WorldWideScience

Sample records for atmospheric convective boundary

  1. Convection Cells in the Atmospheric Boundary Layer

    Science.gov (United States)

    Fodor, Katherine; Mellado, Juan-Pedro

    2017-04-01

    In dry, shear-free convective boundary layers (CBLs), the turbulent flow of air is known to organise itself on large scales into coherent, cellular patterns, or superstructures, consisting of fast, narrow updraughts and slow, wide downdraughts which together form circulations. Superstructures act as transport mechanisms from the surface to the top of the boundary layer and vice-versa, as opposed to small-scale turbulence, which only modifies conditions locally. This suggests that a thorough investigation into superstructure properties may help us better understand transport across the atmospheric boundary layer as a whole. Whilst their existence has been noted, detailed studies into superstructures in the CBL have been scarce. By applying methods which are known to successfully isolate similar large-scale patterns in turbulent Rayleigh-Bénard convection, we can assess the efficacy of those detection techniques in the CBL. In addition, through non-dimensional analysis, we can systematically compare superstructures in various convective regimes. We use direct numerical simulation of four different cases for intercomparison: Rayleigh-Bénard convection (steady), Rayleigh-Bénard convection with an adiabatic top lid (quasi-steady), a stably-stratified CBL (quasi-steady) and a neutrally-stratified CBL (unsteady). The first two are non-penetrative and the latter two penetrative. We find that although superstructures clearly emerge from the time-mean flow in the non-penetrative cases, they become obscured by temporal averaging in the CBL. This is because a rigid lid acts to direct the flow into counter-rotating circulation cells whose axis of rotation remains stationary, whereas a boundary layer that grows in time and is able to entrain fluid from above causes the circulations to not only grow in vertical extent, but also to move horizontally and merge with neighbouring circulations. Spatial filtering is a useful comparative technique as it can be performed on boundary

  2. Analytical solution for the convectively-mixed atmospheric boundary layer

    NARCIS (Netherlands)

    Ouwersloot, H.G.; Vilà-Guerau de Arellano, J.

    2013-01-01

    Based on the prognostic equations of mixed-layer theory assuming a zeroth order jump at the entrainment zone, analytical solutions for the boundary-layer height evolution are derived with different degrees of accuracy. First, an exact implicit expression for the boundary-layer height for a situation

  3. Initial investigations of microscale cellular convection in an equatorial marine atmospheric boundary layer revealed by lidar

    Science.gov (United States)

    Cooper, D. I.; Eichinger, W. E.; Ecke, R. E.; Kao, J. C. Y.; Reisner, J. M.; Tellier, L. L.

    During the Combined Sensor Program (CSP) in March of 1996, the Los Alamos National Laboratory (LANL) fielded an advanced scanning Raman lidar. The lidar was part of a larger suite of micrometeorological sensors to quantify processes associated with the ocean-atmosphere interface, including intermittency and coherent atmospheric features in the “warm pool” of the Tropical Western Pacific (TWP) near Manus Island (2° S. lat, 147° E. long). Initial inspection of the data has revealed excellent information on the microscale vertical and horizontal spatial and temporal structure of the equatorial Marine Atmospheric Boundary Layer (MABL). The data from this experiment have added to the increasing body of measurements on surface layer convection and intermittency including, for the first time, the observation of microscale cellular convective structures such as hexagonal patterns associated with Rayleigh-Bénard cells.

  4. A model study of mixing and entrainment in the horizontally evolving atmospheric convective boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Fedorovich, E.; Kaiser, R. [Univ. Karlsruhe, Inst. fuer Hydrologie und Wasserwirtschaft (Germany)

    1997-10-01

    We present results from a parallel wind-tunnel/large-eddy simulation (LES) model study of mixing and entrainment in the atmospheric convective boundary layer (CBL) longitudinally developing over a heated surface. The advection-type entrainment of warmer air from upper turbulence-free layers into the growing CBL has been investigated. Most of numerical and laboratory model studies of the CBL carried out so far dealt with another type of entrainment, namely the non-steady one, regarding the CBL growth as a non-stationary process. In the atmosphere, both types of the CBL development can take place, often being superimposed. (au)

  5. On the Impact of Wind Farms on a Convective Atmospheric Boundary Layer

    Science.gov (United States)

    Lu, Hao; Porté-Agel, Fernando

    2015-10-01

    With the rapid growth in the number of wind turbines installed worldwide, a demand exists for a clear understanding of how wind farms modify land-atmosphere exchanges. Here, we conduct three-dimensional large-eddy simulations to investigate the impact of wind farms on a convective atmospheric boundary layer. Surface temperature and heat flux are determined using a surface thermal energy balance approach, coupled with the solution of a three-dimensional heat equation in the soil. We study several cases of aligned and staggered wind farms with different streamwise and spanwise spacings. The farms consist of Siemens SWT-2.3-93 wind turbines. Results reveal that, in the presence of wind turbines, the stability of the atmospheric boundary layer is modified, the boundary-layer height is increased, and the magnitude of the surface heat flux is slightly reduced. Results also show an increase in land-surface temperature, a slight reduction in the vertically-integrated temperature, and a heterogeneous spatial distribution of the surface heat flux.

  6. Characterization of a boreal convective boundary layer and its impact on atmospheric chemistry during HUMPPA-COPEC-2010

    Directory of Open Access Journals (Sweden)

    H. G. Ouwersloot

    2012-10-01

    Full Text Available We studied the atmospheric boundary layer (ABL dynamics and the impact on atmospheric chemistry during the HUMPPA-COPEC-2010 campaign. We used vertical profiles of potential temperature and specific moisture, obtained from 132 radio soundings, to determine the main boundary layer characteristics during the campaign. We propose a classification according to several main ABL prototypes. Further, we performed a case study of a single day, focusing on the convective boundary layer, to analyse the influence of the dynamics on the chemical evolution of the ABL. We used a mixed layer model, initialized and constrained by observations. In particular, we investigated the role of large scale atmospheric dynamics (subsidence and advection on the ABL development and the evolution of chemical species concentrations. We find that, if the large scale forcings are taken into account, the ABL dynamics are represented satisfactorily. Subsequently, we studied the impact of mixing with a residual layer aloft during the morning transition on atmospheric chemistry. The time evolution of NOx and O3 concentrations, including morning peaks, can be explained and accurately simulated by incorporating the transition of the ABL dynamics from night to day. We demonstrate the importance of the ABL height evolution for the representation of atmospheric chemistry. Our findings underscore the need to couple the dynamics and chemistry at different spatial scales (from turbulence to mesoscale in chemistry-transport models and in the interpretation of observational data.

  7. Characterization of a boreal convective boundary layer and its impact on atmospheric chemistry during HUMPPA-COPEC-2010

    NARCIS (Netherlands)

    Ouwersloot, H.G.; Vilà-Guerau de Arellano, J.; Nölscher, A.C.; Krol, M.C.; Ganzeveld, L.N.; Breitenberger, C.; Mammarella, I.; Williams, J.; Lelieveld, J.

    2012-01-01

    We studied the atmospheric boundary layer (ABL) dynamics and the impact on atmospheric chemistry during the HUMPPA-COPEC-2010 campaign. We used vertical profiles of potential temperature and specific moisture, obtained from 132 radio soundings, to determine the main boundary layer characteristics

  8. The Atmospheric Boundary Layer

    Science.gov (United States)

    Garratt, J. R.

    1994-05-01

    A comprehensive and lucid account of the physics and dynamics of the lowest one to two kilometers of the Earth's atmosphere in direct contact with the Earth's surface, known as the atmospheric boundary layer (ABL). Dr. Garratt emphasizes the application of the ABL problems to numerical modeling of the climate, which makes this book unique among recent texts on the subject. He begins with a brief introduction to the ABL before leading to the development of mean and turbulence equations and the many scaling laws and theories that are the cornerstone of any serious ABL treatment. Modeling of the ABL is crucially dependent for its realism on the surface boundary conditions, so chapters four and five deal with aerodynamic and energy considerations, with attention given to both dry and wet land surfaces and the sea. The author next treats the structure of the clear-sky, thermally stratified ABL, including the convective and stable cases over homogeneous land, the marine ABL, and the internal boundary layer at the coastline. Chapter seven then extends this discussion to the cloudy ABL. This is particularly relevant to current research because the extensive stratocumulus regions over the subtropical oceans and stratus regions over the Arctic have been identified as key players in the climate system. In the final chapters, Dr. Garratt summarizes the book's material by discussing appropriate ABL and surface parameterization schemes in general circulation models of the atmosphere that are being used for climate stimulation.

  9. A Lagrangian stochastic model to demonstrate multi-scale interactions between convection and land surface heterogeneity in the atmospheric boundary layer

    Science.gov (United States)

    Parsakhoo, Zahra; Shao, Yaping

    2017-04-01

    Near-surface turbulent mixing has considerable effect on surface fluxes, cloud formation and convection in the atmospheric boundary layer (ABL). Its quantifications is however a modeling and computational challenge since the small eddies are not fully resolved in Eulerian models directly. We have developed a Lagrangian stochastic model to demonstrate multi-scale interactions between convection and land surface heterogeneity in the atmospheric boundary layer based on the Ito Stochastic Differential Equation (SDE) for air parcels (particles). Due to the complexity of the mixing in the ABL, we find that linear Ito SDE cannot represent convections properly. Three strategies have been tested to solve the problem: 1) to make the deterministic term in the Ito equation non-linear; 2) to change the random term in the Ito equation fractional, and 3) to modify the Ito equation by including Levy flights. We focus on the third strategy and interpret mixing as interaction between at least two stochastic processes with different Lagrangian time scales. The model is in progress to include the collisions among the particles with different characteristic and to apply the 3D model for real cases. One application of the model is emphasized: some land surface patterns are generated and then coupled with the Large Eddy Simulation (LES).

  10. Scaling properties of velocity and temperature spectra above the surface friction layer in a convective atmospheric boundary layer

    Directory of Open Access Journals (Sweden)

    K. G. McNaughton

    2007-06-01

    Full Text Available We report velocity and temperature spectra measured at nine levels from 1.42 meters up to 25.7 m over a smooth playa in Western Utah. Data are from highly convective conditions when the magnitude of the Obukhov length (our proxy for the depth of the surface friction layer was less than 2 m. Our results are somewhat similar to the results reported from the Minnesota experiment of Kaimal et al. (1976, but show significant differences in detail. Our velocity spectra show no evidence of buoyant production of kinetic energy at at the scale of the thermal structures. We interpret our velocity spectra to be the result of outer eddies interacting with the ground, not "local free convection".

    We observe that velocity spectra represent the spectral distribution of the kinetic energy of the turbulence, so we use energy scales based on total turbulence energy in the convective boundary layer (CBL to collapse our spectra. For the horizontal velocity spectra this scale is (zi εo2/3, where zi is inversion height and εo is the dissipation rate in the bulk CBL. This scale functionally replaces the Deardorff convective velocity scale. Vertical motions are blocked by the ground, so the outer eddies most effective in creating vertical motions come from the inertial subrange of the outer turbulence. We deduce that the appropriate scale for the peak region of the vertical velocity spectra is (z εo2/3 where z is height above ground. Deviations from perfect spectral collapse under these scalings at large and small wavenumbers are explained in terms of the energy transport and the eddy structures of the flow.

    We find that the peaks of the temperature spectra collapse when wavenumbers are scaled using (z1/2 zi1/2. That is, the lengths of the thermal structures depend on both the lengths of the

  11. Convective Cold Pool Structure and Boundary Layer Recovery in DYNAMO

    Science.gov (United States)

    Savarin, A.; Chen, S. S.; Kerns, B. W.; Lee, C.; Jorgensen, D. P.

    2012-12-01

    One of the key factors controlling convective cloud systems in the Madden-Julian Oscillation (MJO) over the tropical Indian Ocean is the property of the atmospheric boundary layer. Convective downdrafts and precipitation from the cloud systems produce cold pools in the boundary layer, which can inhibit subsequent development of convection. The recovery time is the time it takes for the boundary layer to return to pre convective conditions. It may affect the variability of the convection on various time scales during the initiation of MJO. This study examines the convective cold pool structure and boundary layer recovery using the NOAA WP-3D aircraft observations, include the flight-level, Doppler radar, and GPS dropsonde data, collected during the Dynamics of MJO (DYNAMO) field campaign from November-December 2011. The depth and strength of convective cold pools are defined by the negative buoyancy, which can be computed from the dropsonde data. Convective downdraft can be affected by environmental water vapor due to entrainment. Mid-level dry air observed during the convectively suppressed phase of MJO seems to enhance convective downdraft, making the cold pools stronger and deeper. Recovery of the cold pools in the boundary layer is determined by the strength and depth of the cold pools and also the air-sea heat and moisture fluxes. Given that the water vapor and surface winds are distinct for the convectively active and suppressed phases of MJO over the Indian Ocean, the aircraft data are stratified by the two different large-scale regimes of MJO. Preliminary results show that the strength and depth of the cold pools are inversely correlated with the surrounding mid-level moisture. During the convectively suppressed phase, the recovery time is ~5-20 hours in relative weak wind condition with small air-sea fluxes. The recovery time is generally less than 6 hours during the active phase of MJO with moist mid-levels and stronger surface wind and air-sea fluxes.

  12. Characterizing Convection in Stellar Atmospheres

    International Nuclear Information System (INIS)

    Tanner, Joel; Basu, Sarbani; Demarque, Pierre; Robinson, Frank

    2011-01-01

    We perform 3D radiative hydrodynamic simulations to study the properties of convection in the superadiabatic layer of stars. The simulations show differences in both the stratification and turbulent quantities for different types of stars. We extract turbulent pressure and eddy sizes, as well as the T-τ relation for different stars and find that they are sensitive to the energy flux and gravity. We also show that contrary to what is usually assumed in the field of stellar atmospheres, the structure and gas dynamics of simulations of turbulent atmospheres cannot be parameterized with T eff and log(g) alone.

  13. AN ANALYTIC RADIATIVE-CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES

    International Nuclear Information System (INIS)

    Robinson, Tyler D.; Catling, David C.

    2012-01-01

    We present an analytic one-dimensional radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power-law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric-pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries; (2) worlds with some attenuation of sunlight throughout the atmosphere, which we show can produce either shallow or deep radiative-convective boundaries, depending on the strength of sunlight attenuation; and (3) strongly irradiated giant planets (including hot Jupiters), where we explore the conditions under which these worlds acquire detached convective regions in their mid-tropospheres. Finally, we validate our model and demonstrate its utility through comparisons to the average observed thermal structure of Venus, Jupiter, and Titan, and by comparing computed flux profiles to more complex models.

  14. Boundary Layer Control of Rotating Convection Systems

    Science.gov (United States)

    King, E. M.; Stellmach, S.; Noir, J.; Hansen, U.; Aurnou, J. M.

    2008-12-01

    Rotating convection is ubiquitous in the natural universe, and is likely responsible for planetary processes such magnetic field generation. Rapidly rotating convection is typically organized by the Coriolis force into tall, thin, coherent convection columns which are aligned with the axis of rotation. This organizational effect of rotation is thought to be responsible for the strength and structure of magnetic fields generated by convecting planetary interiors. As thermal forcing is increased, the relative influence of rotation weakens, and fully three-dimensional convection can exist. It has long been assumed that rotational effects will dominate convection dynamics when the ratio of buoyancy to the Coriolis force, the convective Rossby number, Roc, is less than unity. We investigate the influence of rotation on turbulent Rayleigh-Benard convection via a suite of coupled laboratory and numerical experiments over a broad parameter range: Rayleigh number, 10310; Ekman number, 10-6≤ E ≤ ∞; and Prandtl number, 1≤ Pr ≤ 100. In particular, we measure heat transfer (as characterized by the Nusselt number, Nu) as a function of the Rayleigh number for several different Ekman and Prandtl numbers. Two distinct heat transfer scaling regimes are identified: non-rotating style heat transfer, Nu ~ Ra2/7, and quasigeostrophic style heat transfer, Nu~ Ra6/5. The transition between the non-rotating regime and the rotationally dominant regime is described as a function of the Ekman number, E. We show that the regime transition depends not on the global force balance Roc, but on the relative thicknesses of the thermal and Ekman boundary layers. The transition scaling provides a predictive criterion for the applicability of convection models to natural systems such as Earth's core.

  15. Stretched flow of Carreau nanofluid with convective boundary ...

    Indian Academy of Sciences (India)

    journal of. January 2016 physics pp. 3–17. Stretched flow of Carreau nanofluid with ... fluid over a flat plate subjected to convective surface condition. ... the steady laminar boundary layer flow over a permeable plate with a convective boundary.

  16. Scaling the heterogeneously heated convective boundary layer

    Science.gov (United States)

    Van Heerwaarden, C.; Mellado, J.; De Lozar, A.

    2013-12-01

    We have studied the heterogeneously heated convective boundary layer (CBL) by means of large-eddy simulations (LES) and direct numerical simulations (DNS). What makes our study different from previous studies on this subject are our very long simulations in which the system travels through multiple states and that from there we have derived scaling laws. In our setup, a stratified atmosphere is heated from below by square patches with a high surface buoyancy flux, surrounded by regions with no or little flux. By letting a boundary layer grow in time we let the system evolve from the so-called meso-scale to the micro-scale regime. In the former the heterogeneity is large and strong circulations can develop, while in the latter the heterogeneity is small and does no longer influence the boundary layer structure. Within each simulation we can now observe the formation of a peak in kinetic energy, which represents the 'optimal' heterogeneity size in the meso-scale, and the subsequent decay of the peak and the development towards the transition to the micro-scale. We have created a non-dimensional parameter space that describes all properties of this system. By studying the previously described evolution for different combinations of parameters, we have derived three important conclusions. First, there exists a horizontal length scale of the heterogeneity (L) that is a function of the boundary layer height (h) and the Richardson (Ri) number of the inversion at the top of the boundary layer. This relationship has the form L = h Ri^(3/8). Second, this horizontal length scale L allows for expressing the time evolution, and thus the state of the system, as a ratio of this length scale and the distance between two patches Xp. This ratio thus describes to which extent the circulation fills up the space that exists between two patch centers. The timings of the transition from the meso- to the micro-scale collapse under this scaling for all simulations sharing the same flux

  17. Turbulent boundary layer in high Rayleigh number convection in air.

    Science.gov (United States)

    du Puits, Ronald; Li, Ling; Resagk, Christian; Thess, André; Willert, Christian

    2014-03-28

    Flow visualizations and particle image velocimetry measurements in the boundary layer of a Rayleigh-Bénard experiment are presented for the Rayleigh number Ra=1.4×1010. Our visualizations indicate that the appearance of the flow structures is similar to ordinary (isothermal) turbulent boundary layers. Our particle image velocimetry measurements show that vorticity with both positive and negative sign is generated and that the smallest flow structures are 1 order of magnitude smaller than the boundary layer thickness. Additional local measurements using laser Doppler velocimetry yield turbulence intensities up to I=0.4 as in turbulent atmospheric boundary layers. From our observations, we conclude that the convective boundary layer becomes turbulent locally and temporarily although its Reynolds number Re≈200 is considerably smaller than the value 420 underlying existing phenomenological theories. We think that, in turbulent Rayleigh-Bénard convection, the transition of the boundary layer towards turbulence depends on subtle details of the flow field and is therefore not universal.

  18. Theories for convection in stellar atmospheres

    International Nuclear Information System (INIS)

    Nordlund, Aa.

    1976-02-01

    A discussion of the fundamental differences between laboratory convection in a stellar atmosphere is presented. The shortcomings of laterally homogeneous model atmospheres are analysed, and the extent to which these shortcoming are avoided in the two-component representation is discussed. Finally a qualitative discussion on the scaling properties of stellar granulation is presented. (Auth.)

  19. CONVECTION IN CONDENSIBLE-RICH ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Ding, F. [Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637 (United States); Pierrehumbert, R. T., E-mail: fding@uchicago.edu [Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom)

    2016-05-01

    Condensible substances are nearly ubiquitous in planetary atmospheres. For the most familiar case—water vapor in Earth’s present climate—the condensible gas is dilute, in the sense that its concentration is everywhere small relative to the noncondensible background gases. A wide variety of important planetary climate problems involve nondilute condensible substances. These include planets near or undergoing a water vapor runaway and planets near the outer edge of the conventional habitable zone, for which CO{sub 2} is the condensible. Standard representations of convection in climate models rely on several approximations appropriate only to the dilute limit, while nondilute convection differs in fundamental ways from dilute convection. In this paper, a simple parameterization of convection valid in the nondilute as well as dilute limits is derived and used to discuss the basic character of nondilute convection. The energy conservation properties of the scheme are discussed in detail and are verified in radiative-convective simulations. As a further illustration of the behavior of the scheme, results for a runaway greenhouse atmosphere for both steady instellation and seasonally varying instellation corresponding to a highly eccentric orbit are presented. The latter case illustrates that the high thermal inertia associated with latent heat in nondilute atmospheres can damp out the effects of even extreme seasonal forcing.

  20. Boundary-layer diabatic processes, the virtual effect, and convective self-aggregation

    Science.gov (United States)

    Yang, D.

    2017-12-01

    The atmosphere can self-organize into long-lasting large-scale overturning circulations over an ocean surface with uniform temperature. This phenomenon is referred to as convective self-aggregation and has been argued to be important for tropical weather and climate systems. Here we use a 1D shallow water model and a 2D cloud-resolving model (CRM) to show that boundary-layer diabatic processes are essential for convective self-aggregation. We will show that boundary-layer radiative cooling, convective heating, and surface buoyancy flux help convection self-aggregate because they generate available potential energy (APE), which sustains the overturning circulation. We will also show that evaporative cooling in the boundary layer (cold pool) inhibits convective self-aggregation by reducing APE. Both the shallow water model and CRM results suggest that the enhanced virtual effect of water vapor can lead to convective self-aggregation, and this effect is mainly in the boundary layer. This study proposes new dynamical feedbacks for convective self-aggregation and complements current studies that focus on thermodynamic feedbacks.

  1. Review: the atmospheric boundary layer

    Science.gov (United States)

    Garratt, J. R.

    1994-10-01

    An overview is given of the atmospheric boundary layer (ABL) over both continental and ocean surfaces, mainly from observational and modelling perspectives. Much is known about ABL structure over homogeneous land surfaces, but relatively little so far as the following are concerned, (i) the cloud-topped ABL (over the sea predominantly); (ii) the strongly nonhomogeneous and nonstationary ABL; (iii) the ABL over complex terrain. These three categories present exciting challenges so far as improved understanding of ABL behaviour and improved representation of the ABL in numerical models of the atmosphere are concerned.

  2. Boundary-modulated Thermal Convection Model in the Mantle

    Science.gov (United States)

    Kurita, K.; Kumagai, I.

    2008-12-01

    Analog experiments have played an important role in the constructing ideas of mantle dynamics. The series of experiments by H. Ramberg is one of the successful examples. Recently, however the realm of the analog experiments seems to be overwhelmed by steady progress of computer simulations. Is there still room for the analog experiments? This might be a main and hidden subject of this session. Here we propose a working hypothesis how the convecting mantle behaves based on the analog experiments in the system of viscous fluid and particles. The essential part is the interaction of convecting flow with heterogeneities existing in the boundaries. It is proposed the preexisting topographical heterogeneity in the boundary could control the flow pattern of convecting fluid. If this kind of heterogeneity can be formed as a consequence of convective motion and mobilized by the flow, the convection also can control the heterogeneity. We can expect interactions in two ways, by which the system behaves in a self-organize fashion. To explore the mutual interactions between convection flow and heterogeneity the system of viscous fluid and particles with slightly higher density is selected as 2D Rayleigh-Benard type convection. The basic structure consists of a basal particulate layer where permeable convection transports heat and an upper viscous fluid layer. By reducing the magnitude of the density difference the convective flow can mobilize the particles and can erode the basal layer. The condition of this erosion can be identified in the phase diagram of the particle Shields"f and the Rayleigh numbers. At Ra greater than 107 the convection style drastically changed before and after the erosion. Before the erosion where the flat interface of the boundary is maintained small scaled turbulent convection pattern is dominant. After the erosion where the interface becomes bumpy the large scale convective motion is observed. The structure is coherent to that of the boundary. This

  3. Comparison of Large Eddy Simulations of a convective boundary layer with wind LIDAR measurements

    DEFF Research Database (Denmark)

    Pedersen, Jesper Grønnegaard; Kelly, Mark C.; Gryning, Sven-Erik

    2012-01-01

    Vertical profiles of the horizontal wind speed and of the standard deviation of vertical wind speed from Large Eddy Simulations of a convective atmospheric boundary layer are compared to wind LIDAR measurements up to 1400 m. Fair agreement regarding both types of profiles is observed only when...

  4. High frequency ground temperature fluctuation in a Convective Boundary Layer

    NARCIS (Netherlands)

    Garai, A.; Kleissl, J.; Lothon, M.; Lohou, F.; Pardyjak, E.; Saïd, F.; Cuxart, J.; Steeneveld, G.J.; Yaguë, C.; Derrien, S.; Alexander, D.; Villagrasa, D.M.

    2012-01-01

    To study influence of the turbulent structures in the convective boundary layer (CBL) on the ground temperature, during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) observational campaign, high frequency ground temperature was recorded through infra-red imagery from 13 June - 8

  5. A 'backward' free-convective boundary layer

    NARCIS (Netherlands)

    Kuiken, H.K.

    1981-01-01

    In this paper the cooling of a low-heat-resistance sheet that moves downwards is considered. The free-convective velocities are assumed to be much larger than the velocity of the sheet. As a result the motion of the fluid is mainly towards the point where the sheet enters the system and a ‘backward’

  6. Influence of convective conditions on three dimensional mixed convective hydromagnetic boundary layer flow of Casson nanofluid

    Energy Technology Data Exchange (ETDEWEB)

    Rauf, A., E-mail: raufamar@ciitsahiwal.edu.pk [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Siddiq, M.K. [Centre for Advanced Studies in Pure and Applied Mathematics, Department of Mathematics, Bahauddin Zakariya University, Multan 63000 (Pakistan); Abbasi, F.M. [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Meraj, M.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Ashraf, M. [Centre for Advanced Studies in Pure and Applied Mathematics, Department of Mathematics, Bahauddin Zakariya University, Multan 63000 (Pakistan); Shehzad, S.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan)

    2016-10-15

    The present work deals with the steady laminar three-dimensional mixed convective magnetohydrodynamic (MHD) boundary layer flow of Casson nanofluid over a bidirectional stretching surface. A uniform magnetic field is applied normal to the flow direction. Similarity variables are implemented to convert the non-linear partial differential equations into ordinary ones. Convective boundary conditions are utilized at surface of the sheet. A numerical technique of Runge–Kutta–Fehlberg (RFK45) is used to obtain the results of velocity, temperature and concentration fields. The physical dimensionless parameters are discussed through tables and graphs. - Highlights: • Mixed convective boundary layer flow of Casson nanofluid is taken into account. • Impact of magnetic field is examined. • Convective heat and mass conditions are imposed. • Numerical solutions are presented and discussed.

  7. A two-dimensional embedded-boundary method for convection problems with moving boundaries

    NARCIS (Netherlands)

    Y.J. Hassen (Yunus); B. Koren (Barry)

    2010-01-01

    htmlabstractIn this work, a two-dimensional embedded-boundary algorithm for convection problems is presented. A moving body of arbitrary boundary shape is immersed in a Cartesian finite-volume grid, which is fixed in space. The boundary surface is reconstructed in such a way that only certain fluxes

  8. Towards Adaptive Grids for Atmospheric Boundary-Layer Simulations

    Science.gov (United States)

    van Hooft, J. Antoon; Popinet, Stéphane; van Heerwaarden, Chiel C.; van der Linden, Steven J. A.; de Roode, Stephan R.; van de Wiel, Bas J. H.

    2018-02-01

    We present a proof-of-concept for the adaptive mesh refinement method applied to atmospheric boundary-layer simulations. Such a method may form an attractive alternative to static grids for studies on atmospheric flows that have a high degree of scale separation in space and/or time. Examples include the diurnal cycle and a convective boundary layer capped by a strong inversion. For such cases, large-eddy simulations using regular grids often have to rely on a subgrid-scale closure for the most challenging regions in the spatial and/or temporal domain. Here we analyze a flow configuration that describes the growth and subsequent decay of a convective boundary layer using direct numerical simulation (DNS). We validate the obtained results and benchmark the performance of the adaptive solver against two runs using fixed regular grids. It appears that the adaptive-mesh algorithm is able to coarsen and refine the grid dynamically whilst maintaining an accurate solution. In particular, during the initial growth of the convective boundary layer a high resolution is required compared to the subsequent stage of decaying turbulence. More specifically, the number of grid cells varies by two orders of magnitude over the course of the simulation. For this specific DNS case, the adaptive solver was not yet more efficient than the more traditional solver that is dedicated to these types of flows. However, the overall analysis shows that the method has a clear potential for numerical investigations of the most challenging atmospheric cases.

  9. Natural convection flow between moving boundaries | Chepkwony ...

    African Journals Online (AJOL)

    The two-point boundary value problem governing the flow is characterized by a non-dimensional parameter K. It is solved numerically using shooting method and the Newton-Raphson method to locate the missing initial conditions. The numerical results reveal that no solution exists beyond a critical value of K and that dual ...

  10. Boundary layers and scaling relations in natural thermal convection

    Science.gov (United States)

    Shishkina, Olga; Lohse, Detlef; Grossmann, Siegfried

    2017-11-01

    We analyse the boundary layer (BL) equations in natural thermal convection, which includes vertical convection (VC), where the fluid is confined between two differently heated vertical walls, horizontal convection (HC), where the fluid is heated at one part of the bottom plate and cooled at some other part, and Rayleigh-Benard convection (RBC). For BL dominated regimes we derive the scaling relations of the Nusselt and Reynolds numbers (Nu, Re) with the Rayleigh and Prandtl numbers (Ra, Pr). For VC the scaling relations are obtained directly from the BL equations, while for HC they are derived by applying the Grossmann-Lohse theory to the case of VC. In particular, for RBC with large Pr we derive Nu Pr0Ra1/3 and Re Pr-1Ra2/3. The work is supported by the Deutsche Forschungsgemeinschaft (DFG) under the Grant Sh 405/4 - Heisenberg fellowship.

  11. Axisymmetric free convection boundary-layer flow past slender bodies

    NARCIS (Netherlands)

    Kuiken, H.K.

    1968-01-01

    Radial curvature effects on axisymmetric free convection boundary-layer flow are investigated for vertical cylinders and cones for some special non-uniform temperature differences between the surface and the ambient fluid. The solution is given as a power series expansion, the first term being equal

  12. The boundary layer moist static energy budget: Convection picks up moisture and leaves footprints in the marine boundary layer

    Science.gov (United States)

    de Szoeke, S. P.

    2017-12-01

    Averaged over the tropical marine boundary layer (BL), 130 W m-2 turbulent surface moist static energy (MSE) flux, 120 W m-2 of which is evaporation, is balanced by upward MSE flux at the BL top due to 1) incorporation of cold air by downdrafts from deep convective clouds, and 2) turbulent entrainment of dry air into the BL. Cold saturated downdraft air, and warm clear air entrained into the BL have distinct thermodynamic properties. This work observationally quantifies their respective MSE fluxes in the central Indian Ocean in 2011, under different convective conditions of the intraseasonal (40-90 day) Madden Julian oscillation (MJO). Under convectively suppressed conditions, entrainment and downdraft fluxes export equal shares (60 W m-2) of MSE from the BL. Downdraft fluxes are more variable, increasing for stronger convection. In the convectively active phase of the MJO, downdrafts export 90 W m-2 from the BL, compared to 40 W m-2 by entrainment. These processes that control the internal, latent (condensation), and MSE of the tropical marine atmospheric BL determine the parcel buoyancy and strength of tropical deep convection.

  13. Near-Surface Effects of Free Atmosphere Stratification in Free Convection

    NARCIS (Netherlands)

    Mellado, Juan Pedro; Heerwaarden, van C.C.; Garcia, Jade Rachele

    2016-01-01

    The effect of a linear stratification in the free atmosphere on near-surface properties in a free convective boundary layer (CBL) is investigated by means of direct numerical simulation. We consider two regimes: a neutral stratification regime, which represents a CBL that grows into a residual

  14. Evaluation of the Atmospheric Boundary-Layer Electrical Variability

    Science.gov (United States)

    Anisimov, Sergey V.; Galichenko, Sergey V.; Aphinogenov, Konstantin V.; Prokhorchuk, Aleksandr A.

    2017-12-01

    Due to the chaotic motion of charged particles carried by turbulent eddies, electrical quantities in the atmospheric boundary layer (ABL) have short-term variability superimposed on long-term variability caused by sources from regional to global scales. In this study the influence of radon exhalation rate, aerosol distribution and turbulent transport efficiency on the variability of fair-weather atmospheric electricity is investigated via Lagrangian stochastic modelling. For the mid-latitude lower atmosphere undisturbed by precipitation, electrified clouds, or thunderstorms, the model is capable of reproducing the diurnal variation in atmospheric electrical parameters detected by ground-based measurements. Based on the analysis of field observations and numerical simulation it is found that the development of the convective boundary layer, accompanied by an increase in turbulent kinetic energy, forms the vertical distribution of radon and its decaying short-lived daughters to be approximately coincident with the barometric law for several eddy turnover times. In the daytime ABL the vertical distribution of atmospheric electrical conductivity tends to be uniform except within the surface layer, due to convective mixing of radon and its radioactive decay products. At the same time, a decrease in the conductivity near the ground is usually observed. This effect leads to an enhanced ground-level atmospheric electric field compared to that normally observed in the nocturnal stably-stratified boundary layer. The simulation showed that the variability of atmospheric electric field in the ABL associated with internal origins is significant in comparison to the variability related to changes in global parameters. It is suggested that vertical profiles of electrical quantities can serve as informative parameters on ABL turbulent dynamics and can even more broadly characterize the state of the environment.

  15. Modelling stable atmospheric boundary layers over snow

    NARCIS (Netherlands)

    Sterk, H.A.M.

    2015-01-01

    Thesis entitled:

    Modelling Stable Atmospheric Boundary Layers over Snow

    H.A.M. Sterk

    Wageningen, 29th of April, 2015

    Summary

    The emphasis of this thesis is on the understanding and forecasting of the Stable Boundary Layer (SBL) over snow-covered surfaces. SBLs

  16. Convective boundary layer heights over mountainous terrain - A review of concepts -

    Science.gov (United States)

    De Wekker, Stephan; Kossmann, Meinolf

    2015-12-01

    Mountainous terrain exerts an important influence on the Earth's atmosphere and affects atmospheric transport and mixing at a wide range of temporal and spatial scales. The vertical scale of this transport and mixing is determined by the height of the atmospheric boundary layer, which is therefore an important parameter in air pollution studies, weather forecasting, climate modeling, and many other applications. It is recognized that the spatio-temporal structure of the daytime convective boundary layer (CBL) height is strongly modified and more complex in hilly and mountainous terrain compared to flat terrain. While the CBL over flat terrain is mostly dominated by turbulent convection, advection from multi-scale thermally driven flows plays an important role for the CBL evolution over mountainous terrain. However, detailed observations of the CBL structure and understanding of the underlying processes are still limited. Characteristics of CBL heights in mountainous terrain are reviewed for dry, convective conditions. CBLs in valleys and basins, where hazardous accumulation of pollutants is of particular concern, are relatively well-understood compared to CBLs over slopes, ridges, or mountain peaks. Interests in the initiation of shallow and deep convection, and of budgets and long-range transport of air pollutants and trace gases, have triggered some recent studies on terrain induced exchange processes between the CBL and the overlying atmosphere. These studies have helped to gain more insight into CBL structure over complex mountainous terrain, but also show that the universal definition of CBL height over mountains remains an unresolved issue. The review summarizes the progress that has been made in documenting and understanding spatio-temporal behavior of CBL heights in mountainous terrain and concludes with a discussion of open research questions and opportunities for future research.

  17. Short climatology of the atmospheric boundary layer using acoustic methods

    International Nuclear Information System (INIS)

    Schubert, J.F.

    1975-06-01

    A climatology of the boundary layer of the atmosphere at the Savannah River Laboratory is being compiled using acoustic methods. The atmospheric phenomenon as depicted on the facsimile recorder is classified and then placed into one of sixteen categories. After classification, the height of the boundary layer is measured. From this information, frequency tables of boundary layer height and category are created and then analyzed for the percentage of time that each category was detected by the acoustic sounder. The sounder also accurately depicts the diurnal cycle of the boundary layer and, depending on the sensitivity of the system, shows microstructure that is normally unavailable using other methods of profiling. The acoustic sounder provides a means for continuous, real time measurements of the time rate of change of the depth of the boundary layer. This continuous record of the boundary layer with its convective cells, gravity waves, inversions, and frontal system passages permits the synoptic and complex climatology of the local area to be compiled. (U.S.)

  18. the Martian atmospheric boundary layer

    DEFF Research Database (Denmark)

    Petrosyan, A.; Galperin, B.; Larsen, Søren Ejling

    2011-01-01

    . This portion of the atmosphere is extremely important, both scientifically and operationally, because it is the region within which surface lander spacecraft must operate and also determines exchanges of heat, momentum, dust, water, and other tracers between surface and subsurface reservoirs and the free...

  19. Temperature boundary layer profiles in turbulent Rayleigh-Benard convection

    Science.gov (United States)

    Ching, Emily S. C.; Emran, Mohammad S.; Horn, Susanne; Shishkina, Olga

    2017-11-01

    Classical boundary-layer theory for steady flows cannot adequately describe the boundary layer profiles in turbulent Rayleigh-Benard convection. We have developed a thermal boundary layer equation which takes into account fluctuations in terms of an eddy thermal diffusivity. Based on Prandtl's mixing length ideas, we relate the eddy thermal diffusivity to the stream function. With this proposed relation, we can solve the thermal boundary layer equation and obtain a closed-form expression for the dimensionless mean temperature profile in terms of two independent parameters: θ(ξ) =1/b∫0b ξ [ 1 +3a3/b3(η - arctan(η)) ] - c dη , where ξ is the similarity variable and the parameters a, b, and c are related by the condition θ(∞) = 1 . With a proper choice of the parameters, our predictions of the temperature profile are in excellent agreement with the results of our direct numerical simulations for a wide range of Prandtl numbers (Pr), from Pr=0.01 to Pr=2547.9. OS, ME and SH acknowledge the financial support by the Deutsche Forschungsgemeinschaft (DFG) under Grants Sh405/4-2 (Heisenberg fellowship), Sh405/3-2 and Ho 5890/1-1, respectively.

  20. How Many Convective Zones Are There in the Atmosphere of Venus?

    Science.gov (United States)

    Moroz, V. I.; Rodin, A. V.

    2002-11-01

    The qualitative characteristics of the vertical structure of the atmospheres of Venus and the Earth essentially differ. For instance, there are at least two, instead of one, zones with normal (thermal) convection on Venus. The first one is near the surface (a boundary layer); the second is at the altitudes of the lower part of the main cloud layer between 49 and 55 km. Contrary to the hypotheses proposed by Izakov (2001, 2002), the upper convective zone prevents energy transfer from the upper clouds to the subcloud atmosphere by ``anomalous turbulent heat conductivity.'' It is possible, however, that the anomalous turbulent heat conductivity takes part in the redistribution of the heat fluxes within the lower (subcloud) atmosphere.

  1. A novel approach to modeling atmospheric convection

    Science.gov (United States)

    Goodman, A.

    2016-12-01

    The inadequate representation of clouds continues to be a large source of uncertainty in the projections from global climate models (GCMs). With continuous advances in computational power, however, the ability for GCMs to explicitly resolve cumulus convection will soon be realized. For this purpose, Jung and Arakawa (2008) proposed the Vector Vorticity Model (VVM), in which vorticity is the predicted variable instead of momentum. This has the advantage of eliminating the pressure gradient force within the framework of an anelastic system. However, the VVM was designed for use on a planar quadrilateral grid, making it unsuitable for implementation in global models discretized on the sphere. Here we have proposed a modification to the VVM where instead the curl of the horizontal vorticity is the primary predicted variable. This allows us to maintain the benefits of the original VVM while working within the constraints of a non-quadrilateral mesh. We found that our proposed model produced results from a warm bubble simulation that were consistent with the VVM. Further improvements that can be made to the VVM are also discussed.

  2. Exchange Processes in the Atmospheric Boundary Layer Over Mountainous Terrain

    Directory of Open Access Journals (Sweden)

    Stefano Serafin

    2018-03-01

    Full Text Available The exchange of heat, momentum, and mass in the atmosphere over mountainous terrain is controlled by synoptic-scale dynamics, thermally driven mesoscale circulations, and turbulence. This article reviews the key challenges relevant to the understanding of exchange processes in the mountain boundary layer and outlines possible research priorities for the future. The review describes the limitations of the experimental study of turbulent exchange over complex terrain, the impact of slope and valley breezes on the structure of the convective boundary layer, and the role of intermittent mixing and wave–turbulence interaction in the stable boundary layer. The interplay between exchange processes at different spatial scales is discussed in depth, emphasizing the role of elevated and ground-based stable layers in controlling multi-scale interactions in the atmosphere over and near mountains. Implications of the current understanding of exchange processes over mountains towards the improvement of numerical weather prediction and climate models are discussed, considering in particular the representation of surface boundary conditions, the parameterization of sub-grid-scale exchange, and the development of stochastic perturbation schemes.

  3. Modules for Experiments in Stellar Astrophysics (MESA): Convective Boundaries, Element Diffusion, and Massive Star Explosions

    OpenAIRE

    Paxton, Bill; Schwab, Josiah; Bauer, Evan B.; Bildsten, Lars; Blinnikov, Sergei; Duffell, Paul; Farmer, R.; Goldberg, Jared A.; Marchant, Pablo; Sorokina, Elena; Thoul, Anne; Townsend, Richard H. D.; Timmes, F. X.

    2017-01-01

    We update the capabilities of the software instrument Modules for Experiments in Stellar Astrophysics (MESA) and enhance its ease of use and availability. Our new approach to locating convective boundaries is consistent with the physics of convection, and yields reliable values of the convective core mass during both hydrogen and helium burning phases. Stars with $M

  4. Soil-plant-atmosphere conditions regulating convective cloud formation above southeastern US pine plantations.

    Science.gov (United States)

    Manoli, Gabriele; Domec, Jean-Christophe; Novick, Kimberly; Oishi, Andrew Christopher; Noormets, Asko; Marani, Marco; Katul, Gabriel

    2016-06-01

    Loblolly pine trees (Pinus taeda L.) occupy more than 20% of the forested area in the southern United States, represent more than 50% of the standing pine volume in this region, and remove from the atmosphere about 500 g C m-2 per year through net ecosystem exchange. Hence, their significance as a major regional carbon sink can hardly be disputed. What is disputed is whether the proliferation of young plantations replacing old forest in the southern United States will alter key aspects of the hydrologic cycle, including convective rainfall, which is the focus of the present work. Ecosystem fluxes of sensible (Hs) and latent heat (LE) and large-scale, slowly evolving free atmospheric temperature and water vapor content are known to be first-order controls on the formation of convective clouds in the atmospheric boundary layer. These controlling processes are here described by a zero-order analytical model aimed at assessing how plantations of different ages may regulate the persistence and transition of the atmospheric system between cloudy and cloudless conditions. Using the analytical model together with field observations, the roles of ecosystem Hs and LE on convective cloud formation are explored relative to the entrainment of heat and moisture from the free atmosphere. Our results demonstrate that cloudy-cloudless regimes at the land surface are regulated by a nonlinear relation between the Bowen ratio Bo=Hs/LE and root-zone soil water content, suggesting that young/mature pines ecosystems have the ability to recirculate available water (through rainfall predisposition mechanisms). Such nonlinearity was not detected in a much older pine stand, suggesting a higher tolerance to drought but a limited control on boundary layer dynamics. These results enable the generation of hypotheses about the impacts on convective cloud formation driven by afforestation/deforestation and groundwater depletion projected to increase following increased human population in the

  5. Wind Energy-Related Atmospheric Boundary Layer Large-Eddy Simulation Using OpenFOAM: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Churchfield, M.J.; Vijayakumar, G.; Brasseur, J.G.; Moriarty, P.J.

    2010-08-01

    This paper develops and evaluates the performance of a large-eddy simulation (LES) solver in computing the atmospheric boundary layer (ABL) over flat terrain under a variety of stability conditions, ranging from shear driven (neutral stratification) to moderately convective (unstable stratification).

  6. Approximate analytical solution to diurnal atmospheric boundary-layer growth under well-watered conditions

    Science.gov (United States)

    The system of governing equations of a simplified slab model of the uniformly-mixed, purely convective, diurnal atmospheric boundary layer (ABL) is shown to allow immediate solutions for the potential temperature and specific humidity as functions of the ABL height and net radiation when expressed i...

  7. Spherical-shell boundaries for two-dimensional compressible convection in a star

    Science.gov (United States)

    Pratt, J.; Baraffe, I.; Goffrey, T.; Geroux, C.; Viallet, M.; Folini, D.; Constantino, T.; Popov, M.; Walder, R.

    2016-10-01

    Context. Studies of stellar convection typically use a spherical-shell geometry. The radial extent of the shell and the boundary conditions applied are based on the model of the star investigated. We study the impact of different two-dimensional spherical shells on compressible convection. Realistic profiles for density and temperature from an established one-dimensional stellar evolution code are used to produce a model of a large stellar convection zone representative of a young low-mass star, like our sun at 106 years of age. Aims: We analyze how the radial extent of the spherical shell changes the convective dynamics that result in the deep interior of the young sun model, far from the surface. In the near-surface layers, simple small-scale convection develops from the profiles of temperature and density. A central radiative zone below the convection zone provides a lower boundary on the convection zone. The inclusion of either of these physically distinct layers in the spherical shell can potentially affect the characteristics of deep convection. Methods: We perform hydrodynamic implicit large eddy simulations of compressible convection using the MUltidimensional Stellar Implicit Code (MUSIC). Because MUSIC has been designed to use realistic stellar models produced from one-dimensional stellar evolution calculations, MUSIC simulations are capable of seamlessly modeling a whole star. Simulations in two-dimensional spherical shells that have different radial extents are performed over tens or even hundreds of convective turnover times, permitting the collection of well-converged statistics. Results: To measure the impact of the spherical-shell geometry and our treatment of boundaries, we evaluate basic statistics of the convective turnover time, the convective velocity, and the overshooting layer. These quantities are selected for their relevance to one-dimensional stellar evolution calculations, so that our results are focused toward studies exploiting the so

  8. Convection and waves on Small Earth and Deep Atmosphere

    Directory of Open Access Journals (Sweden)

    Noureddine Semane

    2015-06-01

    Full Text Available A scaled version of the European Centre for Medium-Range Weather Forecasts (ECMWF spectral hydrostatic forecast model (IFS has been developed with full physics using an Aqua planet configuration. This includes Kuang et al.'s Small Earth Diabatic Acceleration and REscaling (DARE/SE approach bringing the synoptic scale a factor γ closer to the convective scale by reducing the Earth radius by γ, and increasing the rotation rate and all diabatic processes by the same factor. Furthermore, the scaled version also provides an alternative system to DARE/SE, dubbed ‘Deep Atmosphere Diabatic Acceleration and REscaling’ (DARE/DA, which reduces gravity by a factor γ and thereby increases the horizontal scale of convection by γ, while only weakly affecting the large-scale flow. The two approaches have been evaluated using a T159 spectral truncation and γ = 8 with the deep convection scheme switched off. The evaluation is against the baseline unscaled model at T1279 spectral resolution without deep convection parametrisation, as well as the unscaled T159 model using the deep convection parametrisation. It is shown that the DARE/SE and DARE/DA systems provide fairly equivalent results, while the DARE/DA system seems to be the preferred choice as it damps divergent modes, providing a better climatology, and is technically easier to implement. However, neither of the systems could reproduce the motion range and modes of the high-resolution spectral model. Higher equivalent horizontal resolution in the 1–10 km range and the full non-hydrostatic system might be necessary to successfully simulate the convective and large-scale explicitly at reduced cost.

  9. Year-Long Vertical Velocity Statistics Derived from Doppler Lidar Data for the Continental Convective Boundary Layer

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Larry K. [Pacific Northwest National Laboratory, Richland, Washington; Newsom, Rob K. [Pacific Northwest National Laboratory, Richland, Washington; Turner, David D. [Global Systems Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

    2017-09-01

    One year of Coherent Doppler Lidar (CDL) data collected at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) site in Oklahoma is analyzed to provide profiles of vertical velocity variance, skewness, and kurtosis for cases of cloud-free convective boundary layers. The variance was scaled by the Deardorff convective velocity scale, which was successful when the boundary layer depth was stationary but failed in situations when the layer was changing rapidly. In this study the data are sorted according to time of day, season, wind direction, surface shear stress, degree of instability, and wind shear across the boundary-layer top. The normalized variance was found to have its peak value near a normalized height of 0.25. The magnitude of the variance changes with season, shear stress, and degree of instability, but was not impacted by wind shear across the boundary-layer top. The skewness was largest in the top half of the boundary layer (with the exception of wintertime conditions). The skewness was found to be a function of the season, shear stress, wind shear across the boundary-layer top, with larger amounts of shear leading to smaller values. Like skewness, the vertical profile of kurtosis followed a consistent pattern, with peak values near the boundary-layer top (also with the exception of wintertime data). The altitude of the peak values of kurtosis was found to be lower when there was a large amount of wind shear at the boundary-layer top.

  10. Predicting insect migration density and speed in the daytime convective boundary layer.

    Directory of Open Access Journals (Sweden)

    James R Bell

    Full Text Available Insect migration needs to be quantified if spatial and temporal patterns in populations are to be resolved. Yet so little ecology is understood above the flight boundary layer (i.e. >10 m where in north-west Europe an estimated 3 billion insects km(-1 month(-1 comprising pests, beneficial insects and other species that contribute to biodiversity use the atmosphere to migrate. Consequently, we elucidate meteorological mechanisms principally related to wind speed and temperature that drive variation in daytime aerial density and insect displacements speeds with increasing altitude (150-1200 m above ground level. We derived average aerial densities and displacement speeds of 1.7 million insects in the daytime convective atmospheric boundary layer using vertical-looking entomological radars. We first studied patterns of insect aerial densities and displacements speeds over a decade and linked these with average temperatures and wind velocities from a numerical weather prediction model. Generalized linear mixed models showed that average insect densities decline with increasing wind speed and increase with increasing temperatures and that the relationship between displacement speed and density was negative. We then sought to derive how general these patterns were over space using a paired site approach in which the relationship between sites was examined using simple linear regression. Both average speeds and densities were predicted remotely from a site over 100 km away, although insect densities were much noisier due to local 'spiking'. By late morning and afternoon when insects are migrating in a well-developed convective atmosphere at high altitude, they become much more difficult to predict remotely than during the early morning and at lower altitudes. Overall, our findings suggest that predicting migrating insects at altitude at distances of ≈ 100 km is promising, but additional radars are needed to parameterise spatial covariance.

  11. A finite-volume method for convection problems with embedded moving boundaries

    NARCIS (Netherlands)

    Y.J. Hassen (Yunus); B. Koren (Barry)

    2009-01-01

    htmlabstractAn accurate method, using a novel immersed-boundary approach, is presented for numerically solving linear, scalar convection problems. Moving interior boundary conditions are embedded in the fixed-grid fluxes in the direct neighborhood of the moving boundaries. Tailor-made limiters are

  12. Ground Boundary Conditions for Thermal Convection Over Horizontal Surfaces at High Rayleigh Numbers

    Science.gov (United States)

    Hanjalić, K.; Hrebtov, M.

    2016-07-01

    We present "wall functions" for treating the ground boundary conditions in the computation of thermal convection over horizontal surfaces at high Rayleigh numbers using coarse numerical grids. The functions are formulated for an algebraic-flux model closed by transport equations for the turbulence kinetic energy, its dissipation rate and scalar variance, but could also be applied to other turbulence models. The three-equation algebraic-flux model, solved in a T-RANS mode ("Transient" Reynolds-averaged Navier-Stokes, based on triple decomposition), was shown earlier to reproduce well a number of generic buoyancy-driven flows over heated surfaces, albeit by integrating equations up to the wall. Here we show that by using a set of wall functions satisfactory results are found for the ensemble-averaged properties even on a very coarse computational grid. This is illustrated by the computations of the time evolution of a penetrative mixed layer and Rayleigh-Bénard (open-ended, 4:4:1 domain) convection, using 10 × 10 × 100 and 10 × 10 × 20 grids, compared also with finer grids (e.g. 60 × 60 × 100), as well as with one-dimensional treatment using 1 × 1 × 100 and 1 × 1 × 20 nodes. The approach is deemed functional for simulations of a convective boundary layer and mesoscale atmospheric flows, and pollutant transport over realistic complex hilly terrain with heat islands, urban and natural canopies, for diurnal cycles, or subjected to other time and space variations in ground conditions and stratification.

  13. Improved boundary layer height measurement using a fuzzy logic method: Diurnal and seasonal variabilities of the convective boundary layer over a tropical station

    Science.gov (United States)

    Allabakash, S.; Yasodha, P.; Bianco, L.; Venkatramana Reddy, S.; Srinivasulu, P.; Lim, S.

    2017-09-01

    This paper presents the efficacy of a "tuned" fuzzy logic method at determining the height of the boundary layer using the measurements from a 1280 MHz lower atmospheric radar wind profiler located in Gadanki (13.5°N, 79°E, 375 mean sea level), India, and discusses the diurnal and seasonal variations of the measured convective boundary layer over this tropical station. The original fuzzy logic (FL) method estimates the height of the atmospheric boundary layer combining the information from the range-corrected signal-to-noise ratio, the Doppler spectral width of the vertical velocity, and the vertical velocity itself, measured by the radar, through a series of thresholds and rules, which did not prove to be optimal for our radar system and geographical location. For this reason the algorithm was tuned to perform better on our data set. Atmospheric boundary layer heights obtained by this tuned FL method, the original FL method, and by a "standard method" (that only uses the information from the range-corrected signal-to-noise ratio) are compared with those obtained from potential temperature profiles measured by collocated Global Positioning System Radio Sonde during years 2011 and 2013. The comparison shows that the tuned FL method is more accurate than the other methods. Maximum convective boundary layer heights are observed between 14:00 and 15:00 local time (LT = UTC + 5:30) for clear-sky days. These daily maxima are found to be lower during winter and postmonsoon seasons and higher during premonsoon and monsoon seasons, due to net surface radiation and convective processes over this region being more intense during premonsoon and monsoon seasons and less intense in winter and postmonsoon seasons.

  14. FINGERING CONVECTION AND CLOUDLESS MODELS FOR COOL BROWN DWARF ATMOSPHERES

    International Nuclear Information System (INIS)

    Tremblin, P.; Amundsen, D. S.; Mourier, P.; Baraffe, I.; Chabrier, G.; Drummond, B.; Homeier, D.; Venot, O.

    2015-01-01

    This work aims to improve the current understanding of the atmospheres of brown dwarfs, especially cold ones with spectral types T and Y, whose modeling is a current challenge. Silicate and iron clouds are believed to disappear at the photosphere at the L/T transition, but cloudless models fail to reproduce correctly the spectra of T dwarfs, advocating for the addition of more physics, e.g., other types of clouds or internal energy transport mechanisms. We use a one-dimensional radiative/convective equilibrium code ATMO to investigate this issue. This code includes both equilibrium and out-of-equilibrium chemistry and solves consistently the PT structure. Included opacity sources are H 2 -H 2 , H 2 -He, H 2 O, CO, CO 2 , CH 4 , NH 3 , K, Na, and TiO, VO if they are present in the atmosphere. We show that the spectra of Y dwarfs can be accurately reproduced with a cloudless model if vertical mixing and NH 3 quenching are taken into account. T dwarf spectra still have some reddening in, e.g., J–H, compared to cloudless models. This reddening can be reproduced by slightly reducing the temperature gradient in the atmosphere. We propose that this reduction of the stabilizing temperature gradient in these layers, leading to cooler structures, is due to the onset of fingering convection, triggered by the destabilizing impact of condensation of very thin dust

  15. FINGERING CONVECTION AND CLOUDLESS MODELS FOR COOL BROWN DWARF ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Tremblin, P.; Amundsen, D. S.; Mourier, P.; Baraffe, I.; Chabrier, G.; Drummond, B. [Astrophysics Group, University of Exeter, EX4 4QL Exeter (United Kingdom); Homeier, D. [Ecole Normale Supérieure de Lyon, CRAL, UMR CNRS 5574, F-69364 Lyon Cedex 07 (France); Venot, O., E-mail: tremblin@astro.ex.ac.uk, E-mail: pascal.tremblin@cea.fr [Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2015-05-01

    This work aims to improve the current understanding of the atmospheres of brown dwarfs, especially cold ones with spectral types T and Y, whose modeling is a current challenge. Silicate and iron clouds are believed to disappear at the photosphere at the L/T transition, but cloudless models fail to reproduce correctly the spectra of T dwarfs, advocating for the addition of more physics, e.g., other types of clouds or internal energy transport mechanisms. We use a one-dimensional radiative/convective equilibrium code ATMO to investigate this issue. This code includes both equilibrium and out-of-equilibrium chemistry and solves consistently the PT structure. Included opacity sources are H{sub 2}-H{sub 2}, H{sub 2}-He, H{sub 2}O, CO, CO{sub 2}, CH{sub 4}, NH{sub 3}, K, Na, and TiO, VO if they are present in the atmosphere. We show that the spectra of Y dwarfs can be accurately reproduced with a cloudless model if vertical mixing and NH{sub 3} quenching are taken into account. T dwarf spectra still have some reddening in, e.g., J–H, compared to cloudless models. This reddening can be reproduced by slightly reducing the temperature gradient in the atmosphere. We propose that this reduction of the stabilizing temperature gradient in these layers, leading to cooler structures, is due to the onset of fingering convection, triggered by the destabilizing impact of condensation of very thin dust.

  16. Analyis of the role of the planetary boundary layer schemes during a severe convective storm

    NARCIS (Netherlands)

    Wisse, J.S.P.; Vilà-Guerau de Arellano, J.

    2004-01-01

    The role played by planetary boundary layer (PBL) in the development and evolution of a severe convective storm is studied by means of meso-scale modeling and surface and upper air observations. The severe convective precipitation event that occurred on 14 September 1999 in the northeast of the

  17. Turbulent Helicity in the Atmospheric Boundary Layer

    Science.gov (United States)

    Chkhetiani, Otto G.; Kurgansky, Michael V.; Vazaeva, Natalia V.

    2018-05-01

    We consider the assumption postulated by Deusebio and Lindborg (J Fluid Mech 755:654-671, 2014) that the helicity injected into the Ekman boundary layer undergoes a cascade, with preservation of its sign (right- or alternatively left-handedness), which is a signature of the system rotation, from large to small scales, down to the Kolmogorov microscale of turbulence. At the same time, recent direct field measurements of turbulent helicity in the steppe region of southern Russia near Tsimlyansk Reservoir show the opposite sign of helicity from that expected. A possible explanation for this phenomenon may be the joint action of different scales of atmospheric flows within the boundary layer, including the sea-breeze circulation over the test site. In this regard, we consider a superposition of the classic Ekman spiral solution and Prandtl's jet-like slope-wind profile to describe the planetary boundary-layer wind structure. The latter solution mimics a hydrostatic shallow breeze circulation over a non-uniformly heated surface. A 180°-wide sector on the hodograph plane exists, within which the relative orientation of the Ekman and Prandtl velocity profiles favours the left rotation with height of the resulting wind velocity vector in the lowermost part of the boundary layer. This explains the negative (left-handed) helicity cascade toward small-scale turbulent motions, which agrees with the direct field measurements of turbulent helicity in Tsimlyansk. A simple turbulent relaxation model is proposed that explains the measured positive values of the relatively minor contribution to turbulent helicity from the vertical components of velocity and vorticity.

  18. On the determination of the neutral drag coefficient in the convective boundary layer

    DEFF Research Database (Denmark)

    Grachev, A.A.; Fairall, C.W.; Larsen, Søren Ejling

    1998-01-01

    Based on the idea that free convection can be considered as a particular case of forced convection, where the gusts driven by the large-scale eddies are scaled with the Deardorff convective velocity scale, a new formulation for the neutral drag coefficient, C-Dn, in the convective boundary layer...... for mean wind speed less than about 2 m s(-1). The new approach also clarifies several contradictory results from earlier works. Some aspects related to an alternate definition of the neutral drag coefficient and the wind speed and the stress averaging procedure are considered....

  19. Atmosphere-ionosphere coupling from convectively generated gravity waves

    Science.gov (United States)

    Azeem, Irfan; Barlage, Michael

    2018-04-01

    Ionospheric variability impacts operational performances of a variety of technological systems, such as HF communication, Global Positioning System (GPS) navigation, and radar surveillance. The ionosphere is not only perturbed by geomagnetic inputs but is also influenced by atmospheric tides and other wave disturbances propagating from the troposphere to high altitudes. Atmospheric Gravity Waves (AGWs) excited by meteorological sources are one of the largest sources of mesoscale variability in the ionosphere. In this paper, Total Electron Content (TEC) data from networks of GPS receivers in the United States are analyzed to investigate AGWs in the ionosphere generated by convective thunderstorms. Two case studies of convectively generated gravity waves are presented. On April 4, 2014 two distinct large convective systems in Texas and Arkansas generated two sets of concentric AGWs that were observed in the ionosphere as Traveling Ionospheric Disturbances (TIDs). The period of the observed TIDs was 20.8 min, the horizontal wavelength was 182.4 km, and the horizontal phase speed was 146.4 m/s. The second case study shows TIDs generated from an extended squall line on December 23, 2015 stretching from the Gulf of Mexico to the Great Lakes in North America. Unlike the concentric wave features seen in the first case study, the extended squall line generated TIDs, which exhibited almost plane-parallel phase fronts. The TID period was 20.1 min, its horizontal wavelength was 209.6 km, and the horizontal phase speed was 180.1 m/s. The AGWs generated by both of these meteorological events have large vertical wavelength (>100 km), which are larger than the F2 layer thickness, thus allowing them to be discernible in the TEC dataset.

  20. Convective cells of internal gravity waves in the earth's atmosphere with finite temperature gradient

    Directory of Open Access Journals (Sweden)

    O. Onishchenko

    2013-03-01

    Full Text Available In this paper, we have investigated vortex structures (e.g. convective cells of internal gravity waves (IGWs in the earth's atmosphere with a finite vertical temperature gradient. A closed system of nonlinear equations for these waves and the condition for existence of solitary convective cells are obtained. In the atmosphere layers where the temperature decreases with height, the presence of IGW convective cells is shown. The typical parameters of such structures in the earth's atmosphere are discussed.

  1. Stability of impulsively-driven natural convection with unsteady base state: implications of an adiabatic boundary

    International Nuclear Information System (INIS)

    Ihle, Christian F.; Nino, Yarko

    2011-01-01

    Stability conditions of a quiescent, horizontally infinite fluid layer with adiabatic bottom subject to sudden cooling from above are studied. Here, at difference from Rayleigh-Benard convection, the temperature base state is never steady. Instability limits are studied using linear analysis while stability is analyzed using the energy method. Critical stability curves in terms of Rayleigh numbers and convection onset times were obtained for several kinematic boundary conditions. Stability curves resulting from energy and linear approaches exhibit the same temporal growth rate for large values of time, suggesting a bound for the temporal asymptotic behavior of the energy method. - Highlights: → Non-penetrative convection appears after a time-evolving temperature base state. → Global stability and instability limits were analyzed. → Critical Rayleigh numbers were computed for different kinematic boundary conditions. → Adiabatic, bottom boundary was found to have a de-stabilizing effect. → System is less stable than in Benard convection.

  2. The Diurnal Cycle of the Boundary Layer, Convection, Clouds, and Surface Radiation in a Coastal Monsoon Environment (Darwin Australia)

    Energy Technology Data Exchange (ETDEWEB)

    May, Peter T.; Long, Charles N.; Protat, Alain

    2012-08-01

    The diurnal variation of convection and associated cloud and radiative properties remains a significant issue in global NWP and climate models. This study analyzes observed diurnal variability of convection in a coastal monsoonal environment examining the interaction of convective rain clouds, their associated cloud properties, and the impact on the surface radiation and corresponding boundary layer structure during periods where convection is suppressed or active on the large scale. The analysis uses data from the Tropical Warm Pool International Cloud Experiment (TWP-ICE) as well as routine measurements from the Australian Bureau of Meteorology and the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program. Both active monsoonal and large-scale suppressed (buildup and break) conditions are examined and demonstrate that the diurnal variation of rainfall is much larger during the break periods and the spatial distribution of rainfall is very different between the monsoon and break regimes. During the active monsoon the total net radiative input to the surface is decreased by more than 3 times the amount than during the break regime - this total radiative cloud forcing is found to be dominated by the shortwave (SW) cloud effects because of the much larger optical thicknesses and persistence of long-lasting anvils and cirrus cloud decks associated with the monsoon regime. These differences in monsoon versus break surface radiative energy contribute to low-level air temperature differences in the boundary layer over the land surfaces.

  3. A class of backward free-convective boundary-layer similarity solutions

    NARCIS (Netherlands)

    Kuiken, H.K.

    1983-01-01

    This paper presents a class of backward free-convective boundary-layer similarity solutions. It is shown that these boundary layers can be produced along slender downward-projecting slabs of prescribed thickness variation, which are infinitely long. It is pointed out that these solutions can be used

  4. Characterization of the atmospheric boundary layer from radiosonde ...

    Indian Academy of Sciences (India)

    In this paper, a comparison of two methods for the calculation of the height of atmospheric boundary layer (ABL) ... Boundary layer; GPS sonde; mixed layer height; turbulent flow depth. J. Earth Syst. ..... for her PhD research work. References.

  5. Toward a Unified Representation of Atmospheric Convection in Variable-Resolution Climate Models

    Energy Technology Data Exchange (ETDEWEB)

    Walko, Robert [Univ. of Miami, Coral Gables, FL (United States)

    2016-11-07

    The purpose of this project was to improve the representation of convection in atmospheric weather and climate models that employ computational grids with spatially-variable resolution. Specifically, our work targeted models whose grids are fine enough over selected regions that convection is resolved explicitly, while over other regions the grid is coarser and convection is represented as a subgrid-scale process. The working criterion for a successful scheme for representing convection over this range of grid resolution was that identical convective environments must produce very similar convective responses (i.e., the same precipitation amount, rate, and timing, and the same modification of the atmospheric profile) regardless of grid scale. The need for such a convective scheme has increased in recent years as more global weather and climate models have adopted variable resolution meshes that are often extended into the range of resolving convection in selected locations.

  6. Impact of the Diurnal Cycle of the Atmospheric Boundary Layer on Wind-Turbine Wakes: A Numerical Modelling Study

    Science.gov (United States)

    Englberger, Antonia; Dörnbrack, Andreas

    2018-03-01

    The wake characteristics of a wind turbine for different regimes occurring throughout the diurnal cycle are investigated systematically by means of large-eddy simulation. Idealized diurnal cycle simulations of the atmospheric boundary layer are performed with the geophysical flow solver EULAG over both homogeneous and heterogeneous terrain. Under homogeneous conditions, the diurnal cycle significantly affects the low-level wind shear and atmospheric turbulence. A strong vertical wind shear and veering with height occur in the nocturnal stable boundary layer and in the morning boundary layer, whereas atmospheric turbulence is much larger in the convective boundary layer and in the evening boundary layer. The increased shear under heterogeneous conditions changes these wind characteristics, counteracting the formation of the night-time Ekman spiral. The convective, stable, evening, and morning regimes of the atmospheric boundary layer over a homogeneous surface as well as the convective and stable regimes over a heterogeneous surface are used to study the flow in a wind-turbine wake. Synchronized turbulent inflow data from the idealized atmospheric boundary-layer simulations with periodic horizontal boundary conditions are applied to the wind-turbine simulations with open streamwise boundary conditions. The resulting wake is strongly influenced by the stability of the atmosphere. In both cases, the flow in the wake recovers more rapidly under convective conditions during the day than under stable conditions at night. The simulated wakes produced for the night-time situation completely differ between heterogeneous and homogeneous surface conditions. The wake characteristics of the transitional periods are influenced by the flow regime prior to the transition. Furthermore, there are different wake deflections over the height of the rotor, which reflect the incoming wind direction.

  7. CFD simulation of the atmospheric boundary layer: wall function problems

    NARCIS (Netherlands)

    Blocken, B.J.E.; Stathopoulos, T.; Carmeliet, J.

    2007-01-01

    Accurate Computational Fluid Dynamics (CFD) simulations of atmospheric boundary layer (ABL) flow are essential for a wide variety of atmospheric studies including pollutant dispersion and deposition. The accuracy of such simulations can be seriously compromised when wall-function roughness

  8. Tropical Cyclone Signatures in Atmospheric Convective Available Potential Energy

    Science.gov (United States)

    Studholme, Joshua; Gulev, Sergey

    2016-04-01

    Tropical cyclones play an important role in the climate system providing transports of energy and water vapor, forcing the ocean, and also affecting mid-latitude circulation phenomena. Tropical cyclone tracks experience strong interannual variability and in addition, longer term trend-like changes in all ocean basins. Analysis of recent historical data reveal a poleward shift in the locations of tropical cyclone tracks in both the Northern and Southern Hemispheres (Kossin et al. 2014, Nature, 509, 349-352). The physical consequences of these alterations are largely unconstrained. For example, the increasing encroachment of tropical cyclone activity into the extra-tropical environment presents a novel and still poorly understood paradigm for tropical-extratropical interactions. In this respect, the role that the atmospheric convective available potential energy (CAPE) plays in the dynamics of tropical cyclones is highly interesting. The two characteristic global-scale spatial patterns in CAPE are identified using EOF analysis. The first pattern shows an abundance of CAPE in the centre of the Pacific and corresponds to the El Nino Southern Oscillation. The second one is capturing positive CAPE anomalies in the oceanic tropics and negative anomalies over equatorial Africa. Associated with these buoyancy patterns, alterations in tropical cyclone activity occur in all basins forming both zonal and meridional patterns. Atmospheric buoyancy is the trigger for deep convection, and subsequently cyclone genesis. This is the mechanism of impact upon location at the start of cyclone tracks. It is found to have less impact upon where cyclones subsequently move, whether or not they undergo extratropical transition and when and where they experience lysis. It is shown that CAPE plays a critical role in the general circulation in the tropics which in turn is the larger steering context for embedded systems within the Walker and Hadley cells. So this lack of `latter life' impact

  9. Airborne measurements of turbulent trace gas fluxes and analysis of eddy structure in the convective boundary layer over complex terrain

    Science.gov (United States)

    Hasel, M.; Kottmeier, Ch.; Corsmeier, U.; Wieser, A.

    2005-03-01

    Using the new high-frequency measurement equipment of the research aircraft DO 128, which is described in detail, turbulent vertical fluxes of ozone and nitric oxide have been calculated from data sampled during the ESCOMPTE program in the south of France. Based on airborne turbulence measurements, radiosonde data and surface energy balance measurements, the convective boundary layer (CBL) is examined under two different aspects. The analysis covers boundary-layer convection with respect to (i) the control of CBL depth by surface heating and synoptic scale influences, and (ii) the structure of convective plumes and their vertical transport of ozone and nitric oxides. The orographic structure of the terrain causes significant differences between planetary boundary layer (PBL) heights, which are found to exceed those of terrain height variations on average. A comparison of boundary-layer flux profiles as well as mean quantities over flat and complex terrain and also under different pollution situations and weather conditions shows relationships between vertical gradients and corresponding turbulent fluxes. Generally, NO x transports are directed upward independent of the terrain, since primary emission sources are located near the ground. For ozone, negative fluxes are common in the lower CBL in accordance with the deposition of O 3 at the surface. The detailed structure of thermals, which largely carry out vertical transports in the boundary layer, are examined with a conditional sampling technique. Updrafts mostly contain warm, moist and NO x loaded air, while the ozone transport by thermals alternates with the background ozone gradient. Evidence for handover processes of trace gases to the free atmosphere can be found in the case of existing gradients across the boundary-layer top. An analysis of the size of eddies suggests the possibility of some influence of the heterogeneous terrain in mountainous area on the length scales of eddies.

  10. Convective growth of broadband turbulence in the plasma sheet boundary layer

    International Nuclear Information System (INIS)

    Dusenbery, P.B.

    1987-01-01

    Convective growth of slow and fast beam acoustic waves in the plasma sheet boundary layer (PSBL) is investigated. It has been shown previously that a could ion population must be present in order to excite beam acoustic waves in the PSBL. However, growth rates are significantly enhanced when warm plasma sheet boundary layer ions are present. Net wave growth along a ray path is determined by convective growth. This quantity is calculated for particle distribution models consistent with the PSBL where the intensity of broadband turbulence is observed to peak. Total number density dependence on beam acoustic convective growth is evaluated, and it is found that even for low density conditions of ∼0.01 cm -3 , a measurable level of broadband turbulence is expected. Relative drift effects between cold and warm ion populations are also considered. In particular, it is found that slow mode convective growth can be enhanced when slowly streaming cold ions are present, compared to fast ion streams

  11. The height of the atmospheric boundary layer during unstable conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gryning, S.E.

    2005-11-01

    The height of the convective atmospheric boundary layer, also called the mixed-layer, is one of the fundamental parameters that characterise the structure of the atmosphere near the ground. It has many theoretical and practical applications such as the prediction of air pollution concentrations, surface temperature and the scaling of turbulence. However, as pointed out by Builtjes (2001) in a review paper on Major Twentieth Century Milestones in Air Pollution Modelling and Its Application, the weakest point in meteorology data is still the determination of the height of the mixed-layer, the so-called mixing height. A simple applied model for the height of the mixed-layer over homogeneous terrain is suggested in chapter 2. It is based on a parameterised budget for the turbulent kinetic energy. In the model basically three terms - the spin-up term and the production of mechanical and convective turbulent kinetic energy - control the growth of the mixed layer. The interplay between the three terms is related to the meteorological conditions and the height of the mixed layer. A stable layer, the so-called entrainment zone, which is confined between the mixed layer and the free air above, caps the mixed layer. A parameterisation of the depth of the entrainment zone is also suggested, and used to devise a combined model for the height of the mixed layer and the entrainment zone. Another important aspect of the mixed layer development exists in coastal areas where an internal boundary layer forms downwind from the coastline. A model for the growth of the internal boundary layer is developed in analogy with the model for mixed layer development over homogeneous terrain. The strength of this model is that it can operate on a very fine spatial resolution with minor computer resources. Chapter 3 deals with the validation of the models. It is based in parts on data from the literature, and on own measurements. For the validation of the formation of the internal boundary layer

  12. Improved scheme for parametrization of convection in the Met Office's Numerical Atmospheric-dispersion Modelling Environment (NAME)

    Science.gov (United States)

    Meneguz, Elena; Thomson, David; Witham, Claire; Kusmierczyk-Michulec, Jolanta

    2015-04-01

    NAME is a Lagrangian atmospheric dispersion model used by the Met Office to predict the dispersion of both natural and man-made contaminants in the atmosphere, e.g. volcanic ash, radioactive particles and chemical species. Atmospheric convection is responsible for transport and mixing of air resulting in a large exchange of heat and energy above the boundary layer. Although convection can transport material through the whole troposphere, convective clouds have a small horizontal length scale (of the order of few kilometres). Therefore, for large-scale transport the horizontal scale on which the convection exists is below the global NWP resolution used as input to NAME and convection must be parametrized. Prior to the work presented here, the enhanced vertical mixing generated by non-resolved convection was reproduced by randomly redistributing Lagrangian particles between the cloud base and cloud top with probability equal to 1/25th of the NWP predicted convective cloud fraction. Such a scheme is essentially diffusive and it does not make optimal use of all the information provided by the driving meteorological model. To make up for these shortcomings and make the parametrization more physically based, the convection scheme has been recently revised. The resulting version, presented in this paper, is now based on the balance equation between upward, entrainment and detrainment fluxes. In particular, upward mass fluxes are calculated with empirical formulas derived from Cloud Resolving Models and using the NWP convective precipitation diagnostic as closure. The fluxes are used to estimate how many particles entrain, move upward and detrain. Lastly, the scheme is completed by applying a compensating subsidence flux. The performance of the updated convection scheme is benchmarked against available observational data of passive tracers. In particular, radioxenon is a noble gas that can undergo significant long range transport: this study makes use of observations of

  13. Interaction of Convective Organization and Monsoon Precipitation, Atmosphere, Surface and Sea (INCOMPASS)

    Science.gov (United States)

    Turner, A. G.; Bhat, G. S.; Evans, J. G.; Madan, R.; Marsham, J. H.; Martin, G.; Mitra, A. K.; Mrudula, G.; Parker, D. J.; Pattnaik, S.; Rajagopal, E. N.; Taylor, C.; Tripathi, S. N.

    2016-12-01

    INCOMPASS will build on a field and aircraft measurement campaign from the 2016 monsoon onset to better understand and predict monsoon rainfall. The monsoon supplies the majority of water in South Asia, however modelling and forecasting the monsoon from days to the season ahead is limited by large model errors that develop quickly. Likely problems lie in physical parametrizations such as convection, the boundary layer and land surface. At the same time, lack of detailed observations prevents more thorough understanding of monsoon circulation and its interaction with the land surface; a process governed by boundary layer and convective cloud dynamics. From May to July 2016, INCOMPASS used a modified BAe-146 jet aircraft operated by the UK Facility for Airborne Atmospheric Measurements (FAAM), for the first project of this scale in India. The India and UK team flew around 100 hours of science sorties from bases in northern and southern India. Flights from Lucknow in the northern plains took measurements to the west and southeast to allow sampling of the complete contrast from dry desert air to the humid environment over the north Bay of Bengal. These routes were repeated in the pre-monsoon and monsoon phases, measuring contrasting surface and boundary layer structures. In addition, flights from the southern base in Bengaluru measured contrasts from the Arabian Sea, across the intense rains of the Western Ghats mountains, over the rain shadow in southeast India and over the southern Bay of Bengal. Flight planning was performed with the aid of forecasts from a new UK Met Office 4km limited area model. INCOMPASS also installed a network of surface flux towers, as well as operating a cloud-base ceilometer and performing intensive radiosonde launches from a supersite in Kanpur. This presentation will outline preliminary results from the field campaign including new observations of the surface, boundary layer structure and atmospheric profiles together with detailed

  14. Atmospheric Convective Organization: Self-Organized Criticality or Homeostasis?

    Science.gov (United States)

    Yano, Jun-Ichi

    2015-04-01

    Atmospheric convection has a tendency organized on a hierarchy of scales ranging from the mesoscale to the planetary scales, with the latter especially manifested by the Madden-Julian oscillation. The present talk examines two major possible mechanisms of self-organization identified in wider literature from a phenomenological thermodynamic point of view by analysing a planetary-scale cloud-resolving model simulation. The first mechanism is self-organized criticality. A saturation tendency of precipitation rate with the increasing column-integrated water, reminiscence of critical phenomena, indicates self-organized criticality. The second is a self-regulation mechanism that is known as homeostasis in biology. A thermodynamic argument suggests that such self-regulation maintains the column-integrated water below a threshold by increasing the precipitation rate. Previous analyses of both observational data as well as cloud-resolving model (CRM) experiments give mixed results. A satellite data analysis suggests self-organized criticality. Some observational data as well as CRM experiments support homeostasis. Other analyses point to a combination of these two interpretations. In this study, a CRM experiment over a planetary-scale domain with a constant sea-surface temperature is analyzed. This analysis shows that the relation between the column-integrated total water and precipitation suggests self-organized criticality, whereas the one between the column-integrated water vapor and precipitation suggests homeostasis. The concurrent presence of these two mechanisms are further elaborated by detailed statistical and budget analyses. These statistics are scale invariant, reflecting a spatial scaling of precipitation processes. These self-organization mechanisms are most likely be best theoretically understood by the energy cycle of the convective systems consisting of the kinetic energy and the cloud-work function. The author has already investigated the behavior of this

  15. Determination of boundary layer top on the basis of the characteristics of atmospheric particles

    Science.gov (United States)

    Liu, Boming; Ma, Yingying; Gong, Wei; Zhang, Ming; Yang, Jian

    2018-04-01

    The planetary boundary layer (PBL) is the lowest layer of the atmosphere that can be directly influenced with the Earth's surface. This layer can also respond to surface forcing. The determination of the PBL is significant to environmental and climate research. PBL can also serve as an input parameter for further data processing with atmospheric models. Traditional detection algorithms are susceptible to errors associated with the vertical distribution of aerosol concentrations. To overcome this limitation, a maximum difference search (MDS) algorithm was proposed to calculate the top of the boundary layer based on differences in particle characteristics. The top positions of the PBL from MDS algorithm under different convection states were compared with those from conventional methods. Experimental results demonstrated that the MDS method can determine the top of the boundary layer precisely. The proposed algorithm can also be used to calculate the top of the PBL accurately under weak convection conditions where the traditional methods cannot be applied. Finally, experimental data from June 2015 to December 2015 were analysed to verify the reliability of the MDS algorithm. The correlation coefficients R2 (RMSE) between the results of MDS algorithm and radiosonde measurements were 0.53 (115 m), 0.79 (141 m) and 0.96 (43 m) under weak, moderate and strong convections, respectively. These findings indicated that the proposed method possessed a good feasibility and stability.

  16. Atmospheric boundary layers in storms: advanced theory and modelling applications

    Directory of Open Access Journals (Sweden)

    S. S. Zilitinkevich

    2005-01-01

    Full Text Available Turbulent planetary boundary layers (PBLs control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow. It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S

  17. Dual reciprocity boundary element analysis for the laminar forced heat convection problem in concentric annulus

    International Nuclear Information System (INIS)

    Choi, Chang Yong

    1999-01-01

    This paper presents a study of the Dual Reciprocity Boundary Element Method (DRBEM) for the laminar heat convection problem in a concentric annulus with constant heat flux boundary condition. DRBEM is one of the most successful technique used to transform the domain integrals arising from the nonhomogeneous term of the poisson equation into equivalent boundary only integrals. This recently developed and highly efficient numerical method is tested for the solution accuracy of the fluid flow and heat transfer study in a concentric annulus. Since their exact solutions are available, DRBEM solutions are verified with different number of boundary element discretization and internal points. The results obtained in this study are discussed with the relative error percentage of velocity and temperature solutions, and potential applicability of the method for the more complicated heat convection problems with arbitrary duct geometries

  18. Natural convection boundary layer with suction and mass transfer in a porous medium

    International Nuclear Information System (INIS)

    Bestman, A.R.

    1989-03-01

    The free convection boundary layer flow with simultaneous heat and mass transfer in a porous medium is studied when the boundary wall moves in its own plane with suction. The study also incorporates chemical reaction for the very simple model of a binary reaction with Arrhenius activation energy. For large suction asymptotic approximate solutions are obtained for the flow variables for various values of the activation energy. (author). 10 refs, 2 figs

  19. An analytical model for dispersion of material in the atmospheric planetary boundary layer in presence of precipitation

    International Nuclear Information System (INIS)

    Mayhoub, A.B.; Etman, S.M.

    1985-05-01

    An analytical model for the dispersion of particulates and finely divided material released into the atmosphere near the ground is presented. The possible precipitation when the particles are dense enough and large enough to have deposition velocity, is taken into consideration. The model is derived analytically in the mixing layer or Ekman boundary layer where the mixing process is a direct consequence of turbulent and convective motions generated in the boundary layer. (author)

  20. Mapping travelling convection vortex events with respect to energetic particle boundaries

    DEFF Research Database (Denmark)

    Moretto, T.; Yahnin, A.

    1998-01-01

    Thirteen events of high-latitude ionospheric travelling convection vortices during very quiet conditions were identified in the Greenland magnetometer data during 1990 and 1991. The latitudes of the vortex centres for these events are compared to the energetic electron trapping boundaries...

  1. Analysis Of Convective Plane Stagnation Point Chemically Reactive Mhd Flow Past A Vertical Porous Plate With A Convective Boundary Condition In The Presence Of A Uniform Magnetic Field.

    OpenAIRE

    Adeniyan, A.,

    2013-01-01

    The numerical investigation of a stagnation point boundary layer flow , mass and heat transfer of a steady two dimensional , incompressible , viscous electrically conducting, chemically reacting laminar fluid over a vertical convectively heated , electrically neutral flat plate exposed to a transverse uniform magnetic field has been carried out to examine the influence of the simultaneous presence of the effects of a convective boundary condition, chemical reaction, heat transfer and suctio...

  2. Vertical structure of atmospheric boundary layer over Ranchi during the summer monsoon season

    Science.gov (United States)

    Chandra, Sagarika; Srivastava, Nishi; Kumar, Manoj

    2018-04-01

    Thermodynamic structure and variability in the atmospheric boundary layer have been investigated with the help of balloon-borne GPS radiosonde over a monsoon trough station Ranchi (Lat. 23°45'N, Long. 85°43'E, India) during the summer monsoon season (June-September) for a period of 2011-2013. Virtual potential temperature gradient method is used for the determination of mixed layer height (MLH). The MLH has been found to vary in the range of 1000-1300 m during the onset, 600-900 m during the active and 1400-1750 m during the break phase of monsoon over this region. Inter-annual variations noticed in MLH could be associated with inter-annual variability in convection and rainfall prevailing over the region. Along with the MLH, the cloud layer heights are also derived from the thermodynamic profiles for the onset, active and break phases of monsoon. Cloud layer height varied a lot during different phases of the monsoon. For the determination of boundary-layer convection, thermodynamic parameter difference (δθ = θ es- θ e) between saturated equivalent potential temperature (θ es ) and equivalent potential temperature (θ e) is used. It is a good indicator of convection and indicates the intense and suppressed convection during different phases of monsoon.

  3. Study on turbulent characteristics and transition behavior of combined-convection boundary layer

    International Nuclear Information System (INIS)

    Hattori, Yasuo

    2001-01-01

    The stabilizing mechanism of the turbulent combined-convection boundary layer along an isothermally-heated flat plate in air aided by a weak freestream are investigated experimentally and theoretically. The turbulent statistics of the combined-convection boundary layer measured with hot- and cold wires at different Grashof numbers indicates that with an increase in the freestream velocity, a similar change in the turbulent quantities appears independently of local Grashof number. Then based on the such experimental results, it is verified that the laminarization of the boundary layer due to an increase in freestream velocity arises at Grx / Rex 6 . Then, through the experiments with a particle image velocimetry (PIV), the spatio-temporal structure of the turbulent combined-convection boundary layer is investigated. For instantaneous velocity vectors obtained with PIV, large-scale fluid motions, which play a predominant role in the generation of turbulence, are frequently observed in the outer layer, while quasi-coherent structures do not exist in the near-wall region. Thus, it is revealed that increasing freestream restricts large-scale fluid motions in the outer layer, and consequently the generation of turbulence is suppressed and the boundary layer becomes laminar. (author)

  4. Adapting a Fourier pseudospectral method to Dirichlet boundary conditions for Rayleigh-Bénard convection

    Directory of Open Access Journals (Sweden)

    I. C. Ramos

    2015-10-01

    Full Text Available We present the adaptation to non-free boundary conditions of a pseudospectral method based on the (complex Fourier transform. The method is applied to the numerical integration of the Oberbeck-Boussinesq equations in a Rayleigh-Bénard cell with no-slip boundary conditions for velocity and Dirichlet boundary conditions for temperature. We show the first results of a 2D numerical simulation of dry air convection at high Rayleigh number (. These results are the basis for the later study, by the same method, of wet convection in a solar still. Received: 20 Novembre 2014, Accepted: 15 September 2015; Edited by: C. A. Condat, G. J. Sibona; DOI:http://dx.doi.org/10.4279/PIP.070015 Cite as: I C Ramos, C B Briozzo, Papers in Physics 7, 070015 (2015

  5. Multiscale eddy simulation for moist atmospheric convection: Preliminary investigation

    Energy Technology Data Exchange (ETDEWEB)

    Stechmann, Samuel N., E-mail: stechmann@wisc.edu [Department of Mathematics, University of Wisconsin-Madison (United States); Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison (United States)

    2014-08-15

    A multiscale computational framework is designed for simulating atmospheric convection and clouds. In this multiscale framework, large eddy simulation (LES) is used to model the coarse scales of 100 m and larger, and a stochastic, one-dimensional turbulence (ODT) model is used to represent the fine scales of 100 m and smaller. Coupled and evolving together, these two components provide a multiscale eddy simulation (MES). Through its fine-scale turbulence and moist thermodynamics, MES allows coarse grid cells to be partially cloudy and to encompass cloudy–clear air mixing on scales down to 1 m; in contrast, in typical LES such fine-scale processes are not represented or are parameterized using bulk deterministic closures. To illustrate MES and investigate its multiscale dynamics, a shallow cumulus cloud field is simulated. The fine-scale variability is seen to take a plausible form, with partially cloudy grid cells prominent near cloud edges and cloud top. From earlier theoretical work, this mixing of cloudy and clear air is believed to have an important impact on buoyancy. However, contrary to expectations based on earlier theoretical studies, the mean statistics of the bulk cloud field are essentially the same in MES and LES; possible reasons for this are discussed, including possible limitations in the present formulation of MES. One difference between LES and MES is seen in the coarse-scale turbulent kinetic energy, which appears to grow slowly in time due to incoherent stochastic fluctuations in the buoyancy. This and other considerations suggest the need for some type of spatial and/or temporal filtering to attenuate undersampling of the stochastic fine-scale processes.

  6. Multiscale eddy simulation for moist atmospheric convection: Preliminary investigation

    International Nuclear Information System (INIS)

    Stechmann, Samuel N.

    2014-01-01

    A multiscale computational framework is designed for simulating atmospheric convection and clouds. In this multiscale framework, large eddy simulation (LES) is used to model the coarse scales of 100 m and larger, and a stochastic, one-dimensional turbulence (ODT) model is used to represent the fine scales of 100 m and smaller. Coupled and evolving together, these two components provide a multiscale eddy simulation (MES). Through its fine-scale turbulence and moist thermodynamics, MES allows coarse grid cells to be partially cloudy and to encompass cloudy–clear air mixing on scales down to 1 m; in contrast, in typical LES such fine-scale processes are not represented or are parameterized using bulk deterministic closures. To illustrate MES and investigate its multiscale dynamics, a shallow cumulus cloud field is simulated. The fine-scale variability is seen to take a plausible form, with partially cloudy grid cells prominent near cloud edges and cloud top. From earlier theoretical work, this mixing of cloudy and clear air is believed to have an important impact on buoyancy. However, contrary to expectations based on earlier theoretical studies, the mean statistics of the bulk cloud field are essentially the same in MES and LES; possible reasons for this are discussed, including possible limitations in the present formulation of MES. One difference between LES and MES is seen in the coarse-scale turbulent kinetic energy, which appears to grow slowly in time due to incoherent stochastic fluctuations in the buoyancy. This and other considerations suggest the need for some type of spatial and/or temporal filtering to attenuate undersampling of the stochastic fine-scale processes

  7. Heat transfer enhancement in a turbulent natural convection boundary layer along a vertical flat plate

    International Nuclear Information System (INIS)

    Tsuji, Toshihiro; Kajitani, Tsuyoshi; Nishino, Tatsuhiko

    2007-01-01

    An experimental study on heat transfer enhancement for a turbulent natural convection boundary layer in air along a vertical flat plate has been performed by inserting a long flat plate in the spanwise direction (simple heat transfer promoter) and short flat plates aligned in the spanwise direction (split heat transfer promoter) with clearances into the near-wall region of the boundary layer. For a simple heat transfer promoter, the heat transfer coefficients increase by a peak value of approximately 37% in the downstream region of the promoter compared with those in the usual turbulent natural convection boundary layer. It is found from flow visualization and simultaneous measurements of the flow and thermal fields with hot- and cold-wires that such increase of heat transfer coefficients is mainly caused by the deflection of flows toward the outer region of the boundary layer and the invasion of low-temperature fluids from the outer region to the near-wall region with large-scale vortex motions riding out the promoter. However, heat transfer coefficients for a split heat transfer promoter exhibit an increase in peak value of approximately 60% in the downstream region of the promoter. Flow visualization and PIV measurements show that such remarkable heat transfer enhancement is attributed to longitudinal vortices generated by flows passing through the clearances of the promoter in addition to large-scale vortex motions riding out the promoter. Consequently, it is concluded that heat transfer enhancement of the turbulent natural convection boundary layer can be substantially achieved in a wide area of the turbulent natural convection boundary layer by employing multiple column split heat transfer promoters. It may be expected that the heat transfer enhancement in excess of approximately 40% can be accomplished by inserting such promoters

  8. Retrieving 4-dimensional atmospheric boundary layer structure from surface observations and profiles over a single station

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Zhaoxia [Univ. of Utah, Salt Lake City, UT (United States)

    2015-10-06

    Most routine measurements from climate study facilities, such as the Department of Energy’s ARM SGP site, come from individual sites over a long period of time. While single-station data are very useful for many studies, it is challenging to obtain 3-dimensional spatial structures of atmospheric boundary layers that include prominent signatures of deep convection from these data. The principal objective of this project is to create realistic estimates of high-resolution (~ 1km × 1km horizontal grids) atmospheric boundary layer structure and the characteristics of precipitating convection. These characteristics include updraft and downdraft cumulus mass fluxes and cold pool properties over a region the size of a GCM grid column from analyses that assimilate surface mesonet observations of wind, temperature, and water vapor mixing ratio and available profiling data from single or multiple surface stations. The ultimate goal of the project is to enhance our understanding of the properties of mesoscale convective systems and also to improve their representation in analysis and numerical simulations. During the proposed period (09/15/2011–09/14/2014) and the no-cost extension period (09/15/2014–09/14/2015), significant accomplishments have been achieved relating to the stated goals. Efforts have been extended to various research and applications. Results have been published in professional journals and presented in related science team meetings and conferences. These are summarized in the report.

  9. Convection and reaction in a diffusive boundary layer in a porous medium: nonlinear dynamics.

    Science.gov (United States)

    Andres, Jeanne Therese H; Cardoso, Silvana S S

    2012-09-01

    We study numerically the nonlinear interactions between chemical reaction and convective fingering in a diffusive boundary layer in a porous medium. The reaction enhances stability by consuming a solute that is unstably distributed in a gravitational field. We show that chemical reaction profoundly changes the dynamics of the system, by introducing a steady state, shortening the evolution time, and altering the spatial patterns of velocity and concentration of solute. In the presence of weak reaction, finger growth and merger occur effectively, driving strong convective currents in a thick layer of solute. However, as the reaction becomes stronger, finger growth is inhibited, tip-splitting is enhanced and the layer of solute becomes much thinner. Convection enhances the mass flux of solute consumed by reaction in the boundary layer but has a diminishing effect as reaction strength increases. This nonlinear behavior has striking differences to the density fingering of traveling reaction fronts, for which stronger chemical kinetics result in more effective finger merger owing to an increase in the speed of the front. In a boundary layer, a strong stabilizing effect of reaction can maintain a long-term state of convection in isolated fingers of wavelength comparable to that at onset of instability.

  10. A high-latitude, low-latitude boundary layer model of the convection current system

    International Nuclear Information System (INIS)

    Siscoe, G.L.; Lotko, W.; Sonnerup, B.U.O.

    1991-01-01

    Observations suggest that both the high- and low-latitude boundary layers contribute to magnetospheric convection, and that their contributions are linked. In the interpretation pursued here, the high-latitude boundary layer (HBL) generates the voltage while the low-latitude boundary layer (LBL) generates the current for the part of the convection electric circuit that closes through the ionosphere. This paper gives a model that joins the high- and low-latitude boundary layers consistently with the ionospheric Ohm's law. It describes an electric circuit linking both boundary layers, the region 1 Birkeland currents, and the ionospheric Pedersen closure currents. The model works by using the convection electric field that the ionosphere receives from the HBL to determine two boundary conditions to the equations that govern viscous LBL-ionosphere coupling. The result provides the needed self-consistent coupling between the two boundary layers and fully specifies the solution for the viscous LBL-ionosphere coupling equations. The solution shows that in providing the current required by the ionospheric Ohm's law, the LBL needs only a tenth of the voltage that spans the HBL. The solution also gives the latitude profiles of the ionospheric electric field, parallel currents, and parallel potential. It predicts that the plasma in the inner part of the LBL moves sunward instead of antisunward and that, as the transpolar potential decreases below about 40 kV, reverse polarity (region 0) currents appear at the poleward border of the region 1 currents. A possible problem with the model is its prediction of a thin boundary layer (∼1000 km), whereas thicknesses inferred from satellite data tend to be greater

  11. The turning of the wind in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik; Floors, Rogier Ralph

    2014-01-01

    Here we use accurate observations of the wind speed vector to analyze the behavior with height of the wind direction. The observations are a combination of tall meteorological mast and long-range wind lidar measurements covering the entire atmospheric boundary layer. The observations were performed...... winds underpredict the turning of the wind and the boundary-layer winds in general....

  12. Surface and atmospheric controls on the onset of moist convection over land

    NARCIS (Netherlands)

    Gentine, P.; Holtslag, A.A.M.; Andrea, D' F.; Ek, M.

    2013-01-01

    The onset of moist convection over land is investigated using a conceptual approach with a slab boundary layer model. We here determine the essential factors for the onset of boundary layer clouds over land, and study their relative importance. They are: 1) the ratio of the temperature to the

  13. Simulation of Wind turbines in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    as well as turbulent inflow condition. For generating turbulent inflow, a model is used in which a turbulent plane is introduced in the domain and convected in each time step, using Taylor's frozen hypothesis. The results of different simulations are analysed and compared in terms of mean values...... the computational costs scale rapidly with Reynolds number and domain size[1]. An approach to overcome these deficiencies is to use a wall modeling near the walls and then use a coarser grid at the first grid level above the ground. This could be performed by using simplified Navier-Stokes equations in the boundary...... condition is used in the bottom, a symmetry boundary on the top and periodic boundaries on the sides as well as inlet and outlet boundaries. For the temperature, a fixed value of 285 K is applied from the ground up to a height of 1 km and the temperature increases linearly with the rate of 3.5 degrees per...

  14. The Double ITCZ Syndrome in GCMs: A Coupled Problem among Convection, Atmospheric and Ocean Circulations

    Science.gov (United States)

    Zhang, G. J.; Song, X.

    2017-12-01

    The double ITCZ bias has been a long-standing problem in coupled atmosphere-ocean models. A previous study indicates that uncertainty in the projection of global warming due to doubling of CO2 is closely related to the double ITCZ biases in global climate models. Thus, reducing the double ITCZ biases is not only important to getting the current climate features right, but also important to narrowing the uncertainty in future climate projection. In this work, we will first review the possible factors contributing to the ITCZ problem. Then, we will focus on atmospheric convection, presenting recent progress in alleviating the double ITCZ problem and its sensitivity to details of convective parameterization, including trigger conditions for convection onset, convective memory, entrainment rate, updraft model and closure in the NCAR CESM1. These changes together can result in dramatic improvements in the simulation of ITCZ. Results based on both atmospheric only and coupled simulations with incremental changes of convection scheme will be shown to demonstrate the roles of convection parameterization and coupled interaction between convection, atmospheric circulation and ocean circulation in the simulation of ITCZ.

  15. Radiation forcing by the atmospheric aerosols in the nocturnal boundary layer

    Science.gov (United States)

    Singh, D. K.; Ponnulakshami, V. K.; Mukund, V.; Subramanian, G.; Sreenivas, K. R.

    2013-05-01

    We have conducted experimental and theoretical studies on the radiation forcing due to suspended aerosols in the nocturnal boundary layer. We present radiative, conductive and convective equilibrium profile for different bottom boundaries where calculated Rayleigh number is higher than the critical Rayleigh number in laboratory conditions. The temperature profile can be fitted using an exponential distribution of aerosols concentration field. We also present the vertical temperature profiles in a nocturnal boundary in the presence of fog in the field. Our results show that during the presence of fog in the atmosphere, the ground temperature is greater than the dew-point temperature. The temperature profiles before and after the formation of fog are also observed to be different.

  16. Hydrodynamic theory of convective transport across a dynamically stabilized diffuse boundary layer

    International Nuclear Information System (INIS)

    Gerhauser, H.

    1983-09-01

    The diffuse boundary layer between miscible liquids is subject to Rayleigh-Taylor instabilities if the heavy fluid is supported by the light one. The resulting rapid interchange of the liquids can be suppressed by enforcing vertical oscillations on the whole system. This dynamic stabilization is incomplete and produces some peculiar novel transport phenomena such as decay off the density profile into several steps, periodic peeling of density sheets of the boundary layer and the appearance of steady vortex flow. The theory presented in this paper identifies the basic mechanism as formation of convective cells leading to enhanced diffusion, and explains previous experimental results with water and ZnJ 2 -solutions. A nonlinear treatment of the stationary convective flow problem gives the saturation amplitude of the ground mode and provides an upper bound for the maximum convective transport. The hydrodynamic model can be used for visualizing similar transport processes in the plasma of toroidal confinement devices such as sawtooth oscillations in soft disruptions of tokamak discharges and anomalous diffusion by excitation of convective cells. The latter process is investigated here in some detail, leading to the result that the maximum possible transport is of the order of Bohm diffusion. (orig.)

  17. Hydromagnetic natural convection flow between vertical parallel plates with time-periodic boundary conditions

    International Nuclear Information System (INIS)

    Adesanya, S.O.; Oluwadare, E.O.; Falade, J.A.; Makinde, O.D.

    2015-01-01

    In this paper, the free convective flow of magnetohydrodynamic fluid through a channel with time periodic boundary condition is investigated by taking the effects of Joule dissipation into consideration. Based on simplifying assumptions, the coupled governing equations are reduced to a set of nonlinear boundary valued problem. Approximate solutions are obtained by using semi-analytical Adomian decomposition method. The effect of pertinent parameters on the fluid velocity, temperature distribution, Nusselt number and skin friction are presented graphically and discussed. The result of the computation shows that an increase in the magnetic field intensity has significant influence on the fluid flow. - Highlights: • The influence of magnetic field on the free convective fluid flow is considered. • The coupled equations are solved by using Adomian decomposition method. • The Adomian series solution agreed with previously obtained result. • Magnetic field decreases the velocity maximum but enhances temperature field

  18. Moment-based boundary conditions for lattice Boltzmann simulations of natural convection in cavities

    KAUST Repository

    Allen, Rebecca

    2016-06-29

    We study a multiple relaxation time lattice Boltzmann model for natural convection with moment-based boundary conditions. The unknown primary variables of the algorithm at a boundary are found by imposing conditions directly upon hydrodynamic moments, which are then translated into conditions for the discrete velocity distribution functions. The method is formulated so that it is consistent with the second order implementation of the discrete velocity Boltzmann equations for fluid flow and temperature. Natural convection in square cavities is studied for Rayleigh numbers ranging from 103 to 108. An excellent agreement with benchmark data is observed and the flow fields are shown to converge with second order accuracy. Copyright © 2016 Inderscience Enterprises Ltd.

  19. Mixed convective heat transfer to Sisko fluid over a radially stretching sheet in the presence of convective boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Masood; Malik, Rabia, E-mail: rabiamalik.qau@gmail.com; Munir, Asif [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan)

    2015-08-15

    In this article, the mixed convective heat transfer to Sisko fluid over a radially stretching surface in the presence of convective boundary conditions is investigated. The viscous dissipation and thermal radiation effects are also taken into account. The suitable transformations are applied to convert the governing partial differential equations into a set of nonlinear coupled ordinary differential equations. The analytical solution of the governing problem is obtained by using the homotopy analysis method (HAM). Additionally, these analytical results are compared with the numerical results obtained by the shooting technique. The obtained results for the velocity and temperature are analyzed graphically for several physical parameters for the assisting and opposing flows. It is found that the effect of buoyancy parameter is more prominent in case of the assisting flow as compared to the opposing flow. Further, in tabular form the numerical values are given for the local skin friction coefficient and local Nusselt number. A remarkable agreement is noticed by comparing the present results with the results reported in the literature as a special case.

  20. Mixed convective heat transfer to Sisko fluid over a radially stretching sheet in the presence of convective boundary conditions

    International Nuclear Information System (INIS)

    Khan, Masood; Malik, Rabia; Munir, Asif

    2015-01-01

    In this article, the mixed convective heat transfer to Sisko fluid over a radially stretching surface in the presence of convective boundary conditions is investigated. The viscous dissipation and thermal radiation effects are also taken into account. The suitable transformations are applied to convert the governing partial differential equations into a set of nonlinear coupled ordinary differential equations. The analytical solution of the governing problem is obtained by using the homotopy analysis method (HAM). Additionally, these analytical results are compared with the numerical results obtained by the shooting technique. The obtained results for the velocity and temperature are analyzed graphically for several physical parameters for the assisting and opposing flows. It is found that the effect of buoyancy parameter is more prominent in case of the assisting flow as compared to the opposing flow. Further, in tabular form the numerical values are given for the local skin friction coefficient and local Nusselt number. A remarkable agreement is noticed by comparing the present results with the results reported in the literature as a special case

  1. Convective model of a microwave discharge in a gas at atmospheric pressure in the form of a spatially localized plasma

    International Nuclear Information System (INIS)

    Skovoroda, A.A.

    1997-01-01

    Experiments and a theoretical model consistent with them are presented which show that a stationary microwave discharge in a gas at atmospheric pressure under the action of free convection due to the action of the buoyant force on the heated air can be spatially localized, taking a spheroidal shape. Vortex motion inside the spheroid gives this localized plasma formation some of the properties of a material body which are manifested in a distinct material isolation from the surrounding space, in the formation of a narrow thermal boundary layer and flow separation, and in the formation of secondary vortices in the wake region. The characteristic radius of the stationary localized plasma is governed mainly by the wavelength of the microwave radiation a∼0.137λ. Energy balance is established to a significant degree by convective cooling of the microwave-heated structure

  2. Spectral Gap Energy Transfer in Atmospheric Boundary Layer

    Science.gov (United States)

    Bhushan, S.; Walters, K.; Barros, A. P.; Nogueira, M.

    2012-12-01

    Experimental measurements of atmospheric turbulence energy spectra show E(k) ~ k-3 slopes at synoptic scales (~ 600 km - 2000 km) and k-5/3 slopes at the mesoscales (theory, it is expected that a strong backward energy cascade would develop at the synoptic scale, and that circulation would grow infinitely. To limit this backward transfer, energy arrest at macroscales must be introduced. The most commonly used turbulence models developed to mimic the above energy transfer include the energy backscatter model for 2D turbulence in the horizontal plane via Large Eddy Simulation (LES) models, dissipative URANS models in the vertical plane, and Ekman friction for the energy arrest. One of the controversial issues surrounding the atmospheric turbulence spectra is the explanation of the generation of the 2D and 3D spectra and transition between them, for energy injection at the synoptic scales. Lilly (1989) proposed that the existence of 2D and 3D spectra can only be explained by the presence of an additional energy injection in the meso-scale region. A second issue is related to the observations of dual peak spectra with small variance in meso-scale, suggesting that the energy transfer occurs across a spectral gap (Van Der Hoven, 1957). Several studies have confirmed the spectral gap for the meso-scale circulations, and have suggested that they are enhanced by smaller scale vertical convection rather than by the synoptic scales. Further, the widely accepted energy arrest mechanism by boundary layer friction is closely related to the spectral gap transfer. This study proposes an energy transfer mechanism for atmospheric turbulence with synoptic scale injection, wherein the generation of 2D and 3D spectra is explained using spectral gap energy transfer. The existence of the spectral gap energy transfer is validated by performing LES for the interaction of large scale circulation with a wall, and studying the evolution of the energy spectra both near to and far from the wall

  3. An analytical solution for the Marangoni mixed convection boundary layer flow

    DEFF Research Database (Denmark)

    Moghimi, M. A.; Kimiaeifar, Amin; Rahimpour, M.

    2010-01-01

    In this article, an analytical solution for a Marangoni mixed convection boundary layer flow is presented. A similarity transform reduces the Navier-Stokes equations to a set of nonlinear ordinary differential equations, which are solved analytically by means of the homotopy analysis method (HAM...... the convergence of the solution. The numerical solution of the similarity equations is developed and the results are in good agreement with the analytical results based on the HAM....

  4. Mixed convection boundary layer flow over a vertical surface embedded in a thermally stratified porous medium

    International Nuclear Information System (INIS)

    Ishak, Anuar; Nazar, Roslinda; Pop, Ioan

    2008-01-01

    The mixed convection boundary layer flow through a stable stratified porous medium bounded by a vertical surface is investigated. The external velocity and the surface temperature are assumed to vary as x m , where x is measured from the leading edge of the vertical surface and m is a constant. Numerical solutions for the governing Darcy and energy equations are obtained. The results indicate that the thermal stratification significantly affects the surface shear stress as well as the surface heat transfer, besides delays the boundary layer separation

  5. Delay in convection in nocturnal boundary layer due to aerosol-induced cooling

    Science.gov (United States)

    Singh, Dhiraj Kumar; Ponnulakshmi, V. K.; Subramanian, G.; Sreenivas, K. R.

    2012-11-01

    Heat transfer processes in the nocturnal boundary layer (NBL) influence the surface energy budget, and play an important role in many micro-meteorological processes including the formation of inversion layers, radiation fog, and in the control of air-quality near the ground. Under calm clear-sky conditions, radiation dominates over other transport processes, and as a result, the air layers just above ground cool the fastest after sunset. This leads to an anomalous post-sunset temperature profile characterized by a minimum a few decimeters above ground (Lifted temperature minimum). We have designed a laboratory experimental setup to simulate LTM, involving an enclosed layer of ambient air, and wherein the boundary condition for radiation is decoupled from those for conduction and convection. The results from experiments involving both ambient and filtered air indicate that the high cooling rates observed are due to the presence of aerosols. Calculated Rayleigh number of LTM-type profiles is of the order 105-107 in the field and of order 103-105 in the laboratory. In the LTM region, there is convective motion when the Rayleigh number is greater than 104 rather than the critical Rayleigh number (Rac = 1709). The diameter of convection rolls is a function of height of minimum of LTM-type profiles. The results obtained should help in the parameterization of transport process in the nocturnal boundary layer, and highlight the need to accounting the effects of aerosols and ground emissivity in climate models.

  6. Simulation and scaling for natural convection flow in a cavity with isothermal boundaries

    International Nuclear Information System (INIS)

    Jiracheewanun, S.; Armfield, S.W.; McBain, G.D.; Behnia, M.

    2005-01-01

    A numerical study of the transient two-dimensional natural convection flow within a differentially heated square cavity with iso-flux side walls and adiabatic top and bottom boundaries is presented. The governing equations are discretized using a non-staggered mesh and solved using a non-iterative fractional-step pressure correction method which provides second-order accuracy in both time and space. Results are obtained with the iso-flux boundary condition for Ra = 5.8 x 10 9 and Pr = 7.5. The results show that the transient flow features obtained for the iso-flux cavity are similar to the flow features for the isothermal case. However, the fully developed flow features of the iso-flux cavity are very different from the isothermal case. The scalings for the fully developed iso-flux boundary condition flow have been found to be different to those of the isothermal boundary condition flow. (authors)

  7. Analysis of the electrolyte convection inside the concentration boundary layer during structured electrodeposition of copper in high magnetic gradient fields.

    Science.gov (United States)

    König, Jörg; Tschulik, Kristina; Büttner, Lars; Uhlemann, Margitta; Czarske, Jürgen

    2013-03-19

    To experimentally reveal the correlation between electrodeposited structure and electrolyte convection induced inside the concentration boundary layer, a highly inhomogeneous magnetic field, generated by a magnetized Fe-wire, has been applied to an electrochemical system. The influence of Lorentz and magnetic field gradient force to the local transport phenomena of copper ions has been studied using a novel two-component laser Doppler velocity profile sensor. With this sensor, the electrolyte convection within 500 μm of a horizontally aligned cathode is presented. The electrode-normal two-component velocity profiles below the electrodeposited structure show that electrolyte convection is induced and directed toward the rim of the Fe-wire. The measured deposited structure directly correlates to the observed boundary layer flow. As the local concentration of Cu(2+) ions is enhanced due to the induced convection, maximum deposit thicknesses can be found at the rim of the Fe-wire. Furthermore, a complex boundary layer flow structure was determined, indicating that electrolyte convection of second order is induced. Moreover, the Lorentz force-driven convection rapidly vanishes, while the electrolyte convection induced by the magnetic field gradient force is preserved much longer. The progress for research is the first direct experimental proof of the electrolyte convection inside the concentration boundary layer that correlates to the deposited structure and reveals that the magnetic field gradient force is responsible for the observed structuring effect.

  8. Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Klein, P [University of Oklahoma - School of Meteorology; Bonin, TA; Newman, JF [National Renewable Energy Laboratory; Turner, DD [National Oceanic and Atmospheric Administration; Chilson, P [University of Oklahoma; Blumberg, WG [University of Oklahoma; Mishra, S; Wainwright, CE; Carney, M [University of Oklahoma - School of Meteorology; Jacobsen, EP [University of Oklahoma; Wharton, S [Lawrence Livermore National Laboratory

    2015-11-01

    The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.

  9. A theory for natural convection turbulent boundary layers next to heated vertical surfaces

    International Nuclear Information System (INIS)

    George, W.K. Jr.; Capp, S.P.

    1979-01-01

    The turbulent natural convection boundary layer next to a heated vertical surface is analyzed by classical scaling arguments. It is shown that the fully developed turbulent boundary layer must be treated in two parts: and outer region consisting of most of the boundary layer in which viscous and conduction terms are negligible and an inner region in which the mean convection terms are negligible. The inner layer is identified as a constant heat flux layer. A similarity analysis yields universal profiles for velocity and temperature in the outer and constant heat flux layers. An asymptotic matching of these profiles in an intermediate layer (the buoyant sublayer) yields analytical expressions for the buoyant sublayer profiles. Asymptotic heat transfer and friction laws are obtained for the fully developed boundary layers. Finally, conductive and thermo-viscous sublayers characterized by a linear variation of velocity and temperature are shown to exist at the wall. All predictions are seen to be in excellent agreement with the abundant experimental data. (author)

  10. The atmospheric boundary layer — advances in knowledge and application

    Science.gov (United States)

    Garratt, J. R.; Hess, G. D.; Physick, W. L.; Bougeault, P.

    1996-02-01

    We summarise major activities and advances in boundary-layer knowledge in the 25 years since 1970, with emphasis on the application of this knowledge to surface and boundary-layer parametrisation schemes in numerical models of the atmosphere. Progress in three areas is discussed: (i) the mesoscale modelling of selected phenomena; (ii) numerical weather prediction; and (iii) climate simulations. Future trends are identified, including the incorporation into models of advanced cloud schemes and interactive canopy schemes, and the nesting of high resolution boundary-layer schemes in global climate models.

  11. Mixed convection in inclined lid driven cavity by Lattice Boltzmann Method and heat flux boundary condition

    International Nuclear Information System (INIS)

    D'Orazio, A; Karimipour, A; Nezhad, A H; Shirani, E

    2014-01-01

    Laminar mixed convective heat transfer in two-dimensional rectangular inclined driven cavity is studied numerically by means of a double population thermal Lattice Boltzmann method. Through the top moving lid the heat flux enters the cavity whereas it leaves the system through the bottom wall; side walls are adiabatic. The counter-slip internal energy density boundary condition, able to simulate an imposed non zero heat flux at the wall, is applied, in order to demonstrate that it can be effectively used to simulate heat transfer phenomena also in case of moving walls. Results are analyzed over a range of the Richardson numbers and tilting angles of the enclosure, encompassing the dominating forced convection, mixed convection, and dominating natural convection flow regimes. As expected, heat transfer rate increases as increases the inclination angle, but this effect is significant for higher Richardson numbers, when buoyancy forces dominate the problem; for horizontal cavity, average Nusselt number decreases with the increase of Richardson number because of the stratified field configuration

  12. Characterization of boundary layer thickness of nano fluid ZrO_2 on natural convection process

    International Nuclear Information System (INIS)

    V-Indriati Sri Wardhani; Henky P Rahardjo

    2015-01-01

    Cooling system is highly influenced by the process of convection heat transfer from the heat source to the cooling fluid. The cooling fluid usually used conventional fluid such as water. Cooling system performance can be improved by using fluids other than water such as nano fluid that is made from a mixture of water and nano-sized particles. Researchers at BATAN Bandung have made nano fluid ZrO_2 from local materials, as well as experimental equipment for studying the thermohydraulic characteristics of nano fluid as the cooling fluid. In this study, thermohydraulic characteristics of nano fluid ZrO_2 are observed through experimentation. Nano fluid ZrO_2 is made from a mixture of water with ZrO_2 nano-sized particles of 10-7-10-9 nm whose concentration is 1 g/liter. This nano fluid is used as coolant in the cooling process of natural convection. The natural convection process depends on the temperature difference between heat source and the cooling fluid, which occur in the thermal boundary layer. Therefore it is necessary to study the thermal boundary layer thickness of nano fluid ZrO_2, which is also able to determine the local velocity. Experimentations are done with several variation of the heater power and then the temperature are measured at several horizontal points to see the distribution of the temperatures. The temperature distribution measurement results can be used to determine the boundary layer thickness and flow rate. It is obtained that thermal boundary layer thickness and velocity of nano fluid ZrO_2 is not much different from the conventional fluid water. (author)

  13. Understanding dynamics of large-scale atmospheric vortices with moist-convective shallow water model

    International Nuclear Information System (INIS)

    Rostami, M.; Zeitlin, V.

    2016-01-01

    Atmospheric jets and vortices which, together with inertia-gravity waves, constitute the principal dynamical entities of large-scale atmospheric motions, are well described in the framework of one- or multi-layer rotating shallow water models, which are obtained by vertically averaging of full “primitive” equations. There is a simple and physically consistent way to include moist convection in these models by adding a relaxational parameterization of precipitation and coupling precipitation with convective fluxes with the help of moist enthalpy conservation. We recall the construction of moist-convective rotating shallow water model (mcRSW) model and give an example of application to upper-layer atmospheric vortices. (paper)

  14. On the parametrization of the planetary boundary layer of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Yordanov, D. [Bulgarian Academy of Sciences, Geophysical Inst., Sofia (Bulgaria); Syrakov, D.; Kolarova, M. [Bulgarian Academy of Sciences, National Inst. of Meteorology and Hydrology, Sofia (United Kingdom)

    1997-10-01

    The investigation of the dynamic processes in the planetary boundary layer presents a definite theoretical challenge and plays a growing role for the solution of a number of practical tasks. The improvement of large-scale atmospheric weather forecast depends, to a certain degree, on the proper inclusion of the planetary boundary layer dynamics in the numerical models. The modeling of the transport and the diffusion of air pollutants is connected with estimation of the different processes in the Planetary Boundary Layer (PBL) and needs also a proper PBL parametrization. For the solution of these practical tasks the following PBL models;(i) a baroclinic PBL model with its barotropic version, and (ii) a convective PBL model were developed. Both models are one dimensional and are based on the similarity theory and the resistance lows extended for the whole PBL. Two different PBL parametrizations under stable and under convective conditions are proposed, on the basis of which the turbulent surface heat and momentum fluxes are estimated using generalized similarity theory. By the proposed parametrizations the internal parameters are calculated from the synoptic scale parameters as geostrophyc wind, potential temperature and humidity given at two levels (ground level and at 850 hPa) and from them - the PBL profiles. The models consists of two layers: a surface layer (SL) with a variable height and a second (Ekman layer) over it with a constant with height turbulent exchange coefficient. (au) 14 refs.

  15. Large eddy simulation of atmospheric boundary layer over wind farms using a prescribed boundary layer approach

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2012-01-01

    Large eddy simulation (LES) of flow in a wind farm is studied in neutral as well as thermally stratified atmospheric boundary layer (ABL). An approach has been practiced to simulate the flow in a fully developed wind farm boundary layer. The approach is based on the Immersed Boundary Method (IBM......) and involves implementation of an arbitrary prescribed initial boundary layer (See [1]). A prescribed initial boundary layer profile is enforced through the computational domain using body forces to maintain a desired flow field. The body forces are then stored and applied on the domain through the simulation...... and the boundary layer shape will be modified due to the interaction of the turbine wakes and buoyancy contributions. The implemented method is capable of capturing the most important features of wakes of wind farms [1] while having the advantage of resolving the wall layer with a coarser grid than typically...

  16. Tropical teleconnections via the ocean and atmosphere induced by Southern Ocean deep convective events

    Science.gov (United States)

    Marinov, I.; Cabre, A.; Gunn, A.; Gnanadesikan, A.

    2016-12-01

    The current generation (CMIP5) of Earth System Models (ESMs) shows a huge variability in their ability to represent Southern Ocean (SO) deep-ocean convection and Antarctic Bottom Water, with a preference for open-sea convection in the Weddell and Ross gyres. A long control simulation in a coarse 3o resolution ESM (the GFDL CM2Mc model) shows a highly regular multi-decadal oscillation between periods of SO open sea convection and non-convective periods. This process also happens naturally, with different frequencies and durations of convection across most CMIP5 models under preindustrial forcing (deLavergne et al, 2014). Here we assess the impact of SO deep convection and resulting sea surface temperature (SST) anomalies on the tropical atmosphere and ocean via teleconnections, with a focus on interannual to multi-decadal timescales. We combine analysis of our low-resolution coupled model with inter-model analysis across historical CMIP5 simulations. SST cooling south of 60S during non-convective decades triggers a stronger, northward shifted SH Hadley cell, which results in intensified northward cross-equatorial moist heat transport and a poleward shift in the ITCZ. Resulting correlations between the cross-equatorial atmospheric heat transport and ITCZ location are in good agreement with recent theories (e.g. Frierson et al. 2013; Donohoe et al. 2014). Lagged correlations between a SO convective index and cross-equatorial heat transports (in the atmosphere and ocean), as well as various tropical (and ENSO) climate indices are analyzed. In the ocean realm, we find that non-convective decades result in weaker AABW formation and weaker ACC but stronger Antarctic Intermediate Water (AAIW) formation, likely as a result of stronger SO westerlies (more positive SAM). The signals of AABW and AAIW are seen in the tropics on short timescales of years to decades in the temperature, heat storage and heat transport anomalies and also in deep and intermediate ocean oxygen. Most

  17. Boundary layers in turbulent convection for air, liquid gallium and liquid sodium

    Science.gov (United States)

    Scheel, Janet; Schumacher, Joerg

    2017-11-01

    The scaling of physical quantities that characterize the shape and dynamics of the viscous and thermal boundary layers with respect to the Rayleigh number will be presented for three series of three-dimensional high-resolution direct numerical simulations of Rayleigh-Benard convection (RBC) in a closed cylindrical cell of aspect ratio one. The simulations have been conducted for convection in air at a Prandtl number Pr = 0.7, in liquid gallium at Pr = 0.021 and in liquid sodium at Pr = 0.005. Then we discuss three statistical analysis methods which have been developed to predict the transition of turbulent RBC into the ultimate regime. The methods are based on the large-scale properties of the velocity profile. All three methods indicate that the range of critical Rayleigh numbers is shifted to smaller magnitudes as the Prandtl number becomes smaller. This work is supported by the Priority Programme SPP 1881 of the Deutsche Forschungsgemeinschaft.

  18. Atmospheric boundary layer evening transitions over West Texas

    Science.gov (United States)

    A systemic analysis of the atmospheric boundary layer behavior during some evening transitions over West Texas was done using the data from an extensive array of instruments which included small and large aperture scintillometers, net radiometers, and meteorological stations. The analysis also comp...

  19. Effects of Thermal Radiation and Chemical Reaction on MHD Free Convection Flow past a Flat Plate with Heat Source and Convective Surface Boundary Condition

    OpenAIRE

    E.Hemalatha; N. Bhaskar Reddy

    2015-01-01

    This paper analyzes the radiation and chemical reaction effects on MHD steady two-dimensional laminar viscous incompressible radiating boundary layer flow over a flat plate in the presence of internal heat generation and convective boundary condition. It is assumed that lower surface of the plate is in contact with a hot fluid while a stream of cold fluid flows steadily over the upper surface with a heat source that decays exponentially. The Rosseland approximation is used to desc...

  20. Numerical Modeling of Conjugate Thermogravitational Convection in a Closed System with a Radiant Energy Source in Conditions of Convective-Radiative Heat Exchange at the External Boundary

    Directory of Open Access Journals (Sweden)

    Nee Alexander

    2016-01-01

    Full Text Available Mathematical modeling of conjugate natural convection in a closed rectangular cavity with a radiant energy source in conditions of convective-radiative heat exchange at the external boundary was conducted. The radiant energy distribution was set by the Lambert’s law. Conduction and convection processes analysis showed that the air masses flow pattern is modified slightly over the time. The temperature increases in the gas cavity, despite the heat removal from the one of the external boundary. According to the results of the integral heat transfer analysis were established that the average Nusselt number (Nuav increasing occurs up to τ = 200 (dimensionless time. Further Nuav has changed insignificantly due to the temperature field equalization near the interfaces “gas – wall”.

  1. Peristaltic flow of Johnson-Segalman fluid in asymmetric channel with convective boundary conditions

    Institute of Scientific and Technical Information of China (English)

    H YASMIN; T HAYAT; A ALSAEDI; HH ALSULAMI

    2014-01-01

    This work is concerned with the peristaltic transport of the Johnson-Segalman fluid in an asymmetric channel with convective boundary conditions. The mathematical modeling is based upon the conservation laws of mass, linear momentum, and energy. The resulting equations are solved after long wavelength and low Reynolds number are used. The results for the axial pressure gradient, velocity, and temperature profiles are obtained for small Weissenberg number. The expressions of the pressure gra-dient, velocity, and temperature are analyzed for various embedded parameters. Pumping and trapping phenomena are also explored.

  2. A conceptual framework to quantify the influence of convective boundary layer development on carbon dioxide mixing ratios

    NARCIS (Netherlands)

    Pino, D.; Vilà-Guerau de Arellano, J.; Peters, W.; Schröter, J.; van Heerwaarden, C. C.; Krol, M. C.

    2012-01-01

    Interpretation of observed diurnal carbon dioxide (CO2) mixing ratios near the surface requires knowledge of the local dynamics of the planetary boundary layer. In this paper, we study the relationship between the boundary layer dynamics and the CO2 budget in convective conditions through a newly

  3. Inferring convective responses to El Niño with atmospheric electricity measurements at Shetland

    International Nuclear Information System (INIS)

    Harrison, R G; Pascoe, K; Joshi, M

    2011-01-01

    Pacific ocean temperature anomalies associated with the El Niño–Southern Oscillation (ENSO) modulate atmospheric convection and hence thunderstorm electrification. The generated current flows globally via the atmospheric electric circuit, which can be monitored anywhere on Earth. Atmospheric electricity measurements made at Shetland (in Scotland) display a mean global circuit response to ENSO that is characterized by strengthening during ‘El Niño’ conditions, and weakening during ‘La Niña’ conditions. Examining the hourly varying response indicates that a potential gradient (PG) increase around noon UT is likely to be associated with a change in atmospheric convection and resultant lightning activity over equatorial Africa and Eastern Asia. A secondary increase in PG just after midnight UT can be attributed to more shower clouds in the central Pacific ocean during an ‘El Niño’.

  4. Particle motion in atmospheric boundary layers of Mars and Earth

    Science.gov (United States)

    White, B. R.; Iversen, J. D.; Greeley, R.; Pollack, J. B.

    1975-01-01

    To study the eolian mechanics of saltating particles, both an experimental investigation of the flow field around a model crater in an atmospheric boundary layer wind tunnel and numerical solutions of the two- and three-dimensional equations of motion of a single particle under the influence of a turbulent boundary layer were conducted. Two-dimensional particle motion was calculated for flow near the surfaces of both Earth and Mars. For the case of Earth both a turbulent boundary layer with a viscous sublayer and one without were calculated. For the case of Mars it was only necessary to calculate turbulent boundary layer flow with a laminar sublayer because of the low values of friction Reynolds number; however, it was necessary to include the effects of slip flow on a particle caused by the rarefied Martian atmosphere. In the equations of motion the lift force functions were developed to act on a single particle only in the laminar sublayer or a corresponding small region of high shear near the surface for a fully turbulent boundary layer. The lift force functions were developed from the analytical work by Saffman concerning the lift force acting on a particle in simple shear flow.

  5. Convection of wall shear stress events in a turbulent boundary layer

    Science.gov (United States)

    Pabon, Rommel; Mills, David; Ukeiley, Lawrence; Sheplak, Mark

    2017-11-01

    The fluctuating wall shear stress is measured in a zero pressure gradient turbulent boundary layer of Reτ 1700 simultaneously with velocity measurements using either hot-wire anemometry or particle image velocimetry. These experiments elucidate the patterns of large scale structures in a single point measurement of the wall shear stress, as well as their convection velocity at the wall. The wall shear stress sensor is a CS-A05 one-dimensional capacitice floating element from Interdisciplinary Consulting Corp. It has a nominal bandwidth from DC to 5 kHz and a floating element size of 1 mm in the principal sensing direction (streamwise) and 0.2 mm in the cross direction (spanwise), allowing the large scales to be well resolved in the current experimental conditions. In addition, a two sensor array of CS-A05 aligned in the spanwise direction with streamwise separations O (δ) is utilized to capture the convection velocity of specific scales of the shear stress through a bandpass filter and peaks in the correlation. Thus, an average wall normal position for the corresponding convecting event can be inferred at least as high as the equivalent local streamwise velocity. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.

  6. Modules for Experiments in Stellar Astrophysics (MESA): Convective Boundaries, Element Diffusion, and Massive Star Explosions

    Science.gov (United States)

    Paxton, Bill; Schwab, Josiah; Bauer, Evan B.; Bildsten, Lars; Blinnikov, Sergei; Duffell, Paul; Farmer, R.; Goldberg, Jared A.; Marchant, Pablo; Sorokina, Elena; Thoul, Anne; Townsend, Richard H. D.; Timmes, F. X.

    2018-02-01

    We update the capabilities of the software instrument Modules for Experiments in Stellar Astrophysics (MESA) and enhance its ease of use and availability. Our new approach to locating convective boundaries is consistent with the physics of convection, and yields reliable values of the convective-core mass during both hydrogen- and helium-burning phases. Stars with Meffects of Rayleigh-Taylor instabilities that, in combination with the coupling to a public version of the STELLA radiation transfer instrument, creates new avenues for exploring Type II supernova properties. These capabilities are exhibited with exploratory models of pair-instability supernovae, pulsational pair-instability supernovae, and the formation of stellar-mass black holes. The applicability of MESA is now widened by the capability to import multidimensional hydrodynamic models into MESA. We close by introducing software modules for handling floating point exceptions and stellar model optimization, as well as four new software tools - MESA-Web, MESA-Docker, pyMESA, and mesastar.org - to enhance MESA's education and research impact.

  7. Modeling of the thermal boundary layer in turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Emran, Mohammad; Shishkina, Olga

    2016-11-01

    We report modeling of the thermal boundary layer in turbulent Rayleigh-Bénard convection (RBC), which incorporates the effect of turbulent fluctuations. The study is based on the thermal boundary layer equation from Shishkina et al., and new Direct Numerical Simulations (DNS) of RBC in a cylindrical cell of the aspect ratio 1, for the Prandtl number variation of several orders of magnitude. Our modeled temperature profiles are found to agree with the DNS much better than those obtained with the classical Prandtl-Blasius or Falkner-Skan approaches. The work is supported by the Deutsche Forschungsgemeinschaft (DFG) under the Grant Sh405/4 - Heisenberg fellowship and SFB963, Project A06.

  8. Numerical simulations of conjugate convection combined with surface thermal radiation using an Immersed-Boundary Method

    International Nuclear Information System (INIS)

    Favre, F.; Colomer, G.; Lehmkuhl, O.; Oliva, A.

    2016-01-01

    Dynamic and thermal interaction problems involving fluids and solids were studied through a finite volume-based Navier-Stokes solver, combined with immersed-boundary techniques and the net radiation method. Source terms were included in the momentum and energy equations to enforce the non-slip condition and the conjugate boundary condition including the radiative heat exchange. Code validation was performed through the simulation of two cases from the literature: conjugate natural convection in a square cavity with a conducting side wall; and a cubical cavity with conducting walls and a heat source. The accuracy of the methodology and the validation of the inclusion of moving bodies into the simulation was performed via a theoretical case (paper)

  9. Analysis of nuclide transport under natural convection and time dependent boundary condition using TOUGH2

    Energy Technology Data Exchange (ETDEWEB)

    Javeri, V. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Koeln (Germany)

    1995-03-01

    After implementation of TOUGH2 at GRS in summer 91, it was first used to analyse the gas transport in a repository for the nuclear waste with negligible heat generation and to verify the results obtained with ECLIPSE/JAV 92/. Since the original version of TOUGH2 does not directly simulate the decay of radionuclide and the time dependent boundary conditions, it is not a appropriate tool to study the nuclide transport in a porous medium/PRU 87, PRU 91/. Hence, in this paper some modifications are proposed to study the nuclide transport under combined influence of natural convection diffusion, dispersion and time dependent boundary condition. Here, a single phase fluid with two liquid components is considered as in equation of state model for water and brine/PRU 91A/.

  10. Transport of gaseous pollutants by convective boundary layer around a human body

    DEFF Research Database (Denmark)

    Licina, Dusan; Melikov, Arsen Krikor; Sekhar, Chandra

    2015-01-01

    This study investigates the ability of the human convective boundary layer to transport pollution in a quiescent indoor environment. The impact of the source location in the vicinity of a human body is examined in relation to pollution distribution in the breathing zone and the thickness...... of the pollution boundary layer. The study, in addition, evaluates the effects of the room air temperature, table positioning, and seated body inclination. The human body is represented by a thermal manikin that has a body shape, size, and surface temperature that resemble those of a real person. The results show...... at the upper back or behind the chair. The results also indicate that a decrease in personal exposure to pollutants released from or around the human body increases the extent to which the pollution spreads to the surroundings. Reducing the room air temperature or backward body inclination intensifies...

  11. Jovian meterology: Large-scale moist convection without a lower boundary

    Science.gov (United States)

    Gierasch, P. J.

    1975-01-01

    It is proposed that Jupiter's cloud bands represent large scale convection whose character is determined by the phase change of water at a level where the temperature is about 275K. It is argued that there are three important layers in the atmosphere: a tropopause layer where emission to space occurs; an intermediate layer between the tropopause and the water cloud base; and the deep layer below the water cloud. All arguments are only semi-quantitative. It is pointed out that these ingredients are essential to Jovian meteorology.

  12. Convective Heat Transfer at the Martian Boundary Layer, Measurement and Model

    Science.gov (United States)

    Tomás Soria-Salinas, Álvaro; Zorzano-Mier, María Paz; Martín-Torres, Javier

    2016-04-01

    We present a measuring concept to measure the convective heat transfer coefficient h near a spacecraft operating on the surface of Mars. This coefficient can be used to derive the speed of the wind and direction, and to detect its modulations. This measuring concept will be used in the instrument HABIT (HabitAbility: Brines, Irradiance and Temperature) for the Surface Platform of ExoMars 2018 (ESA-Roscosmos). The method is based on the use of 3 Resistance Temperature Thermodetectors (RTD) that measure the temperature at 3 locations along the axial direction of a rod of length L: at the base of the rod, Tb, an intermediate point x = L/n, TLn, and the tip,Ta. This sensing fin is called the Air Temperature Sensor (ATS). HABIT shall incorporate three ATS, oriented in perpendicular directions and thus exposed to wind in a different way. Solving these equations for each ATS, provides three fluid temperatures Tf as well as three m parameters that are used to derive three heat transfer coefficients h. This magnitude is dependent on the local forced convection and therefore is sensitive to the direction, speed and modulations of the wind. The m-parameter has already proven to be useful to investigate the convective activity at the planetary boundary layer on Mars and to determine the height of the planetary boundary layer. This method shall be presented here by: 1) Introducing the mathematical concepts for the retrieval of the m-parameter; 2) performing ANSYS simulations of the fluid dynamics and the thermal environment around the ATS-rods under wind conditions in Mars; and 3) comparing the method by using data measurements from the Rover Environmental Monitoring Station (REMS) at the Curiosity rover of NASA's Mars Science Laboratory project currently operating on Mars. The results shall be compared with the wind sensor measurements of three years of REMS operation on Mars.

  13. A Numerical Study of Nonlinear Nonhydrostatic Conditional Symmetric Instability in a Convectively Unstable Atmosphere.

    Science.gov (United States)

    Seman, Charles J.

    1994-06-01

    Nonlinear nonhydrostatic conditional symmetric instability (CSI) is studied as an initial value problem using a two-dimensional (y, z)nonlinear, nonhydrostatic numerical mesoscale/cloud model. The initial atmosphere for the rotating, baroclinic (BCF) simulation contains large convective available potential energy (CAPE). Analytical theory, various model output diagnostics, and a companion nonrotating barotropic (BTNF) simulation are used to interpret the results from the BCF simulation. A single warm moist thermal initiates convection for the two 8-h simulations.The BCF simulation exhibited a very intricate life cycle. Following the initial convection, a series of discrete convective cells developed within a growing mesoscale circulation. Between hours 4 and 8, the circulation grew upscale into a structure resembling that of a squall-line mesoscale convective system (MCS). The mesoscale updrafts were nearly vertical and the circulation was strongest on the baroclinically cool side of the initial convection, as predicted by a two-dimensional Lagrangian parcel model of CSI with CAPE. The cool-side mesoscale circulation grew nearly exponentially over the last 5 h as it slowly propagated toward the warm air. Significant vertical transport of zonal momentum occurred in the (multicellular) convection that developed, resulting in local subgeostrophic zonal wind anomalies aloft. Over time, geostrophic adjustment acted to balance these anomalies. The system became warm core, with mesohigh pressure aloft and mesolow pressure at the surface. A positive zonal wind anomaly also formed downstream from the mesohigh.Analysis of the BCF simulation showed that convective momentum transport played a key role in the evolution of the simulated MCS, in that it fostered the development of the nonlinear CSI on mesoscale time scales. The vertical momentum transport in the initial deep convection generated a subgeostrophic zonal momentum anomaly aloft; the resulting imbalance in pressure

  14. A Comparative Experimental Study of Fixed Temperature and Fixed Heat Flux Boundary Conditions in Turbulent Thermal Convection

    Science.gov (United States)

    Huang, Shi-Di; Wang, Fei; Xi, Heng-Dong; Xia, Ke-Qing

    2014-11-01

    We report an experimental study of the influences of thermal boundary condition in turbulent thermal convection. Two configurations were examined: one was fixed heat flux at the bottom boundary and fixed temperature at the top (HC cells); the other was fixed temperature at both boundaries (CC cells). It is found that the flow strength in the CC cells is on average 9% larger than that in the HC ones, which could be understood as change in plume emission ability under different boundary conditions. It is further found, rather surprisingly, that flow reversals of the large-scale circulation occur more frequently in the CC cell, despite a stronger large-scale flow and more uniform temperature distribution over the boundaries. These findings provide new insights into turbulent thermal convection and should stimulate further studies, especially experimental ones. This work is supported by the Hong Kong Research Grants Council under Grant No. CUHK 403712.

  15. MHD axisymmetric flow of power-law fluid over an unsteady stretching sheet with convective boundary conditions

    Directory of Open Access Journals (Sweden)

    Jawad Ahmed

    Full Text Available This paper examines the boundary layer flow and heat transfer characteristic in power law fluid model over unsteady radially stretching sheet under the influence of convective boundary conditions. A uniform magnetic field is applied transversely to the direction of the flow. The governing time dependent nonlinear boundary layer equations are reduced into nonlinear ordinary differential equations with the help of similarity transformations. The transformed coupled ordinary differential equations are then solved analytically by homotopy analysis method (HAM and numerically by shooting procedure. Effects of various governing parameters like, power law index n, magnetic parameter M, unsteadiness A, suction/injection S, Biot number γ and generalized Prandtl number Pr on velocity, temperature, local skin friction and the local Nusselt number are studied and discussed. It is found from the analysis that the magnetic parameter diminishes the velocity profile and the corresponding thermal boundary layer thickness. Keywords: Axisymmetric flow, Power law fluid, Unsteady stretching, Convective boundary conditions

  16. The effect of the Asian Monsoon to the atmospheric boundary layer over the Tibetan Plateau

    Science.gov (United States)

    Li, Maoshan; Su, Zhongbo; Chen, Xuelong; Zheng, Donghai; Sun, Fanglin; Ma, Yaoming; Hu, Zeyong

    2016-04-01

    Modulation of the diurnal variations in the convective activities associated with day-by-day changes of surface flux and soil moisture was observed in the beginning of the monsoon season on the central Tibetan plateau (Sugimoto et al., 2008) which indicates the importance of land-atmosphere interactions in determining convective activities over the Tibetan plateau. Detailed interaction processes need to be studied by experiments designed to evaluate a set of hypotheses on mechanisms and linkages of these interactions. A possible function of vegetation to increase precipitation in cases of Tibetan High type was suggested by Yamada and Uyeda (2006). Use of satellite derived plateau scale soil moisture (Wen et al., 2003) enables the verification of these hypotheses (e.g. Trier et al. 2004). To evaluate these feedbacks, the mesoscale WRF model will be used because several numerical experiments are being conducted to improve the soil physical parameterization in the Noah land surface scheme in WRF so that the extreme conditions on the Tibetan plateau could be adequately represented (Van der Velde et al., 2009) such that the impacts on the structure of the atmospheric boundary layer can be assessed and improved. The Tibetan Observational Research Platform (TORP) operated by the Institute of Tibetan Plateau (Ma et al., 2008) will be fully utilized to study the characteristics of the plateau climate and different aspects of the WRF model will be evaluated using this extensive observation platform (e.g. Su et al., 2012). Recently, advanced studies on energy budget have been done by combining field and satellite measurements over the Tibetan Plateau (e.g. Ma et al., 2005). Such studies, however, were based on a single satellite observation and for a few days over an annual cycle, which are insufficient to reveal the relation between the land surface energy budget and the Asian monsoon over the Tibetan plateau. Time series analysis of satellite observations will provide the

  17. Numerical investigation of a spatially developing turbulent natural convection boundary layer along a vertical heated plate

    International Nuclear Information System (INIS)

    Nakao, Keisuke; Hattori, Yasuo; Suto, Hitoshi

    2017-01-01

    Highlights: • A large-eddy simulation of a spatially developing natural convection boundary layer is conducted. • First- and second-order moments of the heat and momentum showed a reasonable agreement with past experiments. • Coherent structure of turbulent vortex inherent in this boundary layer is discussed. - Abstract: Large-eddy simulation (LES) on a spatially developing natural convection boundary layer along a vertical heated plate was conducted. The heat transfer rate, friction velocity, mean velocity and temperature, and second-order turbulent properties both in the wall-normal and the stream-wise direction showed reasonable agreement with the findings of past experiments. The spectrum of velocity and temperature fluctuation showed a -2/3-power decay slope and -2-power decay slope respectively. Quadrant analysis revealed the inclination on Q1 and Q3 in the Reynolds stress and turbulent heat flux, changing their contribution along the distance from the plate surface. Following the convention, we defined the threshold region where the stream-wise mean velocity takes local maximum, the inner layer which is closer to the plate than the threshold region, the outer layer which is farther to the plate than the threshold region. The space correlation of stream-wise velocity tilted the head toward the wall in the propagating direction in the outer layer; on the other hand, the correlated motion had little inclination in the threshold region. The time history of the second invariant of gradient tensor Q revealed that the vortex strength oscillates both in the inner and the outer layers in between the laminar and the transition region. In the turbulent region, the vortex was often dominant in the outer layer. Instantaneous three-dimensional visualization of Q revealed the existence of high-speed fluid parcels associated with arch-shape vortices. These results were considered as an intrinsic structure in the outer layer, which is symmetrical to the structure of

  18. Influence of tropical atmospheric variability on Weddell Sea deep water convection

    Science.gov (United States)

    Kleppin, H.

    2016-02-01

    Climate reconstructions from ice core records in Greenland and Antarctica have revealed a series of abrupt climate transitions, showing a distinct relationship between northern and southern hemisphere climate during the last glacial period. The recent ice core records from West Antarctica (WAIS) point towards an atmospheric teleconnection as a possible trigger for the interhemispheric climate variability (Markle et al., 2015). An unforced simulation of the Community Climate System Model, version 4 (CCSM4) reveals Greenland warming and cooling events, caused by stochastic atmospheric forcing, that resemble Dansgaard-Oeschger cycles in pattern and magnitude (Kleppin et al., 2015). Anti-phased temperature changes in the Southern Hemisphere are small in magnitude and have a spatially varying pattern. We argue that both north and south high latitude climate variability is triggered by changes in tropical atmospheric deep convection in the western tropical Pacific. The atmospheric wave guide provides a fast communication pathway connecting the deep tropics and the polar regions. In the Southern Hemisphere this is manifested as a distinct pressure pattern over West Antarctica. These altered atmospheric surface conditions over the convective region can lead to destabilization of the water column and thus to convective overturning in the Weddell Sea. However, opposed to what is seen in the Northern Hemisphere no centennial scale variability can establish, due to the absence of a strong feedback mechanism between ocean, atmosphere and sea ice. Kleppin, H., Jochum, M., Otto-Bliesner, B., Shields, C. A., & Yeager, S. (2015). Stochastic Atmospheric Forcing as a Cause of Greenland Climate Transitions. Journal of Climate, (2015). Markle, B. and Coauthors (2015, April). Atmospheric teleconnections between the tropics and high southern latitudes during millennial climate change. In EGU General Assembly Conference Abstracts (Vol. 17, p. 2569).

  19. Natural convection in a composite fluid-porous cavity by the boundary element method

    International Nuclear Information System (INIS)

    Jecl, R.; Skerget, L.

    2005-01-01

    The main purpose of this work is to present the use of the boundary element method (BEM) for analyzing the convective fluid flow and heat transfer in composite fluid-porous media domain when the fluid is compressible. In our case the flow is modeled by utilizing the Brinkman extended Darcy momentum equation (Brinkman model) which is commonly used when it is important to satisfy the no-slip boundary condition and when one wishes to compare flows in porous medium with those in pure fluids. The Brinkman equation reduce to the classical Navier Stokes equation for clear fluid when the permeability tends to infinity (porosity is equal to unity), i.e. when the solid matrix in the porous medium disappears and, when the permeability is finite the equation is valid for porous medium. Therefore it is possible to handle porous medium free fluid interface problems by changing the properties of the medium in the computational domain appropriately. Our goal is to widen the applicability of the computational model based on the boundary domain integral method (BDIM) which is an extension of the classical BEM. The governing equations are transformed by using the velocity-vorticity variables formulation and therefore the computation scheme is partitioned into kinematic and kinetic part. (authors)

  20. Mapping travelling convection vortex events with respect to energetic particle boundaries

    Directory of Open Access Journals (Sweden)

    T. Moretto

    1998-08-01

    Full Text Available Thirteen events of high-latitude ionospheric travelling convection vortices during very quiet conditions were identified in the Greenland magnetometer data during 1990 and 1991. The latitudes of the vortex centres for these events are compared to the energetic electron trapping boundaries as identified by the particle measurements of the NOAA 10 satellite. In addition, for all events at least one close DMSP overpass was available. All but one of the 13 cases agree to an exceptional degree that: the TCV centres are located within the region of trapped, high energy electrons close to the trapping boundary for the population of electrons with energy greater than >100 keV. Correspondingly, from the DMSP data they are located within the region of plasmasheet-type precipitation close to the CPS/BPS precipitation boundary. That is, the TCV centres map to deep inside the magnetosphere and not to the magnetopause.Key Words. Ionosphere (Electric fields and currents; Particle precipitation · Magnetospheric physics (Magnetosphere-ionosphere interaction

  1. Unsteady Casson nanofluid flow over a stretching sheet with thermal radiation, convective and slip boundary conditions

    Directory of Open Access Journals (Sweden)

    Ibukun Sarah Oyelakin

    2016-06-01

    Full Text Available In this paper we report on combined Dufour and Soret effects on the heat and mass transfer in a Casson nanofluid flow over an unsteady stretching sheet with thermal radiation and heat generation. The effects of partial slip on the velocity at the boundary, convective thermal boundary condition, Brownian and thermophoresis diffusion coefficients on the concentration boundary condition are investigated. The model equations are solved using the spectral relaxation method. The results indicate that the fluid flow, temperature and concentration profiles are significantly influenced by the fluid unsteadiness, the Casson parameter, magnetic parameter and the velocity slip. The effect of increasing the Casson parameter is to suppress the velocity and temperature growth. An increase in the Dufour parameter reduces the flow temperature, while an increase in the value of the Soret parameter causes increase in the concentration of the fluid. Again, increasing the velocity slip parameter reduces the velocity profile whereas increasing the heat generation parameter increases the temperature profile. A validation of the work is presented by comparing the current results with existing literature.

  2. Observations of the atmospheric electric field during two case studies of boundary layer processes

    International Nuclear Information System (INIS)

    Piper, I M; Bennett, A J

    2012-01-01

    We present measurements of potential gradient (PG) with associated meteorological variables and cloud profiles for two examples of convective boundary layer processes. Aerosol acts as a tracer layer to show lofting of the convective boundary layer; the rising aerosol layer results in a decrease in PG. In foggy conditions, the PG is seen to increase during the fog and then reduce as the fog lifts, as expected. (letter)

  3. Human convective boundary layer and its interaction with room ventilation flow.

    Science.gov (United States)

    Licina, D; Melikov, A; Sekhar, C; Tham, K W

    2015-02-01

    This study investigates the interaction between the human convective boundary layer (CBL) and uniform airflow with different velocity and from different directions. Human body is resembled by a thermal manikin with complex body shape and surface temperature distribution as the skin temperature of an average person. Particle image velocimetry (PIV) and pseudocolor visualization (PCV) are applied to identify the flow around the manikin's body. The findings show that the direction and magnitude of the surrounding airflows considerably influence the airflow distribution around the human body. Downward flow with velocity of 0.175 m/s does not influence the convective flow in the breathing zone, while flow at 0.30 m/s collides with the CBL at the nose level reducing the peak velocity from 0.185 to 0.10 m/s. Transverse horizontal flow disturbs the CBL at the breathing zone even at 0.175 m/s. A sitting manikin exposed to airflow from below with velocity of 0.30 and 0.425 m/s assisting the CBL reduces the peak velocity in the breathing zone and changes the flow pattern around the body, compared to the assisting flow of 0.175 m/s or quiescent conditions. In this case, the airflow interaction is strongly affected by the presence of the chair. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Formulation of natural convection around repository for dual reciprocity boundary element solution

    International Nuclear Information System (INIS)

    Vrankar, L.; Sarler, B.

    1998-01-01

    The disposal of high-level radioactive wastes in deep geological formations is of pronounced technological importance for nuclear safety. The understanding of related fluid flow, heat and mass transport in geological systems is of great interest. This article prepares necessary physical, mathematical and numerical fundamentals for computational modeling of related phenomena. The porous media is described by the simple Darcy law and momentum-energy coupling is due to Boussinesq approximation. The Dual Reciprocity of Boundary Element Method (DRBEM) is used for solving coupled mass, momentum and energy equations in two-dimensions for the steady buoyancy induced convection problem in an semi-infinite porous media. It is structured by weighting with the fundamental solution of the Laplace equation. The inverse multi quadrics are used in the DRBEM transformation. The solution is obtained in an iterative way.(author)

  5. Unsteady Mixed Convection Boundary Layer from a Circular Cylinder in a Micropolar Fluid

    Directory of Open Access Journals (Sweden)

    Anati Ali

    2010-01-01

    Full Text Available Most industrial fluids such as polymers, liquid crystals, and colloids contain suspensions of rigid particles that undergo rotation. However, the classical Navier-Stokes theory normally associated with Newtonian fluids is inadequate to describe such fluids as it does not take into account the effects of these microstructures. In this paper, the unsteady mixed convection boundary layer flow of a micropolar fluid past an isothermal horizontal circular cylinder is numerically studied, where the unsteadiness is due to an impulsive motion of the free stream. Both the assisting (heated cylinder and opposing cases (cooled cylinder are considered. Thus, both small and large time solutions as well as the occurrence of flow separation, followed by the flow reversal are studied. The flow along the entire surface of a cylinder is solved numerically using the Keller-box scheme. The obtained results are compared with the ones from the open literature, and it is shown that the agreement is very good.

  6. Nonlinear traveling waves in rotating Rayleigh-Bacute enard convection: Stability boundaries and phase diffusion

    International Nuclear Information System (INIS)

    Liu, Y.; Ecke, R.E.

    1999-01-01

    We present experimental measurements of a sidewall traveling wave in rotating Rayleigh-Bacute enard convection. The fluid, water with Prandtl number about 6.3, was confined in a 1-cm-high cylindrical cell with radius-to-height ratio Γ=5. We used simultaneous optical-shadowgraph, heat-transport, and local temperature measurements to determine the stability and characteristics of the traveling-wave state for dimensionless rotation rates 60<Ω<420. The state is well described by the one-dimensional complex Ginzburg-Landau (CGL) equation for which the linear and nonlinear coefficients were determined for Ω=274. The Eckhaus-Benjamin-Feir-stability boundary was established and the phase-diffusion coefficient and nonlinear group velocity were determined in the stable regime. Higher-order corrections to the CGL equation were also investigated. copyright 1999 The American Physical Society

  7. Experimental study of the steady natural convection in a horizontal annulus with irregular boundaries

    International Nuclear Information System (INIS)

    Boyd, R.D.

    1980-01-01

    The natural convective heat transfer across an annulus with irregular boundaries was studied using a Mach-Zehnder interferometer. The annulus was formed by an inner hexagonal cylinder and an outer concentric circular cylinder. This configuration models, in two dimensions, a liquid metal fast breeder reactor spent fuel subassembly inside a shipping container. During the test, the annulus was filled with a single gas, either neon, air, argon, krypton, or xenon, at a pressure of about 0.5 MPa. From temperature measurements, both local and mean Nusselt numbers (Nu/sub Δ/) at the surface of the inner cylinder were evaluated, with the mean Rayleigh number (anti Ra/sub Δ/) varying from 4.54 x 10 4 to 0.915 x 10 6 (Δ is the local gas width). The data correlation for the mean Nusselt and Rayleigh numbers is given by anti Nu/sub Δ/ = 0.183 anti Ra/sub Δ/ 0 310

  8. Characterizing the Effects of Convection on the Afternoon to Evening Boundary Layer Transition During Pecan 2015

    Science.gov (United States)

    2016-12-01

    daytime boundary layer is dominated by thermally buoyant eddies , resulting from sensible and latent heat fluxes. There is a similar transition in the...Atmospheric Mesoscale Prediction System (COAMPS). Currently COAMPS uses a bulk parametrization scheme known as Coupled Ocean Air Response Experiment...commercially manufactured coherent Doppler LIDAR from the UMBC location. The instrument produces line-of-sight wind speeds derived from the Doppler

  9. Influence of the angle between the wind and the isothermal surfaces on the boundary layer structures in turbulent thermal convection.

    Science.gov (United States)

    Shishkina, Olga; Wagner, Sebastian; Horn, Susanne

    2014-03-01

    We derive the asymptotes for the ratio of the thermal to viscous boundary layer thicknesses for infinite and infinitesimal Prandtl numbers Pr as functions of the angle β between the large-scale circulation and an isothermal heated or cooled surface for the case of turbulent thermal convection with laminar-like boundary layers. For this purpose, we apply the Falkner-Skan ansatz, which is a generalization of the Prandtl-Blasius one to a nonhorizontal free-stream flow above the viscous boundary layer. Based on our direct numerical simulations (DNS) of turbulent Rayleigh-Bénard convection for Pr=0.1, 1, and 10 and moderate Rayleigh numbers up to 108 we evaluate the value of β that is found to be around 0.7π for all investigated cases. Our theoretical predictions for the boundary layer thicknesses for this β and the considered Pr are in good agreement with the DNS results.

  10. The atmospheric boundary layer evening transitions: an observational and numerical study from two different datasets

    Science.gov (United States)

    Sastre, Mariano; Yagüe, Carlos; Román-Cascón, Carlos; Maqueda, Gregorio; Ander Arrillaga, Jon

    2015-04-01

    In this work we study the temporal evolution of the Atmospheric Boundary Layer (ABL) along the transition period from a diurnal typical convection to a nocturnal more frequently stable situation. This period is known as late afternoon or evening transition, depending on the specific definitions employed by different authors [1]. In order to obtain a proper characterization, we try to learn whether or not the behaviour of these transitional boundary layers is strongly dependent on local conditions. To do so, two sets of evening transitions are studied from data collected at two different experimental sites. These locations correspond to research facilities named CIBA (Spain) and CRA (France), which are the places where atmospheric field campaigns have been conducted during the last years, such as CIBA2008 and BLLAST 2011, respectively. In order to get comparable situations, we focus especially on transitions with weak synoptic forcing, and consider daily astronomical sunset as a reference time. A statistical analysis on main parameters related to the transition is carried out for both locations, and the average behaviour is shown as well as extreme values according to the timing. A similar pattern in the qualitative evolution of many variables is found. Nevertheless, several relevant differences in the progress of key variables are obtained too. Moisture, both from the soil and the air, is thought to have great relevance in explaining many of the differences found between the two sites. Some case studies are explored, focusing on the role played by the atmospheric turbulence. Complementary, numerical experiments are also performed using the Weather Research and Forecast (WRF) mesoscale model, in order to test the role of humidity, by artificially varying it in some of the simulations. [1] Lothon, M. and coauthors (2014): The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence. Atmos. Chem. Phys., 14, 10931-10960.

  11. Effects of resolved boundary layer turbulence on near-ground rotation in simulated quasi-linear convective systems (QLCSs)

    Science.gov (United States)

    Nowotarski, C. J.

    2017-12-01

    Though most strong to violent tornadoes are associated with supercell thunderstorms, quasi-linear convective systems (QLCSs) pose a risk of tornadoes, often at times and locations where supercell tornadoes are less common. Because QLCS low-level mesocyclones and tornado signatures tend to be less coherent, forecasting such tornadoes remains particularly difficult. The majority of simulations of such storms rely on horizontally homogeneous base states lacking resolved boundary layer turbulence and surface fluxes. Previous work has suggested that heterogeneities associated with boundary layer turbulence in the form of horizontal convective rolls can influence the evolution and characteristics of low-level mesocyclones in supercell thunderstorms. This study extends methods for generating boundary layer convection to idealized simulations of QLCSs. QLCS simulations with resolved boundary layer turbulence will be compared against a control simulation with a laminar boundary layer. Effects of turbulence, the resultant heterogeneity in the near-storm environment, and surface friction on bulk storm characteristics and the intensity, morphology, and evolution of low-level rotation will be presented. Although maximum surface vertical vorticity values are similar, when boundary layer turbulence is included, a greater number of miso- and meso-scale vortices develop along the QLCS gust front. The source of this vorticity is analyzed using Eulerian decomposition of vorticity tendency terms and trajectory analysis to delineate the relative importance of surface friction and baroclinicity in generating QLCS vortices. The role of anvil shading in suppressing boundary layer turbulence in the near-storm environment and subsequent effects on QLCS vortices will also be presented. Finally, implications of the results regarding inclusion of more realistic boundary layers in future idealized simulations of deep convection will be discussed.

  12. Measurements of velocity-fields and temperature-fields in laminar and turbulent free convection boundary layers

    International Nuclear Information System (INIS)

    Fieg, G.

    1975-02-01

    This work deals with the hydrodynamics of laminar and turbulent free convection boundary layers on a vertical flat isothermal plate. Both for the laminar and turbulent region there is a good agreement with previous experimental and theoretical investigations. From these experiments one can draw important conclusions to the growth of instabilities in the transition region which lead to turbulence. (orig.) [de

  13. Understanding and representing the effect of wind shear on the turbulent transfer in the convective boundary layer

    NARCIS (Netherlands)

    Ronda, R.J.; Vilà-Guerau de Arellano, J.; Pino, D.

    2012-01-01

    Goal of this study is to quantify the effect of wind shear on the turbulent transport in the dry Convective Boundary Layer (CBL). Questions addressed include the effect of wind shear on the depth of the mixed layer, the effect of wind shear on the depth and structure of the capping inversion, and

  14. The INCOMPASS project field and modelling campaign: Interaction of Convective Organization and Monsoon Precipitation, Atmosphere, Surface and Sea

    Science.gov (United States)

    Turner, Andrew; Bhat, Ganapati; Evans, Jonathan; Madan, Ranju; Marsham, John; Martin, Gill; Mitra, Ashis; Mrudula, Gm; Parker, Douglas; Pattnaik, Sandeep; Rajagopal, En; Taylor, Christopher; Tripathi, Sachchida

    2017-04-01

    The INCOMPASS project uses data from a field and aircraft measurement campaign during the 2016 monsoon onset to better understand and predict monsoon rainfall. The monsoon supplies the majority of water in South Asia, however modelling and forecasting the monsoon from days to the season ahead is limited by large model errors that develop quickly. Likely problems lie in physical parametrizations such as convection, the boundary layer and land surface. At the same time, lack of detailed observations prevents more thorough understanding of monsoon circulation and its interaction with the land surface; a process governed by boundary layer and convective cloud dynamics. From May to July 2016, INCOMPASS used a modified BAe-146 jet aircraft operated by the UK Facility for Airborne Atmospheric Measurements (FAAM), for the first project of this scale in India. The India and UK team flew around 100 hours of science sorties from bases in northern and southern India. Flights from Lucknow in the northern plains took measurements to the west and southeast to allow sampling of the complete contrast from dry desert air to the humid environment over the north Bay of Bengal. These routes were repeated in the pre-monsoon and monsoon phases, measuring contrasting surface and boundary layer structures. In addition, flights from the southern base in Bengaluru measured contrasts from the Arabian Sea, across the intense rains of the Western Ghats mountains, over the rain shadow in southeast India and over the southern Bay of Bengal. Flight planning was performed with the aid of forecasts from a new UK Met Office 4km limited area model. INCOMPASS also installed a network of surface flux towers, as well as operating a cloud-base ceilometer and performing intensive radiosonde launches from a supersite in Kanpur. Here we will outline preliminary results from the field campaign including new observations of the surface, boundary layer structure and atmospheric profiles from aircraft data. We

  15. Radiative instabilities of atmospheric jets and boundary layers

    International Nuclear Information System (INIS)

    Candelier, J.

    2010-01-01

    Complex flows occur in the atmosphere and they can be source of internal gravity waves. We focus here on the sources associated with radiative and shear (or Kelvin-Helmholtz) instabilities. Stability studies of shear layers in a stably stratified fluid concern mainly cases where shear and stratification are aligned along the same direction. In these cases, Miles (1961) and Howard (1961) found a necessary condition for stability based on the Richardson number: Ri ≥ 1/4. In this thesis, we show that this condition is not necessary when shear and stratification are not aligned: we demonstrate that a two-dimensional planar Bickley jet can be unstable for all Richardson numbers. Although the most unstable mode remains 2D, we show there exists an infinite family of 3D unstable modes exhibiting a radiative structure. A WKBJ theory is found to provide the main characteristics of these modes. We also study an inviscid and stratified boundary layer over an inclined wall with non-Boussinesq and compressible effects. We show that this flow is unstable as soon as the wall is not horizontal for all Froude numbers and that strongly stratified 3D perturbations behave exactly like compressible 2D perturbations. Applications of the results to the jet stream and the atmospheric boundary layer are proposed. (author) [fr

  16. Effective Boundary Slip Induced by Surface Roughness and Their Coupled Effect on Convective Heat Transfer of Liquid Flow

    Directory of Open Access Journals (Sweden)

    Yunlu Pan

    2018-05-01

    Full Text Available As a significant interfacial property for micro/nano fluidic system, the effective boundary slip can be induced by the surface roughness. However, the effect of surface roughness on the effective slip is still not clear, both increased and decreased effective boundary slip were found with increased roughness. The present work develops a simplified model to study the effect of surface roughness on the effective boundary slip. In the created rough models, the reference position of the rough surfaces to determinate effective boundary slip was set based on ISO/ASME standard and the surface roughness parameters including Ra (arithmetical mean deviation of the assessed profile, Rsm (mean width of the assessed profile elements and shape of the texture varied to form different surface roughness. Then, the effective boundary slip of fluid flow through the rough surface was analyzed by using COMSOL 5.3. The results show that the effective boundary slip induced by surface roughness of fully wetted rough surface keeps negative and further decreases with increasing Ra or decreasing Rsm. Different shape of roughness texture also results in different effective slip. A simplified corrected method for the measured effective boundary slip was developed and proved to be efficient when the Rsm is no larger than 200 nm. Another important finding in the present work is that the convective heat transfer firstly increases followed by an unobvious change with increasing Ra, while the effective boundary slip keeps decreasing. It is believed that the increasing Ra enlarges the area of solid-liquid interface for convective heat transfer, however, when Ra is large enough, the decreasing roughness-induced effective boundary slip counteracts the enhancement effect of roughness itself on the convective heat transfer.

  17. Global 3D radiation-hydrodynamics models of AGB stars. Effects of convection and radial pulsations on atmospheric structures

    Science.gov (United States)

    Freytag, B.; Liljegren, S.; Höfner, S.

    2017-04-01

    Context. Observations of asymptotic giant branch (AGB) stars with increasing spatial resolution reveal new layers of complexity of atmospheric processes on a variety of scales. Aims: To analyze the physical mechanisms that cause asymmetries and surface structures in observed images, we use detailed 3D dynamical simulations of AGB stars; these simulations self-consistently describe convection and pulsations. Methods: We used the CO5BOLD radiation-hydrodynamics code to produce an exploratory grid of global "star-in-a-box" models of the outer convective envelope and the inner atmosphere of AGB stars to study convection, pulsations, and shock waves and their dependence on stellar and numerical parameters. Results: The model dynamics are governed by the interaction of long-lasting giant convection cells, short-lived surface granules, and strong, radial, fundamental-mode pulsations. Radial pulsations and shorter wavelength, traveling, acoustic waves induce shocks on various scales in the atmosphere. Convection, waves, and shocks all contribute to the dynamical pressure and, thus, to an increase of the stellar radius and to a levitation of material into layers where dust can form. Consequently, the resulting relation of pulsation period and stellar radius is shifted toward larger radii compared to that of non-linear 1D models. The dependence of pulsation period on luminosity agrees well with observed relations. The interaction of the pulsation mode with the non-stationary convective flow causes occasional amplitude changes and phase shifts. The regularity of the pulsations decreases with decreasing gravity as the relative size of convection cells increases. The model stars do not have a well-defined surface. Instead, the light is emitted from a very extended inhomogeneous atmosphere with a complex dynamic pattern of high-contrast features. Conclusions: Our models self-consistently describe convection, convectively generated acoustic noise, fundamental-mode radial

  18. Mixed convection boundary-layer flow from a horizontal circular cylinder with a constant surface heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Nazar, R.; Amin, N. [Department of Mathematics, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Pop, I. [Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253 (Romania)

    2004-02-01

    The laminar mixed convection boundary-layer flow of a viscous and incompressible fluid past a horizontal circular cylinder, which is maintained at a constant heat flux and is placed in a stream flowing vertically upward has been theoretically studied in this paper. The solutions for the flow and heat transfer characteristics are evaluated numerically for different values of the mixed convection parameter {lambda} with the Prandtl number Pr = 1 and 7, respectively. It is found, as for the case of a heated or cooled cylinder, considered by Merkin [5], that assisting flow delays separation of the boundary-layer and can, if the assisting flow is strong enough, suppress it completely. The opposing flow, on the other side, brings the separation point nearer to the lower stagnation point and for sufficiently strong opposing flows there will not be a boundary-layer on the cylinder. (orig.)

  19. A methodology to determine boundary conditions from forced convection experiments using liquid crystal thermography

    Science.gov (United States)

    Jakkareddy, Pradeep S.; Balaji, C.

    2017-02-01

    This paper reports the results of an experimental study to estimate the heat flux and convective heat transfer coefficient using liquid crystal thermography and Bayesian inference in a heat generating sphere, enclosed in a cubical Teflon block. The geometry considered for the experiments comprises a heater inserted in a hollow hemispherical aluminium ball, resulting in a volumetric heat generation source that is placed at the center of the Teflon block. Calibrated thermochromic liquid crystal sheets are used to capture the temperature distribution at the front face of the Teflon block. The forward model is the three dimensional conduction equation which is solved within the Teflon block to obtain steady state temperatures, using COMSOL. Match up experiments are carried out for various velocities by minimizing the residual between TLC and simulated temperatures for every assumed loss coefficient, to obtain a correlation of average Nusselt number against Reynolds number. This is used for prescribing the boundary condition for the solution to the forward model. A surrogate model obtained by artificial neural network built upon the data from COMSOL simulations is used to drive a Markov Chain Monte Carlo based Metropolis Hastings algorithm to generate the samples. Bayesian inference is adopted to solve the inverse problem for determination of heat flux and heat transfer coefficient from the measured temperature field. Point estimates of the posterior like the mean, maximum a posteriori and standard deviation of the retrieved heat flux and convective heat transfer coefficient are reported. Additionally the effect of number of samples on the performance of the estimation process has been investigated.

  20. The Roles of Convection Parameterization in the Formation of Double ITCZ Syndrome in the NCAR CESM: I. Atmospheric Processes

    Science.gov (United States)

    Song, Xiaoliang; Zhang, Guang J.

    2018-03-01

    Several improvements are implemented in the Zhang-McFarlane (ZM) convection scheme to investigate the roles of convection parameterization in the formation of double intertropical convergence zone (ITCZ) bias in the NCAR CESM1.2.1. It is shown that the prominent double ITCZ biases of precipitation, sea surface temperature (SST), and wind stress in the standard CESM1.2.1 are largely eliminated in all seasons with the use of these improvements in convection scheme. This study for the first time demonstrates that the modifications of convection scheme can eliminate the double ITCZ biases in all seasons, including boreal winter and spring. Further analysis shows that the elimination of the double ITCZ bias is achieved not by improving other possible contributors, such as stratus cloud bias off the west coast of South America and cloud/radiation biases over the Southern Ocean, but by modifying the convection scheme itself. This study demonstrates that convection scheme is the primary contributor to the double ITCZ bias in the CESM1.2.1, and provides a possible solution to the long-standing double ITCZ problem. The atmospheric model simulations forced by observed SST show that the original ZM convection scheme tends to produce double ITCZ bias in high SST scenario, while the modified convection scheme does not. The impact of changes in each core component of convection scheme on the double ITCZ bias in atmospheric model is identified and further investigated.

  1. The atmospheric boundary layer response to the dynamic new Arctic Ocean

    Science.gov (United States)

    Wu, D. L.; Ganeshan, M.

    2016-12-01

    The increasing ice-free area in the Arctic Ocean has transformed its climate system to one with more dynamic boundary layer clouds and seasonal sea ice. During the fall freeze season, the surface sensible heat flux (SSHF) is a crucial mechanism for the loss of excessive ocean heat to the atmosphere, and it has been speculated to play an important role in the recent cloud cover increase and boundary layer (BL) instability observed in the Beaufort and Chukchi seas. Based on multi-year Japanese cruise ship observations from the ice-strengthened R/V Mirai, we are able to characterize the late summer and early fall ocean-BL interactions in this region. Although the BL is found to be well-mixed more than 90% of the time, the SSHF can explain only 10% of the mixed layer height variability. It is the cloud-generated convective turbulence that apparently dominates BL mixing in this ice-free region, which is similar to previous in-situ observations (SHEBA, ASCOS) over sea ice. The SSHF, however, may contribute to BL instability during conditions of uplift (low-pressure), and the presence of the highly stable stratus cloud regime. The efficiency of sensible heat exchange is low during cold air advection (associated with the stratocumulus cloud regime) despite an enhanced ocean-atmosphere temperature difference (ΔT). In general, surface-generated mixing is favored during episodes of high surface wind speeds as opposed to pronounced ΔT. Our analysis suggests a weak local response of the boundary layer stability to the loss of sea ice cover during late summer, which is masked by the strong influence of the large-scale circulation (and clouds). Apart from the fall season, we also studied the Arctic Ocean BL properties during the cold months (Nov-Apr) using multi-year satellite measurements (COSMIC RO). As the boundary layer is typically stable at this time, one might expect major differences in the nature of surface-atmosphere coupling compared to that observed during late

  2. Atmospheric stability in CFD &NDASH; Representation of the diurnal cycle in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Koblitz, Tilman; Bechmann, Andreas; Sogachev, Andrey

    2012-01-01

    For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics (CFD) models that focus primarily on modeling the airflow in a neutrally stratified surface layer. So far, physical processes that are specific to the atmospheric boundary layer (ABL), for exam......For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics (CFD) models that focus primarily on modeling the airflow in a neutrally stratified surface layer. So far, physical processes that are specific to the atmospheric boundary layer (ABL......), for example the Coriolis force, buoyancy forces and heat transport, are mostly ignored in state-of-the-art CFD models. In order to decrease the uncertainty of wind resource assessment, especially in complex terrain, the effect of thermal stratification on the ABL should be included in such models. The present...

  3. Non-linear processes in the Earth atmosphere boundary layer

    Science.gov (United States)

    Grunskaya, Lubov; Valery, Isakevich; Dmitry, Rubay

    2013-04-01

    The work is connected with studying electromagnetic fields in the resonator Earth-Ionosphere. There is studied the interconnection of tide processes of geophysical and astrophysical origin with the Earth electromagnetic fields. On account of non-linear property of the resonator Earth-Ionosphere the tides (moon and astrophysical tides) in the electromagnetic Earth fields are kinds of polyharmonic nature. It is impossible to detect such non-linear processes with the help of the classical spectral analysis. Therefore to extract tide processes in the electromagnetic fields, the method of covariance matrix eigen vectors is used. Experimental investigations of electromagnetic fields in the atmosphere boundary layer are done at the distance spaced stations, situated on Vladimir State University test ground, at Main Geophysical Observatory (St. Petersburg), on Kamchatka pen., on Lake Baikal. In 2012 there was continued to operate the multichannel synchronic monitoring system of electrical and geomagnetic fields at the spaced apart stations: VSU physical experimental proving ground; the station of the Institute of Solar and Terrestrial Physics of Russian Academy of Science (RAS) at Lake Baikal; the station of the Institute of volcanology and seismology of RAS in Paratunka; the station in Obninsk on the base of the scientific and production society "Typhoon". Such investigations turned out to be possible after developing the method of scanning experimental signal of electromagnetic field into non- correlated components. There was used a method of the analysis of the eigen vectors ofthe time series covariance matrix for exposing influence of the moon tides on Ez. The method allows to distribute an experimental signal into non-correlated periodicities. The present method is effective just in the situation when energetical deposit because of possible influence of moon tides upon the electromagnetic fields is little. There have been developed and realized in program components

  4. Relation between the Atmospheric Boundary Layer and Impact Factors under Severe Surface Thermal Conditions

    Directory of Open Access Journals (Sweden)

    Yinhuan Ao

    2017-01-01

    Full Text Available This paper reported a comprehensive analysis on the diurnal variation of the Atmospheric Boundary Layer (ABL in summer of Badain Jaran Desert and discussed deeply the effect of surface thermal to ABL, including the Difference in Surface-Air Temperature (DSAT, net radiation, and sensible heat, based on limited GPS radiosonde and surface observation data during two intense observation periods of experiments. The results showed that (1 affected by topography of the Tibetan Plateau, the climate provided favorable external conditions for the development of Convective Boundary Layer (CBL, (2 deep CBL showed a diurnal variation of three- to five-layer structure in clear days and five-layer ABL structure often occurred about sunset or sunrise, (3 the diurnal variation of DSAT influenced thickness of ABL through changes of turbulent heat flux, (4 integral value of sensible heat which rapidly converted by surface net radiation had a significant influence on the growth of CBL throughout daytime. The cumulative effect of thick RML dominated the role after CBL got through SBL in the development stage, especially in late summer, and (5 the development of CBL was promoted and accelerated by the variation of wind field and distribution of warm advection in high and low altitude.

  5. Forced convective heat transfer in boundary layer flow of Sisko fluid over a nonlinear stretching sheet.

    Science.gov (United States)

    Munir, Asif; Shahzad, Azeem; Khan, Masood

    2014-01-01

    The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i) the sheet with variable temperature (PST case) and (ii) the sheet with variable heat flux (PHF case). The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden's method in the domain[Formula: see text]. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature.

  6. Absolute & Convective Instabilities in the Boundary Layer on a Rotating Sphere

    Science.gov (United States)

    Garrett, Stephen; Peake, Nigel

    2001-11-01

    We are concerned with absolute (AI) and convective instabilities (CI) in the boundary-layer on a sphere rotating in an otherwise still fluid. Both AI and CI are found at every latitude within specific parameter spaces. The local Reynolds number at the predicted onset of AI matches experimental data well for the onset of turbulence at ψ =30^o from the axis of rotation, beyond this latitude the discrepancy increases but remains relatively small below ψ =70^o. We suggest that this AI may cause the onset of transition. The results of the CI analysis show that a crossflow instability mode is the most dangerous below ψ =66^o. Above this latitude a streamline-curvature mode is found to be the most dangerous, which coincides with the appearance of reverse flow in the radial component of the mean flow. Our predictions of the Reynolds number and vortex angle at the onset of CI are consistent with existing experimental measurements. Close to the pole the predictions of each stability analysis are seen to approach those of existing rotating disk investigations.

  7. Energy budget of the convective boundary layer over an urban and rural environment

    Energy Technology Data Exchange (ETDEWEB)

    Kerschgens, M J; Hacker, J M

    1985-05-01

    The results of a two day field study in and around the city of Bonn (50/sup 0/ 42'N, 7/sup 0/ 2'E) are presented. The study was designed to compare the energy balances at the top of the rural and urban canopy layer, and to get estimates of the various terms of the budgets of sensible and latent heat. The synoptic situation during the experiment was dominated by a high pressure cell leading to mostly undisturbed conditions with a convective boundary layer under a subsidence inversion. The measurements of several ground-based instruments, a radiosonde, two tethered sondes and a motorglider were combined to give a comprehensive picture of the contrasts between the urban and rural conditions. Main results of the study are: a confirmation of the previously supposed relation between the strength of the urban heat and moisture anomaly and the mean wind; a correlation between the Bowen ratio of the canopy fluxes and the fractional amount of green space in urban areas; a negligible difference in the net radiative fluxes and their divergences between the urban and rural environment; significant differences in the energy budgets of the two regions, especially in the divergences of the turbulent vertical heat fluxes and the advection mechanisms and time-height cross sections of the Bulk-Richardson number for two sites upwind and downwind of the city.

  8. Influence of Variable Thermal Conductivity on MHD Boundary Layer Slip Flow of Ethylene-Glycol Based Cu Nanofluids over a Stretching Sheet with Convective Boundary Condition

    Directory of Open Access Journals (Sweden)

    N. Bhaskar Reddy

    2014-01-01

    Full Text Available An analysis is carried out to investigate the influence of variable thermal conductivity and partial velocity slip on hydromagnetic two-dimensional boundary layer flow of a nanofluid with Cu nanoparticles over a stretching sheet with convective boundary condition. Using similarity transformation, the governing boundary layer equations along with the appropriate boundary conditions are transformed to a set of ordinary differential equations. Employing Runge-kutta fourth-order method along with shooting technique, the resultant system of equations is solved. The influence of various pertinent parameters such as nanofluid volume fraction parameter, the magnetic parameter, radiation parameter, thermal conductivity parameter, velocity slip parameter, Biot number, and suction or injection parameter on the velocity of the flow field and heat transfer characteristics is computed numerically and illustrated graphically. The present results are compared with the existing results for the case of regular fluid and found an excellent agreement.

  9. Influence of the characteristics of atmospheric boundary layer on the vertical distribution of air pollutant in China's Yangtze River Delta

    Science.gov (United States)

    Wang, Chenggang; Cao, Le

    2016-04-01

    Air pollution occurring in the atmospheric boundary layer is a kind of weather phenomenon which decreases the visibility of the atmosphere and results in poor air quality. Recently, the occurrence of the heavy air pollution events has become more frequent all over Asia, especially in Mid-Eastern China. In December 2015, the most severe air pollution in recorded history of China occurred in the regions of Yangtze River Delta and Beijing-Tianjin-Hebei. More than 10 days of severe air pollution (Air Quality Index, AQI>200) appeared in many large cities of China such as Beijing, Tianjin, Shijiazhuang and Baoding. Thus, the research and the management of the air pollution has attracted most attentions in China. In order to investigate the formation, development and dissipation of the air pollutions in China, a field campaign has been conducted between January 1, 2015 and January 28, 2015 in Yangtze River Delta of China, aiming at a intensive observation of the vertical structure of the air pollutants in the atmospheric boundary layer during the time period with heavy pollution. In this study, the observation data obtained in the field campaign mentioned above is analyzed. The characteristics of the atmospheric boundary layer and the vertical distribution of air pollutants in the city Dongshan located in the center of Lake Taihu are shown and discussed in great detail. It is indicated that the stability of the boundary layer is the strongest during the nighttime and the early morning of Dongshan. Meanwhile, the major air pollutants, PM2.5 and PM10 in the boundary layer, reach their maximum values, 177.1μg m-3 and 285μg m-3 respectively. The convective boundary layer height in the observations ranges from approximately 700m to 1100m. It is found that the major air pollutants tend to be confined in a relatively shallow boundary layer, which represents that the boundary layer height is the dominant factor for controlling the vertical distribution of the air pollutants. In

  10. Convective transport in ATM simulations and its relation to the atmospheric stability conditions

    Science.gov (United States)

    Kusmierczyk-Michulec, Jolanta

    2017-04-01

    The International Monitoring System (IMS) developed by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is a global system of monitoring stations, using four complementary technologies: seismic, hydroacoustic, infrasound and radionuclide. Data from all stations, belonging to IMS, are collected and transmitted to the International Data Centre (IDC) in Vienna, Austria. The radionuclide network comprises 80 stations, of which more than 60 are certified. The aim of radionuclide stations is a global monitoring of radioactive aerosols and radioactive noble gases, in particular xenon isotopes, supported by the atmospheric transport modeling (ATM). One of the important noble gases, monitored on a daily basis, is radioxenon. It can be produced either during a nuclear explosion with a high fission yield, and thus be considered as an important tracer to prove the nuclear character of an explosion, or be emitted from nuclear power plants (NPPs) or from isotope production facilities (IPFs). To investigate the transport of xenon emissions, the Provisional Technical Secretariat (PTS) operates an Atmospheric Transport Modelling (ATM) system based on the Lagrangian Particle Dispersion Model FLEXPART. To address the question whether including the convective transport in ATM simulations will change the results significantly, the differences between the outputs with the convective transport turned off and turned on, were computed and further investigated taking into account the atmospheric stability conditions. For that purpose series of 14 days forward simulations, with convective transport and without it, released daily in the period January 2011 to February 2012, were analysed. The release point was at the ANSTO facility in Australia. The unique opportunity of having access to both daily emission values for ANSTO as well as measured Xe-133 activity concentration (AC) values at the IMS stations, gave a chance to validate the simulations.

  11. Turbulent transport of large particles in the atmospheric boundary layer

    Science.gov (United States)

    Richter, D. H.; Chamecki, M.

    2017-12-01

    To describe the transport of heavy dust particles in the atmosphere, assumptions must typically be made in order to connect the micro-scale emission processes with the larger-scale atmospheric motions. In the context of numerical models, this can be thought of as the transport process which occurs between the domain bottom and the first vertical grid point. For example, in the limit of small particles (both low inertia and low settling velocity), theory built upon Monin-Obukhov similarity has proven effective in relating mean dust concentration profiles to surface emission fluxes. For increasing particle mass, however, it becomes more difficult to represent dust transport as a simple extension of the transport of a passive scalar due to issues such as the crossing trajectories effect. This study focuses specifically on the problem of large particle transport and dispersion in the turbulent boundary layer by utilizing direct numerical simulations with Lagrangian point-particle tracking to determine under what, if any, conditions the large dust particles (larger than 10 micron in diameter) can be accurately described in a simplified Eulerian framework. In particular, results will be presented detailing the independent contributions of both particle inertia and particle settling velocity relative to the strength of the surrounding turbulent flow, and consequences of overestimating surface fluxes via traditional parameterizations will be demonstrated.

  12. The Natural Convection Heat Transfer inside Vertical Pipe: Characteristic of Pipe Flow according to the Boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Ohk, Seung Min; Chung, Bum Jin [Kyunghee University, Yongin (Korea, Republic of)

    2016-05-15

    The Passive Cooling System (PCS) driven by natural forces drew research attention since Fukushima nuclear power plant accident. This study investigated the natural convection heat transfer inside of vertical pipe with emphasis on the phenomena regarding the boundary layer interaction. Numerical calculations were carried out using FLUENT 6.3. Experiments were performed for the parts of the cases to explore the accuracy of calculation. Based on the analogy, heat transfer experiment is replaced by mass transfer experiment using sulfuric acid copper sulfate (CuSO{sub 4}. H{sub 2}SO{sub 4}) electroplating system. The natural convection heat transfer inside a vertical pipe is studied experimentally and numerically. Experiments were carried out using sulfuric acid-copper sulfate (H{sub 2}SO{sub 4}-CuSO{sub 4}) based on the analogy concept between heat and mass transfer system. Numerical analysis was carried out using FLUENT 6.3. It is concluded that the boundary layer interaction along the flow passage influences the heat transfer, which is affected by the length, diameter, and Prandtl number. For the large diameter and high Prandtl number cases, where the thermal boundary layers do not interfered along the pipe, the heat transfer agreed with vertical flat plate for laminar and turbulent natural convection correlation within 8%. When the flow becomes steady state, the forced convective flow appears in the bottom of the vertical pipe and natural convection flow appears near the exit. It is different behavior from the flow on the parallel vertical flat plates. Nevertheless, the heat transfer was not different greatly compared with those of vertical plate.

  13. Framing the impact of external magnetic field on bioconvection of a nanofluid flow containing gyrotactic microorganisms with convective boundary conditions

    Directory of Open Access Journals (Sweden)

    Tanmoy Chakraborty

    2018-03-01

    Full Text Available The intention of this study is to examine the combined impacts of magnetic field and convective boundary state on bioconvection of a nanofluid flow along an expanding sheet co-existed with gyrotactic microorganisms. The fundamental partial differential equations are reduced to a set of nonlinear ordinary differential equations taking a guide of some appropriate similarity transformations. The numerical fallouts are calculated by considering the bvp4c function of Matlab. The impacts of magnetic field parameter, surface convection parameter, Eckert number and Peclet number on non-dimensional velocity, nanoparticle concentration, temperature and density of self-moving microorganisms are interpreted through graphs and charts. The fluid velocity near the surface and the Nusselt number is lessen with magnetic field. Surface convection parameter enhances the self-moving microorganism flux but a reverse result is noticed for Peclet number. Also, the contrast between the present results with formerly visited outcomes is in excellent harmony. Keywords: Nanofluid, Bioconvection, Gyrotactic microorganisms, Magnetic field, Convective boundary condition

  14. A phase change processor method for solving a one-dimensional phase change problem with convection boundary

    Energy Technology Data Exchange (ETDEWEB)

    Halawa, E.; Saman, W.; Bruno, F. [Institute for Sustainable Systems and Technologies, School of Advanced Manufacturing and Mechanical Engineering, University of South Australia, Mawson Lakes SA 5095 (Australia)

    2010-08-15

    A simple yet accurate iterative method for solving a one-dimensional phase change problem with convection boundary is described. The one-dimensional model takes into account the variation in the wall temperature along the direction of the flow as well as the sensible heat during preheating/pre-cooling of the phase change material (PCM). The mathematical derivation of convective boundary conditions has been integrated into a phase change processor (PCP) algorithm that solves the liquid fraction and temperature of the nodes. The algorithm is based on the heat balance at each node as it undergoes heating or cooling which inevitably involves phase change. The paper presents the model and its experimental validation. (author)

  15. Temporal direct numerical simulation of transitional natural-convection boundary layer under conditions of considerable external turbulence effects

    International Nuclear Information System (INIS)

    Abramov, Alexey G; Smirnov, Evgueni M; Goryachev, Valery D

    2014-01-01

    Results of direct numerical simulations for time-developing air natural-convection boundary layer are presented. Computations have been performed assuming periodicity conditions in both the directions parallel to the vertical isothermal hot plate. The contribution is mainly focused on understanding of laminar–turbulent transition peculiarities in the case of perturbation action of external turbulence that is modeled by isotropic disturbances initially introduced into the computational domain. Special attention is paid to identification and analysis of evolving three-dimensional vortices that clearly manifest themselves through the whole stages of laminar–turbulent transition in the boundary layer. A comparison of computed profiles of mean velocity, mean temperature and fluctuation characteristics for turbulent regimes of convection with experimental data is performed as well. (paper)

  16. An LES study on the spatial variability impact of surface sensible heat flux (SHF) on the convective boundary layer (CBL)

    Science.gov (United States)

    Kang, S. L.; Chun, J.; Kumar, A.

    2015-12-01

    We study the spatial variability impact of surface sensible heat flux (SHF) on the convective boundary layer (CBL), using the Weather Research and Forecasting (WRF) model in large eddy simulation (LES) mode. In order to investigate the response of the CBL to multi-scale feature of the surface SHF field over a local area of several tens of kilometers or smaller, an analytic surface SHF map is crated as a function of the chosen feature. The spatial variation in the SHF map is prescribed with a two-dimensional analytical perturbation field, which is generated by using the inverse transform technique of the Fourier series whose coefficients are controlled, of which spectrum to have a particular slope in the chosen range of wavelength. Then, the CBL responses to various SHF heterogeneities are summarized as a function of the spectral slope, in terms of mean structure, turbulence statistics and cross-scale processes. The range of feasible SHF heterogeneities is obtained from the SHF maps produced by a land surface model (LSM) of the WRF system. The LSM-derived SHF maps are a function of geographical data on various resolutions. Based on the numerical experiment results with the surface heterogeneities in the range, we will discuss the uncertainty in the SHF heterogeneity and its impact on the atmosphere in a numerical model. Also we will present the range of spatial scale of the surface SHF heterogeneity that significantly influence on the whole CBL. Lastly, we will report the test result of the hypothesis that the spatial variability of SHF is more representative of surface thermal heterogeneity than is the latent heat flux over the local area of several tens of kilometers or smaller.

  17. Study of Boundary Layer Convective Heat Transfer with Low Pressure Gradient Over a Flat Plate Via He's Homotopy Perturbation Method

    International Nuclear Information System (INIS)

    Fathizadeh, M.; Aroujalian, A.

    2012-01-01

    The boundary layer convective heat transfer equations with low pressure gradient over a flat plate are solved using Homotopy Perturbation Method, which is one of the semi-exact methods. The nonlinear equations of momentum and energy solved simultaneously via Homotopy Perturbation Method are in good agreement with results obtained from numerical methods. Using this method, a general equation in terms of Pr number and pressure gradient (λ) is derived which can be used to investigate velocity and temperature profiles in the boundary layer.

  18. Turbulent Convection Insights from Small-Scale Thermal Forcing with Zero Net Heat Flux at a Horizontal Boundary.

    Science.gov (United States)

    Griffiths, Ross W; Gayen, Bishakhdatta

    2015-11-13

    A large-scale circulation, a turbulent boundary layer, and a turbulent plume are noted features of convection at large Rayleigh numbers under differential heating on a single horizontal boundary. These might be attributed to the forcing, which in all studies has been limited to a unidirectional gradient over the domain scale. We instead apply forcing on a length scale smaller than the domain, and with variation in both horizontal directions. Direct numerical simulations show turbulence throughout the domain, a regime transition to a dominant domain-scale circulation, and a region of logarithmic velocity in the boundary layer, despite zero net heat flux. The results show significant similarities to Rayleigh-Bénard convection, demonstrate the significance of plume merging, support the hypothesis that the key driver of convection is the production of available potential energy without necessarily supplying total potential energy, and imply that contributions to domain-scale circulation in the oceans need not be solely from the large-scale gradients of forcing.

  19. A large-scale layered stationary convection of a incompressible viscous fluid under the action of shear stresses at the upper boundary. Temperature and presure field investigation

    Directory of Open Access Journals (Sweden)

    Natal'ya V. Burmasheva

    2017-12-01

    Full Text Available In this paper a new exact solution of an overdetermined system of Oberbeck–Boussinesq equations that describes a stationary shear flow of a viscous incompressible fluid in an infinite layer is under study. The given exact solution is a generalization of the Ostroumov–Birich class for a layered unidirectional flow. In the proposed solution, the horizontal velocities depend only on the transverse coordinate z. The temperature field and the pressure field are three-dimensional. In contradistinction to the Ostroumov–Birich solution, in the solution presented in the paper the horizontal temperature gradients are linear functions of the $z$ coordinate. This structure of the exact solution allows us to find a nontrivial solution of the Oberbeck–Boussinesq equations by means of the identity zero of the incompressibility equation. This exact solution is suitable for investigating large-scale flows of a viscous incompressible fluid by quasi-two-dimensional equations. Convective fluid motion is caused by the setting of tangential stresses on the free boundary of the layer. Inhomogeneous thermal sources are given on both boundaries. The pressure in the fluid at the upper boundary coincides with the atmospheric pressure. The paper focuses on the study of temperature and pressure fields, which are described by polynomials of three variables. The features of the distribution of the temperature and pressure profiles, which are polynomials of the seventh and eighth degree, respectively, are discussed in detail. To analyze the properties of temperature and pressure, algebraic methods are used to study the number of roots on a segment. It is shown that the background temperature and the background pressure are nonmonotonic functions. The temperature field is stratified into zones that form the thermocline and the thermal boundary layer near the boundaries of the fluid layer. Investigation of the properties of the pressure field showed that it is stratified

  20. The different influence of the residual layer on the development of the summer convective boundary layer in two deserts in northwest China

    Science.gov (United States)

    Lin, Zhao; Bo, Han; Shihua, Lv; Lijuan, Wen; Xianhong, Meng; Zhaoguo, Li

    2018-02-01

    The development of the atmospheric boundary layer is closely connected with the exchange of momentum, heat, and mass near the Earth's surface, especially for a convective boundary layer (CBL). Besides being modulated by the buoyancy flux near the Earth's surface, some studies point out that a neutrally stratified residual layer is also crucial for the appearance of a deep CBL. To verify the importance of the residual layer, the CBLs over two deserts in northwest China (Badan Jaran and Taklimakan) were investigated. The summer CBL mean depth over the Taklimakan Desert is shallower than that over the Badan Jaran Desert, even when the sensible heat flux of the former is stronger. Meanwhile, the climatological mean residual layer in the Badan Jaran Desert is much deeper and neutrally stratified in summer. Moreover, we found a significant and negative correlation between the lapse rate of the residual layer and the CBL depth over the Badan Jaran Desert. The different lapse rates of the residual layer in the two regions are partly connected with the advection heating from large-scale atmospheric circulation. The advection heating tends to reduce the temperature difference in the 700 to 500-hPa layer over the Badan Jaran Desert, and it increases the stability in the same atmospheric layer over the Taklimakan Desert. The advection due to climatological mean atmospheric circulation is more effective at modulating the lapse rate of the residual layer than from varied circulation. Also, the interannual variation of planetary boundary layer (PBL) height over two deserts was found to covary with the wave train.

  1. Application of the Remotely Piloted Aircraft (RPA) 'MASC' in Atmospheric Boundary Layer Research

    Science.gov (United States)

    Wildmann, Norman; Bange, Jens

    2014-05-01

    The remotely piloted aircraft (RPA) MASC (Multipurpose Airborne Sensor Carrier) was developed at the University of Tübingen in cooperation with the University of Stuttgart, University of Applied Sciences Ostwestfalen-Lippe and 'ROKE-Modelle'. Its purpose is the investigation of thermodynamic processes in the atmospheric boundary layer (ABL), including observations of temperature, humidity and wind profiles, as well as the measurement of turbulent heat, moisture and momentum fluxes. The aircraft is electrically powered, has a maximum wingspan of 3.40 m and a total weight of 5-8 kg, depending on battery- and payload. The standard meteorological payload consists of temperature sensors, a humidity sensor, a flow probe, an inertial measurement unit and a GNSS. In normal operation, the aircraft is automatically controlled by the ROCS (Research Onboard Computer System) autopilot to be able to fly predefined paths at constant altitude and airspeed. Since 2010 the system has been tested and improved intensively. In September 2012 first comparative tests could successfully be performed at the Lindenberg observatory of Germany's National Meteorological Service (DWD). In 2013, several campaigns were done with the system, including fundamental boundary layer research, wind energy meteorology and assistive measurements to aerosol investigations. The results of a series of morning transition experiments in summer 2013 will be presented to demonstrate the capabilities of the measurement system. On several convective days between May and September, vertical soundings were done to record the evolution of the ABL in the early morning, from about one hour after sunrise, until noon. In between the soundings, flight legs of up to 1 km length were performed to measure turbulent statistics and fluxes at a constant altitude. With the help of surface flux measurements of a sonic anemometer, methods of similarity theory could be applied to the RPA flux measurements to compare them to

  2. Simulation of the Atmospheric Boundary Layer for Wind Energy Applications

    Science.gov (United States)

    Marjanovic, Nikola

    Energy production from wind is an increasingly important component of overall global power generation, and will likely continue to gain an even greater share of electricity production as world governments attempt to mitigate climate change and wind energy production costs decrease. Wind energy generation depends on wind speed, which is greatly influenced by local and synoptic environmental forcings. Synoptic forcing, such as a cold frontal passage, exists on a large spatial scale while local forcing manifests itself on a much smaller scale and could result from topographic effects or land-surface heat fluxes. Synoptic forcing, if strong enough, may suppress the effects of generally weaker local forcing. At the even smaller scale of a wind farm, upstream turbines generate wakes that decrease the wind speed and increase the atmospheric turbulence at the downwind turbines, thereby reducing power production and increasing fatigue loading that may damage turbine components, respectively. Simulation of atmospheric processes that span a considerable range of spatial and temporal scales is essential to improve wind energy forecasting, wind turbine siting, turbine maintenance scheduling, and wind turbine design. Mesoscale atmospheric models predict atmospheric conditions using observed data, for a wide range of meteorological applications across scales from thousands of kilometers to hundreds of meters. Mesoscale models include parameterizations for the major atmospheric physical processes that modulate wind speed and turbulence dynamics, such as cloud evolution and surface-atmosphere interactions. The Weather Research and Forecasting (WRF) model is used in this dissertation to investigate the effects of model parameters on wind energy forecasting. WRF is used for case study simulations at two West Coast North American wind farms, one with simple and one with complex terrain, during both synoptically and locally-driven weather events. The model's performance with different

  3. CFD simulation of neutral ABL flows; Atmospheric Boundary Layer

    Energy Technology Data Exchange (ETDEWEB)

    Xiaodong Zhang

    2009-04-15

    This work is to evaluate the CFD prediction of Atmospheric Boundary Layer flow field over different terrains employing Fluent 6.3 software. How accurate the simulation could achieve depend on following aspects: viscous model, wall functions, agreement of CFD model with inlet wind velocity profile and top boundary condition. Fluent employ wall function roughness modifications based on data from experiments with sand grain roughened pipes and channels, describe wall adjacent zone with Roughness Height (Ks) instead of Roughness Length (z{sub 0}). In a CFD simulation of ABL flow, the mean wind velocity profile is generally described with either a logarithmic equation by the presence of aerodynamic roughness length z{sub 0} or an exponential equation by the presence of exponent. As indicated by some former researchers, the disagreement between wall function model and ABL velocity profile description will result in some undesirable gradient along flow direction. There are some methods to improve the simulation model in literatures, some of them are discussed in this report, but none of those remedial methods are perfect to eliminate the streamwise gradients in mean wind speed and turbulence, as EllipSys3D could do. In this paper, a new near wall treatment function is designed, which, in some degree, can correct the horizontal gradients problem. Based on the corrected model constants and near wall treatment function, a simulation of Askervein Hill is carried out. The wind condition is neutrally stratified ABL and the measurements are best documented until now. Comparison with measured data shows that the CFD model can well predict the velocity field and relative turbulence kinetic energy field. Furthermore, a series of artificial complex terrains are designed, and some of the main simulation results are reported. (au)

  4. The Effect of Thermal Convection on Earth-Atmosphere CO2 Gas Exchange in Aggregated Soil

    Science.gov (United States)

    Ganot, Y.; Weisbrod, N.; Dragila, M. I.

    2011-12-01

    Gas transport in soils and surface-atmosphere gas exchange are important processes that affect different aspects of soil science such as soil aeration, nutrient bio-availability, sorption kinetics, soil and groundwater pollution and soil remediation. Diffusion and convection are the two main mechanisms that affect gas transport, fate and emissions in the soils and in the upper vadose zone. In this work we studied CO2 soil-atmosphere gas exchange under both day-time and night-time conditions, focusing on the impact of thermal convection (TCV) during the night. Experiments were performed in a climate-controlled laboratory. One meter long columns were packed with matrix of different grain size (sand, gravel and soil aggregates). Air with 2000 ppm CO2 was injected into the bottom of the columns and CO2 concentration within the columns was continuously monitored by an Infra Red Gas Analyzer. Two scenarios were compared for each soil: (1) isothermal conditions, representing day time conditions; and (2) thermal gradient conditions, i.e., atmosphere colder than the soil, representing night time conditions. Our results show that under isothermal conditions, diffusion is the major mechanism for surface-atmosphere gas exchange for all grain sizes; while under night time conditions the prevailing mechanism is dependent on the air permeability of the matrix: for sand and gravel it is diffusion, and for soil aggregates it is TCV. Calculated CO2 flux for the soil aggregates column shows that the TCV flux was three orders of magnitude higher than the diffusive flux.

  5. The structure of sidewall boundary layers in conned rotating Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Kunnen, R.P.J.; Clercx, H.J.H.; van Heijst, G.J.F.

    2013-01-01

    Turbulent rotating convection is usually studied in a cylindrical geometry, as this is its most convenient experimental realization. In our previous work (Kunnen et al., J. Fluid Mech., vol. 688, 2011, pp. 422–442) we studied turbulent rotating convection in a cylinder with the emphasis on the

  6. Momentum, heat, and neutral mass transport in convective atmospheric pressure plasma-liquid systems and implications for aqueous targets

    Science.gov (United States)

    Lindsay, Alexander; Anderson, Carly; Slikboer, Elmar; Shannon, Steven; Graves, David

    2015-10-01

    There is a growing interest in the study of plasma-liquid interactions with application to biomedicine, chemical disinfection, agriculture, and other fields. This work models the momentum, heat, and neutral species mass transfer between gas and aqueous phases in the context of a streamer discharge; the qualitative conclusions are generally applicable to plasma-liquid systems. The problem domain is discretized using the finite element method. The most interesting and relevant model result for application purposes is the steep gradients in reactive species at the interface. At the center of where the reactive gas stream impinges on the water surface, the aqueous concentrations of OH and ONOOH decrease by roughly 9 and 4 orders of magnitude respectively within 50 μ m of the interface. Recognizing the limited penetration of reactive plasma species into the aqueous phase is critical to discussions about the therapeutic mechanisms for direct plasma treatment of biological solutions. Other interesting results from this study include the presence of a 10 K temperature drop in the gas boundary layer adjacent to the interface that arises from convective cooling. Though the temperature magnitudes may vary among atmospheric discharge types (different amounts of plasma-gas heating), this relative difference between gas and liquid bulk temperatures is expected to be present for any system in which convection is significant. Accounting for the resulting difference between gas and liquid bulk temperatures has a significant impact on reaction kinetics; factor of two changes in terminal aqueous species concentrations like H2O2, NO2- , and NO3- are observed in this study if the effect of evaporative cooling is not included.

  7. Retrieval of convective boundary layer wind field statistics from radar profiler measurements in conjunction with large eddy simulation

    Directory of Open Access Journals (Sweden)

    Danny Scipión

    2009-05-01

    Full Text Available The daytime convective boundary layer (CBL is characterized by strong turbulence that is primarily forced by buoyancy transport from the heated underlying surface. The present study focuses on an example of flow structure of the CBL as observed in the U.S. Great Plains on June 8, 2007. The considered CBL flow has been reproduced using a numerical large eddy simulation (LES, sampled with an LES-based virtual boundary layer radar (BLR, and probed with an actual operational radar profiler. The LES-generated CBL flow data are then ingested by the virtual BLR and treated as a proxy for prevailing atmospheric conditions. The mean flow and turbulence parameters retrieved via each technique (actual radar profiler, virtual BLR, and LES have been cross-analyzed and reasonable agreement was found between the CBL wind parameters obtained from the LES and those measured by the actual radar. Averaged vertical velocity variance estimates from the virtual and actual BLRs were compared with estimates calculated from the LES for different periods of time. There is good agreement in the estimates from all three sources. Also, values of the vertical velocity skewness retrieved by all three techniques have been inter-compared as a function of height for different stages of the CBL evolution, showing fair agreement with each other. All three retrievals contain positively skewed vertical velocity structure throughout the main portion of the CBL. Radar estimates of the turbulence kinetic energy (eddy dissipation rate (ε have been obtained based on the Doppler spectral width of the returned signal for the vertical radar beam. The radar estimates were averaged over time in the same fashion as the LES output data. The agreement between estimates was generally good, especially within the mixing layer. Discrepancies observed above the inversion layer may be explained by a weak turbulence signal in particular flow configurations. The virtual BLR produces voltage

  8. Representation of tropical deep convection in atmospheric models – Part 2: Tracer transport

    Directory of Open Access Journals (Sweden)

    C. R. Hoyle

    2011-08-01

    Full Text Available The tropical transport processes of 14 different models or model versions were compared, within the framework of the SCOUT-O3 (Stratospheric-Climate Links with Emphasis on the Upper Troposphere and Lower Stratosphere project. The tested models range from the regional to the global scale, and include numerical weather prediction (NWP, chemical transport, and chemistry-climate models. Idealised tracers were used in order to prevent the model's chemistry schemes from influencing the results substantially, so that the effects of modelled transport could be isolated. We find large differences in the vertical transport of very short-lived tracers (with a lifetime of 6 h within the tropical troposphere. Peak convective outflow altitudes range from around 300 hPa to almost 100 hPa among the different models, and the upper tropospheric tracer mixing ratios differ by up to an order of magnitude. The timing of convective events is found to be different between the models, even among those which source their forcing data from the same NWP model (ECMWF. The differences are less pronounced for longer lived tracers, however they could have implications for modelling the halogen burden of the lowermost stratosphere through transport of species such as bromoform, or short-lived hydrocarbons into the lowermost stratosphere. The modelled tracer profiles are strongly influenced by the convective transport parameterisations, and different boundary layer mixing parameterisations also have a large impact on the modelled tracer profiles. Preferential locations for rapid transport from the surface into the upper troposphere are similar in all models, and are mostly concentrated over the western Pacific, the Maritime Continent and the Indian Ocean. In contrast, models do not indicate that upward transport is highest over western Africa.

  9. The Effects of Land Surface Heating And Roughness Elements on the Structure and Scaling Laws of Atmospheric Boundary Layer Turbulence

    Science.gov (United States)

    Ghannam, Khaled

    structure function of the longitudinal and vertical velocity components is examined using five experimental data sets that span the roughness sub-layer above vegetation canopies, the atmospheric surface-layer above a lake and a grass field, and an open channel experiment. The results indicate that close to the wall/surface, this scaling exists in the longitudinal velocity structure function only, with the vertical velocity counterpart exhibiting a much narrower extent of this range due to smaller separation of scales. Phenomenological aspects of the large-scale eddies show that the length scale formed by the friction velocity and energy dissipation acts as a dominant similarity length scale in collapsing experimental data at different heights, mainly due to the imbalance between local production and dissipation of turbulence kinetic energy. • Nonlocal heat transport in the convective atmospheric boundary-layer: Failure of the mean gradient-diffusion (K-theory) in the convective boundary-layer is explored. Using large eddy simulation runs for the atmospheric boundary layer spanning weakly to strongly convective conditions, a generic diagnostic framework that encodes the role of third-order moments in nonlocal heat transport is developed and tested. The premise is that these nonlocal effects are responsible for the inherent asymmetry in vertical transport, and hence the necessary non-Gaussian nature of the joint probability density function (JPDF) of vertical velocity and potential temperature must account for these effects. Conditional sampling (quadrant analysis) of this function and the imbalance between the flow mechanisms of ejections and sweeps are used to characterize this asymmetry, which is then linked to the third-order moments using a cumulant-discard method for the Gram-Charlier expansion of the JPDF. The connection between the ejection-sweep events and the third-order moments shows that the concepts of bottom-up/top-down diffusion, or updraft/downdraft models

  10. Evolution of helium stars: a self-consistent determination of the boundary of a helium burning convective core

    International Nuclear Information System (INIS)

    Savonije, G.J.; Takens, R.J.

    1976-01-01

    A generalization of the Henyey-scheme is given that introduces the mass of the convective core and the density at the outer edge of the convective core boundary as unknowns which have to be solved simultaneously with the other unknowns. As a result, this boundary is determined in a physically self-consistent way for expanding as well as contracting cores, i.e. during the Henyey iterative cycle; its position becomes consistent with the overall physical structure of the star, including the run of the chemical abundances throughout the star. Using this scheme, the evolution of helium stars was followed up to carbon ignition for a number of stellar masses. As compared with some earlier investigations, the calculations show a rather large increase in mass of the convective cores during core helium burning. Evolutionary calculations for a 2M(sun) helium star show that the critical mass for which a helium star ignites carbon non-degenerately lies near 2M(sun). (orig.) [de

  11. Atmospheric and Oceanic Response to Southern Ocean Deep Convection Oscillations on Decadal to Centennial Time Scales in Climate Models

    Science.gov (United States)

    Martin, T.; Reintges, A.; Park, W.; Latif, M.

    2014-12-01

    Many current coupled global climate models simulate open ocean deep convection in the Southern Ocean as a recurring event with time scales ranging from a few years to centennial (de Lavergne et al., 2014, Nat. Clim. Ch.). The only observation of such event, however, was the occurrence of the Weddell Polynya in the mid-1970s, an open water area of 350 000 km2 within the Antarctic sea ice in three consecutive winters. Both the wide range of modeled frequency of occurrence and the absence of deep convection in the Weddell Sea highlights the lack of understanding concerning the phenomenon. Nevertheless, simulations indicate that atmospheric and oceanic responses to the cessation of deep convection in the Southern Ocean include a strengthening of the low-level atmospheric circulation over the Southern Ocean (increasing SAM index) and a reduction in the export of Antarctic Bottom Water (AABW), potentially masking the regional effects of global warming (Latif et al., 2013, J. Clim.; Martin et al., 2014, Deep Sea Res. II). It is thus of great importance to enhance our understanding of Southern Ocean deep convection and clarify the associated time scales. In two multi-millennial simulations with the Kiel Climate Model (KCM, ECHAM5 T31 atmosphere & NEMO-LIM2 ~2˚ ocean) we showed that the deep convection is driven by strong oceanic warming at mid-depth periodically overriding the stabilizing effects of precipitation and ice melt (Martin et al., 2013, Clim. Dyn.). Sea ice thickness also affects location and duration of the deep convection. A new control simulation, in which, amongst others, the atmosphere grid resolution is changed to T42 (~2.8˚), yields a faster deep convection flip-flop with a period of 80-100 years and a weaker but still significant global climate response similar to CMIP5 simulations. While model physics seem to affect the time scale and intensity of the phenomenon, the driving mechanism is a rather robust feature. Finally, we compare the atmospheric and

  12. Distribution of convection potential around the polar cap boundary as a function of the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Lu, G.; Reiff, P.H.; Karty, J.L.; Hairston, M.R.; Heelis, R.A.

    1989-01-01

    Plasma flow data from the AE-C, AE-D and DE 2 satellites have been used to systematically study the distribution of the convection potential around the polar cap boundary under a variety of different interplanetary magnetic field (IMF) conditions. For either a garden hose (B x B y x B y >0) orientation of the IMF, the potential distribution is mainly affected by the sign of B y . In the northern hemisphere, the zero potential line (which separates the dusk convection cell from the dawn cell) on the dayside shifts duskward as B y changes from positive to negative. But in the southern hemisphere, a dawnward shift has been found, although the uncertainties are large. The typical range of displacement is about ±1.5 hours MLT. Note that this shift is in the opposite direction from most simple schematic models of ionospheric flow; this reflects the fact that the polar cap boundary is typically more poleward than the flow reversal associated with the region 1 current system, which shifts in the opposite direction. Thus the enhanced flow region typically crosses noon. In most cases a sine wave is an adequate representation of the distribution of potential around the boundary. However, in a few cases the data favors (at the 80% confidence level) a steeper gradient near noon, more indicative of a throat. The potential drop at the duskside boundary is almost greater than at the dawnside boundary. A slight duskward shift of the patterns observed as the IMF changes from garden hose to ortho-garden hose conditions. Analytic equipotential contours, given the potential function as a boundary condition, are constructed for several IMF conditions

  13. The Influence of Synoptic Meteorology on Convective Boundary Layer Characteristics and the Observed Chemical Response During PROPHET 2000 and 2001 Summer Intensives

    Science.gov (United States)

    Lilly, M. A.; Moody, J. L.; Carroll, M.; Brown, W. O.; Cohn, S. A.

    2002-12-01

    PROPHET conducted atmospheric chemistry intensives that were coordinated with continuous measurements of the atmospheric boundary layer at the University of Michigan Biological Station (UMBS) during July and August of 2000 and 2001. Observations of ozone and trace gas precursors were made on a 31-meter tower within a mixed hardwood forest. A National Center for Atmospheric Research (NCAR) integrated sounding system (915-MHz Doppler wind profiler, radio acoustic sounder, surface meteorological tower, and rawinsonde system) was deployed in a nearby clearing. This facility provided detailed measurements of atmospheric boundary layer structure. The site is located at the northern tip of the Michigan's lower peninsula. Typically, a contaminated maritime-subtropical air mass lies to the south, while a relatively clean continental-polar air mass lies to the north, resulting in two distinct synoptic transport regimes. Published work, based on analyses of back trajectories and 1998 chemical data, has shown the influence of air mass origin on trace gas mixing ratios and the same trends are observed in 2000 and 2001 chemical data. Besides directly affecting the chemistry observed at the site, the large-scale synoptic meteorology has a major influence on convective boundary layer (CBL) characteristics. CBL data were obtained from the range corrected signal-to-noise ratio, derived from the Doppler spectra measured by the wind profiler. Distinct differences between CBL characteristics, such as growth rates, time period of maximum growth, average height throughout evolution, and maximum height, are illustrated for differing synoptic patterns. Typically, dry northerly flow results when UMBS is positioned on the leading edge of surface anticyclones moving out of Canada after frontal passages. The dry air mass accompanied with relatively clear skies allows intense solar radiation to go directly into surface heating; the result is rapid CBL development. By contrast, warm, moist air

  14. Comparison of convective clouds observed by spaceborne W-band radar and simulated by cloud-resolving atmospheric models

    Science.gov (United States)

    Dodson, Jason B.

    Deep convective clouds (DCCs) play an important role in regulating global climate through vertical mass flux, vertical water transport, and radiation. For general circulation models (GCMs) to simulate the global climate realistically, they must simulate DCCs realistically. GCMs have traditionally used cumulus parameterizations (CPs). Much recent research has shown that multiple persistent unrealistic behaviors in GCMs are related to limitations of CPs. Two alternatives to CPs exist: the global cloud-resolving model (GCRM), and the multiscale modeling framework (MMF). Both can directly simulate the coarser features of DCCs because of their multi-kilometer horizontal resolutions, and can simulate large-scale meteorological processes more realistically than GCMs. However, the question of realistic behavior of simulated DCCs remains. How closely do simulated DCCs resemble observed DCCs? In this study I examine the behavior of DCCs in the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) and Superparameterized Community Atmospheric Model (SP-CAM), the latter with both single-moment and double-moment microphysics. I place particular emphasis on the relationship between cloud vertical structure and convective environment. I also emphasize the transition between shallow clouds and mature DCCs. The spatial domains used are the tropical oceans and the contiguous United States (CONUS), the latter of which produces frequent vigorous convection during the summer. CloudSat is used to observe DCCs, and A-Train and reanalysis data are used to represent the large-scale environment in which the clouds form. The CloudSat cloud mask and radar reflectivity profiles for CONUS cumuliform clouds (defined as clouds with a base within the planetary boundary layer) during boreal summer are first averaged and compared. Both NICAM and SP-CAM greatly underestimate the vertical growth of cumuliform clouds. Then they are sorted by three large-scale environmental variables: total preciptable

  15. Hall effects on free convection hydromagnetic boundary layer flow of Rivlin-Ericksen fluid past a vertical plate

    International Nuclear Information System (INIS)

    Jha, P.K.

    1986-01-01

    An attempt has been made to study the problem of free convection hydromagnetic flow of an elastico-viscous fluid past a porous vertical plate in a rotating frame of reference taking ohmic and viscous dissipations into account in the presence of Hall current. The nature of velocity profile shows the existence of multiple boundary layers. Their 'thickness' is seen to decrease with increasing values of Ekman, Hartman and Prandtl numbers and Hall parameter. The graphical study reveals that the increasing values of Hall parameter and Ekman number (for a fixed large value of Hall parameter) exert opposite influence on the flow. (author). 11 refs., 2 tables

  16. The influence of the magnetic boundary conditions on the nature of astrophysical convection

    International Nuclear Information System (INIS)

    Lopez, J.M.; Murphy, J.O.

    1983-01-01

    The effects of employing two forms of the boundary conditions for the magnetic field disturbance, H, are demonstrated. The appropriate conditions on H for current-free boundaries can be written as DHt-aH=0. The second case uses the conditions DH=0 at the lower and upper boundaries

  17. Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face

    Science.gov (United States)

    Bollati, Julieta; Tarzia, Domingo A.

    2018-04-01

    Recently, in Tarzia (Thermal Sci 21A:1-11, 2017) for the classical two-phase Lamé-Clapeyron-Stefan problem an equivalence between the temperature and convective boundary conditions at the fixed face under a certain restriction was obtained. Motivated by this article we study the two-phase Stefan problem for a semi-infinite material with a latent heat defined as a power function of the position and a convective boundary condition at the fixed face. An exact solution is constructed using Kummer functions in case that an inequality for the convective transfer coefficient is satisfied generalizing recent works for the corresponding one-phase free boundary problem. We also consider the limit to our problem when that coefficient goes to infinity obtaining a new free boundary problem, which has been recently studied in Zhou et al. (J Eng Math 2017. https://doi.org/10.1007/s10665-017-9921-y).

  18. Numerical study of magnetohydrodynamics (MHD boundary layer slip flow of a Maxwell nanofluid over an exponentially stretching surface with convective boundary condition

    Directory of Open Access Journals (Sweden)

    P.BalaAnki Reddy

    2017-12-01

    Full Text Available This paper focuses on a theoretical analysis of a steady two-dimensional magnetohydrodynamic boundary layer flow of a Maxwell fluid over an exponentially stretching surface in the presence of velocity slip and convective boundary condition. This model is used for a nanofluid, which incorporates the effects of Brownian motion and thermophoresis. The resulting non-linear partial differential equations of the governing flow field are converted into a system of coupled non-linear ordinary differential equations by using suitable similarity transformations, and the resultant equations are then solved numerically by using Runge-Kutta fourth order method along with shooting technique. A parametric study is conducted to illustrate the behavior of the velocity, temperature and concentration. The influence of significant parameters on velocity, temperature, concentration, skin friction coefficient and Nusselt number has been studied and numerical results are presented graphically and in tabular form. The reported numerical results are compared with previously published works on various special cases and are found to be an in excellent agreement. It is found that momentum boundary layer thickness decreases with the increase of magnetic parameter. It can also be found that the thermal boundary layer thickness increases with Brownian motion and thermophoresis parameters.

  19. Improving Convection and Cloud Parameterization Using ARM Observations and NCAR Community Atmosphere Model CAM5

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guang J. [Univ. of California, San Diego, CA (United States)

    2016-11-07

    The fundamental scientific objectives of our research are to use ARM observations and the NCAR CAM5 to understand the large-scale control on convection, and to develop improved convection and cloud parameterizations for use in GCMs.

  20. Observing Convective Aggregation

    Science.gov (United States)

    Holloway, Christopher E.; Wing, Allison A.; Bony, Sandrine; Muller, Caroline; Masunaga, Hirohiko; L'Ecuyer, Tristan S.; Turner, David D.; Zuidema, Paquita

    2017-11-01

    Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network.

  1. Free Convection over a Permeable Horizontal Flat Plate Embedded in a Porous Medium with Radiation Effects and Mixed Thermal Boundary Conditions

    OpenAIRE

    Najiyah S. Khasi'ie; Roziena Khairuddin; Najihah Mohamed; Mohd Zuki Salleh; Roslinda Nazar; Ioan Pop

    2012-01-01

    Problem statement: In this study, the mathematical modeling of free convection boundary layer flow over a permeable horizontal flat plate embedded in a porous medium under mixed thermal boundary conditions and radiation effects is considered. Approach: The transformed boundary layer equations are solved numerically using the shooting method. Results: Numerical solutions are obtained for the wall temperature, the heat transfer coefficient, as well as the velocity and temperature profiles. The ...

  2. Single-phase liquid flow forced convection under a nearly uniform heat flux boundary condition in microchannels

    KAUST Repository

    Lee, Man; Lee, Yi-Kuen; Zohar, Yitshak

    2012-01-01

    A microchannel heat sink, integrated with pressure and temperature microsensors, is utilized to study single-phase liquid flow forced convection under a uniform heat flux boundary condition. Utilizing a waferbond-and-etch- back technology, the heat source, temperature and pressure sensors are encapsulated in a thin composite membrane capping the microchannels, thus allowing experimentally good control of the thermal boundary conditions. A three-dimensional physical model has been constructed to facilitate numerical simulations of the heat flux distribution. The results indicate that upstream the cold working fluid absorbs heat, while, within the current operating conditions, downstream the warmer working fluid releases heat. The Nusselt number is computed numerically and compared with experimental and analytical results. The wall Nusselt number in a microchannel can be estimated using classical analytical solutions only over a limited range of the Reynolds number, Re: both the top and bottom Nusselt numbers approach 4 for Re < 1, while the top and bottom Nusselt numbers approach 0 and 5.3, respectively, for Re > 100. The experimentally estimated Nusselt number for forced convection is highly sensitive to the location of the temperature measurements used in calculating the Nusselt number. © 2012 IOP Publishing Ltd.

  3. Single-phase liquid flow forced convection under a nearly uniform heat flux boundary condition in microchannels

    KAUST Repository

    Lee, Man

    2012-02-22

    A microchannel heat sink, integrated with pressure and temperature microsensors, is utilized to study single-phase liquid flow forced convection under a uniform heat flux boundary condition. Utilizing a waferbond-and-etch- back technology, the heat source, temperature and pressure sensors are encapsulated in a thin composite membrane capping the microchannels, thus allowing experimentally good control of the thermal boundary conditions. A three-dimensional physical model has been constructed to facilitate numerical simulations of the heat flux distribution. The results indicate that upstream the cold working fluid absorbs heat, while, within the current operating conditions, downstream the warmer working fluid releases heat. The Nusselt number is computed numerically and compared with experimental and analytical results. The wall Nusselt number in a microchannel can be estimated using classical analytical solutions only over a limited range of the Reynolds number, Re: both the top and bottom Nusselt numbers approach 4 for Re < 1, while the top and bottom Nusselt numbers approach 0 and 5.3, respectively, for Re > 100. The experimentally estimated Nusselt number for forced convection is highly sensitive to the location of the temperature measurements used in calculating the Nusselt number. © 2012 IOP Publishing Ltd.

  4. Photochemical ozone production in tropical squall line convection during NASA Global Tropospheric Experiment/Amazon Boundary Layer Experiment 2A

    Science.gov (United States)

    Pickering, Kenneth E.; Thompson, Anne M.; Tao, Wei-Kuo; Simpson, Joanne; Scala, John R.

    1991-01-01

    The role of convection was examined in trace gas transport and ozone production in a tropical dry season squall line sampled on August 3, 1985, during NASA Global Tropospheric Experiment/Amazon Boundary Layer Experiment 2A (NASA GTE/ABLE 2A) in Amazonia, Brazil. Two types of analyses were performed. Transient effects within the cloud are examined with a combination of two-dimensional cloud and one-dimensional photochemical modeling. Tracer analyses using the cloud model wind fields yield a series of cross sections of NO(x), CO, and O3 distribution during the lifetime of the cloud; these fields are used in the photochemical model to compute the net rate of O3 production. At noon, when the cloud was mature, the instantaneous ozone production potential in the cloud is between 50 and 60 percent less than in no-cloud conditions due to reduced photolysis and cloud scavenging of radicals. Analysis of cloud inflows and outflows is used to differentiate between air that is undisturbed and air that has been modified by the storm. These profiles are used in the photochemical model to examine the aftereffects of convective redistribution in the 24-hour period following the storm. Total tropospheric column O3 production changed little due to convection because so little NO(x) was available in the lower troposphere. However, the integrated O3 production potential in the 5- to 13-km layer changed from net destruction to net production as a result of the convection. The conditions of the August 3, 1985, event may be typical of the early part of the dry season in Amazonia, when only minimal amounts of pollution from biomass burning have been transported into the region.

  5. Atmospheric Boundary Layer, Integrating Air Chemistry and Land Interactions

    NARCIS (Netherlands)

    Vilà-Guerau De Arellano, J.; Heerwaarden, van C.C.; Stratum, van B.J.H.; Dries, van den C.L.A.M.

    2015-01-01

    This textbook provides an introduction to the interactions between the atmosphere and the land for advanced undergraduate and graduate students and a reference text for researchers in atmospheric physics and chemistry, hydrology, and plant physiology. The combination of the book, which provides the

  6. Significant Atmospheric Boundary Layer Change Observed above an Agulhas Current Warm Cored Eddy

    Directory of Open Access Journals (Sweden)

    C. Messager

    2016-01-01

    Full Text Available The air-sea impact of a warm cored eddy ejected from the Agulhas Retroflection region south of Africa was assessed through both ocean and atmospheric profiling measurements during the austral summer. The presence of the eddy causes dramatic atmospheric boundary layer deepening, exceeding what was measured previously over such a feature in the region. This deepening seems mainly due to the turbulent heat flux anomaly above the warm eddy inducing extensive deep and persistent changes in the atmospheric boundary layer thermodynamics. The loss of heat by turbulent processes suggests that this kind of oceanic feature is an important and persistent source of heat for the atmosphere.

  7. Assessing the impact of aerosol-atmosphere interactions in convection-permitting regional climate simulations: the Rolf medicane in 2011

    Science.gov (United States)

    José Gómez-Navarro, Juan; María López-Romero, José; Palacios-Peña, Laura; Montávez, Juan Pedro; Jiménez-Guerrero, Pedro

    2017-04-01

    A critical challenge for assessing regional climate change projections relies on improving the estimate of atmospheric aerosol impact on clouds and reducing the uncertainty associated with the use of parameterizations. In this sense, the horizontal grid spacing implemented in state-of-the-art regional climate simulations is typically 10-25 kilometers, meaning that very important processes such as convective precipitation are smaller than a grid box, and therefore need to be parameterized. This causes large uncertainties, as closure assumptions and a number of parameters have to be established by model tuning. Convection is a physical process that may be strongly conditioned by atmospheric aerosols, although the solution of aerosol-cloud interactions in warm convective clouds remains nowadays a very important scientific challenge, rendering parametrization of these complex processes an important bottleneck that is responsible from a great part of the uncertainty in current climate change projections. Therefore, the explicit simulation of convective processes might improve the quality and reliability of the simulations of the aerosol-cloud interactions in a wide range of atmospheric phenomena. Particularly over the Mediterranean, the role of aerosol particles is very important, being this a crossroad that fuels the mixing of particles from different sources (sea-salt, biomass burning, anthropogenic, Saharan dust, etc). Still, the role of aerosols in extreme events in this area such as medicanes has been barely addressed. This work aims at assessing the role of aerosol-atmosphere interaction in medicanes with the help of the regional chemistry/climate on-line coupled model WRF-CHEM run at a convection-permitting resolution. The analysis is exemplary based on the "Rolf" medicane (6-8 November 2011). Using this case study as reference, four sets of simulations are run with two spatial resolutions: one at a convection-permitting configuration of 4 km, and other at the

  8. National Convective Weather Diagnostic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current convective hazards identified by the National Convective Weather Detection algorithm. The National Convective Weather Diagnostic (NCWD) is an automatically...

  9. Profiles of Wind and Turbulence in the Coastal Atmospheric Boundary Layer of Lake Erie

    KAUST Repository

    Wang, H; Barthelmie, R J; Crippa, P; Doubrawa, P; Pryor, S C

    2014-01-01

    Prediction of wind resource in coastal zones is difficult due to the complexity of flow in the coastal atmospheric boundary layer (CABL). A three week campaign was conducted over Lake Erie in May 2013 to investigate wind characteristics and improve

  10. Atmospheric Boundary Layer Modeling for Combined Meteorology and Air Quality Systems

    Science.gov (United States)

    Atmospheric Eulerian grid models for mesoscale and larger applications require sub-grid models for turbulent vertical exchange processes, particularly within the Planetary Boundary Layer (PSL). In combined meteorology and air quality modeling systems consistent PSL modeling of wi...

  11. Convective and global stability analysis of a Mach 5.8 boundary layer grazing a compliant surface

    Science.gov (United States)

    Dettenrieder, Fabian; Bodony, Daniel

    2016-11-01

    Boundary layer transition on high-speed vehicles is expected to be affected by unsteady surface compliance. The stability properties of a Mach 5.8 zero-pressure-gradient laminar boundary layer grazing a nominally-flat thermo-mechanically compliant panel is considered. The linearized compressible Navier-Stokes equations describe small amplitude disturbances in the fluid while the panel deformations are described by the Kirchhoff-Love plate equation and its thermal state by the transient heat equation. Compatibility conditions that couple disturbances in the fluid to those in the solid yield simple algebraic and robin boundary conditions for the velocity and thermal states, respectively. A local convective stability analysis shows that the panel can modify both the first and second Mack modes when, for metallic-like panels, the panel thickness exceeds the lengthscale δ99 Rex- 0 . 5 . A global stability analysis, which permits finite panel lengths with clamped-clamped boundary conditions, shows a rich eigenvalue spectrum with several branches. Unstable modes are found with streamwise-growing panel deformations leading to Mach wave-type radiation. Stable global modes are also found and have distinctly different panel modes but similar radiation patterns. Air Force Office of Scientific Research.

  12. Development of a measurement platformon a light airplane and analysis of airborne measurementsin the atmospheric boundary layer

    Directory of Open Access Journals (Sweden)

    D. Zardi

    2003-06-01

    Full Text Available In the present paper we provide an overview of a long term research project aimed at setting up a suitable platform for measurements in the atmospheric boundary layer on a light airplane along with some preliminary results obtained from fi eld campaigns at selected sites. Measurements of air pressure, temperature and relative humidity have been performed in various Alpine valleys up to a height of about 2500 m a.m.s.l. By means of GPS resources and specifi c post-processing procedures careful positioning of measurement points within the explored domain has been achieved. The analysis of collected data allowed detailed investigation of atmospheric vertical structures and dynamics typical of valley environment, such as morning transition from ground based inversion to fully developed well mixed convective boundary layer. Based on data collected along fl ights, 3D fi elds of the explored variables have been detected and identifi ed through application of geostatistical techniques (Kriging. The adopted procedures allowed evaluation of the intrinsic statistical structure of the spatial distribution of measured quantities and the estimate of the values of the same variable at unexplored locations by suitable weighted average of data recorded at close locations. Results thus obtained are presented and discussed.

  13. Investigation of the atmospheric boundary layer dynamics during the ESCOMPTE campaign

    OpenAIRE

    F. Saïd; A. Brut; B. Campistron; F. Cousin

    2007-01-01

    International audience; This paper presents some results about the behavior of the atmospheric boundary layer observed during the ESCOMPTE experiment. This campaign, which took place in south-eastern France during summer 2001, was aimed at improving our understanding of pollution episodes in relation to the dynamics of the lower troposphere. Using a large data set, as well as a simulation from the mesoscale non-hydrostatic model Meso-NH, we describe and analyze the atmospheric boundary layer ...

  14. Spectral assessment of the turbulent convection velocity in a spatially developing flat plate turbulent boundary layer at Reynolds numbers up to Re θ = 13000

    OpenAIRE

    Renard , N.; Deck , S.; Sagaut , P.

    2014-01-01

    International audience; A method inspired by del Alamo et al. [1] is derived to assess the wavelength-dependent convection velocity in a zero pressure gradient spatially developing flat plate turbulent boundary layer at Retheta = 13 000 for all wavelengths and all wall distances, using only estimates of the time power spectral density of the streamwise velocity and of its local spatial derivative. The resulting global convection velocity has a least-squares interpretation and is easily relate...

  15. The Small Unmanned Meteorological Observer SUMO: Recent developments and applications of a Micro-UAS for atmospheric boundary layer research

    Science.gov (United States)

    Reuder, J.; Jonassen, M. O.; Ólafsson, H.

    2012-04-01

    During the last 5 years, the Small Unmanned Meteorological Observer SUMO has been developed as a new and flexible tool for atmospheric boundary layer (ABL) research to be operated as controllable and recoverable atmospheric sounding system for the lowest 4 km above the Earth's surface. In the year 2011 two main technical improvements of the system have been accomplished. The integration of an inertial measurement unit (IMU) into the Paparazzi autopilot system has expanded the environmental conditions for SUMO operation to now even allowing incloud flights. In the field of sensor technology the implementation of a 5-hole probe for the determination of the 3 dimensional flow vector impinging the aircraft with a 100 Hz resolution and of a faster Pt1000 based temperature sensor have distinctly enhanced the meteorological measurement capabilities. The extended SUMO version has recently been operated during two field campaigns. The first one in a wind farm close to Vindeby on Lolland, Denmark, was dedicated to the investigation of the effects of wind turbines on boundary layer turbulence. In spite of a few pitfalls related to configuration and synchronisation of the corresponding data logging systems, this campaign provided promising results indicating the capability and future potential of small UAS for turbulence characterization in and around wind farms. The second one, the international BLLAST (Boundary Layer Late Afternoon and Sunset Transition) field campaign at the foothills of the Pyrenees in Lannemezan, France was focussing on processes related to the afternoon transition of the convective boundary layer. On a calm sunny day during this experiment, the SUMO soundings revealed an unexpected 2°C cooling in the ABL during morning hours. By a comparison with model simulations this cooling can be associated with thermally-driven upslope winds and the subsequent advection of relatively cool air from the lowlands north of the Pyrenees.

  16. An experimental investigation of laminar free convection from a vertical flat plate at general boundary condition

    International Nuclear Information System (INIS)

    Aharon, J.; Lahav, C.; Kalman, H.; Shai, I.

    1996-01-01

    The present work deals with natural convection on a vertical flat plate, where one side of the plate is exposed to an environment of constant temperature - T a , with which heat is exchanged at an effective heat transfer coefficient, Glen. The other side of the plate is exposed to a fluid at a different temperature -T ∞ . The temperature gradient induces a natural convection in the fluid. The present investigation treats the heat transfer problem in the laminar cone in air (P r =1). An experimental apparatus has been constructed to confirm the heat transfer features predicted analytically in previous work. The local experimental Nusselt number was correlated with the modified Rayleigh number, for the laminar range. (authors)

  17. UAV-borne coherent doppler lidar for marine atmospheric boundary layer observations

    Science.gov (United States)

    Wu, Songhua; Wang, Qichao; Liu, Bingyi; Liu, Jintao; Zhang, Kailin; Song, Xiaoquan

    2018-04-01

    A compact UAV-borne Coherent Doppler Lidar (UCDL) has been developed at the Ocean University of China for the observation of wind profile and boundary layer structure in Marine Atmospheric Boundary Layer (MABL). The design, specifications and motion-correction methodology of the UCDL are presented. Preliminary results of the first flight campaign in Hailing Island in December 2016 is discussed.

  18. On the Nature, Theory, and Modeling of Atmospheric Planetary Boundary Layers

    DEFF Research Database (Denmark)

    Baklanov, Alexander A.; Grisogono, Branko; Bornstein, Robert

    2011-01-01

    The gap between our modern understanding of planetary boundary layer physics and its decades-old representations in current operational atmospheric models is widening, which has stimulated this review of the current state of the art and an analysis of the immediate needs in boundary layer theory......, measurements, and modeling....

  19. Particle concentration and flux dynamics in the atmospheric boundary layer as the indicator of formation mechanism

    DEFF Research Database (Denmark)

    Lauros, J.; Sogachev, Andrey; Smolander, S.

    2011-01-01

    the atmospheric boundary layer during nucleation event days shows a highly dynamical picture, where particle formation is coupled with chemistry and turbulent transport. We have demonstrated the suitability of our turbulent mixing scheme in reproducing the most important characteristics of particle dynamics...... within the boundary layer. Deposition and particle flux simulations show that deposition affects noticeably only the smallest particles...

  20. Representing the atmospheric boundary layer in climate models of intermediate compexity

    NARCIS (Netherlands)

    Ronda, R.J.; Haarsma, R.J.; Holtslag, A.A.M.

    2003-01-01

    In this study the role of atmospheric boundary layer schemes in climate models is investigated. Including a boundary layer scheme in an Earth system model of intermediate complexity (EMIC) produces only minor differences in the estimated global distribution of sensible and latent heat fluxes over

  1. Stable Atmospheric Boundary Layer Experiment in Spain (SABLES 98) : a report

    NARCIS (Netherlands)

    Cuxart, J.; Yague, C.; Morales, G.; Terradelles, E.; Orbe, J.; Calvo, J.; Vilu-Guerau, de J.; Soler, M.R.; Infante, C.; Buenestado, P.; Espinalt, A.; Jorgensem, H.E.

    2000-01-01

    This paper describes the Stable Atmospheric Boundary Layer Experiment in Spain (SABLES 98), which took place over the northern Spanish plateau comprising relatively flat grassland, in September 1998. The main objectives of the campaign were to study the properties of the mid-latitude stable boundary

  2. Interaction of Atmospheric Turbulence with Blade Boundary Layer Dynamics on a 5MW Wind Turbine using Blade-Boundary-Layer-Resolved CFD with hybrid URANS-LES.

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, Ganesh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pennsylvania State Univ., University Park, PA (United States); Brasseur, James [Pennsylvania State Univ., University Park, PA (United States); Univ. of Colorado, Boulder, CO (United States); Lavely, Adam; Jayaraman, Balaji; Craven, Brent

    2016-01-04

    We describe the response of the NREL 5 MW wind turbine blade boundary layer to the passage of atmospheric turbulence using blade-boundary-layer-resolved computational fluid dynamics with hybrid URANS-LES modeling.

  3. Reconnection During Periods of Large IMF By Producing Shear Instabilities at the Dayside Convection Reversal Boundary

    Science.gov (United States)

    Qamar, S.; Clauer, C. R.; Hartinger, M.; Xu, Z.

    2017-12-01

    During periods of large interplanetary magnetic field (IMF) By component and small negative Bz (GSM Coordinates), the ionospheric polar electric potential system is distorted so as to produce large east-west convection shears across local noon. Past research has shown examples of ULF waves with periods of approximately 10 - 20 minutes observed at this convection shear by the Greenland west coast chain of magnetometers. Past work has shown examples of these waves and associated them with conditions in the solar wind and IMF, particularly periods of large IMF By component. Here we report the results of a search of several years of solar wind data to identify periods when the IMF By component is large and the magnetometer chains along the 40-degree magnetic meridian (Greenland west coast and conjugate Antarctic chains) are within a few hours of local noon. We test here the hypothesis that large IMF By reconnection leads to large convection shears across local noon that generate ULF waves through, presumably, a shear instability such as Kelvin-Helmholtz.

  4. Kinetics of interstitial segregation in Cottrell atmospheres and grain boundaries

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jiří; Zickler, G. A.; Kozeschnik, E.; Fischer, F. D.

    2015-01-01

    Roč. 95, č. 9 (2015), s. 458-465 ISSN 0950-0839 R&D Projects: GA ČR(CZ) GA15-06390S Institutional support: RVO:68081723 Keywords : segregation * grain boundaries * dislocations * simulation * thermodynamic extremal principle Subject RIV: BJ - Thermodynamics Impact factor: 0.918, year: 2015

  5. The Impact of Microphysics and Planetary Boundary Layer Physics on Model Simulation of U.S. Deep South Summer Convection

    Science.gov (United States)

    McCaul, Eugene W., Jr.; Case, Jonathan L.; Zavodsky, Bradley T.; Srikishen, Jayanthi; Medlin, Jeffrey M.; Wood, Lance

    2014-01-01

    Inspection of output from various configurations of high-resolution, explicit convection forecast models such as the Weather Research and Forecasting (WRF) model indicates significant sensitivity to the choices of model physics pararneterizations employed. Some of the largest apparent sensitivities are related to the specifications of the cloud microphysics and planetary boundary layer physics packages. In addition, these sensitivities appear to be especially pronounced for the weakly-sheared, multicell modes of deep convection characteristic of the Deep South of the United States during the boreal summer. Possible ocean-land sensitivities also argue for further examination of the impacts of using unique ocean-land surface initialization datasets provided by the NASA Short-term Prediction Research and Transition (SPoRn Center to select NOAAlNWS weather forecast offices. To obtain better quantitative understanding of these sensitivities and also to determine the utility of the ocean-land initialization data, we have executed matrices of regional WRF forecasts for selected convective events near Mobile, AL (MOB), and Houston, TX (HGX). The matrices consist of identically initialized WRF 24-h forecasts using any of eight microphysics choices and any of three planetary boWldary layer choices. The resulting 24 simulations performed for each event within either the MOB or HGX regions are then compared to identify the sensitivities of various convective storm metrics to the physics choices. Particular emphasis is placed on sensitivities of precipitation timing, intensity, and coverage, as well as amount and coverage oflightuing activity diagnosed from storm kinematics and graupel in the mixed phase layer. The results confirm impressions gleaned from study of the behavior of variously configured WRF runs contained in the ensembles produced each spring at the Center for the Analysis and Prediction of Storms, but with the benefit of more straightforward control of the

  6. Spatial structures in the heat budget of the Antarctic Atmospheric Boundary Layer

    NARCIS (Netherlands)

    van der Berg, W.J.; van den Broeke, M.R.; van Meijgaard, E.

    2008-01-01

    Output from the regional climate model RACMO2/ANT is used to calculate the heat budget of the Antarctic atmospheric boundary layer (ABL). The main feature of the wintertime Antarctic ABL is a persistent temperature deficit compared to the free atmosphere. The magnitude of this deficit is controlled

  7. Response in atmospheric circulation and sources of Greenland precipitation to glacial boundary conditions

    DEFF Research Database (Denmark)

    Langen, Peter Lang; Vinther, Bo Møllesøe

    2009-01-01

    The response in northern hemisphere atmospheric circulation and the resulting changes in moisture sources for Greenland precipitation to glacial boundary conditions are studied in NCAR's CCM3 atmospheric general circulation model fitted with a moisture tracking functionality. We employ both...... seasonality, condensation temperatures and source temperatures are assessed. Udgivelsesdato: June 2009...

  8. Convective instability in a time-dependent buoyancy driven boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, A.M.H.; Patterson, J.C.; Graham, T.; Schoepf, W. [University of Western Australia, Nedlands (Australia). Centre for Water Research

    2000-01-01

    The stability of the parallel time-dependent boundary layer adjacent to a suddenly heated vertical wall is described. The flow is investigated through experiments in water, through direct numerical simulation and also through linear stability analysis. The full numerical simulation of the flow shows that small perturbations to the wall boundary conditions, that are also present in the experimental study, are responsible for triggering the instability. As a result, oscillatory behaviour in the boundary layer is observed well before the transition to a steady two-dimensional flow begins. The properties of the observed oscillations are compared with those predicted by a linear stability analysis of the unsteady boundary layer using a quasi-stationary assumption and also using non-stationary assumptions by the formulation of parabolized equations (PSE). (Author)

  9. Simultaneous heat and mass transfer on oscillatory free convection boundary layer flow

    International Nuclear Information System (INIS)

    Hossain, M.A.

    1985-11-01

    The problem of simultaneous heat and mass transfer in two-dimensional free convection from a semi-infinite vertical flat plate is investigated. An integral method is used to find a solution for zero wall velocity and for a mass transfer velocity at the wall with small-amplitude oscillatory wall temperature. Low and high-frequency solutions are developed separately and are discussed graphically with the effects of the parameters Gr (the Grashof number for heat transfer), Gc (the Grashof number for mass transfer) and Sc (the Schmidt number) for Pr=0.71 representing aid at 20 deg. C. (author)

  10. Atmospheric-radiation boundary conditions for high-frequency waves in time-distance helioseismology

    Science.gov (United States)

    Fournier, D.; Leguèbe, M.; Hanson, C. S.; Gizon, L.; Barucq, H.; Chabassier, J.; Duruflé, M.

    2017-12-01

    The temporal covariance between seismic waves measured at two locations on the solar surface is the fundamental observable in time-distance helioseismology. Above the acoustic cut-off frequency ( 5.3 mHz), waves are not trapped in the solar interior and the covariance function can be used to probe the upper atmosphere. We wish to implement appropriate radiative boundary conditions for computing the propagation of high-frequency waves in the solar atmosphere. We consider recently developed and published radiative boundary conditions for atmospheres in which sound-speed is constant and density decreases exponentially with radius. We compute the cross-covariance function using a finite element method in spherical geometry and in the frequency domain. The ratio between first- and second-skip amplitudes in the time-distance diagram is used as a diagnostic to compare boundary conditions and to compare with observations. We find that a boundary condition applied 500 km above the photosphere and derived under the approximation of small angles of incidence accurately reproduces the "infinite atmosphere" solution for high-frequency waves. When the radiative boundary condition is applied 2 Mm above the photosphere, we find that the choice of atmospheric model affects the time-distance diagram. In particular, the time-distance diagram exhibits double-ridge structure when using a Vernazza Avrett Loeser atmospheric model.

  11. Characterization of the Atmospheric Boundary Layer Over Aburrá Valley Region (Colombia) Using Remote Sensing and Radiosonde Data

    Science.gov (United States)

    Herrera, L.; Hoyos Ortiz, C. D.

    2017-12-01

    The spatio-temporal evolution of the Atmospheric Boundary Layer (ABL) in the Aburrá Valley, a narrow highly complex mountainous terrain located in the Colombian Andes, is studied using different datasets including radiosonde and remote sensors from the meteorological network of the Aburrá Valley Early Warning System. Different techniques are developed in order to estimate Mixed Layer Height (MLH) based on variance of the ceilometer backscattering profiles. The Medellín metropolitan area, home of 4.5 million people, is located on the base and the hills of the valley. The generally large aerosol load within the valley from anthropogenic emissions allows the use of ceilometer retrievals of the MLH, especially under stable atmospheric conditions (late at night and early in the morning). Convective atmospheres, however, favor the aerosol dispersion which in turns increases the uncertainty associated with the estimation of the Convective Boundary Layer using ceilometer retrievals. A multi-sensor technique is also developed based on Richardson Number estimations using a Radar Wind Profiler combined with a Microwave Radiometer. Results of this technique seem to be more accurate thorough the diurnal cycle. ABL retrievals are available from October 2014 to April 2017. The diurnal cycle of the ABL exhibits monomodal behavior, highly influenced by the evolution of the potential temperature profile, and the turbulent fluxes near the surface. On the other hand, the backscattering diurnal cycle presents a bimodal structure, showing that the amount of aerosol particles at the lower troposphere is strongly influenced by anthropogenic emissions, dispersion conditioned by topography and by the ABL dynamics, conditioning the available vertical height for the pollutants to interact and disperse. Nevertheless, the amount, distribution or type of atmospheric aerosols does not appear to have a first order influence on the MLH variations or evolution. Results also show that intra

  12. Oblique radiation lateral open boundary conditions for a regional climate atmospheric model

    Science.gov (United States)

    Cabos Narvaez, William; De Frutos Redondo, Jose Antonio; Perez Sanz, Juan Ignacio; Sein, Dmitry

    2013-04-01

    The prescription of lateral boundary conditions in regional atmospheric models represent a very important issue for limited area models. The ill-posed nature of the open boundary conditions makes it necessary to devise schemes in order to filter spurious wave reflections at boundaries, being desirable to have one boundary condition per variable. On the other side, due to the essentially hyperbolic nature of the equations solved in state of the art atmospheric models, external data is required only for inward boundary fluxes. These circumstances make radiation lateral boundary conditions a good choice for the filtering of spurious wave reflections. Here we apply the adaptive oblique radiation modification proposed by Mikoyada and Roseti to each of the prognostic variables of the REMO regional atmospheric model and compare it to the more common normal radiation condition used in REMO. In the proposed scheme, special attention is paid to the estimation of the radiation phase speed, essential to detecting the direction of boundary fluxes. One of the differences with the classical scheme is that in case of outward propagation, the adaptive nudging imposed in the boundaries allows to minimize under and over specifications problems, adequately incorporating the external information.

  13. Analytical solutions for tomato peeling with combined heat flux and convective boundary conditions

    Science.gov (United States)

    Cuccurullo, G.; Giordano, L.; Metallo, A.

    2017-11-01

    Peeling of tomatoes by radiative heating is a valid alternative to steam or lye, which are expensive and pollutant methods. Suitable energy densities are required in order to realize short time operations, thus involving only a thin layer under the tomato surface. This paper aims to predict the temperature field in rotating tomatoes exposed to the source irradiation. Therefore, a 1D unsteady analytical model is presented, which involves a semi-infinite slab subjected to time dependent heating while convective heat transfer takes place on the exposed surface. In order to account for the tomato rotation, the heat source is described as the positive half-wave of a sinusoidal function. The problem being linear, the solution is derived following the Laplace Transform Method. In addition, an easy-to-handle solution for the problem at hand is presented, which assumes a differentiable function for approximating the source while neglecting convective cooling, the latter contribution turning out to be negligible for the context at hand. A satisfying agreement between the two analytical solutions is found, therefore, an easy procedure for a proper design of the dry heating system can be set up avoiding the use of numerical simulations.

  14. Aerodynamic modeling of the lower part of the atmospheric boundary layer

    International Nuclear Information System (INIS)

    Mohamed, K.S.

    1992-01-01

    In this thesis , we present a study dealing with the basic meteorology concepts commonly used in air pollution. The pollutant motion in the atmosphere together with its basic mathematical concepts have been reviewed. This review includes; atmospheric forces acting on a particle, atmospheric turbulence, atmospheric stability and the most widely used atmospheric diffusion models. The resistance for pollutant transfer for different atmospheric stability classes has been derived in terms of both wind velocity profile parameters and diffusion coefficients. Therefrom, the residence time of a pollutant in the atmosphere is obtained. The dust particle trajectory and deposition in case of neutral atmosphere is formulated mathematically adopting particle Gaussian distribution. An analytical treatment for the diffusion equation with extension of the boundary conditions to include the ground surface absorption of pollutants and presence of elevated inversion layer, has been presented . The concept of decay distance is introduced and applied in a sample calculation for the dispersion of pollutants over growing wheat field

  15. Mixed convection boundary layer flow over a moving vertical flat plate in an external fluid flow with viscous dissipation effect.

    Directory of Open Access Journals (Sweden)

    Norfifah Bachok

    Full Text Available The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface.

  16. Predictions of the effect of stratification on superimposed forced and free convection between vertical parallel plates for various boundary conditions

    International Nuclear Information System (INIS)

    Cowan, G.H.; Irvine, T.J. Jr.; Quarini, G.L.

    1983-01-01

    The velocity and temperature equations for laminar buoyancy and forced convection flows between vertical flat parallel plates are presented. The thermal boundary conditions on the plate define the buoyancy driven field, while the channel Reynolds number defines the forced flow field. Specific examples relating to tall narrow channels with laminar convention and to closed high ratio cavities (as may be found in the proposed active and passive insulation systems for sodium cooled fast reactors) are presented. The analysis is limited to the laminar flow regimes, whilst some reactor situations are likely to be turbulent, hence a proposal for a simple extension of this analysis to the turbulent regime is made. It is shown how the analysis can be made to apply to fluids of various Prandtl numbers. (author)

  17. Characterizing dust aerosols in the atmospheric boundary layer over the deserts in Northwest China: monitoring network and field observation

    Science.gov (United States)

    He, Q.; Matimin, A.; Yang, X.

    2016-12-01

    TheTaklimakan, Gurbantunggut and BadainJaran Deserts with the total area of 43.8×104 km2 in Northwest China are the major dust emission sources in Central Asia. Understanding Central Asian dust emissions and the interaction with the atmospheric boundary layer has an important implication for regional and global climate and environment changes. In order to explore these scientific issues, a monitoring network of 63 sites was established over the vast deserts (Taklimakan Desert, Gurbantunggut Desert and Badain Jaran Desert) in Northwest China for the comprehensive measurements of dust aerosol emission, transport and deposition as well as the atmospheric boundary layer including the meteorological parameters of boundary layer, surface radiation, surface heat fluxes, soil parameters, dust aerosol properties, water vapor profiles, and dust emission. Based on the monitoring network, the field experiments have been conducted to characterize dust aerosols and the atmospheric boundary layer over the deserts. The experiment observation indicated that depth of the convective boundary layer can reach 5000m on summer afternoons. In desert regions, the diurnal mean net radiation was effected significantly by dust weather, and sensible heat was much greater than latent heat accounting about 40-50% in the heat balance of desert. The surface soil and dust size distributions of Northwest China Deserts were obtained through widely collecting samples, results showed that the dominant dust particle size was PM100within 80m height, on average accounting for 60-80% of the samples, with 0.9-2.5% for PM0-2.5, 3.5-7.0% for PM0-10 and 5.0-14.0% for PM0-20. The time dust emission of Taklimakan Desert, Gurbantunggut Desert and Badain Jaran Desert accounted for 0.48%, 7.3%×10-5and 1.9% of the total time within a year, and the threshold friction velocity for dust emission were 0.22-1.06m/s, 0.29-1.5m/s and 0.21-0.59m/s, respectively.

  18. Transitional boundary layer in low-Prandtl-number convection at high Rayleigh number

    Science.gov (United States)

    Schumacher, Joerg; Bandaru, Vinodh; Pandey, Ambrish; Scheel, Janet

    2016-11-01

    The boundary layer structure of the velocity and temperature fields in turbulent Rayleigh-Bénard flows in closed cylindrical cells of unit aspect ratio is revisited from a transitional and turbulent viscous boundary layer perspective. When the Rayleigh number is large enough the boundary layer dynamics at the bottom and top plates can be separated into an impact region of downwelling plumes, an ejection region of upwelling plumes and an interior region (away from side walls) that is dominated by a shear flow of varying orientation. This interior plate region is compared here to classical wall-bounded shear flows. The working fluid is liquid mercury or liquid gallium at a Prandtl number of Pr = 0 . 021 for a range of Rayleigh numbers of 3 ×105 Deutsche Forschungsgemeinschaft.

  19. Simulation of a 5MW wind turbine in an atmospheric boundary layer

    International Nuclear Information System (INIS)

    Meister, Konrad; Lutz, Thorsten; Krämer, Ewald

    2014-01-01

    This article presents detached eddy simulation (DES) results of a 5MW wind turbine in an unsteady atmospheric boundary layer. The evaluation performed in this article focuses on turbine blade loads as well as on the influence of atmospheric turbulence and tower on blade loads. Therefore, the turbulence transport of the atmospheric boundary layer to the turbine position is analyzed. To determine the influence of atmospheric turbulence on wind turbines the blade load spectrum is evaluated and compared to wind turbine simulation results with uniform inflow. Moreover, the influences of different frequency regimes and the tower on the blade loads are discussed. Finally, the normal force coefficient spectrum is analyzed at three different radial positions and the influence of tower and atmospheric turbulence is shown

  20. Impact of surface texture on natural convection boundary layer of nanofluid

    Directory of Open Access Journals (Sweden)

    Mehmood Ahmer

    2018-01-01

    Full Text Available Heat transfer characteristics are investigated in natural convection flow of water-based nanofluid near a vertical rough wall. The analysis considers five different nanoparticles: silver, copper, alumina, magnetite, and silica. The concentration has been limited between 0-20% for all types of nanoparticle. The governing equations are modeled using the Boussinesq approximation and Tiwari and Das models are utilized to represent the nanofluid. The analysis examines the effects of nanoparticle volume fraction, type of nanofluid, and the wavy surface geometry parameter on the skin friction and Nusselt number. It is observed that for a given nanofluid the skin friction and Nusselt number can be maximized via an appropriate tuning of the wavy surface geometry parameter along with the selection of suitable nanoparticle. Particular to this study cooper is observed to be more productive towards the flow and heat transfer enhancement. In total the metallic oxides are found to be less beneficial as compared to the pure metals.

  1. MHD forced and free convection boundary layer flow near the leading edge

    International Nuclear Information System (INIS)

    Hossain, M.A.; Ahmed, M.

    1988-07-01

    Magnetohydrodynamic forced and free convection flow of an electrically conducting viscous incompressible fluid past a vertical flat plate with uniform heat flux in the presence of a magnetic field acting normal to the plate that moves with the fluid has been studied near the leading edge of the plate. The coupled non-linear equations are solved by the method of superposition for the values of the Prandtl number ranges from 0.01 to 10.0. The velocity and the temperature profiles are presented graphically and the values of the wall shear-stress as well as the heat transfer rate are presented in tabular form showing the effect of the buoyancy force and the applied magnetic field. To show the accuracy of the present method some typical values are compared with the available one. (author). 17 refs, 3 figs, 2 tabs

  2. Immersed boundary methods for high-resolution simulation of atmospheric boundary-layer flow over complex terrain

    Science.gov (United States)

    Lundquist, Katherine Ann

    Mesoscale models, such as the Weather Research and Forecasting (WRF) model, are increasingly used for high resolution simulations, particularly in complex terrain, but errors associated with terrain-following coordinates degrade the accuracy of the solution. Use of an alternative Cartesian gridding technique, known as an immersed boundary method (IBM), alleviates coordinate transformation errors and eliminates restrictions on terrain slope which currently limit mesoscale models to slowly varying terrain. In this dissertation, an immersed boundary method is developed for use in numerical weather prediction. Use of the method facilitates explicit resolution of complex terrain, even urban terrain, in the WRF mesoscale model. First, the errors that arise in the WRF model when complex terrain is present are presented. This is accomplished using a scalar advection test case, and comparing the numerical solution to the analytical solution. Results are presented for different orders of advection schemes, grid resolutions and aspect ratios, as well as various degrees of terrain slope. For comparison, results from the same simulation are presented using the IBM. Both two-dimensional and three-dimensional immersed boundary methods are then described, along with details that are specific to the implementation of IBM in the WRF code. Our IBM is capable of imposing both Dirichlet and Neumann boundary conditions. Additionally, a method for coupling atmospheric physics parameterizations at the immersed boundary is presented, making IB methods much more functional in the context of numerical weather prediction models. The two-dimensional IB method is verified through comparisons of solutions for gentle terrain slopes when using IBM and terrain-following grids. The canonical case of flow over a Witch of Agnesi hill provides validation of the basic no-slip and zero gradient boundary conditions. Specified diurnal heating in a valley, producing anabatic winds, is used to validate the

  3. Immersed Boundary Methods for High-Resolution Simulation of Atmospheric Boundary-Layer Flow Over Complex Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, K A [Univ. of California, Berkeley, CA (United States)

    2010-05-12

    Mesoscale models, such as the Weather Research and Forecasting (WRF) model, are increasingly used for high resolution simulations, particularly in complex terrain, but errors associated with terrain-following coordinates degrade the accuracy of the solution. Use of an alternative Cartesian gridding technique, known as an immersed boundary method (IBM), alleviates coordinate transformation errors and eliminates restrictions on terrain slope which currently limit mesoscale models to slowly varying terrain. In this dissertation, an immersed boundary method is developed for use in numerical weather prediction. Use of the method facilitates explicit resolution of complex terrain, even urban terrain, in the WRF mesoscale model. First, the errors that arise in the WRF model when complex terrain is present are presented. This is accomplished using a scalar advection test case, and comparing the numerical solution to the analytical solution. Results are presented for different orders of advection schemes, grid resolutions and aspect ratios, as well as various degrees of terrain slope. For comparison, results from the same simulation are presented using the IBM. Both two-dimensional and three-dimensional immersed boundary methods are then described, along with details that are specific to the implementation of IBM in the WRF code. Our IBM is capable of imposing both Dirichlet and Neumann boundary conditions. Additionally, a method for coupling atmospheric physics parameterizations at the immersed boundary is presented, making IB methods much more functional in the context of numerical weather prediction models. The two-dimensional IB method is verified through comparisons of solutions for gentle terrain slopes when using IBM and terrain-following grids. The canonical case of flow over a Witch of Agnesi hill provides validation of the basic no-slip and zero gradient boundary conditions. Specified diurnal heating in a valley, producing anabatic winds, is used to validate the

  4. Large artificially generated turbulent boundary layers for the study of atmospheric flows

    International Nuclear Information System (INIS)

    Guimaraes, Joao Henrique D.; Santos Junior, Sergio J.F. dos; Freire, Atila P. Silva; Jian, Su

    1999-01-01

    The present work discusses in detail the experimental conditions for the establishment of thick artificially generated turbulent boundary layer which can be classified as having the near characteristics of an atmospheric boundary layer. The paper describes the experimental arrangement, including the features of the designed wind tunnel and of the instrumentation. the boundary layer is made to develop over a surface fitted with wedge generators which are used to yield a very thick boundary layer. The flow conditions were validated against the following features: growth, structure, equilibrium and turbulent transport momentum. Results are presented for the following main flow variables: mean velocity, local skin-friction coefficient, boundary layer momentum thickness and the Clauser factor. The velocity boundary layer characteristics were shown to be in good agreement with the expected trend in view of the classical expressions found in literature. (author)

  5. Free convection boundary layer flow past a horizontal flat plate embedded in porous medium filled by nano-fluid containing gyro-tactic microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, A. [Department of Mechanical Engineering, School of Engineering and Applied Science, Gonzaga University, Spokane, WA 99258 (United States); Khan, W.A. [Department of Engineering Sciences, National University of Sciences and Technology, Karachi 75350 (Pakistan); Pop, I. [Department of Applied Mathematics, Babes-Bolyai University, Cluj-Napoca (Romania)

    2012-06-15

    The steady boundary layer free convection flow past a horizontal flat plate embedded in a porous medium filled by a water-based nano-fluid containing gyro-tactic microorganisms is investigated. The Oberbeck-Boussinesq approximation is assumed in the analysis. The effects of bio-convection parameters on the dimensionless velocity, temperature, nano-particle concentration and density of motile microorganisms as well as on the local Nusselt, Sherwood and motile microorganism numbers are investigated and presented graphically. In the absence of bio-convection, the results are compared with the existing data in the open literature and found to be in good agreement. The bio-convection parameters strongly influence the heat, mass, and motile microorganism transport rates. (authors)

  6. Modeling Turbulence Generation in the Atmospheric Surface and Boundary Layers

    Science.gov (United States)

    2015-10-01

    hydrostatic equation: dP dz = −ρa g −→ ∫ ZI 0 ρa dz = − 1 g ∫ dP = + 1 g [P (0)− P (ZI)]. (6.14) The pressure at the surface is... surface pressure is estimated, we can compute a vertical pressure profile using the hydrostatic equation and a selected temperature profile based on dP... surface -layer atmosphere. By surface layer what is intended is a layer of foliage plus the surface itself. That is, a flat ground surface that

  7. CFD Modeling of Non-Neutral Atmospheric Boundary Layer Conditions

    DEFF Research Database (Denmark)

    Koblitz, Tilman

    model results. A method is developed how to simulate the time-dependant non-neutral ABL flow over complex terrain: a precursor simulation is used to specify unsteady inlet boundary conditions on complex terrain domains. The advantage of the developed RANS model framework is its general applicability...... characteristics of neutral and non-neutral ABL flow. The developed ABL model significantly improves the predicted flow fields over both flat and complex terrain, when compared against neutral models and measurements....... cost than e.g. using large-eddy simulations. The developed ABL model is successfully validated using a range of different test cases with increasing complexity. Data from several large scale field campaigns, wind tunnel experiments, and previous numerical simulations is presented and compared against...

  8. Simulation of the steady-state energy transfer in rigid bodies, with convective-radiative boundary conditions, employing a minimum principle

    International Nuclear Information System (INIS)

    Gama, R.M.S. da.

    1992-08-01

    The energy transfer phenomenon in a rigid and opaque body that exchanges energy, with the environment, by convection and by diffuse thermal radiation is studied. The considered phenomenon is described by a partial differential equation, subjected to (nonlinear) boundary conditions. A minimum principle, suitable for a large class of energy transfer problems is presented. Some particular cases are simulated. (author)

  9. How can we describe the entrainment processes in sheared convective boundary layers?: a large-eddy simulation and mixed-layer theory/model comparison study

    NARCIS (Netherlands)

    Pino, D.; Vilà-Guerau de Arellano, J.; Kim, S.W.

    2006-01-01

    Dry convective boundary layers characterized by a significant wind shear on the surface and at the inversion zone are studied by means of the mixed layer theory. Two different representations of the entrainment zone, each of which has a different closure of the entrainment heat flux, are considered.

  10. Representing Sheared Convective Boundary Layer by Zeroth- and First-Order-Jump Mixed-Layer Models: Large-Eddy Simulation Verification

    NARCIS (Netherlands)

    Pino, D.; Vilà-Guerau de Arellano, J.; Kim, S.W.

    2006-01-01

    Dry convective boundary layers characterized by a significant wind shear on the surface and at the inversion are studied by means of the mixed-layer theory. Two different representations of the entrainment zone, each of which has a different closure of the entrainment heat flux, are considered. The

  11. COED Transactions, Vol. X, No. 9, September 1978. Use of the Analog/Hybrid Computer in Boundary Layer and Convection Studies.

    Science.gov (United States)

    Mitchell, Eugene E., Ed.

    In certain boundary layer or natural convection work, where a similarity transformation is valid, the equations can be reduced to a set of nonlinear ordinary differential equations. They are therefore well-suited to a fast solution on an analog/hybrid computer. This paper illustrates such usage of the analog/hybrid computer by a set of…

  12. Parallel and non-parallel laminar mixed convection flow in an inclined tube: The effect of the boundary conditions

    International Nuclear Information System (INIS)

    Barletta, A.

    2008-01-01

    The necessary condition for the onset of parallel flow in the fully developed region of an inclined duct is applied to the case of a circular tube. Parallel flow in inclined ducts is an uncommon regime, since in most cases buoyancy tends to produce the onset of secondary flow. The present study shows how proper thermal boundary conditions may preserve parallel flow regime. Mixed convection flow is studied for a special non-axisymmetric thermal boundary condition that, with a proper choice of a switch parameter, may be compatible with parallel flow. More precisely, a circumferentially variable heat flux distribution is prescribed on the tube wall, expressed as a sinusoidal function of the azimuthal coordinate θ with period 2π. A π/2 rotation in the position of the maximum heat flux, achieved by setting the switch parameter, may allow or not the existence of parallel flow. Two cases are considered corresponding to parallel and non-parallel flow. In the first case, the governing balance equations allow a simple analytical solution. On the contrary, in the second case, the local balance equations are solved numerically by employing a finite element method

  13. Representation of the Saharan atmospheric boundary layer in the Weather and Research Forecast (WRF) model: A sensitivity analysis.

    Science.gov (United States)

    Todd, Martin; Cavazos, Carolina; Wang, Yi

    2013-04-01

    The Saharan atmospheric boundary layer (SABL) during summer is one of the deepest on Earth, and is crucial in controlling the vertical redistribution and long-range transport of dust in the Sahara. The SABL is typically made up of an actively growing convective layer driven by high sensible heating at the surface, with a deep, near-neutrally stratified Saharan residual layer (SRL) above it, which is mostly well mixed in humidity and temperature and reaches a height of ˜5-6km. These two layers are usually separated by a weak (≤1K) temperature inversion. Model representation of the SPBL structure and evolution is important for accurate weather/climate and aerosol prediction. In this work, we evaluate model performance of the Weather Research and Forecasting (WRF) to represent key multi-scale processes in the SABL during summer 2011, including depiction of the diurnal cycle. For this purpose, a sensitivity analysis is performed to examine the performance of seven PBL schemes (YSU, MYJ, QNSE, MYNN, ACM, Boulac and MRF) and two land-surface model (Noah and RUC) schemes. In addition, the sensitivity to the choice of lateral boundary conditions (ERA-Interim and NCEP) and land use classification maps (USGS and MODIS-based) is tested. Model outputs were confronted upper-air and surface observations from the Fennec super-site at Bordj Moktar and automatic weather station (AWS) in Southern Algeria Vertical profiles of wind speed, potential temperature and water vapour mixing ratio were examined to diagnose differences in PBL heights and model efficacy to reproduce the diurnal cycle of the SABL. We find that the structure of the model SABL is most sensitive the choice of land surface model and lateral boundary conditions and relatively insensitive to the PBL scheme. Overall the model represents well the diurnal cycle in the structure of the SABL. Consistent model biases include (i) a moist (1-2 gkg-1) and slightly cool (~1K) bias in the daytime convective boundary layer (ii

  14. Fiber optic distributed temperature sensing for the determination of the nocturnal atmospheric boundary layer height

    Directory of Open Access Journals (Sweden)

    C. A. Keller

    2011-02-01

    Full Text Available A new method for measuring air temperature profiles in the atmospheric boundary layer at high spatial and temporal resolution is presented. The measurements are based on Raman scattering distributed temperature sensing (DTS with a fiber optic cable attached to a tethered balloon. These data were used to estimate the height of the stable nocturnal boundary layer. The experiment was successfully deployed during a two-day campaign in September 2009, providing evidence that DTS is well suited for this atmospheric application. Observed stable temperature profiles exhibit an exponential shape confirming similarity concepts of the temperature inversion close to the surface. The atmospheric mixing height (MH was estimated to vary between 5 m and 50 m as a result of the nocturnal boundary layer evolution. This value is in good agreement with the MH derived from concurrent Radon-222 (222Rn measurements and in previous studies.

  15. Preface: GEWEX Atmospheric Boundary-layer Study (GABLS) on Stable Boundary Layers

    NARCIS (Netherlands)

    Holtslag, A.A.M.

    2006-01-01

    The Global Energy and Water Cycle Experiment (GEWEX) is a program initiated by the World Climate Research Programme (WCRP) to observe, understand and model the hydrological cycle and the related energy fluxes in the atmosphere, at the land surface and in the upper oceans. Consequently the

  16. Tracking atmospheric boundary layer in tehran using combined lidar remote sensing and ground base measurements

    Science.gov (United States)

    Panahifar, Hossein; Khalesifard, Hamid

    2018-04-01

    The vertical structure of the atmospheric boundary layer (ABL) has been studied by use of a depolarized LiDAR over Tehran, Iran. The boundary layer height (BLH) remains under 1km, and its retrieval from LiDAR have been compared with sonding measurements and meteorological model outputs. It is also shown that the wind speed and direction as well as topography lead to the persistence of air pollution in Tehran. The situation aggravate in fall and winter due to temperature inversion.

  17. Impact of radial magnetic field on peristalsis in curved channel with convective boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Tasawar [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Tanveer, Anum, E-mail: qau14@yahoo.com [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Alsaadi, Fuad [Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Mousa, Ghassan [Department of Mechanical Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2016-04-01

    This paper addresses the peristaltic flow in curved channel with combined heat/mass transfer and convective effects. The channel walls are flexible. An imposed magnetic field is applied in radial direction to increase the wave amplitude (used in ECG for synchronization purposes). The pseudoplastic fluid comprising shear-thinning/shear thickening effects has been used in mathematical modeling. Small Reynolds number assumption is employed to neglect inertial effects. Half channel-width to wavelength ratio is small enough for the pressure to be considered uniform over the cross-section. The graphical results obtained are compared with planar channel. Results show the non-symmetric behavior of sundry parameters in contrary to the planar case. Additionally more clear results are seen when the curved channel is approached. - Highlights: • The behavior of curvature parameter k on velocity is not symmetric. • Temperature is decreasing function of Biot number Bi. • Hartman number has similar qualitative effects on both velocity and temperature. • Behavior of concentration is opposite to that of temperature in a qualitative sense. • Bolus size via curvature parameter has opposite effect near the upper and lower channel walls.

  18. A simple atmospheric boundary layer model applied to large eddy simulations of wind turbine wakes

    DEFF Research Database (Denmark)

    Troldborg, Niels; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2014-01-01

    A simple model for including the influence of the atmospheric boundary layer in connection with large eddy simulations of wind turbine wakes is presented and validated by comparing computed results with measurements as well as with direct numerical simulations. The model is based on an immersed...... boundary type technique where volume forces are used to introduce wind shear and atmospheric turbulence. The application of the model for wake studies is demonstrated by combining it with the actuator line method, and predictions are compared with field measurements. Copyright © 2013 John Wiley & Sons, Ltd....

  19. A Study of stable Atmospheric Boundary Layer over highveld South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Luhunga, P; Djolov, G [University of Pretoria (South Africa); Esau, I, E-mail: george.djolov@up.ac.z

    2010-08-15

    The study is part of the South African - Norwegian Programme for Research and Co-operation Phase II 'Analysis and Possibility for Control of Atmospheric Boundary Layer Processes to Facilitate Adaptation to Environmental Changes'. The research strategy of the project is based on 4 legged approach. 1) Application and further development of contemporary atmospheric boundary layer theory. 2) Use of modeling based on large eddy simulation techniques. 3) Experimental investigation of turbulent fluxes. 4) Training and developing academics capable of dealing with the present and new challenges. The paper presents some preliminary results on the micrometeorological variability of the basic meteorological parameters and turbulent fluxes.

  20. A Study of stable Atmospheric Boundary Layer over highveld South Africa

    International Nuclear Information System (INIS)

    Luhunga, P; Djolov, G; Esau, I

    2010-01-01

    The study is part of the South African - Norwegian Programme for Research and Co-operation Phase II 'Analysis and Possibility for Control of Atmospheric Boundary Layer Processes to Facilitate Adaptation to Environmental Changes'. The research strategy of the project is based on 4 legged approach. 1) Application and further development of contemporary atmospheric boundary layer theory. 2) Use of modeling based on large eddy simulation techniques. 3) Experimental investigation of turbulent fluxes. 4) Training and developing academics capable of dealing with the present and new challenges. The paper presents some preliminary results on the micrometeorological variability of the basic meteorological parameters and turbulent fluxes.

  1. Nonlinear radiative heat transfer in magnetohydrodynamic (MHD stagnation point flow of nanofluid past a stretching sheet with convective boundary condition

    Directory of Open Access Journals (Sweden)

    Wubshet Ibrahim

    2015-12-01

    Full Text Available Two-dimensional boundary layer flow of nanofluid fluid past a stretching sheet is examined. The paper reveals the effect of non-linear radiative heat transfer on magnetohydrodynamic (MHD stagnation point flow past a stretching sheet with convective heating. Condition of zero normal flux of nanoparticles at the wall for the stretched flow is considered. The nanoparticle fractions on the boundary are considered to be passively controlled. The solution for the velocity, temperature and nanoparticle concentration depends on parameters viz. Prandtl number Pr, velocity ratio parameter A, magnetic parameter M, Lewis number Le, Brownian motion Nb, and the thermophoresis parameter Nt. Moreover, the problem is governed by temperature ratio parameter (Nr=TfT∞ and radiation parameter Rd. Similarity transformation is used to reduce the governing non-linear boundary-value problems into coupled higher order non-linear ordinary differential equation. These equations were numerically solved using the function bvp4c from the matlab software for different values of governing parameters. Numerical results are obtained for velocity, temperature and concentration, as well as the skin friction coefficient and local Nusselt number. The results indicate that the skin friction coefficient Cf increases as the values of magnetic parameter M increase and decreases as the values of velocity ratio parameter A increase. The local Nusselt number −θ′(0 decreases as the values of thermophoresis parameter Nt and radiation parameter Nr increase and it increases as the values of both Biot number Bi and Prandtl number Pr increase. Furthermore, radiation has a positive effect on temperature and concentration profiles.

  2. Structure of the auroral precipitation region in the dawn sector: relationship to convection reversal boundaries and field-aligned currents

    Directory of Open Access Journals (Sweden)

    Y. I. Feldstein

    2001-05-01

    precipitation (AO is mapped to the dawn periphery of the Central Plasma Sheet (CPS; the soft small scale structured precipitation (SSSL is mapped to the outer magnetosphere close to the magnetopause, i.e. the Low Latitude Boundary Layer (LLBL. In the near-noon sector, earthward fluxes of soft electrons, which cause the Diffuse Red Aurora (DRA, are observed. The ion energies decrease with increasing latitude. The plasma spectra of the DRA regime are analogous to the spectra of the Plasma Mantle (PM. In the dawn sector, the large-scale field-aligned currents flow into the ionosphere at the SSSL latitudes (Region 1 and flow out at the AO or DAZ latitudes (Region 2. In the dawn and dusk sectors, the large-scale Region 1 and Region 2 FAC generation occurs in different plasma domains of the distant magnetosphere. The dawn and dusk FAC connection to the traditional Region 1 and Region 2 has only formal character, as FAC generating in various magnetospheric plasma domains integrate in the same region (Region 1 or Region 2. In the SSSL, there is anti-sunward convection; in the DAZ and the AO, there is the sunward convection. At PM latitudes, the convection is controlled by the azimuthal IMF component (By . It is suggested to extend the notation of the plasma pattern boundaries, as proposed by Newell et al. (1996, for the nightside sector of the auroral oval to the dawn sector.Key words. Magnetospheric physics (current systems; magnetospheric configuration and dynamics; plasma convection

  3. Structure of the auroral precipitation region in the dawn sector: relationship to convection reversal boundaries and field-aligned currents

    Directory of Open Access Journals (Sweden)

    Y. I. Feldstein

    electrons and isotropic ion precipitation (AO is mapped to the dawn periphery of the Central Plasma Sheet (CPS; the soft small scale structured precipitation (SSSL is mapped to the outer magnetosphere close to the magnetopause, i.e. the Low Latitude Boundary Layer (LLBL. In the near-noon sector, earthward fluxes of soft electrons, which cause the Diffuse Red Aurora (DRA, are observed. The ion energies decrease with increasing latitude. The plasma spectra of the DRA regime are analogous to the spectra of the Plasma Mantle (PM. In the dawn sector, the large-scale field-aligned currents flow into the ionosphere at the SSSL latitudes (Region 1 and flow out at the AO or DAZ latitudes (Region 2. In the dawn and dusk sectors, the large-scale Region 1 and Region 2 FAC generation occurs in different plasma domains of the distant magnetosphere. The dawn and dusk FAC connection to the traditional Region 1 and Region 2 has only formal character, as FAC generating in various magnetospheric plasma domains integrate in the same region (Region 1 or Region 2. In the SSSL, there is anti-sunward convection; in the DAZ and the AO, there is the sunward convection. At PM latitudes, the convection is controlled by the azimuthal IMF component (By . It is suggested to extend the notation of the plasma pattern boundaries, as proposed by Newell et al. (1996, for the nightside sector of the auroral oval to the dawn sector.

    Key words. Magnetospheric physics (current systems; magnetospheric configuration and dynamics; plasma convection

  4. The effect of moving waves on neutral marine atmospheric boundary layer

    Directory of Open Access Journals (Sweden)

    Sam Ali Al

    2014-01-01

    Full Text Available Large eddy simulations are performed to study the effects of wind-wave direction misalignment of the neutral marine atmospheric boundary layer over a wavy wall. The results show that the wind-wave misalignment has a significant effect on the velocity profiles and the pressure fluctuation over the wave surface. These effects are not confined to the near wave surface region but extend over the whole atmospheric surface layer.

  5. Influence of orographically induced transport process on the structure of the atmospheric boundary layer and on the distribution of trace gases; Einfluss orographisch induzierter Transportprozesse auf die Struktur der atmosphaerischen Grenzschicht und die Verteilung von Spurengasen

    Energy Technology Data Exchange (ETDEWEB)

    Kossmann, M.

    1998-04-01

    The influence of terrain on the structure of the atmospheric boundary-layer and the distribution of trace gases during periods of high atmospheric pressure was studied by means of meteorological and air-chemical data collected in September 1992 during the TRACT experiment in the transition area between the upper Rhine valley and the northern Black Forest. The emphasis was on the investigation of the development of the convective boundary layer, the formation of thermally induced circulation systems, and the orographic exchange between the atmospheric boundary layer and the free troposphere. Thanks to the extensive measurements, phenomena not yet described in literature could be verified by case studies, and processes that had only been established qualitatively could be quantified. (orig.)

  6. Mixed convection-radiation interaction in boundary-layer flow over horizontal surfaces

    Science.gov (United States)

    Ibrahim, F. S.; Hady, F. M.

    1990-06-01

    The effect of buoyancy forces and thermal radiation on the steady laminar plane flow over an isothermal horizontal flat plate is investigated within the framework of first-order boundary-layer theory, taking into account the hydrostatic pressure variation normal to the plate. The fluid considered is a gray, absorbing-emitting but nonscattering medium, and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. Both a hot surface facing upward and a cold surface facing downward are considered in the analysis. Numerical results for the local Nusselt number, the local wall shear stress, the local surface heat flux, as well as the velocity and temperature distributions are presented for gases with a Prandtl number of 0.7 for various values of the radiation-conduction parameter, the buoyancy parameter, and the temperature ratio parameter.

  7. Effects of Boundary Layer Height on the Model of Ground-Level PM2.5 Concentrations from AOD: Comparison of Stable and Convective Boundary Layer Heights from Different Methods

    Directory of Open Access Journals (Sweden)

    Zengliang Zang

    2017-06-01

    Full Text Available The aerosol optical depth (AOD from satellites or ground-based sun photometer spectral observations has been widely used to estimate ground-level PM2.5 concentrations by regression methods. The boundary layer height (BLH is a popular factor in the regression model of AOD and PM2.5, but its effect is often uncertain. This may result from the structures between the stable and convective BLHs and from the calculation methods of the BLH. In this study, the boundary layer is divided into two types of stable and convective boundary layer, and the BLH is calculated using different methods from radiosonde data and National Centers for Environmental Prediction (NCEP reanalysis data for the station in Beijing, China during 2014–2015. The BLH values from these methods show significant differences for both the stable and convective boundary layer. Then, these BLHs were introduced into the regression model of AOD-PM2.5 to seek the respective optimal BLH for the two types of boundary layer. It was found that the optimal BLH for the stable boundary layer is determined using the method of surface-based inversion, and the optimal BLH for the convective layer is determined using the method of elevated inversion. Finally, the optimal BLH and other meteorological parameters were combined to predict the PM2.5 concentrations using the stepwise regression method. The results indicate that for the stable boundary layer, the optimal stepwise regression model includes the factors of surface relative humidity, BLH, and surface temperature. These three factors can significantly enhance the prediction accuracy of ground-level PM2.5 concentrations, with an increase of determination coefficient from 0.50 to 0.68. For the convective boundary layer, however, the optimal stepwise regression model includes the factors of BLH and surface wind speed. These two factors improve the determination coefficient, with a relatively low increase from 0.65 to 0.70. It is found that the

  8. Computational Fluid Dynamics model of stratified atmospheric boundary-layer flow

    DEFF Research Database (Denmark)

    Koblitz, Tilman; Bechmann, Andreas; Sogachev, Andrey

    2015-01-01

    For wind resource assessment, the wind industry is increasingly relying on computational fluid dynamics models of the neutrally stratified surface-layer. So far, physical processes that are important to the whole atmospheric boundary-layer, such as the Coriolis effect, buoyancy forces and heat...

  9. Measurements of atmospheric hydrocarbons and biogenic emission fluxes in the Amazon boundary layer

    Science.gov (United States)

    Zimmerman, P. R.; Greenberg, J. P.; Westberg, C. E.

    1988-01-01

    Tropospheric mixing ratios of methane, C2-C10 hydrocarbons, and carbon monoxide were measured over the Amazon tropical forest near Manaus, Amazonas, Brazil, in July and August 1985. The measurements, consisting mostly of altitude profiles of these gases, were all made within the atmospheric boundary layer up to an altitude of 1000 m above ground level. Data characterize the diurnal hydrocarbon composition of the boundary layer. Biogenic emissions of isoprene control hydroxyl radical concentrations over the forest. Biogenic emission fluxes of isoprene and terpenes are estimated to be 25,000 micrograms/sq m per day and 5600 micrograms/sq m per day, respectively. This isoprene emission is equivalent to 2 percent of the net primary productivity of the tropical forest. Atmospheric oxidation of biogenic isoprene and terpenes emissions from the Amazon forest may account for daily increases of 8-13 ppb for carbon monoxide in the planetary boundary layer.

  10. For how long can we predict the weather? - Insights into atmospheric predictability from global convection-allowing simulations

    Science.gov (United States)

    Judt, Falko

    2017-04-01

    A tremendous increase in computing power has facilitated the advent of global convection-resolving numerical weather prediction (NWP) models. Although this technological breakthrough allows for the seamless prediction of weather from local to global scales, the predictability of multiscale weather phenomena in these models is not very well known. To address this issue, we conducted a global high-resolution (4-km) predictability experiment using the Model for Prediction Across Scales (MPAS), a state-of-the-art global NWP model developed at the National Center for Atmospheric Research. The goals of this experiment are to investigate error growth from convective to planetary scales and to quantify the intrinsic, scale-dependent predictability limits of atmospheric motions. The globally uniform resolution of 4 km allows for the explicit treatment of organized deep moist convection, alleviating grave limitations of previous predictability studies that either used high-resolution limited-area models or global simulations with coarser grids and cumulus parameterization. Error growth is analyzed within the context of an "identical twin" experiment setup: the error is defined as the difference between a 20-day long "nature run" and a simulation that was perturbed with small-amplitude noise, but is otherwise identical. It is found that in convectively active regions, errors grow by several orders of magnitude within the first 24 h ("super-exponential growth"). The errors then spread to larger scales and begin a phase of exponential growth after 2-3 days when contaminating the baroclinic zones. After 16 days, the globally averaged error saturates—suggesting that the intrinsic limit of atmospheric predictability (in a general sense) is about two weeks, which is in line with earlier estimates. However, error growth rates differ between the tropics and mid-latitudes as well as between the troposphere and stratosphere, highlighting that atmospheric predictability is a complex

  11. Impacts of Groundwater on the Atmospheric Convection in Amazon using Multi-GCM Simulations from I-GEM project

    Science.gov (United States)

    Lo, M. H.; Chien, R. Y.; Ducharne, A.; Decharme, B.; Lan, C. W.; Wang, F.; Cheruy, F.; Colin, J.

    2017-12-01

    Previous research indicated that groundwater plays an important role in hydrological cycle and is a major source of water vapor in climate models, which may result in modifications of atmospheric convection. For instance, our previous study showed that when considering the groundwater dynamics in a GCM, the wet soil induced surface cooling effect can further reduce the Amazon dry season convection and precipitation. However, the main mechanisms of the interaction among groundwater, soil moisture, and precipitation are still unclear, and they need to be examined in several climate models. In this study, we further examine the influence of the surface cooling effects due to the groundwater on the convection over the Amazon. To this end, we use idealized simulations of the IGEM (Impact of Groundwater in Earth system Models) project, with 3 GCMs (CESM, CNRM, and IPSL): in each of them, we prescribed a water table at a constant depth throughout all land areas, to create globally wet conditions. Preliminary analysis shows a contradict result of the tendency of precipitation in the three models with wet condition which indicates a great uncertainty of the groundwater's impacts in coupled GCMs.

  12. Discrete multi-physics simulations of diffusive and convective mass transfer in boundary layers containing motile cilia in lungs.

    Science.gov (United States)

    Ariane, Mostapha; Kassinos, Stavros; Velaga, Sitaram; Alexiadis, Alessio

    2018-04-01

    In this paper, the mass transfer coefficient (permeability) of boundary layers containing motile cilia is investigated by means of discrete multi-physics. The idea is to understand the main mechanisms of mass transport occurring in a ciliated-layer; one specific application being inhaled drugs in the respiratory epithelium. The effect of drug diffusivity, cilia beat frequency and cilia flexibility is studied. Our results show the existence of three mass transfer regimes. A low frequency regime, which we called shielding regime, where the presence of the cilia hinders mass transport; an intermediate frequency regime, which we have called diffusive regime, where diffusion is the controlling mechanism; and a high frequency regime, which we have called convective regime, where the degree of bending of the cilia seems to be the most important factor controlling mass transfer in the ciliated-layer. Since the flexibility of the cilia and the frequency of the beat changes with age and health conditions, the knowledge of these three regimes allows prediction of how mass transfer varies with these factors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Seasonal and solar cycle variations in the ionospheric convection reversal boundary location inferred from monthly SuperDARN data sets

    Directory of Open Access Journals (Sweden)

    A. V. Koustov

    2016-02-01

    Full Text Available Multi-year (1995–2013 velocity data collected by the Super Dual Auroral Network (SuperDARN HF radars are considered to investigate seasonal and solar cycle variations of the convection reversal boundary (CRB location for interplanetary magnetic field (IMF Bz < 0. By considering monthly data sets we show that the CRB is at higher latitudes in summer between 1995 and 2007. The poleward shifts are on the order of 2–5°. After 2007, the seasonal effect weakens, and the highest latitudes for the CRB start to occur during the winter time. We show that the CRB latitudes decrease with an increase of the IMF transverse component at a rate of (1–2°/2 nT. Because of this effect, on average, the CRB latitudes are lower during high solar activity periods with stronger IMFs. We also confirm the effect of the CRB dawn-dusk shifts related to the IMF changes in the IMF By sign.

  14. Effect of velocity boundary conditions on the heat transfer and flow topology in two-dimensional Rayleigh-Bénard convection.

    Science.gov (United States)

    van der Poel, Erwin P; Ostilla-Mónico, Rodolfo; Verzicco, Roberto; Lohse, Detlef

    2014-07-01

    The effect of various velocity boundary condition is studied in two-dimensional Rayleigh-Bénard convection. Combinations of no-slip, stress-free, and periodic boundary conditions are used on both the sidewalls and the horizontal plates. For the studied Rayleigh numbers Ra between 10(8) and 10(11) the heat transport is lower for Γ=0.33 than for Γ=1 in case of no-slip sidewalls. This is, surprisingly, the opposite for stress-free sidewalls, where the heat transport increases for a lower aspect ratio. In wider cells the aspect-ratio dependence is observed to disappear for Ra ≥ 10(10). Two distinct flow types with very different dynamics can be seen, mostly dependent on the plate velocity boundary condition, namely roll-like flow and zonal flow, which have a substantial effect on the dynamics and heat transport in the system. The predominantly horizontal zonal flow suppresses heat flux and is observed for stress-free and asymmetric plates. Low aspect-ratio periodic sidewall simulations with a no-slip boundary condition on the plates also exhibit zonal flow. In all the other cases, the flow is roll like. In two-dimensional Rayleigh-Bénard convection, the velocity boundary conditions thus have large implications on both roll-like and zonal flow that have to be taken into consideration before the boundary conditions are imposed.

  15. The influence of convective current generator on the global current

    Directory of Open Access Journals (Sweden)

    V. N. Morozov

    2006-01-01

    Full Text Available The mathematical generalization of classical model of the global circuit with taking into account the convective current generator, working in the planetary boundary layer was considered. Convective current generator may be interpreted as generator, in which the electromotive force is generated by processes, of the turbulent transport of electrical charge. It is shown that the average potential of ionosphere is defined not only by the thunderstorm current generators, working at the present moment, but by the convective current generator also. The influence of the convective processes in the boundary layer on the electrical parameters of the atmosphere is not only local, but has global character as well. The numerical estimations, made for the case of the convective-unstable boundary layer demonstrate that the increase of the average potential of ionosphere may be of the order of 10% to 40%.

  16. On interpreting studies of tracer transport by deep cumulus convection and its effects on atmospheric chemistry

    Directory of Open Access Journals (Sweden)

    M. G. Lawrence

    2008-10-01

    Full Text Available Global chemistry-transport models (CTMs and chemistry-GCMs (CGCMs generally simulate vertical tracer transport by deep convection separately from the advective transport by the mean winds, even though a component of the mean transport, for instance in the Hadley and Walker cells, occurs in deep convective updrafts. This split treatment of vertical transport has various implications for CTM simulations. In particular, it has led to a misinterpretation of several sensitivity simulations in previous studies in which the parameterized convective transport of one or more tracers is neglected. We describe this issue in terms of simulated fluxes and fractions of these fluxes representing various physical and non-physical processes. We then show that there is a significant overlap between the convective and large-scale mean advective vertical air mass fluxes in the CTM MATCH, and discuss the implications which this has for interpreting previous and future sensitivity simulations, as well as briefly noting other related implications such as numerical diffusion.

  17. Observations of the atmospheric boundary layer height over Abu Dhabi, United Arab Emirates: Investigating boundary layer climatology in arid regions

    Science.gov (United States)

    Marzooqi, Mohamed Al; Basha, Ghouse; Ouarda, Taha B. M. J.; Armstrong, Peter; Molini, Annalisa

    2014-05-01

    Strong sensible heat fluxes and deep turbulent mixing - together with marked dustiness and a low substrate water content - represent a characteristic signature in the boundary layer over hot deserts, resulting in "thicker" mixing layers and peculiar optical properties. Beside these main features however, desert ABLs present extremely complex local structures that have been scarcely addressed in the literature, and whose understanding is essential in modeling processes such as the transport of dust and pollutants, and turbulent fluxes of momentum, heat and water vapor in hyper-arid regions. In this study, we analyze a continuous record of observations of the atmospheric boundary layer (ABL) height from a single lens LiDAR ceilometer operated at Masdar Institute Field Station (24.4oN, 54.6o E, Abu Dhabi, United Arab Emirates), starting March 2013. We compare different methods for the estimation of the ABL height from Ceilometer data such as, classic variance-, gradient-, log gradient- and second derivation-methods as well as recently developed techniques such as the Bayesian Method and Wavelet covariance transform. Our goal is to select the most suited technique for describing the climatology of the ABL in desert environments. Comparison of our results with radiosonde observations collected at the nearby airport of Abu Dhabi indicate that the WCT and the Bayesian method are the most suitable tools to accurately identify the ABL height in all weather conditions. These two methods are used for the definition of diurnal and seasonal climatologies of the boundary layer conditional to different atmospheric stability classes.

  18. Numerical modeling of the effects of fire-induced convection and fire-atmosphere interactions on wildfire spread and fire plume dynamics

    Science.gov (United States)

    Sun, Ruiyu

    It is possible due to present day computing power to produce a fluid dynamical physically-based numerical solution to wildfire behavior, at least in the research mode. This type of wildfire modeling affords a flexibility and produces details that are not available in either current operational wildfire behavior models or field experiments. However before using these models to study wildfire, validation is necessary, and model results need to be systematically and objectively analyzed and compared to real fires. Plume theory and data from the Meteotron experiment, which was specially designed to provide results from measurements for the theoretical study of a convective plume produced by a high heat source at the ground, are used here to evaluate the fire plume properties simulated by two numerical wildfire models, the Fire Dynamics Simulator or FDS, and the Clark coupled atmosphere-fire model. The study indicates that the FDS produces good agreement with the plume theory and the Meteotron results. The study also suggests that the coupled atmosphere-fire model, a less explicit and ideally less computationally demanding model than the FDS; can produce good agreement, but that the agreement is sensitive to the method of putting the energy released from the fire into the atmosphere. The WFDS (Wildfire and wildland-urban interface FDS), an extension of the FDS to the vegetative fuel, and the Australian grass fire experiments are used to evaluate and improve the UULES-wildfire coupled model. Despite the simple fire parameterization in the UULES-wildfire coupled model, the fireline is fairly well predicted in terms of both shape and location in the simulation of Australian grass fire experiment F19. Finally, the UULES-wildfire coupled model is used to examine how the turbulent flow in the atmospheric boundary layer (ABL) affects the growth of the grass fires. The model fires showed significant randomness in fire growth: Fire spread is not deterministic in the ABL, and a

  19. Time-resolved PIV measurements of the atmospheric boundary layer over wind-driven surface waves

    Science.gov (United States)

    Markfort, Corey; Stegmeir, Matt

    2017-11-01

    Complex interactions at the air-water interface result in two-way coupling between wind-driven surface waves and the atmospheric boundary layer (ABL). Turbulence generated at the surface plays an important role in aquatic ecology and biogeochemistry, exchange of gases such as oxygen and carbon dioxide, and it is important for the transfer of energy and controlling evaporation. Energy transferred from the ABL promotes the generation and maintenance of waves. A fraction of the energy is transferred to the surface mixed layer through the generation of turbulence. Energy is also transferred back to the ABL by waves. There is a need to quantify the details of the coupled boundary layers of the air-water system to better understand how turbulence plays a role in the interactions. We employ time-resolved PIV to measure the detailed structure of the air and water boundary layers under varying wind and wave conditions in the newly developed IIHR Boundary-Layer Wind-Wave Tunnel. The facility combines a 30-m long recirculating water channel with an open-return boundary layer wind tunnel. A thick turbulent boundary layer is developed in the 1 m high air channel, over the water surface, allowing for the study of boundary layer turbulence interacting with a wind-driven wave field.

  20. National Convective Weather Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NCWF is an automatically generated depiction of: (1) current convection and (2) extrapolated signficant current convection. It is a supplement to, but does NOT...

  1. Observed Changes in Atmospheric Boundary Layer Properties at Memphis International Airport During August 1995

    Science.gov (United States)

    Zak, J. Allen; Rodgers, William G., Jr.

    1997-01-01

    As part of the NASA Terminal Area Productivity Program, Langley Research Center embarked on a series of field measurements of wake vortex characteristics and associated atmospheric boundary layer properties. One measurement period was at the Memphis International Airport in August 1995. Atmospheric temperature, humidity, winds, turbulence, radiation, and soil properties were measured from a variety of sensor systems and platforms including sodars, profilers, aircraft and towers. This research focused on: (1) changes that occurred in tower data during sunrise and sunset transitions, (2) vertical variation of temperature and cross-head winds at selected times utilizing combinations of sensors, and (3) changes measured by an OV-10 aircraft during approaches and level flights. Significant but not unusual changes are documented and discussed in terms of expected boundary layer behavior. Questions on measurement and prediction of these changes from existing and near-term capabilities are discussed in the context of a future Aircraft Vortex Spacing System.

  2. Diurnal Dynamics of Standard Deviations of Three Wind Velocity Components in the Atmospheric Boundary Layer

    Science.gov (United States)

    Shamanaeva, L. G.; Krasnenko, N. P.; Kapegesheva, O. F.

    2018-04-01

    Diurnal dynamics of the standard deviation (SD) of three wind velocity components measured with a minisodar in the atmospheric boundary layer is analyzed. Statistical analysis of measurement data demonstrates that the SDs for x- and y-components σx and σy lie in the range from 0.2 to 4 m/s, and σz = 0.1-1.2 m/s. The increase of σx and σy with the altitude is described sufficiently well by a power law with exponent changing from 0.22 to 1.3 depending on time of day, and σz increases by a linear law. Approximation constants are determined and errors of their application are estimated. It is found that the maximal diurnal spread of SD values is 56% for σx and σy and 94% for σz. The established physical laws and the obtained approximation constants allow the diurnal dynamics of the SDs for three wind velocity components in the atmospheric boundary layer to be determined and can be recommended for application in models of the atmospheric boundary layer.

  3. A shallow convection parameterization for the non-hydrostatic MM5 mesoscale model

    Energy Technology Data Exchange (ETDEWEB)

    Seaman, N.L.; Kain, J.S.; Deng, A. [Pennsylvania State Univ., University Park, PA (United States)

    1996-04-01

    A shallow convection parameterization suitable for the Pennsylvannia State University (PSU)/National Center for Atmospheric Research nonhydrostatic mesoscale model (MM5) is being developed at PSU. The parameterization is based on parcel perturbation theory developed in conjunction with a 1-D Mellor Yamada 1.5-order planetary boundary layer scheme and the Kain-Fritsch deep convection model.

  4. Intercomparison of Martian Lower Atmosphere Simulated Using Different Planetary Boundary Layer Parameterization Schemes

    Science.gov (United States)

    Natarajan, Murali; Fairlie, T. Duncan; Dwyer Cianciolo, Alicia; Smith, Michael D.

    2015-01-01

    We use the mesoscale modeling capability of Mars Weather Research and Forecasting (MarsWRF) model to study the sensitivity of the simulated Martian lower atmosphere to differences in the parameterization of the planetary boundary layer (PBL). Characterization of the Martian atmosphere and realistic representation of processes such as mixing of tracers like dust depend on how well the model reproduces the evolution of the PBL structure. MarsWRF is based on the NCAR WRF model and it retains some of the PBL schemes available in the earth version. Published studies have examined the performance of different PBL schemes in NCAR WRF with the help of observations. Currently such assessments are not feasible for Martian atmospheric models due to lack of observations. It is of interest though to study the sensitivity of the model to PBL parameterization. Typically, for standard Martian atmospheric simulations, we have used the Medium Range Forecast (MRF) PBL scheme, which considers a correction term to the vertical gradients to incorporate nonlocal effects. For this study, we have also used two other parameterizations, a non-local closure scheme called Yonsei University (YSU) PBL scheme and a turbulent kinetic energy closure scheme called Mellor- Yamada-Janjic (MYJ) PBL scheme. We will present intercomparisons of the near surface temperature profiles, boundary layer heights, and wind obtained from the different simulations. We plan to use available temperature observations from Mini TES instrument onboard the rovers Spirit and Opportunity in evaluating the model results.

  5. Tracking atmospheric boundary layer dynamics with water vapor D-excess observations

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    Stable isotope water vapor observations present a history of hydrological processes that have impacted on an air mass. Consequently, there is scope to improve our knowledge of how different processes impact on humidity budgets by determining the isotopic end members of these processes and combining them with in-situ water vapor measurements. These in-situ datasets are still rare and cover a limited geographical expanse, so expanding the available data can improve our ability to define isotopic end members and knowledge about atmospheric humidity dynamics. Using data collected from an intensive field campaign across a semi-arid grassland site in eastern Australia, we combine multiple methods including in-situ stable isotope observations to study humidity dynamics associated with the growth and decay of the atmospheric boundary layer and the stable nocturnal boundary layer. The deuterium-excess (D-excess) in water vapor is traditionally thought to reflect the sea surface temperature and relative humidity at the point of evaporation over the oceans. However, a number of recent studies suggest that land-atmosphere interactions are also important in setting the D-excess of water vapor. These studies have shown a highly robust diurnal cycle for the D-excess over a range of sites that could be exploited to better understand variations in atmospheric humidity associated with boundary layer dynamics. In this study we use surface radon concentrations as a tracer of surface layer dynamics and combine these with the D-excess observations. The radon concentrations showed an overall trend that was inversely proportional to the D-excess, with early morning entrainment of air from the residual layer of the previous day both diluting the radon concentration and increasing the D-excess, followed by accumulation of radon at the surface and a decrease in the D-excess as the stable nocturnal layer developed in the late afternoon and early evening. The stable nocturnal boundary layer

  6. Simulation of convection-stabilized low-current glow and arc discharges in atmospheric-pressure air

    International Nuclear Information System (INIS)

    Naidis, G V

    2007-01-01

    A two-dimensional model of stationary convection-stabilized low-current glow and arc discharge columns in atmospheric-pressure air is developed which accounts for deviation of the plasma state from the local thermodynamic equilibrium (LTE). In addition to equations of energy, continuity and momentum (analogous to those used in LTE arc models), the non-LTE model includes balance equations for plasma species and for the vibrational energy of nitrogen molecules. The kinetic scheme is used which was developed recently for the simulation of low-current wall-stabilized discharges in air. Results of calculation of discharge parameters over a wide current range are presented. It is shown that the non-equilibrium effects are substantial at currents lower than ∼ 100 mA. The calculated plasma parameters agree with available experimental data

  7. Lithium spectral line formation in stellar atmospheres. The impact of convection and NLTE effects

    OpenAIRE

    Klevas, J.; Kučinskas, A.; Steffen, M.; Caffau, E.; Ludwig, H. -G.

    2015-01-01

    Different simplified approaches are used to account for the non-local thermodynamic equilibrium (NLTE) effects with 3D hydrodynamical model atmospheres. In certain cases, chemical abundances are derived in 1D NLTE and corrected for the 3D effects by adding 3D-1D LTE abundance corrections (3D+NLTE approach). Alternatively, average model atmospheres are sometimes used to substitute for the full 3D hydrodynamical models. We tested whether the results obtained using these simplified schemes (i.e...

  8. Using an atmospheric boundary layer model to force global ocean models

    Science.gov (United States)

    Abel, Rafael; Böning, Claus

    2014-05-01

    Current practices in the atmospheric forcing of ocean model simulations can lead to unphysical behaviours. The problem lies in the bulk formulation of the turbulent air-sea fluxes in the conjunction with a prescribed, and unresponsive, atmospheric state (as given by reanalysis products). This can have impacts both on mesoscale processes as well as on the dynamics of the large-scale circulation. First, a possible local mismatch between the given atmospheric state and evolving sea surface temperature (SST) signatures can occur, especially for mesoscale features such as frontal areas, eddies, or near the sea ice edge. Any ocean front shift or evolution of mesoscale anomalies results in excessive, unrealistic surface fluxes due to the lack of atmospheric adaptation. Second, a subtle distortion in the sensitive balance of feedback processes being critical for the thermohaline circulation. Since the bulk formulations assume an infinite atmospheric heat capacity, resulting SST anomalies are strongly damped even on basin-scales (e.g. from trends in the Atlantic meridional overturning circulation). In consequence, an important negative feedback is eliminated, rendering the system excessively susceptible to small anomalies (or errors) in the freshwater fluxes. Previous studies (Seager et al., 1995, J. Clim.) have suggested a partial forcing issue remedy that aimed for a physically more realistic determination of air-sea fluxes by allowing some (thermodynamic) adaptation of the atmospheric boundary layer to SST changes. In this study a modernized formulation of this approach (Deremble et al., 2013, Mon. Weather Rev.; 'CheapAML') is implemented in a global ocean-ice model with moderate resolution (0.5°; ORCA05). In a set of experiments we explore the solution behaviour of this forcing approach (where only the winds are prescribed, while atmospheric temperature and humidity are computed), contrasting it with the solution obtained from the classical bulk formulation with a non

  9. Vertical Sampling Scales for Atmospheric Boundary Layer Measurements from Small Unmanned Aircraft Systems (sUAS

    Directory of Open Access Journals (Sweden)

    Benjamin L. Hemingway

    2017-09-01

    Full Text Available The lowest portion of the Earth’s atmosphere, known as the atmospheric boundary layer (ABL, plays an important role in the formation of weather events. Simple meteorological measurements collected from within the ABL, such as temperature, pressure, humidity, and wind velocity, are key to understanding the exchange of energy within this region, but conventional surveillance techniques such as towers, radar, weather balloons, and satellites do not provide adequate spatial and/or temporal coverage for monitoring weather events. Small unmanned aircraft, or aerial, systems (sUAS provide a versatile, dynamic platform for atmospheric sensing that can provide higher spatio-temporal sampling frequencies than available through most satellite sensing methods. They are also able to sense portions of the atmosphere that cannot be measured from ground-based radar, weather stations, or weather balloons and have the potential to fill gaps in atmospheric sampling. However, research on the vertical sampling scales for collecting atmospheric measurements from sUAS and the variabilities of these scales across atmospheric phenomena (e.g., temperature and humidity is needed. The objective of this study is to use variogram analysis, a common geostatistical technique, to determine optimal spatial sampling scales for two atmospheric variables (temperature and relative humidity captured from sUAS. Results show that vertical sampling scales of approximately 3 m for temperature and 1.5–2 m for relative humidity were sufficient to capture the spatial structure of these phenomena under the conditions tested. Future work is needed to model these scales across the entire ABL as well as under variable conditions.

  10. Similarity Solution for Combined Free-Forced Convection Past a Vertical Porous Plate in a Porous Medium with a Convective Surface Boundary Condition

    Directory of Open Access Journals (Sweden)

    Garg P.

    2016-12-01

    Full Text Available This paper studies the mathematical implications of the two dimensional viscous steady laminar combined free-forced convective flow of an incompressible fluid over a semi infinite fixed vertical porous plate embedded in a porous medium. It is assumed that the left surface of the plate is heated by convection from a hot fluid which is at a temperature higher than the temperature of the fluid on the right surface of the vertical plate. To achieve numerical consistency for the problem under consideration, the governing non linear partial differential equations are first transformed into a system of ordinary differential equations using a similarity variable and then solved numerically under conditions admitting similarity solutions. The effects of the physical parameters of both the incompressible fluid and the vertical plate on the dimensionless velocity and temperature profiles are studied and analysed and the results are depicted both graphically and in a tabular form. Finally, algebraic expressions and the numerical values are obtained for the local skin-friction coefficient and the local Nusselt number.

  11. Towards grid-converged wall-modeled LES of atmospheric boundary layer flows

    Science.gov (United States)

    Yellapantula, Shashank; Vijayakumar, Ganesh; Henry de Frahan, Marc; Churchfield, Matthew; Sprague, Michael

    2017-11-01

    Accurate characterization of incoming atmospheric boundary layer (ABL) turbulence is a critical factor in improving accuracy and predictive nature of simulation of wind farm flows. Modern commercial wind turbines operate in the log layer of the ABL that are typically simulated using wall-modeled large-eddy simulation (WMLES). One of the long-standing issues associated with wall modeling for LES and hybrid RANS-LES for atmospheric boundary layers is the over-prediction of the mean-velocity gradient, commonly referred to as log-layer mismatch. Kawai and Larsson in 2012, identified under-resolution of the near-wall region and the incorrect information received by the wall model as potential causes for the log-layer mismatch in WMLES of smooth-wall boundary-layer flows. To solve the log layer mismatch issue, they proposed linking the wall model to the LES solution at a physical of height of ym, instead of the first grid point. In this study, we extend their wall modeling approach to LES of the rough-wall ABL to investigate issues of log-layer mismatch and grid convergence. This work was funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Wind Energy Technologies Office, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.

  12. Three-dimensional modeling of radiative and convective exchanges in the urban atmosphere

    International Nuclear Information System (INIS)

    Qu, Yongfeng

    2011-01-01

    In many micro-meteorological studies, building resolving models usually assume a neutral atmosphere. Nevertheless, urban radiative transfers play an important role because of their influence on the energy budget. In order to take into account atmospheric radiation and the thermal effects of the buildings in simulations of atmospheric flow and pollutant dispersion in urban areas, we have developed a three-dimensional (3D) atmospheric radiative scheme, in the atmospheric module of the Computational Fluid Dynamics model Code-Saturne. The radiative scheme was previously validated with idealized cases, using as a first step, a constant 3D wind field. In this work, the full coupling of the radiative and thermal schemes with the dynamical model is evaluated. The aim of the first part is to validate the full coupling with the measurements of the simple geometry from the 'Mock Urban Setting Test' (MUST) experiment. The second part discusses two different approaches to model the radiative exchanges in urban area with a comparison between Code-Saturne and SOLENE. The third part applies the full coupling scheme to show the contribution of the radiative transfer model on the airflow pattern in low wind speed conditions in a 3D urban canopy. In the last part we use the radiative-dynamics coupling to simulate a real urban environment and validate the modeling approach with field measurements from the 'Canopy and Aerosol Particles Interactions in Toulouse Urban Layer' (CAPITOUL). (author) [fr

  13. Novel lidar algorithms for atmospheric slantrange visibility, planetary boundary layer height, meteorogical phenomena and atmospheric layering measurements

    Science.gov (United States)

    Pantazis, Alexandros; Papayannis, Alexandros; Georgoussis, Georgios

    2018-04-01

    In this paper we present a development of novel algorithms and techniques implemented within the Laser Remote Sensing Laboratory (LRSL) of the National Technical University of Athens (NTUA), in collaboration with Raymetrics S.A., in order to incorporate them into a 3-Dimensional (3D) lidar. The lidar is transmitting at 355 nm in the eye safe region and the measurements then are transposed to the visual range at 550 nm, according to the World Meteorological Organization (WMO) and the International Civil Aviation Organization (ICAO) rules of daytime visibility. These algorithms are able to provide horizontal, slant and vertical visibility for tower aircraft controllers, meteorologists, but also from pilot's point of view. Other algorithms are also provided for detection of atmospheric layering in any given direction and vertical angle, along with the detection of the Planetary Boundary Layer Height (PBLH).

  14. Turbulence and dispersion flow of radioisotopes in the atmospheric Boundary layer

    International Nuclear Information System (INIS)

    El Said, S.I.M.

    2013-01-01

    There is an increase in the study of atmospheric pollution and harmful impact on environment, in this work attention was forward to atmospheric diffusion equation to evaluate the concentration pollution with different methods under different stability conditions. The material in the present thesis is organized in six chapters in the following way: Chapter (1), it describe as. In section 1.1, General Introduction, In section 1.2, Turbulence, In section 1.3, Turbulence of the atmosphere. In section 1.4, Atmospheric stability. In section 1.5, Atmospheric pollution. In section 1.6, Behavior of effluent released to the atmosphere. In section 1.7, Source Types. In section 1.8, Atmospheric Dispersion Theories (Modeling). In section 1.9 Comparison between Some Models. In section 1.10, The Planetary Boundary Layer. Chapter (2), it describe as: In section 2.1 , Introduction. In section 2.2, Analytical Method. In section 2.3, Numerical Method. In section 2.4, Statistical method. In chapter (3), it describe as: In section 3.1, Introduction. In section 3.2, Analytical solution. In section 3.3, statically methods.Chapter (4), it contain following: In section 4.1, Introduction. In section 4.2, Proposed model structure. In section 4.3, the effective height. In section 4.4, Mathematical technique In section 4. 5, Case study. In section 4.6, Verification. Chapter (5), one can find as: In section 5.1, Introduction. In section 5.2, Gaussian distributions. In section 5.3, Dispersion parameters schemes. In section 5.4, Result and discussion. In section 5.5 Statistical methods. Chapter (6), it can be arranged in the following: In section 6.1, Introduction. In section 6.2, Model formulation. In section 6.3, Results and Discussion. In section 6.4, Statistical method.

  15. Atmospheric boundary layer response to sea surface temperatures during the SEMAPHORE experiment

    Science.gov (United States)

    Giordani, Hervé; Planton, Serge; Benech, Bruno; Kwon, Byung-Hyuk

    1998-10-01

    The sensitivity of the marine atmospheric boundary layer (MABL) subjected to sea surface temperatures (SST) during the Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment in 1993 has been studied. Atmospheric analyses produced by the Action de Recherche, Petite Echelle, Grande Echelle (ARPEGE) operational model at the French meteorological weather service assimilated data sets collected between October 7 and November 17, 1993, merged with the Global Telecommunication System (GTS) data. Analyses were validated against independent data from aircraft instruments collected along a section crossing the Azores oceanic front, not assimilated into the model. The responses of the mean MABL in the aircraft cross section to changes in SST gradients of about 1°C/100 km were the presence of an atmospheric front with horizontal gradients of 1°C/100 km and an increase of the wind intensity from the cold to the warm side during an anticyclonic synoptic situation. The study of the spatiotemporal characteristics of the MABL shows that during 3 days of an anticyclonic synoptic situation the SST is remarkably stationary because it is principally controlled by the Azores ocean current, which has a timescale of about 10 days. However, the temperature and the wind in the MABL are influenced by the prevailing atmospheric conditions. The ocean does not appear to react to the surface atmospheric forcing on the timescale of 3 days, whereas the atmospheric structures are modified by local and synoptic-scale advection. The MABL response appears to be much quicker than that of the SSTs. The correlation between the wind and the thermal structure in the MABL is dominated by the ageostrophic and not by the geostrophic component. In particular, the enhancement of the wind on either side of the SST front is mainly due to the ageostrophic component. Although the surface heat fluxes are not the only cause of ageostrophy, the

  16. Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth.

    Science.gov (United States)

    Davy, Richard; Esau, Igor

    2016-05-25

    The Earth has warmed in the last century and a large component of that warming has been attributed to increased anthropogenic greenhouse gases. There are also numerous processes that introduce strong, regionalized variations to the overall warming trend. However, the ability of a forcing to change the surface air temperature depends on its spatial and temporal distribution. Here we show that the efficacy of a forcing is determined by the effective heat capacity of the atmosphere, which in cold and dry climates is defined by the depth of the planetary boundary layer. This can vary by an order of magnitude on different temporal and spatial scales, and so we get a strongly amplified temperature response in shallow boundary layers. This must be accounted for to assess the efficacy of a climate forcing, and also implies that multiple climate forcings cannot be linearly combined to determine the temperature response.

  17. Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations

    Science.gov (United States)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne

    2007-12-01

    A two-dimensional cloud-resolving model with detailed spectral bin microphysics is used to examine the effect of aerosols on three different deep convective cloud systems that developed in different geographic locations: south Florida, Oklahoma, and the central Pacific. A pair of model simulations, one with an idealized low cloud condensation nuclei (CCN) (clean) and one with an idealized high CCN (dirty environment), is conducted for each case. In all three cases, rain reaches the ground earlier for the low-CCN case. Rain suppression is also evident in all three cases with high CCN. However, this suppression only occurs during the early stages of the simulations. During the mature stages of the simulations the effects of increasing aerosol concentration range from rain suppression in the Oklahoma case to almost no effect in the Florida case to rain enhancement in the Pacific case. The model results suggest that evaporative cooling in the lower troposphere is a key process in determining whether high CCN reduces or enhances precipitation. Stronger evaporative cooling can produce a stronger cold pool and thus stronger low-level convergence through interactions with the low-level wind shear. Consequently, precipitation processes can be more vigorous. For example, the evaporative cooling is more than two times stronger in the lower troposphere with high CCN for the Pacific case. Sensitivity tests also suggest that ice processes are crucial for suppressing precipitation in the Oklahoma case with high CCN. A comparison and review of other modeling studies are also presented.

  18. Atmospheric Boundary Layer Height Evolution with Lidar in Buenos Aires from 2008 to 2011

    Directory of Open Access Journals (Sweden)

    Pawelko Ezequiel Eduardo

    2016-01-01

    Full Text Available The analysis of the atmospheric boundary layer top height evolution is obtained from 2008 to 2011 in Buenos Aires using the multiwavelength lidar located at CEILAP (CITEDEF-CONICET (34°33’ S; 58°30’ W; 17 m asl. Algorithms recognition based on covariance wavelet transform are applied to obtain seasonal statistics. This method is being evaluated for use in the Lidar Network in Argentina and it is being deployed in Patagonia region currently. The technique operates in real time in both low and high aerosol loads and with almost no human supervision.

  19. Effect of Variable Viscosity on Vortex Instability of Non-Darcy Mixed Convection Boundary Layer Flow Adjacent to a Nonisothermal Horizontal Surface in a Porous Medium

    Directory of Open Access Journals (Sweden)

    A. M. Elaiw

    2012-01-01

    Full Text Available We study the effect of variable viscosity on the flow and vortex instability for non-Darcy mixed convection boundary layer flow on a nonisothermal horizontal plat surface in a saturated porous medium. The variation of viscosity is expressed as an exponential function of temperature. The analysis of the disturbance flow is based on linear stability theory. The base flow equations and the resulting eigenvalue problem are solved using finite difference schemes. It is found that the variable viscosity effect enhances the heat transfer rate and destabilizes the flow for liquid heating, while the opposite trend is true for gas heating.

  20. Sensitivity of Climate Simulations to Land-Surface and Atmospheric Boundary-Layer Treatments-A Review.

    Science.gov (United States)

    Garratt, J. R.

    1993-03-01

    realistic surface representation in general circulation models of the atmosphere. It is not yet clear how detailed this representation needs to be, but even allowing for the importance of surface processes, the parameterization of boundary-layer and convective clouds probably represents a greater challenge to improved climate simulations. This is illustrated in the case of surface net radiation for Aniazonia, which is not well simulated and tends to be overestimated, leading to evaporation rates that are too large. Underestimates in cloudiness, cloud albedo, and clear-sky shortwave absorption, rather than in surface albedo, appear to be the main culprits.There are three major tasks that confront the researcher so far as the development and validation of atmospheric boundary-layer (ABL) and surface schemes in GCMs are concerned:(i) There is a need to as' critically the impact of `improved' parameterization schemes on WM simulations, taking into account the problem of natural variability and hence the statistical significance of the induced changes.(ii) There is a need to compare GCM simulations of surface and ABL behavior (particularly regarding the diurnal cycle of surface fluxes, air temperature, and ABL depth) with observations over a range of surface types (vegetation, desert, ocean). In this context, area-average values of surface fluxes will be required to calibrate directly the ABL/land-surface scheme in the GCM.(iii) There is a need for intercomparisons of ABL and land-surface schemes used in GCMS, both for one- dimensional stand-alone models and for GCMs that incorporate the respective schemes.

  1. Original deep convection in the atmosphere of Mars driven by the radiative impact of dust and water-ice particles

    Science.gov (United States)

    Spiga, A.; Madeleine, J. B.; Hinson, D.; Millour, E.; Forget, F.; Navarro, T.; Määttänen, A.; Montmessin, F.

    2017-09-01

    We unveil two examples of deep convection on Mars - in dust storms and water-ice clouds - to demonstrate that the radiative effect of aerosols and clouds can lead to powerful convective motions just as much as the release of latent heat in moist convection

  2. Lidar-Observed Stress Vectors and Veer in the Atmospheric Boundary Layer

    DEFF Research Database (Denmark)

    Berg, Jacob; Mann, Jakob; Patton, Edward G.

    2013-01-01

    This study demonstrates that a pulsed wind lidar is a reliable instrument for measuring angles between horizontal vectors of significance in the atmospheric boundary layer. Three different angles are considered: the wind turning, the angle between the stress vector and the mean wind direction......, and the angle between the stress vector and the vertical gradient of the mean velocity vector. The latter is assumed to be zero by the often applied turbulent-viscosity hypothesis, so that the stress vector can be described through the vertical gradient of velocity. In the atmospheric surface layer, where...... the Coriolis force is negligible, this is supposedly a good approximation. High-resolution large-eddy simulation data show that this is indeed the case even beyond the surface layer. In contrast, through analysis of WindCube lidar measurements supported by sonic measurements, the study shows that it is only...

  3. Numerical study of ship airwake characteristics immersed in atmospheric boundary-layer flow

    Science.gov (United States)

    Thedin, Regis; Kinzel, Michael; Schmitz, Sven

    2017-11-01

    Helicopter pilot workload is known to increase substantially in the vicinity of a ship flight deck due to the unsteady flowfield past the superstructure. In this work, the influence of atmospheric turbulence on a ship airwake is investigated. A ship geometry representing the Simple Frigate Shape 2 is immersed into a Large-Eddy-Simulation-resolved Atmospheric Boundary Layer (ABL). Specifically, we aim in identifying the fundamental topology differences between a uniform-inflow model of the incoming wind and those representative of a neutral atmospheric stability state. Thus, airwake characteristics due to a shear-driven ABL are evaluated and compared. Differences in the energy content of the airwakes are identified and discussed. The framework being developed allows for future coupling of flight dynamic models of helicopters to investigate flight envelope testing. Hence, this work represents the first step towards the goal of identifying the effects a modified airwake due to the atmospheric turbulence imposes on the handling of a helicopter and pilot workload. This research was partially supported by the University Graduate Fellowship program at The Pennsylvania State University and by the Government under Agreement No. W911W6-17-2-0003.

  4. Deposition rates of viruses and bacteria above the atmospheric boundary layer.

    Science.gov (United States)

    Reche, Isabel; D'Orta, Gaetano; Mladenov, Natalie; Winget, Danielle M; Suttle, Curtis A

    2018-04-01

    Aerosolization of soil-dust and organic aggregates in sea spray facilitates the long-range transport of bacteria, and likely viruses across the free atmosphere. Although long-distance transport occurs, there are many uncertainties associated with their deposition rates. Here, we demonstrate that even in pristine environments, above the atmospheric boundary layer, the downward flux of viruses ranged from 0.26 × 10 9 to >7 × 10 9  m -2 per day. These deposition rates were 9-461 times greater than the rates for bacteria, which ranged from 0.3 × 10 7 to >8 × 10 7  m -2 per day. The highest relative deposition rates for viruses were associated with atmospheric transport from marine rather than terrestrial sources. Deposition rates of bacteria were significantly higher during rain events and Saharan dust intrusions, whereas, rainfall did not significantly influence virus deposition. Virus deposition rates were positively correlated with organic aerosols 0.7 μm, implying that viruses could have longer residence times in the atmosphere and, consequently, will be dispersed further. These results provide an explanation for enigmatic observations that viruses with very high genetic identity can be found in very distant and different environments.

  5. The numerical study and comparison of radial basis functions in applications of the dual reciprocity boundary element method to convection-diffusion problems

    Science.gov (United States)

    Chanthawara, Krittidej; Kaennakham, Sayan; Toutip, Wattana

    2016-02-01

    The methodology of Dual Reciprocity Boundary Element Method (DRBEM) is applied to the convection-diffusion problems and investigating its performance is our first objective of the work. Seven types of Radial Basis Functions (RBF); Linear, Thin-plate Spline, Cubic, Compactly Supported, Inverse Multiquadric, Quadratic, and that proposed by [12], were closely investigated in order to numerically compare their effectiveness drawbacks etc. and this is taken as our second objective. A sufficient number of simulations were performed covering as many aspects as possible. Varidated against both exacts and other numerical works, the final results imply strongly that the Thin-Plate Spline and Linear type of RBF are superior to others in terms of both solutions' quality and CPU-time spent while the Inverse Multiquadric seems to poorly yield the results. It is also found that DRBEM can perform relatively well at moderate level of convective force and as anticipated becomes unstable when the problem becomes more convective-dominated, as normally found in all classical mesh-dependence methods.

  6. Excitation of transient lobe cell convection and auroral arc at the cusp poleward boundary during a transition of the interplanetary magnetic field from south to north

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2001-05-01

    Full Text Available We document the activation of transient polar arcs emanating from the cusp within a 15 min long intermediate phase during the transition from a standard two-cell convection pattern, representative of a strongly southward interplanetary magnetic field (IMF, to a "reverse" two-cell pattern, representative of strongly northward IMF conditions. During the 2–3 min lifetime of the arc, its base in the cusp, appearing as a bright spot, moved eastward toward noon by ~ 300 km. As the arc moved, it left in its "wake" enhanced cusp precipitation. The polar arc is a tracer of the activation of a lobe convection cell with clockwise vorticity, intruding into the previously established large-scale distorted two-cell pattern, due to an episode of localized lobe reconnection. The lobe cell gives rise to strong flow shear (converging electric field and an associated sheet of outflowing field-aligned current, which is manifested by the polar arc. The enhanced cusp precipitation represents, in our view, the ionospheric footprint of the lobe reconnection process.Key words. Magnetospheric physics (auroral phenomena; magnetopause, cusp, and boundary layers; plasma convection

  7. Effect of radiation and magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid

    International Nuclear Information System (INIS)

    Alkasasbeh, Hamzeh Taha; Sarif, Norhafizah Md; Salleh, Mohd Zuki; Tahar, Razman Mat; Nazar, Roslinda; Pop, Ioan

    2015-01-01

    In this paper, the effect of radiation on magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid, in which the heat transfer from the surface is proportional to the local surface temperature, is considered. The transformed boundary layer equations in the form of nonlinear partial differential equations are solved numerically using an implicit finite difference scheme known as the Keller-box method. Numerical solutions are obtained for the local wall temperature and the local skin friction coefficient, as well as the velocity, angular velocity and temperature profiles. The features of the flow and heat transfer characteristics for various values of the Prandtl number Pr, micropolar parameter K, magnetic parameter M, radiation parameter N R , the conjugate parameter γ and the coordinate running along the surface of the sphere, x are analyzed and discussed

  8. Effect of radiation and magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid

    Energy Technology Data Exchange (ETDEWEB)

    Alkasasbeh, Hamzeh Taha, E-mail: zukikuj@yahoo.com; Sarif, Norhafizah Md, E-mail: zukikuj@yahoo.com; Salleh, Mohd Zuki, E-mail: zukikuj@yahoo.com [Futures and Trends Research Group, Faculty of Industrial Science and Technology, Universiti Malaysia Pahang, 26300 UMP Kuantan, Pahang (Malaysia); Tahar, Razman Mat [Faculty of Technology, Universiti Malaysia Pahang, 26300 UMP Kuantan, Pahang (Malaysia); Nazar, Roslinda [School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Pop, Ioan [Department of Mathematics, Babeş-Bolyai University, R-400084 Cluj-Napoca (Romania)

    2015-02-03

    In this paper, the effect of radiation on magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid, in which the heat transfer from the surface is proportional to the local surface temperature, is considered. The transformed boundary layer equations in the form of nonlinear partial differential equations are solved numerically using an implicit finite difference scheme known as the Keller-box method. Numerical solutions are obtained for the local wall temperature and the local skin friction coefficient, as well as the velocity, angular velocity and temperature profiles. The features of the flow and heat transfer characteristics for various values of the Prandtl number Pr, micropolar parameter K, magnetic parameter M, radiation parameter N{sub R}, the conjugate parameter γ and the coordinate running along the surface of the sphere, x are analyzed and discussed.

  9. The structure of Karman vortex streets in the atmospheric boundary layer derived from large eddy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, Rieke; Raasch, Siegfried; Etling, Dieter [Hannover Univ. (Germany). Inst. fuer Meteorologie und Klimatologie

    2012-06-15

    Karman vortex streets generated in the wake of an idealized island are studied using large eddy simulation (LES). Simulations were carried out under conditions of a dry convective boundary layer, capped by an inversion below the island top. These conditions are more realistic compared to previous studies in which mesoscale models with a uniform stable stratification were used. Several properties of the vortex streets like the shedding period of the vortices and the distances between cyclonic and anti-cyclonic vortices were determined for various values of Froude number and surface heat flux. The main focus of the study was to identify the azimuthally averaged structure of fully developed single vortices, which is presented here for the first time. For this purpose a tracking mechanism was developed which allows to detect and to follow vortices automatically. Because the capping inversion is located below the obstacle top, the vortices extend throughout the whole depth of the mixed layer and their features are almost constant with height. They have a nearly upright vertical axis with a warm core, which is feeded by a convergent near-surface inflow of warm air. The vortex core is dominated by a continuous updraft in the order of 10 cm s{sup -1}, which is associated with a divergent outflow of air at the vortex' top. This flow divergence creates an additional increase in temperature due to a locally sinking inversion, which is probably responsible for the cloud-free eye of many observed vortices. An increase in the surface heat flux is causing a faster decay of the vortices due to stronger boundary layer turbulence. Other vortex features derived from the simulations are very similar to those from previous studies. (orig.)

  10. New Setup of the UAS ALADINA for Measuring Boundary Layer Properties, Atmospheric Particles and Solar Radiation

    Directory of Open Access Journals (Sweden)

    Konrad Bärfuss

    2018-01-01

    Full Text Available The unmanned research aircraft ALADINA (Application of Light-weight Aircraft for Detecting in situ Aerosols has been established as an important tool for boundary layer research. For simplified integration of additional sensor payload, a flexible and reliable data acquisition system was developed at the Institute of Flight Guidance, Technische Universität (TU Braunschweig. The instrumentation consists of sensors for temperature, humidity, three-dimensional wind vector, position, black carbon, irradiance and atmospheric particles in the diameter range of ultra-fine particles up to the accumulation mode. The modular concept allows for straightforward integration and exchange of sensors. So far, more than 200 measurement flights have been performed with the robustly-engineered system ALADINA at different locations. The obtained datasets are unique in the field of atmospheric boundary layer research. In this study, a new data processing method for deriving parameters with fast resolution and to provide reliable accuracies is presented. Based on tests in the field and in the laboratory, the limitations and verifiability of integrated sensors are discussed.

  11. Response of the Atmospheric Boundary Layer and Soil Layer to a High Altitude, Dense Aerosol Cover.

    Science.gov (United States)

    Garratt, J. R.; Pittock, A. B.; Walsh, K.

    1990-01-01

    The response of the atmospheric boundary layer to the appearance of a high-altitude smoke layer has been investigated in a mesoscale numerical model of the atmosphere. Emphasis is placed on the changes in mean boundary-layer structure and near-surface temperatures when smoke of absorption optical depth (AOD) in the, range 0 to 1 is introduced. Calculations have been made at 30°S, for different soil thermal properties and degrees of surface wetness, over a time period of several days during which major smoke-induced cooling occurs. The presence of smoke reduces the daytime mixed-layer depth and, for large enough values of AOD, results in a daytime surface inversion with large cooling confined to heights of less than a few hundred meters. Smoke-induced reductions in daytime soil and air temperatures of several degrees are typical, dependent critically upon soil wetness and smoke AOD. Locations near the coast experience reduced cooling whenever there is a significant onshore flow related to a sea breeze (this would also be the case with a large-scale onshore flow). The sea breeze itself disappears for large enough smoke AOD and, over sloping coastal terrain, a smoke-induced, offshore drainage flow may exist throughout the diurnal cycle.

  12. Numerical simulation of small-scale mixing processes in the upper ocean and atmospheric boundary layer

    International Nuclear Information System (INIS)

    Druzhinin, O; Troitskaya, Yu; Zilitinkevich, S

    2016-01-01

    The processes of turbulent mixing and momentum and heat exchange occur in the upper ocean at depths up to several dozens of meters and in the atmospheric boundary layer within interval of millimeters to dozens of meters and can not be resolved by known large- scale climate models. Thus small-scale processes need to be parameterized with respect to large scale fields. This parameterization involves the so-called bulk coefficients which relate turbulent fluxes with large-scale fields gradients. The bulk coefficients are dependent on the properties of the small-scale mixing processes which are affected by the upper-ocean stratification and characteristics of surface and internal waves. These dependencies are not well understood at present and need to be clarified. We employ Direct Numerical Simulation (DNS) as a research tool which resolves all relevant flow scales and does not require closure assumptions typical of Large-Eddy and Reynolds Averaged Navier-Stokes simulations (LES and RANS). Thus DNS provides a solid ground for correct parameterization of small-scale mixing processes and also can be used for improving LES and RANS closure models. In particular, we discuss the problems of the interaction between small-scale turbulence and internal gravity waves propagating in the pycnocline in the upper ocean as well as the impact of surface waves on the properties of atmospheric boundary layer over wavy water surface. (paper)

  13. Horizontal structures of velocity and temperature boundary layers in two-dimensional numerical turbulent Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Zhou, Quan; Sugiyama, K.; Stevens, Richard Johannes Antonius Maria; Grossmann, Siegfried; Lohse, Detlef; Xia, K.

    2011-01-01

    We investigate the structures of the near-plate velocity and temperature profiles at different horizontal positions along the conducting bottom (and top) plate of a Rayleigh-Bénard convection cell, using two-dimensional (2D) numerical data obtained at the Rayleigh number Ra = 108 and the Prandtl

  14. Magnetohydrodynamics (MHD flow of a tangent hyperbolic fluid with nanoparticles past a stretching sheet with second order slip and convective boundary condition

    Directory of Open Access Journals (Sweden)

    Wubshet Ibrahim

    Full Text Available This article presents the effect of thermal radiation on magnetohydrodynamic flow of tangent hyperbolic fluid with nanoparticle past an enlarging sheet with second order slip and convective boundary condition. Condition of zero normal flux of nanoparticles at the wall is used for the concentration boundary condition, which is the current topic that have yet to be studied extensively. The solution for the velocity, temperature and nanoparticle concentration is governed by parameters viz. power-law index (n, Weissenberg number We, Biot number Bi, Prandtl number Pr, velocity slip parameters δ and γ, Lewis number Le, Brownian motion parameter Nb and the thermophoresis parameter Nt. Similarity transformation is used to metamorphosed the governing non-linear boundary-value problem into coupled higher order non-linear ordinary differential equation. The succeeding equations were numerically solved using the function bvp4c from the matlab for different values of emerging parameters. Numerical results are deliberated through graphs and tables for velocity, temperature, concentration, the skin friction coefficient and local Nusselt number. The results designate that the skin friction coefficient Cf deplete as the values of Weissenberg number We, slip parameters γ and δ upturn and it rises as the values of power-law index n increase. The local Nusselt number -θ′(0 decreases as slip parameters γ and δ, radiation parameter Nr, Weissenberg number We, thermophoresis parameter Nt and power-law index n increase. However, the local Nusselt number increases as the Biot number Bi increase. Keywords: Tangent hyperbolic fluid, Second order slip flow, MHD, Convective boundary condition, Radiation effect, Passive control of nanoparticles

  15. Atmospheric Boundary Layer Dynamics Near Ross Island and Over West Antarctica.

    Science.gov (United States)

    Liu, Zhong

    The atmospheric boundary layer dynamics near Ross Island and over West Antarctica has been investigated. The study consists of two parts. The first part involved the use of data from ground-based remote sensing equipment (sodar and RASS), radiosondes, pilot balloons, automatic weather stations, and NOAA AVHRR satellite imagery. The second part involved the use of a high resolution boundary layer model coupled with a three-dimensional primitive equation mesoscale model to simulate the observed atmospheric boundary layer winds and temperatures. Turbulence parameters were simulated with an E-epsilon turbulence model driven by observed winds and temperatures. The observational analysis, for the first time, revealed that the airflow passing through the Ross Island area is supplied mainly by enhanced katabatic drainage from Byrd Glacier and secondarily drainage from Mulock and Skelton glaciers. The observed diurnal variation of the blocking effect near Ross Island is dominated by the changes in the upstream katabatic airflow. The synthesized analysis over West Antarctica found that the Siple Coast katabatic wind confluence zone consists of two superimposed katabatic airflows: a relatively warm and more buoyant katabatic flow from West Antarctica overlies a colder and less buoyant katabatic airflow from East Antarctica. The force balance analysis revealed that, inside the West Antarctic katabatic wind zone, the pressure gradient force associated with the blocked airflow against the Transantarctic Mountains dominates; inside the East Antarctic katabatic wind zone, the downslope buoyancy force due to the cold air overlying the sloping terrain is dominant. The analysis also shows that these forces are in geostrophic balance with the Coriolis force. An E-epsilon turbulence closure model is used to simulate the diurnal variation of sodar backscatter. The results show that the model is capable of qualitatively capturing the main features of the observed sodar backscatter. To

  16. Investigations of structure parameters and their similarity relationships in the convective boundary layer by means of large-eddy simulations and comparison with measurement data

    NARCIS (Netherlands)

    Maronga, B.; Moene, A.F.; Dinther, van D.; Raasch, S.

    2012-01-01

    Turbulent fluctuations of the refractive index (n) in the atmospheric boundary layer are related to local fluctuations in the air density, which can be expressed by the refractive-index structure parameter (Cn2). Since these fluctuations depend mainly on temperature and humidity, it is possible to

  17. Validation of the simpleFoam (RANS solver for the atmospheric boundary layer in complex terrain

    Directory of Open Access Journals (Sweden)

    Peralta C.

    2014-01-01

    Full Text Available We validate the simpleFoam (RANS solver in OpenFOAM (version 2.1.1 for simulating neutral atmospheric boundary layer flows in complex terrain. Initial and boundary conditions are given using Richards and Hoxey proposal [1]. In order to obtain stable simulation of the ABL, modified wall functions are used to set the near-wall boundary conditions, following Blocken et al remedial measures [2]. A structured grid is generated with the new library terrainBlockMesher [3,4], based on OpenFOAM's blockMesh native mesher. The new tool is capable of adding orographic features and the forest canopy. Additionally, the mesh can be refined in regions with complex orography. We study both the classical benchmark case of Askervein hill [5] and the more recent Bolund island data set [6]. Our purpose is two-folded: to validate the performance of OpenFOAM steady state solvers, and the suitability of the new meshing tool to generate high quality structured meshes, which will be used in the future for performing more computationally intensive LES simulations in complex terrain.

  18. Structure and Optical Properties of the Atmospheric Boundary Layer over Dusty Hot Deserts

    Science.gov (United States)

    Chalermthai, B.; Al Marzooqi, M.; Basha, G.; Ouarda, T.; Armstrong, P.; Molini, A.

    2014-12-01

    Strong sensible heat fluxes and deep turbulent mixing - together with marked dustiness and a low substrate water content - represent a characteristic signature of the atmospheric boundary layer (ABL) over hot deserts, resulting in "thicker" mixing layers and peculiar optical properties. Beside these main common features however, desert boundary layers present extremely complex local structures that have been scarcely addressed in the literature, and whose understanding is essential in modeling processes such as transport and deposition of dust and pollutants, local wind fields, turbulent fluxes and their impacts on the sustainable development, human health and solar energy harvesting in these regions. In this study, we explore the potential of the joint usage of Lidar Ceilometer backscattering profiles and sun-photometer optical depth retrievals to quantitatively determine the vertical aerosol profile over dusty hot desert regions. Toward this goal, we analyze a continuous record of observations of the atmospheric boundary layer height from a single lens LiDAR ceilometer operated at Masdar Institute Field Station (24.4425N 54.6163E, Abu Dhabi, United Arab Emirates), starting March 2013, and the concurrent measurements of aerosol optical depth derived independently from the Masdar Institute AERONET sun-photometer. The main features of the desert ABL are obtained from the ceilometer range corrected backscattering profiles through bi-dimensional clustering technique we developed as a modification of the recently proposed single-profile clustering method, and therefore "directly" and "indirectly" calibrated to obtain a full diurnal cycle climatology of the aerosol optical depth and aerosol profiles. The challenges and the advantages of applying a similar methodology to the monitoring of aerosols and dust over hyper-arid regions are also discussed, together with the issues related to the sensitivity of commercial ceilometers to changes in the solar background.

  19. Investigation of the atmospheric boundary layer dynamics during the ESCOMPTE campaign

    Science.gov (United States)

    Saïd, F.; Brut, A.; Campistron, B.; Cousin, F.

    2007-03-01

    This paper presents some results about the behavior of the atmospheric boundary layer observed during the ESCOMPTE experiment. This campaign, which took place in south-eastern France during summer 2001, was aimed at improving our understanding of pollution episodes in relation to the dynamics of the lower troposphere. Using a large data set, as well as a simulation from the mesoscale non-hydrostatic model Meso-NH, we describe and analyze the atmospheric boundary layer (ABL) development during two specific meteorological conditions of the second Intensive Observation Period (IOP). The first situation (IOP2a, from 22 June to 23 June) corresponds to moderate, dry and cold northerly winds (end of Mistral event), coupled with a sea-breeze in the lower layer, whereas sea-breeze events with weak southerly winds occurred during the second part of the period (IOP2b, from 24 June to 26 June). In this study, we first focus on the validation of the model outputs with a thorough comparison of the Meso-NH simulations with fields measurements on three days of the IOP: 22 June, 23 June and 25 June. We also investigate the structure of the boundary layer on IOP2a when the Mistral is superimposed on a sea breeze. Then, we describe the spatial and diurnal variability of the ABL depths over the ESCOMPTE domain during the whole IOP. This step is essential if one wants to know the depth of the layer where the pollutants can be diluted or accumulated. Eventually, this study intends to describe the ABL variability in relation to local or mesoscale dynamics and/or induced topographic effects, in order to explain pollution transport processes in the low troposphere.

  20. Investigation of the atmospheric boundary layer dynamics during the ESCOMPTE campaign

    Directory of Open Access Journals (Sweden)

    F. Saïd

    2007-03-01

    Full Text Available This paper presents some results about the behavior of the atmospheric boundary layer observed during the ESCOMPTE experiment. This campaign, which took place in south-eastern France during summer 2001, was aimed at improving our understanding of pollution episodes in relation to the dynamics of the lower troposphere. Using a large data set, as well as a simulation from the mesoscale non-hydrostatic model Meso-NH, we describe and analyze the atmospheric boundary layer (ABL development during two specific meteorological conditions of the second Intensive Observation Period (IOP. The first situation (IOP2a, from 22 June to 23 June corresponds to moderate, dry and cold northerly winds (end of Mistral event, coupled with a sea-breeze in the lower layer, whereas sea-breeze events with weak southerly winds occurred during the second part of the period (IOP2b, from 24 June to 26 June.

    In this study, we first focus on the validation of the model outputs with a thorough comparison of the Meso-NH simulations with fields measurements on three days of the IOP: 22 June, 23 June and 25 June. We also investigate the structure of the boundary layer on IOP2a when the Mistral is superimposed on a sea breeze. Then, we describe the spatial and diurnal variability of the ABL depths over the ESCOMPTE domain during the whole IOP. This step is essential if one wants to know the depth of the layer where the pollutants can be diluted or accumulated. Eventually, this study intends to describe the ABL variability in relation to local or mesoscale dynamics and/or induced topographic effects, in order to explain pollution transport processes in the low troposphere.

  1. Investigation of the atmospheric boundary layer dynamics during the ESCOMPTE campaign

    Energy Technology Data Exchange (ETDEWEB)

    Said, F.; Campistron, B. [Centre de Recherches Atmospheriques, UMR CNRS 5560, Campistrous (France); Brut, A. [Centre d' Etudes Spatiales de la BIOsphere UMR 5126, Toulouse (France); Cousin, F. [Lab. d' Aerologie, UMR CNRS 5560, Toulouse (France)

    2007-07-01

    This paper presents some results about the behavior of the atmospheric boundary layer observed during the ESCOMPTE experiment. This campaign, which took place in south-eastern France during summer 2001, was aimed at improving our understanding of pollution episodes in relation to the dynamics of the lower troposphere. Using a large data set, as well as a simulation from the mesoscale non-hydrostatic model Meso-NH, we describe and analyze the atmosphere boundary layer (ABL) development during two specific meteorological conditions of the second Intensive Observation Period (IOP). The first situation (IOP2a, from 22 June to 23 June) corresponds to moderate, dry and cold northerly winds (end of Mistral event), coupled with a sea-breeze in the lower layer, whereas sea-breeze events with weak southerly winds occurred during the second part of the period (IOP2b, from 24 June to 26 June). In this study, we first focus on the validation of the model outputs with a thorough comparison of the Meso-NH simulations with fields measurements on three days of the IOP: 22 June, 23 June and 25 June. We also investigate the structure of the boundary layer on IOP2a when the Mistral is superimposed on a sea breeze. Then, we describe the spatial and diurnal variability of the ABL depths over the ESCOMPTE domain during the whole IOP. This step is essential if one wants to know the depth of the layer where the pollutants can be diluted or accumulated. Eventually, this study intends to describe the ABL variability in relation to local or mesoscale dynamics and/or induced topographic effects, in order to explain pollution transport processes in the low troposphere. (orig.)

  2. Investigation of the atmospheric boundary layer dynamics during the ESCOMPTE campaign

    Directory of Open Access Journals (Sweden)

    F. Saïd

    2007-03-01

    Full Text Available This paper presents some results about the behavior of the atmospheric boundary layer observed during the ESCOMPTE experiment. This campaign, which took place in south-eastern France during summer 2001, was aimed at improving our understanding of pollution episodes in relation to the dynamics of the lower troposphere. Using a large data set, as well as a simulation from the mesoscale non-hydrostatic model Meso-NH, we describe and analyze the atmospheric boundary layer (ABL development during two specific meteorological conditions of the second Intensive Observation Period (IOP. The first situation (IOP2a, from 22 June to 23 June corresponds to moderate, dry and cold northerly winds (end of Mistral event, coupled with a sea-breeze in the lower layer, whereas sea-breeze events with weak southerly winds occurred during the second part of the period (IOP2b, from 24 June to 26 June. In this study, we first focus on the validation of the model outputs with a thorough comparison of the Meso-NH simulations with fields measurements on three days of the IOP: 22 June, 23 June and 25 June. We also investigate the structure of the boundary layer on IOP2a when the Mistral is superimposed on a sea breeze. Then, we describe the spatial and diurnal variability of the ABL depths over the ESCOMPTE domain during the whole IOP. This step is essential if one wants to know the depth of the layer where the pollutants can be diluted or accumulated. Eventually, this study intends to describe the ABL variability in relation to local or mesoscale dynamics and/or induced topographic effects, in order to explain pollution transport processes in the low troposphere.

  3. On the factors governing water vapor turbulence mixing in the convective boundary layer over land: Concept and data analysis technique using ground-based lidar measurements

    International Nuclear Information System (INIS)

    Pal, Sandip

    2016-01-01

    The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features. - Highlights: • Lidar based study for CBL turbulence features • Water vapor and aerosol turbulence profiles • Processes governing boundary layer turbulence profiles using lidars

  4. On the factors governing water vapor turbulence mixing in the convective boundary layer over land: Concept and data analysis technique using ground-based lidar measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Sandip, E-mail: sup252@PSU.EDU

    2016-06-01

    The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features. - Highlights: • Lidar based study for CBL turbulence features • Water vapor and aerosol turbulence profiles • Processes governing boundary layer turbulence profiles using lidars.

  5. Analysis of activation energy in Couette-Poiseuille flow of nanofluid in the presence of chemical reaction and convective boundary conditions

    Science.gov (United States)

    Zeeshan, A.; Shehzad, N.; Ellahi, R.

    2018-03-01

    The motivation of the current article is to explore the energy activation in MHD radiative Couette-Poiseuille flow nanofluid in horizontal channel with convective boundary conditions. The mathematical model of Buongiorno [1] effectively describes the current flow analysis. Additionally, the impact of chemical reaction is also taken in account. The governing flow equations are simplified with the help of boundary layer approximations. Non-linear coupled equations for momentum, energy and mass transfer are tackled with analytical (HAM) technique. The influence of dimensionless convergence parameter like Brownian motion parameter, radiation parameter, buoyancy ratio parameter, dimensionless activation energy, thermophoresis parameter, temperature difference parameter, dimensionless reaction rate, Schmidt number, Brinkman number, Biot number and convection diffusion parameter on velocity, temperature and concentration profiles are discussed graphically and in tabular form. From the results, it is elaborate that the nanoparticle concentration is directly proportional to the chemical reaction with activation energy and the performance of Brownian motion on nanoparticle concentration gives reverse pattern to that of thermophoresis parameter.

  6. Convective boundary layer flow and heat transfer in a nanofluid in the presence of second order slip, constant heat flux and zero nanoparticles flux

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M.M., E-mail: mansurdu@yahoo.com [Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, PO Box 36, PC 123 Al-Khod, Muscat (Oman); Al-Rashdi, Maryam H. [Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, PO Box 36, PC 123 Al-Khod, Muscat (Oman); Pop, I. [Department of Mathematics, Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca 400084 (Romania)

    2016-02-15

    Highlights: • Convective boundary layer flow and heat transfer in a nanofluid is investigated. • Second order slip increases the rate of shear stress and decreases the rate of heat transfer in a nanofluid. • In nanofluid flow zero normal flux of the nanoparticles at the surface is realistic to apply. • Multiple solutions are identified for certain values of the parameter space. • The upper branch solution is found to be stable, hence physically realizable. - Abstract: In this work, the effects of the second order slip, constant heat flux, and zero normal flux of the nanoparticles due to thermophoresis on the convective boundary layer flow and heat transfer characteristics in a nanofluid using Buongiorno's model over a permeable shrinking sheet is studied theoretically. The nonlinear coupled similarity equations are solved using the function bvp4c using Matlab. Similarity solutions of the flow, heat transfer and nanoparticles volume fraction are presented graphically for several values of the model parameters. The results show that the application of second order slip at the interface is found to be increased the rate of shear stress and decreased the rate of heat transfer in a nanofluid, so need to be taken into account in nanofluid modeling. The results further indicate that multiple solutions exist for certain values of the parameter space. The stability analysis provides guarantee that the lower branch solution is unstable, while the upper branch solution is stable and physically realizable.

  7. Physical modeling of emergency emission in the atmosphere (experimental investigation of Lagrangian turbulence characteristics in the surface and boundary layer of the atmosphere)

    International Nuclear Information System (INIS)

    Garger, E.K.

    2013-01-01

    Results of diffusion experiments simulating emergency emission in the surface and boundary layers of the atmosphere are presented. Interpretation of measurements in the surface layer of the atmosphere had been conducted on the basis of the Lagrangian similarity hypothesis., Results of measurements in the boundary layer of the atmosphere are interpreted with use of the homogeneous turbulence theory. Regimes of turbulent diffusion from land and low sources of admixtures predicted by the Lagrangian similarity hypothesis for various conditions of thermal stratification in the surface layer of the atmosphere are experimentally confirmed. Universal empirical constants for these regimes are received that allows to use their in practice. Calculation diffusion parameters and concentrations of an admixture from various sources in the surface layer of the atmosphere by model is presented. Results of calculation on this model are compared to independent measurements of mass concentration of a admixture in horizontal and vertical planes. Results of simultaneous measurements Eulerian and Lagrangian turbulence characteristics for various diffusion times in the boundary layer of the atmosphere have allowed to estimate turbulence time scales in Lagrangian variables for conditions close to neutral thermal stratification. The monograph is intended for scientists and students engaged in the field of meteorology, physics of the atmosphere and pollution air control, services of radiation and ecological safety

  8. An observational study of the evolution of the atmospheric boundary-layer over Cabo Frio, Brazil

    Directory of Open Access Journals (Sweden)

    S. H. Franchito

    2007-08-01

    Full Text Available The effect of coastal upwelling on the evolution of the atmospheric boundary layer (ABL in Cabo Frio (Brazil is investigated. For this purpose, radiosounding data collected in two experiments made during the austral summer (upwelling case and austral winter (no upwelling case are analysed. The results show that during the austral summer, cold waters that crop up near the Cabo Frio coast favour the formation of an atmospheric stable layer, which persists during the upwelling episode. Due to the low SSTs, the descending branch of the sea-breeze circulation is located close to the coast, inhibiting the development of a mixed layer mainly during the day. At night, with the reduction of the land-sea thermal contrast the descending motion is weaker, allowing a vertical mixing. The stable ABL favours the formation of a low level jet, which may also contribute to the development of a nocturnal atmospheric mixed layer. During the austral winter, due to the higher SSTs observed near the coast, the ABL is less stable compared with that in the austral summer. Due to warming, a mixed layer is observed during the day. The observed vertical profiles of the zonal winds show that the easterlies at low levels are stronger in the austral summer, indicating that the upwelling modulates the sea-breeze signal, thus confirming model simulations.

  9. An analytical model for radioactive pollutant release simulation in the atmospheric boundary layer

    International Nuclear Information System (INIS)

    Weymar, Guilherme J.; Vilhena, Marco T.; Bodmann, Bardo E.J.; Buske, Daniela; Quadros, Regis

    2013-01-01

    Simulations of emission of radioactive substances in the atmosphere from the Brazilian nuclear power plant Angra 1 are a necessary tool for control and elaboration of emergency plans as a preventive action for possible accidents. In the present work we present an analytical solution for radioactive pollutant dispersion in the atmosphere, solving the time-dependent three-dimensional advection-diffusion equation. The experiment here used as a reference in the simulations consisted of the controlled releases of radioactive tritiated water vapor from the meteorological tower close to the power plant at Itaorna Beach. The wind profile was determined using experimental meteorological data and the micrometeorological parameters were calculated from empirical equations obtained in the literature. We report on a novel analytical formulation for the concentration of products of a radioactive chain released in the atmospheric boundary layer and solve the set of coupled equations for each chain radionuclide by the GILTT solution, assuming the decay of all progenitors radionuclide for each equation as source term. Further we report on numerical simulations, as an explicit but fictitious example and consider three radionuclides in the radioactive chain of Uranium 235. (author)

  10. An analytical model for radioactive pollutant release simulation in the atmospheric boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Weymar, Guilherme J.; Vilhena, Marco T.; Bodmann, Bardo E.J., E-mail: guicefetrs@gmail.com, E-mail: mtmbvilhena@gmail.com, E-mail: bejbodmann@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Buske, Daniela; Quadros, Regis, E-mail: danielabuske@gmail.com, E-mail: quadros99@gmail.com [Universidade Federal de Pelotas (UFPel), Capao do Leao, RS (Brazil). Programa de Pos-Graduacao em Modelagem Matematica

    2013-07-01

    Simulations of emission of radioactive substances in the atmosphere from the Brazilian nuclear power plant Angra 1 are a necessary tool for control and elaboration of emergency plans as a preventive action for possible accidents. In the present work we present an analytical solution for radioactive pollutant dispersion in the atmosphere, solving the time-dependent three-dimensional advection-diffusion equation. The experiment here used as a reference in the simulations consisted of the controlled releases of radioactive tritiated water vapor from the meteorological tower close to the power plant at Itaorna Beach. The wind profile was determined using experimental meteorological data and the micrometeorological parameters were calculated from empirical equations obtained in the literature. We report on a novel analytical formulation for the concentration of products of a radioactive chain released in the atmospheric boundary layer and solve the set of coupled equations for each chain radionuclide by the GILTT solution, assuming the decay of all progenitors radionuclide for each equation as source term. Further we report on numerical simulations, as an explicit but fictitious example and consider three radionuclides in the radioactive chain of Uranium 235. (author)

  11. Preparing for Exascale: Towards convection-permitting, global atmospheric simulations with the Model for Prediction Across Scales (MPAS)

    Science.gov (United States)

    Heinzeller, Dominikus; Duda, Michael G.; Kunstmann, Harald

    2017-04-01

    With strong financial and political support from national and international initiatives, exascale computing is projected for the end of this decade. Energy requirements and physical limitations imply the use of accelerators and the scaling out to orders of magnitudes larger numbers of cores then today to achieve this milestone. In order to fully exploit the capabilities of these Exascale computing systems, existing applications need to undergo significant development. The Model for Prediction Across Scales (MPAS) is a novel set of Earth system simulation components and consists of an atmospheric core, an ocean core, a land-ice core and a sea-ice core. Its distinct features are the use of unstructured Voronoi meshes and C-grid discretisation to address shortcomings of global models on regular grids and the use of limited area models nested in a forcing data set, with respect to parallel scalability, numerical accuracy and physical consistency. Here, we present work towards the application of the atmospheric core (MPAS-A) on current and future high performance computing systems for problems at extreme scale. In particular, we address the issue of massively parallel I/O by extending the model to support the highly scalable SIONlib library. Using global uniform meshes with a convection-permitting resolution of 2-3km, we demonstrate the ability of MPAS-A to scale out to half a million cores while maintaining a high parallel efficiency. We also demonstrate the potential benefit of a hybrid parallelisation of the code (MPI/OpenMP) on the latest generation of Intel's Many Integrated Core Architecture, the Intel Xeon Phi Knights Landing.

  12. Sea surface temperature as a proxy for convective gravity wave excitation: a study based on global gravity wave observations in the middle atmosphere

    Directory of Open Access Journals (Sweden)

    J. Y. Jia

    2014-11-01

    Full Text Available Absolute values of gravity wave momentum flux (GWMF deduced from satellite measurements by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER instrument and the High Resolution Dynamics Limb Sounder (HIRDLS are correlated with sea surface temperature (SST with the aim of identifying those oceanic regions for which convection is a major source of gravity waves (GWs. Our study identifies those latitude bands where high correlation coefficients indicate convective excitation with confidence. This is based on a global ray-tracing simulation, which is used to delineate the source and wind-filtering effects. Convective GWs are identified at the eastern coasts of the continents and over the warm water regions formed by the warm ocean currents, in particular the Gulf Stream and the Kuroshio. Potential contributions of tropical cyclones to the excitation of the GWs are discussed. Convective excitation can be identified well into the mid-mesosphere. In propagating upward, the centers of GWMF formed by convection shift poleward. Some indications of the main forcing regions are even shown for the upper mesosphere/lower thermosphere (MLT.

  13. Hall current and Joule heating effects on peristaltic flow of viscous fluid in a rotating channel with convective boundary conditions

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available The present article has been arranged to study the Hall current and Joule heating effects on peristaltic flow of viscous fluid in a channel with flexible walls. Both fluid and channel are in a state of solid body rotation. Convective conditions for heat transfer in the formulation are adopted. Viscous dissipation in energy expression is taken into account. Resulting differential systems after invoking small Reynolds number and long wavelength considerations are numerically solved. Runge-Kutta scheme of order four is implemented for the results of axial and secondary velocities, temperature and heat transfer coefficient. Comparison with previous limiting studies is shown. Outcome of new parameters of interest is analyzed. Keywords: Rotating frame, Hall current, Joule heating, Convective conditions, Wall properties

  14. The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence

    NARCIS (Netherlands)

    Lothon, M.; Lohou, F.; Pino, D.; Vilà-Guerau De Arellano, J.; Hartogensis, O.K.; Boer, van de A.; Coster, de O.; Moene, A.F.; Steeneveld, G.J.

    2014-01-01

    Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective boundary layer to the night-time stable boundary

  15. Laboratory modelling of the transfer processes between the ocean and atmosphere in the boundary layers

    Directory of Open Access Journals (Sweden)

    Sergeev Daniil

    2017-01-01

    Full Text Available The processes of momentum and heat transfer between ocean and atmosphere in the boundary layer were investigated within laboratory modeling for a wide range of wind speed and surface wave including hurricane conditions. Experiments were carried out on the Wind-Wave Flume of the Large Thermostratified Tank of IAP RAS. A special net located under the surface at different depths allows to vary parameters of surface waves independently on wind parameters. Theory of self-similarity of air flow parameters in the flume was used to calculate values aerodynamic and heat transfer coefficients from the measured velocity and temperature profiles by Pito and hotfilm gauges respectively. Simultaneous measurements of surface elevation with system wire allow to obtain spectra and integral parameters of waves. It was demonstrated that in contrast to the drag coefficient, heat transfer coefficient is virtually independent of wind speed and wave parameters to the moment of the beginning of spray generation and then increases rapidly.

  16. Atmospheric Boundary Layer temperature and humidity from new-generation Raman lidar

    Science.gov (United States)

    Froidevaux, Martin; Higgins, Chad; Simeonov, Valentin; Pardyjak, Eric R.; Parlange, Marc B.

    2010-05-01

    Mixing ratio and temperature data, obtained with EPFL Raman lidar during the TABLE-08 experiment are presented. The processing methods will be discussed along with fundamental physics. An independent calibration is performed at different distances along the laser beam, demonstrating that the multi-telescopes design of the lidar system is reliable for field application. The maximum achievable distance as a function of time and/or space averaging will also be discussed. During the TABLE-08 experiment, different type of lidar measurements have been obtained including: horizontal and vertical time series, as well as boundary layer "cuts", during day and night. The high resolution data, 1s in time and 1.25 m in space, are used to understand the response of the atmosphere to variations in surface variability.

  17. On the Structure and Adjustment of Inversion-Capped Neutral Atmospheric Boundary-Layer Flows: Large-Eddy Simulation Study

    DEFF Research Database (Denmark)

    Pedersen, Jesper Grønnegaard; Gryning, Sven-Erik; Kelly, Mark C.

    2014-01-01

    A range of large-eddy simulations, with differing free atmosphere stratification and zero or slightly positive surface heat flux, is investigated to improve understanding of the neutral and near-neutral, inversion-capped, horizontally homogeneous, barotropic atmospheric boundary layer with emphasis...... on the upper region. We find that an adjustment time of at least 16 h is needed for the simulated flow to reach a quasi-steady state. The boundary layer continues to grow, but at a slow rate that changes little after 8 h of simulation time. A common feature of the neutral simulations is the development...... of a super-geostrophic jet near the top of the boundary layer. The analytical wind-shear models included do not account for such a jet, and the best agreement with simulated wind shear is seen in cases with weak stratification above the boundary layer. Increasing the surface heat flux decreases the magnitude...

  18. Insights into Evaporative Droplet Dynamics in the High-Wind Atmospheric Boundary Layer

    Science.gov (United States)

    Peng, T.; Richter, D. H.

    2017-12-01

    Sea-spray droplets ejected into the air-sea boundary layer take part in a series of complex transport processes. To model the air-sea exchange of heat and moisture under high-wind conditions, it is important yet challenging to understand influences of evaporative droplets in the atmospheric boundary layer. We implement a high-resolution Eulerian-Lagrangian algorithm with droplets laden in a turbulent open-channel flow to reveal the dynamic and thermodynamic characteristics of evaporating sea spray. Our past numerical simulations demonstrated an overall weak modification to the total heat flux by evaporative droplets. This is due to redistributed sensible and latent heat fluxes from relatively small droplets that respond rapidly to the ambient environment or the limited residence time of larger droplets. However, droplets with a slower thermodynamic response to the environment indicate a potential to enhance the total heat flux, but this is dependent on concentration and suspension time. In the current study, we focus on correlations between the residence time and thermodynamic statistics of droplets in order to better understand how best to parameterize in large-scale models. In addition, we focus in detail on the different scales of turbulence to further characterize the range of influence that evaporating droplets have on the surrounding fluid.

  19. Large eddy simulation of the atmospheric boundary layer above a forest canopy

    Science.gov (United States)

    Alam, Jahrul

    2017-11-01

    A goal of this talk is to discuss large eddy simulation (LES) of atmospheric turbulence within and above a canopy/roughness sublayer, where coherent turbulence resembles a turbulent mixing layer. The proposed LES does not resolve the near wall region. Instead, a near surface canopy stress model has been combined with a wall adapting local eddy viscosity model. The canopy stress is represented as a three-dimensional time dependent momentum sink, where the total kinematic drag of the canopy is adjusted based on the measurements in a forest canopy. This LES has been employed to analyze turbulence structures in the canopy/roughness sublayer. Results indicate that turbulence is more efficient at transporting momentum and scalars in the roughness sublayer. The LES result has been compared with the turbulence profile measured over a forest canopy to predict the turbulence statistics in the inertial sublayer above the canopy. Turbulence statistics between the inertial sublayer, the canopy sublayer, and the rough-wall boundary layer have been compared to characterize whether turbulence in the canopy sublayer resembles a turbulent mixing layer or a boundary layer. The canopy turbulence is found dominated by energetic eddies much larger in scale than the individual roughness elements. Financial support from the National Science and Research Council (NSERC), Canada is acknowledged.

  20. Unsteady Flow in Different Atmospheric Boundary Layer Regimes and Its Impact on Wind-Turbine Performance

    Science.gov (United States)

    Gohari, Iman; Korobenko, Artem; Yan, Jinhui; Bazilevs, Yuri; Sarkar, Sutanu

    2016-11-01

    Wind is a renewable energy resource that offers several advantages including low pollutant emission and inexpensive construction. Wind turbines operate in conditions dictated by the Atmospheric Boundary Layer (ABL) and that motivates the study of coupling ABL simulations with wind turbine dynamics. The ABL simulations can be used for realistic modeling of the environment which, with the use of fluid-structure interaction, can give realistic predictions of extracted power, rotor loading, and blade structural response. The ABL simulations provide inflow boundary conditions to the wind-turbine simulator which uses arbitrary Lagrangian-Eulerian variational multiscale formulation. In the present work, ABL simulations are performed to examine two different scenarios: (i) A neutral ABL with zero heat-flux and inversion layer at 350m, in which the wind turbine experiences maximum mean shear; (2) A shallow ABL with the surface cooling-rate of -1 K/hr, in which the wind turbine experiences maximum mean velocity at the low-level-jet nose height. We will discuss differences in the unsteady flow between the two different ABL conditions and their impact on the performance of the wind turbine cluster in the coupled ABL-wind turbine simulations.

  1. Application of He's homotopy perturbation method to boundary layer flow and convection heat transfer over a flat plate

    International Nuclear Information System (INIS)

    Esmaeilpour, M.; Ganji, D.D.

    2007-01-01

    In this Letter, the problem of forced convection over a horizontal flat plate is presented and the homotopy perturbation method (HPM) is employed to compute an approximation to the solution of the system of nonlinear differential equations governing on the problem. It has been attempted to show the capabilities and wide-range applications of the homotopy perturbation method in comparison with the previous ones in solving heat transfer problems. The obtained solutions, in comparison with the exact solutions admit a remarkable accuracy. A clear conclusion can be drawn from the numerical results that the HPM provides highly accurate numerical solutions for nonlinear differential equations

  2. Spatial structures in the heat budget of the Antarctic atmospheric boundary layer

    Directory of Open Access Journals (Sweden)

    W. J. van de Berg

    2008-01-01

    Full Text Available Output from the regional climate model RACMO2/ANT is used to calculate the heat budget of the Antarctic atmospheric boundary layer (ABL. The main feature of the wintertime Antarctic ABL is a persistent temperature deficit compared to the free atmosphere. The magnitude of this deficit is controlled by the heat budget. During winter, transport of heat towards the surface by turbulence and net longwave emission are the primary ABL cooling terms. These processes show horizontal spatial variability only on continental scales. Vertical and horizontal, i.e. along-slope, advection of heat are the main warming terms. Over regions with convex ice sheet topography, i.e. domes and ridges, warming by downward vertical advection is enhanced due to divergence of the ABL wind field. Horizontal advection balances excess warming caused by vertical advection, hence the temperature deficit in the ABL weakens over domes and ridges along the prevailing katabatic wind. Conversely, vertical advection is reduced in regions with concave topography, i.e. valleys, where the ABL temperature deficit enlarges along the katabatic wind. Along the coast, horizontal and vertical advection is governed by the inability of the large-scale circulation to adapt to small scale topographic features. Meso-scale topographic structures have thus a strong impact on the ABL winter temperature, besides latitude and surface elevation. During summer, this mechanism is much weaker, and the horizontal variability of ABL temperatures is smaller.

  3. Profiles of Wind and Turbulence in the Coastal Atmospheric Boundary Layer of Lake Erie

    KAUST Repository

    Wang, H

    2014-06-16

    Prediction of wind resource in coastal zones is difficult due to the complexity of flow in the coastal atmospheric boundary layer (CABL). A three week campaign was conducted over Lake Erie in May 2013 to investigate wind characteristics and improve model parameterizations in the CABL. Vertical profiles of wind speed up to 200 m were measured onshore and offshore by lidar wind profilers, and horizontal gradients of wind speed by a 3-D scanning lidar. Turbulence data were collected from sonic anemometers deployed onshore and offshore. Numerical simulations were conducted with the Weather Research Forecasting (WRF) model with 2 nested domains down to a resolution of 1-km over the lake. Initial data analyses presented in this paper investigate complex flow patterns across the coast. Acceleration was observed up to 200 m above the surface for flow coming from the land to the water. However, by 7 km off the coast the wind field had not yet reached equilibrium with the new surface (water) conditions. The surface turbulence parameters over the water derived from the sonic data could not predict wind profiles observed by the ZephlR lidar located offshore. Horizontal wind speed gradients near the coast show the influence of atmospheric stability on flow dynamics. Wind profiles retrieved from the 3-D scanning lidar show evidence of nocturnal low level jets (LLJs). The WRF model was able to capture the occurrence of LLJ events, but its performance varied in predicting their intensity, duration, and the location of the jet core.

  4. A methodology for the design and testing of atmospheric boundary layer models for wind energy applications

    Directory of Open Access Journals (Sweden)

    J. Sanz Rodrigo

    2017-02-01

    Full Text Available The GEWEX Atmospheric Boundary Layer Studies (GABLS 1, 2 and 3 are used to develop a methodology for the design and testing of Reynolds-averaged Navier–Stokes (RANS atmospheric boundary layer (ABL models for wind energy applications. The first two GABLS cases are based on idealized boundary conditions and are suitable for verification purposes by comparing with results from higher-fidelity models based on large-eddy simulation. Results from three single-column RANS models, of 1st, 1.5th and 2nd turbulence closure order, show high consistency in predicting the mean flow. The third GABLS case is suitable for the study of these ABL models under realistic forcing such that validation versus observations from the Cabauw meteorological tower are possible. The case consists on a diurnal cycle that leads to a nocturnal low-level jet and addresses fundamental questions related to the definition of the large-scale forcing, the interaction of the ABL with the surface and the evaluation of model results with observations. The simulations are evaluated in terms of surface-layer fluxes and wind energy quantities of interest: rotor equivalent wind speed, hub-height wind direction, wind speed shear and wind direction veer. The characterization of mesoscale forcing is based on spatially and temporally averaged momentum budget terms from Weather Research and Forecasting (WRF simulations. These mesoscale tendencies are used to drive single-column models, which were verified previously in the first two GABLS cases, to first demonstrate that they can produce similar wind profile characteristics to the WRF simulations even though the physics are more simplified. The added value of incorporating different forcing mechanisms into microscale models is quantified by systematically removing forcing terms in the momentum and heat equations. This mesoscale-to-microscale modeling approach is affected, to a large extent, by the input uncertainties of the mesoscale

  5. CDM Convective Forecast Planning guidance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CDM Convective Forecast Planning (CCFP) guidance product provides a foreast of en-route aviation convective hazards. The forecasts are updated every 2 hours and...

  6. On transient climate change at the Cretaceous−Paleogene boundary due to atmospheric soot injections

    Science.gov (United States)

    Garcia, Rolando R.; Toon, Owen B.; Conley, Andrew J.

    2017-01-01

    Climate simulations that consider injection into the atmosphere of 15,000 Tg of soot, the amount estimated to be present at the Cretaceous−Paleogene boundary, produce what might have been one of the largest episodes of transient climate change in Earth history. The observed soot is believed to originate from global wildfires ignited after the impact of a 10-km-diameter asteroid on the Yucatán Peninsula 66 million y ago. Following injection into the atmosphere, the soot is heated by sunlight and lofted to great heights, resulting in a worldwide soot aerosol layer that lasts several years. As a result, little or no sunlight reaches the surface for over a year, such that photosynthesis is impossible and continents and oceans cool by as much as 28 °C and 11 °C, respectively. The absorption of light by the soot heats the upper atmosphere by hundreds of degrees. These high temperatures, together with a massive injection of water, which is a source of odd-hydrogen radicals, destroy the stratospheric ozone layer, such that Earth’s surface receives high doses of UV radiation for about a year once the soot clears, five years after the impact. Temperatures remain above freezing in the oceans, coastal areas, and parts of the Tropics, but photosynthesis is severely inhibited for the first 1 y to 2 y, and freezing temperatures persist at middle latitudes for 3 y to 4 y. Refugia from these effects would have been very limited. The transient climate perturbation ends abruptly as the stratosphere cools and becomes supersaturated, causing rapid dehydration that removes all remaining soot via wet deposition. PMID:28827324

  7. On the factors governing water vapor turbulence mixing in the convective boundary layer over land: Concept and data analysis technique using ground-based lidar measurements.

    Science.gov (United States)

    Pal, Sandip

    2016-06-01

    The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Density effects on turbulent boundary layer structure: From the atmosphere to hypersonic flow

    Science.gov (United States)

    Williams, Owen J. H.

    This dissertation examines the effects of density gradients on turbulent boundary layer statistics and structure using Particle Image Velocimetry (PIV). Two distinct cases were examined: the thermally stable atmospheric surface layer characteristic of nocturnal or polar conditions, and the hypersonic bounder layer characteristic of high speed aircraft and reentering spacecraft. Previous experimental studies examining the effects of stability on turbulent boundary layers identified two regimes, weak and strong stability, separated by a critical bulk stratification with a collapse of near-wall turbulence thought to be intrinsic to the strongly stable regime. To examine the characteristics of these two regimes, PIV measurements were obtained in conjunction with the mean temperature profile in a low Reynolds number facility over smooth and rough surfaces. The turbulent stresses were found to scale with the wall shear stress in the weakly stable regime prior relaminarization at a critical stratification. Changes in profile shape were shown to correlate with the local stratification profile, and as a result, the collapse of near-wall turbulence is not intrinsic to the strongly stable regime. The critical bulk stratification was found to be sensitive to surface roughness and potentially Reynolds number, and not constant as previously thought. Further investigations examined turbulent boundary layer structure and changes to the motions that contribute to turbulent production. To study the characteristics of a hypersonic turbulent boundary layer at Mach 8, significant improvements were required to the implementation and error characterization of PIV. Limited resolution or dynamic range effects were minimized and the effects of high shear on cross-correlation routines were examined. Significantly, an examination of particle dynamics, subject to fluid inertia, compressibility and non-continuum effects, revealed that particle frequency responses to turbulence can be up to an

  9. Impact of height-dependent drainage forcing on the stable atmospheric boundary layer over a uniform slope

    International Nuclear Information System (INIS)

    Maguire, A.J.; Rees, J.M.; Derbyshire, S.H.

    2008-01-01

    This paper presents a theoretical study of the stably stratified atmospheric boundary layer (SBL) overlying a uniform shallow slope with a gradient of the order of 1:1000. By relaxing the assumption made in a previous study that the slope-induced drainage force is constant across the boundary layer, analysis has been performed that demonstrates that a realistic form for the drainage forcing is a term proportional to (1-z/h) 1/2 , where z is the height above the ground and h is the depth of the boundary layer. Modified expressions for the maximum sustainable surface buoyancy flux and Zilitinkevich's ratio are derived.

  10. Influence of yield stress on free convective boundary-layer flow of a non-Newtonian nanofluid past a vertical plate in a porous medium

    International Nuclear Information System (INIS)

    Hady, F. M.; Ibrahim, F. S.; Abdel-Gaied, S. M.; Eid, M. R.

    2011-01-01

    The effect of yield stress on the free convective heat transfer of dilute liquid suspensions of nanofluids flowing on a vertical plate saturated in porous medium under laminar conditions is investigated considering the nanofluid obeys the mathematical model of power-law. The model used for non-Newtonian nanofluid incorporates the effects of Brownian motion and thermophoresis. The governing boundary- layer equations are cast into dimensionless system which is solved numerically using a deferred correction technique and Newton iteration. This solution depends on yield stress parameter Ω, a power-law index n, Lewis number Le, a buoyancy-ratio number Nr, a Brownian motion number Nb, and a thermophoresis number Nt. Analyses of the results found that the reduced Nusselt and Sherwood numbers are decreasing functions of the higher yield stress parameter for each dimensionless numbers, n and Le, except the reduced Sherwood number is an increasing function of higher Nb for different values of yield stress parameter

  11. Influence of the Periodicity of Sinusoidal Boundary Condition on the Unsteady Mixed Convection within a Square Enclosure Using an Ag–Water Nanofluid

    Directory of Open Access Journals (Sweden)

    Azharul Karim

    2017-12-01

    Full Text Available A numerical study of the unsteady mixed convection heat transfer characteristics of an Ag–water nanofluid confined within a square shape lid-driven cavity has been carried out. The Galerkin weighted residual of the finite element method has been employed to investigate the effects of the periodicity of sinusoidal boundary condition for a wide range of Grashof numbers (Gr (105 to 107 with the parametric variation of sinusoidal even and odd frequency, N, from 1 to 6 at different instants (for τ = 0.1 and 1. It has been observed that both the Grashof number and the sinusoidal even and odd frequency have a significant influence on the streamlines and isotherms inside the cavity. The heat transfer rate enhanced by 90% from the heated surface as the Grashof number (Gr increased from 105 to 107 at sinusoidal frequency N = 1 and τ = 1.

  12. Entropy generation analysis of the revised Cheng-Minkowycz problem for natural convective boundary layer flow of nanofluid in a porous medium

    Directory of Open Access Journals (Sweden)

    Rashidi Mohammad Mehdi

    2015-01-01

    Full Text Available The similar solution on the equations of the revised Cheng-Minkowycz problem for natural convective boundary layer flow of nanofluid through a porous medium gives (using an analytical method, a system of non-linear partial differential equations which are solved by optimal homotopy analysis method. Effects of various drastic parameters on the fluid and heat transfer characteristics have been analyzed. A very good agreement is observed between the obtained results and the numerical ones. The entropy generation has been derived and a comprehensive parametric analysis on that has been done. Each component of the entropy generation has been analyzed separately and the contribution of each one on the total value of entropy generation has been determined. It is found that the entropy generation as an important aspect of the industrial applications has been affected by various parameters which should be controlled to minimize the entropy generation.

  13. Understanding and representing the effect of wind shear on the turbulent transfer in the convective boundary layer

    NARCIS (Netherlands)

    Ronda, R.J.; Steeneveld, G.J.; Holtslag, A.A.M.

    2012-01-01

    The proper forecasting of the occurrence of radiation fog is still one of the challenging topics in boundary-layer meteorology, despite its high societal importance like for aviation and road traffic. In fact radiation fog depends on many processes that all critically interact on relatively short

  14. Analysis of changes in tornadogenesis conditions over Northern Eurasia based on a simple index of atmospheric convective instability

    Science.gov (United States)

    Chernokulsky, A. V.; Kurgansky, M. V.; Mokhov, I. I.

    2017-12-01

    A simple index of convective instability (3D-index) is used for analysis of weather and climate processes that favor to the occurrence of severe convective events including tornadoes. The index is based on information on the surface air temperature and humidity. The prognostic ability of the index to reproduce severe convective events (thunderstorms, showers, tornadoes) is analyzed. It is shown that most tornadoes in North Eurasia are characterized by high values of the 3D-index; furthermore, the 3D-index is significantly correlated with the available convective potential energy. Reanalysis data (for recent decades) and global climate model simulations (for the 21st century) show an increase in the frequency of occurrence of favorable for tornado formation meteorological conditions in the regions of Northern Eurasia. The most significant increase is found on the Black Sea coast and in the south of the Far East.

  15. Pollutant Plume Dispersion in the Atmospheric Boundary Layer over Idealized Urban Roughness

    Science.gov (United States)

    Wong, Colman C. C.; Liu, Chun-Ho

    2013-05-01

    The Gaussian model of plume dispersion is commonly used for pollutant concentration estimates. However, its major parameters, dispersion coefficients, barely account for terrain configuration and surface roughness. Large-scale roughness elements (e.g. buildings in urban areas) can substantially modify the ground features together with the pollutant transport in the atmospheric boundary layer over urban roughness (also known as the urban boundary layer, UBL). This study is thus conceived to investigate how urban roughness affects the flow structure and vertical dispersion coefficient in the UBL. Large-eddy simulation (LES) is carried out to examine the plume dispersion from a ground-level pollutant (area) source over idealized street canyons for cross flows in neutral stratification. A range of building-height-to-street-width (aspect) ratios, covering the regimes of skimming flow, wake interference, and isolated roughness, is employed to control the surface roughness. Apart from the widely used aerodynamic resistance or roughness function, the friction factor is another suitable parameter that measures the drag imposed by urban roughness quantitatively. Previous results from laboratory experiments and mathematical modelling also support the aforementioned approach for both two- and three-dimensional roughness elements. Comparing the UBL plume behaviour, the LES results show that the pollutant dispersion strongly depends on the friction factor. Empirical studies reveal that the vertical dispersion coefficient increases with increasing friction factor in the skimming flow regime (lower resistance) but is more uniform in the regimes of wake interference and isolated roughness (higher resistance). Hence, it is proposed that the friction factor and flow regimes could be adopted concurrently for pollutant concentration estimate in the UBL over urban street canyons of different roughness.

  16. Applying Geospatial Techniques to Investigate Boundary Layer Land-Atmosphere Interactions Involved in Tornadogensis

    Science.gov (United States)

    Weigel, A. M.; Griffin, R.; Knupp, K. R.; Molthan, A.; Coleman, T.

    2017-12-01

    Northern Alabama is among the most tornado-prone regions in the United States. This region has a higher degree of spatial variability in both terrain and land cover than the more frequently studied North American Great Plains region due to its proximity to the southern Appalachian Mountains and Cumberland Plateau. More research is needed to understand North Alabama's high tornado frequency and how land surface heterogeneity influences tornadogenesis in the boundary layer. Several modeling and simulation studies stretching back to the 1970's have found that variations in the land surface induce tornadic-like flow near the surface, illustrating a need for further investigation. This presentation introduces research investigating the hypothesis that horizontal gradients in land surface roughness, normal to the direction of flow in the boundary layer, induce vertically oriented vorticity at the surface that can potentially aid in tornadogenesis. A novel approach was implemented to test this hypothesis using a GIS-based quadrant pattern analysis method. This method was developed to quantify spatial relationships and patterns between horizontal variations in land surface roughness and locations of tornadogenesis. Land surface roughness was modeled using the Noah land surface model parameterization scheme which, was applied to MODIS 500 m and Landsat 30 m data in order to compare the relationship between tornadogenesis locations and roughness gradients at different spatial scales. This analysis found a statistical relationship between areas of higher roughness located normal to flow surrounding tornadogenesis locations that supports the tested hypothesis. In this presentation, the innovative use of satellite remote sensing data and GIS technologies to address interactions between the land and atmosphere will be highlighted.

  17. The atmospheric boundary layer in the CSIRO global climate model: simulations versus observations

    Science.gov (United States)

    Garratt, J. R.; Rotstayn, L. D.; Krummel, P. B.

    2002-07-01

    A 5-year simulation of the atmospheric boundary layer in the CSIRO global climate model (GCM) is compared with detailed boundary-layer observations at six locations, two over the ocean and four over land. Field observations, in the form of surface fluxes and vertical profiles of wind, temperature and humidity, are generally available for each hour over periods of one month or more in a single year. GCM simulations are for specific months corresponding to the field observations, for each of five years. At three of the four land sites (two in Australia, one in south-eastern France), modelled rainfall was close to the observed climatological values, but was significantly in deficit at the fourth (Kansas, USA). Observed rainfall during the field expeditions was close to climatology at all four sites. At the Kansas site, modelled screen temperatures (Tsc), diurnal temperature amplitude and sensible heat flux (H) were significantly higher than observed, with modelled evaporation (E) much lower. At the other three land sites, there is excellent correspondence between the diurnal amplitude and phase and absolute values of each variable (Tsc, H, E). Mean monthly vertical profiles for specific times of the day show strong similarities: over land and ocean in vertical shape and absolute values of variables, and in the mixed-layer and nocturnal-inversion depths (over land) and the height of the elevated inversion or height of the cloud layer (over the sea). Of special interest is the presence climatologically of early morning humidity inversions related to dewfall and of nocturnal low-level jets; such features are found in the GCM simulations. The observed day-to-day variability in vertical structure is captured well in the model for most sites, including, over a whole month, the temperature range at all levels in the boundary layer, and the mix of shallow and deep mixed layers. Weaknesses or unrealistic structure include the following, (a) unrealistic model mixed

  18. Speciated atmospheric mercury in the marine boundary layer of the Bohai Sea and Yellow Sea

    Science.gov (United States)

    Wang, Chunjie; Ci, Zhijia; Wang, Zhangwei; Zhang, Xiaoshan; Guo, Jia

    2016-04-01

    The objectives of this study are to identify the spatial and temporal distributions of gaseous elemental mercury (GEM), reactive gaseous mercury (RGM), and fine particulate mercury (HgP2.5) in the marine boundary layer (MBL) of the Bohai Sea (BS) and Yellow Sea (YS), and to investigate the relationships between mercury species and meteorological parameters. The mean concentrations of GEM, RGM, and HgP2.5 were 2.03 ng m-3, 2.5 pg m-3, and 8.2 pg m-3 in spring, and 2.09 ng m-3, 4.3 pg m-3, and 8.3 pg m-3 in fall. Reactive mercury (RGM + HgP2.5) represented RGM + HgP2.5), which indicated that most mercury export in the MBL was GEM and the direct outflow of reactive mercury was very small. Moreover, GEM concentrations over the BS were generally higher than those over the YS both in spring and fall. Although RGM showed a homogeneous distribution over the BS and YS both in spring and fall, the mean RGM concentration in fall was significantly higher than that in spring. In contrast, the spatial distribution of HgP2.5 generally reflected a gradient with high levels near the coast of China and low levels in the open sea, suggesting the significant atmospheric mercury outflow from China. Interestingly, the mean RGM concentrations during daytime were significantly higher than those during nighttime both in spring and fall, while the opposite results were observed for HgP2.5. Additionally, RGM positively correlates with air temperature while negatively correlates with relative humidity. In conclusion, the elevated atmospheric mercury levels in the BS and YS compared to other open seas suggested that the human activities had a significant influence on the oceanic mercury cycle downwind of China.

  19. MHD mixed convective boundary layer flow of a nanofluid through a porous medium due to an exponentially stretching sheet

    KAUST Repository

    Ferdows, M.; Khan, M.S.; Alam, M.M.; Sun, S.

    2012-01-01

    Magnetohydrodynamic (MHD) boundary layer flow of a nanofluid over an exponentially stretching sheet was studied. The governing boundary layer equations are reduced into ordinary differential equations by a similarity transformation. The transformed equations are solved numerically using the Nactsheim-Swigert shooting technique together with Runge-Kutta six-order iteration schemes. The effects of the governing parameters on the flow field and heat transfer characteristics were obtained and discussed. The numerical solutions for the wall skin friction coefficient, the heat and mass transfer coefficient, and the velocity, temperature, and concentration profiles are computed, analyzed, and discussed graphically. Comparison with previously published work is performed and excellent agreement is observed. 2012 M. Ferdows et al.

  20. MHD Heat and Mass Transfer of Chemical Reaction Fluid Flow over a Moving Vertical Plate in Presence of Heat Source with Convective Surface Boundary Condition

    Directory of Open Access Journals (Sweden)

    B. R. Rout

    2013-01-01

    Full Text Available This paper aims to investigate the influence of chemical reaction and the combined effects of internal heat generation and a convective boundary condition on the laminar boundary layer MHD heat and mass transfer flow over a moving vertical flat plate. The lower surface of the plate is in contact with a hot fluid while the stream of cold fluid flows over the upper surface with heat source and chemical reaction. The basic equations governing the flow, heat transfer, and concentration are reduced to a set of ordinary differential equations by using appropriate transformation for variables and solved numerically by Runge-Kutta fourth-order integration scheme in association with shooting method. The effects of physical parameters on the velocity, temperature, and concentration profiles are illustrated graphically. A table recording the values of skin friction, heat transfer, and mass transfer at the plate is also presented. The discussion focuses on the physical interpretation of the results as well as their comparison with previous studies which shows good agreement as a special case of the problem.

  1. Structure of the marine atmospheric boundary layer over an oceanic thermal front: SEMAPHORE experiment

    Science.gov (United States)

    Kwon, B. H.; BéNech, B.; Lambert, D.; Durand, P.; Druilhet, A.; Giordani, H.; Planton, S.

    1998-10-01

    The Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment, the third phase of which took place between October 4 and November 17, 1993, was conducted over the oceanic Azores Current located in the Azores basin and mainly marked at the surface by a thermal front due to the gradient of the sea surface temperature (SST) of about 1° to 2°C per 100 km. The evolution of the marine atmospheric boundary layer (MABL) over the SST front was studied with two aircraft and a ship in different meteorological conditions. For each case, the influence of the incoming air direction with respect to the orientation of the oceanic front was taken into account. During the campaign, advanced very high resolution radiometer pictures did not show any relation between the SST field and the cloud cover. The MABL was systematically thicker on the warm side than on the cold side. The mean MABL structure described from aircraft data collected in a vertical plane crossing the oceanic front was characterized by (1) an atmospheric horizontal gradient of 1° to 2°C per 100 km in the whole depth of the mixed layer and (2) an increase of the wind intensity from the cold to the warm side when the synoptic wind blew from the cold side. The surface sensible heat (latent heat) flux always increased from the cold to the warm sector owing to the increase of the wind and of the temperature (specific humidity) difference between the surface and the air. Turbulence increased from the cold to the warm side in conjunction with the MABL thickening, but the normalized profiles presented the same structure, regardless of the position over the SST front. In agreement with the Action de Recherche Programme te Petite Echelle and Grande Echelle model, the mean temperature and momentum budgets were highly influenced by the horizontal temperature gradient. In particular, the strong ageostrophic influence in the MABL above the SST front seems

  2. Micro-pulse upconversion Doppler lidar for wind and visibility detection in the atmospheric boundary layer.

    Science.gov (United States)

    Xia, Haiyun; Shangguan, Mingjia; Wang, Chong; Shentu, Guoliang; Qiu, Jiawei; Zhang, Qiang; Dou, Xiankang; Pan, Jianwei

    2016-11-15

    For the first time, to the best of our knowledge, a compact, eye-safe, and versatile direct detection Doppler lidar is developed using an upconversion single-photon detection method at 1.5 μm. An all-fiber and polarization maintaining architecture is realized to guarantee the high optical coupling efficiency and the robust stability. Using integrated-optic components, the conservation of etendue of the optical receiver is achieved by manufacturing a fiber-coupled periodically poled lithium niobate waveguide and an all-fiber Fabry-Perot interferometer (FPI). The double-edge technique is implemented by using a convert single-channel FPI and a single upconversion detector, incorporating a time-division multiplexing method. The backscatter photons at 1548.1 nm are converted into 863 nm via mixing with a pump laser at 1950 nm. The relative error of the system is less than 0.1% over nine weeks. In experiments, atmospheric wind and visibility over 48 h are detected in the boundary layer. The lidar shows good agreement with the ultrasonic wind sensor, with a standard deviation of 1.04 m/s in speed and 12.3° in direction.

  3. Experimental investigation on the wake interference among wind turbines sited in atmospheric boundary layer winds

    Institute of Scientific and Technical Information of China (English)

    W. Tian; A. Ozbay; X. D. Wang; H.Hu

    2017-01-01

    We examined experimentally the effects of incom-ing surface wind on the turbine wake and the wake interfer-ence among upstream and downstream wind turbines sited in atmospheric boundary layer (ABL) winds. The experi-ment was conducted in a large-scale ABL wind tunnel with scaled wind turbine models mounted in different incom-ing surface winds simulating the ABL winds over typical offshore/onshore wind farms. Power outputs and dynamic loadings acting on the turbine models and the wake flow char-acteristics behind the turbine models were quantified. The results revealed that the incoming surface winds significantly affect the turbine wake characteristics and wake interference between the upstream and downstream turbines. The velocity deficits in the turbine wakes recover faster in the incoming surface winds with relatively high turbulence levels. Varia-tions of the power outputs and dynamic wind loadings acting on the downstream turbines sited in the wakes of upstream turbines are correlated well with the turbine wakes charac-teristics. At the same downstream locations, the downstream turbines have higher power outputs and experience greater static and fatigue loadings in the inflow with relatively high turbulence level, suggesting a smaller effect of wake inter-ference for the turbines sited in onshore wind farms.

  4. Evaluation of UAS for Atmospheric Boundary Layer Monitoring as Part of the 2017 CLOUD-MAP Flight Campaign

    Science.gov (United States)

    Jacob, J.; Chilson, P. B.; Houston, A. L.; Smith, S.

    2017-12-01

    CLOUD-MAP (Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics) is a 4 year, 4 university collaboration sponsored by the National Science Foundation to develop capabilities that will allow meteorologists and atmospheric scientists to use unmanned aircraft as a common, useful everyday measurement tool. Currently, we know that systems can be used for meteorological measurements, but they are far from being practical or robust for everyday field diagnostics by the average meteorologist or scientist. In particular, UAS are well suited for the lower atmosphere, namely the lower boundary layer that has a large impact on the atmosphere and where much of the weather phenomena begin. The 2016 and 2017 campaigns resulted in over 500 unmanned aircraft flights of over a dozen separate platforms collecting meteorological data at 3 different sites including Oklahoma Mesonet stations and the DOE Atmospheric Radiation Measurement Southern Great Plains (SGP) site. The SGP atmospheric observatory was the first field measurement site established by the ARM Climate Research Facility and is the world's largest and most extensive climate research facility. Data from the SGP was used to validate observations from the various UAS. UAS operations consisted of both fixed and rotary platforms up to 3,000 AGL with thermodynamic, wind, and chemistry (viz., CO2 and CH4) sensors. ABL conditions were observed over a variety of conditions, particularly during the morning transition to evaluate the boundary layer dilution due to vertical mixing and changes in the wind patterns from diurnal variability.

  5. The Mars Crustal Magnetic Field Control of Plasma Boundary Locations and Atmospheric Loss: MHD Prediction and Comparison with MAVEN

    Science.gov (United States)

    Fang, Xiaohua; Ma, Yingjuan; Masunaga, Kei; Dong, Chuanfei; Brain, David; Halekas, Jasper; Lillis, Robert; Jakosky, Bruce M.; Connerney, Jack; Grebowsky, Joseph; hide

    2017-01-01

    We present results from a global Mars time-dependent MHD simulation under constant solar wind and solar radiation impact considering inherent magnetic field variations due to continuous planetary rotation. We calculate the 3-D shapes and locations of the bow shock (BS) and the induced magnetospheric boundary (IMB) and then examine their dynamic changes with time. We develop a physics-based, empirical algorithm to effectively summarize the multidimensional crustal field distribution. It is found that by organizing the model results using this new approach, the Mars crustal field shows a clear, significant influence on both the IMB and the BS. Specifically, quantitative relationships have been established between the field distribution and the mean boundary distances and the cross-section areas in the terminator plane for both of the boundaries. The model-predicted relationships are further verified by the observations from the NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. Our analysis shows that the boundaries are collectively affected by the global crustal field distribution, which, however, cannot be simply parameterized by a local parameter like the widely used subsolar longitude. Our calculations show that the variability of the intrinsic crustal field distribution in Mars-centered Solar Orbital itself may account for approx.60% of the variation in total atmospheric loss, when external drivers are static. It is found that the crustal field has not only a shielding effect for atmospheric loss but also an escape-fostering effect by positively affecting the transterminator ion flow cross-section area.

  6. MicroHH 1.0: a computational fluid dynamics code for direct numerical simulation and large-eddy simulation of atmospheric boundary layer flows

    Science.gov (United States)

    van Heerwaarden, Chiel C.; van Stratum, Bart J. H.; Heus, Thijs; Gibbs, Jeremy A.; Fedorovich, Evgeni; Mellado, Juan Pedro

    2017-08-01

    This paper describes MicroHH 1.0, a new and open-source (www.microhh.org) computational fluid dynamics code for the simulation of turbulent flows in the atmosphere. It is primarily made for direct numerical simulation but also supports large-eddy simulation (LES). The paper covers the description of the governing equations, their numerical implementation, and the parameterizations included in the code. Furthermore, the paper presents the validation of the dynamical core in the form of convergence and conservation tests, and comparison of simulations of channel flows and slope flows against well-established test cases. The full numerical model, including the associated parameterizations for LES, has been tested for a set of cases under stable and unstable conditions, under the Boussinesq and anelastic approximations, and with dry and moist convection under stationary and time-varying boundary conditions. The paper presents performance tests showing good scaling from 256 to 32 768 processes. The graphical processing unit (GPU)-enabled version of the code can reach a speedup of more than an order of magnitude for simulations that fit in the memory of a single GPU.

  7. RELATIONSHIPS BETWEEN SEA SURFACE TEMPERATURE, LARGE-SCALE ATMOSPHERIC CIRCULATION, AND CONVECTION OVER THE TROPICAL INDIAN AND PACIFIC OCEANS

    Directory of Open Access Journals (Sweden)

    Orbita Roswintiarti

    2008-07-01

    Full Text Available In this paper, the quantitative estimates of the effect of large-scale circulations on the sea surface temperature (SST-tropical convection relationship and the effect of SST on the large-scale circulation-convection relationship over the tropical Indian and Pacific Oceans are presented. Although convection tends to maximize at warm SSTs, increased deep convection is also determined by the divergence (DIV associated with large-scale circulation. An analysis of the relationship between SST and deep convection shows that under subsidence and clear conditions, there is a decrease in convection or increase in Outgoing Longwave Radiation (OLR at a maximum rate of 3.4 Wm-2 °C-1. In the SST range of 25°C to 29.5°C, a large increase in deep convection (decrease in OLR occurs in the tropical Indian and Pacific Oceans. The OLR reduction is found to be a strong function of the large-scale circulation in the Indian and western Pacific Oceans. Under a weak large-scale circulation, the rate of OLR reduction is about    -3.5 Wm-2 °C-1 to -8.1 Wm-2 °C-1. Under the influence of strong rising motions, the rate can increase to about -12.5 Wm-2 °C-1 for the same SST range. The overall relationship between large-scale circulation and deep convection is nearly linear. A maximum rate of OLR reduction with respect to DIV is -6.1 Wm-2 (10-6 s-1 in the western Pacific Ocean. It is also found that the DIV-OLR relationship is less dependent on SST. For example, the rate of OLR reduction over the western Pacific Ocean for 26°C < SST £ 27°C is -4.2 Wm-2 (10-6 s-1, while that for 28°C < SST £ 29°C is  -5.1 Wm-2 (10-6 s-1. These results are expected to have a great importance for climate feedback mechanisms associated with clouds and SST and for climate predictability.

  8. The atmospheric boundary layer over land and sea: Focus on the off-shore Southern Baltic and Southern North Sea region

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling

    Lecture notes for a short course on the ideal atmospheric boundary layer and its characteristics for different types of real boundary layers, aiming at a discussion of the coastal conditions at the Southern Baltic and North Sea region. The notes are aimed at young scientists (e.g. PhD students......) that study the physics of the atmospheric boundary layer with the purpose of applying this knowledge for remote sensing techniques within offshore wind energy....

  9. Magnetohydrodynamics effect on convective boundary layer flow and heat transfer of viscoelastic micropolar fluid past a sphere

    Science.gov (United States)

    Amera Aziz, Laila; Kasim, Abdul Rahman Mohd; Zuki Salleh, Mohd; Syahidah Yusoff, Nur; Shafie, Sharidan

    2017-09-01

    The main interest of this study is to investigate the effect of MHD on the boundary layer flow and heat transfer of viscoelastic micropolar fluid. Governing equations are transformed into dimensionless form in order to reduce their complexity. Then, the stream function is applied to the dimensionless equations to produce partial differential equations which are then solved numerically using the Keller-box method in Fortran programming. The numerical results are compared to published study to ensure the reliability of present results. The effects of selected physical parameters such as the viscoelastic parameter, K, micropolar parameter, K1 and magnetic parameter, M on the flow and heat transfer are discussed and presented in tabular and graphical form. The findings from this study will be of critical importance in the fields of medicine, chemical as well as industrial processes where magnetic field is involved.

  10. Prospects for simulating macromolecular surfactant chemistry at the ocean–atmosphere boundary

    International Nuclear Information System (INIS)

    Elliott, S; Burrows, S M; Liu, X; Deal, C; Long, M; Ogunro, O; Wingenter, O; Russell, L M

    2014-01-01

    Biogenic lipids and polymers are surveyed for their ability to adsorb at the water–air interfaces associated with bubbles, marine microlayers and particles in the overlying boundary layer. Representative ocean biogeochemical regimes are defined in order to estimate local concentrations for the major macromolecular classes. Surfactant equilibria and maximum excess are then derived based on a network of model compounds. Relative local coverage and upward mass transport follow directly, and specific chemical structures can be placed into regional rank order. Lipids and denatured protein-like polymers dominate at the selected locations. The assigned monolayer phase states are variable, whether assessed along bubbles or at the atmospheric spray droplet perimeter. Since oceanic film compositions prove to be irregular, effects on gas and organic transfer are expected to exhibit geographic dependence as well. Moreover, the core arguments extend across the sea–air interface into aerosol–cloud systems. Fundamental nascent chemical properties including mass to carbon ratio and density depend strongly on the geochemical state of source waters. High surface pressures may suppress the Kelvin effect, and marine organic hygroscopicities are almost entirely unconstrained. While bubble adsorption provides a well-known means for transporting lipidic or proteinaceous material into sea spray, the same cannot be said of polysaccharides. Carbohydrates tend to be strongly hydrophilic so that their excess carbon mass is low despite stacked polymeric geometries. Since sugars are abundant in the marine aerosol, gel-based mechanisms may be required to achieve uplift. Uncertainties distill to a global scale dearth of information regarding two dimensional kinetics and equilibria. Nonetheless simulations are recommended, to initiate the process of systems level quantification. (papers)

  11. Heating-insensitive scale increase caused by convective precipitation

    Science.gov (United States)

    Haerter, Jan; Moseley, Christopher; Berg, Peter

    2017-04-01

    The origin of intense convective extremes and their unusual temperature dependence has recently challenged traditional thermodynamic arguments, based on the Clausius-Clapeyron relation. In a sequence of studies (Lenderink and v. Mejgaard, Nat Geosc, 2008; Berg, Haerter, Moseley, Nat Geosc, 2013; and Moseley, Hohenegger, Berg, Haerter, Nat Geosc, 2016) the argument of convective-type precipitation overcoming the 7%/K increase in extremes by dynamical, rather than thermodynamic, processes has been promoted. How can the role of dynamical processes be approached for precipitating convective cloud? One-phase, non-precipitating Rayleigh-Bénard convection is a classical problem in complex systems science. When a fluid between two horizontal plates is sufficiently heated from below, convective rolls spontaneously form. In shallow, non-precipitating atmospheric convection, rolls are also known to form under specific conditions, with horizontal scales roughly proportional to the boundary layer height. Here we explore within idealized large-eddy simulations, how the scale of convection is modified, when precipitation sets in and intensifies in the course of diurnal solar heating. Before onset of precipitation, Bénard cells with relatively constant diameter form, roughly on the scale of the atmospheric boundary layer. We find that the onset of precipitation then signals an approximately linear (in time) increase in horizontal scale. This scale increase progresses at a speed which is rather insensitive to changes in surface temperature or changes in the rate at which boundary conditions change, hinting at spatial characteristics, rather than temperature, as a possible control on spatial scales of convection. When exploring the depth of spatial correlations, we find that precipitation onset causes a sudden disruption of order and a subsequent complete disintegration of organization —until precipitation eventually ceases. Returning to the initial question of convective

  12. Observational description of the atmospheric and oceanic boundary layers over the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    Marcelo Dourado

    2001-01-01

    Full Text Available Time evolution of atmospheric and oceanic boundary layers are described for an upwelling region in the Atlantic Ocean located in Cabo Frio, Brazil (23°00'S, 42°08'W. The observations were obtained during a field campaign carried out by the "Instituto de Estudos do Mar Almirante Paulo Moreira", on board of the oceanographic ship Antares of the Brazilian Navy, between July 7 and 10 of 1992. The analysis shown here was based on 19 simultaneous vertical soundings of atmosphere and ocean, carried out consecutively every 4 hours. The period of observation was characterized by a passage of a cold front that penetrated in Cabo Frio on July 6. During the cold front passage the vertical extension of atmospheric (and oceanic mixed layer varied from 200 m (and 13 m to 1000 m (and 59 m. These changes occurred in the first day of observation and were followed by an increase of 1.2°C in the oceanic mixed layer temperature and by a decrease of 6 K and 6 g/kg in the virtual potential temperature and specific humidity of the atmospheric mixed layer. The short time scale variations in the ocean can be explained in terms of the substitution of cold upwelling water by warm downwelling water regime, as the surface winds shift from pre-frontal NE to post-frontal SSW during the cold front passage in Cabo Frio. The large vertical extent of the atmospheric mixed layer can be explained in terms of an intensification of the thermal mixing induced by the warming of the oceanic upper layers combined with the cooling of the lower atmospheric layers during the cold front passage. An intensification of the mechanical mixing, observed during the cold front passage, may also be contributing to the observed variations in the vertical extent of both layers.A evolução temporal das camadas limites atmosféricas e oceânicas são descritas para a região de ressurgência do Oceano Atlântico localizada em Cabo Frio. As observações foram obtidas durante a campanha de medidas

  13. A Description of the Framework of the Atmospheric Boundary Layer Environment (ABLE) Model

    Science.gov (United States)

    2012-09-01

    between soil, urban, vegetation , and/or surface water and the atmosphere and radiation. We seek to fill a gap in Army capabilities by developing a...the Atmosphere; Cambridge Univ. Press, 393 pp, 2010. Wyngaard, J. C. Toward Numerical Modeling in the “ Terra Incognita.” Journal of Atmospheric

  14. Convective aggregation in realistic convective-scale simulations

    Science.gov (United States)

    Holloway, Christopher E.

    2017-06-01

    To investigate the real-world relevance of idealized-model convective self-aggregation, five 15 day cases of real organized convection in the tropics are simulated. These include multiple simulations of each case to test sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. These simulations are compared to self-aggregation seen in the same model configured to run in idealized radiative-convective equilibrium. Analysis of the budget of the spatial variance of column-integrated frozen moist static energy shows that control runs have significant positive contributions to organization from radiation and negative contributions from surface fluxes and transport, similar to idealized runs once they become aggregated. Despite identical lateral boundary conditions for all experiments in each case, systematic differences in mean column water vapor (CWV), CWV distribution shape, and CWV autocorrelation length scale are found between the different sensitivity runs, particularly for those without interactive radiation, showing that there are at least some similarities in sensitivities to these feedbacks in both idealized and realistic simulations (although the organization of precipitation shows less sensitivity to interactive radiation). The magnitudes and signs of these systematic differences are consistent with a rough equilibrium between (1) equalization due to advection from the lateral boundaries and (2) disaggregation due to the absence of interactive radiation, implying disaggregation rates comparable to those in idealized runs with aggregated initial conditions and noninteractive radiation. This points to a plausible similarity in the way that radiation feedbacks maintain aggregated convection in both idealized simulations and the real world.Plain Language SummaryUnderstanding the processes that lead to the organization of tropical rainstorms is an important challenge for weather

  15. Acoustic detection of momentum transfer during the abrupt transition from a laminar to a turbulent atmospheric boundary layer1

    International Nuclear Information System (INIS)

    Schubert, J.F.

    1977-01-01

    Acoustic sounder measurements of a vertical profile of the abrupt transition from a laminar to a turbulent atmospheric boundary layer were compared with meteorological measurements made at 10 and 137 m on an instrumented tower. Sounder data show that conditions necessary for the onset of the momentum burst phenomenon exist sometime during a clear afternoon when heat flux changes sign and the planetary surface cools. Under these conditions, the lowest part of the atmospheric boundary layer becomes stable. Prior to this situation, the entire boundary layer is in turbulent motion from surface heating. The boundary layer is then an effective barrier for all fluxes, and as the maximum flux Richardson number is reached at some height close to but above the surface, turbulence is dampened and a laminar layer forms. The profile of this layer is recorded by the sounder. Surface temperature drops, a strong wind shear develops, and the Richardson number decreases below its critical value (Ri/sub cr/<0.25). Subsequently, the laminar layer is eroded by turbulence from above, and with a burst of momentum and heat, it eventually reaches the ground

  16. Numerical study of compressible magnetoconvection with an open transitional boundary

    International Nuclear Information System (INIS)

    Hanami, H.; Tajima, T.

    1990-08-01

    We study by computer simulation nonlinear evolution of magnetoconvection in a system with a dynamical open boundary between the convection region and corona of the sun. We study a model in which the fluid is subject to the vertical gravitation, magnetohydrodynamics (MHD), and high stratification, through an MHD code with the MacCormack-Donner cell hybrid scheme in order to well represent convective phenomena. Initially the vertical fluid flux penetrates from the convectively unstable zone at the bottom into the upper diffuse atmosphere. As the instability develops, the magnetic fields are twisted by the convection motion and the folding magnetic fields is observed. When the magnetic pressure is comparable to the thermal pressure in the upper layer of convective zone, strong flux expulsion from the convective cell interior toward the cell boundary appears. Under appropriate conditions our simulation exhibits no shock formation incurred by the fluid convected to the photosphere, in contrast to earlier works with box boundaries. The magnetic field patterns observed are those of concentrated magnetic flux tubes, accumulation of dynamo flux near the bottom boundary, pinched flux near the downdraft region, and the surface movement of magnetic flux toward the downdraft region. Many of these computationally observed features are reminiscent of solar observations of the fluid and magnetic structures of their motions

  17. Geothermal Frontier: Penetrate a boundary between hydrothermal convection and heat conduction zones to create 'Beyond Brittle Geothermal Reservoir'

    Science.gov (United States)

    Tsuchiya, N.; Asanuma, H.; Sakaguchi, K.; Okamoto, A.; Hirano, N.; Watanabe, N.; Kizaki, A.

    2013-12-01

    EGS has been highlightened as a most promising method of geothermal development recently because of applicability to sites which have been considered to be unsuitable for geothermal development. Meanwhile, some critical problems have been experimentally identified, such as low recovery of injected water, difficulties to establish universal design/development methodology, and occurrence of large induced seismicity. Future geothermal target is supercritical and superheated geothermal fluids in and around ductile rock bodies under high temperatures. Ductile regime which is estimated beyond brittle zone is target region for future geothermal development due to high enthalpy fluids and relatively weak water-rock interaction. It is very difficult to determine exact depth of Brittle-Ductile boundary due to strong dependence of temperature (geotherm) and strain rate, however, ductile zone is considered to be developed above 400C and below 3 km in geothermal fields in Tohoku District. Hydrothermal experiments associated with additional advanced technology will be conducting to understand ';Beyond brittle World' and to develop deeper and hotter geothermal reservoir. We propose a new concept of the engineered geothermal development where reservoirs are created in ductile basement, expecting the following advantages: (a)simpler design and control the reservoir, (b)nearly full recovery of injected water, (c)sustainable production, (d)cost reduction by development of relatively shallower ductile zone in compression tectonic zones, (e)large quantity of energy extraction from widely distributed ductile zones, (f)establishment of universal and conceptual design/development methodology, and (g) suppression of felt earthquakes from/around the reservoirs. In ductile regime, Mesh-like fracture cloud has great potential for heat extraction between injection and production wells in spite of single and simple mega-fracture. Based on field observation and high performance hydrothermal

  18. CURIE: a new clear air doppler radar dedicated to the lower part of the atmospheric boundary layer (20 m- 750m)

    International Nuclear Information System (INIS)

    Al-Sakka, H; Weill, A; Gac, C Le; Ney, R; Dupont, E

    2008-01-01

    A new X-band miniradar, the CURIE radar (Canopy Urban Research on Interactions and Exchanges), mainly adapted to low Atmospheric Boundary Layer sounding has been developed at CETP. After a brief description of the opportunity and working conditions in a turbulent atmosphere, main characteristics are presented. Though this radar works in presence of precipitation as all X-band radar can do, this paper is more dedicated to clear air used in the turbulent atmospheric boundary layer. We are presented comparisons with UHF observations and boundary layer information which can be inferred from CURIE as entrainment across the inversion layer

  19. Evaluation of Haney-Type Surface Thermal Boundary Conditions Using a Coupled Atmosphere and Ocean Model

    National Research Council Canada - National Science Library

    Chu, Peter C; Chen, Yuchun; Lu, Shihua

    2001-01-01

    ... (Russell et al,, 1995) was used to verify the validity of Haney-type surface thermal boundary condition, which linearly connects net downward surface heat flux Q to air / sea temperature difference DeltaT by a relaxation coefficient K...

  20. Investigation of the spatio-temporal variability of atmospheric boundary layer depths over mountainous terrain observed with a suite of ground-based and airborne instruments during the MATERHORN field experiment

    Science.gov (United States)

    Pal, S.; De Wekker, S.; Emmitt, G. D.

    2013-12-01

    We present first results of the spatio-temporal variability of atmospheric boundary layer depths obtained with a suite of ground-based and airborne instruments deployed during the first field phase of The Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program (http://www3.nd.edu/~dynamics/materhorn/index.php) at Dugway Proving Ground (DPG, Utah, USA) in Fall 2012. We mainly use high-resolution data collected on selected intensive observation periods obtained by Doppler lidars, ceilometer, and in-situ measurements from an unmanned aerial vehicle for the measurements of atmospheric boundary layer (ABL) depths. In particular, a Navy Twin Otter aircraft flew 6 missions of about 5 hours each during the daytime, collecting remotely sensed (Doppler lidar, TODWL) wind data in addition to in-situ turbulence measurements which allowed a detailed investigation of the spatial heterogeneity of the convective boundary layer turbulence features over a steep isolated mountain of a horizontal and vertical scale of about 10 km and 1 km, respectively. Additionally, we use data collected by (1) radiosonde systems at two sites of Granite Mountain area in DPG (Playa and Sagebrush), (2) sonic anemometers (CSAT-3D) for high resolution turbulence flux measurements near ground, (3) Pyranometer for incoming solar radiation, and (4) standard meteorological measurements (PTU) obtained near the surface. In this contribution, we discuss and address (1) composites obtained with lidar, ceilometer, micro-meteorological measurements, and radiosonde observations to determine the quasi-continuous regime of ABL depths, growth rates, maximum convective boundary layer (CBL) depths, etc., (2) the temporal variability in the ABL depths during entire diurnal cycle and the spatial heterogeneity in the daytime ABL depths triggered by the underlying orography in the experimental area to investigate the most possible mechanisms (e.g. combined effect of diurnal cycle and orographic trigger

  1. Active control of convection

    Energy Technology Data Exchange (ETDEWEB)

    Bau, H.H. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1995-12-31

    Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.

  2. ARM Support for the Plains Elevated Convection at Night (AS-PECAN) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Turner, D. D. [National Oceanic and Atmospheric Administration (NOAA), Silver Spring, MD (United States); Geerts, B. [Univ. of Wyoming, Laramie, WY (United States)

    2016-04-01

    The Plains Elevated Convection at Night (PECAN) field campaign was a large multi-agency/multi-institutional experiment that targeted nighttime convection events in the central plains of the United States in order to better understand a range of processes that lead to the initiation and upscale growth of deep convection. Both weather and climate models struggle to properly represent the timing and intensity of precipitation in the central United States in their simulations. These models must be able to represent the interactions between the nocturnal stable boundary layer (SBL), the nocturnal low-level jet (LLJ), and a reservoir of convectively available potential energy (CAPE) that frequently exists above the SBL. Furthermore, a large fraction of the nocturnal precipitation is due to the organization of mesoscale convective systems (MCSs). In particular, there were four research foci for the PECAN campaign: •The initiation of elevated nocturnal convection focus seeks to elucidate the mesoscaleenvironmental characteristics and processes that lead to convection initiation (CI) and provide baseline data on the early evolution of mesoscale convective clusters. •The dynamics and internal structure and microphysics of nocturnal MCSs focus will investigatethe transition from surface-based to elevated storm structure, the interaction of cold pools generated by MCSs with the nocturnal stable boundary layer, and how the organization and evolution of elevated convection is influenced by the SBL and the vertical profile of wind and stability above the LLJ. •The bores and wave-like disturbances focus seeks to advance knowledge of the initiation of boredisturbances by convection, how the vertical profile of stability and winds modulate bore structure, the role of these disturbances in the initiation, maintenance, and organization of deep convection, and their impact on the LLJ and SBL. •The LLJ focus seeks to understand the processes that influence the spatial and

  3. Oberbeck–Boussinesq free convection of water based nanoliquids in a vertical channel using Dirichlet, Neumann and Robin boundary conditions on temperature

    Directory of Open Access Journals (Sweden)

    Nur Asiah Mohd Makhatar

    2016-09-01

    Full Text Available A numerical investigation is carried out into the flow and heat transfer within a fully-developed mixed convection flow of water–alumina (Al2O3–water, water–titania (TiO2–water and water–copperoxide (CuO–water in a vertical channel by considering Dirichlet, Neumann and Robin boundary conditions. Actual values of thermophysical quantities are used in arriving at conclusions on the three nanoliquids. The Biot number influences on velocity and temperature distributions are opposite in regions close to the left wall and the right wall. Robin condition is seen to favour symmetry in the flow velocity whereas Dirichlet and Neumann conditions skew the flow distribution and push the point of maximum velocity to the right of the channel. A reversal of role is seen between them in their influence on the flow in the left-half and the right-half of the channel. This leads to related consequences in heat transport. Viscous dissipation is shown to aid flow and heat transport. The present findings reiterate the observation on heat transfer in other configurations that only low concentrations of nanoparticles facilitate enhanced heat transport for all three temperature conditions. Significant change was observed in Neumann condition, whereas the changes are too extreme in Dirichlet condition. It is found that Robin condition is the most stable condition. Further, it is also found that all three nanoliquids have enhanced heat transport compared to that by base liquid, with CuO–water nanoliquid shows higher enhancement in its Nusselt number, compared to Al2O3 and TiO2.

  4. Implications of Stably Stratified Atmospheric Boundary Layer Turbulence on the Near-Wake Structure of Wind Turbines

    Directory of Open Access Journals (Sweden)

    Kiran Bhaganagar

    2014-09-01

    Full Text Available Turbulence structure in the wake behind a full-scale horizontal-axis wind turbine under the influence of real-time atmospheric inflow conditions has been investigated using actuator-line-model based large-eddy-simulations. Precursor atmospheric boundary layer (ABL simulations have been performed to obtain mean and turbulence states of the atmosphere under stable stratification subjected to two different cooling rates. Wind turbine simulations have revealed that, in addition to wind shear and ABL turbulence, height-varying wind angle and low-level jets are ABL metrics that influence the structure of the turbine wake. Increasing stability results in shallower boundary layers with stronger wind shear, steeper vertical wind angle gradients, lower turbulence, and suppressed vertical motions. A turbulent mixing layer forms downstream of the wind turbines, the strength and size of which decreases with increasing stability. Height dependent wind angle and turbulence are the ABL metrics influencing the lateral wake expansion. Further, ABL metrics strongly impact the evolution of tip and root vortices formed behind the rotor. Two factors play an important role in wake meandering: tip vortex merging due to the mutual inductance form of instability and the corresponding instability of the turbulent mixing layer.

  5. Large-eddy simulation of stable atmospheric boundary layers to develop better turbulence closures for climate and weather models

    Science.gov (United States)

    Bou-Zeid, Elie; Huang, Jing; Golaz, Jean-Christophe

    2011-11-01

    A disconnect remains between our improved physical understanding of boundary layers stabilized by buoyancy and how we parameterize them in coarse atmospheric models. Most operational climate models require excessive turbulence mixing in such conditions to prevent decoupling of the atmospheric component from the land component, but the performance of such a model is unlikely to be satisfactory under weakly and moderately stable conditions. Using Large-eddy simulation, we revisit some of the basic challenges in parameterizing stable atmospheric boundary layers: eddy-viscosity closure is found to be more reliable due to an improved alignment of vertical Reynolds stresses and mean strains under stable conditions, but the dependence of the magnitude of the eddy viscosity on stability is not well represented by several models tested here. Thus, we propose a new closure that reproduces the different stability regimes better. Subsequently, tests of this model in the GFDL's single-column model (SCM) are found to yield good agreement with LES results in idealized steady-stability cases, as well as in cases with gradual and sharp changes of stability with time.

  6. Modelization of a large wind farm, considering the modification of the atmospheric boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Crespo, A; Gomez-Elvira, R [Univ. Politecnica de Madrid, Mecanica de Fluidos, E.T.S.I. Industriales, Madrid (Spain); Frandsen, S; Larsen, S E [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    A method is presented to adapt existing models of wind farms to very large ones that may affect the whole planetary boundary layer. An internal boundary layer is considered that starts developing at the leading edge of the farm until it reaches, sufficiently far downstream, the top of the planetary boundary layer, and a new equilibrium region is reached. The wind farm is simulated by an artificial roughness that is function of the turbine spacing, drag and height. From this model the flow conditions are calculated at a certain reference height and then are used as boundary conditions for a numerical code used to model a wind farm. Three-dimensional effects are considered by applying appropriate conditions at the sides of the farm. Calculations are carried out to estimate the energy production in large wind farms, and it is found that additional losses due to modification of the planetary boundary layer may be of importance for wind farms of size larger than about 100 km. (au)

  7. Simulating deep convection with a shallow convection scheme

    Directory of Open Access Journals (Sweden)

    C. Hohenegger

    2011-10-01

    Full Text Available Convective processes profoundly affect the global water and energy balance of our planet but remain a challenge for global climate modeling. Here we develop and investigate the suitability of a unified convection scheme, capable of handling both shallow and deep convection, to simulate cases of tropical oceanic convection, mid-latitude continental convection, and maritime shallow convection. To that aim, we employ large-eddy simulations (LES as a benchmark to test and refine a unified convection scheme implemented in the Single-column Community Atmosphere Model (SCAM. Our approach is motivated by previous cloud-resolving modeling studies, which have documented the gradual transition between shallow and deep convection and its possible importance for the simulated precipitation diurnal cycle.

    Analysis of the LES reveals that differences between shallow and deep convection, regarding cloud-base properties as well as entrainment/detrainment rates, can be related to the evaporation of precipitation. Parameterizing such effects and accordingly modifying the University of Washington shallow convection scheme, it is found that the new unified scheme can represent both shallow and deep convection as well as tropical and mid-latitude continental convection. Compared to the default SCAM version, the new scheme especially improves relative humidity, cloud cover and mass flux profiles. The new unified scheme also removes the well-known too early onset and peak of convective precipitation over mid-latitude continental areas.

  8. Characteristics of the atmospheric boundary layer in the Chos Malal site (Province of Neuquen)

    International Nuclear Information System (INIS)

    Lassig, J; Palese, C

    2005-01-01

    The site of Chos Malal is located on the north of the Province of Neuquen (Argentina).Cordillera del Viento is a mountain located 30 km northward, it is 90 km long, with average heights of 2800 m and with intense winds.This region has the adequate characteristics to be one of the best zones of the Norpatagonia for the exploitation of wind resources.Nevertheless, the existing wind speed data of the place is disconcerting.The biggest amount of information proceeds from the old weather station of the 'Secretaria de Agricultura y Ganaderia de la Nacion Argentina' Office and from the National Weather Service 'Servicio Meteorologico Nacional de Argentina' (SMN). Results from this data (1941-1960 period) shows that the mean annual wind speed is only 2.8 m/s.This value is conservative, probably due to the method employed on the measurement, which consisted of the estimation through the Beaufort scale, or the over-estimation error of the calms, as the one detected by Barros for the South of Patagonia.Due to this discordance, it was decided to evaluate the resource with modern instrumental. Afterwards, automatic weather stations were installed (Davis model Monitor II and Wizard) at the airport of Chos Malal (S 37 26 49 ; W 70 13 53 ; 852 m msl) with sensors at 2.5m, 10m and 18m above ground level.With this data (period 2000-2004) this study was oriented to characterize some aspects of the atmospheric boundary layer, the air turbulence and the relation between average wind speed and gusts.The annual average velocity (2000-2004) was 3.78 m/s, 35% greater than meteorological statistics from SMN (1941-1950 and 1951-1960 decades). The maximum velocity was 7.35 m/s, almost twice the average wind speed. With the measured data at 10 m, the Weibull distribution was calculated, using the form factor K = 1.2; and the scale factor C = 3.95. Also the wind rose was calculated, where the maximum frequency was produced at WNW.During 5 days of November of 2001, simultaneous observations at 2

  9. Global Coupled Model Studies of The Jovian Upper Atmosphere In Response To Electron Precipitation and Ionospheric Convection Within The Auroral Region.

    Science.gov (United States)

    Millward, G. H.; Miller, S.; Aylward, A. D.

    The Jovian Ionospheric Model (JIM) is a global three-dimensional model of Jupiter's coupled ionosphere and thermosphere, developed at University College London. Re- cently, the model has been used to investigate the atmospheric response to electron precipitation within the high-latitude auroral region. A series of simulations have been performed in which the model atmosphere is subjected to monochromatic precipitat- ing electrons of varying number flux and initial energy and, in addition, to various degrees of ionospheric convection. The auroral ionospheric conductivity which re- sults is shown to be strongly non-linear with respect to the incoming electron energy, with a maximum observed for incident particles of initial energy 60 KeV. Electrons with higher energies penetrate the thermospheric region completely, whilst electrons of lower energy (say 10 keV) produce ionisation at higher levels in the atmosphere which are less less condusive to the creation of ionospheric conductivity. Studies of the thermospheric winds with the auroral region show that zonal winds (around the auroral oval) can attain values of around 70% of the driving zonal ion velocity. Also the results show that these large neutral winds are limited in vertical extent to the region of large ionospheric conductivity, tailing off markedly at altitudes above this. The latest results from this work will be presented, and the implications for Jovian magnetospheric-ionospheric coupling will be discussed.

  10. Increased Atmospheric SO2 Detected from Changes in Leaf Physiognomy across the Triassic–Jurassic Boundary Interval of East Greenland

    Science.gov (United States)

    Bacon, Karen L.; Belcher, Claire M.; Haworth, Matthew; McElwain, Jennifer C.

    2013-01-01

    The Triassic–Jurassic boundary (Tr–J; ∼201 Ma) is marked by a doubling in the concentration of atmospheric CO2, rising temperatures, and ecosystem instability. This appears to have been driven by a major perturbation in the global carbon cycle due to massive volcanism in the Central Atlantic Magmatic Province. It is hypothesized that this volcanism also likely delivered sulphur dioxide (SO2) to the atmosphere. The role that SO2 may have played in leading to ecosystem instability at the time has not received much attention. To date, little direct evidence has been presented from the fossil record capable of implicating SO2 as a cause of plant extinctions at this time. In order to address this, we performed a physiognomic leaf analysis on well-preserved fossil leaves, including Ginkgoales, bennettites, and conifers from nine plant beds that span the Tr–J boundary at Astartekløft, East Greenland. The physiognomic responses of fossil taxa were compared to the leaf size and shape variations observed in nearest living equivalent taxa exposed to simulated palaeoatmospheric treatments in controlled environment chambers. The modern taxa showed a statistically significant increase in leaf roundness when fumigated with SO2. A similar increase in leaf roundness was also observed in the Tr–J fossil taxa immediately prior to a sudden decrease in their relative abundances at Astartekløft. This research reveals that increases in atmospheric SO2 can likely be traced in the fossil record by analyzing physiognomic changes in fossil leaves. A pattern of relative abundance decline following increased leaf roundness for all six fossil taxa investigated supports the hypothesis that SO2 had a significant role in Tr–J plant extinctions. This finding highlights that the role of SO2 in plant biodiversity declines across other major geological boundaries coinciding with global scale volcanism should be further explored using leaf physiognomy. PMID:23593262

  11. Investigation of the flow inside an urban canopy immersed into an atmospheric boundary layer using laser Doppler anemometry

    Science.gov (United States)

    Herpin, Sophie; Perret, Laurent; Mathis, Romain; Tanguy, Christian; Lasserre, Jean-Jacques

    2018-05-01

    Laser Doppler anemometry (LDA) is used to investigate the flow inside an idealized urban canopy consisting of a staggered array of cubes with a 25% density immersed into an atmospheric boundary layer with a Reynolds number of δ ^+=32{,}300. The boundary layer thickness to cube height ratio (δ /h=22.7) is large enough to be representative of atmospheric surface layer in neutral conditions. The LDA measurements give access to pointwise time-resolved data at several positions inside the canopy (z=h/4, h/2, and h). Synchronized hot-wire measurements above the canopy (inertial region and roughness sublayer) are also realized to get access to interactions between the different flow regions. The wall-normal mean velocity profile and Reynolds stresses show a good agreement with available data in the literature, although some differences are observed on the standard deviation of the spanwise component. A detailed spectral and integral time scale analysis inside the canopy is then carried out. No clear footprint of a periodic vortex shedding on the sides of the cubes could be identified on the power spectra, owing to the multiple cube-to-cube interactions occuring within a canopy with a building density in the wake interference regime. Results also suggest that interactions between the most energetics scales of the boundary layer and those related to the cube canopy take place, leading to a broadening of the energy peak in the spectra within the canopy. This is confirmed by the analysis of coherence results between the flow inside and above the canopy. It is shown that linear interactions mechanisms are significant, but reduced compared to smooth-wall boundary-layer flow. To our knowledge, this is the first time such results are shown on the dynamics of the flow inside an urban canopy.

  12. Application of ground-based, multi-channel microwave radiometer in the nowcasting of intense convective weather through instability indices of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Chan, P.W.; Hon, K.K. [Hong Kong Observatory, Hong Kong (China)

    2011-08-15

    A ground-based microwave radiometer gives the possibility of providing continuously available temperature and humidity profiles of the troposphere, from which instability indices of the atmosphere could be derived. This paper studies the possibility of correlating the radiometer-based instability indices with the occurrence of intense convective activity, namely, the occurrence of lightning. The correlation so established could be useful for the nowcasting of convective weather: the weather forecaster follows the evolution of the radiometer-based instability indices in order to access the chance for lightning to occur. The quality of the radiometer-based instability indices is first established by comparing with the radiosonde-based indices. Though there are biases and spreads in the scatter plots of the two datasets, the radiometer-based indices appear to follow the trend of the radiosonde-based indices in spite of the differences in measurement locations and working principles of the two instruments. The thresholds of instability indices for the occurrence of lightning (using 1 discharge) are then determined, specifically for the radiometer in use and the climatological condition in Hong Kong. It turns out that, among all the indices considered in this paper, KI has the best performance in terms of probability of detection of lightning occurrence, particularly for non-summer months, by using an optimum threshold. Finally, the correlation between the instability index and the amount of lightning strokes (within a certain distance from the radiometer) is established. It turns out that the correlation is the best using the minimum value of humidity index, with correlation coefficient of 0.55. The distance from the radiometer considered is about 30 km (having the best correlation between the number of lightning discharges and the instability index), which may be taken as the area over which the radiometer's measurement is considered to be representative of the

  13. Quantification of urban atmospheric boundary layer greenhouse gas dry mole fraction enhancements in the dormant season: Results from the Indianapolis Flux Experiment (INFLUX

    Directory of Open Access Journals (Sweden)

    Natasha L. Miles

    2017-06-01

    Full Text Available We assess the detectability of city emissions via a tower-based greenhouse gas (GHG network, as part of the Indianapolis Flux (INFLUX experiment. By examining afternoon-averaged results from a network of carbon dioxide (CO2, methane (CH4, and carbon monoxide (CO mole fraction measurements in Indianapolis, Indiana for 2011–2013, we quantify spatial and temporal patterns in urban atmospheric GHG dry mole fractions. The platform for these measurements is twelve communications towers spread across the metropolitan region, ranging in height from 39 to 136 m above ground level, and instrumented with cavity ring-down spectrometers. Nine of the sites were deployed as of January 2013 and data from these sites are the focus of this paper. A background site, chosen such that it is on the predominantly upwind side of the city, is utilized to quantify enhancements caused by urban emissions. Afternoon averaged mole fractions are studied because this is the time of day during which the height of the boundary layer is most steady in time and the area that influences the tower measurements is likely to be largest. Additionally, atmospheric transport models have better performance in simulating the daytime convective boundary layer compared to the nighttime boundary layer. Averaged from January through April of 2013, the mean urban dormant-season enhancements range from 0.3 ppm CO2 at the site 24 km typically downwind of the edge of the city (Site 09 to 1.4 ppm at the site at the downwind edge of the city (Site 02 to 2.9 ppm at the downtown site (Site 03. When the wind is aligned such that the sites are downwind of the urban area, the enhancements are increased, to 1.6 ppm at Site 09, and 3.3 ppm at Site 02. Differences in sampling height affect the reported urban enhancement by up to 50%, but the overall spatial pattern remains similar. The time interval over which the afternoon data are averaged alters the calculated urban enhancement by an average of 0.4 ppm

  14. Improving Wind Predictions in the Marine Atmospheric Boundary Layer through Parameter Estimation in a Single-Column Model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jared A.; Hacker, Joshua P.; Delle Monache, Luca; Kosović, Branko; Clifton, Andrew; Vandenberghe, Francois; Rodrigo, Javier Sanz

    2016-12-14

    A current barrier to greater deployment of offshore wind turbines is the poor quality of numerical weather prediction model wind and turbulence forecasts over open ocean. The bulk of development for atmospheric boundary layer (ABL) parameterization schemes has focused on land, partly due to a scarcity of observations over ocean. The 100-m FINO1 tower in the North Sea is one of the few sources worldwide of atmospheric profile observations from the sea surface to turbine hub height. These observations are crucial to developing a better understanding and modeling of physical processes in the marine ABL. In this study, we use the WRF single column model (SCM), coupled with an ensemble Kalman filter from the Data Assimilation Research Testbed (DART), to create 100-member ensembles at the FINO1 location. The goal of this study is to determine the extent to which model parameter estimation can improve offshore wind forecasts.

  15. Stable atmospheric boundary-layer experiment in Spain (SABLES 98): A report

    DEFF Research Database (Denmark)

    Cuxart, J.; Yague, C.; Morales, G.

    2000-01-01

    boundary layer (SBL). Instrumentation deployed on two meteorological masts (of heights 10 m and 100 m) included five sonic anemometers, 15 thermocouples, five cup anemometers and three propeller anemometers, humidity sensors and radiometers. A Sensitron mini-sodar and a tethered balloon were also operated...

  16. TETHERED BALLOON MEASUREMENTS OF BIOGENIC VOCS IN THE ATMOSPHERIC BOUNDARY LAYER

    Science.gov (United States)

    Measurements of biogenic volatile organic compounds (BVOCs) have been made on a tethered balloon platform in eleven field deployments between 1985 and 1996. A series of balloon sampling packages have been developed for these campaigns and they have been used to describe boundary ...

  17. Convection and stellar oscillations

    DEFF Research Database (Denmark)

    Aarslev, Magnus Johan

    2017-01-01

    for asteroseismology, because of the challenges inherent in modelling turbulent convection in 1D stellar models. As a result of oversimplifying the physics near the surface, theoretical calculations systematically overestimate the oscillation frequencies. This has become known as the asteroseismic surface effect. Due...... to lacking better options, this frequency difference is typically corrected for with ad-hoc formulae. The topic of this thesis is the improvement of 1D stellar convection models and the effects this has on asteroseismic properties. The source of improvements is 3D simulations of radiation...... atmospheres to replace the outer layers of stellar models. The additional turbulent pressure and asymmetrical opacity effects in the atmosphere model, compared to convection in stellar evolution models, serve to expand the atmosphere. The enlarged acoustic cavity lowers the pulsation frequencies bringing them...

  18. Oxygenated volatile organic carbon in the western Pacific convective center: ocean cycling, air-sea gas exchange and atmospheric transport

    Science.gov (United States)

    Schlundt, Cathleen; Tegtmeier, Susann; Lennartz, Sinikka T.; Bracher, Astrid; Cheah, Wee; Krüger, Kirstin; Quack, Birgit; Marandino, Christa A.

    2017-09-01

    A suite of oxygenated volatile organic compounds (OVOCs - acetaldehyde, acetone, propanal, butanal and butanone) were measured concurrently in the surface water and atmosphere of the South China Sea and Sulu Sea in November 2011. A strong correlation was observed between all OVOC concentrations in the surface seawater along the entire cruise track, except for acetaldehyde, suggesting similar sources and sinks in the surface ocean. Additionally, several phytoplankton groups, such as haptophytes or pelagophytes, were also correlated to all OVOCs, indicating that phytoplankton may be an important source of marine OVOCs in the South China and Sulu seas. Humic- and protein-like fluorescent dissolved organic matter (FDOM) components seemed to be additional precursors for butanone and acetaldehyde. The measurement-inferred OVOC fluxes generally showed an uptake of atmospheric OVOCs by the ocean for all gases, except for butanal. A few important exceptions were found along the Borneo coast, where OVOC fluxes from the ocean to the atmosphere were inferred. The atmospheric OVOC mixing ratios over the northern coast of Borneo were relatively high compared with literature values, suggesting that this coastal region is a local hotspot for atmospheric OVOCs. The calculated amount of OVOCs entrained into the ocean seemed to be an important source of OVOCs to the surface ocean. When the fluxes were out of the ocean, marine OVOCs were found to be enough to control the locally measured OVOC distribution in the atmosphere. Based on our model calculations, at least 0.4 ppb of marine-derived acetone and butanone can reach the upper troposphere, where they may have an important influence on hydrogen oxide radical formation over the western Pacific Ocean.

  19. Numerical Study on the Effect of Air–Sea–Land Interaction on the Atmospheric Boundary Layer in Coastal Area

    Directory of Open Access Journals (Sweden)

    Zixuan Yang

    2018-02-01

    Full Text Available We have performed large-eddy simulations (LES to study the effect of complex land topography on the atmospheric boundary layer (ABL in coastal areas. The areas under investigation are located at three beaches in Monterey Bay, CA, USA. The sharp-interface immersed boundary method is employed to resolve the land topography down to grid scale. We have considered real-time and what-if cases. In the real-time cases, measurement data and realistic land topographies are directly incorporated. In the what-if cases, the effects of different scenarios of wind speed, wind direction, and terrain pattern on the momentum flux at the beach are studied. The LES results are compared with simulations using the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS and field measurement data. We find that the land topography imposes a critical influence on the ABL in the coastal area. The momentum fluxes obtained from our LES agree with measurement data. Our results indicate the importance of capturing the effects of land topographies in simulations.

  20. Clouds in the atmospheres of extrasolar planets. V. The impact of CO2 ice clouds on the outer boundary of the habitable zone

    OpenAIRE

    Kitzmann, Daniel

    2017-01-01

    Clouds have a strong impact on the climate of planetary atmospheres. The potential scattering greenhouse effect of CO2 ice clouds in the atmospheres of terrestrial extrasolar planets is of particular interest because it might influence the position and thus the extension of the outer boundary of the classic habitable zone around main sequence stars. Here, the impact of CO2 ice clouds on the surface temperatures of terrestrial planets with CO2 dominated atmospheres, orbiting different types of...

  1. The impact of dynamic processes on chemistry in atmospheric boundary layers over tropical and boreal forest

    NARCIS (Netherlands)

    Ouwersloot, H.G.

    2013-01-01

    Improving our knowledge of the atmospheric processes that drive climate and air quality is very relevant for society. The application of this knowledge enables us to predict and mitigate the effects of human induced perturbations to our environment. Key factors in the current and future climate

  2. Influence of Last Glacial Maximum boundary conditions on the global water isotope distribution in an atmospheric general circulation model

    Directory of Open Access Journals (Sweden)

    T. Tharammal

    2013-03-01

    Full Text Available To understand the validity of δ18O proxy records as indicators of past temperature change, a series of experiments was conducted using an atmospheric general circulation model fitted with water isotope tracers (Community Atmosphere Model version 3.0, IsoCAM. A pre-industrial simulation was performed as the control experiment, as well as a simulation with all the boundary conditions set to Last Glacial Maximum (LGM values. Results from the pre-industrial and LGM simulations were compared to experiments in which the influence of individual boundary conditions (greenhouse gases, ice sheet albedo and topography, sea surface temperature (SST, and orbital parameters were changed each at a time to assess their individual impact. The experiments were designed in order to analyze the spatial variations of the oxygen isotopic composition of precipitation (δ18Oprecip in response to individual climate factors. The change in topography (due to the change in land ice cover played a significant role in reducing the surface temperature and δ18Oprecip over North America. Exposed shelf areas and the ice sheet albedo reduced the Northern Hemisphere surface temperature and δ18Oprecip further. A global mean cooling of 4.1 °C was simulated with combined LGM boundary conditions compared to the control simulation, which was in agreement with previous experiments using the fully coupled Community Climate System Model (CCSM3. Large reductions in δ18Oprecip over the LGM ice sheets were strongly linked to the temperature decrease over them. The SST and ice sheet topography changes were responsible for most of the changes in the climate and hence the δ18Oprecip distribution among the simulations.

  3. Forcing of global ocean models using an atmospheric boundary layer model: assessing consequences for the simulation of the AMOC

    Science.gov (United States)

    Abel, Rafael; Boening, Claus

    2015-04-01

    Current practice in the atmospheric forcing of ocean model simulations can lead to unphysical behaviours. The problem lies in the bulk formulation of the turbulent air-sea fluxes in conjunction with a prescribed, and unresponsive, atmospheric state as given, e.g., by reanalysis products. This forcing formulation corresponds to assuming an atmosphere with infinite heat capacity, and effectively damps SST anomalies even on basin scales. It thus curtails an important negative feedback between meridional ocean heat transport and SST in the North Atlantic, rendering simulations of the AMOC in such models excessively sensitive to details in the freshwater fluxes. As a consequence, such simulations are known for spurious drift behaviors which can only partially controlled by introducing some (and sometimes strong) unphysical restoring of sea surface salinity. There have been several suggestions during the last 20 years for at least partially alleviating the problem by including some simplified model of the atmospheric boundary layer (AML) which allows a feedback of SST anomalies on the near-surface air temperature and humidity needed to calculate the surface fluxes. We here present simulations with a simple, only thermally active AML formulation (based on the 'CheapAML' proposed by Deremble et al., 2013) implemented in a global model configuration based on NEMO (ORCA05). In a suite of experiments building on the CORE-bulk forcing methodology, we examine some general features of the AML-solutions (in which only the winds are prescribed) in comparison to solutions with a prescribed atmosperic state. The focus is on the North Atlantic, where we find that the adaptation of the atmospheric temperature the simulated ocean state can lead to strong local modifications in the surface heat fluxes in frontal regions (e.g., the 'Northwest Corner'). We particularly assess the potential of the AML-forcing concept for obtaining AMOC-simulations with reduced spurious drift, without

  4. The WELSONS experiment: overview and presentation of first results on the surface atmospheric boundary-layer in semiarid Spain

    Directory of Open Access Journals (Sweden)

    J.-P. Frangi

    Full Text Available This study presents the preliminary results of the local energy budget and dynamic characteristics of the surface atmospheric boundary-layer (SBL during the WELSONS (wind erosion and losses of soil nutrients in semiarid Spain experiment. Some Mediterranean regions suffer land degradation by wind erosion as a consequence of their particular soil and climate conditions and inappropriate agricultural practice. In Spain, where land degradation by water erosion is well known, the lack of field studies to quantify soils losses by wind erosion resulted in the European Community organizing a scientific program for this specific issue. The European programme known as WELSONS was devoted to study the wind erosion process in central Aragon (NE Spain. This multidisciplinary experiment, which began in 1996 and finished in 1998, was carried out over an agricultural soil which was left fallow. Within the experimental field, two plots were delimited where two tillage treatments were applied, a mould-board ploughing (or conventional tillage denoted CT and chisel ploughing (reduced tillage denoted RT. This was to study on bare soil the influence of tillage method on surface conditions, saltation flux, vertical dust flux, erosion rates, dynamics characteristics such as friction velocity, roughness length, etc., and energy budget. The partitioning of the available energy, resulting from the dynamics of the SBL, are quite different over the two plots because of their own peculiar soil and surface properties. The first results show that the RT treatment seems to provide a wind erosion protection. Because of the long data recording time and particular phenomena (formation of a crust at the soil surface, very dry conditions, high wind speed for instance, these microclimatological data acquired during the WELSONS programmes may be helpful to test atmospheric boundary-layer models coupled with soil models.

    Key words: Hydrology (desertification - Meterology and

  5. Some Observational and Modeling Studies of the Atmospheric Boundary Layer at Mississippi Gulf Coast for Air Pollution Dispersion Assessment

    Directory of Open Access Journals (Sweden)

    Anjaneyulu Yerramilli

    2008-12-01

    Full Text Available Coastal atmospheric conditions widely vary from those over inland due to the land-sea interface, temperature contrast and the consequent development of local circulations. In this study a field meteorological experiment was conducted to measure vertical structure of boundary layer during the period 25-29 June, 2007 at three locations Seabee base, Harrison and Wiggins sites in the Mississippi coast. A GPS Sonde along with slow ascent helium balloon and automated weather stations equipped with slow and fast response sensors were used in the experiment. GPS sonde were launched at three specific times (0700 LT, 1300 LT and 1800 LT during the experiment days. The observations indicate shallow boundary layer near the coast which gradually develops inland. The weather research and forecasting (WRF meso-scale atmospheric model and a Lagrangian particle dispersion model (HYSPLIT are used to simulate the lower atmospheric flow and dispersion in a range of 100 km from the coast for 28-30 June, 2007. The simulated meteorological parameters were compared with the experimental observations. The meso-scale model results show significant temporal and spatial variations in the meteorological fields as a result of development of sea breeze flow, its coupling with the large scale flow field and the ensuing alteration in the mixing depth across the coast. Simulated ground-level concentrations of SO2 from four elevated point sources located along the coast indicate diurnal variation and impact of the local sea-land breeze on the direction of the plume. Model concentration levels were highest during the stable morning condition and during the sea-breeze time in the afternoon. The highest concentrations were found up to 40 km inland during sea breeze time. The study illustrates the application of field meteorological observations for the validation of WRF which is coupled to HYSPLIT for dispersion assessment in the coastal region.

  6. The WELSONS experiment: overview and presentation of first results on the surface atmospheric boundary-layer in semiarid Spain

    Directory of Open Access Journals (Sweden)

    J.-P. Frangi

    2000-03-01

    Full Text Available This study presents the preliminary results of the local energy budget and dynamic characteristics of the surface atmospheric boundary-layer (SBL during the WELSONS (wind erosion and losses of soil nutrients in semiarid Spain experiment. Some Mediterranean regions suffer land degradation by wind erosion as a consequence of their particular soil and climate conditions and inappropriate agricultural practice. In Spain, where land degradation by water erosion is well known, the lack of field studies to quantify soils losses by wind erosion resulted in the European Community organizing a scientific program for this specific issue. The European programme known as WELSONS was devoted to study the wind erosion process in central Aragon (NE Spain. This multidisciplinary experiment, which began in 1996 and finished in 1998, was carried out over an agricultural soil which was left fallow. Within the experimental field, two plots were delimited where two tillage treatments were applied, a mould-board ploughing (or conventional tillage denoted CT and chisel ploughing (reduced tillage denoted RT. This was to study on bare soil the influence of tillage method on surface conditions, saltation flux, vertical dust flux, erosion rates, dynamics characteristics such as friction velocity, roughness length, etc., and energy budget. The partitioning of the available energy, resulting from the dynamics of the SBL, are quite different over the two plots because of their own peculiar soil and surface properties. The first results show that the RT treatment seems to provide a wind erosion protection. Because of the long data recording time and particular phenomena (formation of a crust at the soil surface, very dry conditions, high wind speed for instance, these microclimatological data acquired during the WELSONS programmes may be helpful to test atmospheric boundary-layer models coupled with soil models.Key words: Hydrology (desertification - Meterology and atmospheric

  7. Physics-based Inverse Problem to Deduce Marine Atmospheric Boundary Layer Parameters

    Science.gov (United States)

    2017-03-07

    knowledge and capabilities in the use and development of inverse problem techniques to deduce atmospheric parameters. WORK COMPLETED The research completed...please find the Final Technical Report with SF 298 for Dr. Erin E. Hackett’s ONR grant entitled Physics -based Inverse Problem to Deduce Marine...From- To) 07/03/2017 Final Technica l Dec 2012- Dec 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Physics -based Inverse Problem to Deduce Marine

  8. SUMO: A small unmanned meteorological observer for atmospheric boundary layer research

    International Nuclear Information System (INIS)

    Reuder, J; Jonassen, M; Mayer, S; Brisset, P; Mueller, M

    2008-01-01

    A new system for atmospheric measurements in the lower troposphere has been developed and successfully tested. The presented Small Unmanned Meteorological Observer (SUMO) is based on a light-weighted commercially available model airplane, equipped with an autopilot and meteorological sensors for temperature, humidity and pressure. During the 5 week field campaign FLOHOF (Flow over and around HofsjoUkull) in Central Iceland the system has been successfully tested in July/August 2007. Atmospheric profiles of temperature, humidity, wind speed and wind direction have been determined up to 3500 m above ground. In addition the applicability of SUMO for horizontal surveys up to 4 km away from the launch site has been approved. During a 3 week campaign on and around Spitsbergen in February/March 2008 the SUMO system also proved its functionality under harsh polar conditions, reaching altitudes above 1500 m at ground temperatures of -20 deg. C and wind speeds up to 15 m s -1 . With its wingspan of 80 cm, its length of 75 cm and its weight of below 600 g, SUMO is easy to transport and operate even in remote areas. The direct material costs for one SUMO unit, including airplane, autopilot and sensors are below 1200 Euro. Assuming at least several tenths of flights for each airframe, SUMO provides a cost-efficient measurement system with a large potential to close the existing observational gap of reasonable atmospheric measurement systems in between meteorological masts/towers and radiosondes

  9. SUMO: A small unmanned meteorological observer for atmospheric boundary layer research

    Energy Technology Data Exchange (ETDEWEB)

    Reuder, J; Jonassen, M; Mayer, S [Geophysical Institute, University of Bergen, Allegaten 70, 5009 Bergen (Norway); Brisset, P [Ecole Nationale de l' Aviation Civile (ENAC), 7 avenue Edouard Belin, 31055 Toulouse (France); Mueller, M [Orleansstrasse 26a, 31135 Hildesheim (Germany)], E-mail: joachim.reuder@gfi.uib.no, E-mail: pascal.brisset@enac.fr, E-mail: marius.jonassen@gfi.uib.no, E-mail: martin@pfump.org, E-mail: stephanie.mayer@gfi.uib.no

    2008-05-01

    A new system for atmospheric measurements in the lower troposphere has been developed and successfully tested. The presented Small Unmanned Meteorological Observer (SUMO) is based on a light-weighted commercially available model airplane, equipped with an autopilot and meteorological sensors for temperature, humidity and pressure. During the 5 week field campaign FLOHOF (Flow over and around HofsjoUkull) in Central Iceland the system has been successfully tested in July/August 2007. Atmospheric profiles of temperature, humidity, wind speed and wind direction have been determined up to 3500 m above ground. In addition the applicability of SUMO for horizontal surveys up to 4 km away from the launch site has been approved. During a 3 week campaign on and around Spitsbergen in February/March 2008 the SUMO system also proved its functionality under harsh polar conditions, reaching altitudes above 1500 m at ground temperatures of -20 deg. C and wind speeds up to 15 m s{sup -1}. With its wingspan of 80 cm, its length of 75 cm and its weight of below 600 g, SUMO is easy to transport and operate even in remote areas. The direct material costs for one SUMO unit, including airplane, autopilot and sensors are below 1200 Euro. Assuming at least several tenths of flights for each airframe, SUMO provides a cost-efficient measurement system with a large potential to close the existing observational gap of reasonable atmospheric measurement systems in between meteorological masts/towers and radiosondes.

  10. NATO Advanced Study Institute on Buoyant Convection in Geophysical Flows

    CERN Document Server

    Fedorovich, E; Viegas, D; Wyngaard, J

    1998-01-01

    Studies of convection in geophysical flows constitute an advanced and rapidly developing area of research that is relevant to problems of the natural environment. During the last decade, significant progress has been achieved in the field as a result of both experimental studies and numerical modelling. This led to the principal revision of the widely held view on buoyancy-driven turbulent flows comprising an organised mean component with superimposed chaotic turbulence. An intermediate type of motion, represented by coherent structures, has been found to play a key role in geophysical boundary layers and in larger scale atmospheric and hydrospheric circulations driven by buoyant forcing. New aspects of the interaction between convective motions and rotation have recently been discovered and investigated. Extensive experimental data have also been collected on the role of convection in cloud dynamics and microphysics. New theoretical concepts and approaches have been outlined regarding scaling and parameteriz...

  11. Experimental study of the aluminum droplet combustion under forced convection. Influence of the gaseous atmosphere; Etude experimentale de la combustion des gouttes d'aluminium en convection forcee. Influence de l'atmosphere gazeuse

    Energy Technology Data Exchange (ETDEWEB)

    Sarou-Kanian, V.

    2003-12-15

    Because of its high energetic power, the combustion of aluminum particles in solid propellant rocket motors improves the efficiency of heavy-lift launcher as Ariane 5. Aluminum particles burn in a gaseous atmosphere essentially composed of H{sub 2}O, CO{sub 2}, N{sub 2}, HCl, H{sub 2}, and CO, at high pressure (P=60-70 atm) and high temperature (T>3000 K). In the present work, we have been particularly interested in the influence of the gaseous atmosphere on the different burning processes both in the gas-phase and at the aluminum droplet surface. An experimental set-up was developed in order to describe precisely, thanks to several analysis techniques (high-speed camera, pyrometry, spectrometry, SEM, nuclear activation) the combustion of aerodynamically levitated millimetric aluminum droplets in gas mixtures with compositions close to the propellant ones (H{sub 2}O, CO{sub 2}, N{sub 2}). The main result is that each species plays a different role in the aluminum combustion. The water vapor has the biggest influence in the gas-phase process due to the production of hydrogen facilitating the heat and mass diffusion between the flame and the droplet. Nitrogen is essentially acting in surface reactions with the formation of aluminum nitride (AlN) and oxynitride (AlON) which may completely cover the droplet and stop the gas-phase combustion. Carbon dioxide has a double effect. On the one hand, CO{sub 2} burns in the flame, but it is less efficient than H{sub 2}O because the heat and mass transfer properties are poorer for CO than for H{sub 2}. On the other hand, a carbon dissolution phenomenon occurs in the aluminum droplet during burning which may reach saturation (20-25% molar) and involves a carbon rejection at the surface leading to the end of the gas-phase combustion. (author)

  12. Convective Propagation Characteristics Using a Simple Representation of Convective Organization

    Science.gov (United States)

    Neale, R. B.; Mapes, B. E.

    2016-12-01

    Observed equatorial wave propagation is intimately linked to convective organization and it's coupling to features of the larger-scale flow. In this talk we a use simple 4 level model to accommodate vertical modes of a mass flux convection scheme (shallow, mid-level and deep). Two paradigms of convection are used to represent convective processes. One that has only both random (unorganized) diagnosed fluctuations of convective properties and one with organized fluctuations of convective properties that are amplified by previously existing convection and has an explicit moistening impact on the local convecting environment We show a series of model simulations in single-column, 2D and 3D configurations, where the role of convective organization in wave propagation is shown to be fundamental. For the optimal choice of parameters linking organization to local atmospheric state, a broad array of convective wave propagation emerges. Interestingly the key characteristics of propagating modes are the low-level moistening followed by deep convection followed by mature 'large-scale' heating. This organization structure appears to hold firm across timescales from 5-day wave disturbances to MJO-like wave propagation.

  13. Seasonal variations of aerosol residence time in the lower atmospheric boundary layer

    International Nuclear Information System (INIS)

    Ahmed, A.A.; Mohamed, A.; Ali, A.E.; Barakat, A.; Abd El-Hady, M.; El-Hussein, A.

    2004-01-01

    During a one year period, from Jan. 2002 up to Dec. 2002, approximately 130 air samples were analyzed to determine the atmospheric air activity concentrations of short- and long-lived ( 222 Rn) decay products 214 Pb and 210 Pb. The samples were taken by using a single-filter technique and γ-spectrometry was applied to determine the activity concentrations. A seasonal fluctuation in the concentration of 214 Pb and 210 Pb in surface air was observed. The activity concentrations of both radionuclides were observed to be relatively higher during the winter/autumn season than in spring/summer season. The mean activity concentration of 214 Pb and 210 Pb within the whole year was found to be 1.4±0.27 Bq m -3 and 1.2±0.15 mBq m -3 , respectively. Different 210 Pb: 214 Pb activity ratios during the year varied between 1.78x10 -4 and 1.6x10 -3 with a mean value of 8.9x10 -4 ±7.6x10 -5 . From the ratio between the activity concentrations of the radon decay products 214 Pb and 210 Pb a mean residence time (MRT) of aerosol particles in the atmosphere of about 10.5±0.91 d could be estimated. The seasonal variation pattern shows relatively higher values of MRT in spring/summer season than in winter/autumn season. The MRT data together with relative humidity (RH), air temperature (T) and wind speed (WS), were used for a comprehensive regression analysis of its seasonal variation in the atmospheric air

  14. Standard deviation of vertical two-point longitudinal velocity differences in the atmospheric boundary layer.

    Science.gov (United States)

    Fichtl, G. H.

    1971-01-01

    Statistical estimates of wind shear in the planetary boundary layer are important in the design of V/STOL aircraft, and for the design of the Space Shuttle. The data analyzed in this study consist of eleven sets of longitudinal turbulent velocity fluctuation time histories digitized at 0.2 sec intervals with approximately 18,000 data points per time history. The longitudinal velocity fluctuations were calculated with horizontal wind and direction data collected at the 18-, 30-, 60-, 90-, 120-, and 150-m levels. The data obtained confirm the result that Eulerian time spectra transformed to wave-number spectra with Taylor's frozen eddy hypothesis possess inertial-like behavior at wave-numbers well out of the inertial subrange.

  15. Turbulence and Coherent Structure in the Atmospheric Boundary Layer near the Eyewall of Hurricane Hugo (1989)

    Science.gov (United States)

    Zhang, J. A.; Marks, F. D.; Montgomery, M. T.; Black, P. G.

    2008-12-01

    In this talk we present an analysis of observational data collected from NOAA'S WP-3D research aircraft during the eyewall penetration of category five Hurricane Hugo (1989). The 1 Hz flight level data near 450m above the sea surface comprising wind velocity, temperature, pressure and relative humidity are used to estimate the turbulence intensity and fluxes. In the turbulent flux calculation, the universal shape spectra and co-spectra derived using the 40 Hz data collected during the Coupled Boundary Layer Air-sea Transfer (CBLAST) Hurricane experiment are applied to correct the high frequency part of the data collected in Hurricane Hugo. Since the stationarity assumption required for standard eddy correlations is not always satisfied, different methods are summarized for computing the turbulence parameters. In addition, a wavelet analysis is conducted to investigate the time and special scales of roll vortices or coherent structures that are believed important elements of the eye/eyewall mixing processes that support intense storms.

  16. MPAS Atmospheric Boundary Layer Simulation under Selected Stability Conditions: Evaluation Using the SWIFT Datasen

    Energy Technology Data Exchange (ETDEWEB)

    Kotamarthi, V. Rao [Argonne National Lab. (ANL), Argonne, IL (United States); Feng, Yan [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-12

    Modeling the transition from mesoscale to microscale is necessary in order to model different processes that affect a wind farm and to develop forecasting tools that operate at the farm scale. The mesoscale-to-microscale coupling (MMC) project is an A2e (Atmosphere-toelectrons) coordinated activity for developing modeling capabilities at the wind farm scale. By moving the focus of the research from a single wind turbine to the collection of turbines that comprise a wind farm, A2e extends the range of spatial and timescales that need representation in a model from tens of meters to hundreds of kilometers and timescales from a few seconds to days (Bokharaie et al. 2016). In the atmosphere, these scales are represented by mesoscale-tomicroscale models. The modeling available at these scales has differed in its representation of various physical processes. The MMC group is responsible for evaluating existing models at these scales and recommending a set of options for coupling the mesoscale and microscale with the best-performing models. The group was organized in 2015 and will explore options for coupling strategies with real-world test problems in fiscal year (FY) 2017. The model of choice for this exercise is WRF (Weather Research Forecasting) for mesoscale and WRF-LES (Large Eddy Simulation) for microscale simulations. The MPAS (Model Prediction Across Scales) variable mesh model that can be continuously refined; it has dynamic core and physics options adopted from WRF, which offer an alternative platform for modeling the mesoscale.

  17. The Small Unmanned Meteorological Observer SUMO. A new tool for atmospheric boundary layer research

    Energy Technology Data Exchange (ETDEWEB)

    Reuder, Joachim; Jonassen, Marius; Mayer, Stephanie [Bergen Univ. (Norway). Geophysical Inst.; Brisset, Pascal [Ecole Nationale de l' Aviation Civile (ENAC), Toulouse (France); Mueller, Martin [Martin Mueller Engineering, Hildesheim (Germany)

    2009-04-15

    The Small Unmanned Meteorological Observer SUMO has been developed as a cost-efficient measurement system with the aim to close the existing observational gap of atmospheric measurement systems in between meteorological masts/towers and radiosondes. The system is highly flexible and has the capability for in-situ ABL measurements with unique spatial and temporal resolution. SUMO is based on a light-weighted styrofoam model airplane, equipped with an autopilot system for autonomous flight missions and in its recent version with meteorological sensors for temperature, humidity and pressure. With its wingspan of 80 cm, its length of 75 cm and a total lift-off weight of 580 g, SUMO is easy to transport and operate even in remote areas with limited infrastructure. During several field campaigns in 2007 and 2008 the system has been successfully tested and operated. Atmospheric profiles of temperature, humidity, wind speed and wind direction have been determined up to 3500 m above ground during the FLOHOF (FLOw over and around HOFsjoekull) field campaign in Central Iceland in July/August 2007. During a 3 week campaign on and around Spitsbergen in February/March 2008 the SUMO system also proved its functionality under polar conditions, reaching altitudes above 1500 m even at ground temperatures of -20 C and wind speeds up to 15 m s{sup -1}. (orig.)

  18. Unsteady MHD Mixed Convection Slip Flow of Casson Fluid over Nonlinearly Stretching Sheet Embedded in a Porous Medium with Chemical Reaction, Thermal Radiation, Heat Generation/Absorption and Convective Boundary Conditions.

    Science.gov (United States)

    Ullah, Imran; Bhattacharyya, Krishnendu; Shafie, Sharidan; Khan, Ilyas

    2016-01-01

    Numerical results are presented for the effect of first order chemical reaction and thermal radiation on mixed convection flow of Casson fluid in the presence of magnetic field. The flow is generated due to unsteady nonlinearly stretching sheet placed inside a porous medium. Convective conditions on wall temperature and wall concentration are also employed in the investigation. The governing partial differential equations are converted to ordinary differential equations using suitable transformations and then solved numerically via Keller-box method. It is noticed that fluid velocity rises with increase in radiation parameter in the case of assisting flow and is opposite in the case of opposing fluid while radiation parameter has no effect on fluid velocity in the forced convection. It is also seen that fluid velocity and concentration enhances in the case of generative chemical reaction whereas both profiles reduces in the case of destructive chemical reaction. Further, increase in local unsteadiness parameter reduces fluid velocity, temperature and concentration. Over all the effects of physical parameters on fluid velocity, temperature and concentration distribution as well as on the wall shear stress, heat and mass transfer rates are discussed in detail.

  19. Analysis of Summertime Convective Initiation in Central Alabama Using the Land Information System

    Science.gov (United States)

    James, Robert S.; Case, Jonathan L.; Molthan, Andrew L.; Jedlovec, Gary J.

    2011-01-01

    During the summer months in the southeastern United States, convective initiation presents a frequent challenge to operational forecasters. Thunderstorm development has traditionally been referred to as random due to their disorganized, sporadic appearance and lack of atmospheric forcing. Horizontal variations in land surface characteristics such as soil moisture, soil type, land and vegetation cover could possibly be a focus mechanism for afternoon convection during the summer months. The NASA Land Information System (LIS) provides a stand-alone land surface modeling framework that incorporates these varying soil and vegetation properties, antecedent precipitation, and atmospheric forcing to represent the soil state at high resolution. The use of LIS as a diagnostic tool may help forecasters to identify boundaries in land surface characteristics that could correlate to favored regions of convection initiation. The NASA Shortterm Prediction Research and Transition (SPoRT) team has been collaborating with the National Weather Service Office in Birmingham, AL to help incorporate LIS products into their operational forecasting methods. This paper highlights selected convective case dates from summer 2009 when synoptic forcing was weak, and identifies any boundaries in land surface characteristics that may have contributed to convective initiation. The LIS output depicts the effects of increased sensible heat flux from urban areas on the development of convection, as well as convection along gradients in land surface characteristics and surface sensible and latent heat fluxes. These features may promote mesoscale circulations and/or feedback processes that can either enhance or inhibit convection. With this output previously unavailable to operational forecasters, LIS provides a new tool to forecasters in order to help eliminate the randomness of summertime convective initiation.

  20. Statistical modeling of temperature, humidity and wind fields in the atmospheric boundary layer over the Siberian region

    Science.gov (United States)

    Lomakina, N. Ya.

    2017-11-01

    The work presents the results of the applied climatic division of the Siberian region into districts based on the methodology of objective classification of the atmospheric boundary layer climates by the "temperature-moisture-wind" complex realized with using the method of principal components and the special similarity criteria of average profiles and the eigen values of correlation matrices. On the territory of Siberia, it was identified 14 homogeneous regions for winter season and 10 regions were revealed for summer. The local statistical models were constructed for each region. These include vertical profiles of mean values, mean square deviations, and matrices of interlevel correlation of temperature, specific humidity, zonal and meridional wind velocity. The advantage of the obtained local statistical models over the regional models is shown.

  1. The Deep Atmospheric Boundary Layer and Its Significance to the Stratosphere and Troposphere Exchange over the Tibetan Plateau

    Science.gov (United States)

    Chen, Xuelong; Añel, Juan A.; Su, Zhongbo; de la Torre, Laura; Kelder, Hennie; van Peet, Jacob; Ma, Yaoming

    2013-01-01

    In this study the depth of the atmospheric boundary layer (ABL) over the Tibetan Plateau was measured during a regional radiosonde observation campaign in 2008 and found to be deeper than indicated by previously measurements. Results indicate that during fair weather conditions on winter days, the top of the mixed layers can be up to 5 km above the ground (9.4 km above sea level). Measurements also show that the depth of the ABL is quite distinct for three different periods (winter, monsoon-onset, and monsoon seasons). Turbulence at the top of a deep mixing layer can rise up to the upper troposphere. As a consequence, as confirmed by trajectory analysis, interaction occurs between deep ABLs and the low tropopause during winter over the Tibetan Plateau. PMID:23451108

  2. Ice at the Interface: Atmosphere-Ice-Ocean Boundary Layer Processes and Their Role in Polar Change---Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Hunke, Elizabeth C. [Los Alamos National Laboratory

    2012-07-23

    The atmosphere-ocean boundary layer in which sea ice resides includes many complex processes that require a more realistic treatment in GCMs, particularly as models move toward full earth system descriptions. The primary purpose of the workshop was to define and discuss such coupled processes from observational and modeling points of view, including insight from both the Arctic and Antarctic systems. The workshop met each of its overarching goals, including fostering collaboration among experimentalists, theorists and modelers, proposing modeling strategies, and ascertaining data availability and needs. Several scientific themes emerged from the workshop, such as the importance of episodic or extreme events, precipitation, stratification above and below the ice, and the marginal ice zone, whose seasonal Arctic migrations now traverse more territory than in the past.

  3. Studies using wind tunnel to simulate the Atmospheric Boundary Layer at the Alcântara Space Center

    Directory of Open Access Journals (Sweden)

    Luciana P. Bassi Marinho

    2009-01-01

    Full Text Available The Alcântara Space Center (ASC region has a peculiar topography due to the existence of a coastal cliff, which modifies the atmospheric boundary layer characteristic in a way that can affect rocket launching operations. Wind tunnel measurements can be an important tool for the understanding of turbulence and wind flow pattern characteristics in the ASC neighborhood, along with computational fluid dynamics and observational data. The purpose of this paper is to describe wind tunnel experiments that have been carried out by researchers from the Brazilian Institutions IAE, ITA and INPE. The technologies of Hot-Wire Anemometer and Particle Image Velocimetry (PIV have been used in these measurements, in order to obtain information about wind flow patterns as velocity fields and vorticity. The wind tunnel measurements are described and the results obtained are presented.

  4. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    Science.gov (United States)

    Petzold, A.; Hasselbach, J.; Lauer, P.; Baumann, R.; Franke, K.; Gurk, C.; Schlager, H.; Weingartner, E.

    2008-05-01

    Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transformation studies in the plume of a large container ship in the English Channel using the DLR aircraft Falcon 20 E-5. Observations from emission studies and plume studies combined with a Gaussian plume dispersion model yield a consistent picture of particle transformation processes from emission to atmospheric processing during plume expansion. Particulate matter emission indices obtained from plume measurements are 8.8±1.0×1015(kg fuel)-1 by number for non-volatile particles and 174±43 mg (kg fuel)-1 by mass for Black Carbon (BC). Values determined for test rig conditions between 85 and 110% engine load are of similar magnitude. For the total particle number including volatile compounds no emission index can be derived since the volatile aerosol fraction is subject to rapid transformation processes in the plume. Ship exhaust particles occur in the size range Dp<0.3 μm, showing a bi-modal structure. The combustion particle mode is centred at modal diameters of 0.05 μm for raw emissions to 0.10 μm at a plume age of 1 h. The smaller-sized volatile particle mode is centred at Dp≤0.02 μm. From the decay of ship exhaust particle number concentrations in an expanding plume, a maximum plume life time of approx. 24 h is estimated for a well-mixed marine boundary layer.

  5. Mechanisms affecting the transition from shallow to deep convection over land: Inferences from observations collected at the ARM Southern Great Plains site

    Science.gov (United States)

    Zhang, Y.; Klein, S. A.

    2009-12-01

    11 years of summertime observations at the Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site are used to investigate mechanisms controlling the transition from shallow to deep convection over land. A more humid environment above the boundary layer favors the occurrence of late-afternoon heavy precipitation events. The higher moisture content is brought by wind from south. Greater boundary layer inhomogeneity in moist static energy (MSE) is correlated to larger rain rates at the initial stage of precipitation. MSE inhomogeneity is attributed to both moisture and temperature fields, and is correlated with westerly winds. In an examination of afternoon rain statistics, higher relative humidity above the boundary layer is correlated to an earlier onset and longer duration of precipitation, while greater boundary layer inhomogeneity and atmospheric instability are positively correlated to the total rain amount and the maximum rain rate. On balance, these observations favor theories for the transition that involve a moist free troposphere and boundary layer heterogeneity in preference to those that involve convective available potential energy or convective inhibition. Thus the evidence presented here supports the current emphasis in the modeling community on the entraining nature of convection and the role of boundary layer cold pools in triggering new convection.

  6. Case studies of radiation in the cloud-capped atmospheric boundary layer

    International Nuclear Information System (INIS)

    Schmetz, J.; Raschke, E.

    1983-01-01

    This review presents observations of marine stratocumulus obtained by the three research aircraft that participated in the Joint Air-Sea Interaction Project (JASIN). Detailed measurements were made of the thermodynamic, cloud physics and radiation fields for a uniform cloud sheet on 8 August 1978. These show a well mixed boundary layer with cloud liquid water contents close to their adiabatic values. The longwave and shortwave radiative components of the cloud layer energy budget were measured and good agreement was obtained between the observations and several radiation schemes. In particular, the measured cloud shortwave absorption was close to the theoretical values. Observations of shortwave fluxes made from the Falcon aircraft beneath broken stratocumulus are also shown and compared with calculations made by using a Monte Carlo model. It is concluded that the radiative cloud-cloud interactions do not play a dominant role in the bulk radiative properties of cloud fields. These are mainly determined by cloud amount and the vertical and horizontal optical depths of the clouds within the field. (author)

  7. Zeppelin NT - Measurement Platform for the Exploration of Atmospheric Chemistry and Dynamics in the Planetary Boundary Layer

    Science.gov (United States)

    Hofzumahaus, Andreas; Holland, Frank; Oebel, Andreas; Rohrer, Franz; Mentel, Thomas; Kiendler-Scharr, Astrid; Wahner, Andreas; Brauchle, Artur; Steinlein, Klaus; Gritzbach, Robert

    2014-05-01

    The planetary boundary layer (PBL) is the chemically most active and complex part of the atmosphere where freshly emitted reactive trace gases, tropospheric radicals, atmospheric oxidation products and aerosols exhibit a large variability and spatial gradients. In order to investigate the chemical degradation of trace gases and the formation of secondary pollutants in the PBL, a commercial Zeppelin NT was modified to be used as an airborne measurement platform for chemical and physical observations with high spatial resolution. The Zeppelin NT was developed by Zeppelin Luftschifftechnik (ZLT) and is operated by Deutsche Zeppelin Reederei (DZR) in Friedrichshafen, Germany. The modification was performed in cooperation between Forschungszentrum Jülich and ZLT. The airship has a length of 75 m, can lift about 1 ton of scientific payload and can be manoeuvered with high precision by propeller engines. The modified Zeppelin can carry measurement instruments mounted on a platform on top of the Zeppelin, or inside the gondola beneath the airship. Three different instrument packages were developed to investigate a. gas-phase oxidation processes involving free radicals (OH, HO2) b. formation of secondary organic aerosols (SOA) c. new particle formation (nucleation) The presentation will describe the modified airship and provide an overview of its technical performance. Examples of its application during the recent PEGASOS flight campaigns in Europe will be given.

  8. Impact of Eclipse of 21 August 2017 ON the Atmospheric Boundary Layer

    Science.gov (United States)

    Knupp, K.

    2017-12-01

    The (total) solar eclipse of 21 August 2017 presents a prodigious opportunity to improve our understanding of the physical response of decreases in turbulence within the ABL produced by a rapid reduction in solar radiation, since the transition in this eclipse case, close to local solar noon, is more rapid than at natural sunset. A mesoscale network of three UAH atmospheric profiling systems will be set up around Clarksville, TN, and Hopkinsville, KY, to document the details of the physical response of the ABL to the rapid decrease in solar radiation. The region offers a heterogeneous surface, including expansive agricultural and forested regions. Data from the following mobile systems will be examined: Mobile Integrated Profiling System (MIPS) with a 915 MHz Doppler wind profiler, X-band Profiling Radar (XPR), Microwave Profiling Radiometer (MPR), lidar ceilometer, and Doppler mini-sodar, Rapidly Deployable Atmospheric Profiling System (RaDAPS) with a 915 MHz Doppler wind profiler, MPR, lidar ceilometer, Doppler mini-sodar, Mobile Doppler Lidar and Sounding system (MoDLS) with a Doppler Wind Lidar and MPR. A tethered balloon will provide high temporal and vertical resolution in situ sampling of the surface layer temperature and humidity vertical profiles over the lowest 120 m AGL. Two of the profiling systems (MIPS and MoDLS) will include 20 Hz sonic anemometer measurements for documentation of velocity component (u, v, w) variance, buoyancy flux, and momentum flux. The Mobile Alabama X-band (MAX) dual polarization radar will be paired with the Ft. Campbell WSR-88D radar, located 29 km east of the MAX, to provide dual Doppler radar coverage of flow within the ABL over the profiler domain. The measurements during this eclipse will also provide information on the response of insects to rapidly changing lighting conditions. During the natural afternoon-to-evening transition, daytime insect concentrations decrease rapidly, and stronger-flying nighttime flyers emerge

  9. A Semi-Analytical Model for Dispersion Modelling Studies in the Atmospheric Boundary Layer

    Science.gov (United States)

    Gupta, A.; Sharan, M.

    2017-12-01

    The severe impact of harmful air pollutants has always been a cause of concern for a wide variety of air quality analysis. The analytical models based on the solution of the advection-diffusion equation have been the first and remain the convenient way for modeling air pollutant dispersion as it is easy to handle the dispersion parameters and related physics in it. A mathematical model describing the crosswind integrated concentration is presented. The analytical solution to the resulting advection-diffusion equation is limited to a constant and simple profiles of eddy diffusivity and wind speed. In practice, the wind speed depends on the vertical height above the ground and eddy diffusivity profiles on the downwind distance from the source as well as the vertical height. In the present model, a method of eigen-function expansion is used to solve the resulting partial differential equation with the appropriate boundary conditions. This leads to a system of first order ordinary differential equations with a coefficient matrix depending on the downwind distance. The solution of this system, in general, can be expressed in terms of Peano-baker series which is not easy to compute, particularly when the coefficient matrix becomes non-commutative (Martin et al., 1967). An approach based on Taylor's series expansion is introduced to find the numerical solution of first order system. The method is applied to various profiles of wind speed and eddy diffusivities. The solution computed from the proposed methodology is found to be efficient and accurate in comparison to those available in the literature. The performance of the model is evaluated with the diffusion datasets from Copenhagen (Gryning et al., 1987) and Hanford (Doran et al., 1985). In addition, the proposed method is used to deduce three dimensional concentrations by considering the Gaussian distribution in crosswind direction, which is also evaluated with diffusion data corresponding to a continuous point source.

  10. High variability of atmospheric mercury in the summertime boundary layer through the central Arctic Ocean.

    Science.gov (United States)

    Yu, Juan; Xie, Zhouqing; Kang, Hui; Li, Zheng; Sun, Chen; Bian, Lingen; Zhang, Pengfei

    2014-08-15

    The biogeochemical cycles of mercury in the Arctic springtime have been intensively investigated due to mercury being rapidly removed from the atmosphere. However, the behavior of mercury in the Arctic summertime is still poorly understood. Here we report the characteristics of total gaseous mercury (TGM) concentrations through the central Arctic Ocean from July to September, 2012. The TGM concentrations varied considerably (from 0.15 ng/m(3) to 4.58 ng/m(3)), and displayed a normal distribution with an average of 1.23 ± 0.61 ng/m(3). The highest frequency range was 1.0-1.5 ng/m(3), lower than previously reported background values in the Northern Hemisphere. Inhomogeneous distributions were observed over the Arctic Ocean due to the effect of sea ice melt and/or runoff. A lower level of TGM was found in July than in September, potentially because ocean emission was outweighed by chemical loss.

  11. Interactions Between Atmospheric Aerosols and Marine Boundary Layer Clouds on Regional and Global Scales

    Science.gov (United States)

    Wang, Zhen

    Airborne aerosols are crucial atmospheric constituents that are involved in global climate change and human life qualities. Understanding the nature and magnitude of aerosol-cloud-precipitation interactions is critical in model predictions for atmospheric radiation budget and the water cycle. The interactions depend on a variety of factors including aerosol physicochemical complexity, cloud types, meteorological and thermodynamic regimes and data processing techniques. This PhD work is an effort to quantify the relationships among aerosol, clouds, and precipitation on both global and regional scales by using satellite retrievals and aircraft measurements. The first study examines spatial distributions of conversion rate of cloud water to rainwater in warm maritime clouds over the globe by using NASA A-Train satellite data. This study compares the time scale of the onset of precipitation with different aerosol categories defined by values of aerosol optical depth, fine mode fraction, and Angstrom Exponent. The results indicate that conversion time scales are actually quite sensitive to lower tropospheric static stability (LTSS) and cloud liquid water path (LWP), in addition to aerosol type. Analysis shows that tropical Pacific Ocean is dominated by the highest average conversion rate while subtropical warm cloud regions (far northeastern Pacific Ocean, far southeastern Pacific Ocean, Western Africa coastal area) exhibit the opposite result. Conversion times are mostly shorter for lower LTSS regimes. When LTSS condition is fixed, higher conversion rates coincide with higher LWP and lower aerosol index categories. After a general global view of physical property quantifications, the rest of the presented PhD studies is focused on regional airborne observations, especially bulk cloud water chemistry and aerosol aqueous-phase reactions during the summertime off the California coast. Local air mass origins are categorized into three distinct types (ocean, ships, and land

  12. Towards the geophysical regime in numerical dynamo models: studies of rapidly-rotating convection driven dynamos with low Pm and constant heat flux boundary conditions

    DEFF Research Database (Denmark)

    Sheyko, A.A.; Finlay, Chris; Marti, P.

    We present a set of numerical dynamo models with the convection strength varied by a factor of 30 and the ratio of magnetic to viscous diffusivities by a factor of 20 at rapid rotation rates (E =nu/(2 Omega d^2 ) = 10-6 and 10-7 ) using a heat flux outer BC. This regime has been little explored...... on the structure of the dynamos and how this changes in relation to the selection of control parameters, a comparison with the proposed rotating convection and dynamo scaling laws, energy spectra of steady solutions and inner core rotation rates. Magnetic field on the CMB. E=2.959*10-7, Ra=6591.0, Pm=0.05, Pr=1....

  13. A global boundary-layer height climatology

    Energy Technology Data Exchange (ETDEWEB)

    Dop, H. van; Krol, M.; Holtslag, B. [Inst. for Marine and Atmospheric Research Utrecht, IMAU, Utrecht (Netherlands)

    1997-10-01

    In principle the ABL (atmospheric boundary layer) height can be retrieved from atmospheric global circulation models since they contain algorithms which determine the intensity of the turbulence as a function of height. However, these data are not routinely available, or on a (vertical) resolution which is too crude in view of the application. This justifies the development of a separate algorithm in order to define the ABL. The algorithm should include the generation of turbulence by both shear and buoyancy and should be based on readily available atmospheric parameters. There is obviously a wide application for boundary heights in off-line global and regional chemistry and transport modelling. It is also a much used parameter in air pollution meteorology. In this article we shall present a theory which is based on current insights in ABL dynamics. The theory is applicable over land and sea surfaces in all seasons. The theory is (for various reasons) not valid in mountainous areas. In areas where boundary-layer clouds or deep cumulus convection are present the theory does not apply. However, the same global atmospheric circulation models contain parameterizations for shallow and deep convection from which separate estimates can be obtained for the extent of vertical mixing. (au)

  14. The effect of entrainment through atmospheric boundary layer growth on observed and modeled surface ozone in the Colorado Front Range

    Science.gov (United States)

    Kaser, L.; Patton, E. G.; Pfister, G. G.; Weinheimer, A. J.; Montzka, D. D.; Flocke, F.; Thompson, A. M.; Stauffer, R. M.; Halliday, H. S.

    2017-06-01

    Ozone concentrations at the Earth's surface are controlled by meteorological and chemical processes and are a function of advection, entrainment, deposition, and net chemical production/loss. The relative contributions of these processes vary in time and space. Understanding the relative importance of these processes controlling surface ozone concentrations is an essential component for designing effective regulatory strategies. Here we focus on the diurnal cycle of entrainment through atmospheric boundary layer (ABL) growth in the Colorado Front Range. Aircraft soundings and surface observations collected in July/August 2014 during the DISCOVER-AQ/FRAPPÉ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality/Front Range Air Pollution and Photochemistry Éxperiment) campaigns and equivalent data simulated by a regional chemical transport model are analyzed. Entrainment through ABL growth is most important in the early morning, fumigating the surface at a rate of 5 ppbv/h. The fumigation effect weakens near noon and changes sign to become a small dilution effect in the afternoon on the order of -1 ppbv/h. The chemical transport model WRF-Chem (Weather Research and Forecasting Model with chemistry) underestimates ozone at all altitudes during this study on the order of 10-15 ppbv. The entrainment through ABL growth is overestimated by the model in the order of 0.6-0.8 ppbv/h. This results from differences in boundary layer growth in the morning and ozone concentration jump across the ABL top in the afternoon. This implicates stronger modeled fumigation in the morning and weaker modeled dilution after 11:00 LT.

  15. Numerical and experimental study of the load of an object due to the effects of a flow field in the atmospheric boundary layer

    Czech Academy of Sciences Publication Activity Database

    Michalcová, V.; Kuznetsov, Sergeii; Pospíšil, S.

    2014-01-01

    Roč. 8, č. 1 (2014), s. 135-140 ISSN 1998-0159 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0060 Institutional support: RVO:68378297 Keywords : atmospheric boundary layer ABL * bluff body * CFD * ELES * SAS * wind tunnel Subject RIV: JM - Building Engineering http://www.naun.org/cms.action?id=7632

  16. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    Directory of Open Access Journals (Sweden)

    A. Petzold

    2008-05-01

    Full Text Available Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transformation studies in the plume of a large container ship in the English Channel using the DLR aircraft Falcon 20 E-5. Observations from emission studies and plume studies combined with a Gaussian plume dispersion model yield a consistent picture of particle transformation processes from emission to atmospheric processing during plume expansion. Particulate matter emission indices obtained from plume measurements are 8.8±1.0×1015(kg fuel−1 by number for non-volatile particles and 174±43 mg (kg fuel−1 by mass for Black Carbon (BC. Values determined for test rig conditions between 85 and 110% engine load are of similar magnitude. For the total particle number including volatile compounds no emission index can be derived since the volatile aerosol fraction is subject to rapid transformation processes in the plume. Ship exhaust particles occur in the size range Dp<0.3 μm, showing a bi-modal structure. The combustion particle mode is centred at modal diameters of 0.05 μm for raw emissions to 0.10 μm at a plume age of 1 h. The smaller-sized volatile particle mode is centred at Dp≤0.02 μm. From the decay of ship exhaust particle number concentrations in an expanding plume, a maximum plume life time of approx. 24 h is estimated for a well-mixed marine boundary layer.

  17. Investigation of Turbulence Parametrization Schemes with Reference to the Atmospheric Boundary Layer Over the Aegean Sea During Etesian Winds

    Science.gov (United States)

    Dandou, A.; Tombrou, M.; Kalogiros, J.; Bossioli, E.; Biskos, G.; Mihalopoulos, N.; Coe, H.

    2017-08-01

    The spatial structure of the marine atmospheric boundary layer (MABL) over the Aegean Sea is investigated using the Weather Research and Forecasting (WRF) mesoscale model. Two `first-order' non-local and five `1.5-order' local planetary boundary-layer (PBL) parametrization schemes are used. The predictions from the WRF model are evaluated against airborne observations obtained by the UK Facility for Airborne Atmospheric Measurements BAe-14 research aircraft during the Aegean-GAME field campaign. Statistical analysis shows good agreement between measurements and simulations especially at low altitude. Despite the differences between the predicted and measured wind speeds, they reach an agreement index of 0.76. The simulated wind-speed fields close to the surface differ substantially among the schemes (maximum values range from 13 to 18 m s^{-1} at 150-m height), but the differences become marginal at higher levels. In contrast, all schemes show similar spatial variation patterns in potential temperature fields. A warmer (1-2 K) and drier (2-3 g kg^{-1}) layer than is observed, is predicted by almost all schemes under stable conditions (eastern Aegean Sea), whereas a cooler (up to 2 K) and moister (1-2 g kg^{-1}) layer is simulated under near-neutral to nearly unstable conditions (western Aegean Sea). Almost all schemes reproduce the vertical structure of the PBL and the shallow MABL (up to 300 m) well, including the low-level jet in the eastern Aegean Sea, with non-local schemes being closer to observations. The simulated PBL depths diverge (up to 500 m) due to the different criteria applied by the schemes for their calculation. Under stable conditions, the observed MABL depth corresponds to the height above the sea surface where the simulated eddy viscosity reaches a minimum; under neutral to slightly unstable conditions this is close to the top of the simulated entrainment layer. The observed sensible heat fluxes vary from -40 to 25 W m^{-2}, while the simulated

  18. The effect of induced magnetic field and convective boundary condition on MHD stagnation point flow and heat transfer of upper-convected Maxwell fluid in the presence of nanoparticle past a stretching sheet

    Directory of Open Access Journals (Sweden)

    Wubshet Ibrahim

    2016-06-01

    The numerical results are obtained for velocity, temperature, induced magnetic field and concentration profiles as well as skin friction coefficient, the local Nusselt number and Sherwood number. The results indicate that the skin friction coefficient, the local Nusselt number and Sherwood number decrease with an increase in B and M parameters. Moreover, local Sherwood number -ϕ′(0 decreases with an increase in convective parameter Bi, but the local Nusselt number -θ′(0 increases with an increase in Bi. The results are displayed both in graphical and tabular form to illustrate the effect of the governing parameters on the dimensionless velocity, induced magnetic field, temperature and concentration. The numerical results are compared and found to be in good agreement with the previously published results on special cases of the problem.

  19. Vertical Transport by Coastal Mesoscale Convective Systems

    Science.gov (United States)

    Lombardo, K.; Kading, T.

    2016-12-01

    This work is part of an ongoing investigation of coastal mesoscale convective systems (MCSs), including changes in vertical transport of boundary layer air by storms moving from inland to offshore. The density of a storm's cold pool versus that of the offshore marine atmospheric boundary layer (MABL), in part, determines the ability of the storm to successfully cross the coast, the mechanism driving storm propagation, and the ability of the storm to lift air from the boundary layer aloft. The ability of an MCS to overturn boundary layer air can be especially important over the eastern US seaboard, where warm season coastal MCSs are relatively common and where large coastal population centers generate concentrated regions of pollution. Recent work numerically simulating idealized MCSs in a coastal environment has provided some insight into the physical mechanisms governing MCS coastal crossing success and the impact on vertical transport of boundary layer air. Storms are simulated using a cloud resolving model initialized with atmospheric conditions representative of a Mid-Atlantic environment. Simulations are run in 2-D at 250 m horizontal resolution with a vertical resolution stretched from 100 m in the boundary layer to 250 m aloft. The left half of the 800 km domain is configured to represent land, while the right half is assigned as water. Sensitivity experiments are conducted to quantify the influence of varying MABL structure on MCS coastal crossing success and air transport, with MABL values representative of those observed over the western Mid-Atlantic during warm season. Preliminary results indicate that when the density of the cold pool is much greater than the MABL, the storm successfully crosses the coastline, with lifting of surface parcels, which ascend through the troposphere. When the density of the cold pool is similar to that of the MABL, parcels within the MABL remain at low levels, though parcels above the MABL ascend through the troposphere.

  20. Pulsed flows at the high-altitude cusp poleward boundary, and associated ionospheric convection and particle signatures, during a Cluster - FAST - SuperDARN- Søndrestrøm conjunction under a southwest IMF

    Directory of Open Access Journals (Sweden)

    C. J. Farrugia

    2004-09-01

    Full Text Available Particle and magnetic field observations during a magnetic conjunction Cluster 1-FAST-Søndrestrøm within the field of view of SuperDARN radars on 21 January 2001 allow us to draw a detailed, comprehensive and self-consistent picture at three heights of signatures associated with transient reconnection under a steady south-westerly IMF (clock angle ≈130°. Cluster 1 was outbound through the high altitude (~12RE exterior northern cusp tailward of the bifurcation line (geomagnetic Bx>0 when a solar wind dynamic pressure release shifted the spacecraft into a boundary layer downstream of the cusp. The centerpiece of the investigation is a series of flow bursts observed there by the spacecraft, which were accompanied by strong field perturbations and tailward flow deflections. Analysis shows these to be Alfvén waves. We interpret these flow events as being due to a sequence of reconnected flux tubes, with field-aligned currents in the associated Alfvén waves carrying stresses to the underlying ionosphere, a view strengthened by the other observations. At the magnetic footprint of the region of Cluster flow bursts, FAST observed an ion energy-latitude disperison of the stepped cusp type, with individual cusp ion steps corresponding to individual flow bursts. Simultaneously, the SuperDARN Stokkseyri radar observed very strong poleward-moving radar auroral forms (PMRAFs which were conjugate to the flow bursts at Cluster. FAST was traversing these PMRAFs when it observed the cusp ion steps. The Søndrestrøm radar observed pulsed ionospheric flows (PIFs just poleward of the convection reversal boundary. As at Cluster, the flow was eastward (tailward, implying a coherent eastward (tailward motion of the hypothesized open flux tubes. The joint Søndrestrøm and FAST observations indicate that the open/closed field line boundary was equatorward of the convection reversal boundary by ~2°. The unprecedented accuracy of the conjunction argues strongly

  1. Pulsed flows at the high-altitude cusp poleward boundary, and associated ionospheric convection and particle signatures, during a Cluster - FAST - SuperDARN- Søndrestrøm conjunction under a southwest IMF

    Directory of Open Access Journals (Sweden)

    C. J. Farrugia

    2004-09-01

    Full Text Available Particle and magnetic field observations during a magnetic conjunction Cluster 1-FAST-Søndrestrøm within the field of view of SuperDARN radars on 21 January 2001 allow us to draw a detailed, comprehensive and self-consistent picture at three heights of signatures associated with transient reconnection under a steady south-westerly IMF (clock angle ≈130°. Cluster 1 was outbound through the high altitude (~12RE exterior northern cusp tailward of the bifurcation line (geomagnetic Bx>0 when a solar wind dynamic pressure release shifted the spacecraft into a boundary layer downstream of the cusp. The centerpiece of the investigation is a series of flow bursts observed there by the spacecraft, which were accompanied by strong field perturbations and tailward flow deflections. Analysis shows these to be Alfvén waves. We interpret these flow events as being due to a sequence of reconnected flux tubes, with field-aligned currents in the associated Alfvén waves carrying stresses to the underlying ionosphere, a view strengthened by the other observations. At the magnetic footprint of the region of Cluster flow bursts, FAST observed an ion energy-latitude disperison of the stepped cusp type, with individual cusp ion steps corresponding to individual flow bursts. Simultaneously, the SuperDARN Stokkseyri radar observed very strong poleward-moving radar auroral forms (PMRAFs which were conjugate to the flow bursts at Cluster. FAST was traversing these PMRAFs when it observed the cusp ion steps. The Søndrestrøm radar observed pulsed ionospheric flows (PIFs just poleward of the convection reversal boundary. As at Cluster, the flow was eastward (tailward, implying a coherent eastward (tailward motion of the hypothesized open flux tubes. The joint Søndrestrøm and FAST observations indicate that the open/closed field line boundary was equatorward of the convection reversal boundary by ~2°. The unprecedented accuracy

  2. Two fast temperature sensors for probing of the atmospheric boundary layer using small remotely piloted aircraft (RPA

    Directory of Open Access Journals (Sweden)

    N. Wildmann

    2013-08-01

    Full Text Available Two types of temperature sensors are designed and tested: a thermocouple and a fine wire resistance thermometer. The intention of this study is to figure out which kind of measurement principle is in general more suited for atmospheric boundary layer meteorology with small remotely piloted aircraft (RPA. The sensors are calibrated in a NIST traceable climate chamber and validated in flight against tower measurements, radiosondes and remote sensing. The sensors have a measurement range of at least −10–50 °C, an absolute RMS error of less than ±0.2 K which is stable over the lifetime of the sensors, and a resolution of about 0.01 K. Both devices are tested for typical errors like radiation error and adiabatic heating, as well as for their dynamic response. Spectral resolutions of up to approximately 10 Hz can be obtained with both sensors, which makes them suitable for turbulence measurement. Their low cost of less than 100 EUR in pure hardware is a major advantage for research with small RPA.

  3. Two fast temperature sensors for probing of the atmospheric boundary layer using small remotely piloted aircraft (RPA)

    Science.gov (United States)

    Wildmann, N.; Mauz, M.; Bange, J.

    2013-08-01

    Two types of temperature sensors are designed and tested: a thermocouple and a fine wire resistance thermometer. The intention of this study is to figure out which kind of measurement principle is in general more suited for atmospheric boundary layer meteorology with small remotely piloted aircraft (RPA). The sensors are calibrated in a NIST traceable climate chamber and validated in flight against tower measurements, radiosondes and remote sensing. The sensors have a measurement range of at least -10-50 °C, an absolute RMS error of less than ±0.2 K which is stable over the lifetime of the sensors, and a resolution of about 0.01 K. Both devices are tested for typical errors like radiation error and adiabatic heating, as well as for their dynamic response. Spectral resolutions of up to approximately 10 Hz can be obtained with both sensors, which makes them suitable for turbulence measurement. Their low cost of less than 100 EUR in pure hardware is a major advantage for research with small RPA.

  4. The Importance and Current Limitations of Planetary Boundary Layer (PBL) Retrieval from Space for Land-Atmosphere Coupling Studies

    Science.gov (United States)

    Santanello, J. A., Jr.; Schaefer, A.

    2016-12-01

    There is an established need for improved PBL remote sounding over land for hydrology, land-atmosphere (L-A), PBL, cloud/convection, pollution/chemistry studies and associated model evaluation and development. Most notably, the connection of surface hydrology (through soil moisture) to clouds and precipitation relies on proper quantification of water's transport through the coupled system, which is modulated strongly by PBL structure, growth, and feedback processes such as entrainment. In-situ (ground-based or radiosonde) measurements will be spatially limited to small field campaigns for the foreseeable future, so satellite data is a must in order to understand these processes globally. The scales of these applications require diurnal resolution (e.g. 3-hourly or finer) at land-PBL coupling and water and energy cycles at their native scales. Today's satellite sensors (e.g. advanced IR, GEO, lidar, GPS-RO) do not reach close to these targets in terms of accuracy or resolution, and each of these sensors has some advantages but even more limitations that make them impractical for PBL and L-A studies. Unfortunately, there is very little attention or planning (short or long-term) in place for improving lower tropospheric sounding over land, and as a result PBL and L-A interactions have been identified as `gaps' in current programmatic focal areas. It is therefore timely to assess how these technologies can be leveraged, combined, or evolved in order to form a dedicated mission or sub-mission to routinely monitor the PBL on diurnal timescales. In addition, improved PBL monitoring from space needs to be addressed in the next Decadal Survey. In this talk, the importance of PBL information (structure, evolution) for L-A coupling diagnostics and model development will be summarized. The current array of PBL retrieval methods and products from space will then be assessed in terms of meeting the needs of these models, diagnostics, and scales, with a look forward as to how

  5. Atmospheric boundary layer characteristics over the Pearl River Delta, China, during the summer of 2006: measurement and model results

    Directory of Open Access Journals (Sweden)

    S. J. Fan

    2011-07-01

    Full Text Available As part of the PRIDE-PRD2006 intensive campaign, atmospheric boundary layer (ABL measurements were performed in Qingyuan, Panyu, and Xinken over the Pearl River Delta (PRD on 1–30 July 2006. During the summer, the surface winds over the PRD are generally controlled by the south, usually with vertical wind shear at a height of approximately 800 m. Subsidence and precipitation from a tropical cyclone affects the air quality of the PRD. Under subsidence, wind speed in the ABL and the height of the ABL decrease and result in high-level concentrations. When the background wind speed is small or calm, the wind profile in Panyu and Xinken changes dramatically with height, which is perhaps caused by local circulation, such as sea-land breezes. To better understand the ABL of the PRD, simulations that used the Weather Research and Forecasting (WRF mesoscale model were utilized to analyze the ABL characteristics over the PRD. Based on three types of weather condition simulations (i.e., subsidence days, rainy days, and sunny days, the WRF model revealed that the simulated temperature and wind fields in these three cases were moderately consistent with the measurements. The results showed that diurnal variations of the ABL height on subsidence days and sunny days were obvious, but diurnal variations of the ABL height on rainy days were not apparent. The ABL is obviously affected by local circulation, and the ABL features are different at various stations. A simulation focused on a high pollution episode during the subsidence days on 12–15 July 2006, occurred under high-pressure conditions, accompanied by the tropical cyclone "Bilis". A comparison of the simulated vertical wind fields and temperature structure with the ABL measurements at Xinken, Panyu, and Qingyuan stations found that the modeled and measured atmospheric fields revealed two different types of ABL characteristics over the PRD. When the surface winds over the PRD were light or nearly calm

  6. Parameterizing convective organization

    Directory of Open Access Journals (Sweden)

    Brian Earle Mapes

    2011-06-01

    Full Text Available Lateral mixing parameters in buoyancy-driven deep convection schemes are among the most sensitive and important unknowns in atmosphere models. Unfortunately, there is not a true optimum value for plume mixing rate, but rather a dilemma or tradeoff: Excessive dilution of updrafts leads to unstable stratification bias in the mean state, while inadequate dilution allows deep convection to occur too easily, causing poor space and time distributions and variability. In this too-small parameter space, compromises are made based on competing metrics of model performance. We attempt to escape this “entrainment dilemma” by making bulk plume parameters (chiefly entrainment rate depend on a new prognostic variable (“organization,” org meant to reflect the rectified effects of subgrid-scale structure in meteorological fields. We test an org scheme in the Community Atmosphere Model (CAM5 with a new unified shallow-deep convection scheme (UW-ens, a 2-plume version of the University of Washington scheme. Since buoyant ascent involves natural selection, subgrid structure makes convection systematically deeper and stronger than the pure unorganized case: plumes of average (or randomly sampled air rising in the average environment. To reflect this, org is nonnegative, but we leave it dimensionless. A time scale characterizes its behavior (here ∼3 h for a 2o model. Currently its source is rain evaporation, but other sources can be added easily. We also let org be horizontally transported by advection, as a mass-weighted mean over the convecting layer. Linear coefficients link org to a plume ensemble, which it assists via: 1 plume base warmth above the mean temperature 2 plume radius enhancement (reduced mixing, and 3 increased probability of overlap in a multi-plume scheme, where interactions benefit later generations (this part has only been implemented in an offline toy column model. Since rain evaporation is a source for org, it functions as a time

  7. Diagnosing the Sensitivity of Local Land-Atmosphere Coupling via the Soil Moisture-Boundary Layer Interaction

    Science.gov (United States)

    Santanello, Joseph A., Jr.; Peters-Lidard, Christa D.; Kumar, Sujay V.

    2011-01-01

    The inherent coupled nature of earth s energy and water cycles places significant importance on the proper representation and diagnosis of land atmosphere (LA) interactions in hydrometeorological prediction models. However, the precise nature of the soil moisture precipitation relationship at the local scale is largely determined by a series of nonlinear processes and feedbacks that are difficult to quantify. To quantify the strength of the local LA coupling (LoCo), this process chain must be considered both in full and as individual components through their relationships and sensitivities. To address this, recent modeling and diagnostic studies have been extended to 1) quantify the processes governing LoCo utilizing the thermodynamic properties of mixing diagrams, and 2) diagnose the sensitivity of coupled systems, including clouds and moist processes, to perturbations in soil moisture. This work employs NASA s Land Information System (LIS) coupled to the Weather Research and Forecasting (WRF) mesoscale model and simulations performed over the U.S. Southern Great Plains. The behavior of different planetary boundary layers (PBL) and land surface scheme couplings in LIS WRF are examined in the context of the evolution of thermodynamic quantities that link the surface soil moisture condition to the PBL regime, clouds, and precipitation. Specifically, the tendency toward saturation in the PBL is quantified by the lifting condensation level (LCL) deficit and addressed as a function of time and space. The sensitivity of the LCL deficit to the soil moisture condition is indicative of the strength of LoCo, where both positive and negative feedbacks can be identified. Overall, this methodology can be applied to any model or observations and is a crucial step toward improved evaluation and quantification of LoCo within models, particularly given the advent of next-generation satellite measurements of PBL and land surface properties along with advances in data assimilation

  8. Application of remotely piloted aircraft systems in observing the atmospheric boundary layer over Antarctic sea ice in winter

    Directory of Open Access Journals (Sweden)

    Marius O. Jonassen

    2015-10-01

    Full Text Available The main aim of this paper is to explore the potential of combining measurements from fixed- and rotary-wing remotely piloted aircraft systems (RPAS to complement data sets from radio soundings as well as ship and sea-ice-based instrumentation for atmospheric boundary layer (ABL profiling. This study represents a proof-of-concept of RPAS observations in the Antarctic sea-ice zone. We present first results from the RV Polarstern Antarctic winter expedition in the Weddell Sea in June–August 2013, during which three RPAS were operated to measure temperature, humidity and wind; a fixed-wing small unmanned meteorological observer (SUMO, a fixed-wing meteorological mini-aerial vehicle, and an advanced mission and operation research quadcopter. A total of 86 RPAS flights showed a strongly varying ABL structure ranging from slightly unstable temperature stratification near the surface to conditions with strong surface-based temperature inversions. The RPAS observations supplement the regular upper air soundings and standard meteorological measurements made during the campaign. The SUMO and quadcopter temperature profiles agree very well and, excluding cases with strong temperature inversions, 70% of the variance in the difference between the SUMO and quadcopter temperature profiles can be explained by natural, temporal, temperature fluctuations. Strong temperature inversions cause the largest differences, which are induced by SUMO's high climb rates and slow sensor response. Under such conditions, the quadcopter, with its slower climb rate and faster sensor, is very useful in obtaining accurate temperature profiles in the lowest 100 m above the sea ice.

  9. RETRACTED ARTICLE: Validation of mean and turbulent parameters measured from the aircraft in the marine atmospheric boundary layer

    Science.gov (United States)

    Kwon, Byung Hyuk; Lee, Gyuwon

    2010-11-01

    The SEMAPHORE (Structure des Echanges Mer-Atmosphère, Propriétés Océaniques/ Recherche Expérimentale) experiment, which took place between 04 Oct. and 17 Nov. 1993, was conducted over the oceanic Azores current located in the Azores basin. The SST (Sea Surface Temperature) field was characterized in the SEMAPHORE area (31°-38°N; 21°-28°W) by a large meander with a SST gradient of about 1°C per 100 km. In order to study the evolution of the MABL (Marine Atmospheric Boundary Layer) over the ocean, the mean and the turbulent data were evaluated by the measurement with two aircraft and a ship in different meteorological conditions. Three cases of low pressure and three cases of high pressure are mainly presented here. For the six cases, the satellite images (NOAA) did not show any relation between the SST field and the cloud cover. At each flight level, the decrease of the SST with the altitude due to the divergence of the infrared radiation flux from the ocean is 0.25°C per 100 m. For the comparison between the two aircraft, the mean thermodynamic and dynamic parameters show a good agreement except for the temperature. The dispersion of the sensible heat flux is larger than that of the latent heat flux due to the weak sensible heat flux over the ocean both in the intercomparison between two aircraft and in the comparison between the aircraft and the ship.

  10. Application and Limitations of GPS Radio Occultation (GPS-RO) Data for Atmospheric Boundary Layer Height Detection over the Arctic.

    Science.gov (United States)

    Ganeshan, M.; Wu, D. L.

    2014-12-01

    Due to recent changes in the Arctic environment, it is important to monitor the atmospheric boundary layer (ABL) properties over the Arctic Ocean, especially to explore the variability in ABL clouds (such as sensitivity and feedback to sea ice loss). For example, radiosonde and satellite observations of the Arctic ABL height (and low-cloud cover) have recently suggested a positive response to sea ice loss during October that may not occur during the melt season (June-September). Owing to its high vertical and spatiotemporal resolution, an independent ABL height detection algorithm using GPS Radio Occultation (GPS-RO) refractivity in the Arctic is explored. Similar GPS-RO algorithms developed previously typically define the level of the most negative moisture gradient as the ABL height. This definition is favorable for subtropical oceans where a stratocumulus-topped ABL is often capped by a layer of sharp moisture lapse rate (coincident with the temperature inversion). The Arctic Ocean is also characterized by stratocumulus cloud cover, however, the specific humidity does not frequently decrease in the ABL capping inversion. The use of GPS-RO refractivity for ABL height retrieval therefore becomes more complex. During winter months (December-February), when the total precipitable water in the troposphere is a minimum, a fairly straightforward algorithm for ABL height retrieval is developed. The applicability and limitations of this method for other seasons (Spring, Summer, Fall) is determined. The seasonal, interannual and spatial variability in the GPS-derived ABL height over the Arctic Ocean, as well as its relation to the underlying surface (ice vs. water), is investigated. The GPS-RO profiles are also explored for the evidence of low-level moisture transport in the cold Arctic environment.

  11. Relationships Between Tropical Deep Convection, Tropospheric Mean Temperature and Cloud-Induced Radiative Fluxes on Intraseasonal Time Scales

    Science.gov (United States)

    Ramey, Holly S.; Robertson, Franklin R.

    2010-01-01

    Intraseasonal variability of deep convection represents a fundamental mode of variability in the organization of tropical convection. While most studies of intraseasonal oscillations (ISOs) have focused on the spatial propagation and dynamics of convectively coupled circulations, we examine the projection of ISOs on the tropically-averaged temperature and energy budget. The area of interest is the global oceans between 20degN/S. Our analysis then focuses on these questions: (i) How is tropospheric temperature related to tropical deep convection and the associated ice cloud fractional amount (ICF) and ice water path (IWP)? (ii) What is the source of moisture sustaining the convection and what role does deep convection play in mediating the PBL - free atmospheric temperature equilibration? (iii) What affect do convectively generated upper-tropospheric clouds have on the TOA radiation budget? Our methodology is similar to that of Spencer et al., (2007) with some modifications and some additional diagnostics of both clouds and boundary layer thermodynamics. A composite ISO time series of cloud, precipitation and radiation quantities built from nearly 40 events during a six-year period is referenced to the atmospheric temperature signal. The increase of convective precipitation cannot be sustained by evaporation within the domain, implying strong moisture transports into the tropical ocean area. While there is a decrease in net TOA radiation that develops after the peak in deep convective rainfall, there seems little evidence that an "Infrared Iris"- like mechanism is dominant. Rather, the cloud-induced OLR increase seems largely produced by weakened convection with warmer cloud tops. Tropical ISO events offer an accessible target for studying ISOs not just in terms of propagation mechanisms, but on their global signals of heat, moisture and radiative flux feedback processes.

  12. Free convective boundary layers in variable-viscosity fluids by the method of local nonsimilarity: application to plumes in the earth's mantle

    International Nuclear Information System (INIS)

    Quareni, F.; Yuen, D.A.; Eby, H.E.

    1983-01-01

    The effects due to departures from local similarity in steady-state boundary layers ascending through a fluid with strongly variable viscosity are examined with the local-nonsimilarity method. Both the absolute temperature and the hydrostatic pressure appear in the argument of an exponential in the viscosity function. The fluid-dynamical system studied here is that which characterizes plume structures in the Earth's mantle. By means of an iterative approach, two successive nonlinear boundary value problems are solved simultaneously and the errors incurred in the locally similar solutions are then assessed from a comparison between the first (locally similar) and the second level of a system of truncated equations. Three different sources of nonsimilarity have been considered: 1) localized radiogenic hearting within the plume, 2) ambient thermal stratification, 3) pressure dependence of mantle rheology. Of particular interest is an appraisal of the degree of accuracy of the locally similar solutions as a function of viscosity contrast within the boundary layer. For the range of viscosity contrast examined, up to 10 8 , the velocity and temperature fields between the first- and second-level solutions differ at most by 20 to 30%, for the rheological parameter values relevant to the Earth's mantle

  13. Variability in warm-season atmospheric circulation and precipitation patterns over subtropical South America: relationships between the South Atlantic convergence zone and large-scale organized convection over the La Plata basin

    Science.gov (United States)

    Mattingly, Kyle S.; Mote, Thomas L.

    2017-01-01

    Warm-season precipitation variability over subtropical South America is characterized by an inverse relationship between the South Atlantic convergence zone (SACZ) and precipitation over the central and western La Plata basin of southeastern South America. This study extends the analysis of this "South American Seesaw" precipitation dipole to relationships between the SACZ and large, long-lived mesoscale convective systems (LLCSs) over the La Plata basin. By classifying SACZ events into distinct continental and oceanic categories and building a logistic regression model that relates LLCS activity across the region to continental and oceanic SACZ precipitation, a detailed account of spatial variability in the out-of-phase coupling between the SACZ and large-scale organized convection over the La Plata basin is provided. Enhanced precipitation in the continental SACZ is found to result in increased LLCS activity over northern, northeastern, and western sections of the La Plata basin, in association with poleward atmospheric moisture flux from the Amazon basin toward these regions, and a decrease in the probability of LLCS occurrence over the southeastern La Plata basin. Increased oceanic SACZ precipitation, however, was strongly related to reduced atmospheric moisture and decreased probability of LLCS occurrence over nearly the entire La Plata basin. These results suggest that continental SACZ activity and large-scale organized convection over the northern and eastern sections of the La Plata basin are closely tied to atmospheric moisture transport from the Amazon basin, while the warm coastal Brazil Current may also play an important role as an evaporative moisture source for LLCSs over the central and western La Plata basin.

  14. Non-Boussinesq Dissolution-Driven Convection in Porous Media

    Science.gov (United States)

    Amooie, M. A.; Soltanian, M. R.; Moortgat, J.

    2017-12-01

    Geological carbon dioxide (CO2) sequestration in deep saline aquifers has been increasingly recognized as a feasible technology to stabilize the atmospheric carbon concentrations and subsequently mitigate the global warming. Solubility trapping is one of the most effective storage mechanisms, which is associated initially with diffusion-driven slow dissolution of gaseous CO2 into the aqueous phase, followed by density-driven convective mixing of CO2 throughout the aquifer. The convection includes both diffusion and fast advective transport of the dissolved CO2. We study the fluid dynamics of CO2 convection in the underlying single aqueous-phase region. Two modeling approaches are employed to define the system: (i) a constant-concentration condition for CO2 in aqueous phase at the top boundary, and (ii) a sufficiently low, constant injection-rate for CO2 from top boundary. The latter allows for thermodynamically consistent evolution of the CO2 composition and the aqueous phase density against the rate at which the dissolved CO2 convects. Here we accurately model the full nonlinear phase behavior of brine-CO2 mixture in a confined domain altered by dissolution and compressibility, while relaxing the common Boussinesq approximation. We discover new flow regimes and present quantitative scaling relations for global characters of spreading, mixing, and dissolution flux in two- and three-dimensional media for the both model types. We then revisit the universal Sherwood-Rayleigh scaling that is under debate for porous media convective flows. Our findings confirm the sublinear scaling for the constant-concentration case, while reconciling the classical linear scaling for the constant-injection model problem. The results provide a detailed perspective into how the available modeling strategies affect the prediction ability for the total amount of CO2 dissolved in the long term within saline aquifers of different permeabilities.

  15. Comment on “A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition” by A. Aziz, Comm. Nonlinear Sci. Numer. Simul. 2009;14:1064-8

    Science.gov (United States)

    Magyari, Eugen

    2011-01-01

    In a recent paper published in this Journal the title problem has been investigated numerically. In the present paper the exact solution for the temperature boundary layer is given in terms of the solution of the flow problem (the Blasius problem) in a compact integral form.

  16. Heat Convection

    Science.gov (United States)

    Jiji, Latif M.

    Professor Jiji's broad teaching experience lead him to select the topics for this book to provide a firm foundation for convection heat transfer with emphasis on fundamentals, physical phenomena, and mathematical modelling of a wide range of engineering applications. Reflecting recent developments, this textbook is the first to include an introduction to the challenging topic of microchannels. The strong pedagogic potential of Heat Convection is enhanced by the follow ing ancillary materials: (1) Power Point lectures, (2) Problem Solutions, (3) Homework Facilitator, and, (4) Summary of Sections and Chapters.

  17. A Large-Eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer

    Science.gov (United States)

    Shamsoddin, Sina; Porté-Agel, Fernando

    2017-04-01

    In a future sustainable energy vision, in which diversified conversion of renewable energies is essential, vertical axis wind turbines (VAWTs) exhibit some potential as a reliable means of wind energy extraction alongside conventional horizontal axis wind turbines (HAWTs). Nevertheless, there is currently a relative shortage of scientific, academic and technical investigations of VAWTs as compared to HAWTs. Having this in mind, in this work, we aim to, for the first time, study the wake of a single VAWT placed in the atmospheric boundary layer using large-eddy simulation (LES). To do this, we use a previously-validated LES framework in which an actuator line model (ALM) is incorporated. First, for a typical three- and straight-bladed 1-MW VAWT design, the variation of the power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed by performing 117 simulations using LES-ALM. The optimum combination of solidity (defined as Nc/R, where N is the number of blades, c is the chord length and R is the rotor radius) and tip-speed ratio is found to be 0.18 and 4.5, respectively. Subsequently, the wake of a VAWT with these optimum specifications is thoroughly examined by showing different relevant mean and turbulence wake flow statistics. It is found that for this case, the maximum velocity deficit at the equator height of the turbine occurs 2.7 rotor diameters downstream of the center of the turbine, and only after that point, the wake starts to recover. Moreover, it is observed that the maximum turbulence intensity (TI) at the equator height of the turbine occurs at a distance of about 3.8 rotor diameters downstream of the turbine. As we move towards the upper and lower edges of the turbine, the maximum TI (at a certain height) increases, and its location moves relatively closer to the turbine. Furthermore, whereas both TI and turbulent momentum flux fields show clear vertical asymmetries (with larger magnitudes at the upper wake edge

  18. A Large-Eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer

    Directory of Open Access Journals (Sweden)

    Sina Shamsoddin

    2016-05-01

    Full Text Available In a future sustainable energy vision, in which diversified conversion of renewable energies is essential, vertical axis wind turbines (VAWTs exhibit some potential as a reliable means of wind energy extraction alongside conventional horizontal axis wind turbines (HAWTs. Nevertheless, there is currently a relative shortage of scientific, academic and technical investigations of VAWTs as compared to HAWTs. Having this in mind, in this work, we aim to, for the first time, study the wake of a single VAWT placed in the atmospheric boundary layer using large-eddy simulation (LES. To do this, we use a previously-validated LES framework in which an actuator line model (ALM is incorporated. First, for a typical three- and straight-bladed 1-MW VAWT design, the variation of the power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed by performing 117 simulations using LES-ALM. The optimum combination of solidity (defined as N c / R , where N is the number of blades, c is the chord length and R is the rotor radius and tip-speed ratio is found to be 0.18 and 4.5, respectively. Subsequently, the wake of a VAWT with these optimum specifications is thoroughly examined by showing different relevant mean and turbulence wake flow statistics. It is found that for this case, the maximum velocity deficit at the equator height of the turbine occurs 2.7 rotor diameters downstream of the center of the turbine, and only after that point, the wake starts to recover. Moreover, it is observed that the maximum turbulence intensity (TI at the equator height of the turbine occurs at a distance of about 3.8 rotor diameters downstream of the turbine. As we move towards the upper and lower edges of the turbine, the maximum TI (at a certain height increases, and its location moves relatively closer to the turbine. Furthermore, whereas both TI and turbulent momentum flux fields show clear vertical asymmetries (with larger magnitudes at the

  19. The study of the effects of sea-spray drops on the marine atmospheric boundary layer by direct numerical simulation

    Science.gov (United States)

    Druzhinin, O.; Troitskaya, Yu; Zilitinkevich, S.

    2018-01-01

    The detailed knowledge of turbulent exchange processes occurring in the atmospheric marine boundary layer are of primary importance for their correct parameterization in large-scale prognostic models. These processes are complicated, especially at sufficiently strong wind forcing conditions, by the presence of sea-spray drops which are torn off the crests of sufficiently steep surface waves by the wind gusts. Natural observations indicate that mass fraction of sea-spray drops increases with wind speed and their impact on the dynamics of the air in the vicinity of the sea surface can become quite significant. Field experiments, however, are limited by insufficient accuracy of the acquired data and are in general costly and difficult. Laboratory modeling presents another route to investigate the spray-mediated exchange processes in much more detail as compared to the natural experiments. However, laboratory measurements, contact as well as Particle Image Velocimetry (PIV) methods, also suffer from inability to resolve the dynamics of the near-surface air-flow, especially in the surface wave troughs. In this report, we present a first attempt to use Direct Numerical Simulation (DNS) as tool for investigation of the drops-mediated momentum, heat and moisture transfer in a turbulent, droplet-laden air flow over a wavy water surface. DNS is capable of resolving the details of the transfer processes and do not involve any closure assumptions typical of Large-Eddy and Reynolds Averaged Navier-Stokes (LES and RANS) simulations. Thus DNS provides a basis for improving parameterizations in LES and RANS closure models and further development of large-scale prognostic models. In particular, we discuss numerical results showing the details of the modification of the air flow velocity, temperature and relative humidity fields by multidisperse, evaporating drops. We use Eulerian-Lagrangian approach where the equations for the air-flow fields are solved in a Eulerian frame whereas

  20. Improvement of a mesoscale atmospheric dynamic model PHYSIC. Utilization of output from synoptic numerical prediction model for initial and boundary condition

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Yamazawa, Hiromi

    1995-03-01

    This report describes the improvement of the mesoscale atmospheric dynamic model which is a part of the atmospheric dispersion calculation model PHYSIC. To introduce large-scale meteorological changes into the mesoscale atmospheric dynamic model, it is necessary to make the initial and boundary conditions of the model by using GPV (Grid Point Value) which is the output of the numerical weather prediction model of JMA (Japan Meteorological Agency). Therefore, the program which preprocesses the GPV data to make a input file to PHYSIC was developed and the input process and the methods of spatial and temporal interpolation were improved to correspond to the file. Moreover, the methods of calculating the cloud amount and ground surface moisture from GPV data were developed and added to the model code. As the example of calculation by the improved model, the wind field simulations of a north-west monsoon in winter and a sea breeze in summer in the Tokai area were also presented. (author)

  1. Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara

    Directory of Open Access Journals (Sweden)

    J. H. Marsham

    2008-12-01

    Full Text Available Observations of the Saharan boundary layer, made during the GERBILS field campaign, show that mesoscale land surface temperature variations (which were related to albedo variations induced mesoscale circulations. With weak winds along the aircraft track, land surface temperature anomalies with scales of greater than 10 km are shown to significantly affect boundary-layer temperatures and winds. Such anomalies are expected to affect the vertical mixing of the dusty and weakly stratified Saharan Residual Layer (SRL. Mesoscale variations in winds are also shown to affect dust loadings in the boundary layer.

    Using the aircraft observations and data from the COSMO model, a region of local dust uplift, with strong along-track winds, was identified in one low-level flight. Large eddy model (LEM simulations based on this location showed linearly organised boundary-layer convection. Calculating dust uplift rates from the LEM wind field showed that the boundary-layer convection increased uplift by approximately 30%, compared with the uplift rate calculated neglecting the convection. The modelled effects of boundary-layer convection on uplift are shown to be larger when the boundary-layer wind is decreased, and most significant when the mean wind is below the threshold for dust uplift and the boundary-layer convection leads to uplift which would not otherwise occur.

    Both the coupling of albedo features to the atmosphere on the mesoscale, and the enhancement of dust uplift by boundary-layer convection are unrepresented in many climate models, but may have significant impacts on the vertical transport and uplift of desert dust. Mesoscale effects in particular tend to be difficult to parametrise.

  2. Networked Thermodynamic Boundary Layer Profiling with AERIs during the PECAN Field Campaign

    Science.gov (United States)

    Gero, P. J.; Turner, D. D.; Hackel, D.; Phillips, C.; Smith, N.; Wagner, T.

    2015-12-01

    The Plains Elevated Convection at Night (PECAN) campaign was a large-scale field experiment in the Great Plains region of the U.S. that was conducted in June-July 2015. Nocturnal storms provide the majority of the precipitation in the Great Plains, yet the initiation and evolution of nocturnal convection is not understood to the same level as daytime surface-based convection, and thus provides significant challenges for operational weather forecasters. PECAN's objectives were to study elevated nocturnal convection initiation and the lifecycle of nocturnal convection. Specific research areas that were studied were the evolution of mesoscale convective systems, the structure and evolution of nocturnal low-level jets, atmospheric bores, and elevated convection initiation. A broad range of fixed and mobile observing systems were deployed by several agencies and organizations in a domain centered around Kansas. The Atmospheric Emitted Radiance Interferometer (AERI) is a ground-based instrument that measures downwelling infrared radiance from the atmosphere. AERI observations can be used to obtain vertical profiles of tropospheric temperature and water vapor in the lowest 3 km of the troposphere, as well as measurements of the concentration of various trace gases and microphysical and optical properties of clouds and aerosols. A network of eight AERIs was deployed in the domain during PECAN, with six at fixed sites and two in mobile facilities. One of the goals of the campaign was a demonstration of the use of real-time high-temporal-resolution boundary layer profiles from the network of AERIs for characterizing the mesoscale environment and its evolution during the weather events sampled during PECAN. If successful, a future network could be implemented across CONUS and thermodynamic profiles in the boundary layer data assimilated to help improve numerical weather prediction. We present an overview of the AERI deployments, a summary of the technique used to retrieve

  3. Characteristics of aerosol vertical profiles in Tsukuba, Japan, and their impacts on the evolution of the atmospheric boundary layer

    Science.gov (United States)

    Kudo, Rei; Aoyagi, Toshinori; Nishizawa, Tomoaki

    2018-05-01

    Vertical profiles of the aerosol physical and optical properties, with a focus on seasonal means and on transport events, were investigated in Tsukuba, Japan, by a synergistic remote sensing method that uses lidar and sky radiometer data. The retrieved aerosol vertical profiles of the springtime mean and five transport events were input to our developed one-dimensional atmospheric model, and the impacts of the aerosol vertical profiles on the evolution of the atmospheric boundary layer (ABL) were studied by numerical sensitivity experiments. The characteristics of the aerosol vertical profiles in Tsukuba are as follows: (1) the retrieval results in the spring showed that aerosol optical thickness at 532 nm in the free atmosphere (FA) was 0.13, greater than 0.08 in the ABL owing to the frequent occurrence of transported aerosols in the FA. In other seasons, optical thickness in the FA was almost the same as that in the ABL. (2) The aerosol optical and physical properties in the ABL showed a dependency on the extinction coefficient. With an increase in the extinction coefficient from 0.00 to 0.24 km-1, the Ångström exponent increased from 0.0 to 2.0, the single-scattering albedo increased from 0.87 to 0.99, and the asymmetry factor decreased from 0.75 to 0.50. (3) The large variability in the physical and optical properties of aerosols in the FA were attributed to transport events, during which the transported aerosols consisted of varying amounts of dust and smoke particles depending on where they originated (China, Mongolia, or Russia). The results of the numerical sensitivity experiments using the aerosol vertical profiles of the springtime mean and five transport events in the FA are as follows: (1) numerical sensitivity experiments based on simulations conducted with and without aerosols showed that aerosols caused the net downward radiation and the sensible and latent heat fluxes at the surface to decrease. The decrease in temperature in the ABL (-0.2 to -0

  4. Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site

    Energy Technology Data Exchange (ETDEWEB)

    Pal, S., E-mail: sp5hd@Virginia.EDU; Lee, T.R.; Phelps, S.; De Wekker, S.F.J.

    2014-10-15

    The development of the atmospheric boundary layer (ABL) plays a key role in affecting the variability of atmospheric constituents such as aerosols, greenhouse gases, water vapor, and ozone. In general, the concentration of any tracers within the ABL varies due to the changes in the mixing volume (i.e. ABL depth). In this study, we investigate the impact on the near-surface aerosol concentration in a valley site of 1) the boundary layer dilution due to vertical mixing and 2) changes in the wind patterns. We use a data set obtained during a 10-day field campaign in which a number of remote sensing and in-situ instruments were deployed, including a ground-based aerosol lidar system for monitoring of the ABL top height (z{sub i}), a particle counter to determine the number concentration of aerosol particles at eight different size ranges, and tower-based standard meteorological instruments. Results show a clearly visible decreasing trend of the mean daytime z{sub i} from 2900 m AGL (above ground level) to 2200 m AGL during a three-day period which resulted in increased near-surface pollutant concentrations. An inverse relationship exists between the z{sub i} and the fine fraction (0.3–0.7 μm) accumulation mode particles (AMP) on some days due to the dilution effect in a well-mixed ABL. These days are characterized by the absence of daytime upvalley winds and the presence of northwesterly synoptic-driven winds. In contrast, on the days with an onset of an upvalley wind circulation after the morning transition, the wind-driven local transport mechanism outweighs the ABL-dilution effect in determining the variability of AMP concentration. The interplay between the ABL depth evolution and the onset of the upvalley wind during the morning transition period significantly governs the air quality in a valley and could be an important component in the studies of mountain meteorology and air quality. - Highlights: • Role of atmospheric boundary layer depth on particle

  5. A new first-order turbulence mixing model for the stable atmospheric boundary-layer: development and testing in large-eddy and single column models

    Science.gov (United States)

    Huang, J.; Bou-Zeid, E.; Golaz, J.

    2011-12-01

    Parameterization of the stably-stratified atmospheric boundary-layer is of crucial importance to different aspects of numerical weather prediction at regional scales and climate modeling at global scales, such as land-surface temperature forecasts, fog and frost prediction, and polar climate. It is well-known that most operational climate models require excessive turbulence mixing of the stable boundary-layer to prevent decoupling of the atmospheric component from the land component under strong stability, but the performance of such a model is unlikely to be satisfactory under weakly and moderately stable conditions. In this study we develop and test a general turbulence mixing model of the stable boundary-layer which works under different stabilities and for steady as well as unsteady conditions. A-priori large-eddy simulation (LES) tests are presented to motivate and verify the new parameterization. Subsequently, an assessment of this model using the GFDL single-column model (SCM) is performed. Idealized test cases including continuously varying stability, as well as stability discontinuity, are used to test the new SCM against LES results. A good match of mean and flux profiles is found when the new parameterization is used, while other traditional first-order turbulence models using the concept of stability function perform poorly. SCM spatial resolution is also found to have little impact on the performance of the new turbulence closure, but temporal resolution is important and a numerical stability criterion based on the model time step is presented.

  6. Precipitating clouds observed by 1.3-GHz boundary layer radars in equatorial Indonesia

    Directory of Open Access Journals (Sweden)

    F. Renggono

    2001-08-01

    Full Text Available Temporal variations of precipitating clouds in equatorial Indonesia have been studied based on observations with 1357.5 MHz boundary layer radars at Serpong (6.4° S, 106.7° E near Jakarta and Bukittinggi (0.2° S, 100.3° E in West Sumatera. We have classified precipitating clouds into four types: stratiform, mixed stratiform-convective, deep convective, and shallow convective clouds, using the Williams et al. (1995 method. Diurnal variations of the occurrence of precipitating clouds at Serpong and Bukittinggi have showed the same characteristics, namely, that the precipitating clouds primarily occur in the afternoon and the peak of the stratiform cloud comes after the peak of the deep convective cloud. The time delay between the peaks of stratiform and deep convective clouds corresponds to the life cycle of the mesoscale convective system. The precipitating clouds which occur in the early morning at Serpong are dominated by stratiform cloud. Concerning seasonal variations of the precipitating clouds, we have found that the occurrence of the stratiform cloud is most frequent in the rainy season, while the occurrence of the deep convective cloud is predominant in the dry season.Key words. Meteorology and atmospheric dynamics (convective processes; precipitation; tropical meteorology

  7. probing the atmosphere with high power, high resolution radars

    Science.gov (United States)

    Hardy, K. R.; Katz, I.

    1969-01-01

    Observations of radar echoes from the clear atmosphere are presented and the scattering mechanisms responsible for the two basic types of clear-air echoes are discussed. The commonly observed dot echo originates from a point in space and usually shows little variation in echo intensity over periods of about 0.1 second. The second type of clear-air radar echo appears diffuse in space, and signal intensities vary considerably over periods of less than 0.1 second. The echoes often occur in thin horizontal layers or as boundaries of convective activity; these are characterized by sharp gradients of refractive index. Some features of clear-air atmospheric structures as observed with radar are presented. These structures include thin stable inversions, convective thermals, Benard convection cells, breaking gravity waves, and high tropospheric layers which are sufficiently turbulent to affect aircraft.

  8. Parameterization of convective transport in the boundary layer and its impact on the representation of the diurnal cycle of wind and dust emissions

    Directory of Open Access Journals (Sweden)

    F. Hourdin

    2015-06-01

    boundary layer by a mass flux scheme leads to realistic representation of the diurnal cycle of wind in spring, with a maximum near-surface wind in the morning. This maximum occurs when the thermal plumes reach the low-level jet that forms during the night at a few hundred meters above surface. The horizontal momentum in the jet is transported downward to the surface by compensating subsidence around thermal plumes in typically less than 1 h. This leads to a rapid increase of wind speed at surface and therefore of dust emissions owing to the strong nonlinearity of emission laws. The numerical experiments are performed with a zoomed and nudged configuration of the LMDZ general circulation model coupled to the emission module of the CHIMERE chemistry transport model, in which winds are relaxed toward that of the ERA-Interim reanalyses. The new set of parameterizations leads to a strong improvement of the representation of the diurnal cycle of wind when compared to a previous version of LMDZ as well as to the reanalyses used for nudging themselves. It also generates dust emissions in better agreement with current estimates, but the aerosol optical thickness is still significantly underestimated.

  9. Convective overshoot at the solar tachocline

    Science.gov (United States)

    Brown, Benjamin; Oishi, Jeffrey S.; Anders, Evan H.; Lecoanet, Daniel; Burns, Keaton; Vasil, Geoffrey M.

    2017-08-01

    At the base of the solar convection zone lies the solar tachocline. This internal interface is where motions from the unstable convection zone above overshoot and penetrate downward into the stiffly stable radiative zone below, driving gravity waves, mixing, and possibly pumping and storing magnetic fields. Here we study the dynamics of convective overshoot across very stiff interfaces with some properties similar to the internal boundary layer within the Sun. We use the Dedalus pseudospectral framework and study fully compressible dynamics at moderate to high Peclet number and low Mach number, probing a regime where turbulent transport is important, and where the compressible dynamics are similar to those of convective motions in the deep solar interior. We find that the depth of convective overshoot is well described by a simple buoyancy equilibration model, and we consider implications for dynamics at the solar tachocline and for the storage of magnetic fields there by overshooting convection.

  10. First simultaneous space measurements of atmospheric pollutants in the boundary layer from IASI: A case study in the North China Plain

    International Nuclear Information System (INIS)

    Boynard, Anne; Safieddine, Sarah; Oudot, Charlotte; Hadji-Lazaro, Juliette; Clerbaux, Cathy; Clarisse, Lieven; Bauduin, Sophie; Hurtmans, Daniel; Coheur, Pierre-Francois; Pommier, Matthieu; Van Damme, Martin

    2014-01-01

    In this paper we investigate a severe pollution episode that occurred in Beijing, Tianjin, and the Hebei province in January 2013. The episode was caused by the combination of anthropogenic emissions and a high-pressure system that trapped pollutants in the boundary layer. Using IASI (Infrared Atmospheric Sounding Interferometer) satellite measurements, high concentrations of key trace gases such as carbon monoxide (CO), sulfur dioxide (SO 2 ), and ammonia (NH 3 ) along with ammonium sulfate aerosol ((NH 4 ) 2 SO 4 ) are found. We show that IASI is able to detect boundary layer pollution in case of large negative thermal contrast combined with high levels of pollution. Our findings demonstrate that anthropogenic key pollutants, such as CO and SO 2 , can be monitored by IASI in the North China Plain during wintertime in support of air quality evaluation and management. (authors)

  11. Mean residence times of atmospheric aerosols in the boundary layer as determined from 210Bi/210Pb activity ratios

    International Nuclear Information System (INIS)

    Papastefanou, C.; Bondietti, E.A.

    1991-01-01

    Concentrations of radioactive 210 Pb and 210 Bi were measured in surface air after chemical separation and radiochemical analysis in an annual cycle and were used to determine aerosol residence times in the lower atmosphere. It was concluded that residence times of 8 days would apply to aerosols of 0.3 μm activity median aerodynamic diameter (AMAD). Cascade impactor data are also presented in relating the residence times and the AMAD of atmospheric aerosols. (author)

  12. The effect of unsteady and baroclinic forcing on predicted wind profiles in Large Eddy Simulations: Two case studies of the daytime atmospheric boundary layer

    DEFF Research Database (Denmark)

    Pedersen, Jesper Grønnegaard; Kelly, Mark C.; Gryning, Sven-Erik

    2013-01-01

    . The applied domain-scale pressure gradient and its height- and time-dependence are estimated from LIDAR measurements of the wind speed above the atmospheric boundary layer in the Høvsøre case, and from radio soundings and a network of ground-based pressure sensors in the Hamburg case. In the two case studies......-scale subsidence and advection, tend to reduce agreement with measurements, relative to the Høvsøre case. The Hamburg case illustrates that measurements of the surface pressure gradient and relatively infrequent radio soundings alone are not sufficient for accurate estimation of a height- and time...

  13. Atmospheric boundary layer CO2 remote sensing with a direct detection LIDAR instrument based on a widely tunable optical parametric source.

    Science.gov (United States)

    Cadiou, Erwan; Mammez, Dominique; Dherbecourt, Jean-Baptiste; Gorju, Guillaume; Pelon, Jacques; Melkonian, Jean-Michel; Godard, Antoine; Raybaut, Myriam

    2017-10-15

    We report on the capability of a direct detection differential absorption lidar (DIAL) for range resolved and integrated path (IPDIAL) remote sensing of CO 2 in the atmospheric boundary layer (ABL). The laser source is an amplified nested cavity optical parametric oscillator (NesCOPO) emitting approximately 8 mJ at the two measurement wavelengths selected near 2050 nm. Direct detection atmospheric measurements are taken from the ground using a 30 Hz frequency switching between emitted wavelengths. Results show that comparable precision measurements are achieved in DIAL and IPDIAL modes (not better than a few ppm) on high SNR targets such as near range ABL aerosol and clouds, respectively. Instrumental limitations are analyzed and degradation due to cloud scattering variability is discussed to explain observed DIAL and IPDIAL limitations.

  14. Recent Advances in Modeling of the Atmospheric Boundary Layer and Land Surface in the Coupled WRF-CMAQ Model

    Science.gov (United States)

    Advances in the land surface model (LSM) and planetary boundary layer (PBL) components of the WRF-CMAQ coupled meteorology and air quality modeling system are described. The aim of these modifications was primarily to improve the modeling of ground level concentrations of trace c...

  15. A thermodynamically general theory for convective vortices

    Science.gov (United States)

    Renno, Nilton O.

    2008-08-01

    Convective vortices are common features of atmospheres that absorb lower-entropy-energy at higher temperatures than they reject higher-entropy-energy to space. These vortices range from small to large-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective vortices is important to our understanding of some of the basic features of planetary atmospheres. The heat engine framework is a useful tool for studying convective vortices. However, current theories assume that convective vortices are reversible heat engines. Since there are questions about how reversible real atmospheric heat engines are, their usefulness for studying real atmospheric vortices is somewhat controversial. In order to reduce this problem, a theory for convective vortices that includes irreversible processes is proposed. The paper's main result is that the proposed theory provides an expression for the pressure drop along streamlines that includes the effects of irreversible processes. It is shown that a simplified version of this expression is a generalization of Bernoulli's equation to convective circulations. It is speculated that the proposed theory not only explains the intensity, but also sheds light on other basic features of convective vortices such as their physical appearance.

  16. Turbulent fluxes in atmospheric boundary layer of a semi-arid region of N-E Brazil

    International Nuclear Information System (INIS)

    Patel, S. R.; De Fatima Correia, M.; Da Silva, E. M.; Costa, A. M. N.

    2004-01-01

    The preliminary results of the Experiment 'Experimento de Microfisica de Nuvens-EmfiN' (Experiment of microphysics of clouds) conducted by Universidade Estatual de Ceara-UECE at Fortaleza, a semi-arid region of N-E Brazil, are presented. The mean kinematic fluxes of sensible heat and water vapor of the surface boundary layer are estimated by the thermodynamic energy and water vapor conservation equations; and by the Monin-Obukhov similarity theory. The results of the two methods are in good agreement. It is shown that in the absence of sophisticated fast-response turbulence instrumentation and wind data the conservations equations methods are better option for estimation of heat and water vapor fluxes. Further they are useful to study the turbulent fluxes in inhomogeneous condition in time like early morning and late evening boundary layer transitions

  17. Effects of Blade Boundary Layer Transition and Daytime Atmospheric Turbulence on Wind Turbine Performance Analyzed with Blade-Resolved Simulation and Field Data

    Science.gov (United States)

    Nandi, Tarak Nath

    Relevant to utility scale wind turbine functioning and reliability, the present work focuses on enhancing our understanding of wind turbine responses from interactions between energy-dominant daytime atmospheric turbulence eddies and rotating blades of a GE 1.5 MW wind turbine using a unique data set from a GE field experiment and computer simulations at two levels of fidelity. Previous studies have shown that the stability state of the lower troposphere has a major impact on the coherent structure of the turbulence eddies, with corresponding differences in wind turbine loading response. In this study, time-resolved aerodynamic data measured locally at the leading edge and trailing edge of three outer blade sections on a GE 1.5 MW wind turbine blade and high-frequency SCADA generator power data from a daytime field campaign are combined with computer simulations that mimic the GE wind turbine within a numerically generated atmospheric boundary layer (ABL) flow field which is a close approximation of the atmospheric turbulence experienced by the wind turbine in the field campaign. By combining the experimental and numerical data sets, this study describes the time-response characteristics of the local loadings on the blade sections in response to nonsteady nonuniform energetic atmospheric turbulence eddies within a daytime ABL which have spatial scale commensurate with that of the turbine blade length. This study is the first of its kind where actuator line and blade boundary layer resolved CFD studies of a wind turbine field campaign are performed with the motivation to validate the numerical predictions with the experimental data set, and emphasis is given on understanding the influence of the laminar to turbulent transition process on the blade loadings. The experimental and actuator line method data sets identify three important response time scales quantified at the blade location: advective passage of energy-dominant eddies (≈25 - 50 s), blade rotation (1P

  18. Vertical variations in the turbulent structure of the surface boundary layer over vineyards under unstable atmospheric conditions

    Science.gov (United States)

    Due to their highly-structured canopy, turbulent characteristics within and above vineyards, may not conform to those typically exhibited by other agricultural and natural ecosystems. Using data collected as a part of the Grape Remote sensing and Atmospheric Profiling and Evapotranspiration Experime...

  19. First simultaneous space measurements of atmospheric pollutants in the boundary layer from IASI: a case study in the North China Plain

    Science.gov (United States)

    Boynard, Anne; Clerbaux, Cathy; Clarisse, Lieven; Safieddine, Sarah; Pommier, Matthieu; Van Damme, Martin; Bauduin, Sophie; Oudot, Charlotte; Hadji-Lazaro, Juliette; Hurtmans, Daniel; Coheur, Pierre-François

    2014-05-01

    An extremely severe and persistent smog episode occurred in January 2013 over China. The levels of air pollution have been dangerously high, reaching 40 times recommended safety levels and have affected health of millions of people. China faced one of the worst periods of air quality in recent history and drew worldwide attention. This pollution episode was caused by the combination of anthropogenic emissions and stable meteorological conditions (absence of wind and temperature inversion) that trapped pollutants in the boundary layer. To characterize this episode, we used the IASI (Infrared Atmospheric Sounding Interferometer) instrument onboard the MetOp-A platform. IASI observations show high concentrations of key trace gases such as carbon monoxide (CO), sulfur dioxide (SO2) and ammonia (NH3) along with ammonium sulfate aerosol. We show that IASI is able to detect boundary layer pollution in case of large negative thermal contrast combined with high levels of pollution. Our findings demonstrate the ability of thermal infrared instrument such as IASI to monitor boundary layer pollutants, which can support air quality evaluation and management.

  20. Using the CIFIST grid of CO5BOLD 3D model atmospheres to study the effects of stellar granulation on photometric colours. II. The role of convection across the H-R diagram

    Science.gov (United States)

    Kučinskas, A.; Klevas, J.; Ludwig, H.-G.; Bonifacio, P.; Steffen, M.; Caffau, E.

    2018-05-01

    Aims: We studied the influence of convection on the spectral energy distributions (SEDs), photometric magnitudes, and colour indices of different types of stars across the H-R diagram. Methods: The 3D hydrodynamical CO5BOLD, averaged ⟨3D⟩, and 1D hydrostatic LHD model atmospheres were used to compute SEDs of stars on the main sequence (MS), main sequence turn-off (TO), subgiant branch (SGB), and red giant branch (RGB), in each case at two different effective temperatures and two metallicities, [M/H] = 0.0 and - 2.0. Using the obtained SEDs, we calculated photometric magnitudes and colour indices in the broad-band Johnson-Cousins UBVRI and 2MASS JHKs, and the medium-band Strömgren uvby photometric systems. Results: The 3D-1D differences in photometric magnitudes and colour indices are small in both photometric systems and typically do not exceed ± 0.03 mag. Only in the case of the coolest giants located on the upper RGB are the differences in the U and u bands able reach ≈-0.2 mag at [M/H] = 0.0 and ≈-0.1 mag at [M/H] = -2.0. Generally, the 3D-1D differences are largest in the blue-UV part of the spectrum and decrease towards longer wavelengths. They are also sensitive to the effective temperature and are significantly smaller in hotter stars. Metallicity also plays a role and leads to slightly larger 3D-1D differences at [M/H] = 0.0. All these patterns are caused by a complex interplay between the radiation field, opacities, and horizontal temperature fluctuations that occur due to convective motions in stellar atmospheres. Although small, the 3D-1D differences in the magnitudes and colour indices are nevertheless comparable to or larger than typical photometric uncertainties and may therefore cause non-negligible systematic differences in the estimated effective temperatures.

  1. Southern Ocean Convection and tropical telleconnections

    Science.gov (United States)

    Marinov, I.; Cabre, A.; Gnanadesikan, A.

    2014-12-01

    We show that Southern Ocean (SO) temperatures in the latest generation of Earth System Models exhibit two major modes of variation, one driven by deep convection, the other by tropical variability. We perform a CMIP5 model intercomparison to understand why different climate models represent SO variability so differently in long, control simulations. We show that multiyear variability in Southern Ocean sea surface temperatures (SSTs) can in turn influence oceanic and atmospheric conditions in the tropics on short (atmospheric) time-scales. We argue that the strength and pattern of SO-tropical teleconnections depends on the intensity of SO deep convection. Periodic convection in the SO is a feature of most CMIP5 models under preindustrial forcing (deLavergne et al., 2014). Models show a wide distribution in the spatial extent, periodicity and intensity of their SO convection, with some models convecting most of the time, and some showing very little convection. In a highly convective coupled model, we find that multidecadal variability in SO and global SSTs, as well as SO heat storage are driven by Weddell Sea convective variability, with convective decades relatively warm due to the heat released from the deep southern ocean and non-convective decades cold due to the subsurface storage of heat. Furthermore, pulses of SO convection drive SST and sea ice variations, influencing absorbed shortwave and emitted longwave radiation, wind, cloud and precipitation patterns, with climatic implications for the low latitudes via fast atmospheric teleconnections. We suggest that these high-low latitude teleconnection mechanisms are relevant for understanding hiatus decades. Additionally, Southern Ocean deep convection varied significantly during past, natural climate changes such as during the last deglaciation. Weddell Sea open convection was recently weakened, likely as a consequence of anthropogenic forcing and the resulting surface freshening. Our study opens up the

  2. A Parameterization for Land-Atmosphere-Cloud Exchange (PLACE): Documentation and Testing of a Detailed Process Model of the Partly Cloudy Boundary Layer over Heterogeneous Land.

    Science.gov (United States)

    Wetzel, Peter J.; Boone, Aaron

    1995-07-01

    This paper presents a general description of, and demonstrates the capabilities of, the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE). The PLACE model is a detailed process model of the partly cloudy atmospheric boundary layer and underlying heterogeneous land surfaces. In its development, particular attention has been given to three of the model's subprocesses: the prediction of boundary layer cloud amount, the treatment of surface and soil subgrid heterogeneity, and the liquid water budget. The model includes a three-parameter nonprecipitating cumulus model that feeds back to the surface and boundary layer through radiative effects. Surface heterogeneity in the PLACE model is treated both statistically and by resolving explicit subgrid patches. The model maintains a vertical column of liquid water that is divided into seven reservoirs, from the surface interception store down to bedrock.Five single-day demonstration cases are presented, in which the PLACE model was initialized, run, and compared to field observations from four diverse sites. The model is shown to predict cloud amount well in these while predicting the surface fluxes with similar accuracy. A slight tendency to underpredict boundary layer depth is noted in all cases.Sensitivity tests were also run using anemometer-level forcing provided by the Project for Inter-comparison of Land-surface Parameterization Schemes (PILPS). The purpose is to demonstrate the relative impact of heterogeneity of surface parameters on the predicted annual mean surface fluxes. Significant sensitivity to subgrid variability of certain parameters is demonstrated, particularly to parameters related to soil moisture. A major result is that the PLACE-computed impact of total (homogeneous) deforestation of a rain forest is comparable in magnitude to the effect of imposing heterogeneity of certain surface variables, and is similarly comparable to the overall variance among the other PILPS participant models. Were

  3. Modeling the Dynamics of the Atmospheric Boundary Layer Over the Antarctic Plateau With a General Circulation Model

    Science.gov (United States)

    Vignon, Etienne; Hourdin, Frédéric; Genthon, Christophe; Van de Wiel, Bas J. H.; Gallée, Hubert; Madeleine, Jean-Baptiste; Beaumet, Julien

    2018-01-01

    Observations evidence extremely stable boundary layers (SBL) over the Antarctic Plateau and sharp regime transitions between