from the LANDSAT imagery. [pollution transport over the ocean
Dejesusparada, N. (Principal Investigator); Viswanadham, Y.; Torsani, J. A.
1981-01-01
LANDSAT multispectral scanner data of the smoke plumes which originated in eastern Cabo Frio, Brazil and crossed over into the Atlantic Ocean, are analyzed to illustrate how high resolution LANDSAT imagery can aid meteorologists in evaluating specific air pollution events. The eleven LANDSAT images selected are for different months and years. The results show that diffusion is governed primarily by water and air temperature differences. With colder water, low level air is very stable and the vertical diffusion is minimal; but water warmer than the air induces vigorous diffusion. The applicability of three empirical methods for determining the horizontal eddy diffusivity coefficient in the Gaussian plume formula was evaluated with the estimated standard deviation of the crosswind distribution of material in the plume from the LANDSAT imagery. The vertical diffusion coefficient in stable conditions is estimated using Weinstock's formulation. These results form a data base for use in the development and validation of meso scale atmospheric diffusion models.
Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with Holes
Cortazar, C.; Elgueta, M.; Quiros, F.; Wolanski, N.
2011-01-01
The paper deals with the asymptotic behavior of solutions to a non-local diffusion equation, $u_t=J*u-u:=Lu$, in an exterior domain, $\\Omega$, which excludes one or several holes, and with zero Dirichlet data on $\\mathbb{R}^N\\setminus\\Omega$. When the space dimension is three or more this behavior is given by a multiple of the fundamental solution of the heat equation away from the holes. On the other hand, if the solution is scaled according to its decay factor, close to the holes it behaves...
The Transport Equation in Optically Thick Media: Discussion of IMC and its Diffusion Limit
Energy Technology Data Exchange (ETDEWEB)
Szoke, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brooks, E. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-07-12
We discuss the limits of validity of the Implicit Monte Carlo (IMC) method for the transport of thermally emitted radiation. The weakened coupling between the radiation and material energy of the IMC method causes defects in handling problems with strong transients. We introduce an approach to asymptotic analysis for the transport equation that emphasizes the fact that the radiation and material temperatures are always different in time-dependent problems, and we use it to show that IMC does not produce the correct diffusion limit. As this is a defect of IMC in the continuous equations, no improvement to its discretization can remedy it.
Lamb, George L
1995-01-01
INTRODUCTORY APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS. With Emphasis on Wave Propagation and Diffusion. This is the ideal text for students and professionals who have some familiarity with partial differential equations, and who now wish to consolidate and expand their knowledge. Unlike most other texts on this topic, it interweaves prior knowledge of mathematics and physics, especially heat conduction and wave motion, into a presentation that demonstrates their interdependence. The result is a superb teaching text that reinforces the reader's understanding of both mathematics and physic
A self-consistent nodal method in response matrix formalism for the multigroup diffusion equations
International Nuclear Information System (INIS)
Malambu, E.M.; Mund, E.H.
1996-01-01
We develop a nodal method for the multigroup diffusion equations, based on the transverse integration procedure (TIP). The efficiency of the method rests upon the convergence properties of a high-order multidimensional nodal expansion and upon numerical implementation aspects. The discrete 1D equations are cast in response matrix formalism. The derivation of the transverse leakage moments is self-consistent i.e. does not require additional assumptions. An outstanding feature of the method lies in the linear spatial shape of the local transverse leakage for the first-order scheme. The method is described in the two-dimensional case. The method is validated on some classical benchmark problems. (author)
The determination of an unknown boundary condition in a fractional diffusion equation
Rundell, William
2013-07-01
In this article we consider an inverse boundary problem, in which the unknown boundary function ∂u/∂v = f(u) is to be determined from overposed data in a time-fractional diffusion equation. Based upon the free space fundamental solution, we derive a representation for the solution f as a nonlinear Volterra integral equation of second kind with a weakly singular kernel. Uniqueness and reconstructibility by iteration is an immediate result of a priori assumption on f and applying the fixed point theorem. Numerical examples are presented to illustrate the validity and effectiveness of the proposed method. © 2013 Copyright Taylor and Francis Group, LLC.
Zhong, Jiaqi; Zeng, Cheng; Yuan, Yupeng; Zhang, Yuzhe; Zhang, Ye
2018-04-01
The aim of this paper is to present an explicit numerical algorithm based on improved spectral Galerkin method for solving the unsteady diffusion-convection-reaction equation. The principal characteristics of this approach give the explicit eigenvalues and eigenvectors based on the time-space separation method and boundary condition analysis. With the help of Fourier series and Galerkin truncation, we can obtain the finite-dimensional ordinary differential equations which facilitate the system analysis and controller design. By comparing with the finite element method, the numerical solutions are demonstrated via two examples. It is shown that the proposed method is effective.
Directory of Open Access Journals (Sweden)
Ya-Juan Hao
2013-01-01
Full Text Available The main object of this paper is to investigate the Helmholtz and diffusion equations on the Cantor sets involving local fractional derivative operators. The Cantor-type cylindrical-coordinate method is applied to handle the corresponding local fractional differential equations. Two illustrative examples for the Helmholtz and diffusion equations on the Cantor sets are shown by making use of the Cantorian and Cantor-type cylindrical coordinates.
International Nuclear Information System (INIS)
Sandev, D. Trivche
2010-01-01
The fractional calculus basis, Mittag-Leffler functions, various relaxation-oscillation and diffusion-wave fractional order equation and systems of fractional order equations are considered in this thesis. To solve these fractional order equations analytical methods, such as the Laplace transform method and method of separation of variables are employed. Some applications of the fractional calculus are considered, particularly physical system with anomalous diffusive behavior. (Author)
Energy Technology Data Exchange (ETDEWEB)
Bailey, Teresa S. [Texas A and M University, Department of Nuclear Engineering, College Station, TX 77843-3133 (United States)], E-mail: baileyte@tamu.edu; Adams, Marvin L. [Texas A and M University, Department of Nuclear Engineering, College Station, TX 77843-3133 (United States)], E-mail: mladams@tamu.edu; Yang, Brian [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Zika, Michael R. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)], E-mail: zika@llnl.gov
2008-04-01
We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses recently introduced piecewise linear weight and basis functions in the finite element approximation and it can be applied on arbitrary polygonal (2D) or polyhedral (3D) grids. We first demonstrate some analytical properties of the PWL method and perform a simple mode analysis to compare the PWL method with Palmer's vertex-centered finite-volume method and with a bilinear continuous finite element method. We then show that this new PWL method gives solutions comparable to those from Palmer's. However, since the PWL method produces a symmetric positive-definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids.
Energy Technology Data Exchange (ETDEWEB)
Bailey, T.S.; Adams, M.L. [Texas A M Univ., Dept. of Nuclear Engineering, College Station, TX (United States); Yang, B.; Zika, M.R. [Lawrence Livermore National Lab., Livermore, CA (United States)
2005-07-01
We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses piecewise linear weight and basis functions in the finite element approximation, and it can be applied on arbitrary polygonal (2-dimensional) or polyhedral (3-dimensional) grids. We show that this new PWL method gives solutions comparable to those from Palmer's finite-volume method. However, since the PWL method produces a symmetric positive definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids. (authors)
International Nuclear Information System (INIS)
Bailey, Teresa S.; Adams, Marvin L.; Yang, Brian; Zika, Michael R.
2008-01-01
We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses recently introduced piecewise linear weight and basis functions in the finite element approximation and it can be applied on arbitrary polygonal (2D) or polyhedral (3D) grids. We first demonstrate some analytical properties of the PWL method and perform a simple mode analysis to compare the PWL method with Palmer's vertex-centered finite-volume method and with a bilinear continuous finite element method. We then show that this new PWL method gives solutions comparable to those from Palmer's. However, since the PWL method produces a symmetric positive-definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids
Energy Technology Data Exchange (ETDEWEB)
Zanette, Rodrigo; Petersen, Caudio Zen [Univ. Federal de Pelotas, Capao do Leao (Brazil). Programa de Pos Graduacao em Modelagem Matematica; Schramm, Marcello [Univ. Federal de Pelotas (Brazil). Centro de Engenharias; Zabadal, Jorge Rodolfo [Univ. Federal do Rio Grande do Sul, Tramandai (Brazil)
2017-05-15
In this paper a solution for the one-dimensional steady state Multilayer Multigroup Neutron Diffusion Equation in cartesian geometry by Fictitious Borders Power Method and a perturbative analysis of this solution is presented. For each new iteration of the power method, the neutron flux is reconstructed by polynomial interpolation, so that it always remains in a standard form. However when the domain is long, an almost singular matrix arises in the interpolation process. To eliminate this singularity the domain segmented in R regions, called fictitious regions. The last step is to solve the neutron diffusion equation for each fictitious region in analytical form locally. The results are compared with results present in the literature. In order to analyze the sensitivity of the solution, a perturbation in the nuclear parameters is inserted to determine how a perturbation interferes in numerical results of the solution.
Calculation of the power factor using the neutron diffusion hybrid equation
International Nuclear Information System (INIS)
Costa da Silva, Adilson; Carvalho da Silva, Fernando; Senra Martinez, Aquilino
2013-01-01
Highlights: ► A neutron diffusion hybrid equation with an external neutron source was used. ► Nodal expansion method to obtain the neutron flux was used. ► Nuclear power factors in each fuel element in the reactor core were calculated. ► The results obtained were very accurate. -- Abstract: In this paper, we used a neutron diffusion hybrid equation with an external neutron source to calculate nuclear power factors in each fuel element in the reactor core. We used the nodal expansion method to obtain the neutron flux for a given control rods bank position. The results were compared with results obtained for eigenvalue problem near criticality condition and fixed source problem during the start-up of the reactor, where external neutron sources are extremely important for the stabilization of external neutron detectors.
Energy Technology Data Exchange (ETDEWEB)
Costa da Silva, Adilson; Carvalho da Silva, Fernando [COPPE/UFRJ, Programa de Engenharia Nuclear, Caixa Postal 68509, 21941-914, Rio de Janeiro (Brazil); Senra Martinez, Aquilino, E-mail: aquilino@lmp.ufrj.br [COPPE/UFRJ, Programa de Engenharia Nuclear, Caixa Postal 68509, 21941-914, Rio de Janeiro (Brazil)
2011-07-15
Highlights: > We proposed a new neutron diffusion hybrid equation with external neutron source. > A coarse mesh finite difference method for the adjoint flux and reactivity calculation was developed. > 1/M curve to predict the criticality condition is used. - Abstract: We used the neutron diffusion hybrid equation, in cartesian geometry with external neutron sources to predict the subcritical multiplication of neutrons in a pressurized water reactor, using a 1/M curve to predict the criticality condition. A Coarse Mesh Finite Difference Method was developed for the adjoint flux calculation and to obtain the reactivity values of the reactor. The results obtained were compared with benchmark values in order to validate the methodology presented in this paper.
International Nuclear Information System (INIS)
Costa da Silva, Adilson; Carvalho da Silva, Fernando; Senra Martinez, Aquilino
2011-01-01
Highlights: → We proposed a new neutron diffusion hybrid equation with external neutron source. → A coarse mesh finite difference method for the adjoint flux and reactivity calculation was developed. → 1/M curve to predict the criticality condition is used. - Abstract: We used the neutron diffusion hybrid equation, in cartesian geometry with external neutron sources to predict the subcritical multiplication of neutrons in a pressurized water reactor, using a 1/M curve to predict the criticality condition. A Coarse Mesh Finite Difference Method was developed for the adjoint flux calculation and to obtain the reactivity values of the reactor. The results obtained were compared with benchmark values in order to validate the methodology presented in this paper.
Entropy methods for reaction-diffusion equations: slowly growing a-priori bounds
Desvillettes, Laurent; Fellner, Klemens
2008-01-01
In the continuation of [Desvillettes, L., Fellner, K.: Exponential Decay toward Equilibrium via Entropy Methods for Reaction-Diffusion Equations. J. Math. Anal. Appl. 319 (2006), no. 1, 157-176], we study reversible reaction-diffusion equations via entropy methods (based on the free energy functional) for a 1D system of four species. We improve the existing theory by getting 1) almost exponential convergence in L1 to the steady state via a precise entropy-entropy dissipation estimate, 2) an explicit global L∞ bound via interpolation of a polynomially growing H1 bound with the almost exponential L1 convergence, and 3), finally, explicit exponential convergence to the steady state in all Sobolev norms.
Dynamical diffusion and renormalization group equation for the Fermi velocity in doped graphene
International Nuclear Information System (INIS)
Ardenghi, J.S.; Bechthold, P.; Jasen, P.; Gonzalez, E.; Juan, A.
2014-01-01
The aim of this work is to study the electron transport in graphene with impurities by introducing a generalization of linear response theory for linear dispersion relations and spinor wave functions. Current response and density response functions are derived and computed in the Boltzmann limit showing that in the former case a minimum conductivity appears in the no-disorder limit. In turn, from the generalization of both functions, an exact relation can be obtained that relates both. Combining this result with the relation given by the continuity equation it is possible to obtain general functional behavior of the diffusion pole. Finally, a dynamical diffusion is computed in the quasistatic limit using the definition of relaxation function. A lower cutoff must be introduced to regularize infrared divergences which allow us to obtain a full renormalization group equation for the Fermi velocity, which is solved up to order O(ℏ 2 )
International Nuclear Information System (INIS)
Kitazumi, Yuki; Shirai, Osamu; Yamamoto, Masahiro; Kano, Kenji
2013-01-01
Graphical abstract: - Highlights: • Diffuse double layers overlap with each other in the micropore. • The overlapping of the diffuse double layer affects the double layer capacitance. • The electric field becomes weak in the micropore. • The electroneutrality is unsatisfactory in the micropore. - Abstract: The structure of the diffuse double layer around a nm-sized micropore on porous electrodes has been studied by numerical simulation using the Poisson–Boltzmann equation. The double layer capacitance of the microporous electrode strongly depends on the electrode potential, the electrolyte concentration, and the size of the micropore. The potential and the electrolyte concentration dependence of the capacitance is different from that of the planner electrode based on the Gouy's theory. The overlapping of the diffuse double layer becomes conspicuous in the micropore. The overlapped diffuse double layer provides the mild electric field. The intensified electric field exists at the rim of the orifice of the micropore because of the expansion of the diffuse double layers. The characteristic features of microporous electrodes are caused by the heterogeneity of the electric field around the micropores
New Insights into the Fractional Order Diffusion Equation Using Entropy and Kurtosis.
Ingo, Carson; Magin, Richard L; Parrish, Todd B
2014-11-01
Fractional order derivative operators offer a concise description to model multi-scale, heterogeneous and non-local systems. Specifically, in magnetic resonance imaging, there has been recent work to apply fractional order derivatives to model the non-Gaussian diffusion signal, which is ubiquitous in the movement of water protons within biological tissue. To provide a new perspective for establishing the utility of fractional order models, we apply entropy for the case of anomalous diffusion governed by a fractional order diffusion equation generalized in space and in time. This fractional order representation, in the form of the Mittag-Leffler function, gives an entropy minimum for the integer case of Gaussian diffusion and greater values of spectral entropy for non-integer values of the space and time derivatives. Furthermore, we consider kurtosis, defined as the normalized fourth moment, as another probabilistic description of the fractional time derivative. Finally, we demonstrate the implementation of anomalous diffusion, entropy and kurtosis measurements in diffusion weighted magnetic resonance imaging in the brain of a chronic ischemic stroke patient.
New Insights into the Fractional Order Diffusion Equation Using Entropy and Kurtosis
Directory of Open Access Journals (Sweden)
Carson Ingo
2014-11-01
Full Text Available Fractional order derivative operators offer a concise description to model multi-scale, heterogeneous and non-local systems. Specifically, in magnetic resonance imaging, there has been recent work to apply fractional order derivatives to model the non-Gaussian diffusion signal, which is ubiquitous in the movement of water protons within biological tissue. To provide a new perspective for establishing the utility of fractional order models, we apply entropy for the case of anomalous diffusion governed by a fractional order diffusion equation generalized in space and in time. This fractional order representation, in the form of the Mittag–Leffler function, gives an entropy minimum for the integer case of Gaussian diffusion and greater values of spectral entropy for non-integer values of the space and time derivatives. Furthermore, we consider kurtosis, defined as the normalized fourth moment, as another probabilistic description of the fractional time derivative. Finally, we demonstrate the implementation of anomalous diffusion, entropy and kurtosis measurements in diffusion weighted magnetic resonance imaging in the brain of a chronic ischemic stroke patient.
Ancey, C.; Bohorquez, P.; Heyman, J.
2015-12-01
The advection-diffusion equation is one of the most widespread equations in physics. It arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Phenomenological laws are usually sufficient to derive this equation and interpret its terms. Stochastic models can also be used to derive it, with the significant advantage that they provide information on the statistical properties of particle activity. These models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. Among these stochastic models, the most common approach consists of random walk models. For instance, they have been used to model the random displacement of tracers in rivers. Here we explore an alternative approach, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. Birth-death Markov processes are well suited to this objective. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received no attention. We therefore look into the possibility of deriving the advection-diffusion equation (with a source term) within the framework of birth-death Markov processes. We show that in the continuum limit (when the cell size becomes vanishingly small), we can derive an advection-diffusion equation for particle activity. Yet while this derivation is formally valid in the continuum limit, it runs into difficulty in practical applications involving cells or meshes of finite length. Indeed, within our stochastic framework, particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due
Czech Academy of Sciences Publication Activity Database
Šesnic, S.; Dorić, V.; Poljak, D.; Šušnjara, A.; Artaud, J.F.
2018-01-01
Roč. 46, č. 4 (2018), s. 1027-1034 ISSN 0093-3813 R&D Projects: GA MŠk(CZ) 8D15001 Institutional support: RVO:61389021 Keywords : Finite element analysis * Tokamaks * current diffusion equation (CDE) * finite-element method (FEM) Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.052, year: 2016
Correction of the calculation of beam loading based in the RF power diffusion equation
International Nuclear Information System (INIS)
Silva, R. da.
1980-01-01
It is described an empirical correction based upon experimental datas of others authors in ORELA, GELINA and SLAC accelerators, to the calculation of the energy loss due to the beam loading effect as stated by the RF power diffusion equation theory an accelerating structure. It is obtained a dependence of this correction with the electron pulse full width half maximum, but independent of the electron energy. (author) [pt
Solutions to Time-Fractional Diffusion-Wave Equation in Cylindrical Coordinates
Directory of Open Access Journals (Sweden)
Povstenko YZ
2011-01-01
Full Text Available Nonaxisymmetric solutions to time-fractional diffusion-wave equation with a source term in cylindrical coordinates are obtained for an infinite medium. The solutions are found using the Laplace transform with respect to time , the Hankel transform with respect to the radial coordinate , the finite Fourier transform with respect to the angular coordinate , and the exponential Fourier transform with respect to the spatial coordinate . Numerical results are illustrated graphically.
Moving-boundary problems for the time-fractional diffusion equation
Directory of Open Access Journals (Sweden)
Sabrina D. Roscani
2017-02-01
Full Text Available We consider a one-dimensional moving-boundary problem for the time-fractional diffusion equation. The time-fractional derivative of order $\\alpha\\in (0,1$ is taken in the sense of Caputo. We study the asymptotic behaivor, as t tends to infinity, of a general solution by using a fractional weak maximum principle. Also, we give some particular exact solutions in terms of Wright functions.
A numerical solution for a class of time fractional diffusion equations with delay
Directory of Open Access Journals (Sweden)
Pimenov Vladimir G.
2017-09-01
Full Text Available This paper describes a numerical scheme for a class of fractional diffusion equations with fixed time delay. The study focuses on the uniqueness, convergence and stability of the resulting numerical solution by means of the discrete energy method. The derivation of a linearized difference scheme with convergence order O(τ2−α+ h4 in L∞-norm is the main purpose of this study. Numerical experiments are carried out to support the obtained theoretical results.
Homotopy decomposition method for solving one-dimensional time-fractional diffusion equation
Abuasad, Salah; Hashim, Ishak
2018-04-01
In this paper, we present the homotopy decomposition method with a modified definition of beta fractional derivative for the first time to find exact solution of one-dimensional time-fractional diffusion equation. In this method, the solution takes the form of a convergent series with easily computable terms. The exact solution obtained by the proposed method is compared with the exact solution obtained by using fractional variational homotopy perturbation iteration method via a modified Riemann-Liouville derivative.
Assessment of Effective Factor of Hydrogen Diffusion Equation Using FE Analysis
International Nuclear Information System (INIS)
Kim, Nak Hyun; Oh, Chang Sik; Kim, Yun Jae
2010-01-01
The coupled model with hydrogen transport and elasto-plasticity behavior was introduced. In this paper, the effective factor of the hydrogen diffusion equation has been described. To assess the effective factor, finite element (FE) analyses including hydrogen transport and mechanical loading for boundary layer specimens with low-strength steel properties are carried out. The results of the FE analyses are compared with those from previous studies conducted by Taha and Sofronis (2001)
An analytic algorithm for the space-time fractional reaction-diffusion equation
Directory of Open Access Journals (Sweden)
M. G. Brikaa
2015-11-01
Full Text Available In this paper, we solve the space-time fractional reaction-diffusion equation by the fractional homotopy analysis method. Solutions of different examples of the reaction term will be computed and investigated. The approximation solutions of the studied models will be put in the form of convergent series to be easily computed and simulated. Comparison with the approximation solution of the classical case of the studied modeled with their approximation errors will also be studied.
Fagioli, Simone; Radici, Emanuela
2018-01-01
We investigate the existence of weak type solutions for a class of aggregation-diffusion PDEs with nonlinear mobility obtained as large particle limit of a suitable nonlocal version of the follow-the-leader scheme, which is interpreted as the discrete Lagrangian approximation of the target continuity equation. We restrict the analysis to nonnegative initial data in $L^{\\infty} \\cap BV$ away from vacuum and supported in a closed interval with zero-velocity boundary conditions. The main novelti...
The Galerkin Finite Element Method for A Multi-term Time-Fractional Diffusion equation
Jin, Bangti; Lazarov, Raytcho; Liu, Yikan; Zhou, Zhi
2014-01-01
We consider the initial/boundary value problem for a diffusion equation involving multiple time-fractional derivatives on a bounded convex polyhedral domain. We analyze a space semidiscrete scheme based on the standard Galerkin finite element method using continuous piecewise linear functions. Nearly optimal error estimates for both cases of initial data and inhomogeneous term are derived, which cover both smooth and nonsmooth data. Further we develop a fully discrete scheme based on a finite...
GHOLAMI, SAEID; BABOLIAN, ESMAIL; JAVIDI, MOHAMMAD
2016-01-01
This paper presents a new numerical approach to solve single and multiterm time fractional diffusion equations. In this work, the space dimension is discretized to the Gauss$-$Lobatto points. We use the normalized Grunwald approximation for the time dimension and a pseudospectral successive integration matrix for the space dimension. This approach shows that with fewer numbers of points, we can approximate the solution with more accuracy. Some examples with numerical results in tables and fig...
You, Bo; Li, Fang
2016-01-01
This paper is concerned with the long-time behavior of solutions for the three dimensional viscous primitive equations of large-scale moist atmosphere. We prove the existence of a global attractor for the three dimensional viscous primitive equations of large-scale moist atmosphere by asymptotic a priori estimate and construct an exponential attractor by using the smoothing property of the semigroup generated by the three dimensional viscous primitive equations of large-scale moist atmosphere...
Atmospheric diffusion model for control room habitability assessments
International Nuclear Information System (INIS)
Ramsdell, J.V.; Lee, J.Y.
1993-01-01
General Design Criterion 19 for nuclear power plants (Appendix A to 10CFR50) requires control room radiation protection adequate to limit radiation exposures to control room personnel. Murphy and Campe proposed the procedure currently used in evaluating control room habitability. However, data from building-wake diffusion experiments at nuclear power plants indicate that the Murphy-Campe procedure tends to overestimate concentrations, particularly during low wind speeds. This paper describes an alternative procedure developed by the Pacific Northwest Laboratory that is acceptable to U.S. Nuclear Regulatory Commission (NRC) staff. The procedure estimates control room air intake concentrations that are generally lower than those estimated by the Murphy-Campe procedure, yet are still conservative
Diffusion with space memory modelled with distributed order space fractional differential equations
Directory of Open Access Journals (Sweden)
M. Caputo
2003-06-01
Full Text Available Distributed order fractional differential equations (Caputo, 1995, 2001; Bagley and Torvik, 2000a,b were fi rst used in the time domain; they are here considered in the space domain and introduced in the constitutive equation of diffusion. The solution of the classic problems are obtained, with closed form formulae. In general, the Green functions act as low pass fi lters in the frequency domain. The major difference with the case when a single space fractional derivative is present in the constitutive equations of diffusion (Caputo and Plastino, 2002 is that the solutions found here are potentially more fl exible to represent more complex media (Caputo, 2001a. The difference between the space memory medium and that with the time memory is that the former is more fl exible to represent local phenomena while the latter is more fl exible to represent variations in space. Concerning the boundary value problem, the difference with the solution of the classic diffusion medium, in the case when a constant boundary pressure is assigned and in the medium the pressure is initially nil, is that one also needs to assign the fi rst order space derivative at the boundary.
Simulation of a parallel processor on a serial processor: The neutron diffusion equation
International Nuclear Information System (INIS)
Honeck, H.C.
1981-01-01
Parallel processors could provide the nuclear industry with very high computing power at a very moderate cost. Will we be able to make effective use of this power. This paper explores the use of a very simple parallel processor for solving the neutron diffusion equation to predict power distributions in a nuclear reactor. We first describe a simple parallel processor and estimate its theoretical performance based on the current hardware technology. Next, we show how the parallel processor could be used to solve the neutron diffusion equation. We then present the results of some simulations of a parallel processor run on a serial processor and measure some of the expected inefficiencies. Finally we extrapolate the results to estimate how actual design codes would perform. We find that the standard numerical methods for solving the neutron diffusion equation are still applicable when used on a parallel processor. However, some simple modifications to these methods will be necessary if we are to achieve the full power of these new computers. (orig.) [de
Analytical approximate solutions of the time-domain diffusion equation in layered slabs.
Martelli, Fabrizio; Sassaroli, Angelo; Yamada, Yukio; Zaccanti, Giovanni
2002-01-01
Time-domain analytical solutions of the diffusion equation for photon migration through highly scattering two- and three-layered slabs have been obtained. The effect of the refractive-index mismatch with the external medium is taken into account, and approximate boundary conditions at the interface between the diffusive layers have been considered. A Monte Carlo code for photon migration through a layered slab has also been developed. Comparisons with the results of Monte Carlo simulations showed that the analytical solutions correctly describe the mean path length followed by photons inside each diffusive layer and the shape of the temporal profile of received photons, while discrepancies are observed for the continuous-wave reflectance or transmittance.
Cleaning of niobium surface by plasma of diffuse discharge at atmospheric pressure
Tarasenko, V. F.; Erofeev, M. V.; Shulepov, M. A.; Ripenko, V. S.
2017-07-01
Elements composition of niobium surface before and after plasma treatment by runaway electron preionized diffuse discharge was investigated in atmospheric pressure nitrogen flow by means of an Auger electron spectroscopy. Surface characterizations obtained from Auger spectra show that plasma treatment by diffuse discharge after exposure of 120000 pulses provides ultrafine surface cleaning from carbon contamination. Moreover, the surface free energy of the treated specimens increased up to 3 times, that improve its adhesion property.
Mustapha, K.
2017-06-03
Anomalous diffusion is a phenomenon that cannot be modeled accurately by second-order diffusion equations, but is better described by fractional diffusion models. The nonlocal nature of the fractional diffusion operators makes substantially more difficult the mathematical analysis of these models and the establishment of suitable numerical schemes. This paper proposes and analyzes the first finite difference method for solving {\\\\em variable-coefficient} fractional differential equations, with two-sided fractional derivatives, in one-dimensional space. The proposed scheme combines first-order forward and backward Euler methods for approximating the left-sided fractional derivative when the right-sided fractional derivative is approximated by two consecutive applications of the first-order backward Euler method. Our finite difference scheme reduces to the standard second-order central difference scheme in the absence of fractional derivatives. The existence and uniqueness of the solution for the proposed scheme are proved, and truncation errors of order $h$ are demonstrated, where $h$ denotes the maximum space step size. The numerical tests illustrate the global $O(h)$ accuracy of our scheme, except for nonsmooth cases which, as expected, have deteriorated convergence rates.
The analytical solution to the 1D diffusion equation in heterogeneous media
International Nuclear Information System (INIS)
Ganapol, B.D.; Nigg, D.W.
2011-01-01
The analytical solution to the time-independent multigroup diffusion equation in heterogeneous plane cylindrical and spherical media is presented. The solution features the simplicity of the one-group formulation while addressing the complication of multigroup diffusion in a fully heterogeneous medium. Beginning with the vector form of the diffusion equation, the approach, based on straightforward mathematics, resolves a set of coupled second order ODEs. The analytical form is facilitated through matrix diagonalization of the neutron interaction matrix rendering the multigroup solution as a series of one-group solutions which, when re-assembled, gives the analytical solution. Customized Eigenmode solutions of the one-group diffusion operator then represent the homogeneous solution in a uniform spatial domain. Once the homogeneous solution is known, the particular solution naturally emerges through variation of parameters. The analytical expression is then numerically implemented through recurrence. Finally, we apply the theory to assess the accuracy of a second order finite difference scheme and to a 1D slab BWR reactor in the four-group approximation. (author)
López-Sánchez, Erick J.; Romero, Juan M.; Yépez-Martínez, Huitzilin
2017-09-01
Different experimental studies have reported anomalous diffusion in brain tissues and notably this anomalous diffusion is expressed through fractional derivatives. Axons are important to understand neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Indeed, abnormal accumulation of proteins and organelles in axons is a hallmark of these diseases. The diffusion in the axons can become anomalous as a result of this abnormality. In this case the voltage propagation in axons is affected. Another hallmark of different neurodegenerative diseases is given by discrete swellings along the axon. In order to model the voltage propagation in axons with anomalous diffusion and swellings, in this paper we propose a fractional cable equation for a general geometry. This generalized equation depends on fractional parameters and geometric quantities such as the curvature and torsion of the cable. For a cable with a constant radius we show that the voltage decreases when the fractional effect increases. In cables with swellings we find that when the fractional effect or the swelling radius increases, the voltage decreases. Similar behavior is obtained when the number of swellings and the fractional effect increase. Moreover, we find that when the radius swelling (or the number of swellings) and the fractional effect increase at the same time, the voltage dramatically decreases.
Mustapha, K.; Furati, K.; Knio, Omar; Maitre, O. Le
2017-01-01
Anomalous diffusion is a phenomenon that cannot be modeled accurately by second-order diffusion equations, but is better described by fractional diffusion models. The nonlocal nature of the fractional diffusion operators makes substantially more difficult the mathematical analysis of these models and the establishment of suitable numerical schemes. This paper proposes and analyzes the first finite difference method for solving {\\em variable-coefficient} fractional differential equations, with two-sided fractional derivatives, in one-dimensional space. The proposed scheme combines first-order forward and backward Euler methods for approximating the left-sided fractional derivative when the right-sided fractional derivative is approximated by two consecutive applications of the first-order backward Euler method. Our finite difference scheme reduces to the standard second-order central difference scheme in the absence of fractional derivatives. The existence and uniqueness of the solution for the proposed scheme are proved, and truncation errors of order $h$ are demonstrated, where $h$ denotes the maximum space step size. The numerical tests illustrate the global $O(h)$ accuracy of our scheme, except for nonsmooth cases which, as expected, have deteriorated convergence rates.
International Nuclear Information System (INIS)
McKee, R.A.
1981-01-01
It is shown that the Nernst-Einstein equation can be generalized for a high defect concentration solid to relate the mobility or conductivity to the self-diffusion coefficient. This relationship is derived assuming that the diffusing particles interact strongly and that the mobility is concentration-dependent. It is derived for interstitial disordered structures, but it is perfectly general to any mechanism of self diffusion as long as diffusion in a pure system is considered
Atmospheric diffusion at coastal site in presence of sea-breeze
International Nuclear Information System (INIS)
Messaci, M.
1987-03-01
The coastal sites present special features so much by the dominant wind system then by the lower layers of the atmosphere. Two types of experiments were handled on a coastal site in presence of sea breeze. First, vertical atmospheric sounding by radiosounding and by throwing experimental balloons; then the discharge of tracer: the SF6. The first experiment lead us to put in a prominent position the Internal Boundary Layer and the determination of its height. Whereas the second experiment allowed us to estimate the diffusion parameters of the site as well as to obtain interesting conclusions on diffusivity of the environment studied and the influence of certain factors
International Nuclear Information System (INIS)
Potemki, Valeri G.; Borisevich, Valentine D.; Yupatov, Sergei V.
1996-01-01
This paper describes the the next evolution step in development of the direct method for solving systems of Nonlinear Algebraic Equations (SNAE). These equations arise from the finite difference approximation of original nonlinear partial differential equations (PDE). This method has been extended on the SNAE with three variables. The solving SNAE bases on Reiterating General Singular Value Decomposition of rectangular matrix pencils (RGSVD-algorithm). In contrast to the computer algebra algorithm in integer arithmetic based on the reduction to the Groebner's basis that algorithm is working in floating point arithmetic and realizes the reduction to the Kronecker's form. The possibilities of the method are illustrated on the example of solving the one-dimensional diffusion equation for 3-component model isotope mixture in a ga centrifuge. The implicit scheme for the finite difference equations without simplifying the nonlinear properties of the original equations is realized. The technique offered provides convergence to the solution for the single run. The Toolbox SNAE is developed in the framework of the high performance numeric computation and visualization software MATLAB. It includes more than 30 modules in MATLAB language for solving SNAE with two and three variables. (author)
Higher-order Solution of Stochastic Diffusion equation with Nonlinear Losses Using WHEP technique
El-Beltagy, Mohamed A.; Al-Mulla, Noah
2014-01-01
Using Wiener-Hermite expansion with perturbation (WHEP) technique in the solution of the stochastic partial differential equations (SPDEs) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods [1]. The Wiener-Hermite expansion is the only known expansion that handles the white/colored noise exactly. The main statistics, such as the mean, covariance, and higher order statistical moments, can be calculated by simple formulae involving only the deterministic Wiener-Hermite coefficients. In this poster, the WHEP technique is used to solve the 2D diffusion equation with nonlinear losses and excited with white noise. The solution will be obtained numerically and will be validated and compared with the analytical solution that can be obtained from any symbolic mathematics package such as Mathematica.
Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with Holes
Cortázar, Carmen; Elgueta, Manuel; Quirós, Fernando; Wolanski, Noemí
2012-08-01
The paper deals with the asymptotic behavior of solutions to a non-local diffusion equation, u t = J* u- u := Lu, in an exterior domain, Ω, which excludes one or several holes, and with zero Dirichlet data on {R^NsetminusΩ} . When the space dimension is three or more this behavior is given by a multiple of the fundamental solution of the heat equation away from the holes. On the other hand, if the solution is scaled according to its decay factor, close to the holes it behaves like a function that is L-harmonic, Lu = 0, in the exterior domain and vanishes in its complement. The height of such a function at infinity is determined through a matching procedure with the multiple of the fundamental solution of the heat equation representing the outer behavior. The inner and the outer behaviors can be presented in a unified way through a suitable global approximation.
International Nuclear Information System (INIS)
Barth, Andrea; Lang, Annika
2012-01-01
In this paper, the strong approximation of a stochastic partial differential equation, whose differential operator is of advection-diffusion type and which is driven by a multiplicative, infinite dimensional, càdlàg, square integrable martingale, is presented. A finite dimensional projection of the infinite dimensional equation, for example a Galerkin projection, with nonequidistant time stepping is used. Error estimates for the discretized equation are derived in L 2 and almost sure senses. Besides space and time discretizations, noise approximations are also provided, where the Milstein double stochastic integral is approximated in such a way that the overall complexity is not increased compared to an Euler–Maruyama approximation. Finally, simulations complete the paper.
Higher-order Solution of Stochastic Diffusion equation with Nonlinear Losses Using WHEP technique
El-Beltagy, Mohamed A.
2014-01-06
Using Wiener-Hermite expansion with perturbation (WHEP) technique in the solution of the stochastic partial differential equations (SPDEs) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods [1]. The Wiener-Hermite expansion is the only known expansion that handles the white/colored noise exactly. The main statistics, such as the mean, covariance, and higher order statistical moments, can be calculated by simple formulae involving only the deterministic Wiener-Hermite coefficients. In this poster, the WHEP technique is used to solve the 2D diffusion equation with nonlinear losses and excited with white noise. The solution will be obtained numerically and will be validated and compared with the analytical solution that can be obtained from any symbolic mathematics package such as Mathematica.
Coarse-mesh discretized low-order quasi-diffusion equations for subregion averaged scalar fluxes
International Nuclear Information System (INIS)
Anistratov, D. Y.
2004-01-01
In this paper we develop homogenization procedure and discretization for the low-order quasi-diffusion equations on coarse grids for core-level reactor calculations. The system of discretized equations of the proposed method is formulated in terms of the subregion averaged group scalar fluxes. The coarse-mesh solution is consistent with a given fine-mesh discretization of the transport equation in the sense that it preserves a set of average values of the fine-mesh transport scalar flux over subregions of coarse-mesh cells as well as the surface currents, and eigenvalue. The developed method generates numerical solution that mimics the large-scale behavior of the transport solution within assemblies. (authors)
On the exact solution for the multi-group kinetic neutron diffusion equation in a rectangle
International Nuclear Information System (INIS)
Petersen, C.Z.; Vilhena, M.T.M.B. de; Bodmann, B.E.J.
2011-01-01
In this work we consider the two-group bi-dimensional kinetic neutron diffusion equation. The solution procedure formalism is general with respect to the number of energy groups, neutron precursor families and regions with different chemical compositions. The fast and thermal flux and the delayed neutron precursor yields are expanded in a truncated double series in terms of eigenfunctions that, upon insertion into the kinetic equation and upon taking moments, results in a first order linear differential matrix equation with source terms. We split the matrix appearing in the transformed problem into a sum of a diagonal matrix plus the matrix containing the remaining terms and recast the transformed problem into a form that can be solved in the spirit of Adomian's recursive decomposition formalism. Convergence of the solution is guaranteed by the Cardinal Interpolation Theorem. We give numerical simulations and comparisons with available results in the literature. (author)
International Nuclear Information System (INIS)
Iyiola, O.S.; Tasbozan, O.; Kurt, A.; Çenesiz, Y.
2017-01-01
In this paper, we consider the system of conformable time-fractional Robertson equations with one-dimensional diffusion having widely varying diffusion coefficients. Due to the mismatched nature of the initial and boundary conditions associated with Robertson equation, there are spurious oscillations appearing in many computational algorithms. Our goal is to obtain an approximate solutions of this system of equations using the q-homotopy analysis method (q-HAM) and examine the widely varying diffusion coefficients and the fractional order of the derivative.
International Nuclear Information System (INIS)
Grimstone, M.J.
1978-06-01
The WRS Modular Programming System has been developed as a means by which programmes may be more efficiently constructed, maintained and modified. In this system a module is a self-contained unit typically composed of one or more Fortran routines, and a programme is constructed from a number of such modules. This report describes one WRS module, the function of which is to solve a set of multigroup diffusion equations for a system represented in one-dimensional plane, cylindrical or spherical geometry. The information given in this manual is of use both to the programmer wishing to incorporate the module in a programme, and to the user of such a programme. (author)
Chen, Xueli; Yang, Defu; Qu, Xiaochao; Hu, Hao; Liang, Jimin; Gao, Xinbo; Tian, Jie
2012-06-01
Bioluminescence tomography (BLT) has been successfully applied to the detection and therapeutic evaluation of solid cancers. However, the existing BLT reconstruction algorithms are not accurate enough for cavity cancer detection because of neglecting the void problem. Motivated by the ability of the hybrid radiosity-diffusion model (HRDM) in describing the light propagation in cavity organs, an HRDM-based BLT reconstruction algorithm was provided for the specific problem of cavity cancer detection. HRDM has been applied to optical tomography but is limited to simple and regular geometries because of the complexity in coupling the boundary between the scattering and void region. In the provided algorithm, HRDM was first applied to three-dimensional complicated and irregular geometries and then employed as the forward light transport model to describe the bioluminescent light propagation in tissues. Combining HRDM with the sparse reconstruction strategy, the cavity cancer cells labeled with bioluminescent probes can be more accurately reconstructed. Compared with the diffusion equation based reconstruction algorithm, the essentiality and superiority of the HRDM-based algorithm were demonstrated with simulation, phantom and animal studies. An in vivo gastric cancer-bearing nude mouse experiment was conducted, whose results revealed the ability and feasibility of the HRDM-based algorithm in the biomedical application of gastric cancer detection.
Numerical modeling of turbulent jet diffusion flames in the atmospheric surface layer
Hernández, J.; Crespo, A.; Duijm, N.J.
1995-01-01
The evolution of turbulent jet diffusion flames of natural gas in air is predicted using a finite-volume procedure for solving the flow equations. The model is three dimensional, elliptic and based on the conserved-scalar approach and the laminar flamelet concept. A laminar flamelet prescription for
Fowler, Kathryn; Connolly, Paul J.; Topping, David O.; O'Meara, Simon
2018-02-01
The composition of atmospheric aerosol particles has been found to influence their micro-physical properties and their interaction with water vapour in the atmosphere. Core-shell models have been used to investigate the relationship between composition, viscosity and equilibration timescales. These models have traditionally relied on the Fickian laws of diffusion with no explicit account of non-ideal interactions. We introduce the Maxwell-Stefan diffusion framework as an alternative method, which explicitly accounts for non-ideal interactions through activity coefficients. e-folding time is the time it takes for the difference in surface and bulk concentration to change by an exponential factor and was used to investigate the interplay between viscosity and solubility and the effect this has on equilibration timescales within individual aerosol particles. The e-folding time was estimated after instantaneous increases in relative humidity to binary systems of water and an organic component. At low water mole fractions, viscous effects were found to dominate mixing. However, at high water mole fractions, equilibration times were more sensitive to a range in solubility, shown through the greater variation in e-folding times. This is the first time the Maxwell-Stefan framework has been applied to an atmospheric aerosol core-shell model and shows that there is a complex interplay between the viscous and solubility effects on aerosol composition that requires further investigation.
Czech Academy of Sciences Publication Activity Database
Kromka, Alexander; Čech, J.; Kozak, Halyna; Artemenko, Anna; Ižák, Tibor; Čermák, Jan; Rezek, Bohuslav; Černák, M.
2015-01-01
Roč. 252, č. 11 (2015), s. 2602-2607 ISSN 0370-1972 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : atmospheric plasma * diamond nanoparticles * diffuse coplanar surface barrier discharge * FTIR * XPS Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.522, year: 2015
Directory of Open Access Journals (Sweden)
Inci Cilingir Sungu
2015-01-01
Full Text Available A new application of the hybrid generalized differential transform and finite difference method is proposed by solving time fractional nonlinear reaction-diffusion equations. This method is a combination of the multi-time-stepping temporal generalized differential transform and the spatial finite difference methods. The procedure first converts the time-evolutionary equations into Poisson equations which are then solved using the central difference method. The temporal differential transform method as used in the paper takes care of stability and the finite difference method on the resulting equation results in a system of diagonally dominant linear algebraic equations. The Gauss-Seidel iterative procedure then used to solve the linear system thus has assured convergence. To have optimized convergence rate, numerical experiments were done by using a combination of factors involving multi-time-stepping, spatial step size, and degree of the polynomial fit in time. It is shown that the hybrid technique is reliable, accurate, and easy to apply.
Hybrid simplified spherical harmonics with diffusion equation for light propagation in tissues
International Nuclear Information System (INIS)
Chen, Xueli; Sun, Fangfang; Yang, Defu; Ren, Shenghan; Liang, Jimin; Zhang, Qian
2015-01-01
Aiming at the limitations of the simplified spherical harmonics approximation (SP N ) and diffusion equation (DE) in describing the light propagation in tissues, a hybrid simplified spherical harmonics with diffusion equation (HSDE) based diffuse light transport model is proposed. In the HSDE model, the living body is first segmented into several major organs, and then the organs are divided into high scattering tissues and other tissues. DE and SP N are employed to describe the light propagation in these two kinds of tissues respectively, which are finally coupled using the established boundary coupling condition. The HSDE model makes full use of the advantages of SP N and DE, and abandons their disadvantages, so that it can provide a perfect balance between accuracy and computation time. Using the finite element method, the HSDE is solved for light flux density map on body surface. The accuracy and efficiency of the HSDE are validated with both regular geometries and digital mouse model based simulations. Corresponding results reveal that a comparable accuracy and much less computation time are achieved compared with the SP N model as well as a much better accuracy compared with the DE one. (paper)
Energy Technology Data Exchange (ETDEWEB)
Gjesdal, Thor
1997-12-31
This thesis discusses the development and application of efficient numerical methods for the simulation of fluid flows, in particular the flow of incompressible fluids. The emphasis is on practical aspects of algorithm development and on application of the methods either to linear scalar model equations or to the non-linear incompressible Navier-Stokes equations. The first part deals with cell centred multigrid methods and linear correction scheme and presents papers on (1) generalization of the method to arbitrary sized grids for diffusion problems, (2) low order method for advection-diffusion problems, (3) attempt to extend the basic method to advection-diffusion problems, (4) Fourier smoothing analysis of multicolour relaxation schemes, and (5) analysis of high-order discretizations for advection terms. The second part discusses a multigrid based on pressure correction methods, non-linear full approximation scheme, and papers on (1) systematic comparison of the performance of different pressure correction smoothers and some other algorithmic variants, low to moderate Reynolds numbers, and (2) systematic study of implementation strategies for high order advection schemes, high-Re flow. An appendix contains Fortran 90 data structures for multigrid development. 160 refs., 26 figs., 22 tabs.
Hybrid simplified spherical harmonics with diffusion equation for light propagation in tissues.
Chen, Xueli; Sun, Fangfang; Yang, Defu; Ren, Shenghan; Zhang, Qian; Liang, Jimin
2015-08-21
Aiming at the limitations of the simplified spherical harmonics approximation (SPN) and diffusion equation (DE) in describing the light propagation in tissues, a hybrid simplified spherical harmonics with diffusion equation (HSDE) based diffuse light transport model is proposed. In the HSDE model, the living body is first segmented into several major organs, and then the organs are divided into high scattering tissues and other tissues. DE and SPN are employed to describe the light propagation in these two kinds of tissues respectively, which are finally coupled using the established boundary coupling condition. The HSDE model makes full use of the advantages of SPN and DE, and abandons their disadvantages, so that it can provide a perfect balance between accuracy and computation time. Using the finite element method, the HSDE is solved for light flux density map on body surface. The accuracy and efficiency of the HSDE are validated with both regular geometries and digital mouse model based simulations. Corresponding results reveal that a comparable accuracy and much less computation time are achieved compared with the SPN model as well as a much better accuracy compared with the DE one.
Chen, Hao; Lv, Wen; Zhang, Tongtong
2018-05-01
We study preconditioned iterative methods for the linear system arising in the numerical discretization of a two-dimensional space-fractional diffusion equation. Our approach is based on a formulation of the discrete problem that is shown to be the sum of two Kronecker products. By making use of an alternating Kronecker product splitting iteration technique we establish a class of fixed-point iteration methods. Theoretical analysis shows that the new method converges to the unique solution of the linear system. Moreover, the optimal choice of the involved iteration parameters and the corresponding asymptotic convergence rate are computed exactly when the eigenvalues of the system matrix are all real. The basic iteration is accelerated by a Krylov subspace method like GMRES. The corresponding preconditioner is in a form of a Kronecker product structure and requires at each iteration the solution of a set of discrete one-dimensional fractional diffusion equations. We use structure preserving approximations to the discrete one-dimensional fractional diffusion operators in the action of the preconditioning matrix. Numerical examples are presented to illustrate the effectiveness of this approach.
International Nuclear Information System (INIS)
Cartier, J.
2006-04-01
This thesis focuses on mathematical analysis, numerical resolution and modelling of the transport equations. First of all, we deal with numerical approximation of the solution of the transport equations by using a mixed-hybrid scheme. We derive and study a mixed formulation of the transport equation, then we analyse the related variational problem and present the discretization and the main properties of the scheme. We particularly pay attention to the behavior of the scheme and we show its efficiency in the diffusion limit (when the mean free path is small in comparison with the characteristic length of the physical domain). We present academical benchmarks in order to compare our scheme with other methods in many physical configurations and validate our method on analytical test cases. Unstructured and very distorted meshes are used to validate our scheme. The second part of this thesis deals with two transport problems. The first one is devoted to the study of diffusion due to boundary conditions in a transport problem between two plane plates. The second one consists in modelling and simulating radiative transfer phenomenon in case of the industrial context of inertial confinement fusion. (author)
Space-Time Fractional Diffusion-Advection Equation with Caputo Derivative
Directory of Open Access Journals (Sweden)
José Francisco Gómez Aguilar
2014-01-01
Full Text Available An alternative construction for the space-time fractional diffusion-advection equation for the sedimentation phenomena is presented. The order of the derivative is considered as 0<β, γ≤1 for the space and time domain, respectively. The fractional derivative of Caputo type is considered. In the spatial case we obtain the fractional solution for the underdamped, undamped, and overdamped case. In the temporal case we show that the concentration has amplitude which exhibits an algebraic decay at asymptotically large times and also shows numerical simulations where both derivatives are taken in simultaneous form. In order that the equation preserves the physical units of the system two auxiliary parameters σx and σt are introduced characterizing the existence of fractional space and time components, respectively. A physical relation between these parameters is reported and the solutions in space-time are given in terms of the Mittag-Leffler function depending on the parameters β and γ. The generalization of the fractional diffusion-advection equation in space-time exhibits anomalous behavior.
International Nuclear Information System (INIS)
Zhang, H.; Rizwan-uddin; Dorning, J.J.
1995-01-01
A diffusion equation-based systematic homogenization theory and a self-consistent dehomogenization theory for fuel assemblies have been developed for use with coarse-mesh nodal diffusion calculations of light water reactors. The theoretical development is based on a multiple-scales asymptotic expansion carried out through second order in a small parameter, the ratio of the average diffusion length to the reactor characteristic dimension. By starting from the neutron diffusion equation for a three-dimensional heterogeneous medium and introducing two spatial scales, the development systematically yields an assembly-homogenized global diffusion equation with self-consistent expressions for the assembly-homogenized diffusion tensor elements and cross sections and assembly-surface-flux discontinuity factors. The rector eigenvalue 1/k eff is shown to be obtained to the second order in the small parameter, and the heterogeneous diffusion theory flux is shown to be obtained to leading order in that parameter. The latter of these two results provides a natural procedure for the reconstruction of the local fluxes and the determination of pin powers, even though homogenized assemblies are used in the global nodal diffusion calculation
Liu, Yikan
2015-01-01
In this paper, we establish a strong maximum principle for fractional diffusion equations with multiple Caputo derivatives in time, and investigate a related inverse problem of practical importance. Exploiting the solution properties and the involved multinomial Mittag-Leffler functions, we improve the weak maximum principle for the multi-term time-fractional diffusion equation to a stronger one, which is parallel to that for its single-term counterpart as expected. As a direct application, w...
Analytical solutions of a fractional diffusion-advection equation for solar cosmic-ray transport
International Nuclear Information System (INIS)
Litvinenko, Yuri E.; Effenberger, Frederic
2014-01-01
Motivated by recent applications of superdiffusive transport models to shock-accelerated particle distributions in the heliosphere, we analytically solve a one-dimensional fractional diffusion-advection equation for the particle density. We derive an exact Fourier transform solution, simplify it in a weak diffusion approximation, and compare the new solution with previously available analytical results and with a semi-numerical solution based on a Fourier series expansion. We apply the results to the problem of describing the transport of energetic particles, accelerated at a traveling heliospheric shock. Our analysis shows that significant errors may result from assuming an infinite initial distance between the shock and the observer. We argue that the shock travel time should be a parameter of a realistic superdiffusive transport model.
Solution of linear and nonlinear matrix systems. Application to a nonlinear diffusion equation
International Nuclear Information System (INIS)
Bonnet, M.; Meurant, G.
1978-01-01
Different methods of solution of linear and nonlinear algebraic systems are applied to the nonlinear system obtained by discretizing a nonlinear diffusion equation. For linear systems, methods in general use of alternating directions type or Gauss Seidel's methods are compared to more recent ones of the type of generalized conjugate gradient; the superiority of the latter is shown by numerical examples. For nonlinear systems, a method on nonlinear conjugate gradient is studied as also Newton's method and some of its variants. It should be noted, however that Newton's method is found to be more efficient when coupled with a good method for solution of the linear system. To conclude, such methods are used to solve a nonlinear diffusion problem and the numerical results obtained are to be compared [fr
Solution of linear and nonlinear matrix systems. Application to a nonlinear diffusion equation
International Nuclear Information System (INIS)
Bonnet, M.; Meurant, G.
1978-01-01
The object of this study is to compare different methods of solving linear and nonlinear algebraic systems and to apply them to the nonlinear system obtained by discretizing a nonlinear diffusion equation. For linear systems the conventional methods of alternating direction type or Gauss Seidel's methods are compared to more recent ones of the type of generalized conjugate gradient; the superiority of the latter is shown by numerical examples. For nonlinear systems, a method of nonlinear conjugate gradient is studied together with Newton's method and some of its variants. It should be noted, however, that Newton's method is found to be more efficient when coupled with a good method for solving the linear system. As a conclusion, these methods are used to solve a nonlinear diffusion problem and the numerical results obtained are compared [fr
Regularity and mass conservation for discrete coagulation–fragmentation equations with diffusion
Cañizo, J.A.
2010-03-01
We present a new a priori estimate for discrete coagulation-fragmentation systems with size-dependent diffusion within a bounded, regular domain confined by homogeneous Neumann boundary conditions. Following from a duality argument, this a priori estimate provides a global L2 bound on the mass density and was previously used, for instance, in the context of reaction-diffusion equations. In this paper we demonstrate two lines of applications for such an estimate: On the one hand, it enables to simplify parts of the known existence theory and allows to show existence of solutions for generalised models involving collision-induced, quadratic fragmentation terms for which the previous existence theory seems difficult to apply. On the other hand and most prominently, it proves mass conservation (and thus the absence of gelation) for almost all the coagulation coefficients for which mass conservation is known to hold true in the space homogeneous case. © 2009 Elsevier Masson SAS. All rights reserved.
Analytical modeling for fractional multi-dimensional diffusion equations by using Laplace transform
Directory of Open Access Journals (Sweden)
Devendra Kumar
2015-01-01
Full Text Available In this paper, we propose a simple numerical algorithm for solving multi-dimensional diffusion equations of fractional order which describes density dynamics in a material undergoing diffusion by using homotopy analysis transform method. The fractional derivative is described in the Caputo sense. This homotopy analysis transform method is an innovative adjustment in Laplace transform method and makes the calculation much simpler. The technique is not limited to the small parameter, such as in the classical perturbation method. The scheme gives an analytical solution in the form of a convergent series with easily computable components, requiring no linearization or small perturbation. The numerical solutions obtained by the proposed method indicate that the approach is easy to implement and computationally very attractive.
DEFF Research Database (Denmark)
Jørgensen, Bo Hoffmann
2003-01-01
The goal of this brief report is to express the model equations for an incompressible flow which is horizontally homogeneous. It is intended as a computationally inexpensive starting point of a more complete solution for neutral atmospheric flow overcomplex terrain. This idea was set forth...... by Ayotte and Taylor (1995) and in the work of Beljaars et al. (1987). Unlike the previous models, the present work uses general orthogonal coordinates. Strong conservation form of the model equations is employedto allow a robust and consistent numerical procedure. An invariant tensor form of the model...
Wielandt method applied to the diffusion equations discretized by finite element nodal methods
International Nuclear Information System (INIS)
Mugica R, A.; Valle G, E. del
2003-01-01
Nowadays the numerical methods of solution to the diffusion equation by means of algorithms and computer programs result so extensive due to the great number of routines and calculations that should carry out, this rebounds directly in the execution times of this programs, being obtained results in relatively long times. This work shows the application of an acceleration method of the convergence of the classic method of those powers that it reduces notably the number of necessary iterations for to obtain reliable results, what means that the compute times they see reduced in great measure. This method is known in the literature like Wielandt method and it has incorporated to a computer program that is based on the discretization of the neutron diffusion equations in plate geometry and stationary state by polynomial nodal methods. In this work the neutron diffusion equations are described for several energy groups and their discretization by means of those called physical nodal methods, being illustrated in particular the quadratic case. It is described a model problem widely described in the literature which is solved for the physical nodal grade schemes 1, 2, 3 and 4 in three different ways: to) with the classic method of the powers, b) method of the powers with the Wielandt acceleration and c) method of the powers with the Wielandt modified acceleration. The results for the model problem as well as for two additional problems known as benchmark problems are reported. Such acceleration method can also be implemented to problems of different geometry to the proposal in this work, besides being possible to extend their application to problems in 2 or 3 dimensions. (Author)
Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre
2014-12-14
We propose a novel smoothed particle hydrodynamics (SPH) discretization of the fully coupled Landau-Lifshitz-Navier-Stokes (LLNS) and stochastic advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and the self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations is found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study formation of the so-called "giant fluctuations" of the front between light and heavy fluids with and without gravity, where the light fluid lies on the top of the heavy fluid. We find that the power spectra of the simulated concentration field are in good agreement with the experiments and analytical solutions. In the absence of gravity, the power spectra decay as the power -4 of the wavenumber-except for small wavenumbers that diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations, resulting in much weaker dependence of the power spectra on the wavenumber. Finally, the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlaying a light fluid. The front dynamics is shown to agree well with the analytical solutions.
Time adaptivity in the diffusive wave approximation to the shallow water equations
Collier, Nathan; Radwan, Hany; Dalcí n, Lisandro D.; Calo, Victor M.
2013-01-01
We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity. This robust adaptive time discretization corrects the initial time step size to achieve a user specified bound on the discretization error and allows time step size variations of several orders of magnitude. In particular, the one dimensional results presented in this work feature a change of four orders of magnitudes for the time step over the entire simulation. © 2011 Elsevier B.V.
EDEF: a program for solving the neutron diffusion equation using microcomputers
International Nuclear Information System (INIS)
Fernandes, A.; Maiorino, J.R.
1990-01-01
This work presents the development of a program to solve the two-group two-dimensional diffusion equation (with a buckling option to simulate axial leakage) applying the finite element method. It has been developed to microcomputers compatibles to the IBM-PC. Among the facilities of the program, we can mention the simplicity to represent two-dimensional complex domains, the input through a pre-processor and the output in which the fluxes are presented graphically. The program also calculates the multiplication factor, the peaking factor and the power distribution. (author) [pt
Two-Dimensional Space-Time Dependent Multi-group Diffusion Equation with SLOR Method
International Nuclear Information System (INIS)
Yulianti, Y.; Su'ud, Z.; Waris, A.; Khotimah, S. N.
2010-01-01
The research of two-dimensional space-time diffusion equations with SLOR (Successive-Line Over Relaxation) has been done. SLOR method is chosen because this method is one of iterative methods that does not required to defined whole element matrix. The research is divided in two cases, homogeneous case and heterogeneous case. Homogeneous case has been inserted by step reactivity. Heterogeneous case has been inserted by step reactivity and ramp reactivity. In general, the results of simulations are agreement, even in some points there are differences.
The Galerkin finite element method for a multi-term time-fractional diffusion equation
Jin, Bangti
2015-01-01
© 2014 The Authors. We consider the initial/boundary value problem for a diffusion equation involving multiple time-fractional derivatives on a bounded convex polyhedral domain. We analyze a space semidiscrete scheme based on the standard Galerkin finite element method using continuous piecewise linear functions. Nearly optimal error estimates for both cases of initial data and inhomogeneous term are derived, which cover both smooth and nonsmooth data. Further we develop a fully discrete scheme based on a finite difference discretization of the time-fractional derivatives, and discuss its stability and error estimate. Extensive numerical experiments for one- and two-dimensional problems confirm the theoretical convergence rates.
Numerical method for solving the three-dimensional time-dependent neutron diffusion equation
International Nuclear Information System (INIS)
Khaled, S.M.; Szatmary, Z.
2005-01-01
A numerical time-implicit method has been developed for solving the coupled three-dimensional time-dependent multi-group neutron diffusion and delayed neutron precursor equations. The numerical stability of the implicit computation scheme and the convergence of the iterative associated processes have been evaluated. The computational scheme requires the solution of large linear systems at each time step. For this purpose, the point over-relaxation Gauss-Seidel method was chosen. A new scheme was introduced instead of the usual source iteration scheme. (author)
Directory of Open Access Journals (Sweden)
S. Das
2013-12-01
Full Text Available In this article, optimal homotopy-analysis method is used to obtain approximate analytic solution of the time-fractional diffusion equation with a given initial condition. The fractional derivatives are considered in the Caputo sense. Unlike usual Homotopy analysis method, this method contains at the most three convergence control parameters which describe the faster convergence of the solution. Effects of parameters on the convergence of the approximate series solution by minimizing the averaged residual error with the proper choices of parameters are calculated numerically and presented through graphs and tables for different particular cases.
Fractional diffusion equation with distributed-order material derivative. Stochastic foundations
International Nuclear Information System (INIS)
Magdziarz, M; Teuerle, M
2017-01-01
In this paper, we present the stochastic foundations of fractional dynamics driven by the fractional material derivative of distributed-order type. Before stating our main result, we present the stochastic scenario which underlies the dynamics given by the fractional material derivative. Then we introduce the Lévy walk process of distributed-order type to establish our main result, which is the scaling limit of the considered process. It appears that the probability density function of the scaling limit process fulfills, in a weak sense, the fractional diffusion equation with the material derivative of distributed-order type. (paper)
International Nuclear Information System (INIS)
Kim, Kyung-O; Jeong, Hae Sun; Jo, Daeseong
2017-01-01
Highlights: • Employing the Radial Point Interpolation Method (RPIM) in numerical analysis of multi-group neutron-diffusion equation. • Establishing mathematical formation of modified multi-group neutron-diffusion equation by RPIM. • Performing the numerical analysis for 2D critical problem. - Abstract: A mesh-free method is introduced to overcome the drawbacks (e.g., mesh generation and connectivity definition between the meshes) of mesh-based (nodal) methods such as the finite-element method and finite-difference method. In particular, the Point Interpolation Method (PIM) using a radial basis function is employed in the numerical analysis for the multi-group neutron-diffusion equation. The benchmark calculations are performed for the 2D homogeneous and heterogeneous problems, and the Multiquadrics (MQ) and Gaussian (EXP) functions are employed to analyze the effect of the radial basis function on the numerical solution. Additionally, the effect of the dimensionless shape parameter in those functions on the calculation accuracy is evaluated. According to the results, the radial PIM (RPIM) can provide a highly accurate solution for the multiplication eigenvalue and the neutron flux distribution, and the numerical solution with the MQ radial basis function exhibits the stable accuracy with respect to the reference solutions compared with the other solution. The dimensionless shape parameter directly affects the calculation accuracy and computing time. Values between 1.87 and 3.0 for the benchmark problems considered in this study lead to the most accurate solution. The difference between the analytical and numerical results for the neutron flux is significantly increased in the edge of the problem geometry, even though the maximum difference is lower than 4%. This phenomenon seems to arise from the derivative boundary condition at (x,0) and (0,y) positions, and it may be necessary to introduce additional strategy (e.g., the method using fictitious points and
Chakrabarti, Anindya S.
2016-01-01
We present a model of technological evolution due to interaction between multiple countries and the resultant effects on the corresponding macro variables. The world consists of a set of economies where some countries are leaders and some are followers in the technology ladder. All of them potentially gain from technological breakthroughs. Applying Lotka-Volterra (LV) equations to model evolution of the technology frontier, we show that the way technology diffuses creates repercussions in the partner economies. This process captures the spill-over effects on major macro variables seen in the current highly globalized world due to trickle-down effects of technology.
Diffusion coefficients of Fokker-Planck equation for rotating dust grains in a fusion plasma
Bakhtiyari-Ramezani, M.; Mahmoodi, J.; Alinejad, N.
2015-11-01
In the fusion devices, ions, H atoms, and H2 molecules collide with dust grains and exert stochastic torques which lead to small variations in angular momentum of the grain. By considering adsorption of the colliding particles, thermal desorption of H atoms and normal H2 molecules, and desorption of the recombined H2 molecules from the surface of an oblate spheroidal grain, we obtain diffusion coefficients of the Fokker-Planck equation for the distribution function of fluctuating angular momentum. Torque coefficients corresponding to the recombination mechanism show that the nonspherical dust grains may rotate with a suprathermal angular velocity.
Preconditioned iterative methods for space-time fractional advection-diffusion equations
Zhao, Zhi; Jin, Xiao-Qing; Lin, Matthew M.
2016-08-01
In this paper, we propose practical numerical methods for solving a class of initial-boundary value problems of space-time fractional advection-diffusion equations. First, we propose an implicit method based on two-sided Grünwald formulae and discuss its stability and consistency. Then, we develop the preconditioned generalized minimal residual (preconditioned GMRES) method and preconditioned conjugate gradient normal residual (preconditioned CGNR) method with easily constructed preconditioners. Importantly, because resulting systems are Toeplitz-like, fast Fourier transform can be applied to significantly reduce the computational cost. We perform numerical experiments to demonstrate the efficiency of our preconditioners, even in cases with variable coefficients.
Time adaptivity in the diffusive wave approximation to the shallow water equations
Collier, Nathan
2013-05-01
We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity. This robust adaptive time discretization corrects the initial time step size to achieve a user specified bound on the discretization error and allows time step size variations of several orders of magnitude. In particular, the one dimensional results presented in this work feature a change of four orders of magnitudes for the time step over the entire simulation. © 2011 Elsevier B.V.
International Nuclear Information System (INIS)
Kobayashi, Keisuke
1975-01-01
A method of solution is presented for a monoenergetic diffusion equation in two-dimensional hexagonal cells by a finite Fourier transformation. Up to the present, the solution by the finite Fourier transformation has been developed for x-y, r-z and x-y-z geometries, and the flux and current at the boundary are obtained in terms of Fourier series. It is shown here that the method can be applied to hexagonal cells and the expansion of boundary values in a Legendre polynomials gives numerically a higher accuracy than is obtained by a Fourier series. (orig.) [de
Asymptotically stable fourth-order accurate schemes for the diffusion equation on complex shapes
International Nuclear Information System (INIS)
Abarbanel, S.; Ditkowski, A.
1997-01-01
An algorithm which solves the multidimensional diffusion equation on complex shapes to fourth-order accuracy and is asymptotically stable in time is presented. This bounded-error result is achieved by constructing, on a rectangular grid, a differentiation matrix whose symmetric part is negative definite. The differentiation matrix accounts for the Dirichlet boundary condition by imposing penalty-like terms. Numerical examples in 2-D show that the method is effective even where standard schemes, stable by traditional definitions, fail. The ability of the paradigm to be applied to arbitrary geometric domains is an important feature of the algorithm. 5 refs., 14 figs
Enriched reproducing kernel particle method for fractional advection-diffusion equation
Ying, Yuping; Lian, Yanping; Tang, Shaoqiang; Liu, Wing Kam
2018-06-01
The reproducing kernel particle method (RKPM) has been efficiently applied to problems with large deformations, high gradients and high modal density. In this paper, it is extended to solve a nonlocal problem modeled by a fractional advection-diffusion equation (FADE), which exhibits a boundary layer with low regularity. We formulate this method on a moving least-square approach. Via the enrichment of fractional-order power functions to the traditional integer-order basis for RKPM, leading terms of the solution to the FADE can be exactly reproduced, which guarantees a good approximation to the boundary layer. Numerical tests are performed to verify the proposed approach.
International Nuclear Information System (INIS)
Obradovic, D.
1970-04-01
In the study of the nuclear reactors space-time behaviour the modal analysis is very often used though some basic mathematical problems connected with application of this methods are still unsolved. In this paper the modal analysis is identified as a set of the methods in the mathematical literature known as the Galerkin methods (or projection methods, or sometimes direct methods). Using the results of the mathematical investigations of these methods the applicability of the Galerkin type methods to the calculations of the eigenvalue and eigenvectors of the stationary and non-stationary diffusion operator, as well as for the solutions of the corresponding functional equations, is established (author)
Performance of a parallel algorithm for solving the neutron diffusion equation on the hypercube
International Nuclear Information System (INIS)
Kirk, B.L.; Azmy, Y.Y.
1989-01-01
The one-group, steady state neutron diffusion equation in two- dimensional Cartesian geometry is solved using the nodal method technique. By decoupling sets of equations representing the neutron current continuity along the length of rows and columns of computational cells a new iterative algorithm is derived that is more suitable to solving large practical problems. This algorithm is highly parallelizable and is implemented on the Intel iPSC/2 hypercube in three versions which differ essentially in the total size of communicated data. Even though speedup was achieved, the efficiency is very low when many processors are used leading to the conclusion that the hypercube is not as well suited for this algorithm as shared memory machines. 10 refs., 1 fig., 3 tabs
Solution of the Multigroup-Diffusion equation by the response matrix method
International Nuclear Information System (INIS)
Oliveira, C.R.E.
1980-10-01
A preliminary analysis of the response matrix method is made, considering its application to the solution of the multigroup diffusion equations. The one-dimensional formulation is presented and used to test some flux expansions, seeking the application of the method to the two-dimensional problem. This formulation also solves the equations that arise from the integro-differential synthesis algorithm. The slow convergence of the power method, used to solve the eigenvalue problem, and its acceleration by means of the Chebyshev polynomial method, are also studied. An algorithm for the estimation of the dominance ratio is presented, based on the residues of two successive iteration vectors. This ratio, which is not known a priori, is fundamental for the efficiency of the method. Some numerical problems are solved, testing the 1D formulation of the response matrix method, its application to the synthesis algorithm and also, at the same time, the algorithm to accelerate the source problem. (Author) [pt
Automatic simplification of systems of reaction-diffusion equations by a posteriori analysis.
Maybank, Philip J; Whiteley, Jonathan P
2014-02-01
Many mathematical models in biology and physiology are represented by systems of nonlinear differential equations. In recent years these models have become increasingly complex in order to explain the enormous volume of data now available. A key role of modellers is to determine which components of the model have the greatest effect on a given observed behaviour. An approach for automatically fulfilling this role, based on a posteriori analysis, has recently been developed for nonlinear initial value ordinary differential equations [J.P. Whiteley, Model reduction using a posteriori analysis, Math. Biosci. 225 (2010) 44-52]. In this paper we extend this model reduction technique for application to both steady-state and time-dependent nonlinear reaction-diffusion systems. Exemplar problems drawn from biology are used to demonstrate the applicability of the technique. Copyright © 2014 Elsevier Inc. All rights reserved.
Scalable implicit methods for reaction-diffusion equations in two and three space dimensions
Energy Technology Data Exchange (ETDEWEB)
Veronese, S.V.; Othmer, H.G. [Univ. of Utah, Salt Lake City, UT (United States)
1996-12-31
This paper describes the implementation of a solver for systems of semi-linear parabolic partial differential equations in two and three space dimensions. The solver is based on a parallel implementation of a non-linear Alternating Direction Implicit (ADI) scheme which uses a Cartesian grid in space and an implicit time-stepping algorithm. Various reordering strategies for the linearized equations are used to reduce the stride and improve the overall effectiveness of the parallel implementation. We have successfully used this solver for large-scale reaction-diffusion problems in computational biology and medicine in which the desired solution is a traveling wave that may contain rapid transitions. A number of examples that illustrate the efficiency and accuracy of the method are given here; the theoretical analysis will be presented.
On one model problem for the reaction-diffusion-advection equation
Davydova, M. A.; Zakharova, S. A.; Levashova, N. T.
2017-09-01
The asymptotic behavior of the solution with boundary layers in the time-independent mathematical model of reaction-diffusion-advection arising when describing the distribution of greenhouse gases in the surface atmospheric layer is studied. On the basis of the asymptotic method of differential inequalities, the existence of a boundary-layer solution and its asymptotic Lyapunov stability as a steady-state solution of the corresponding parabolic problem is proven. One of the results of this work is the determination of the local domain of the attraction of a boundary-layer solution.
Nodal approximations of varying order by energy group for solving the diffusion equation
International Nuclear Information System (INIS)
Broda, J.T.
1992-02-01
The neutron flux across the nuclear reactor core is of interest to reactor designers and others. The diffusion equation, an integro-differential equation in space and energy, is commonly used to determine the flux level. However, the solution of a simplified version of this equation when automated is very time consuming. Since the flux level changes with time, in general, this calculation must be made repeatedly. Therefore solution techniques that speed the calculation while maintaining accuracy are desirable. One factor that contributes to the solution time is the spatial flux shape approximation used. It is common practice to use the same order flux shape approximation in each energy group even though this method may not be the most efficient. The one-dimensional, two-energy group diffusion equation was solved, for the node average flux and core k-effective, using two sets of spatial shape approximations for each of three reactor types. A fourth-order approximation in both energy groups forms the first set of approximations used. The second set used combines a second-order approximation with a fourth-order approximation in energy group two. Comparison of the results from the two approximation sets show that the use of a different order spatial flux shape approximation results in considerable loss in accuracy for the pressurized water reactor modeled. However, the loss in accuracy is small for the heavy water and graphite reactors modeled. The use of different order approximations in each energy group produces mixed results. Further investigation into the accuracy and computing time is required before any quantitative advantage of the use of the second-order approximation in energy group one and the fourth-order approximation in energy group two can be determined
International Nuclear Information System (INIS)
Hizanidis, K.
1984-04-01
The relativistic collisional Fokker-Planck equation combined with an externally imposed unidirectional quasilinear (rf) diffusion is solved for arbitrary values of rf diffusion coefficient under conditions of detailed balance of the staionary joint distribution involved. The detailed balance condition imposes a restriction on the functional form of the quasilinear diffusion coefficient which might be associated with the existence of a saturated spectrum of fluctuation in a quasilinearly rf-driven plasma
Nodal integral method for the neutron diffusion equation in cylindrical geometry
International Nuclear Information System (INIS)
Azmy, Y.Y.
1987-01-01
The nodal methodology is based on retaining a higher a higher degree of analyticity in the process of deriving the discrete-variable equations compared to conventional numerical methods. As a result, extensive numerical testing of nodal methods developed for a wide variety of partial differential equations and comparison of the results to conventional methods have established the superior accuracy of nodal methods on coarse meshes. Moreover, these tests have shown that nodal methods are more computationally efficient than finite difference and finite-element methods in the sense that they require shorter CPU times to achieve comparable accuracy in the solutions. However, nodal formalisms and the final discrete-variable equations they produce are, in general, more complicated than their conventional counterparts. This, together with anticipated difficulties in applying the transverse-averaging procedure in curvilinear coordinates, has limited the applications of nodal methods, so far, to Cartesian geometry, and with additional approximations to hexagonal geometry. In this paper the authors report recent progress in deriving and numerically implementing a nodal integral method (NIM) for solving the neutron diffusion equation in cylindrical r-z geometry. Also, presented are comparisons of numerical solutions to two test problems with those obtained by the Exterminator-2 code, which indicate the superior accuracy of the nodal integral method solutions on much coarser meshes
Diffuse plasma treatment of polyamide 66 fabric in atmospheric pressure air
International Nuclear Information System (INIS)
Li, Lee; Peng, Ming-yang; Teng, Yun; Gao, Guozhen
2016-01-01
Graphical abstract: - Highlights: • A cylindrical-electrode nanosecond-pulse diffuse-discharge reactor is presented. • Large-scale non-thermal plasmas were generated steadily in atmospheric air. • Treated PA66 fabric is etched with oxygen-containing group increases. • The hydrophily of treated PA66 fabric improves effectively. • Extending the treatment time is a method to reduce the treatment frequency. - Abstract: The polyamide 66 (PA66) fabrics are hard to be colored or glued in industrial production due to the poor hydrophily. Diffuse plasma is a kind of non-thermal plasma generated at atmospheric pressure in air. This paper proposes that large-scale diffuse plasma generated between wire electrodes can be employed for improving the hydrophily of PA66 fabrics. A repetitive nanosecond-pulse diffuse-discharge reactor using a cylindrical wire electrode configuration is presented, which can generate large-scale non-thermal plasmas steadily at atmospheric pressure without any barrier dielectric. Then the reactor is used to treat PA66 fabrics in different discharge conditions. The hydrophilicity property of modified PA66 is measured by wicking test method. The modified PA66 is also analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) to prove the surface changes in physical microstructure and chemical functional groups, respectively. What's more, the effects of treatment time and treatment frequency on surface modification are investigated and discussed.
Energy Technology Data Exchange (ETDEWEB)
Pinchedez, K
1999-06-01
Parallel computing meets the ever-increasing requirements for neutronic computer code speed and accuracy. In this work, two different approaches have been considered. We first parallelized the sequential algorithm used by the neutronics code CRONOS developed at the French Atomic Energy Commission. The algorithm computes the dominant eigenvalue associated with PN simplified transport equations by a mixed finite element method. Several parallel algorithms have been developed on distributed memory machines. The performances of the parallel algorithms have been studied experimentally by implementation on a T3D Cray and theoretically by complexity models. A comparison of various parallel algorithms has confirmed the chosen implementations. We next applied a domain sub-division technique to the two-group diffusion Eigen problem. In the modal synthesis-based method, the global spectrum is determined from the partial spectra associated with sub-domains. Then the Eigen problem is expanded on a family composed, on the one hand, from eigenfunctions associated with the sub-domains and, on the other hand, from functions corresponding to the contribution from the interface between the sub-domains. For a 2-D homogeneous core, this modal method has been validated and its accuracy has been measured. (author)
Energy Technology Data Exchange (ETDEWEB)
Berlowitz, D.R.
1996-11-01
In the last few decades the negative impact by humans on the thin atmospheric layer enveloping the earth, the basis for life on this planet, has increased steadily. In order to halt, or at least slow down this development, the knowledge and study of these anthropogenic influence has to be increased and possible remedies have to be suggested. An important tool for these studies are computer models. With their help the atmospheric system can be approximated and the various processes, which have led to the current situation can be quantified. They also serve as an instrument to assess short or medium term strategies to reduce this human impact. However, to assure efficiency as well as accuracy, a careful analysis of the numerous processes involved in the dispersion of pollutants in the atmosphere is called for. This should help to concentrate on the essentials and also prevent excessive usage of sometimes scarce computing resources. The basis of the presented work is the EUMAC Zooming Model (ETM), and particularly the component calculating the dispersion of pollutants in the atmosphere, the model MARS. The model has two main parts: an explicit solver, where the advection and the horizontal diffusion of pollutants are calculated, and an implicit solution mechanism, allowing the joint computation of the change of concentration due to chemical reactions, coupled with the respective influence of the vertical diffusion of the species. The aim of this thesis is to determine particularly the influence of the horizontal components of the turbulent diffusion on the existing implicit solver of the model. Suggestions for a more comprehensive inclusion of the full three dimensional diffusion operator in the implicit solver are made. This is achieved by an appropriate operator splitting. A selection of numerical approaches to tighten the coupling of the diffusion processes with the calculation of the applied chemical reaction mechanisms are examined. (author) figs., tabs., refs.
International Nuclear Information System (INIS)
Killough, G.G.
1977-05-01
A nonlinear dynamic model of the exchange of carbon among the atmosphere, terrestrial biosphere, and ocean is described and applied to estimating the radiation dose to the world's population from the release of 14 C to the atmosphere from the nuclear power industry. A computer implementation of the model, written in the IBM Continuous System Modeling Program III (CSMP III) simulation language, is presented. The model treats the ocean as a diffusive medium with respect to vertical transport of carbon, and the nonlinear variation of CO 2 partial pressure with the total inorganic carbon concentration in surface waters is taken into account in calculating the transfer rate from ocean to atmosphere. Transfers between the atmosphere and terrestrial biosphere are represented by nonlinear equations which consider CO 2 fertilization and impose a constraint on the ultimate total carbon mass in the biosphere
International Nuclear Information System (INIS)
Kwok, Sau Fa
2012-01-01
A Langevin equation with multiplicative white noise and its corresponding Fokker–Planck equation are considered in this work. From the Fokker–Planck equation a transformation into the Wiener process is provided for different orders of prescription in discretization rule for the stochastic integrals. A few applications are also discussed. - Highlights: ► Fokker–Planck equation corresponding to the Langevin equation with mul- tiplicative white noise is presented. ► Transformation of diffusion processes into the Wiener process in different prescriptions is provided. ► The prescription parameter is associated with the growth rate for a Gompertz-type model.
International Nuclear Information System (INIS)
Yasa, F.; Anli, F.; Guengoer, S.
2007-01-01
We present analytical calculations of spherically symmetric radioactive transfer and neutron transport using a hypothesis of P1 and T1 low order polynomial approximation for diffusion coefficient D. Transport equation in spherical geometry is considered as the pseudo slab equation. The validity of polynomial expansionion in transport theory is investigated through a comparison with classic diffusion theory. It is found that for causes when the fluctuation of the scattering cross section dominates, the quantitative difference between the polynomial approximation and diffusion results was physically acceptable in general
International Nuclear Information System (INIS)
Coulomb, F.
1989-06-01
The aim of this work is to study methods for solving the diffusion equation, based on a primal or mixed-dual finite elements discretization and well suited for use on multiprocessors computers; domain decomposition methods are the subject of the main part of this study, the linear systems being solved by the block-Jacobi method. The origin of the diffusion equation is explained in short, and various variational formulations are reminded. A survey of iterative methods is given. The elemination of the flux or current is treated in the case of a mixed method. Numerical tests are performed on two examples of reactors, in order to compare mixed elements and Lagrange elements. A theoretical study of domain decomposition is led in the case of Lagrange finite elements, and convergence conditions for the block-Jacobi method are derived; the dissection decomposition is previously the purpose of a particular numerical analysis. In the case of mixed-dual finite elements, a study is led on examples and is confirmed by numerical tests performed for the dissection decomposition; furthermore, after being justified, decompositions along axes of symmetry are numerically tested. In the case of a decomposition into two subdomains, the dissection decomposition and the decomposition with an integrated interface are compared. Alternative directions methods are defined; the convergence of those relative to Lagrange elements is shown; in the case of mixed elements, convergence conditions are found [fr
On an adaptive time stepping strategy for solving nonlinear diffusion equations
International Nuclear Information System (INIS)
Chen, K.; Baines, M.J.; Sweby, P.K.
1993-01-01
A new time step selection procedure is proposed for solving non- linear diffusion equations. It has been implemented in the ASWR finite element code of Lorenz and Svoboda [10] for 2D semiconductor process modelling diffusion equations. The strategy is based on equi-distributing the local truncation errors of the numerical scheme. The use of B-splines for interpolation (as well as for the trial space) results in a banded and diagonally dominant matrix. The approximate inverse of such a matrix can be provided to a high degree of accuracy by another banded matrix, which in turn can be used to work out the approximate finite difference scheme corresponding to the ASWR finite element method, and further to calculate estimates of the local truncation errors of the numerical scheme. Numerical experiments on six full simulation problems arising in semiconductor process modelling have been carried out. Results show that our proposed strategy is more efficient and better conserves the total mass. 18 refs., 6 figs., 2 tabs
Chakraverty, S; Sahoo, B K; Rao, T D; Karunakar, P; Sapra, B K
2018-02-01
Modelling radon transport in the earth crust is a useful tool to investigate the changes in the geo-physical processes prior to earthquake event. Radon transport is modeled generally through the deterministic advection-diffusion equation. However, in order to determine the magnitudes of parameters governing these processes from experimental measurements, it is necessary to investigate the role of uncertainties in these parameters. Present paper investigates this aspect by combining the concept of interval uncertainties in transport parameters such as soil diffusivity, advection velocity etc, occurring in the radon transport equation as applied to soil matrix. The predictions made with interval arithmetic have been compared and discussed with the results of classical deterministic model. The practical applicability of the model is demonstrated through a case study involving radon flux measurements at the soil surface with an accumulator deployed in steady-state mode. It is possible to detect the presence of very low levels of advection processes by applying uncertainty bounds on the variations in the observed concentration data in the accumulator. The results are further discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Schneider, D.
2001-01-01
The nodal method Minos has been developed to offer a powerful method for the calculation of nuclear reactor cores in rectangular geometry. This method solves the mixed dual form of the diffusion equation and, also of the simplified P N approximation. The discretization is based on Raviart-Thomas' mixed dual finite elements and the iterative algorithm is an alternating direction method, which uses the current as unknown. The subject of this work is to adapt this method to hexagonal geometry. The guiding idea is to construct and test different methods based on the division of a hexagon into trapeze or rhombi with appropriate mapping of these quadrilaterals onto squares in order to take into advantage what is already available in the Minos solver. The document begins with a review of the neutron diffusion equation. Then we discuss its mixed dual variational formulation from a functional as well as from a numerical point of view. We study conformal and bilinear mappings for the two possible meshing of the hexagon. Thus, four different methods are proposed and are completely described in this work. Because of theoretical and numerical difficulties, a particular treatment has been necessary for methods based on the conformal mapping. Finally, numerical results are presented for a hexagonal benchmark to validate and compare the four methods with respect to pre-defined criteria. (authors)
Single molecule diffusion and the solution of the spherically symmetric residence time equation.
Agmon, Noam
2011-06-16
The residence time of a single dye molecule diffusing within a laser spot is propotional to the total number of photons emitted by it. With this application in mind, we solve the spherically symmetric "residence time equation" (RTE) to obtain the solution for the Laplace transform of the mean residence time (MRT) within a d-dimensional ball, as a function of the initial location of the particle and the observation time. The solutions for initial conditions of potential experimental interest, starting in the center, on the surface or uniformly within the ball, are explicitly presented. Special cases for dimensions 1, 2, and 3 are obtained, which can be Laplace inverted analytically for d = 1 and 3. In addition, the analytic short- and long-time asymptotic behaviors of the MRT are derived and compared with the exact solutions for d = 1, 2, and 3. As a demonstration of the simplification afforded by the RTE, the Appendix obtains the residence time distribution by solving the Feynman-Kac equation, from which the MRT is obtained by differentiation. Single-molecule diffusion experiments could be devised to test the results for the MRT presented in this work. © 2011 American Chemical Society
Solution of the diffusion equations for several groups by the finite elements method
International Nuclear Information System (INIS)
Arredondo S, C.
1975-01-01
The code DELFIN has been implemented for the solution of the neutrons diffusion equations in two dimensions obtained by applying the approximation of several groups of energy. The code works with any number of groups and regions, and can be applied to thermal reactors as well as fast reactor. Providing it with the diffusion coefficients, the effective sections and the fission spectrum we obtain the results for the systems multiplying constant and the flows of each groups. The code was established using the method of finite elements, which is a form of resolution of the variational formulation of the equations applying the Ritz-Galerkin method with continuous polynomial functions by parts, in one case of the Lagrange type with rectangular geometry and up to the third grade. The obtained results and the comparison with the results in the literature, permit to reach the conclusion that it is convenient, to use the rectangular elements in all the cases where the geometry permits it, and demonstrate also that the finite elements method is better than the finite differences method. (author)
Xia, Ya-Rong; Zhang, Shun-Li; Xin, Xiang-Peng
2018-03-01
In this paper, we propose the concept of the perturbed invariant subspaces (PISs), and study the approximate generalized functional variable separation solution for the nonlinear diffusion-convection equation with weak source by the approximate generalized conditional symmetries (AGCSs) related to the PISs. Complete classification of the perturbed equations which admit the approximate generalized functional separable solutions (AGFSSs) is obtained. As a consequence, some AGFSSs to the resulting equations are explicitly constructed by way of examples.
Singh, Brajesh K; Srivastava, Vineet K
2015-04-01
The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations.
Diffusion-accelerated solution of the 2-D x-y Sn equations with linear-bilinear nodal differencing
International Nuclear Information System (INIS)
Wareing, T.A.; Walters, W.F.; Morel, J.E.
1994-01-01
Recently a new diffusion-synthetic acceleration scheme was developed for solving the 2-D S n Equations in x-y geometry with bilinear-discontinuous finite element spatial discretization using a bilinear-discontinuous diffusion differencing scheme for the diffusion acceleration equations. This method differs from previous methods in that it is conditional efficient for problems with isotropic or nearly isotropic scattering. We have used the same bilinear-discontinuous diffusion scheme, and associated solution technique, to accelerate the x-y geometry S n equations with linear-bilinear nodal spatial differencing. We find that this leads to an unconditionally efficient solution method for problems with isotropic or nearly isotropic scattering. computational results are given which demonstrate this property
Dong, Bo-Qing; Jia, Yan; Li, Jingna; Wu, Jiahong
2018-05-01
This paper focuses on a system of the 2D magnetohydrodynamic (MHD) equations with the kinematic dissipation given by the fractional operator (-Δ )^α and the magnetic diffusion by partial Laplacian. We are able to show that this system with any α >0 always possesses a unique global smooth solution when the initial data is sufficiently smooth. In addition, we make a detailed study on the large-time behavior of these smooth solutions and obtain optimal large-time decay rates. Since the magnetic diffusion is only partial here, some classical tools such as the maximal regularity property for the 2D heat operator can no longer be applied. A key observation on the structure of the MHD equations allows us to get around the difficulties due to the lack of full Laplacian magnetic diffusion. The results presented here are the sharpest on the global regularity problem for the 2D MHD equations with only partial magnetic diffusion.
A clutter removal method for the Doppler ultrasound signal based on a nonlinear diffusion equation
International Nuclear Information System (INIS)
Li Peng; Xin Pengcheng; Bian Zhengzhong; Yu Gang
2008-01-01
Strong clutter components produced by stationary and slow-moving tissue structures render the lower frequency part of the spectrogram useless and degrade the accuracy of clinical ultrasound indices. An adaptive method based on the nonlinear forward-and-backward diffusion equation (FAB-DE) is proposed to remove strong clutter components from the contaminated Doppler signal. The clutter signal is extracted first by the FAB-DE accurately, in which the nonlinear diffusion coefficient function of the FAB-DE locally adjusts according to signal features and the diffusion adaptively switches between forward and backward mode. The present method has been validated by simulated and realistic pulse wave Doppler signals, and compared with the conventional high pass filter and the matching pursuit method. The simulation results, including spectrogram, mean velocity error, standard deviation of mean velocity and signal-to-clutter ratio of a decontaminated signal, demonstrate that the present FAB-DE method can remove clutter sufficiently and retain more low blood components simultaneously as compared with the other two methods. Results of the realistic Doppler blood signal, including spectrogram and low-frequency part of the spectrum, support the conclusion drawn from simulation cases
Moghaderi, Hamid; Dehghan, Mehdi; Donatelli, Marco; Mazza, Mariarosa
2017-12-01
Fractional diffusion equations (FDEs) are a mathematical tool used for describing some special diffusion phenomena arising in many different applications like porous media and computational finance. In this paper, we focus on a two-dimensional space-FDE problem discretized by means of a second order finite difference scheme obtained as combination of the Crank-Nicolson scheme and the so-called weighted and shifted Grünwald formula. By fully exploiting the Toeplitz-like structure of the resulting linear system, we provide a detailed spectral analysis of the coefficient matrix at each time step, both in the case of constant and variable diffusion coefficients. Such a spectral analysis has a very crucial role, since it can be used for designing fast and robust iterative solvers. In particular, we employ the obtained spectral information to define a Galerkin multigrid method based on the classical linear interpolation as grid transfer operator and damped-Jacobi as smoother, and to prove the linear convergence rate of the corresponding two-grid method. The theoretical analysis suggests that the proposed grid transfer operator is strong enough for working also with the V-cycle method and the geometric multigrid. On this basis, we introduce two computationally favourable variants of the proposed multigrid method and we use them as preconditioners for Krylov methods. Several numerical results confirm that the resulting preconditioning strategies still keep a linear convergence rate.
International Nuclear Information System (INIS)
Itagaki, Masafumi; Sahashi, Naoki.
1997-01-01
The multiple reciprocity boundary element method has been applied to three-dimensional two-group neutron diffusion problems. A matrix-type boundary integral equation has been derived to solve the first and the second group neutron diffusion equations simultaneously. The matrix-type fundamental solutions used here satisfy the equation which has a point source term and is adjoint to the neutron diffusion equations. A multiple reciprocity method has been employed to transform the matrix-type domain integral related to the fission source into an equivalent boundary one. The higher order fundamental solutions required for this formulation are composed of a series of two types of analytic functions. The eigenvalue itself is also calculated using only boundary integrals. Three-dimensional test calculations indicate that the present method provides stable and accurate solutions for criticality problems. (author)
Eternal solutions to a singular diffusion equation with critical gradient absorption
International Nuclear Information System (INIS)
Iagar, Razvan Gabriel; Laurençot, Philippe
2013-01-01
The existence of non-negative radially symmetric eternal solutions of exponential self-similar type u(t, x) = e −pβt/(2−p) f β (|x|e −βt ; β) is investigated for the singular diffusion equation with critical gradient absorption ∂ t u−Δ p u+|∇u| p/2 =0 in (0,∞)×R N , where 2N/(N + 1) < p < 2. Such solutions are shown to exist only if the parameter β ranges in a bounded interval (0, β * ], which is in sharp contrast to well-known singular diffusion equations, such as ∂ t φ − Δ p φ = 0 when p = 2N/(N + 1), N ⩾ 1, or the porous medium equation ∂ t φ − Δφ m = 0 when m = (N − 2)/N, N ⩾ 3. Moreover, the profile f(r; β) decays to zero as r → ∞ in a faster way for β = β * than for β ∈ (0, β * ) but the algebraic leading order is the same in both cases. In fact, for large r, f(r; β * ) decays as r −p/(2−p) while f(r; β) behaves as (log r) 2/(2−p) r −p/(2−p) when β ∈ (0, β * ). (paper)
On the implementation of an accurate and efficient solver for convection-diffusion equations
Wu, Chin-Tien
In this dissertation, we examine several different aspects of computing the numerical solution of the convection-diffusion equation. The solution of this equation often exhibits sharp gradients due to Dirichlet outflow boundaries or discontinuities in boundary conditions. Because of the singular-perturbed nature of the equation, numerical solutions often have severe oscillations when grid sizes are not small enough to resolve sharp gradients. To overcome such difficulties, the streamline diffusion discretization method can be used to obtain an accurate approximate solution in regions where the solution is smooth. To increase accuracy of the solution in the regions containing layers, adaptive mesh refinement and mesh movement based on a posteriori error estimations can be employed. An error-adapted mesh refinement strategy based on a posteriori error estimations is also proposed to resolve layers. For solving the sparse linear systems that arise from discretization, goemetric multigrid (MG) and algebraic multigrid (AMG) are compared. In addition, both methods are also used as preconditioners for Krylov subspace methods. We derive some convergence results for MG with line Gauss-Seidel smoothers and bilinear interpolation. Finally, while considering adaptive mesh refinement as an integral part of the solution process, it is natural to set a stopping tolerance for the iterative linear solvers on each mesh stage so that the difference between the approximate solution obtained from iterative methods and the finite element solution is bounded by an a posteriori error bound. Here, we present two stopping criteria. The first is based on a residual-type a posteriori error estimator developed by Verfurth. The second is based on an a posteriori error estimator, using local solutions, developed by Kay and Silvester. Our numerical results show the refined mesh obtained from the iterative solution which satisfies the second criteria is similar to the refined mesh obtained from
Developing a passive trap for diffusive atmospheric {sup 14}CO{sub 2} sampling
Energy Technology Data Exchange (ETDEWEB)
Walker, Jennifer C.; Xu, Xiaomei [Department of Earth System Science, University of California, Irvine, Irvine, CA (United States); Fahrni, Simon M. [Department of Earth System Science, University of California, Irvine, Irvine, CA (United States); Institute of Particle Physics, ETH, Zurich (Switzerland); Lupascu, Massimo [Department of Earth System Science, University of California, Irvine, Irvine, CA (United States); Department of Geography, National University of Singapore (Singapore); Czimczik, Claudia I. [Department of Earth System Science, University of California, Irvine, Irvine, CA (United States)
2015-10-15
{sup 14}C-CO{sub 2} measurement is an unique tool to quantify source-based emissions of CO{sub 2} for both the urban and natural environments. Acquiring a sample that temporally integrates the atmospheric {sup 14}C-CO{sub 2} signature that allows for precise {sup 14}C analysis is often necessary, but can require complex sampling devices, which can be difficult to deploy and maintain, especially for multiple locations. Here we describe our progress in developing a diffusive atmospheric CO{sub 2} molecular sieve trap, which requires no power to operate. We present results from various cleaning procedures, and rigorously tested for blank and memory effects. Traps were tested in the environment along-side conventional sampling flasks for accuracy. Results show that blank and memory effects can be minimized with thorough cleaning and by avoiding overheating, and that diffusively collected air samples agree well with traditionally canister-sampled air.
Fast resolution of the neutron diffusion equation through public domain Ode codes
Energy Technology Data Exchange (ETDEWEB)
Garcia, V.M.; Vidal, V.; Garayoa, J. [Universidad Politecnica de Valencia, Departamento de Sistemas Informaticos, Valencia (Spain); Verdu, G. [Universidad Politecnica de Valencia, Departamento de Ingenieria Quimica y Nuclear, Valencia (Spain); Gomez, R. [I.E.S. de Tavernes Blanques, Valencia (Spain)
2003-07-01
The time-dependent neutron diffusion equation is a partial differential equation with source terms. The resolution method usually includes discretizing the spatial domain, obtaining a large system of linear, stiff ordinary differential equations (ODEs), whose resolution is computationally very expensive. Some standard techniques use a fixed time step to solve the ODE system. This can result in errors (if the time step is too large) or in long computing times (if the time step is too little). To speed up the resolution method, two well-known public domain codes have been selected: DASPK and FCVODE that are powerful codes for the resolution of large systems of stiff ODEs. These codes can estimate the error after each time step, and, depending on this estimation can decide which is the new time step and, possibly, which is the integration method to be used in the next step. With these mechanisms, it is possible to keep the overall error below the chosen tolerances, and, when the system behaves smoothly, to take large time steps increasing the execution speed. In this paper we address the use of the public domain codes DASPK and FCVODE for the resolution of the time-dependent neutron diffusion equation. The efficiency of these codes depends largely on the preconditioning of the big systems of linear equations that must be solved. Several pre-conditioners have been programmed and tested; it was found that the multigrid method is the best of the pre-conditioners tested. Also, it has been found that DASPK has performed better than FCVODE, being more robust for our problem.We can conclude that the use of specialized codes for solving large systems of ODEs can reduce drastically the computational work needed for the solution; and combining them with appropriate pre-conditioners, the reduction can be still more important. It has other crucial advantages, since it allows the user to specify the allowed error, which cannot be done in fixed step implementations; this, of course
Application of atmospheric diffusion factor in the bay of east Liaoning
International Nuclear Information System (INIS)
Yang Hongbin; Liu Wanjun; Ma Yanjun; Zhao Guozhen
1999-01-01
The characteristics of atmospheric diffusion factor in the Bay of East Liaoning are studied using the data obtained from meteorological tower-based sensors at the site located about 800 m from the coast. The results show that the nuclear power station emits pollutants as a high source during its operation. Furthermore, it is found that the lifting level of plume is lower than 30 m when wind speed is greater
International Nuclear Information System (INIS)
Kirk, B.L.; Azmy, Y.Y.
1992-01-01
In this paper the one-group, steady-state neutron diffusion equation in two-dimensional Cartesian geometry is solved using the nodal integral method. The discrete variable equations comprise loosely coupled sets of equations representing the nodal balance of neutrons, as well as neutron current continuity along rows or columns of computational cells. An iterative algorithm that is more suitable for solving large problems concurrently is derived based on the decomposition of the spatial domain and is accelerated using successive overrelaxation. This algorithm is very well suited for parallel computers, especially since the spatial domain decomposition occurs naturally, so that the number of iterations required for convergence does not depend on the number of processors participating in the calculation. Implementation of the authors' algorithm on the Intel iPSC/2 hypercube and Sequent Balance 8000 parallel computer is presented, and measured speedup and efficiency for test problems are reported. The results suggest that the efficiency of the hypercube quickly deteriorates when many processors are used, while the Sequent Balance retains very high efficiency for a comparable number of participating processors. This leads to the conjecture that message-passing parallel computers are not as well suited for this algorithm as shared-memory machines
International Nuclear Information System (INIS)
Leaf, G.K.; Minkoff, M.
1982-01-01
1 - Description of problem or function: DISPL1 is a software package for solving second-order nonlinear systems of partial differential equations including parabolic, elliptic, hyperbolic, and some mixed types. The package is designed primarily for chemical kinetics- diffusion problems, although not limited to these problems. Fairly general nonlinear boundary conditions are allowed as well as inter- face conditions for problems in an inhomogeneous medium. The spatial domain is one- or two-dimensional with rectangular Cartesian, cylindrical, or spherical (in one dimension only) geometry. 2 - Method of solution: The numerical method is based on the use of Galerkin's procedure combined with the use of B-Splines (C.W.R. de-Boor's B-spline package) to generate a system of ordinary differential equations. These equations are solved by a sophisticated ODE software package which is a modified version of Hindmarsh's GEAR package, NESC Abstract 592. 3 - Restrictions on the complexity of the problem: The spatial domain must be rectangular with sides parallel to the coordinate geometry. Cross derivative terms are not permitted in the PDE. The order of the B-Splines is at most 12. Other parameters such as the number of mesh points in each coordinate direction, the number of PDE's etc. are set in a macro table used by the MORTRAn2 preprocessor in generating the object code
Three-dimensional h-adaptivity for the multigroup neutron diffusion equations
Wang, Yaqi
2009-04-01
Adaptive mesh refinement (AMR) has been shown to allow solving partial differential equations to significantly higher accuracy at reduced numerical cost. This paper presents a state-of-the-art AMR algorithm applied to the multigroup neutron diffusion equation for reactor applications. In order to follow the physics closely, energy group-dependent meshes are employed. We present a novel algorithm for assembling the terms coupling shape functions from different meshes and show how it can be made efficient by deriving all meshes from a common coarse mesh by hierarchic refinement. Our methods are formulated using conforming finite elements of any order, for any number of energy groups. The spatial error distribution is assessed with a generalization of an error estimator originally derived for the Poisson equation. Our implementation of this algorithm is based on the widely used Open Source adaptive finite element library deal.II and is made available as part of this library\\'s extensively documented tutorial. We illustrate our methods with results for 2-D and 3-D reactor simulations using 2 and 7 energy groups, and using conforming finite elements of polynomial degree up to 6. © 2008 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Lee, Bok Young; Lee, Chong Keun; Lee, Dong Soo
2011-01-01
A semi-continuous and automated method for quantifying atmospheric ammonia at the parts per billion level has been developed. The instrument consists of a high efficiency diffusion scrubber, an electrolytic on-line anion exchange device, and a conductivity detector. Water soluble gases in sampled air diffuse through the porous membrane and are absorbed in an absorbing solution. Interferences are eliminated by using an anion exchange devises. The electrical conductivity of the solution is measured without chromatographic separation. The collection efficiency was over 99%. Over the 0-200 ppbv concentration range, the calibration was linear with r"2 = 0.99. The lower limit of detection was 0.09 ppbv. A parallel analysis of Seoul air over several days using this method and a diffusion scrubber coupled to an ion chromatography system showed acceptable agreement, r"2 = 0.940 (n = 686). This method can be applied for ambient air monitoring of ammonia
Energy Technology Data Exchange (ETDEWEB)
Lee, Bok Young; Lee, Chong Keun; Lee, Dong Soo [Yonsei University, Seoul (Korea, Republic of)
2011-06-15
A semi-continuous and automated method for quantifying atmospheric ammonia at the parts per billion level has been developed. The instrument consists of a high efficiency diffusion scrubber, an electrolytic on-line anion exchange device, and a conductivity detector. Water soluble gases in sampled air diffuse through the porous membrane and are absorbed in an absorbing solution. Interferences are eliminated by using an anion exchange devises. The electrical conductivity of the solution is measured without chromatographic separation. The collection efficiency was over 99%. Over the 0-200 ppbv concentration range, the calibration was linear with r{sup 2} = 0.99. The lower limit of detection was 0.09 ppbv. A parallel analysis of Seoul air over several days using this method and a diffusion scrubber coupled to an ion chromatography system showed acceptable agreement, r{sup 2} = 0.940 (n = 686). This method can be applied for ambient air monitoring of ammonia.
International Nuclear Information System (INIS)
Veverka, O.; Vlachovsky, K.; Valenta, V.
1976-01-01
The fundamental static equations are given describing the atmosphere. Relations are derived for the description of dynamic phenomena, such as changes in temperature, pressure and density of the air in the lower part of the atmosphere. The effect of wind is considered and the expressions are presented for the vertical profile of wind velocity. The properties of flow are discussed in the fully developed boundary layer, such as stress, viscous stress and dynamic viscosity. The concept of surface roughness and its significance for micrometeorology is dealt with. (L.O.)
Directory of Open Access Journals (Sweden)
Md. Nur Alam
2016-06-01
Full Text Available In this article, we apply the exp(-Φ(ξ-expansion method to construct many families of exact solutions of nonlinear evolution equations (NLEEs via the nonlinear diffusive predator–prey system and the Bogoyavlenskii equations. These equations can be transformed to nonlinear ordinary differential equations. As a result, some new exact solutions are obtained through the hyperbolic function, the trigonometric function, the exponential functions and the rational forms. If the parameters take specific values, then the solitary waves are derived from the traveling waves. Also, we draw 2D and 3D graphics of exact solutions for the special diffusive predator–prey system and the Bogoyavlenskii equations by the help of programming language Maple.
Directory of Open Access Journals (Sweden)
Maziar Ramezani
2015-04-01
Full Text Available Although the cost of the heat treatment process is only a minor portion of the total production cost, it is arguably the most important and crucial stage on the determination of material quality. In the study of the carbon diffusion in H13 steel during austenitization, a series of heat treatment experiments had been conducted under different atmospheric conditions and length of treatment. Four austenitization atmospheric conditions were studied, i.e., heat treatment without atmospheric control, heat treatment with stainless steel foil wrapping, pack carburization heat treatment and vacuum heat treatment. The results showed that stainless steel foil wrapping could restrict decarburization process, resulting in a constant hardness profile as vacuum heat treatment does. However, the tempering characteristic between these two heat treatment methods is different. Results from the gas nitrided samples showed that the thickness and the hardness of the nitrided layer is independent of the carbon content in H13 steel.
Sun, HongGuang; Liu, Xiaoting; Zhang, Yong; Pang, Guofei; Garrard, Rhiannon
2017-09-01
Fractional-order diffusion equations (FDEs) extend classical diffusion equations by quantifying anomalous diffusion frequently observed in heterogeneous media. Real-world diffusion can be multi-dimensional, requiring efficient numerical solvers that can handle long-term memory embedded in mass transport. To address this challenge, a semi-discrete Kansa method is developed to approximate the two-dimensional spatiotemporal FDE, where the Kansa approach first discretizes the FDE, then the Gauss-Jacobi quadrature rule solves the corresponding matrix, and finally the Mittag-Leffler function provides an analytical solution for the resultant time-fractional ordinary differential equation. Numerical experiments are then conducted to check how the accuracy and convergence rate of the numerical solution are affected by the distribution mode and number of spatial discretization nodes. Applications further show that the numerical method can efficiently solve two-dimensional spatiotemporal FDE models with either a continuous or discrete mixing measure. Hence this study provides an efficient and fast computational method for modeling super-diffusive, sub-diffusive, and mixed diffusive processes in large, two-dimensional domains with irregular shapes.
Directory of Open Access Journals (Sweden)
Auri Brackmann
2014-05-01
Full Text Available The objective of this work was to evaluate the effect of growth regulators on gas diffusion and on metabolism of 'Brookfield' apple, and to determine their correlation with quality characteristics of fruit stored in controlled atmosphere. A completely randomized design was used with four replicates. After eight months of storage, the effects of water (control, aminoethoxyvinylglycine (AVG, AVG + ethephon, AVG + naphthaleneacetic acid (NAA, ethephon + NAA, sole NAA, 1-MCP, ethylene absorption by potassium permanganate (ABS, AVG + ABS, and of AVG + 1-MCP - applied at different rates and periods - were evaluated on: gas diffusion rate, ethylene production, respiratory rate, internal ethylene concentration, internal CO2 content, mealiness, and intercellular space. Fruit from the control and sole NAA treatments had the highest mealiness occurrence. Growth regulators significantly changed the gaseous diffusion through the pulp of 'Brookfield' apple, mainly in the treatment AVG + ABS, which kept the highest gas diffusion rate. NAA spraying in the field, with or without another growth regulator, increased ripening metabolism by rising ethylene production and respiration rate, and reduced gas diffusion during shelf life. AVG spraying cannot avoid the ethephon effect during the ripening process, and reduces both the internal space and mealiness incidence, but it is not able to induce ethylene production or to increase respiration rates.
On the application of finite element method in the solution of steady state diffusion equation
International Nuclear Information System (INIS)
Ono, S.
1982-01-01
The solution of the steady state neutron diffusion equation is obtained by using the finite element method. Specifically the variational approach is used for one dimensional problems and the weighted residual method (Galerkin) for one and two dimensional problems. The spatial domain is divided into retangular elements and the neutron flux is approximated by linear (one dimensional case), and bilinear (two-dimensional case) functions. Numerical results are obtained with a FORTRAN IV computer program and compared with those obtained by the finite difference CITATION code. The results show that linear or bilinear functions, do not satisfactorily describe the differential parameters in highly heterogeneous reactor cases, but provide good results for integral parameters such as multiplication factor. (Author) [pt
The Nodal Polynomial Expansion method to solve the multigroup diffusion equations
International Nuclear Information System (INIS)
Ribeiro, R.D.M.
1983-03-01
The methodology of the solutions of the multigroup diffusion equations and uses the Nodal Polynomial Expansion Method is covered. The EPON code was developed based upon the above mentioned method for stationary state, rectangular geometry, one-dimensional or two-dimensional and for one or two energy groups. Then, one can study some effects such as the influence of the baffle on the thermal flux by calculating the flux and power distribution in nuclear reactors. Furthermore, a comparative study with other programs which use Finite Difference (CITATION and PDQ5) and Finite Element (CHD and FEMB) Methods was undertaken. As a result, the coherence, feasibility, speed and accuracy of the methodology used were demonstrated. (Author) [pt
International Nuclear Information System (INIS)
Wang, Wenyan; Han, Bo; Yamamoto, Masahiro
2013-01-01
We propose a new numerical method for reproducing kernel Hilbert space to solve an inverse source problem for a two-dimensional fractional diffusion equation, where we are required to determine an x-dependent function in a source term by data at the final time. The exact solution is represented in the form of a series and the approximation solution is obtained by truncating the series. Furthermore, a technique is proposed to improve some of the existing methods. We prove that the numerical method is convergent under an a priori assumption of the regularity of solutions. The method is simple to implement. Our numerical result shows that our method is effective and that it is robust against noise in L 2 -space in reconstructing a source function. (paper)
Non-rigid registration of breast surfaces using the laplace and diffusion equations
Directory of Open Access Journals (Sweden)
Ou Jao J
2010-02-01
Full Text Available Abstract A semi-automated, non-rigid breast surface registration method is presented that involves solving the Laplace or diffusion equations over undeformed and deformed breast surfaces. The resulting potential energy fields and isocontours are used to establish surface correspondence. This novel surface-based method, which does not require intensity images, anatomical landmarks, or fiducials, is compared to a gold standard of thin-plate spline (TPS interpolation. Realistic finite element simulations of breast compression and further testing against a tissue-mimicking phantom demonstrate that this method is capable of registering surfaces experiencing 6 - 36 mm compression to within a mean error of 0.5 - 5.7 mm.
Regularity of random attractors for fractional stochastic reaction-diffusion equations on Rn
Gu, Anhui; Li, Dingshi; Wang, Bixiang; Yang, Han
2018-06-01
We investigate the regularity of random attractors for the non-autonomous non-local fractional stochastic reaction-diffusion equations in Hs (Rn) with s ∈ (0 , 1). We prove the existence and uniqueness of the tempered random attractor that is compact in Hs (Rn) and attracts all tempered random subsets of L2 (Rn) with respect to the norm of Hs (Rn). The main difficulty is to show the pullback asymptotic compactness of solutions in Hs (Rn) due to the noncompactness of Sobolev embeddings on unbounded domains and the almost sure nondifferentiability of the sample paths of the Wiener process. We establish such compactness by the ideas of uniform tail-estimates and the spectral decomposition of solutions in bounded domains.
Finite difference discretization of semiconductor drift-diffusion equations for nanowire solar cells
Deinega, Alexei; John, Sajeev
2012-10-01
We introduce a finite difference discretization of semiconductor drift-diffusion equations using cylindrical partial waves. It can be applied to describe the photo-generated current in radial pn-junction nanowire solar cells. We demonstrate that the cylindrically symmetric (l=0) partial wave accurately describes the electronic response of a square lattice of silicon nanowires at normal incidence. We investigate the accuracy of our discretization scheme by using different mesh resolution along the radial direction r and compare with 3D (x, y, z) discretization. We consider both straight nanowires and nanowires with radius modulation along the vertical axis. The charge carrier generation profile inside each nanowire is calculated using an independent finite-difference time-domain simulation.
A Radiation Chemistry Code Based on the Greens Functions of the Diffusion Equation
Plante, Ianik; Wu, Honglu
2014-01-01
Ionizing radiation produces several radiolytic species such as.OH, e-aq, and H. when interacting with biological matter. Following their creation, radiolytic species diffuse and chemically react with biological molecules such as DNA. Despite years of research, many questions on the DNA damage by ionizing radiation remains, notably on the indirect effect, i.e. the damage resulting from the reactions of the radiolytic species with DNA. To simulate DNA damage by ionizing radiation, we are developing a step-by-step radiation chemistry code that is based on the Green's functions of the diffusion equation (GFDE), which is able to follow the trajectories of all particles and their reactions with time. In the recent years, simulations based on the GFDE have been used extensively in biochemistry, notably to simulate biochemical networks in time and space and are often used as the "gold standard" to validate diffusion-reaction theories. The exact GFDE for partially diffusion-controlled reactions is difficult to use because of its complex form. Therefore, the radial Green's function, which is much simpler, is often used. Hence, much effort has been devoted to the sampling of the radial Green's functions, for which we have developed a sampling algorithm This algorithm only yields the inter-particle distance vector length after a time step; the sampling of the deviation angle of the inter-particle vector is not taken into consideration. In this work, we show that the radial distribution is predicted by the exact radial Green's function. We also use a technique developed by Clifford et al. to generate the inter-particle vector deviation angles, knowing the inter-particle vector length before and after a time step. The results are compared with those predicted by the exact GFDE and by the analytical angular functions for free diffusion. This first step in the creation of the radiation chemistry code should help the understanding of the contribution of the indirect effect in the
Ouaras, K.; Magne, L.; Pasquiers, S.; Tardiveau, P.; Jeanney, P.; Bournonville, B.
2018-04-01
The spatiotemporal distributions of the OH radical density are measured using planar laser induced fluorescence in the afterglow of a nanosecond diffuse discharge at atmospheric pressure in humid air. The diffuse discharge is generated between a pin and a grounded plate electrodes within a gap of 18 mm. The high voltage pulse applied to the pin ranges from 65 to 85 kV with a rise time of 2 ns. The specific electrical energy transferred to the gas ranges from 5 to 40 J l‑1. The influence of H2O concentration is studied from 0.5% to 1.5%. An absolute calibration of OH density is performed using a six-level transient rate equation model to simulate the dynamics of OH excitation by the laser, taking into account collisional processes during the optical pumping and the fluorescence. Rayleigh scattering measurements are used to achieve the geometrical part of the calibration. A local maximum of OH density is found in the pin area whatever the operating conditions. For 85 kV and 1% of H2O, this peak reaches a value of 2.0 × 1016 cm‑3 corresponding to 8% of H2O dissociation. The temporal decay of the spatially averaged OH density is found to be similar as in the afterglow of a homogeneous photo-triggered discharge for which a self-consistent modeling is done. These tools are then used to bring discussion elements on OH kinetics.
Hybrid nodal methods in the solution of the diffusion equations in X Y geometry
International Nuclear Information System (INIS)
Hernandez M, N.; Alonso V, G.; Valle G, E. del
2003-01-01
In 1979, Hennart and collaborators applied several schemes of classic finite element in the numerical solution of the diffusion equations in X Y geometry and stationary state. Almost two decades then, in 1996, himself and other collaborators carried out a similar work but using nodal schemes type finite element. Continuing in this last direction, in this work a group it is described a set of several Hybrid Nodal schemes denominated (NH) as well as their application to solve the diffusion equations in multigroup in stationary state and X Y geometry. The term hybrid nodal it means that such schemes interpolate not only Legendre moments of face and of cell but also the values of the scalar flow of neutrons in the four corners of each cell or element of the spatial discretization of the domain of interest. All the schemes here considered are polynomials like they were it their predecessors. Particularly, its have developed and applied eight different hybrid nodal schemes that its are very nearby related with those developed by Hennart and collaborators in the past. It is treated of schemes in those that nevertheless that decreases the number of interpolation parameters it is conserved the accurate in relation to the bi-quadratic and bi-cubic schemes. Of these eight, three were described and applied in a previous work. It is the bi-lineal classic scheme as well as the hybrid nodal schemes, bi-quadratic and bi-cubic for that here only are described the other 5 hybrid nodal schemes although they are provided numerical results for several test problems with all them. (Author)
Numerical Solution of the Electron Transport Equation in the Upper Atmosphere
Energy Technology Data Exchange (ETDEWEB)
Woods, Mark Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Holmes, Mark [Rensselaer Polytechnic Inst., Troy, NY (United States); Sailor, William C [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-07-01
A new approach for solving the electron transport equation in the upper atmosphere is derived. The problem is a very stiff boundary value problem, and to obtain an accurate numerical solution, matrix factorizations are used to decouple the fast and slow modes. A stable finite difference method is applied to each mode. This solver is applied to a simplifieed problem for which an exact solution exists using various versions of the boundary conditions that might arise in a natural auroral display. The numerical and exact solutions are found to agree with each other to at least two significant digits.
The laser-backscattering equations and their application to the study of the atmospheric structure
Castrejon, R; Castrejon, J; Morales, A
2002-01-01
In this work a method for interpreting backscattering signals acquired by a lidar is described. The method is based on the elastic scattering of laser radiation due to gases and particles suspended in the atmosphere (bulk effects). We propose a space-time diagram which helps to evaluate the arguments of the equation that serves to calculate the lidar signal in terms of the backscattering coefficient. We describe how the system detects gradients on this coefficient, along the laser optical path. To illustrate the method, we present some typical lidar results obtained in the neighborhood of Mexico City. (Author)
Finite difference solution of the time dependent neutron group diffusion equations
International Nuclear Information System (INIS)
Hendricks, J.S.; Henry, A.F.
1975-08-01
In this thesis two unrelated topics of reactor physics are examined: the prompt jump approximation and alternating direction checkerboard methods. In the prompt jump approximation it is assumed that the prompt and delayed neutrons in a nuclear reactor may be described mathematically as being instantaneously in equilibrium with each other. This approximation is applied to the spatially dependent neutron diffusion theory reactor kinetics model. Alternating direction checkerboard methods are a family of finite difference alternating direction methods which may be used to solve the multigroup, multidimension, time-dependent neutron diffusion equations. The reactor mesh grid is not swept line by line or point by point as in implicit or explicit alternating direction methods; instead, the reactor mesh grid may be thought of as a checkerboard in which all the ''red squares'' and '' black squares'' are treated successively. Two members of this family of methods, the ADC and NSADC methods, are at least as good as other alternating direction methods. It has been found that the accuracy of implicit and explicit alternating direction methods can be greatly improved by the application of an exponential transformation. This transformation is incompatible with checkerboard methods. Therefore, a new formulation of the exponential transformation has been developed which is compatible with checkerboard methods and at least as good as the former transformation for other alternating direction methods
Hu, Shujuan; Cheng, Jianbo; Xu, Ming; Chou, Jifan
2018-04-01
The three-pattern decomposition of global atmospheric circulation (TPDGAC) partitions three-dimensional (3D) atmospheric circulation into horizontal, meridional and zonal components to study the 3D structures of global atmospheric circulation. This paper incorporates the three-pattern decomposition model (TPDM) into primitive equations of atmospheric dynamics and establishes a new set of dynamical equations of the horizontal, meridional and zonal circulations in which the operator properties are studied and energy conservation laws are preserved, as in the primitive equations. The physical significance of the newly established equations is demonstrated. Our findings reveal that the new equations are essentially the 3D vorticity equations of atmosphere and that the time evolution rules of the horizontal, meridional and zonal circulations can be described from the perspective of 3D vorticity evolution. The new set of dynamical equations includes decomposed expressions that can be used to explore the source terms of large-scale atmospheric circulation variations. A simplified model is presented to demonstrate the potential applications of the new equations for studying the dynamics of the Rossby, Hadley and Walker circulations. The model shows that the horizontal air temperature anomaly gradient (ATAG) induces changes in meridional and zonal circulations and promotes the baroclinic evolution of the horizontal circulation. The simplified model also indicates that the absolute vorticity of the horizontal circulation is not conserved, and its changes can be described by changes in the vertical vorticities of the meridional and zonal circulations. Moreover, the thermodynamic equation shows that the induced meridional and zonal circulations and advection transport by the horizontal circulation in turn cause a redistribution of the air temperature. The simplified model reveals the fundamental rules between the evolution of the air temperature and the horizontal, meridional
Fourier spectral methods for fractional-in-space reaction-diffusion equations
Bueno-Orovio, Alfonso
2014-04-01
© 2014, Springer Science+Business Media Dordrecht. Fractional differential equations are becoming increasingly used as a powerful modelling approach for understanding the many aspects of nonlocality and spatial heterogeneity. However, the numerical approximation of these models is demanding and imposes a number of computational constraints. In this paper, we introduce Fourier spectral methods as an attractive and easy-to-code alternative for the integration of fractional-in-space reaction-diffusion equations described by the fractional Laplacian in bounded rectangular domains of ℝ. The main advantages of the proposed schemes is that they yield a fully diagonal representation of the fractional operator, with increased accuracy and efficiency when compared to low-order counterparts, and a completely straightforward extension to two and three spatial dimensions. Our approach is illustrated by solving several problems of practical interest, including the fractional Allen–Cahn, FitzHugh–Nagumo and Gray–Scott models, together with an analysis of the properties of these systems in terms of the fractional power of the underlying Laplacian operator.
Solution to the Diffusion equation for multi groups in X Y geometry using Linear Perturbation theory
International Nuclear Information System (INIS)
Mugica R, C.A.
2004-01-01
Diverse methods exist to solve numerically the neutron diffusion equation for several energy groups in stationary state among those that highlight those of finite elements. In this work the numerical solution of this equation is presented using Raviart-Thomas nodal methods type finite element, the RT0 and RT1, in combination with iterative techniques that allow to obtain the approached solution in a quick form. Nevertheless the above mentioned, the precision of a method is intimately bound to the dimension of the approach space by cell, 5 for the case RT0 and 12 for the RT1, and/or to the mesh refinement, that makes the order of the problem of own value to solve to grow considerably. By this way if it wants to know an acceptable approach to the value of the effective multiplication factor of the system when this it has experimented a small perturbation it was appeal to the Linear perturbation theory with which is possible to determine it starting from the neutron flow and of the effective multiplication factor of the not perturbed case. Results are presented for a reference problem in which a perturbation is introduced in an assemble that simulates changes in the control bar. (Author)
Numerical Calculation and Exergy Equations of Spray Heat Exchanger Attached to a Main Fan Diffuser
Cui, H.; Wang, H.; Chen, S.
2015-04-01
In the present study, the energy depreciation rule of spray heat exchanger, which is attached to a main fan diffuser, is analyzed based on the second law of thermodynamics. Firstly, the exergy equations of the exchanger are deduced. The equations are numerically calculated by the fourth-order Runge-Kutta method, and the exergy destruction is quantitatively effected by the exchanger structure parameters, working fluid (polluted air, i.e., PA; sprayed water, i.e., SW) initial state parameters and the ambient reference parameters. The results are showed: (1) heat transfer is given priority to latent transfer at the bottom of the exchanger, and heat transfer of convection and is equivalent to that of condensation in the upper. (2) With the decrease of initial temperature of SW droplet, the decrease of PA velocity or the ambient reference temperature, and with the increase of a SW droplet size or initial PA temperature, exergy destruction both increase. (3) The exergy efficiency of the exchanger is 72.1 %. An approach to analyze the energy potential of the exchanger may be provided for engineering designs.
Convergence properties of iterative algorithms for solving the nodal diffusion equations
International Nuclear Information System (INIS)
Azmy, Y.Y.; Kirk, B.L.
1990-01-01
We drive the five point form of the nodal diffusion equations in two-dimensional Cartesian geometry and develop three iterative schemes to solve the discrete-variable equations: the unaccelerated, partial Successive Over Relaxation (SOR), and the full SOR methods. By decomposing the iteration error into its Fourier modes, we determine the spectral radius of each method for infinite medium, uniform model problems, and for the unaccelerated and partial SOR methods for finite medium, uniform model problems. Also for the two variants of the SOR method we determine the optimal relaxation factor that results in the smallest number of iterations required for convergence. Our results indicate that the number of iterations for the unaccelerated and partial SOR methods is second order in the number of nodes per dimension, while, for the full SOR this behavior is first order, resulting in much faster convergence for very large problems. We successfully verify the results of the spectral analysis against those of numerical experiments, and we show that for the full SOR method the linear dependence of the number of iterations on the number of nodes per dimension is relatively insensitive to the value of the relaxation parameter, and that it remains linear even for heterogenous problems. 14 refs., 1 fig
International Nuclear Information System (INIS)
Ferri, A.A.
1986-01-01
Nodal methods applied in order to calculate the power distribution in a nuclear reactor core are presented. These methods have received special attention, because they yield accurate results in short computing times. Present nodal schemes contain several unknowns per node and per group. In the methods presented here, non linear feedback of the coupling coefficients has been applied to reduce this number to only one unknown per node and per group. The resulting algorithm is a 7- points formula, and the iterative process has proved stable in the response matrix scheme. The intranodal flux shape is determined by partial integration of the diffusion equations over two of the coordinates, leading to a set of three coupled one-dimensional equations. These can be solved by using a polynomial approximation or by integration (analytic solution). The tranverse net leakage is responsible for the coupling between the spatial directions, and two alternative methods are presented to evaluate its shape: direct parabolic approximation and local model expansion. Numerical results, which include the IAEA two-dimensional benchmark problem illustrate the efficiency of the developed methods. (M.E.L.) [es
Solving the radiation diffusion and energy balance equations using pseudo-transient continuation
International Nuclear Information System (INIS)
Shestakov, A.I.; Greenough, J.A.; Howell, L.H.
2005-01-01
We develop a scheme for the system coupling the radiation diffusion and matter energy balance equations. The method is based on fully implicit, first-order, backward Euler differencing; Picard-Newton iterations solve the nonlinear system. We show that iterating on the radiation energy density and the emission source is more robust. Since the Picard-Newton scheme may not converge for all initial conditions and time steps, pseudo-transient continuation (Ψtc) is introduced. The combined Ψtc-Picard-Newton scheme is analyzed. We derive conditions on the Ψtc parameter that guarantee physically meaningful iterates, e.g., positive energies. Successive Ψtc iterates are bounded and the radiation energy density and emission source tend to equilibrate. The scheme is incorporated into a multiply dimensioned, massively parallel, Eulerian, radiation-hydrodynamic computer program with automatic mesh refinement (AMR). Three examples are presented that exemplify the scheme's performance. (1) The Pomraning test problem that models radiation flow into cold matter. (2) A similar, but more realistic problem simulating the propagation of an ionization front into tenuous hydrogen gas with a Saha model for the equation-of-state. (3) A 2D axisymmetric (R,Z) simulation with real materials featuring jetting, radiatively driven, interacting shocks
Energy Technology Data Exchange (ETDEWEB)
Kekenes-Huskey, P. M., E-mail: pkekeneshuskey@ucsd.edu [Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636 (United States); Gillette, A. K. [Department of Mathematics, University of Arizona, Tucson, Arizona 85721-0089 (United States); McCammon, J. A. [Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636 (United States); Department of Chemistry, Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093-0636 (United States)
2014-05-07
The macroscopic diffusion constant for a charged diffuser is in part dependent on (1) the volume excluded by solute “obstacles” and (2) long-range interactions between those obstacles and the diffuser. Increasing excluded volume reduces transport of the diffuser, while long-range interactions can either increase or decrease diffusivity, depending on the nature of the potential. We previously demonstrated [P. M. Kekenes-Huskey et al., Biophys. J. 105, 2130 (2013)] using homogenization theory that the configuration of molecular-scale obstacles can both hinder diffusion and induce diffusional anisotropy for small ions. As the density of molecular obstacles increases, van der Waals (vdW) and electrostatic interactions between obstacle and a diffuser become significant and can strongly influence the latter's diffusivity, which was neglected in our original model. Here, we extend this methodology to include a fixed (time-independent) potential of mean force, through homogenization of the Smoluchowski equation. We consider the diffusion of ions in crowded, hydrophilic environments at physiological ionic strengths and find that electrostatic and vdW interactions can enhance or depress effective diffusion rates for attractive or repulsive forces, respectively. Additionally, we show that the observed diffusion rate may be reduced independent of non-specific electrostatic and vdW interactions by treating obstacles that exhibit specific binding interactions as “buffers” that absorb free diffusers. Finally, we demonstrate that effective diffusion rates are sensitive to distribution of surface charge on a globular protein, Troponin C, suggesting that the use of molecular structures with atomistic-scale resolution can account for electrostatic influences on substrate transport. This approach offers new insight into the influence of molecular-scale, long-range interactions on transport of charged species, particularly for diffusion-influenced signaling events
ADI as a preconditioning for solving the convection-diffusion equation
International Nuclear Information System (INIS)
Chin, R.C.Y.; Manteuffel, T.A.; De Pillis, J.
1984-01-01
The authors examine a splitting of the operator obtained from a steady convection-diffusion equation with variable coefficients in which the convection term dominates. The operator is split into a dominant and subdominant parts consistent with the inherent directional property of the partial differential equation. The equations involving the dominant parts should be easily solved. The authors accelerate the convergence of this splitting or the outer iteration by a Chebyshev semi-iterative method. When the dominant part has constant coefficients, it can be easily solved using alternating direction implicit (ADI) methods. This is called the inner iteration. The optimal parameters for a stationary two-parameter ADI method are obtained when the eigenvalues become complex. This corresponds to either the horizontal or the vertical half-grid Reynolds number larger than unity. The Chebyshev semi-iterative method is used to accelerate the convergence of the inner ADI iteration. A two-fold increase in speed is obtained when the ADI iteration matrix has real eigenvalues, and the increase is less significant when the eigenvalues are complex. If either the horizontal or the vertical half-grid Reynolds number is equal to one, the spectral radius of the optimal ADI iterative matrix is zero. However, a high degree of nilpotency impairs rapid convergence. This problem is removed by introducing a more implicit iterative method called ADI/Gauss-Seidel (ADI/GS). ADI/GS resolves the nilpotency and, thus, converges more rapidly for half-grid Reynolds number near 1. Finally, these methods are compared with several well-known schemes on test problems. 23 references, 5 figures
International Nuclear Information System (INIS)
Kriventsev, Vladimir
2000-09-01
Most of thermal hydraulic processes in nuclear engineering can be described by general convection-diffusion equations that are often can be simulated numerically with finite-difference method (FDM). An effective scheme for finite-difference discretization of such equations is presented in this report. The derivation of this scheme is based on analytical solutions of a simplified one-dimensional equation written for every control volume of the finite-difference mesh. These analytical solutions are constructed using linearized representations of both diffusion coefficient and source term. As a result, the Efficient Finite-Differencing (EFD) scheme makes it possible to significantly improve the accuracy of numerical method even using mesh systems with fewer grid nodes that, in turn, allows to speed-up numerical simulation. EFD has been carefully verified on the series of sample problems for which either analytical or very precise numerical solutions can be found. EFD has been compared with other popular FDM schemes including novel, accurate (as well as sophisticated) methods. Among the methods compared were well-known central difference scheme, upwind scheme, exponential differencing and hybrid schemes of Spalding. Also, newly developed finite-difference schemes, such as the the quadratic upstream (QUICK) scheme of Leonard, the locally analytic differencing (LOAD) scheme of Wong and Raithby, the flux-spline scheme proposed by Varejago and Patankar as well as the latest LENS discretization of Sakai have been compared. Detailed results of this comparison are given in this report. These tests have shown a high efficiency of the EFD scheme. For most of sample problems considered EFD has demonstrated the numerical error that appeared to be in orders of magnitude lower than that of other discretization methods. Or, in other words, EFD has predicted numerical solution with the same given numerical error but using much fewer grid nodes. In this report, the detailed
Directory of Open Access Journals (Sweden)
Mohammad Siddique
2010-08-01
Full Text Available Parabolic partial differential equations with nonlocal boundary conditions arise in modeling of a wide range of important application areas such as chemical diffusion, thermoelasticity, heat conduction process, control theory and medicine science. In this paper, we present the implementation of positivity- preserving Padé numerical schemes to the two-dimensional diffusion equation with nonlocal time dependent boundary condition. We successfully implemented these numerical schemes for both Homogeneous and Inhomogeneous cases. The numerical results show that these Padé approximation based numerical schemes are quite accurate and easily implemented.
International Nuclear Information System (INIS)
Montan, D.N.
1987-02-01
This report is intended to describe, document and provide instructions for the use of new versions of a set of computer programs commonly referred to as the PLUS family. These programs were originally designed to numerically evaluate simple analytical solutions of the diffusion equation. The new versions include linear thermo-elastic effects from thermal fields calculated by the diffusion equation. After the older versions of the PLUS family were documented a year ago, it was realized that the techniques employed in the programs were well suited to the addition of linear thermo-elastic phenomena. This has been implemented and this report describes the additions. 3 refs., 14 figs
Jain, Sonal
2018-01-01
In this paper, we aim to use the alternative numerical scheme given by Gnitchogna and Atangana for solving partial differential equations with integer and non-integer differential operators. We applied this method to fractional diffusion model and fractional Buckmaster models with non-local fading memory. The method yields a powerful numerical algorithm for fractional order derivative to implement. Also we present in detail the stability analysis of the numerical method for solving the diffusion equation. This proof shows that this method is very stable and also converges very quickly to exact solution and finally some numerical simulation is presented.
Energy Technology Data Exchange (ETDEWEB)
Fernandes, Julio Cesar L.; Vilhena, Marco Tullio, E-mail: julio.lombaldo@ufrgs.b, E-mail: vilhena@pq.cnpq.b [Universidade Federal do Rio Grande do Sul (DMPA/UFRGS), Porto Alegre, RS (Brazil). Dept. de Matematica Pura e Aplicada. Programa de Pos Graduacao em Matematica Aplicada; Borges, Volnei; Bodmann, Bardo Ernest, E-mail: bardo.bodmann@ufrgs.b, E-mail: borges@ufrgs.b [Universidade Federal do Rio Grande do Sul (PROMEC/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica
2011-07-01
The principal idea of this work, consist on formulate an analytical method to solved problems for diffusion of neutrons with isotropic scattering in one-dimensional cylindrical geometry. In this area were develop many works that study the same problem in different system of coordinates as well as cartesian system, nevertheless using numerical methods to solve the shielding problem. In view of good results in this works, we starting with the idea that we can represent a source in the origin of the cylindrical system by a Delta Dirac distribution, we describe the physical modeling and solved the neutron diffusion equation inside of cylinder of radius R. For the case of transport equation, the formulation of discrete ordinates S{sub N} consists in discretize the angular variables in N directions and in using a quadrature angular set for approximate the sources of scattering, where the Diffusion equation consist on S{sub 2} approximated transport equation in discrete ordinates. We solved the neutron diffusion equation with an analytical form by the finite Hankel transform. Was presented also the build-up factor for the case that we have neutron flux inside the cylinder. (author)
International Nuclear Information System (INIS)
Fernandes, Julio Cesar L.; Vilhena, Marco Tullio; Borges, Volnei; Bodmann, Bardo Ernest
2011-01-01
The principal idea of this work, consist on formulate an analytical method to solved problems for diffusion of neutrons with isotropic scattering in one-dimensional cylindrical geometry. In this area were develop many works that study the same problem in different system of coordinates as well as cartesian system, nevertheless using numerical methods to solve the shielding problem. In view of good results in this works, we starting with the idea that we can represent a source in the origin of the cylindrical system by a Delta Dirac distribution, we describe the physical modeling and solved the neutron diffusion equation inside of cylinder of radius R. For the case of transport equation, the formulation of discrete ordinates S N consists in discretize the angular variables in N directions and in using a quadrature angular set for approximate the sources of scattering, where the Diffusion equation consist on S 2 approximated transport equation in discrete ordinates. We solved the neutron diffusion equation with an analytical form by the finite Hankel transform. Was presented also the build-up factor for the case that we have neutron flux inside the cylinder. (author)
Directory of Open Access Journals (Sweden)
Gao Lin
2017-01-01
Full Text Available Recently, a new integral transform similar to Sumudu transform has been proposed by Yang [1]. Some of the properties of the integral transform are expanded in the present article. Meanwhile, new applications to the linear wave and diffusion equations in semi-infinite domains are discussed in detail. The proposed method provides an alternative approach to solve the partial differential equations in mathematical physics.
Solution of multi-group diffusion equation in x-y-z geometry by finite Fourier transformation
International Nuclear Information System (INIS)
Kobayashi, Keisuke
1975-01-01
The multi-group diffusion equation in three-dimensional x-y-z geometry is solved by finite Fourier transformation. Applying the Fourier transformation to a finite region with constant nuclear cross sections, the fluxes and currents at the material boundaries are obtained in terms of the Fourier series. Truncating the series after the first term, and assuming that the source term is piecewise linear within each mesh box, a set of coupled equations is obtained in the form of three-point equations for each coordinate. These equations can be easily solved by the alternative direction implicit method. Thus a practical procedure is established that could be applied to replace the currently used difference equation. This equation is used to solve the multi-group diffusion equation by means of the source iteration method; and sample calculations for thermal and fast reactors show that the present method yields accurate results with a smaller number of mesh points than the usual finite difference equations. (auth.)
International Nuclear Information System (INIS)
Vogt, K.J.; Geiss, H.; Horbert, M.; Nordsieck, H.; Polster, G.; Rohloff, F.
1974-09-01
The paper is the first part of the status report on the research project 'Diffusion of pollutants in the atmosphere and environmental hazards'. It investigates the diffusion of exhaust air plumes in tracer experiments, thereby continuing the present investigations of the same issue. (orig./AK) [de
Diffuse and spot mode of cathode arc attachments in an atmospheric magnetically rotating argon arc
International Nuclear Information System (INIS)
Chen, Tang; Wang, Cheng; Liao, Meng-Ran; Xia, Wei-Dong
2016-01-01
A model including the cathode, near-cathode region, and arc column was constructed. Specifically, a thermal perturbation layer at the arc fringe was calculated in order to couple sheath/presheath modelling with typical arc column modelling. Comparative investigation of two modes of attachment of a dc (100, 150, 200 A) atmospheric-pressure arc in argon to a thermionic cathode made of pure tungsten was conducted. Computational data revealed that there exists two modes of arc discharge: the spot mode, which has an obvious cathode surface temperature peak in the arc attachment centre; and the diffuse mode, which has a flat cathode surface temperature distribution and a larger arc attachment area. The modelling results of the arc attachment agree with previous experimental observations for the diffuse mode. A further 3D simulation is obviously needed to investigate the non-axisymmetrical features, especially for the spot mode. (paper)
International Nuclear Information System (INIS)
Wueneke, C.D.; Schultz, H.
1975-01-01
The most important routines of a numerical code based on the particle-in-cell-method for calculating the transport and the turbulent dispersion of inert and radio-active pollutants in the atmosphere have been programmed and have been tested successfully on the CDC computer CYBER 73/76 of the Regional Computer Centre for Niedersachsen in Hanover. Compared to the Gaussian plume model such a numerical code based on the particle-in-cell-method offers several advantages for the computation of the diffusion under varying conditions in large cultivated regions. (orig.) [de
Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air
DEFF Research Database (Denmark)
Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan
2014-01-01
Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating...... current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column...
Turbulent jet diffusion flame length evolution with cross flows in a sub-pressure atmosphere
International Nuclear Information System (INIS)
Wang, Qiang; Hu, Longhua; Zhang, Xiaozheng; Zhang, Xiaolei; Lu, Shouxiang; Ding, Hang
2015-01-01
Highlights: • Quantifying turbulent jet diffusion flame length with cross flows. • Unique data revealed for a sub-atmospheric pressure. • Non-dimensional global correlation proposed for flame trajectory-line length. - Abstract: This paper investigates the evolution characteristics of turbulent jet diffusion flame (flame trajectory-line length, flame height in vertical jet direction) with increasing cross flows in a sub-pressure (64 kPa) atmosphere. The combined effect of cross flow and a special sub-pressure atmosphere condition is revealed, where no data is available in the literatures. Experiments are carried out with a wind tunnel built specially in Lhasa city (altitude: 3650 m; pressure: 64 kPa) and in Hefei city (altitude: 50 m; pressure: 100 kPa), using nozzles with diameter of 3 mm, 4 mm and 5 mm and propane as fuel. It is found that, as cross flow air speed increases from zero, the flame trajectory-line length firstly decreases and then becomes almost stable (for relative small nozzle, 3 mm in this study) or increases (for relative large nozzle, 4 mm and 5 mm in this study) beyond a transitional critical cross flow air speed in normal pressure, however decreases monotonically until being blown-out in the sub-pressure atmosphere. The flame height in jet direction decreases monotonically with cross air flow speed and then reaches a steady value in both pressures. For the transitional state of flame trajectory-line length with increasing cross air flow speed, the corresponding critical cross flow air speed is found to be proportional to the fuel jet velocity, meanwhile independent of nozzle diameter. Correlation models are proposed for the flame height in jet direction and the flame trajectory-line length for both ambient pressures, which are shown to be in good agreement with the experimental results.
International Nuclear Information System (INIS)
Halilou, A.; Lounici, A.
1981-01-01
The subject is divided in two parts: In the first part a nodal method has been worked out to solve the steady state multigroup diffusion equation. This method belongs to the same set of nodal methods currently used to calculate the exact fission powers and neutron fluxes in a very short computing time. It has been tested on a two dimensional idealized reactors. The effective multiplication factor and the fission powers for each fuel element have been calculated. The second part consists in studying and mastering the multigroup diffusion code DAHRA - a reduced version of DIANE - a two dimensional code using finite difference method
Energy Technology Data Exchange (ETDEWEB)
Chen-Guang, Zhu; Gong-Pei, Pan; Xiao-Yun, Wu; Hua, Guan [308, School of Chemical Engineering, Nanjing University of Science and Technology, 210094 (China)
2006-06-15
The available shielding area of a smoke screen is an important parameter to evaluate its protection capability. It varies with time according to a parabola equation, which could be obtained by the diffusion equation and a few measured data. The available standing time which could satisfy the request of rating area can be calculated. The process of deriving the equation, the experimental procedure and the method of data collecting and processing is presented in detail in this paper. The calculated result is compared with engineering experience to verify the method. (Abstract Copyright [2006], Wiley Periodicals, Inc.)
Li, Zhiyuan; Huang, Xinchi; Yamamoto, Masahiro
2018-01-01
In this paper, we discuss an initial-boundary value problem (IBVP) for the multi-term time-fractional diffusion equation with x-dependent coefficients. By means of the Mittag-Leffler functions and the eigenfunction expansion, we reduce the IBVP to an equivalent integral equation to show the unique existence and the analyticity of the solution for the equation. Especially, in the case where all the coefficients of the time-fractional derivatives are non-negative, by the Laplace and inversion L...
Experimental test of depth dependence of solutions for time-resolved diffusion equation
Energy Technology Data Exchange (ETDEWEB)
Laidevant, A.; Da Silva, A.; Moy, J.P.; Berger, M.; Dinten, J.M
2004-07-01
The determination of optical properties of a semi-infinite medium such as biological tissue has been widely investigated by many authors. Reflectance formulas can be derived from the diffusion equation for different boundary conditions at the medium-air interface. This quantity can be measured at the medium surface. For realistic objects, such as a mouse, tissue optical properties can realistically only be determined at the object surface. However, near the surface diffusion approximation is weak and boundary models have to be considered. In order to investigate the validity of the time resolved reflectance approach at the object boundary, we have estimated optical properties of a liquid semi-infinite medium by this method for different boundary conditions and different fiber's position beneath the surface. The time-correlated single photon counting (TCSPC) technique is used to measure the reflectance curve. Our liquid phantoms are made of water, Intra-lipid and Ink. Laser light is delivered by a pulsed laser diode. Measurements are then fitted to theoretical solutions expressed as a function of source and detector's depth and distance. By taking as reference the optical properties obtained from the infinite model for fibers deeply immersed, influence of the different boundary conditions and bias induced are established for different fibers' depth and a variety of solutions. This influence is analysed by comparing evolution of the reflectance models, as well as estimations of absorption and scattering coefficients. According to this study we propose a strategy for determining optical properties of a solid phantom where measurements can only be realized at the surface. (authors)
Directory of Open Access Journals (Sweden)
Shahnam Javadi
2013-07-01
Full Text Available In this paper, the $(G'/G$-expansion method is applied to solve a biological reaction-convection-diffusion model arising in mathematical biology. Exact traveling wave solutions are obtained by this method. This scheme can be applied to a wide class of nonlinear partial differential equations.
International Nuclear Information System (INIS)
Hughes, T.J.R.; Hulbert, G.M.; Franca, L.P.
1988-10-01
Galerkin/least-squares finite element methods are presented for advective-diffusive equations. Galerkin/least-squares represents a conceptual simplification of SUPG, and is in fact applicable to a wide variety of other problem types. A convergence analysis and error estimates are presented. (author) [pt
Li, Zhiyuan; Yamamoto, Masahiro
2014-01-01
This article proves the uniqueness for two kinds of inverse problems of identifying fractional orders in diffusion equations with multiple time-fractional derivatives by pointwise observation. By means of eigenfunction expansion and Laplace transform, we reduce the uniqueness for our inverse problems to the uniqueness of expansions of some special function and complete the proof.
Two-Phase Fluid Simulation Using a Diffuse Interface Model with Peng--Robinson Equation of State
Qiao, Zhonghua; Sun, Shuyu
2014-01-01
In this paper, two-phase fluid systems are simulated using a diffusive interface model with the Peng-Robinson equation of state (EOS), a widely used realistic EOS for hydrocarbon fluid in the petroleum industry. We first utilize the gradient theory
The intrinsic periodic fluctuation of forest: a theoretical model based on diffusion equation
Zhou, J.; Lin, G., Sr.
2015-12-01
Most forest dynamic models predict the stable state of size structure as well as the total basal area and biomass in mature forest, the variation of forest stands are mainly driven by environmental factors after the equilibrium has been reached. However, although the predicted power-law size-frequency distribution does exist in analysis of many forest inventory data sets, the estimated distribution exponents are always shifting between -2 and -4, and has a positive correlation with the mean value of DBH. This regular pattern can not be explained by the effects of stochastic disturbances on forest stands. Here, we adopted the partial differential equation (PDE) approach to deduce the systematic behavior of an ideal forest, by solving the diffusion equation under the restricted condition of invariable resource occupation, a periodic solution was gotten to meet the variable performance of forest size structure while the former models with stable performance were just a special case of the periodic solution when the fluctuation frequency equals zero. In our results, the number of individuals in each size class was the function of individual growth rate(G), mortality(M), size(D) and time(T), by borrowing the conclusion of allometric theory on these parameters, the results perfectly reflected the observed "exponent-mean DBH" relationship and also gave a logically complete description to the time varying form of forest size-frequency distribution. Our model implies that the total biomass of a forest can never reach a stable equilibrium state even in the absence of disturbances and climate regime shift, we propose the idea of intrinsic fluctuation property of forest and hope to provide a new perspective on forest dynamics and carbon cycle research.
Directory of Open Access Journals (Sweden)
Shahid Hasnain
2017-07-01
Full Text Available This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.
International Nuclear Information System (INIS)
Ragusa, Jean C.
2015-01-01
In this paper, we propose a piece-wise linear discontinuous (PWLD) finite element discretization of the diffusion equation for arbitrary polygonal meshes. It is based on the standard diffusion form and uses the symmetric interior penalty technique, which yields a symmetric positive definite linear system matrix. A preconditioned conjugate gradient algorithm is employed to solve the linear system. Piece-wise linear approximations also allow a straightforward implementation of local mesh adaptation by allowing unrefined cells to be interpreted as polygons with an increased number of vertices. Several test cases, taken from the literature on the discretization of the radiation diffusion equation, are presented: random, sinusoidal, Shestakov, and Z meshes are used. The last numerical example demonstrates the application of the PWLD discretization to adaptive mesh refinement
Hasnain, Shahid; Saqib, Muhammad; Mashat, Daoud Suleiman
2017-07-01
This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit) to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.
International Nuclear Information System (INIS)
Clouet, J.F.; Samba, G.
2005-01-01
We use asymptotic analysis to study the diffusion limit of the Symbolic Implicit Monte-Carlo (SIMC) method for the transport equation. For standard SIMC with piecewise constant basis functions, we demonstrate mathematically that the solution converges to the solution of a wrong diffusion equation. Nevertheless a simple extension to piecewise linear basis functions enables to obtain the correct solution. This improvement allows the calculation in opaque medium on a mesh resolving the diffusion scale much larger than the transport scale. Anyway, the huge number of particles which is necessary to get a correct answer makes this computation time consuming. Thus, we have derived from this asymptotic study an hybrid method coupling deterministic calculation in the opaque medium and Monte-Carlo calculation in the transparent medium. This method gives exactly the same results as the previous one but at a much lower price. We present numerical examples which illustrate the analysis. (authors)
Luchko, Yuri
2013-05-30
In this paper, we consider a reaction-diffusion problem with an unknown nonlinear source function that has to be determined from overposed data. The underlying model is in the form of a time-fractional reaction-diffusion equation and the work generalizes some known results for the inverse problems posed for PDEs of parabolic type. For the inverse problem under consideration, a uniqueness result is proved and a numerical algorithm with some theoretical qualification is presented in the one-dimensional case. The key both to the uniqueness result and to the numerical algorithm relies on the maximum principle which has recently been shown to hold for the fractional diffusion equation. In order to show the effectiveness of the proposed method, results of numerical simulations are presented. © 2013 IOP Publishing Ltd.
Shishkin, G. I.
2015-11-01
An initial-boundary value problem is considered for a singularly perturbed parabolic convection-diffusion equation with a perturbation parameter ɛ (ɛ ∈ (0, 1]) multiplying the highest order derivative. The stability of a standard difference scheme based on monotone approximations of the problem on a uniform mesh is analyzed, and the behavior of discrete solutions in the presence of perturbations is examined. The scheme does not converge ɛ-uniformly in the maximum norm as the number of its grid nodes is increased. When the solution of the difference scheme converges, which occurs if N -1 ≪ ɛ and N -1 0 ≪ 1, where N and N 0 are the numbers of grid intervals in x and t, respectively, the scheme is not ɛ-uniformly well conditioned or stable to data perturbations in the grid problem and to computer perturbations. For the standard difference scheme in the presence of data perturbations in the grid problem and/or computer perturbations, conditions on the "parameters" of the difference scheme and of the computer (namely, on ɛ, N, N 0, admissible data perturbations in the grid problem, and admissible computer perturbations) are obtained that ensure the convergence of the perturbed solutions. Additionally, the conditions are obtained under which the perturbed numerical solution has the same order of convergence as the solution of the unperturbed standard difference scheme.
Coarse-grain parallel solution of few-group neutron diffusion equations
International Nuclear Information System (INIS)
Sarsour, H.N.; Turinsky, P.J.
1991-01-01
The authors present a parallel numerical algorithm for the solution of the finite difference representation of the few-group neutron diffusion equations. The targeted architectures are multiprocessor computers with shared memory like the Cray Y-MP and the IBM 3090/VF, where coarse granularity is important for minimizing overhead. Most of the work done in the past, which attempts to exploit concurrence, has concentrated on the inner iterations of the standard outer-inner iterative strategy. This produces very fine granularity. To coarsen granularity, the authors introduce parallelism at the nested outer-inner level. The problem's spatial domain was partitioned into contiguous subregions and assigned a processor to solve for each subregion independent of all other subregions, hence, processors; i.e., each subregion is treated as a reactor core with imposed boundary conditions. Since those boundary conditions on interior surfaces, referred to as internal boundary conditions (IBCs), are not known, a third iterative level, the recomposition iterations, is introduced to communicate results between subregions
International Nuclear Information System (INIS)
Berthe, P.M.
2013-01-01
In the context of nuclear waste repositories, we consider the numerical discretization of the non stationary convection diffusion equation. Discontinuous physical parameters and heterogeneous space and time scales lead us to use different space and time discretizations in different parts of the domain. In this work, we choose the discrete duality finite volume (DDFV) scheme and the discontinuous Galerkin scheme in time, coupled by an optimized Schwarz waveform relaxation (OSWR) domain decomposition method, because this allows the use of non-conforming space-time meshes. The main difficulty lies in finding an upwind discretization of the convective flux which remains local to a sub-domain and such that the multi domain scheme is equivalent to the mono domain one. These difficulties are first dealt with in the one-dimensional context, where different discretizations are studied. The chosen scheme introduces a hybrid unknown on the cell interfaces. The idea of up winding with respect to this hybrid unknown is extended to the DDFV scheme in the two-dimensional setting. The well-posedness of the scheme and of an equivalent multi domain scheme is shown. The latter is solved by an OSWR algorithm, the convergence of which is proved. The optimized parameters in the Robin transmission conditions are obtained by studying the continuous or discrete convergence rates. Several test-cases, one of which inspired by nuclear waste repositories, illustrate these results. (author) [fr
International Nuclear Information System (INIS)
Ji Zhilong; Ma Yuanwei; Wang Dezhong
2014-01-01
Background: In radioactive nuclides atmospheric diffusion models, the empirical dispersion coefficients were deduced under certain experiment conditions, whose difference with nuclear accident conditions is a source of deviation. A better estimation of the radioactive nuclide's actual dispersion process could be done by correcting dispersion coefficients with observation data, and Genetic Algorithm (GA) is an appropriate method for this correction procedure. Purpose: This study is to analyze the fitness functions' influence on the correction procedure and the forecast ability of diffusion model. Methods: GA, coupled with Lagrange dispersion model, was used in a numerical simulation to compare 4 fitness functions' impact on the correction result. Results: In the numerical simulation, the fitness function with observation deviation taken into consideration stands out when significant deviation exists in the observed data. After performing the correction procedure on the Kincaid experiment data, a significant boost was observed in the diffusion model's forecast ability. Conclusion: As the result shows, in order to improve dispersion models' forecast ability using GA, observation data should be given different weight in the fitness function corresponding to their error. (authors)
International Nuclear Information System (INIS)
Sada, Koichi; Michioka, Takenobu; Ichikawa, Yoichi; Komiyama, Sumito
2009-01-01
A numerical simulation method has been developed to predict atmospheric flow and stack gas diffusion, considering the buildings and complex terrain located near and relatively far from a stack, respectively. The turbulence closure technique was used for flow calculation, some calculation grids on the ground near a stack were treated as buildings, and stack gas diffusion was predicted using the Lagrangian particle model. The calculated flow and stack gas diffusion results were compared with those obtained by wind tunnel experiments under actual terrain containing buildings. Effective stack height was estimated by comparing the surface concentration along the plume axis with those under a flat-plate condition, and it was apparent that the effective stack heights estimated by calculations were almost the same as those obtained by the wind tunnel experiment. Then, the effective dose and relative concentration of stack gas were calculated using the effective stack heights obtained by a numerical model. Almost the same effective dose and relative concentration were obtained when compared with those using the effective stack height obtained by wind tunnel experiment. (author)
Carrillo, J. A.; Desvillettes, L.; Fellner, K.
2009-01-01
Weak solutions of the spatially inhomogeneous (diffusive) Aizenmann-Bak model of coagulation-breakup within a bounded domain with homogeneous Neumann boundary conditions are shown to converge, in the fast reaction limit, towards local equilibria determined by their mass. Moreover, this mass is the solution of a nonlinear diffusion equation whose nonlinearity depends on the (size-dependent) diffusion coefficient. Initial data are assumed to have integrable zero order moment and square integrable first order moment in size, and finite entropy. In contrast to our previous result [5], we are able to show the convergence without assuming uniform bounds from above and below on the number density of clusters. © Taylor & Francis Group, LLC.
Carrillo, J. A.
2009-10-30
Weak solutions of the spatially inhomogeneous (diffusive) Aizenmann-Bak model of coagulation-breakup within a bounded domain with homogeneous Neumann boundary conditions are shown to converge, in the fast reaction limit, towards local equilibria determined by their mass. Moreover, this mass is the solution of a nonlinear diffusion equation whose nonlinearity depends on the (size-dependent) diffusion coefficient. Initial data are assumed to have integrable zero order moment and square integrable first order moment in size, and finite entropy. In contrast to our previous result [5], we are able to show the convergence without assuming uniform bounds from above and below on the number density of clusters. © Taylor & Francis Group, LLC.
International Nuclear Information System (INIS)
Thuburn, J.; Woollings, T.J.
2005-01-01
Accurate representation of different kinds of wave motion is essential for numerical models of the atmosphere, but is sensitive to details of the discretization. In this paper, numerical dispersion relations are computed for different vertical discretizations of the compressible Euler equations and compared with the analytical dispersion relation. A height coordinate, an isentropic coordinate, and a terrain-following mass-based coordinate are considered, and, for each of these, different choices of prognostic variables and grid staggerings are considered. The discretizations are categorized according to whether their dispersion relations are optimal, are near optimal, have a single zero-frequency computational mode, or are problematic in other ways. Some general understanding of the factors that affect the numerical dispersion properties is obtained: heuristic arguments concerning the normal mode structures, and the amount of averaging and coarse differencing in the finite difference scheme, are shown to be useful guides to which configurations will be optimal; the number of degrees of freedom in the discretization is shown to be an accurate guide to the existence of computational modes; there is only minor sensitivity to whether the equations for thermodynamic variables are discretized in advective form or flux form; and an accurate representation of acoustic modes is found to be a prerequisite for accurate representation of inertia-gravity modes, which, in turn, is found to be a prerequisite for accurate representation of Rossby modes
International Nuclear Information System (INIS)
Kubaschewski, O.
1983-01-01
The diffusion rate values of titanium, its compounds and alloys are summarized and tabulated. The individual chemical diffusion coefficients and self-diffusion coefficients of certain isotopes are given. Experimental methods are listed which were used for the determination of diffusion coefficients. Some values have been taken over from other studies. Also given are graphs showing the temperature dependences of diffusion and changes in the diffusion coefficient with concentration changes
Numerical solution of multigroup diffuse equations of one-dimensional geometry
International Nuclear Information System (INIS)
Pavelesku, M.; Adam, S.
1975-01-01
The one-dimensional diffuse theory is used for reactor physics calculations of fast reactors. Computer program based on the one-dimensional diffuse theory is speedy and not memory consuming. The algorithm is described for the three-zone fast reactor criticality computation in one-dimensional diffusion approximation. This algorithm is realised on IBM 370/135 computer. (I.T.)
Muhiddin, F. A.; Sulaiman, J.
2017-09-01
The aim of this paper is to investigate the effectiveness of the Successive Over-Relaxation (SOR) iterative method by using the fourth-order Crank-Nicolson (CN) discretization scheme to derive a five-point Crank-Nicolson approximation equation in order to solve diffusion equation. From this approximation equation, clearly, it can be shown that corresponding system of five-point approximation equations can be generated and then solved iteratively. In order to access the performance results of the proposed iterative method with the fourth-order CN scheme, another point iterative method which is Gauss-Seidel (GS), also presented as a reference method. Finally the numerical results obtained from the use of the fourth-order CN discretization scheme, it can be pointed out that the SOR iterative method is superior in terms of number of iterations, execution time, and maximum absolute error.
Helmers, Michael; Herrmann, Michael
2018-03-01
We consider a lattice regularization for an ill-posed diffusion equation with a trilinear constitutive law and study the dynamics of phase interfaces in the parabolic scaling limit. Our main result guarantees for a certain class of single-interface initial data that the lattice solutions satisfy asymptotically a free boundary problem with a hysteretic Stefan condition. The key challenge in the proof is to control the microscopic fluctuations that are inevitably produced by the backward diffusion when a particle passes the spinodal region.
International Nuclear Information System (INIS)
Ragusa, J. C.
2004-01-01
In this paper, a method for performing spatially adaptive computations in the framework of multigroup diffusion on 2-D and 3-D Cartesian grids is investigated. The numerical error, intrinsic to any computer simulation of physical phenomena, is monitored through an a posteriori error estimator. In a posteriori analysis, the computed solution itself is used to assess the accuracy. By efficiently estimating the spatial error, the entire computational process is controlled through successively adapted grids. Our analysis is based on a finite element solution of the diffusion equation. Bilinear test functions are used. The derived a posteriori error estimator is therefore based on the Hessian of the numerical solution. (authors)
Iterative schemes for obtaining dominant alpha-modes of the neutron diffusion equation
International Nuclear Information System (INIS)
Singh, K.P.; Modak, R.S.; Degweker, S.B.; Singh, Kanchhi
2009-01-01
Two new methods of obtaining dominant prompt alpha-modes (sometimes referred to as time-eigenfunctions) of the multigroup neutron diffusion equation are discussed. In the first of these, we initially compute the dominant K-eigenfunctions and K-eigenvalues (denoted by λ 1 , λ 2 , λ 3 ...λ 1 being equal to the K eff ) for the given nuclear reactor model, by existing method based on sub-space iteration (SSI) which is an improved version of power iteration method. Subsequently, a uniformly distributed (positive or negative) 1/v absorber of sufficient concentration is added so as to make a particular eigenvalue λ i equal to unity. This gives ith alpha-mode. This procedure is repeated to find all the required alpha-modes. In the second method, we solve the alpha-eigenvalue problem directly by SSI method. This is clearly possible for a sub-critical reactor for which the inverse of the dominant alpha-eigenvalues are also the largest in magnitude as required by the SSI method. Here, the procedure is made applicable even to a super-critical reactor by making the reactor model sub-critical by the addition of a 1/v absorber. Results of these calculations for a 3-D two group PHWR test-case are given. These results are validated against the results as obtained by a completely different approach based on Orthomin(1) algorithm published earlier. The direct method based on the sub-space iteration strategy is found to be a simple and reliable method for obtaining any number of alpha-modes. Also comments have been made on the relationship between fundamental α and k values.
International Nuclear Information System (INIS)
Jia, Jingfei; Kim, Hyun K.; Hielscher, Andreas H.
2015-01-01
It is well known that radiative transfer equation (RTE) provides more accurate tomographic results than its diffusion approximation (DA). However, RTE-based tomographic reconstruction codes have limited applicability in practice due to their high computational cost. In this article, we propose a new efficient method for solving the RTE forward problem with multiple light sources in an all-at-once manner instead of solving it for each source separately. To this end, we introduce here a novel linear solver called block biconjugate gradient stabilized method (block BiCGStab) that makes full use of the shared information between different right hand sides to accelerate solution convergence. Two parallelized block BiCGStab methods are proposed for additional acceleration under limited threads situation. We evaluate the performance of this algorithm with numerical simulation studies involving the Delta–Eddington approximation to the scattering phase function. The results show that the single threading block RTE solver proposed here reduces computation time by a factor of 1.5–3 as compared to the traditional sequential solution method and the parallel block solver by a factor of 1.5 as compared to the traditional parallel sequential method. This block linear solver is, moreover, independent of discretization schemes and preconditioners used; thus further acceleration and higher accuracy can be expected when combined with other existing discretization schemes or preconditioners. - Highlights: • We solve the multiple-right-hand-side problem in DOT with a block BiCGStab method. • We examine the CPU times of the block solver and the traditional sequential solver. • The block solver is faster than the sequential solver by a factor of 1.5–3.0. • Multi-threading block solvers give additional speedup under limited threads situation.
Vectorized and multitasked solution of the few-group neutron diffusion equations
International Nuclear Information System (INIS)
Zee, S.K.; Turinsky, P.J.; Shayer, Z.
1989-01-01
A numerical algorithm with parallelism was used to solve the two-group, multidimensional neutron diffusion equations on computers characterized by shared memory, vector pipeline, and multi-CPU architecture features. Specifically, solutions were obtained on the Cray X/MP-48, the IBM-3090 with vector facilities, and the FPS-164. The material-centered mesh finite difference method approximation and outer-inner iteration method were employed. Parallelism was introduced in the inner iterations using the cyclic line successive overrelaxation iterative method and solving in parallel across lines. The outer iterations were completed using the Chebyshev semi-iterative method that allows parallelism to be introduced in both space and energy groups. For the three-dimensional model, power, soluble boron, and transient fission product feedbacks were included. Concentrating on the pressurized water reactor (PWR), the thermal-hydraulic calculation of moderator density assumed single-phase flow and a closed flow channel, allowing parallelism to be introduced in the solution across the radial plane. Using a pinwise detail, quarter-core model of a typical PWR in cycle 1, for the two-dimensional model without feedback the measured million floating point operations per second (MFLOPS)/vector speedups were 83/11.7. 18/2.2, and 2.4/5.6 on the Cray, IBM, and FPS without multitasking, respectively. Lower performance was observed with a coarser mesh, i.e., shorter vector length, due to vector pipeline start-up. For an 18 x 18 x 30 (x-y-z) three-dimensional model with feedback of the same core, MFLOPS/vector speedups of --61/6.7 and an execution time of 0.8 CPU seconds on the Cray without multitasking were measured. Finally, using two CPUs and the vector pipelines of the Cray, a multitasking efficiency of 81% was noted for the three-dimensional model
Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air
Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan; Ehn, Andreas; Aldén, Marcus; Larsson, Anders; Kusano, Yukihiro
2014-12-01
Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column, synchronized with simultaneously recorded current and voltage waveforms. Dynamic details of the novel non-equilibrium discharge are revealed, which is characterized by a sinusoidal current waveform with amplitude stabilized at around 200 mA intermediate between thermal arc and glow discharge, shedding light to the governing mechanism of the sustained spark-suppressed AC gliding arc discharge.
Jiang, Daijun; Li, Zhiyuan; Liu, Yikan; Yamamoto, Masahiro
2017-05-01
In this paper, we first establish a weak unique continuation property for time-fractional diffusion-advection equations. The proof is mainly based on the Laplace transform and the unique continuation properties for elliptic and parabolic equations. The result is weaker than its parabolic counterpart in the sense that we additionally impose the homogeneous boundary condition. As a direct application, we prove the uniqueness for an inverse problem on determining the spatial component in the source term by interior measurements. Numerically, we reformulate our inverse source problem as an optimization problem, and propose an iterative thresholding algorithm. Finally, several numerical experiments are presented to show the accuracy and efficiency of the algorithm.
Plasma surface treatment of Cu by nanosecond-pulse diffuse discharges in atmospheric air
Cheng, ZHANG; Jintao, QIU; Fei, KONG; Xingmin, HOU; Zhi, FANG; Yu, YIN; Tao, SHAO
2018-01-01
Nanosecond-pulse diffuse discharges could provide high-density plasma and high-energy electrons at atmospheric pressure. In this paper, the surface treatment of Cu by nanosecond-pulse diffuse discharges is conducted in atmospheric air. Factors influencing the water contact angle (WCA), chemical composition and microhardness, such as the gap spacing and treatment time, are investigated. The results show that after the plasma surface treatment, the WCA considerably decreases from 87° to 42.3°, and the surface energy increases from 20.46 mJ m-2 to 66.28 mJ m-2. Results of energy dispersive x-ray analysis show that the concentration of carbon decreases, but the concentrations of oxygen and nitrogen increase significantly. Moreover, the microhardness increases by approximately 30% after the plasma treatment. The aforementioned changes on the Cu surface indicate the plasma surface treatment enhances the hydrophilicity and microhardness, and it cleans the carbon and achieves oxidization on the Cu surface. Furthermore, by increasing the gap spacing and treatment time, better treatment effects can be obtained. The microhardness in the case of a 2.5 cm gap is higher than that in the case of a 3 cm gap. More oxygen and nitrogen species appear on the Cu surface for the 2.5 cm gap treatment than for the 3 cm gap treatment. The WCA significantly decreases with the treatment time when it is no longer than 90 s, and then it reaches saturation. In addition, more oxygen-containing and nitrogen-containing groups appear after extended plasma treatment time. They contribute to the improvement of the hydrophilicity and oxidation on the Cu surface.
First atmospheric diffusion experiment compaign at the Angra site. Analysis of the data measured
International Nuclear Information System (INIS)
Nicolli, D.
1986-07-01
An analysis of the data measured during the first atmospheric diffusion experiment campaign at the Angra site is presented. Some time before the diffusion experiments, with tritiated water vapor used as a tracer (HTO) could be started, many preparatory studies had to be concluded due to the local complex terrain surrounded by steep hills on three sides and a bay in the southern direction. An introductory account of these previous steps is given. Tritiated water vapor was released from a 100m-high tower and air humidity sampled at 25 locations as far as 1Km downwind of the source. An elaborated isoconcentration analysis indicates the plume spread has a Gaussian distribution in the horizontal plane up to the edge of the site's area bordered by the hill's top (about 1Km far-off). Nevertheless the Gaussian model has a restricted applicability at some parts of the site because of the terrain unevenness. In general, the results are comparable to those obtained in other countries for complex terrain. Meanwhile, the Angra's experiments seem only to validate the Gaussian model for short range dispersion from an elevated source. For releases in the lowest layer, the Gaussian model might not be valid. The isoconcentration analysis strengthens the assumption of sea breeze recirculation on the site. (Author) [pt
International Nuclear Information System (INIS)
Huebschmann, W.G.; Vogt, S.
1980-01-01
The consequence model of the German reactor risk study comprises the release of radioactivity and thermal energy from the containment, the atmospheric diffusion, and the deposition of activity on the ground, the calculation of dose equivalents induced via the main exposure pathways, and the calculation of early and late health effects to the population, taking into account emergency actions for the protection of the public. The following exposure pathways are included in the model: external irradiation from the passing cloud and from the activity deposited on the ground, inhalation of the cloud activity and of resuspended material, and ingestion of contaminated food. Account is taken of the following effects: building wake, plume rise to thermal energy release, dynamic change of diffusion parameters, and plume depletion due to radioactive decay, dry and wet deposition. The calculations are performed for 115 weather sequences with starting times evenly distributed over one year. It is shown that such a choice of weather sequences reflects the total variety of meteorological situations, including precipitation, in a statistically adequate way. The area of the Federal Republic of Germany is divided into four meteorological site-regions, each with typical meteorological characteristics. Each power reactor site is assigned to one of the meteorological site-regions
International Nuclear Information System (INIS)
Aviles, B.N.; Sutton, T.M.; Kelly, D.J. III.
1991-09-01
A generalized Runge-Kutta method has been employed in the numerical integration of the stiff space-time diffusion equations. The method is fourth-order accurate, using an embedded third-order solution to arrive at an estimate of the truncation error for automatic timestep control. The efficiency of the Runge-Kutta method is enhanced by a block-factorization technique that exploits the sparse structure of the matrix system resulting from the space and energy discretized form of the time-dependent neutron diffusion equations. Preliminary numerical evaluation using a one-dimensional finite difference code shows the sparse matrix implementation of the generalized Runge-Kutta method to be highly accurate and efficient when compared to an optimized iterative theta method. 12 refs., 5 figs., 4 tabs
Directory of Open Access Journals (Sweden)
B. Godongwana
2010-01-01
Full Text Available This paper presents an analytical model of substrate mass transfer through the lumen of a membrane bioreactor. The model is a solution of the convective-diffusion equation in two dimensions using a regular perturbation technique. The analysis accounts for radial-convective flow as well as axial diffusion of the substrate specie. The model is applicable to the different modes of operation of membrane bioreactor (MBR systems (e.g., dead-end, open-shell, or closed-shell mode, as well as the vertical or horizontal orientation. The first-order limit of the Michaelis-Menten equation for substrate consumption was used to test the developed model against available analytical results. The results obtained from the application of this model, along with a biofilm growth kinetic model, will be useful in the derivation of an efficiency expression for enzyme production in an MBR.
Energy Technology Data Exchange (ETDEWEB)
Montazer, P. [Multimedia Environmental Technology, Inc., Newport Beach, CA (United States)
1995-03-01
In arid climates, evapotranspiration is a strongly-coupled thermodynamic process that is controlled by the interaction of the atmospheric boundary layer and the upper soil surface. Simulation of this process requires a fully-coupled thermodynamic multi-phase fluid-flow and energy-transport code. Such a code was developed in a previous investigation using V-TOUGH. The resulting efficient computer code, A-TOUGH, simulates the effect of dynamic atmospheric fluctuations on vapor movement between the soil and the atmosphere and the resulting moisture movement in the soil. However, the coupling between the atmosphere and soil employed eddy diffusivity which was only a function of time and not a function of space. In the present study the code is extended to allow spatial as well as temporal variation of eddy diffusivity.
Ustinov, E.
1999-01-01
Sensitivity analysis based on using of the adjoint equation of radiative transfer is applied to the case of atmospheric remote sensing in the thermal spectral region with non-negligeable atmospheric scattering.
International Nuclear Information System (INIS)
Buckler, A.N.
1978-10-01
The report describes the theoretical basis of the methods that have been developed for correlating measurements of spatially distributed quantities taken on the reactor with the lattice constants in the diffusion equations. The method can be used with any thermal reactor system of current interest, but the first application is to provide a replacement for the SAMSON code for Winfrith SGHW studies, where the measurements of interest are channel powers. (author)
Nefedov, N. N.; Nikulin, E. I.
2018-01-01
A singularly perturbed periodic in time problem for a parabolic reaction-diffusion equation in a two-dimensional domain is studied. The case of existence of an internal transition layer under the conditions of balanced and unbalanced rapid reaction is considered. An asymptotic expansion of a solution is constructed. To justify the asymptotic expansion thus constructed, the asymptotic method of differential inequalities is used. The Lyapunov asymptotic stability of a periodic solution is investigated.
International Nuclear Information System (INIS)
Moyano, Edgardo A.; Scarpettini, Alberto F.
2003-01-01
A semi linear model of weakly coupled parabolic p.d.e. with reaction-diffusion is investigated. The system describes fission gas transfer from grain interior of UO 2 to grain boundaries. The problem is studied in a bounded domain. Using the upper-lower solutions method, two monotone sequences for the finite differences equations are constructed. Reasons are mentioned that allow to affirm that in the proposed functional sector the algorithm converges to the unique solution of the differential system. (author)
Energy Technology Data Exchange (ETDEWEB)
Hsieh, Chih-Chun [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 402, Taiwan (China); Wu, Weite, E-mail: wwu@dragon.nchu.edu.t [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 402, Taiwan (China)
2010-09-17
Research highlights: This article concentrates the phase transformation in {delta} {yields} {sigma} in dissimilar stainless steels using the Vitek equation and thermodynamics simulation during the multi-pass welding. The phase transformation in {delta} {yields} {sigma} is very important to the properties of stainless steel composites. In this study, the diffusion behavior of Cr, Ni and Si in the {delta}, {sigma}, and {gamma} phases were discussed using the DSC analysis and diffusion equation calculation. This method has a novelty for discussing the phase transformation in {delta} {yields} {sigma} in the dissimilar stainless steel. We hope that we can give a scientific contribution for the phase transformation of the dissimilar stainless steels during the multi-pass welding. - Abstract: This study performed a precipitation examination of the {sigma} phase using the Vitek diffusion equation and thermodynamic simulation in dissimilar stainless steels during multi-pass welding. The results of the experiment demonstrate that the diffusion rates (D{sub Cr}{sup {delta}} and D{sub Ni}{sup {delta}}) of Cr and Ni are higher in {delta}-ferrite than (D{sub Cr}{sup {gamma}} and D{sub Ni}{sup {gamma}}) in the {gamma} phase and that they facilitate the precipitation of {sigma} phase in the third pass fusion zone. When the diffusion activation energy of Cr in {delta}-ferrite is equal to that of Ni in {delta}-ferrite (Q{sub dCr}{sup {delta}}=Q{sub dNi}{sup {delta}}), phase transformation of the {delta} {yields} {sigma} can be occurred.
International Nuclear Information System (INIS)
Correia Filho, A.
1981-04-01
The Neutron Diffusion Equation at two groups of energy is solved with the use of the Finite - Element Method with first order triangular elements. The program EFTDN (Triangular Finite Elements on Neutron Diffusion) was developed using the language FORTRAN IV. The discrete formulation of the Diffusion Equation is obtained with the application of the Galerkin's Method. In order to solve the eigenvalue - problem, the Method of the Power is applied and, with the purpose of the convergence of the results, Chebshev's polynomial expressions are applied. On the solution of the systems of equations Gauss' Method is applied, divided in two different parts: triangularization of the matrix of coeficients and retrosubstitution taking in account the sparsity of the system. Several test - problems are solved, among then two P.W.R. type reactors, the ZION-1 with 1300 MWe and the 2D-IAEA - Benchmark. Comparision of results with standard solutions show the validity of application of the EFM and precision of the results. (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Jin, Shi, E-mail: sjin@wisc.edu [Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706 (United States); Institute of Natural Sciences, Department of Mathematics, MOE-LSEC and SHL-MAC, Shanghai Jiao Tong University, Shanghai 200240 (China); Lu, Hanqing, E-mail: hanqing@math.wisc.edu [Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706 (United States)
2017-04-01
In this paper, we develop an Asymptotic-Preserving (AP) stochastic Galerkin scheme for the radiative heat transfer equations with random inputs and diffusive scalings. In this problem the random inputs arise due to uncertainties in cross section, initial data or boundary data. We use the generalized polynomial chaos based stochastic Galerkin (gPC-SG) method, which is combined with the micro–macro decomposition based deterministic AP framework in order to handle efficiently the diffusive regime. For linearized problem we prove the regularity of the solution in the random space and consequently the spectral accuracy of the gPC-SG method. We also prove the uniform (in the mean free path) linear stability for the space-time discretizations. Several numerical tests are presented to show the efficiency and accuracy of proposed scheme, especially in the diffusive regime.
International Nuclear Information System (INIS)
Bernal, A.; Roman, J.E.; Miró, R.; Verdú, G.
2016-01-01
Highlights: • A method is proposed to solve the eigenvalue problem of the Neutron Diffusion Equation in BWR. • The Neutron Diffusion Equation is discretized with the Finite Volume Method. • The currents are calculated by using a polynomial expansion of the neutron flux. • The current continuity and boundary conditions are defined implicitly to reduce the size of the matrices. • Different structured and unstructured meshes were used to discretize the BWR. - Abstract: The neutron flux spatial distribution in Boiling Water Reactors (BWRs) can be calculated by means of the Neutron Diffusion Equation (NDE), which is a space- and time-dependent differential equation. In steady state conditions, the time derivative terms are zero and this equation is rewritten as an eigenvalue problem. In addition, the spatial partial derivatives terms are transformed into algebraic terms by discretizing the geometry and using numerical methods. As regards the geometrical discretization, BWRs are complex systems containing different components of different geometries and materials, but they are usually modelled as parallelepiped nodes each one containing only one homogenized material to simplify the solution of the NDE. There are several techniques to correct the homogenization in the node, but the most commonly used in BWRs is that based on Assembly Discontinuity Factors (ADFs). As regards numerical methods, the Finite Volume Method (FVM) is feasible and suitable to be applied to the NDE. In this paper, a FVM based on a polynomial expansion method has been used to obtain the matrices of the eigenvalue problem, assuring the accomplishment of the ADFs for a BWR. This eigenvalue problem has been solved by means of the SLEPc library.
International Nuclear Information System (INIS)
Alonso-Vargas, G.
1991-01-01
A computer program has been developed which uses a technique of synthetic acceleration by diffusion by analytical schemes. Both in the diffusion equation as in that of transport, analytical schemes were used which allowed a substantial time saving in the number of iterations required by source iteration method to obtain the K e ff. The program developed ASD (Synthetic Diffusion Acceleration) by diffusion was written in FORTRAN and can be executed on a personal computer with a hard disc and mathematical O-processor. The program is unlimited as to the number of regions and energy groups. The results obtained by the ASD program for K e ff is nearly completely concordant with those of obtained utilizing the ANISN-PC code for different analytical type problems in this work. The ASD program allowed obtention of an approximate solution of the neutron transport equation with a relatively low number of internal reiterations with good precision. One of its applications would be in the direct determinations of axial distribution neutronic flow in a fuel assembly as well as in the obtention of the effective multiplication factor. (Author)
Ancey, Christophe; Bohorquez, Patricio; Heyman, Joris
2016-04-01
The advection-diffusion equation arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Stochastic models can also be used to derive this equation, with the significant advantage that they provide information on the statistical properties of particle activity. Stochastic models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. We develop an approach based on birth-death Markov processes, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received little attention. We show that particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due to velocity fluctuations), with the important consequence that local measurements depend on both the intrinsic properties of particle displacement and the dimensions of the measurement system.
International Nuclear Information System (INIS)
Moore, Peter K.
2003-01-01
Solving systems of reaction-diffusion equations in three space dimensions can be prohibitively expensive both in terms of storage and CPU time. Herein, I present a new incomplete assembly procedure that is designed to reduce storage requirements. Incomplete assembly is analogous to incomplete factorization in that only a fixed number of nonzero entries are stored per row and a drop tolerance is used to discard small values. The algorithm is incorporated in a finite element method-of-lines code and tested on a set of reaction-diffusion systems. The effect of incomplete assembly on CPU time and storage and on the performance of the temporal integrator DASPK, algebraic solver GMRES and preconditioner ILUT is studied
Directory of Open Access Journals (Sweden)
Baojun Zhao
2018-01-01
Full Text Available Envelope gravity solitary waves are an important research hot spot in the field of solitary wave. And the weakly nonlinear model equations system is a part of the research of envelope gravity solitary waves. Because of the lack of technology and theory, previous studies tried hard to reduce the variable numbers and constructed the two-dimensional model in barotropic atmosphere and could only describe the propagation feature in a direction. But for the propagation of envelope gravity solitary waves in real ocean ridges and atmospheric mountains, the three-dimensional model is more appropriate. Meanwhile, the baroclinic problem of atmosphere is also an inevitable topic. In the paper, the three-dimensional coupled nonlinear Schrödinger (CNLS equations are presented to describe the evolution of envelope gravity solitary waves in baroclinic atmosphere, which are derived from the basic dynamic equations by employing perturbation and multiscale methods. The model overcomes two disadvantages: (1 baroclinic problem and (2 propagation path problem. Then, based on trial function method, we deduce the solution of the CNLS equations. Finally, modulational instability of wave trains is also discussed.
International Nuclear Information System (INIS)
Hormuth II, David A; Weis, Jared A; Barnes, Stephanie L; Miga, Michael I; Yankeelov, Thomas E; Rericha, Erin C; Quaranta, Vito
2015-01-01
Reaction–diffusion models have been widely used to model glioma growth. However, it has not been shown how accurately this model can predict future tumor status using model parameters (i.e., tumor cell diffusion and proliferation) estimated from quantitative in vivo imaging data. To this end, we used in silico studies to develop the methods needed to accurately estimate tumor specific reaction–diffusion model parameters, and then tested the accuracy with which these parameters can predict future growth. The analogous study was then performed in a murine model of glioma growth. The parameter estimation approach was tested using an in silico tumor ‘grown’ for ten days as dictated by the reaction–diffusion equation. Parameters were estimated from early time points and used to predict subsequent growth. Prediction accuracy was assessed at global (total volume and Dice value) and local (concordance correlation coefficient, CCC) levels. Guided by the in silico study, rats (n = 9) with C6 gliomas, imaged with diffusion weighted magnetic resonance imaging, were used to evaluate the model’s accuracy for predicting in vivo tumor growth. The in silico study resulted in low global (tumor volume error 0.92) and local (CCC values >0.80) level errors for predictions up to six days into the future. The in vivo study showed higher global (tumor volume error >11.7%, Dice <0.81) and higher local (CCC <0.33) level errors over the same time period. The in silico study shows that model parameters can be accurately estimated and used to accurately predict future tumor growth at both the global and local scale. However, the poor predictive accuracy in the experimental study suggests the reaction–diffusion equation is an incomplete description of in vivo C6 glioma biology and may require further modeling of intra-tumor interactions including segmentation of (for example) proliferative and necrotic regions. (paper)
International Nuclear Information System (INIS)
Ceolin, Celina
2010-01-01
The objective of this work is to obtain an analytical solution of the neutron diffusion kinetic equation in one-dimensional cartesian geometry, to monoenergetic and multigroup problems. These equations are of the type stiff, due to large differences in the orders of magnitude of the time scales of the physical phenomena involved, which make them difficult to solve. The basic idea of the proposed method is applying the spectral expansion in the scalar flux and in the precursor concentration, taking moments and solving the resulting matrix problem by the Laplace transform technique. Bearing in mind that the equation for the precursor concentration is a first order linear differential equation in the time variable, to enable the application of the spectral method we introduce a fictitious diffusion term multiplied by a positive value which tends to zero. This procedure opened the possibility to find an analytical solution to the problem studied. We report numerical simulations and analysis of the results obtained with the precision controlled by the truncation order of the series. (author)
Yudin, M. S.
2017-11-01
In the present paper, stratification effects on surface pressure in the propagation of an atmospheric gravity current (cold front) over flat terrain are estimated with a non-hydrostatic finite-difference model of atmospheric dynamics. Artificial compressibility is introduced into the model in order to make its equations hyperbolic. For comparison with available simulation data, the physical processes under study are assumed to be adiabatic. The influence of orography is also eliminated. The front surface is explicitly described by a special equation. A time filter is used to suppress the non-physical oscillations. The results of simulations of surface pressure under neutral and stable stratification are presented. Under stable stratification the front moves faster and shows an abrupt pressure jump at the point of observation. This fact is in accordance with observations and the present-day theory of atmospheric fronts.
Diffusion equations and hard collisions in multiple scattering of charged particles
International Nuclear Information System (INIS)
Papiez, Lech; Tulovsky, Vladimir
1998-01-01
The processes of angular-spatial evolution of multiple scattering of charged particles are described by the Lewis (special case of Boltzmann) integro-differential equation. The underlying stochastic process for this evolution is the compound Poisson process with transition densities satisfying the Lewis equation. In this paper we derive the Lewis equation from the compound Poisson process and show that the effective method of the solution of this equation can be based on the idea of decomposition of the compound Poisson process into processes of soft and hard collisions. Formulas for transition densities of soft and hard collision processes are provided in this paper together with the formula expressing the general solution of the Lewis equation in terms of those transition densities
Diffusion equations and hard collisions in multiple scattering of charged particles
Energy Technology Data Exchange (ETDEWEB)
Papiez, Lech [Department of Radiation Oncology, Indiana University, Indianapolis, IN (United States); Tulovsky, Vladimir [Department of Mathematics, St. John' s College, Staten Island, New York, NY (United States)
1998-09-01
The processes of angular-spatial evolution of multiple scattering of charged particles are described by the Lewis (special case of Boltzmann) integro-differential equation. The underlying stochastic process for this evolution is the compound Poisson process with transition densities satisfying the Lewis equation. In this paper we derive the Lewis equation from the compound Poisson process and show that the effective method of the solution of this equation can be based on the idea of decomposition of the compound Poisson process into processes of soft and hard collisions. Formulas for transition densities of soft and hard collision processes are provided in this paper together with the formula expressing the general solution of the Lewis equation in terms of those transition densities.
Yang, Xuguang; Shi, Baochang; Chai, Zhenhua
2014-07-01
In this paper, two modified lattice Boltzmann Bhatnagar-Gross-Krook (LBGK) models for incompressible Navier-Stokes equations and convection-diffusion equations are proposed via the addition of correction terms in the evolution equations. Utilizing this modification, the value of the dimensionless relaxation time in the LBGK model can be kept in a proper range, and thus the stability of the LBGK model can be improved. Although some gradient operators are included in the correction terms, they can be computed efficiently using local computational schemes such that the present LBGK models still retain the intrinsic parallelism characteristic of the lattice Boltzmann method. Numerical studies of the steady Poiseuille flow and unsteady Womersley flow show that the modified LBGK model has a second-order convergence rate in space, and the compressibility effect in the common LBGK model can be eliminated. In addition, to test the stability of the present models, we also performed some simulations of the natural convection in a square cavity, and we found that the results agree well with those reported in the previous work, even at a very high Rayleigh number (Ra = 10(12)).
Regularity and mass conservation for discrete coagulation–fragmentation equations with diffusion
Cañ izo, J.A.; Desvillettes, L.; Fellner, K.
2010-01-01
We present a new a priori estimate for discrete coagulation-fragmentation systems with size-dependent diffusion within a bounded, regular domain confined by homogeneous Neumann boundary conditions. Following from a duality argument, this a priori
Numerical Solutions of Singularly Perturbed Reaction Diffusion Equation with Sobolev Gradients
Directory of Open Access Journals (Sweden)
Nauman Raza
2013-01-01
Full Text Available Critical points related to the singular perturbed reaction diffusion models are calculated using weighted Sobolev gradient method in finite element setting. Performance of different Sobolev gradients has been discussed for varying diffusion coefficient values. A comparison is shown between the weighted and unweighted Sobolev gradients in two and three dimensions. The superiority of the method is also demonstrated by showing comparison with Newton's method.
Scaglione, Daniele; Giulietti, Danilo; Morelli, Marco
2016-08-01
A study was conducted at Livorno (Italy) to evaluate the impact of atmospheric aerosols and ozone on the solar UV radiation and its diffuse component at ground in clear sky conditions. Solar UV radiation has been quantified in terms of UV Index (UVI), following the ISO 17166:1999/CIE S007/E-1998 international standard. UVI has been calculated by exploiting the libRadtran radiative transfer modelling software as a function of both the Aerosols Optical Depth (AOD) and the Total Ozone Column (TOC). In particular AOD and TOC values have been remotely sensed by the Ozone Monitoring Instrument (OMI) on board the NASA's EOS (Earth Observing System) satellites constellation. An experimental confirmation was also obtained by exploiting global UVI ground-based measurements from the 26/9/14 to 12/8/15 and diffuse UVI ground-based measurements from the 17/5/15 to 12/8/15. For every considered value of Solar Zenith Angle (SZA) and atmospheric condition, estimates and measurements confirm that the diffuse component contributes for more than 50% on the global UV radiation. Therefore an exposure of human skin also to diffuse solar UV radiation can be potentially harmful for health and need to be accurately monitored, e.g. by exploiting innovative applications such as a mobile app with a satellite-based UV dosimeter that has been developed. Global and diffuse UVI variations due to the atmosphere are primarily caused by the TOC variations (typically cyclic): the maximum TOC variation detected by OMI in the area under study leads to a corresponding variation in global and diffuse UVI of about 50%. Aerosols in the area concerned, mainly of maritime nature, have instead weaker effects causing a maximum variation of the global and diffuse UVI respectively of 9% and 35% with an SZA of 20° and respectively of 13% and 10% with an SZA of 60°.
Directory of Open Access Journals (Sweden)
Elmira Ashpazzadeh
2018-04-01
Full Text Available A numerical technique based on the Hermite interpolant multiscaling functions is presented for the solution of Convection-diusion equations. The operational matrices of derivative, integration and product are presented for multiscaling functions and are utilized to reduce the solution of linear Convection-diusion equation to the solution of algebraic equations. Because of sparsity of these matrices, this method is computationally very attractive and reduces the CPU time and computer memory. Illustrative examples are included to demonstrate the validity and applicability of the new technique.
Surface diffuse discharge mechanism of well-aligned atmospheric pressure microplasma arrays
International Nuclear Information System (INIS)
Zhou Ren-Wu; Li Jiang-Wei; Chen Mao-Dong; Zhang Xian-Hui; Liu Dong-Ping; Yang Si-Ze; Zhou Ru-Sen; Zhuang Jin-Xing; Ostrikov, Kostya
2016-01-01
A stable and homogeneous well-aligned air microplasma device for application at atmospheric pressure is designed and its electrical and optical characteristics are investigated. Current-voltage measurements and intensified charge coupled device (ICCD) images show that the well-aligned air microplasma device is able to generate a large-area and homogeneous discharge at the applied voltages ranging from 12 kV to 14 kV, with a repetition frequency of 5 kHz, which is attributed to the diffusion effect of plasma on dielectric surface. Moreover, this well-aligned microplasma device may result in the uniform and large-area surface modification of heat-sensitive PET polymers without damage, such as optimization in hydrophobicity and biocompatibility. In the biomedical field, the utility of this well-aligned microplasma device is further testified. It proves to be very efficient for the large-area and uniform inactivation of E. coli cells with a density of 10 3 /cm 2 on LB agar plate culture medium, and inactivation efficiency can reach up to 99% for 2-min treatment. (paper)
Graphic displays on PCs of gaseous diffusion models of radionuclide releases to the atmosphere
International Nuclear Information System (INIS)
Campo Ortega, E. del
1993-01-01
The well-known MESOI program has been modified and improved to adapt it to a PC/AT with VGA colour monitor. Far from losing any of its powerful characteristics to calculate the transport, diffusion, deposition and decay of gaseous radioactive effluents discharged to the atmosphere, it has been enhanced to allow graphic viewing of concentrations, wind speed and direction and puff locations in colour, all on a background map of the site. The background covers a 75 x 75 km square and has a graphic grid density of 421 x 421 pixels. This means that effluent concentration is represented approximately every 170 metres in the 'clouded-area'. Among the modifications and enhancements made, the following are of particular interest: 1. A new subroutine called NUBE has been added, which calculates the distribution of effluent concentration of activity in a grid of 421 x 421 pixels. 2. Several subroutines have been added to obtain graphic displays and printouts of the cloud, wind field and puff locations. 3. Graphic display of the geographic plane of the area surrounding the effluent release point. 4. Off-line preparation of meteorological and topographical data files necessary for program execution. (author)
Energy Technology Data Exchange (ETDEWEB)
Nguyen-Ngoc, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1969-07-01
In order to reduce computing time, two and three-dimensional multigroup neutron diffusion equations in cylindrical, rectangular (X, Y), (X, Y, Z) and hexagonal geometries are solved by the method of synthesis using an appropriate variational principle (stationary principle). The basic idea is to reduce the number of independent variables by constructing two or three-dimensional solutions from solutions of fewer variables, hence the name 'synthesis method'. Whatever the geometry, we are led to solve a system of ordinary differential equations with matrix coefficients to which one can apply well-known numerical methods: CHEBYSHEV's polynomial method, Gaussian elimination. Numerical results furnished by synthesis programs written for the IBM 7094, the IBM 360-75 and the CDC 6600 computers, are confronted with those which are given by programs employing the classical finite difference method. [French] En vue de reduire le-temps de calcul, les equations de diffusion neutronique, multigroupe, a deux et trois dimensions d'espace dans les geometries cylindrique, rectangulaire (X, Y), (X, Y, Z) et hexagonale sont resolues par la methode de synthese utilisant un principe variationnel approprie (principe stationnaire). L'idee consiste a reduire le nombre de variables independantes par construction d'une solution bi ou tridimensionnelle au moyen de solutions dependant d'un nombre inferieur de variables, d'ou le nom de la methode. Dans tous les cas de geometrie, nous sommes conduits a resoudre un systeme d'equations differentielles a coefficients matriciels auquel peuvent s'appliquer les methodes numeriques courantes; methode polynomiale de TCHEBYCHEFF et methode d'elimination de GAUSS. Les resultats numeriques obtenus par nos codes de synthese programmes sur IBM 7094, IBM 360-75 et CDC 6600, sont confrontes avec ceux que fournissent les programmes adoptant la methode classique des differences finies. (auteur)
Lu, Benzhuo; Holst, Michael J; McCammon, J Andrew; Zhou, Y C
2010-09-20
In this paper we developed accurate finite element methods for solving 3-D Poisson-Nernst-Planck (PNP) equations with singular permanent charges for electrodiffusion in solvated biomolecular systems. The electrostatic Poisson equation was defined in the biomolecules and in the solvent, while the Nernst-Planck equation was defined only in the solvent. We applied a stable regularization scheme to remove the singular component of the electrostatic potential induced by the permanent charges inside biomolecules, and formulated regular, well-posed PNP equations. An inexact-Newton method was used to solve the coupled nonlinear elliptic equations for the steady problems; while an Adams-Bashforth-Crank-Nicolson method was devised for time integration for the unsteady electrodiffusion. We numerically investigated the conditioning of the stiffness matrices for the finite element approximations of the two formulations of the Nernst-Planck equation, and theoretically proved that the transformed formulation is always associated with an ill-conditioned stiffness matrix. We also studied the electroneutrality of the solution and its relation with the boundary conditions on the molecular surface, and concluded that a large net charge concentration is always present near the molecular surface due to the presence of multiple species of charged particles in the solution. The numerical methods are shown to be accurate and stable by various test problems, and are applicable to real large-scale biophysical electrodiffusion problems.
International Nuclear Information System (INIS)
Guzman, Juan; Maximov, Serguei; Escarela-Perez, Rafael; López-García, Irvin; Moranchel, Mario
2015-01-01
The diffusion and distribution coefficients are important parameters in the design of barrier systems used in radioactive repositories. These coefficients can be determined using a two-reservoir configuration, where a saturated porous medium is allocated between two reservoirs filled by stagnant water. One of the reservoirs contains a high concentration of radioisotopes. The goal of this work is to obtain an analytical solution for the concentration of all radioisotopes in the decay chain of a two-reservoir configuration. The analytical solution must be obtained by taking into account the diffusion and sorption processes. Concepts such as overvalued concentration, diffusion and decay factors are employed to this end. It is analytically proven that a factor of the solution is identical for all chains (considering a time scaling factor), if certain parameters do not change. In addition, it is proven that the concentration sensitivity, due to the distribution coefficient variation, depends of the porous medium thickness, which is practically insensitive for small porous medium thicknesses. The analytical solution for the radioisotope concentration is compared with experimental and numerical results available in literature. - Highlights: • Saturated porous media allocated between two reservoirs. • Analytical solution of the isotope transport equation. • Transport considers diffusion, sorption and decay chain
International Nuclear Information System (INIS)
Ceolin, C.; Schramm, M.; Bodmann, B.E.J.; Vilhena, M.T.
2015-01-01
Recently the stationary neutron diffusion equation in heterogeneous rectangular geometry was solved by the expansion of the scalar fluxes in polynomials in terms of the spatial variables (x; y), considering the two-group energy model. The focus of the present discussion consists in the study of an error analysis of the aforementioned solution. More specifically we show how the spatial subdomain segmentation is related to the degree of the polynomial and the Lipschitz constant. This relation allows to solve the 2-D neutron diffusion problem for second degree polynomials in each subdomain. This solution is exact at the knots where the Lipschitz cone is centered. Moreover, the solution has an analytical representation in each subdomain with supremum and infimum functions that shows the convergence of the solution. We illustrate the analysis with a selection of numerical case studies. (author)
Energy Technology Data Exchange (ETDEWEB)
Ceolin, C., E-mail: celina.ceolin@gmail.com [Universidade Federal de Santa Maria (UFSM), Frederico Westphalen, RS (Brazil). Centro de Educacao Superior Norte; Schramm, M.; Bodmann, B.E.J.; Vilhena, M.T., E-mail: celina.ceolin@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica
2015-07-01
Recently the stationary neutron diffusion equation in heterogeneous rectangular geometry was solved by the expansion of the scalar fluxes in polynomials in terms of the spatial variables (x; y), considering the two-group energy model. The focus of the present discussion consists in the study of an error analysis of the aforementioned solution. More specifically we show how the spatial subdomain segmentation is related to the degree of the polynomial and the Lipschitz constant. This relation allows to solve the 2-D neutron diffusion problem for second degree polynomials in each subdomain. This solution is exact at the knots where the Lipschitz cone is centered. Moreover, the solution has an analytical representation in each subdomain with supremum and infimum functions that shows the convergence of the solution. We illustrate the analysis with a selection of numerical case studies. (author)
Directory of Open Access Journals (Sweden)
A. Abdullah
2018-04-01
Full Text Available Convection-diffusion problems, due to its fundamental nature, are found in various science and engineering applications. In this research, the importance of the relationship between grid structure and flow parameters in such problems is emphasized. In particular, we propose a systematic technique in the selection of the grid expansion factor based on its logarithmic relationship with low Peclet number. Such linear mathematical connection between the two non-dimensional parameters serves as a guideline for more structured decision-making and improves the heuristic process in the determination of the computational domain grid for the numerical solution of convection-diffusion equations especially in the prediction of the concentration of the scalar. Results confirm the effectiveness of the new approach.