WorldWideScience

Sample records for atmospheric co2 emissions

  1. Atmospheric verification of anthropogenic CO2 emission trends

    Science.gov (United States)

    Francey, Roger J.; Trudinger, Cathy M.; van der Schoot, Marcel; Law, Rachel M.; Krummel, Paul B.; Langenfelds, Ray L.; Paul Steele, L.; Allison, Colin E.; Stavert, Ann R.; Andres, Robert J.; Rödenbeck, Christian

    2013-05-01

    International efforts to limit global warming and ocean acidification aim to slow the growth of atmospheric CO2, guided primarily by national and industry estimates of production and consumption of fossil fuels. Atmospheric verification of emissions is vital but present global inversion methods are inadequate for this purpose. We demonstrate a clear response in atmospheric CO2 coinciding with a sharp 2010 increase in Asian emissions but show persisting slowing mean CO2 growth from 2002/03. Growth and inter-hemispheric concentration difference during the onset and recovery of the Global Financial Crisis support a previous speculation that the reported 2000-2008 emissions surge is an artefact, most simply explained by a cumulative underestimation (~ 9PgC) of 1994-2007 emissions; in this case, post-2000 emissions would track mid-range of Intergovernmental Panel on Climate Change emission scenarios. An alternative explanation requires changes in the northern terrestrial land sink that offset anthropogenic emission changes. We suggest atmospheric methods to help resolve this ambiguity.

  2. Scaling laws for perturbations in the ocean–atmosphere system following large CO2 emissions

    OpenAIRE

    Towles, N.; Olson, P.; Gnanadesikan, A.

    2015-01-01

    Scaling relationships are derived for the perturbations to atmosphere and ocean variables from large transient CO2 emissions. Using the carbon cycle model LOSCAR (Zeebe et al., 2009; Zeebe, 2012b) we calculate perturbations to atmosphere temperature and total carbon, ocean temperature, total ocean carbon, pH, and alkalinity, marine sediment carbon, plus carbon-13 isotope anomalies in the ocean and atmosphere resulting from idealized CO2 emission events. The...

  3. Outsourcing CO2 Emissions

    Science.gov (United States)

    Davis, S. J.; Caldeira, K. G.

    2009-12-01

    CO2 emissions from the burning of fossil fuels are the primary cause of global warming. Much attention has been focused on the CO2 directly emitted by each country, but relatively little attention has been paid to the amount of emissions associated with consumption of goods and services in each country. This consumption-based emissions inventory differs from the production-based inventory because of imports and exports of goods and services that, either directly or indirectly, involved CO2 emissions. Using the latest available data and reasonable assumptions regarding trans-shipment of embodied carbon through third-party countries, we developed a global consumption-based CO2 emissions inventory and have calculated associated consumption-based energy and carbon intensities. We find that, in 2004, 24% of CO2 emissions are effectively outsourced to other countries, with much of the developed world outsourcing CO2 emissions to emerging markets, principally China. Some wealthy countries, including Switzerland and Sweden, outsource over half of their consumption-based emissions, with many northern Europeans outsourcing more than three tons of emissions per person per year. The United States is both a big importer and exporter of emissions embodied in trade, outsourcing >2.6 tons of CO2 per person and at the same time as >2.0 tons of CO2 per person are outsourced to the United States. These large flows indicate that CO2 emissions embodied in trade must be taken into consideration when considering responsibility for increasing atmospheric greenhouse gas concentrations.

  4. Potential of European 14CO2 observation network to estimate the fossil fuel CO2 emissions via atmospheric inversions

    Science.gov (United States)

    Wang, Yilong; Broquet, Grégoire; Ciais, Philippe; Chevallier, Frédéric; Vogel, Felix; Wu, Lin; Yin, Yi; Wang, Rong; Tao, Shu

    2018-03-01

    Combining measurements of atmospheric CO2 and its radiocarbon (14CO2) fraction and transport modeling in atmospheric inversions offers a way to derive improved estimates of CO2 emitted from fossil fuel (FFCO2). In this study, we solve for the monthly FFCO2 emission budgets at regional scale (i.e., the size of a medium-sized country in Europe) and investigate the performance of different observation networks and sampling strategies across Europe. The inversion system is built on the LMDZv4 global transport model at 3.75° × 2.5° resolution. We conduct Observing System Simulation Experiments (OSSEs) and use two types of diagnostics to assess the potential of the observation and inverse modeling frameworks. The first one relies on the theoretical computation of the uncertainty in the estimate of emissions from the inversion, known as posterior uncertainty, and on the uncertainty reduction compared to the uncertainty in the inventories of these emissions, which are used as a prior knowledge by the inversion (called prior uncertainty). The second one is based on comparisons of prior and posterior estimates of the emission to synthetic true emissions when these true emissions are used beforehand to generate the synthetic fossil fuel CO2 mixing ratio measurements that are assimilated in the inversion. With 17 stations currently measuring 14CO2 across Europe using 2-week integrated sampling, the uncertainty reduction for monthly FFCO2 emissions in a country where the network is rather dense like Germany, is larger than 30 %. With the 43 14CO2 measurement stations planned in Europe, the uncertainty reduction for monthly FFCO2 emissions is increased for the UK, France, Italy, eastern Europe and the Balkans, depending on the configuration of prior uncertainty. Further increasing the number of stations or the sampling frequency improves the uncertainty reduction (up to 40 to 70 %) in high emitting regions, but the performance of the inversion remains limited over low

  5. Potential of European 14CO2 observation network to estimate the fossil fuel CO2 emissions via atmospheric inversions

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2018-03-01

    Full Text Available Combining measurements of atmospheric CO2 and its radiocarbon (14CO2 fraction and transport modeling in atmospheric inversions offers a way to derive improved estimates of CO2 emitted from fossil fuel (FFCO2. In this study, we solve for the monthly FFCO2 emission budgets at regional scale (i.e., the size of a medium-sized country in Europe and investigate the performance of different observation networks and sampling strategies across Europe. The inversion system is built on the LMDZv4 global transport model at 3.75°  ×  2.5° resolution. We conduct Observing System Simulation Experiments (OSSEs and use two types of diagnostics to assess the potential of the observation and inverse modeling frameworks. The first one relies on the theoretical computation of the uncertainty in the estimate of emissions from the inversion, known as posterior uncertainty, and on the uncertainty reduction compared to the uncertainty in the inventories of these emissions, which are used as a prior knowledge by the inversion (called prior uncertainty. The second one is based on comparisons of prior and posterior estimates of the emission to synthetic true emissions when these true emissions are used beforehand to generate the synthetic fossil fuel CO2 mixing ratio measurements that are assimilated in the inversion. With 17 stations currently measuring 14CO2 across Europe using 2-week integrated sampling, the uncertainty reduction for monthly FFCO2 emissions in a country where the network is rather dense like Germany, is larger than 30 %. With the 43 14CO2 measurement stations planned in Europe, the uncertainty reduction for monthly FFCO2 emissions is increased for the UK, France, Italy, eastern Europe and the Balkans, depending on the configuration of prior uncertainty. Further increasing the number of stations or the sampling frequency improves the uncertainty reduction (up to 40 to 70 % in high emitting regions, but the performance of the inversion

  6. A Pilot Study to Evaluate California's Fossil Fuel CO2 Emissions Using Atmospheric Observations

    Science.gov (United States)

    Graven, H. D.; Fischer, M. L.; Lueker, T.; Guilderson, T.; Brophy, K. J.; Keeling, R. F.; Arnold, T.; Bambha, R.; Callahan, W.; Campbell, J. E.; Cui, X.; Frankenberg, C.; Hsu, Y.; Iraci, L. T.; Jeong, S.; Kim, J.; LaFranchi, B. W.; Lehman, S.; Manning, A.; Michelsen, H. A.; Miller, J. B.; Newman, S.; Paplawsky, B.; Parazoo, N.; Sloop, C.; Walker, S.; Whelan, M.; Wunch, D.

    2016-12-01

    Atmospheric CO2 concentration is influenced by human activities and by natural exchanges. Studies of CO2 fluxes using atmospheric CO2 measurements typically focus on natural exchanges and assume that CO2 emissions by fossil fuel combustion and cement production are well-known from inventory estimates. However, atmospheric observation-based or "top-down" studies could potentially provide independent methods for evaluating fossil fuel CO2 emissions, in support of policies to reduce greenhouse gas emissions and mitigate climate change. Observation-based estimates of fossil fuel-derived CO2 may also improve estimates of biospheric CO2 exchange, which could help to characterize carbon storage and climate change mitigation by terrestrial ecosystems. We have been developing a top-down framework for estimating fossil fuel CO2 emissions in California that uses atmospheric observations and modeling. California is implementing the "Global Warming Solutions Act of 2006" to reduce total greenhouse gas emissions to 1990 levels by 2020, and it has a diverse array of ecosystems that may serve as CO2 sources or sinks. We performed three month-long field campaigns in different seasons in 2014-15 to collect flask samples from a state-wide network of 10 towers. Using measurements of radiocarbon in CO2, we estimate the fossil fuel-derived CO2 present in the flask samples, relative to marine background air observed at coastal sites. Radiocarbon (14C) is not present in fossil fuel-derived CO2 because of radioactive decay over millions of years, so fossil fuel emissions cause a measurable decrease in the 14C/C ratio in atmospheric CO2. We compare the observations of fossil fuel-derived CO2 to simulations based on atmospheric modeling and published fossil fuel flux estimates, and adjust the fossil fuel flux estimates in a statistical inversion that takes account of several uncertainties. We will present the results of the top-down technique to estimate fossil fuel emissions for our field

  7. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO2 concentration data

    International Nuclear Information System (INIS)

    Ogle, Stephen M; Davis, Kenneth; Lauvaux, Thomas; Miles, Natasha L; Richardson, Scott; Schuh, Andrew; Cooley, Dan; Breidt, F Jay; West, Tristram O; Heath, Linda S; Smith, James E; McCarty, Jessica L; Gurney, Kevin R; Tans, Pieter; Denning, A Scott

    2015-01-01

    Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country’s contribution to GHG concentrations in the atmosphere. Furthermore, verifying biogenic fluxes provides a check on estimated emissions associated with managing lands for carbon sequestration and other activities, which often have large uncertainties. We report here on the challenges and results associated with a case study using atmospheric measurements of CO 2 concentrations and inverse modeling to verify nationally-reported biogenic CO 2 emissions. The biogenic CO 2 emissions inventory was compiled for the Mid-Continent region of United States based on methods and data used by the US government for reporting to the UNFCCC, along with additional sources and sinks to produce a full carbon balance. The biogenic emissions inventory produced an estimated flux of −408 ± 136 Tg CO 2 for the entire study region, which was not statistically different from the biogenic flux of −478 ± 146 Tg CO 2 that was estimated using the atmospheric CO 2 concentration data. At sub-regional scales, the spatial density of atmospheric observations did not appear sufficient to verify emissions in general. However, a difference between the inventory and inversion results was found in one isolated area of West-central Wisconsin. This part of the region is dominated by forestlands, suggesting that further investigation may be warranted into the forest C stock or harvested wood product data from this portion of the study area. The results suggest that observations of atmospheric CO 2 concentration data and inverse modeling could be used to verify biogenic emissions, and provide more confidence in biogenic GHG emissions reporting to the UNFCCC. (letter)

  8. Monoterpene and herbivore-induced emissions from cabbage plants grown at elevated atmospheric CO 2 concentration

    Science.gov (United States)

    Vuorinen, Terhi; Reddy, G. V. P.; Nerg, Anne-Marja; Holopainen, Jarmo K.

    The warming of the lower atmosphere due to elevating CO 2 concentration may increase volatile organic compound (VOC) emissions from plants. Also, direct effects of elevated CO 2 on plant secondary metabolism are expected to lead to increased VOC emissions due to allocation of excess carbon on secondary metabolites, of which many are volatile. We investigated how growing at doubled ambient CO 2 concentration affects emissions from cabbage plants ( Brassica oleracea subsp. capitata) damaged by either the leaf-chewing larvae of crucifer specialist diamondback moth ( Plutella xylostella L.) or generalist Egyptian cotton leafworm ( Spodoptera littoralis (Boisduval)). The emission from cabbage cv. Lennox grown in both CO 2 concentrations, consisted mainly of monoterpenes (sabinene, limonene, α-thujene, 1,8-cineole, β-pinene, myrcene, α-pinene and γ-terpinene). ( Z)-3-Hexenyl acetate, sesquiterpene ( E, E)- α-farnesene and homoterpene ( E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) were emitted mainly from herbivore-damaged plants. Plants grown at 720 μmol mol -1 of CO 2 had significantly lower total monoterpene emissions per shoot dry weight than plants grown at 360 μmol mol -1 of CO 2, while damage by both herbivores significantly increased the total monoterpene emissions compared to intact plants. ( Z)-3-Hexenyl acetate, ( E, E)- α-farnesene and DMNT emissions per shoot dry weight were not affected by the growth at elevated CO 2. The emission of DMNT was significantly enhanced from plants damaged by the specialist P. xylostella compared to the plants damaged by the generalist S. littoralis. The relative proportions of total monoterpenes and total herbivore-induced compounds of total VOCs did not change due to the growth at elevated CO 2, while insect damage increased significantly the proportion of induced compounds. The results suggest that VOC emissions that are induced by the leaf-chewing herbivores will not be influenced by elevated CO 2 concentration.

  9. Experimental and Numerical Modelling of CO2 Atmospheric Dispersion in Hazardous Gas Emission Sites.

    Science.gov (United States)

    Gasparini, A.; sainz Gracia, A. S.; Grandia, F.; Bruno, J.

    2015-12-01

    Under stable atmospheric conditions and/or in presence of topographic depressions, CO2 concentrations can reach high values resulting in lethal effect to living organisms. The distribution of denser than air gases released from the underground is governed by gravity, turbulence and dispersion. Once emitted, the gas distribution is initially driven by buoyancy and a gas cloud accumulates on the ground (gravitational phase); with time the density gradient becomes less important due to dispersion or mixing and gas distribution is mainly governed by wind and atmospheric turbulence (passive dispersion phase). Natural analogues provide evidences of the impact of CO2 leakage. Dangerous CO2 concentration in atmosphere related to underground emission have been occasionally reported although the conditions favouring the persistence of such a concentration are barely studied.In this work, the dynamics of CO2 in the atmosphere after ground emission is assessed to quantify their potential risk. Two approaches have been followed: (1) direct measurement of air concentration in a natural emission site, where formation of a "CO2 lake" is common and (2) numerical atmospheric modelling. Two sites with different morphology were studied: (a) the Cañada Real site, a flat terrain in the Volcanic Field of Campo de Calatrava (Spain); (b) the Solforata di Pomezia site, a rough terrain in the Alban Hills Volcanic Region (Italy). The comparison between field data and model calculations reveal that numerical dispersion models are capable of predicting the formation of CO2 accumulation over the ground as a consequence of underground gas emission. Therefore, atmospheric modelling could be included as a valuable methodology in the risk assessment of leakage in natural degassing systems and in CCS projects. Conclusions from this work provide clues on whether leakage may be a real risk for humans and under which conditions this risk needs to be included in the risk assessment.

  10. Atomic carbon emission from photodissociation of CO2. [planetary atmospheric chemistry

    Science.gov (United States)

    Wu, C. Y. R.; Phillips, E.; Lee, L. C.; Judge, D. L.

    1978-01-01

    Atomic carbon fluorescence, C I 1561, 1657, and 1931 A, has been observed from photodissociation of CO2, and the production cross sections have been measured. A line emission source provided the primary photons at wavelengths from threshold to 420 A. The present results suggest that the excited carbon atoms are produced by total dissociation of CO2 into three atoms. The cross sections for producing the O I 1304-A fluorescence through photodissociation of CO2 are found to be less than 0.01 Mb in the wavelength region from 420 to 835 A. The present data have implications with respect to photochemical processes in the atmospheres of Mars and Venus.

  11. NO emission characteristics of superfine pulverized coal combustion in the O2/CO2 atmosphere

    International Nuclear Information System (INIS)

    Liu, Jiaxun; Gao, Shan; Jiang, Xiumin; Shen, Jun; Zhang, Hai

    2014-01-01

    Highlights: • Superfine pulverized coal combustion in O 2 /CO 2 atmosphere is a new promising technology. • NO emissions of superfine pulverized coal combustion in O 2 /CO 2 mixture were focused. • Coal particle sizes have significant effects on NO emissions in O 2 /CO 2 combustion. - Abstract: The combination of O 2 /CO 2 combustion and superfine pulverized coal combustion technology can make full use of their respective merits, and solve certain inherent disadvantages of each technology. The technology of superfine pulverized coal combustion in the O 2 /CO 2 atmosphere is easy and feasible to be retrofitted with few reconstructions on the existing devices. It will become a useful and promising method in the future. In this paper, a one-dimensional drop-tube furnace system was adopted to study the NO emission characteristics of superfine pulverized coal combustion in the O 2 /CO 2 atmosphere. The effects of coal particle size, coal quality, furnace temperature, stoichiometric ratio, etc. were analyzed. It is important to note that coal particle sizes have significant influence on NO emissions in the O 2 /CO 2 combustion. For the homogeneous NO reduction, smaller coal particles can inhibit the homogeneous NO formations under fuel-rich combustion conditions, while it becomes disadvantageous for fuel-lean combustion. However, under any conditions, heterogeneous reduction is always more significant for smaller coal particle sizes, which have smoother pore surfaces and simpler pore structures. The results from this fundamental research will provide technical support for better understanding and developing this new combustion process

  12. Scaling laws for perturbations in the ocean-atmosphere system following large CO2 emissions

    Science.gov (United States)

    Towles, N.; Olson, P.; Gnanadesikan, A.

    2015-07-01

    Scaling relationships are found for perturbations to atmosphere and ocean variables from large transient CO2 emissions. Using the Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir (LOSCAR) model (Zeebe et al., 2009; Zeebe, 2012b), we calculate perturbations to atmosphere temperature, total carbon, ocean temperature, total ocean carbon, pH, alkalinity, marine-sediment carbon, and carbon-13 isotope anomalies in the ocean and atmosphere resulting from idealized CO2 emission events. The peak perturbations in the atmosphere and ocean variables are then fit to power law functions of the form of γ DαEβ, where D is the event duration, E is its total carbon emission, and γ is a coefficient. Good power law fits are obtained for most system variables for E up to 50 000 PgC and D up to 100 kyr. Although all of the peak perturbations increase with emission rate E/D, we find no evidence of emission-rate-only scaling, α + β = 0. Instead, our scaling yields α + β ≃ 1 for total ocean and atmosphere carbon and 0 < α + β < 1 for most of the other system variables.

  13. Scaling laws for perturbations in the ocean–atmosphere system following large CO2 emissions

    Directory of Open Access Journals (Sweden)

    N. Towles

    2015-07-01

    Full Text Available Scaling relationships are found for perturbations to atmosphere and ocean variables from large transient CO2 emissions. Using the Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir (LOSCAR model (Zeebe et al., 2009; Zeebe, 2012b, we calculate perturbations to atmosphere temperature, total carbon, ocean temperature, total ocean carbon, pH, alkalinity, marine-sediment carbon, and carbon-13 isotope anomalies in the ocean and atmosphere resulting from idealized CO2 emission events. The peak perturbations in the atmosphere and ocean variables are then fit to power law functions of the form of γ DαEβ, where D is the event duration, E is its total carbon emission, and γ is a coefficient. Good power law fits are obtained for most system variables for E up to 50 000 PgC and D up to 100 kyr. Although all of the peak perturbations increase with emission rate E/D, we find no evidence of emission-rate-only scaling, α + β = 0. Instead, our scaling yields α + β ≃ 1 for total ocean and atmosphere carbon and 0 < α + β < 1 for most of the other system variables.

  14. What would dense atmospheric observation networks bring to the quantification of city CO2 emissions?

    Science.gov (United States)

    Wu, Lin; Broquet, Grégoire; Ciais, Philippe; Bellassen, Valentin; Vogel, Felix; Chevallier, Frédéric; Xueref-Remy, Irène; Wang, Yilong

    2016-06-01

    Cities currently covering only a very small portion ( directly release to the atmosphere about 44 % of global energy-related CO2, but they are associated with 71-76 % of CO2 emissions from global final energy use. Although many cities have set voluntary climate plans, their CO2 emissions are not evaluated by the monitoring, reporting, and verification (MRV) procedures that play a key role for market- or policy-based mitigation actions. Here we analyze the potential of a monitoring tool that could support the development of such procedures at the city scale. It is based on an atmospheric inversion method that exploits inventory data and continuous atmospheric CO2 concentration measurements from a network of stations within and around cities to estimate city CO2 emissions. This monitoring tool is configured for the quantification of the total and sectoral CO2 emissions in the Paris metropolitan area (˜ 12 million inhabitants and 11.4 TgC emitted in 2010) during the month of January 2011. Its performances are evaluated in terms of uncertainty reduction based on observing system simulation experiments (OSSEs). They are analyzed as a function of the number of sampling sites (measuring at 25 m a.g.l.) and as a function of the network design. The instruments presently used to measure CO2 concentrations at research stations are expensive (typically ˜ EUR 50 k per sensor), which has limited the few current pilot city networks to around 10 sites. Larger theoretical networks are studied here to assess the potential benefit of hypothetical operational lower-cost sensors. The setup of our inversion system is based on a number of diagnostics and assumptions from previous city-scale inversion experiences with real data. We find that, given our assumptions underlying the configuration of the OSSEs, with 10 stations only the uncertainty for the total city CO2 emission during 1 month is significantly reduced by the inversion by ˜ 42 %. It can be further reduced by extending the

  15. Emissions to the Atmosphere from Amine-Based Post Combustion CO2 Capture Plant - Regulatory Aspects

    International Nuclear Information System (INIS)

    Azzi, Merched; Angove, Dennys; Dave, Narendra; Day, Stuart; Do, Thong; Feron, Paul; Sharma, Sunil; Attalla, Moetaz; Abu Zahra, Mohammad

    2014-01-01

    Amine-based Post Combustion Capture (PCC) of CO 2 is a readily available technology that can be deployed to reduce CO 2 emissions from coal fired power plants. However, PCC plants will likely release small quantities of amine and amine degradation products to the atmosphere along with the treated flue gas. The possible environmental effects of these emissions have been examined through different studies carried out around the world. Based on flue gas from a 400 MW ultra-supercritical coal fired power plant Aspen-Plus PCC process simulations were used to predict the potential atmospheric emissions from the plant. Different research initiatives carried out in this area have produced new knowledge that has significantly reduced the risk perception for the release of amine and amine degradation products to the atmosphere. In addition to the reduction of the CO 2 emissions, the PCC technology will also help in reducing SO x and NO 2 emissions. However, some other pollutants such as NH 3 and aerosols will increase if appropriate control technologies are not adopted. To study the atmospheric photo-oxidation of amines, attempts are being made to develop chemical reaction schemes that can be used for air quality assessment. However, more research is still required in this area to estimate the reactivity of amino solvents in the presence of other pollutants such as NO x and other volatile organic compounds in the background air. Current air quality guidelines may need to be updated to include limits for the additional pollutants such as NH 3 , nitrosamines and nitramines once more information related to their emissions is available. This paper focuses on describing the predicted concentrations of major pollutants that are expected to be released from a coal fired power plant obtained by ASPEN-Plus PCC process simulations in terms of current air quality regulations and other regulatory aspects. (authors)

  16. Six commercially viable ways to remove CO2 from the atmosphere and/or reduce CO2 emissions

    NARCIS (Netherlands)

    Schuiling, O.; de Boer, P.L.

    2013-01-01

    Background The burning of fossil fuels is the main cause of rising CO2 levels of the atmosphere. This will probably result in climate change. Another consequence is ocean acidification. Although these consequences are not yet proven beyond doubt, the risk of doing nothing is too large. The simplest

  17. Atmospheric stabilization of CO2 emissions: Near-term reductions and absolute versus intensity-based targets

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.

    2008-01-01

    This study analyzes CO 2 emissions reduction targets for various countries and geopolitical regions by the year 2030 to stabilize atmospheric concentrations of CO 2 at 450 ppm (550 ppm including non-CO 2 greenhouse gases) level. It also determines CO 2 intensity cuts that would be required in those countries and regions if the emission reductions were to be achieved through intensity-based targets without curtailing their expected economic growth. Considering that the stabilization of CO 2 concentrations at 450 ppm requires the global trend of CO 2 emissions to be reversed before 2030, this study develops two scenarios: reversing the global CO 2 trend in (i) 2020 and (ii) 2025. The study shows that global CO 2 emissions would be limited at 42 percent above 1990 level in 2030 if the increasing trend of global CO 2 emissions were to be reversed by 2020. If reversing the trend is delayed by 5 years, global CO 2 emissions in 2030 would be 52 percent higher than the 1990 level. The study also finds that to achieve these targets while maintaining expected economic growth, the global average CO 2 intensity would require a 68 percent drop from the 1990 level or a 60 percent drop from the 2004 level by 2030

  18. Los Angeles megacity: a high-resolution land–atmosphere modelling system for urban CO2 emissions

    Directory of Open Access Journals (Sweden)

    S. Feng

    2016-07-01

    Full Text Available Megacities are major sources of anthropogenic fossil fuel CO2 (FFCO2 emissions. The spatial extents of these large urban systems cover areas of 10 000 km2 or more with complex topography and changing landscapes. We present a high-resolution land–atmosphere modelling system for urban CO2 emissions over the Los Angeles (LA megacity area. The Weather Research and Forecasting (WRF-Chem model was coupled to a very high-resolution FFCO2 emission product, Hestia-LA, to simulate atmospheric CO2 concentrations across the LA megacity at spatial resolutions as fine as  ∼  1 km. We evaluated multiple WRF configurations, selecting one that minimized errors in wind speed, wind direction, and boundary layer height as evaluated by its performance against meteorological data collected during the CalNex-LA campaign (May–June 2010. Our results show no significant difference between moderate-resolution (4 km and high-resolution (1.3 km simulations when evaluated against surface meteorological data, but the high-resolution configurations better resolved planetary boundary layer heights and vertical gradients in the horizontal mean winds. We coupled our WRF configuration with the Vulcan 2.2 (10 km resolution and Hestia-LA (1.3 km resolution fossil fuel CO2 emission products to evaluate the impact of the spatial resolution of the CO2 emission products and the meteorological transport model on the representation of spatiotemporal variability in simulated atmospheric CO2 concentrations. We find that high spatial resolution in the fossil fuel CO2 emissions is more important than in the atmospheric model to capture CO2 concentration variability across the LA megacity. Finally, we present a novel approach that employs simultaneous correlations of the simulated atmospheric CO2 fields to qualitatively evaluate the greenhouse gas measurement network over the LA megacity. Spatial correlations in the atmospheric CO2 fields reflect the coverage of

  19. BErkeley Atmospheric CO2 Network (BEACON) - Bringing Measurements of CO2 Emissions to a School Near You

    Science.gov (United States)

    Teige, V. E.; Havel, E.; Patt, C.; Heber, E.; Cohen, R. C.

    2011-12-01

    The University of California at Berkeley in collaboration with the Chabot Space and Science Center describe a set of educational programs, workshops, and exhibits based on a multi-node greenhouse gas and air quality monitoring network being deployed over Oakland, California. Examining raw numerical data using highly engaging and effective geo-data visualization tools like Google Earth can make the science come alive for students, and provide a hook for drawing them into deeper investigations. The Climate Science Investigations teacher workshop at the Chabot Space and Science Center will make use of Google Earth, Excel, and other geo-data visualization tools to step students through the process from data acquisition to discovery. Using multiple data sources, including output from the BErkeley Atmospheric CO2 Network (BEACON) project, participants will be encouraged to explore a variety of different modes of data display toward producing a unique, and ideally insightful, illumination of the data.

  20. Modeling the response of forest isoprene emissions to future increases in atmospheric CO2 concentration and changes in climate (Invited)

    Science.gov (United States)

    Monson, R. K.; Heald, C. L.; Guenther, A. B.; Wilkinson, M.

    2009-12-01

    Isoprene emissions from plants to the atmosphere are sensitive to changes in temperature, light and atmospheric CO2 concentration in both the short- (seconds-to-minutes) and long-term (hours-to-months). We now understand that the different time constants for these responses are due to controls by different sets of biochemical and physiological processes n leaves. Progress has been made in the past few years toward converting this process-level understanding into quantitative models. In this talk, we consider this progress with special emphasis on the short- and long-term responses to atmospheric CO2 concentration and temperature. A new biochemically-based model is presented for describing the CO2 responses, and the model is deployed in a global context to predict interactions between the influences of temperature and CO2 on the global isoprene emission rate. The model is based on the theory of enzyme-substrate kinetics, particularly with regard to those reactions that produce puruvate or glyceraldehyde 3-phosphate, the two chloroplastic substrates for isoprene biosynthesis. In the global model, when we accounted for CO2 inhibition of isoprene emission in the long-term response, we observed little impact on present-day global isoprene emission (increase from 508 to 523 Tg C yr-1). However, the large increases in future isoprene emissions predicted from past models which are due to a projected warmer climate, were entirely offset by including the CO2 effects. The isoprene emission response to CO2 was dominated by the long-term growth environment effect, with modulations of 10% or less from the short-term effect. We use this analysis as a framework for grounding future global models of isoprene emission in biochemical and physiological observations.

  1. The first 1-year-long estimate of the Paris region fossil fuel CO2 emissions based on atmospheric inversion

    Directory of Open Access Journals (Sweden)

    J. Staufer

    2016-11-01

    Full Text Available The ability of a Bayesian atmospheric inversion to quantify the Paris region's fossil fuel CO2 emissions on a monthly basis, based on a network of three surface stations operated for 1 year as part of the CO2-MEGAPARIS experiment (August 2010–July 2011, is analysed. Differences in hourly CO2 atmospheric mole fractions between the near-ground monitoring sites (CO2 gradients, located at the north-eastern and south-western edges of the urban area, are used to estimate the 6 h mean fossil fuel CO2 emission. The inversion relies on the CHIMERE transport model run at 2 km  ×  2 km horizontal resolution, on the spatial distribution of fossil fuel CO2 emissions in 2008 from a local inventory established at 1 km  ×  1 km horizontal resolution by the AIRPARIF air quality agency, and on the spatial distribution of the biogenic CO2 fluxes from the C-TESSEL land surface model. It corrects a prior estimate of the 6 h mean budgets of the fossil fuel CO2 emissions given by the AIRPARIF 2008 inventory. We found that a stringent selection of CO2 gradients is necessary for reliable inversion results, due to large modelling uncertainties. In particular, the most robust data selection analysed in this study uses only mid-afternoon gradients if wind speeds are larger than 3 m s−1 and if the modelled wind at the upwind site is within ±15° of the transect between downwind and upwind sites. This stringent data selection removes 92 % of the hourly observations. Even though this leaves few remaining data to constrain the emissions, the inversion system diagnoses that their assimilation significantly reduces the uncertainty in monthly emissions: by 9 % in November 2010 to 50 % in October 2010. The inverted monthly mean emissions correlate well with independent monthly mean air temperature. Furthermore, the inverted annual mean emission is consistent with the independent revision of the AIRPARIF inventory for the year

  2. Control of atmospheric CO2 concentrations by 2050: A calculation on the emission rights of different countries

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper is to provide quantitative data on some critical issues in anticipation of the forthcoming international negotiations in Denmark on the control of atmospheric CO2 concentrations. Instead of letting only a small number of countries dominate a few controversial dialogues about emissions reductions, a comprehensive global system must be established based on emissions allowances for different countries, to realize the long-term goal of controlling global atmospheric CO2 concentrations. That a system rooted in "cumulative emissions per capita," the best conception of the "common but differentiated responsibilities" principle affirmed by the Kyoto Protocol according to fundamental standards of fairness and justice, was demonstrated. Based on calculations of various countries’ cumulative emissions per capita, estimates of their cumulative emissions from 1900 to 2005, and their annual emissions allowances into the future (2006―2050), a 470 ppmv atmospheric CO2 concentration target was set. According to the following four objective indicators―total emissions allowance from 1900 to 2050, actual emissions from 1900 to 2005, emissions levels in 2005, and the average growth rate of emissions from 1996 to 2005―all countries and regions whose population was more than 300000 in 2005 were divided into four main groups: countries with emissions deficits, countries and regions needing to reduce their gross emissions, countries and regions needing to reduce their emissions growth rates, and countries that can maintain the current emissions growth rates. Based on this proposal, most G8 countries by 2005 had already expended their 2050 emissions allowances. The accu-mulated financial value based on emissions has reached more than 5.5 trillion US dollars (20 dollars per ton of CO2). Even if these countries could achieve their ambitious emissions reduction targets in the future, their per capita emissions from 2006 to 2050 would still be much higher than those of

  3. Modeling long-term carbon residue in the ocean-atmosphere system following large CO2 emissions

    Science.gov (United States)

    Towles, N. J.; Olson, P.; Gnanadesikan, A.

    2013-12-01

    We use the LOSCAR carbon cycle model (Zeebe et al., 2009; Zeebe, 2012) to calculate the residual carbon in the ocean and atmosphere following large CO2 emissions. We consider the system response to CO2 emissions ranging from 100 to 20000 PgC, and emission durations from 100 yr to 100 kyr, subject to a wide range of system parameters such as the strengths of silicate weathering and the oceanic biological carbon pump. We define the carbon gain factor as the ratio of residual carbon in the ocean-atmosphere to the total emitted carbon. For moderate sized emissions shorter than about 50 kyr, we find that the carbon gain factor grows during the emission and peaks at about 1.7, primarily due to the erosion of carbonate marine sediments. In contrast, for longer emissions, the carbon gain factor peaks at a smaller value, and for very large emissions (more than 5000 PgC), the gain factor decreases with emission size due to carbonate sediment exhaustion. This gain factor is sensitive to model parameters such as low latitude efficiency of the biological pump. The timescale for removal of the residual carbon (reducing the carbon gain factor to zero) depends strongly on the assumed sensitivity of silicate weathering to atmospheric pCO2, and ranges from less than one million years to several million years.

  4. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO2 concentration data

    Science.gov (United States)

    Stephen M Ogle; Kenneth Davis; Thomas Lauvaux; Andrew Schuh; Dan Cooley; Tristram O West; Linda S Heath; Natasha L Miles; Scott Richardson; F Jay Breidt; James E Smith; Jessica L McCarty; Kevin R Gurney; Pieter Tans; A Scott. Denning

    2015-01-01

    Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country's contribution to GHG concentrations in the atmosphere. Furthermore, verifying biogenic fluxes provides a check on estimated...

  5. Forecasting global atmospheric CO2

    International Nuclear Information System (INIS)

    Agusti-Panareda, A.; Massart, S.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Engelen, R.; Jones, L.; Peuch, V.H.; Chevallier, F.; Ciais, P.; Paris, J.D.; Sherlock, V.

    2014-01-01

    A new global atmospheric carbon dioxide (CO 2 ) real-time forecast is now available as part of the preoperational Monitoring of Atmospheric Composition and Climate - Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO 2 forecasting system is that the land surface, including vegetation CO 2 fluxes, is modelled online within the IFS. Other CO 2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO 2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO 2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO 2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO 2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO 2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO 2 fluxes also lead to accumulating errors in the CO 2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO 2 fluxes compared to total optimized fluxes and the atmospheric CO 2 compared to observations. The largest biases in the atmospheric CO 2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO 2 analyses based on the assimilation of CO 2 products retrieved from satellite

  6. Mars atmosphere studies with the OMEGA/Mars Express experiment: I. Overview and detection of lfuorescent emission by CO2

    Science.gov (United States)

    Drossart, P.; Combes, M.; Encrenaz, T.; Melchiorri, R.; Fouchet, T.; Forget, F.; Moroz, V.; Ignatiev, N.; Bibring, J.-P.; Langevin, Y.; OMEGA Team

    Observations of Mars by the OMEGA/Mars Express experiment provide extended maps of the martian disk at all latitudes, and with various conditions of illumination, between 0.4 to 5 micron. The atmospheric investigations so far conducted by our team are focussed on the infrared part of the spectrum (1-5 micron), and include: the development of a correction algorithm for atmospheric gaseous absorption, to give access to fine mineralogic studies, largely decorrelated from atmospheric effects the study of dust opacity effects in the near infrared, with the aim to correct also the rough spectra from dust opacity perturbation the study of minor constituents like CO, to search for regional or global variations the study of CO2 emission at 4.3 micron related to fluorescent emission This last effect is prominently detected in limb observations obtained in 3-axis stabilized mode of Mars Express, with high altitude emission in the CO2 fundamental at 4.3 micron, usually seen in absorption in nadir observations. These emissions are related to non-LTE atmospheric layers, well above the solid surface in the mesosphere. Such emissions are also present in Earth and Venus limb observations. They are present also in nadir observations, but are reinforced in limb viewing geometry due to the tangential view. A numerical model of these emission will be presented.

  7. CO2 non-LTE limb emissions in Mars' atmosphere as observed by OMEGA/Mars Express

    Science.gov (United States)

    Piccialli, A.; López-Valverde, M. A.; Määttänen, A.; González-Galindo, F.; Audouard, J.; Altieri, F.; Forget, F.; Drossart, P.; Gondet, B.; Bibring, J. P.

    2016-06-01

    We report on daytime limb observations of Mars upper atmosphere acquired by the OMEGA instrument on board the European spacecraft Mars Express. The strong emission observed at 4.3 μm is interpreted as due to CO2 fluorescence of solar radiation and is detected at a tangent altitude in between 60 and 110 km. The main value of OMEGA observations is that they provide simultaneously spectral information and good spatial sampling of the CO2 emission. In this study we analyzed 98 dayside limb observations spanning over more than 3 Martian years, with a very good latitudinal and longitudinal coverage. Thanks to the precise altitude sounding capabilities of OMEGA, we extracted vertical profiles of the non-local thermodynamic equilibrium (non-LTE) emission at each wavelength and we studied their dependence on several geophysical parameters, such as the solar illumination and the tangent altitude. The dependence of the non-LTE emission on solar zenith angle and altitude follows a similar behavior to that predicted by the non-LTE model. According to our non-LTE model, the tangent altitude of the peak of the CO2 emission varies with the thermal structure, but the pressure level where the peak of the emission is found remains constant at ˜0.03 ± 0.01 Pa, . This non-LTE model prediction has been corroborated by comparing SPICAM and OMEGA observations. We have shown that the seasonal variations of the altitude of constant pressure levels in SPICAM stellar occultation retrievals correlate well with the variations of the OMEGA peak emission altitudes, although the exact pressure level cannot be defined with the spectroscopy for the investigation of the characteristics of the atmosphere of Venus (SPICAM) nighttime data. Thus, observed changes in the altitude of the peak emission provide us information on the altitude of the 0.03 Pa pressure level. Since the pressure at a given altitude is dictated by the thermal structure below, the tangent altitude of the peak emission represents

  8. High Resolution Atmospheric Inversion of Urban CO2 Emissions During the Dormant Season of the Indianapolis Flux Experiment (INFLUX)

    Science.gov (United States)

    Lauvaux, Thomas; Miles, Natasha L.; Deng, Aijun; Richardson, Scott J.; Cambaliza, Maria O.; Davis, Kenneth J.; Gaudet, Brian; Gurney, Kevin R.; Huang, Jianhua; O'Keefe, Darragh; hide

    2016-01-01

    Urban emissions of greenhouse gases (GHG) represent more than 70% of the global fossil fuel GHG emissions. Unless mitigation strategies are successfully implemented, the increase in urban GHG emissions is almost inevitable as large metropolitan areas are projected to grow twice as fast as the world population in the coming 15 years. Monitoring these emissions becomes a critical need as their contribution to the global carbon budget increases rapidly. In this study, we developed the first comprehensive monitoring systems of CO2 emissions at high resolution using a dense network of CO2 atmospheric measurements over the city of Indianapolis. The inversion system was evaluated over a 8-month period and showed an increase compared to the Hestia CO2 emission estimate, a state-of-the-art building-level emission product, with a 20% increase in the total emissions over the area (from 4.5 to 5.7 Metric Megatons of Carbon +/- 0.23 Metric Megatons of Carbon). However, several key parameters of the inverse system need to be addressed to carefully characterize the spatial distribution of the emissions and the aggregated total emissions.We found that spatial structures in prior emission errors, mostly undetermined, affect significantly the spatial pattern in the inverse solution, as well as the carbon budget over the urban area. Several other parameters of the inversion were sufficiently constrained by additional observations such as the characterization of the GHG boundary inflow and the introduction of hourly transport model errors estimated from the meteorological assimilation system. Finally, we estimated the uncertainties associated with remaining systematic errors and undetermined parameters using an ensemble of inversions. The total CO2 emissions for the Indianapolis urban area based on the ensemble mean and quartiles are 5.26 - 5.91 Metric Megatons of Carbon, i.e. a statistically significant difference compared to the prior total emissions of 4.1 to 4.5 Metric Megatons of

  9. Airborne remote sensing and in situ measurements of atmospheric CO2 to quantify point source emissions

    Science.gov (United States)

    Krings, Thomas; Neininger, Bruno; Gerilowski, Konstantin; Krautwurst, Sven; Buchwitz, Michael; Burrows, John P.; Lindemann, Carsten; Ruhtz, Thomas; Schüttemeyer, Dirk; Bovensmann, Heinrich

    2018-02-01

    Reliable techniques to infer greenhouse gas emission rates from localised sources require accurate measurement and inversion approaches. In this study airborne remote sensing observations of CO2 by the MAMAP instrument and airborne in situ measurements are used to infer emission estimates of carbon dioxide released from a cluster of coal-fired power plants. The study area is complex due to sources being located in close proximity and overlapping associated carbon dioxide plumes. For the analysis of in situ data, a mass balance approach is described and applied, whereas for the remote sensing observations an inverse Gaussian plume model is used in addition to a mass balance technique. A comparison between methods shows that results for all methods agree within 10 % or better with uncertainties of 10 to 30 % for cases in which in situ measurements were made for the complete vertical plume extent. The computed emissions for individual power plants are in agreement with results derived from emission factors and energy production data for the time of the overflight.

  10. Atmospheric observations of carbon monoxide and fossil fuel CO2 emissions from East Asia

    DEFF Research Database (Denmark)

    Turnbull, Jocelyn C.; Tans, Pieter P.; Lehman, Scott J.

    2011-01-01

    Flask samples from two sites in East Asia, Tae-Ahn Peninsula, Korea (TAP), and Shangdianzi, China (SDZ), were measured for trace gases including CO2, CO and fossil fuel CO2(CO(2)ff, derived from Delta(CO2)-C-14 observations). The five-year TAP record shows high CO(2)ff when local air comes from...... the Korean Peninsula. Most samples, however, reflect air masses from Northeastern China with lower CO(2)ff. Our small set of SDZ samples from winter 2009/2010 have strongly elevated CO(2)ff. Biospheric CO2 contributes substantially to total CO2 variability at both sites, even in winter when non-fossil CO2....../ppm respectively, consistent with recent bottom-up inventory estimates and other observational studies. Locally influenced TAP samples fall into two distinct data sets, ascribed to air sourced from South Korea and North Korea. The South Korea samples have low R-CO:CO2ff of 13 +/- 3 ppb/ppm, slightly higher than...

  11. U.S. regional greenhouse gas emissions analysis comparing highly resolved vehicle miles traveled and CO2 emissions: mitigation implications and their effect on atmospheric measurements

    Science.gov (United States)

    Mendoza, D. L.; Gurney, K. R.

    2010-12-01

    Carbon dioxide (CO2) is the most abundant anthropogenic greenhouse gas and projections of fossil fuel energy demand show CO2 concentrations increasing indefinitely into the future. After electricity production, the transportation sector is the second largest CO2 emitting economic sector in the United States, accounting for 32.3% of the total U.S. emissions in 2002. Over 80% of the transport sector is composed of onroad emissions, with the remainder shared by the nonroad, aircraft, railroad, and commercial marine vessel transportation. In order to construct effective mitigation policy for the onroad transportation sector and more accurately predict CO2 emissions for use in transport models and atmospheric measurements, analysis must incorporate the three components that determine the CO2 onroad transport emissions: vehicle fleet composition, average speed of travel, and emissions regulation strategies. Studies to date, however, have either focused on one of these three components, have been only completed at the national scale, or have not explicitly represented CO2 emissions instead relying on the use of vehicle miles traveled (VMT) as an emissions proxy. National-level projections of VMT growth is not sufficient to highlight regional differences in CO2 emissions growth due to the heterogeneity of vehicle fleet and each state’s road network which determines the speed of travel of vehicles. We examine how an analysis based on direct CO2 emissions and an analysis based on VMT differ in terms of their emissions and mitigation implications highlighting potential biases introduced by the VMT-based approach. This analysis is performed at the US state level and results are disaggregated by road and vehicle classification. We utilize the results of the Vulcan fossil fuel CO2 emissions inventory which quantified emissions for the year 2002 across all economic sectors in the US at high resolution. We perform this comparison by fuel type,12 road types, and 12 vehicle types

  12. CO2 emission calculations and trends

    International Nuclear Information System (INIS)

    Boden, T.A.; Marland, G.; Andres, R.J.

    1995-01-01

    Evidence that the atmospheric CO 2 concentration has risen during the past several decades is irrefutable. Most of the observed increase in atmospheric CO 2 is believed to result from CO 2 releases from fossil-fuel burning. The United Nations (UN) Framework Convention on Climate Change (FCCC), signed in Rio de Janeiro in June 1992, reflects global concern over the increasing CO 2 concentration and its potential impact on climate. One of the convention's stated objectives was the ''stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. '' Specifically, the FCCC asked all 154 signing countries to conduct an inventory of their current greenhouse gas emissions, and it set nonbinding targets for some countries to control emissions by stabilizing them at 1990 levels by the year 2000. Given the importance of CO 2 as a greenhouse gas, the relationship between CO 2 emissions and increases in atmospheric CO 2 levels, and the potential impacts of a greenhouse gas-induced climate change; it is important that comprehensive CO 2 emissions records be compiled, maintained, updated, and documented

  13. Emission of CO2 by the transport sector and the impact on the atmospheric concentration in Sao Paulo, Brazil.

    Science.gov (United States)

    Andrade, M. D. F.; Kitazato, C.; Perez-Martinez, P.; Nogueira, T.

    2014-12-01

    The Metropolitan Area of São Paulo (MASP) is impacted by the emission of 7 million vehicles, being 85% light-duty vehicles (LDV), 3% heavy-duty diesel vehicles (HDV)s, and 12% motorcycles. About 55% of LDVs burn a mixture of 78% gasoline and 22% ethanol (gasohol), 4% use hydrous ethanol (95% ethanol and 5% water), 38% are flex-fuel vehicles that are capable of burning both gasohol and hydrous ethanol and 3% use diesel (diesel + 5% bio-diesel). The owners of the flex-fuel vehicles decide to use ethanol or gasohol depending on the market price of the fuel. Many environmental programs were implemented to reduce the emissions by the LDV and HDV traffic; the contribution from the industrial sector has been decreasing as the industries have moved away from MASP, due to the high taxes applied to the productive sector. Due to the large contribution of the transport sector to CO2, its contribution is important in a regional scale. The total emission is estimated in 15327 million tons per year of CO2eq (60% by LDV, 38% HDV and 2% motorcycles). Measurements of CO2 performed with a Picarro monitor based on WS-CRDS (wavelength-scanned cavity ringdown spectroscopy) for the years 2012-2013 were performed. The sampling site was on the University of Sao Paulo campus (22o34´S, 46o44´W), situated in the west area of the city, surrounded by important traffic roads. The average data showed two peaks, one in the morning and the other in the afternoon, both associated with the traffic. Correlation analysis was performed between the concentrations and the number of vehicles, as a proxy for the temporal variation of the CO2 emission. The highest concentration was 430 ppm at 8:00am, associated to the morning peak hour of vehicles and the stable condition of the atmosphere. The average concentration was 406 ±12 ppm, considering all measured data. According to official inventories from the Environmental Agency (CETESB), the emission of CO2 has increased 39% from 1990 to 2008, associated

  14. Elevated atmospheric CO2 concentration leads to increased whole-plant isoprene emission in hybrid aspen (Populus tremula × Populus tremuloides).

    Science.gov (United States)

    Sun, Zhihong; Niinemets, Ülo; Hüve, Katja; Rasulov, Bahtijor; Noe, Steffen M

    2013-05-01

    Effects of elevated atmospheric [CO2] on plant isoprene emissions are controversial. Relying on leaf-scale measurements, most models simulating isoprene emissions in future higher [CO2] atmospheres suggest reduced emission fluxes. However, combined effects of elevated [CO2] on leaf area growth, net assimilation and isoprene emission rates have rarely been studied on the canopy scale, but stimulation of leaf area growth may largely compensate for possible [CO2] inhibition reported at the leaf scale. This study tests the hypothesis that stimulated leaf area growth leads to increased canopy isoprene emission rates. We studied the dynamics of canopy growth, and net assimilation and isoprene emission rates in hybrid aspen (Populus tremula × Populus tremuloides) grown under 380 and 780 μmol mol(-1) [CO2]. A theoretical framework based on the Chapman-Richards function to model canopy growth and numerically compare the growth dynamics among ambient and elevated atmospheric [CO2]-grown plants was developed. Plants grown under elevated [CO2] had higher C : N ratio, and greater total leaf area, and canopy net assimilation and isoprene emission rates. During ontogeny, these key canopy characteristics developed faster and stabilized earlier under elevated [CO2]. However, on a leaf area basis, foliage physiological traits remained in a transient state over the whole experiment. These results demonstrate that canopy-scale dynamics importantly complements the leaf-scale processes, and that isoprene emissions may actually increase under higher [CO2] as a result of enhanced leaf area production. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  15. CO2 Emission Factors for Coals

    Directory of Open Access Journals (Sweden)

    P. Orlović-Leko

    2015-03-01

    Full Text Available Emission factors are used in greenhouse gas inventories to estimate emissions from coal combustion. In the absence of direct measures, emissions factors are frequently used as a quick, low cost way to estimate emissions values. Coal combustion has been a major contributor to the CO2 flux into the atmosphere. Nearly all of the fuel carbon (99 % in coal is converted to CO2 during the combustion process. The carbon content is the most important coal parameter which is the measure of the degree of coalification (coal rank. Coalification is the alteration of vegetation to form peat, succeeded by the transformation of peat through lignite, sub-bituminous, bituminous to anthracite coal. During the geochemical or metamorphic stage, the progressive changes that occur within the coal are an increase in the carbon content and a decrease in the hydrogen and oxygen content resulting in a loss of volatiles. Heterogeneous composition of coal causes variation in CO2 emission from different coals. The IPCC (Intergovernmental Panel on Climate Change has produced guidelines on how to produce emission inventories which includes emission factors. Although 2006 IPCC Guidelines provided the default values specified according to the rank of the coal, the application of country-specific emission factors was recommended when estimating the national greenhouse gas emissions. This paper discusses the differences between country-specific emission factors and default IPCC CO2 emission factors, EF(CO2, for coals. Also, this study estimated EF(CO2 for two different types of coals and peat from B&H, on the basis fuel analyses. Carbon emission factors for coal mainly depend on the carbon content of the fuel and vary with both rank and geographic origin, which supports the idea of provincial variation of carbon emission factors. Also, various other factors, such as content of sulphur, minerals and macerals play an important role and influence EF(CO2 from coal. Carbonate minerals

  16. Towards Verifying National CO2 Emissions

    Science.gov (United States)

    Fung, I. Y.; Wuerth, S. M.; Anderson, J. L.

    2017-12-01

    With the Paris Agreement, nations around the world have pledged their voluntary reductions in future CO2 emissions. Satellite observations of atmospheric CO2 have the potential to verify self-reported emission statistics around the globe. We present a carbon-weather data assimilation system, wherein raw weather observations together with satellite observations of the mixing ratio of column CO2 from the Orbiting Carbon Observatory-2 are assimilated every 6 hours into the NCAR carbon-climate model CAM5 coupled to the Ensemble Kalman Filter of DART. In an OSSE, we reduced the fossil fuel emissions from a country, and estimated the emissions innovations demanded by the atmospheric CO2 observations. The uncertainties in the innovation are analyzed with respect to the uncertainties in the meteorology to determine the significance of the result. The work follows from "On the use of incomplete historical data to infer the present state of the atmosphere" (Charney et al. 1969), which maps the path for continuous data assimilation for weather forecasting and the five decades of progress since.

  17. ISLSCP II Globalview: Atmospheric CO2 Concentrations

    Data.gov (United States)

    National Aeronautics and Space Administration — The GlobalView Carbon Dioxide (CO2) data product contains synchronized and smoothed time series of atmospheric CO2 concentrations at selected sites that were created...

  18. Managing CO2 emissions in Nigeria

    International Nuclear Information System (INIS)

    Obioh, I.B.; Oluwole, A.F.; Akeredolu, F.A.

    1994-01-01

    The energy resources in Nigeria are nearly equally divided between fossil fuels and biofuels. The increasing pressure on them, following expected increased population growth, may lead to substantial emissions of carbon into the atmosphere. Additionally agricultural and forestry management practices in vogue are those related to savannah burning and rotational bush fallow systems, which have been clearly implicated as important sources of CO 2 and trace gases. An integrated model for the prediction of future CO 2 emissions based on fossil fuels and biomass fuels requirements, rates of deforestation and other land-use indices is presented. This is further based on trends in population and economic growth up to the year 2025, with a base year in 1988. A coupled carbon cycle-climate model based on the contribution of CO 2 and other trace gases is established from the proportions of integrated global warming effects for a 20-year averaging time using the product of global warming potential (GWP) and total emissions. An energy-technology inventory approach to optimal resources management is used as a tool for establishing the future scope of reducing the CO 2 emissions through improved fossil fuel energy efficiencies. Scenarios for reduction based on gradual to swift shifts from biomass to fossil and renewable fuels are presented together with expected policy options required to effect them

  19. Future Expansion of Agriculture and Pasture Acts to Amplify Atmospheric CO2 Levels in Response to Fossil-Fuel and Land-Use Change Emissions

    International Nuclear Information System (INIS)

    Gitz, V.; Ciais, P.

    2004-01-01

    The expansion of crop and pastures to the detriment of forests results in an increase in atmospheric CO2. The first obvious cause is the loss of forest biomass and soil carbon during and after conversion. The second, generally ignored cause, is the reduction of the residence time of carbon when, for example, forests or grasslands are converted to cultivated land. This decreases the sink capacity of the global terrestrial biosphere, and thereby may amplify the atmospheric CO2 rise due to fossil and land-use carbon release. For the IPCC A2 future scenario, characterized by high fossil and high land-use emissions, we show that the land-use amplifier effect adds 61 ppm extra CO2 in the atmosphere by 2100 as compared to former treatment of land-use processes in carbon models. Investigating the individual contribution of each of the six land-use transitions (forest crop, forest pasture, grassland crop) to the amplifier effect indicates that the clearing of forest and grasslands to arable lands explains most of the CO2 amplification. The amplification effect is 50% higher than in a previous analysis by the same authors which considered neither the deforestation of pastures nor the ploughing of grasslands. Such an amplification effect is further examined in sensitivity tests where the net primary productivity is considered independent of the atmospheric CO2. We also show that the land-use changes, which have already occurred in the recent past, have a strong inertia at releasing CO2, and will contribute to about 1/3 of the amplification effect by 2100. These results suggest that there is an additional atmospheric benefit of preserving pristine ecosystems with high turnover times

  20. Toward consistency between trends in bottom-up CO2 emissions and top-down atmospheric measurements in the Los Angeles megacity

    Directory of Open Access Journals (Sweden)

    S. Newman

    2016-03-01

    Full Text Available Large urban emissions of greenhouse gases result in large atmospheric enhancements relative to background that are easily measured. Using CO2 mole fractions and Δ14C and δ13C values of CO2 in the Los Angeles megacity observed in inland Pasadena (2006–2013 and coastal Palos Verdes peninsula (autumn 2009–2013, we have determined time series for CO2 contributions from fossil fuel combustion (Cff for both sites and broken those down into contributions from petroleum and/or gasoline and natural gas burning for Pasadena. We find a 10 % reduction in Pasadena Cff during the Great Recession of 2008–2010, which is consistent with the bottom-up inventory determined by the California Air Resources Board. The isotopic variations and total atmospheric CO2 from our observations are used to infer seasonality of natural gas and petroleum combustion. The trend of CO2 contributions to the atmosphere from natural gas combustion is out of phase with the seasonal cycle of total natural gas combustion seasonal patterns in bottom-up inventories but is consistent with the seasonality of natural gas usage by the area's electricity generating power plants. For petroleum, the inferred seasonality of CO2 contributions from burning petroleum is delayed by several months relative to usage indicated by statewide gasoline taxes. Using the high-resolution Hestia-LA data product to compare Cff from parts of the basin sampled by winds at different times of year, we find that variations in observed fossil fuel CO2 reflect seasonal variations in wind direction. The seasonality of the local CO2 excess from fossil fuel combustion along the coast, on Palos Verdes peninsula, is higher in autumn and winter than spring and summer, almost completely out of phase with that from Pasadena, also because of the annual variations of winds in the region. Variations in fossil fuel CO2 signals are consistent with sampling the bottom-up Hestia-LA fossil CO2 emissions product for sub

  1. Economic effects on taxing CO2 emissions

    International Nuclear Information System (INIS)

    Haaparanta, P.; Jerkkola, J.; Pohjola, J.

    1996-01-01

    The CO 2 emissions can be reduced by using economic instruments, like carbon tax. This project included two specific questions related to CO 2 taxation. First one was the economic effects of increasing CO 2 tax and decreasing other taxes. Second was the economic adjustment costs of reducing net emissions instead of gross emissions. A computable general equilibrium (CGE) model was used in this analysis. The study was taken place in Helsinki School of Economics

  2. State of Energy Consumption and CO2 Emission in Bangladesh

    International Nuclear Information System (INIS)

    Azad, Abul K.; Nashreen, S.W.; Sultana, J.

    2006-01-01

    Carbon dioxide (CO 2 ) is one of the most important gases in the atmosphere, and is necessary for sustaining life on Earth. It is also considered to be a major greenhouse gas contributing to global warming and climate change. In this article, energy consumption in Bangladesh is analyzed and estimates are made of CO 2 emission from combustion of fossil fuel (coal, gas, petroleum products) for the period 1977 to 1995. International Panel for Climate Change guidelines for national greenhouse gas inventories were used in estimating CO 2 emission. An analysis of energy data shows that the consumption of fossil fuels in Bangladesh is growing by more than 5% per year. The proportion of natural gas in total energy consumption is increasing, while that of petroleum products and coal is decreasing. The estimated total CO 2 release from all primary fossil fuels used in Bangladesh amounted to 5,072 Gg in 1977, and 14,423 Gg in 1995. The total amounts of CO 2 released from petroleum products, natural gas, and coal in the period 1977-1995 were 83,026 Gg (50% of CO 2 emission), 72,541 Gg (44% of CO 2 emission), and 9,545 Gg (6% CO 2 emission), respectively. A trend in CO 2 emission with projections to 2070 is generated. In 2070, total estimated CO 2 emission will be 293,260 Gg with a current growth rate of 6.34%/y. CO 2 emission from fossil fuels is increasing. Petroleum products contribute the majority of CO 2 emission load, and although the use of natural gas is increasing rapidly, its contribution to CO 2 emission is less than that of petroleum products. The use of coal as well as CO 2 emission from coal is expected to gradually decrease

  3. Spectra calculations in central and wing regions of CO2 IR bands between 10 and 20 μm. III: atmospheric emission spectra

    International Nuclear Information System (INIS)

    Niro, F.; Clarmann, T. von; Jucks, K.; Hartmann, J.-M.

    2005-01-01

    A theoretical model for the prediction of CO 2 absorption in both central and wing regions of infrared absorption bands was presented in the companion paper I. It correctly accounts for line-mixing effects and was validated by comparisons with laboratory spectra in the 600-1000 cm -1 region. This quality was confirmed using atmospheric transmissions measured by solar occultation experiments in the second paper. The present work completes these studies by now considering atmospheric emission in the 10-20 μm range. Comparisons are made between computed atmospheric radiances and measurements obtained using four different Fourier transform experiments collecting spectra for nadir, up-looking, as well as limb (from balloon and satellite) geometries. Our results confirm that using a Voigt model can lead to very large errors that affect the spectrum more than 300 cm -1 away from the center of the CO 2 ν 2 band. They also demonstrate the capability of our model to represent accurately the radiances in the entire region for a variety of atmospheric paths. This success opens interesting perspectives for the sounding of pressure and temperature profiles, particularly at low altitudes. Another benefit of the quality of the model should be an increased accuracy in the retrieval of atmospheric state parameters from broad features in the measured spectra (clouds, aerosols, heavy trace gases)

  4. Radon-calibrated emissions of CO2 from South Africa

    International Nuclear Information System (INIS)

    Gaudry, A.; Polian, G.; Ardouin, B.; Lambert, G.

    1990-01-01

    Atmospheric CO 2 and 222 Rn have been monitored at Amsterdam Island since 1980. Data were selected in order to eliminate any local influence. Typical CO 2 concentrations of the subantarctic marine atmosphere can be determined by selecting those values for which 222 Rn radioactivity was particularly low: less than 1 pCi m -3 . 222 Rn concentrations higher than 2 pCi m -3 are mainly due to injections into the subantarctic atmosphere from the continental source of South Africa. The passage of air masses under continental influence also shows typical CO 2 variations, well correlated with 222 Rn variations. From the knowledge of the global continental fluxes of 222 Rn, it has been possible to estimate CO 2 fluxes into the atmosphere from South Africa. The mean CO 2 flux corresponding to a 6-month period from May to October is about 5 millimole m -2 h -1 . Continental CO 2 emissions reach a maximum in August. (orig.)

  5. Trading CO2 emission; Verhandelbaarheid van CO2-emissies

    Energy Technology Data Exchange (ETDEWEB)

    De Waal, J.F.; Looijenga, A.; Moor, R.; Wissema, E.W.J. [Afdeling Energie, Ministerie van VROM, The Hague (Netherlands)

    2000-06-01

    Systems for CO2-emission trading can take many shapes as developments in Europe show. European developments for emission trading tend to comprehend cap and-trade systems for large emission sources. In the Netherlands a different policy is in preparation. A trading system for sheltered sectors with an option to buy reductions from exposed sectors will be further developed by a Commission, appointed by the minister of environment. Exposed sectors are committed to belong to the top of the world on the area of energy-efficiency. The authors point out that a cap on the distribution of energy carriers natural gas, electricity and fuel seems to be an interesting option to shape the trade scheme. A cap on the distribution of electricity is desirable, but not easy to implement. The possible success of the system depends partly on an experiment with emission reductions. 10 refs.

  6. Advanced technology development reducing CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sup

    2010-09-15

    Responding to Korean government policies on green growth and global energy/ environmental challenges, SK energy has been developing new technologies to reduce CO2 emissions by 1) CO2 capture and utilization, 2) efficiency improvement, and 3) Li-ion batteries. The paper introduces three advanced technologies developed by SK energy; GreenPol, ACO, and Li-ion battery. Contributing to company vision, a more energy and less CO2, the three technologies are characterized as follows. GreenPol utilizes CO2 as a feedstock for making polymer. Advanced Catalytic Olefin (ACO) reduces CO2 emission by 20% and increase olefin production by 17%. Li-ion Batteries for automotive industries improves CO2 emission.

  7. Spectroscopic technique for measuring atmospheric CO2

    International Nuclear Information System (INIS)

    Stokes, G.M.; Stokes, R.A.

    1979-01-01

    As part of a continuing effort to identify areas in which astronomical techniques and data may be profitably applied to atmospheric problems, both new and archival solar spectra have been collected to prepare for an analysis of their use for studying the changes of the atmospheric CO 2 burden. This analysis has resulted in the initiation of an observing program using the Fourier Transform Spectrometer (FTS) of the McMath Solar Telescope at Kitt Peak National Observatory (KPNO). This program is generating spectra, the quality of which should not only aid the archival CO 2 study but also lead to analyses of other trace gases

  8. Mesoscale modelling of atmospheric CO2 across Denmark

    DEFF Research Database (Denmark)

    Lansø, Anne Sofie

    2016-01-01

    of the simulated atmospheric CO2 across Denmark was, in particular, affected by the Danish terrestrial surface exchanges and its temporal variability. This study urges all future modelling studies of air–sea CO2 to include short-term variability in pCO2. To capture the full heterogeneity of the surface exchanges......It is scientifically well-established that the increase of atmospheric CO2 affects the entire globe and will lead to higher surface temperatures. Although anthropogenic CO2is emitted straight into the atmosphere, it does not all contribute to the existing atmospheric CO2 reservoir. Approximately 29......% is taken up by the global oceans, due to under-saturation of CO2 in the surface waters, while another 33 % is taken up by the terrestrial biosphere, via photosynthesis. In order to estimate the effects of increasing anthropogenic emissions of CO2 more accurately in the future, it is essential to understand...

  9. Corn residue removal and CO2 emissions

    Science.gov (United States)

    Carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) are the primary greenhouse gases (GHG) emitted from the soil due to agricultural activities. In the short-term, increases in CO2 emissions indicate increased soil microbial activity. Soil micro-organisms decompose crop residues and release...

  10. Eindhoven Airport : towards zero CO2 emissions

    NARCIS (Netherlands)

    Jorge Simoes Pedro, Joana

    2015-01-01

    Eindhoven airport is growing and it is strongly committed to take this opportunity to invest in innovative solutions for a sustainable development. Therefore, this document proposes a strategic plan for reaching Zero CO2 emissions at Eindhoven airport. This document proposes to reduce the CO2

  11. Practical guidebook about the market of CO2 emission quotas

    International Nuclear Information System (INIS)

    2005-01-01

    Since January 1, 2005, the European directive about the trading of CO 2 emission quotas foresees the allocation of CO 2 emission quotas to the industrial sectors that generate huge amounts of greenhouse gases (energy generation, cement, glass, steel-making, mineral and paper industries). A system of trading of CO 2 quotas has been implemented and allows the companies to exchange, sale or purchase quotas in order to be conformable with the volume of CO 2 they have been authorized to release in the atmosphere. This guidebook is a vade mecum of the management of emission quotas. It explains the actions of the international community in favor of the fight against greenhouse emissions, the 3 flexibility mechanisms, the French environmental policy, the European system of fight against climatic change, the CO 2 quotas system and its practical implementation. (J.S.)

  12. CO2 Emission Reduction in Energy Sector

    International Nuclear Information System (INIS)

    Bole, A.; Sustersic, A.; Voncina, R.

    2013-01-01

    Due to human activities, concentrations of the greenhouse gases increase in the atmosphere much quicker than they naturally would. Today it is clear that climate change is the result of human activities. With the purpose of preventing, reducing and mitigating of climate change, the EU, whose member is also Slovenia, set ambitious goals. In order to keep rise of the global atmosphere temperature below 2 degrees of C, the European Council set an objective of reducing greenhouse gas emissions by 80 - 95 % by 2050 compared to 1990. It is important that every single individual is included in achieving of these goals. Certainly, the most important role is assumed by individual sectors especially Public Electricity and Heat Production sector as one of the greatest emitters of the greenhouse gases. As a possible solution of radical reduction of the greenhouse gases emission from mentioned sector Carbon Capture and Storage (CCS) technology is implemented. In the article the range of CO 2 reduction possibilities, technology demands and environmental side effects of CCS technology are described. Evaluation of CCS implementation possibilities in Slovenia is also included.(author)

  13. CO2 emissions of nuclear power supply

    International Nuclear Information System (INIS)

    Wissel, S.; Mayer-Spohn, O.; Fahl, U.; Voss, A.

    2007-01-01

    Increasingly, supported by the recent reports of the IPCC (International Panel on Climate Change), political, social and scientific institutions call for the use of atomic energy for reducing CO2 emissions. In Germany, the discussion is highly controversial. A life-cycle balance of nuclear power shows that its CO2 emissions are much lower than those of other technologies, even if changes in the nuclear fuel cycle are taken into account. (orig.)

  14. Framework for Assessing Biogenic CO2 Emissions from ...

    Science.gov (United States)

    This revision of the 2011 report, Accounting Framework for Biogenic CO2 Emissions from Stationary Sources, evaluates biogenic CO2 emissions from stationary sources, including a detailed study of the scientific and technical issues associated with assessing biogenic carbon dioxide emissions from stationary sources. EPA developed the revised report, Framework for Assessing Biogenic CO2 Emissions from Stationary Sources, to present a methodological framework for assessing the extent to which the production, processing, and use of biogenic material at stationary sources for energy production results in a net atmospheric contribution of biogenic CO2 emissions. Biogenic carbon dioxide emissions are defined as CO2 emissions related to the natural carbon cycle, as well as those resulting from the production, harvest, combustion, digestion, decomposition, and processing of biologically-based materials. The EPA is continuing to refine its technical assessment of biogenic CO2 emissions through another round of targeted peer review of the revised study with the EPA Science Advisory Board (SAB). This study was submitted to the SAB's Biogenic Carbon Emissions Panel in February 2015. http://yosemite.epa.gov/sab/sabproduct.nsf/0/3235dac747c16fe985257da90053f252!OpenDocument&TableRow=2.2#2 The revised report will inform efforts by policymakers, academics, and other stakeholders to evaluate the technical aspects related to assessments of biogenic feedstocks used for energy at s

  15. Stable isotope measurements of atmospheric CO2

    International Nuclear Information System (INIS)

    White, J.W.C.; Ferretti, D.F.; Vaughn, B.H.; Francey, R.J.; Allison, C.E.

    2002-01-01

    The measurement of stable carbon isotope ratios of atmospheric carbon dioxide, δ 13 CO 2 are useful for partitioning surface-atmospheric fluxes into terrestrial and oceanic components. δC 18 OO also has potential for segregating photosynthetic and respiratory fluxes in terrestrial ecosystems. Here we describe in detail the techniques for making these measurements. The primary challenge for all of the techniques used to measure isotopes of atmospheric CO 2 is to achieve acceptable accuracy and precision and to maintain them over the decades needed to observe carbon cycle variability. The keys to success such an approach are diligent intercalibrations of laboratories from around the world, as well as the use of multiple techniques such as dual inlet and GC-IRMS and the intercomparison of such measurements. We focus here on two laboratories, the Stable Isotope Lab at the Institute for Arctic and Alpine Research (INSTAAR) at the University of Colorado is described and the Commonwealth Scientific and Industrial Research Organisation - Atmospheric Research (CSIRO). Different approaches exist at other laboratories (e.g. programs operated by Scripps Institution of Oceanography (SIO) and The Center for Atmospheric and Oceanic Studies, Toboku University (TU)) however these are not discussed here. Finally, we also discuss the recently developed Gas Chromatography - Isotope Ratio Mass Spectrometry (GC-IRMS) technique which holds significant promise for measuring ultra-small samples of gas with good precision. (author)

  16. Decoupling of CO2 emissions and GDP

    Directory of Open Access Journals (Sweden)

    Yves Rocha de Salles Lima

    2016-12-01

    Full Text Available The objetive of this work is to analyze the variation of CO2 emissions and GDP per capita throughout the years and identify the possible interaction between them. For this purpose, data from the International Energy Agency was collected on two countries, Brazil and the one with the highest GDP worldwide, the United States. Thus, the results showed that CO2 emissions have been following the country’s economic growth for many years. However, these two indicators have started to decouple in the US in 2007 while in Brazil the same happened in 2011. Furthermore, projections for CO2 emissions are made until 2040, considering 6 probable scenarios. These projections showed that even if the oil price decreases, the emissions will not be significantly affected as long as the economic growth does not decelerate.

  17. Implications of overestimated anthropogenic CO2 emissions on East Asian and global land CO2 flux inversion

    Science.gov (United States)

    Saeki, Tazu; Patra, Prabir K.

    2017-12-01

    Measurement and modelling of regional or country-level carbon dioxide (CO2) fluxes are becoming critical for verification of the greenhouse gases emission control. One of the commonly adopted approaches is inverse modelling, where CO2 fluxes (emission: positive flux, sink: negative flux) from the terrestrial ecosystems are estimated by combining atmospheric CO2 measurements with atmospheric transport models. The inverse models assume anthropogenic emissions are known, and thus the uncertainties in the emissions introduce systematic bias in estimation of the terrestrial (residual) fluxes by inverse modelling. Here we show that the CO2 sink increase, estimated by the inverse model, over East Asia (China, Japan, Korea and Mongolia), by about 0.26 PgC year-1 (1 Pg = 1012 g) during 2001-2010, is likely to be an artifact of the anthropogenic CO2 emissions increasing too quickly in China by 1.41 PgC year-1. Independent results from methane (CH4) inversion suggested about 41% lower rate of East Asian CH4 emission increase during 2002-2012. We apply a scaling factor of 0.59, based on CH4 inversion, to the rate of anthropogenic CO2 emission increase since the anthropogenic emissions of both CO2 and CH4 increase linearly in the emission inventory. We find no systematic increase in land CO2 uptake over East Asia during 1993-2010 or 2000-2009 when scaled anthropogenic CO2 emissions are used, and that there is a need of higher emission increase rate for 2010-2012 compared to those calculated by the inventory methods. High bias in anthropogenic CO2 emissions leads to stronger land sinks in global land-ocean flux partitioning in our inverse model. The corrected anthropogenic CO2 emissions also produce measurable reductions in the rate of global land CO2 sink increase post-2002, leading to a better agreement with the terrestrial biospheric model simulations that include CO2-fertilization and climate effects.

  18. Energy implications of future stabilization of atmospheric CO2 content

    International Nuclear Information System (INIS)

    Hoffert, M.I.; Jain, A.K.

    1998-01-01

    The United Nations Framework Convention on Climate Change calls for ''stabilization of greenhouse-gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system...''. A standard baseline scenario that assumes no policy intervention to limit greenhouse-gas emissions has 10 TW (10 x 10 12 watts) of carbon-emission-free power being produced by the year 2050, equivalent to the power provided by all today's energy sources combined. Here we employ a carbon-cycle/energy model to estimate the carbon-emission-free power needed for various atmospheric CO 2 stabilization scenarios. We find that CO 2 stabilization with continued economic growth will require innovative, cost-effective and carbon-emission-free technologies that can provide additional tens of terawatts of primary power in the coming decades, and certainly by the middle of the twenty-first century, even with sustained improvement in the economic productivity of primary energy. (author)

  19. CO2 emissions embodied in international trade: evidence for Spain

    International Nuclear Information System (INIS)

    Sanchez-Choliz, Julio; Duarte, Rosa

    2004-01-01

    The objective of this paper is to analyse the sectoral impacts that Spanish international trade relations have on present levels of atmospheric pollution using an input-output model. We try to evaluate the exports and imports of the Spanish economy in terms of the direct and indirect CO 2 emissions (CO 2 embodied) generated in Spain and abroad. The results show a slightly exporting behaviour in the Spanish economy which, nevertheless, hides important pollution interchanges. Moreover, the sectors transport material, mining and energy, non-metallic industries, chemical and metals are the most relevant CO 2 exporters and other services, construction, transport material and food the biggest CO 2 importers, and those whose final demands also embody more than 70% of the CO 2 emissions

  20. Reconsideration of atmospheric CO2 lifetime: potential mechanism for explaining CO2 missing sink

    Science.gov (United States)

    Kikuchi, R.; Gorbacheva, T.; Gerardo, R.

    2009-04-01

    Carbon cycle data (Intergovernmental Panel on Climate Change 1996) indicate that fossil fuel use accounts for emissions to the atmosphere of 5.5±0.5 GtC (Gigatons of carbon) annually. Other important processes in the global CO2 budget are tropical deforestation, estimated to generate about 1.6±1.0 GtC/yr; absorption by the oceans, removing about 2.0±0.8 GtC/yr; and regrowth of northern forests, taking up about 0.5±0.5 GtC/yr. However, accurate measurements of CO2 show that the atmosphere is accumulating only about 3.3±0.2 GtC/yr. The imbalance of about 1.3±1.5 GtC/yr, termed the "missing sink", represents the difference between the estimated sources and the estimated sinks of CO2; that is, we do not know where all of the anthropogenic CO2 is going. Several potential mechanisms have been proposed to explain this missing carbon, such as CO2 fertilization, climate change, nitrogen deposition, land use change, forest regrowth et al. Considering the complexity of ecosystem, most of ecosystem model cannot handle all the potential mechanisms to reproduce the real world. It has been believed that the dominant sink mechanism is the fertilizing effects of increased CO2 concentrations in the atmosphere and the addition to soils of fixed nitrogen from fossil-fuel burning and agricultural fertilizers. However, a recent analysis of long-term observations of the change in biomass and growth rates suggests that such fertilization effects are much too small to explain more than a small fraction of the observed sink. In addition, long-term experiments in which small forest patches and other land ecosystems have been exposed to elevated CO2 levels for extended periods show a rapid decrease of the fertilization effect after an initial enhancement. We will explore this question of the missing sink in atmospheric CO2 residence time. Radioactive and stable carbon isotopes (13-C/12-C) show the real CO2 lifetime is about 5 years; i.e. CO2 is quickly taken out of the atmospheric

  1. STABILITY OF CO2 ATMOSPHERES ON DESICCATED M DWARF EXOPLANETS

    International Nuclear Information System (INIS)

    Gao, Peter; Hu, Renyu; Li, Cheng; Yung, Yuk L.; Robinson, Tyler D.

    2015-01-01

    We investigate the chemical stability of CO 2 -dominated atmospheres of desiccated M dwarf terrestrial exoplanets using a one-dimensional photochemical model. Around Sun-like stars, CO 2 photolysis by Far-UV (FUV) radiation is balanced by recombination reactions that depend on water abundance. Planets orbiting M dwarf stars experience more FUV radiation, and could be depleted in water due to M dwarfs’ prolonged, high-luminosity pre-main sequences. We show that, for water-depleted M dwarf terrestrial planets, a catalytic cycle relying on H 2 O 2 photolysis can maintain a CO 2 atmosphere. However, this cycle breaks down for atmospheric hydrogen mixing ratios <1 ppm, resulting in ∼40% of the atmospheric CO 2 being converted to CO and O 2 on a timescale of 1 Myr. The increased O 2 abundance leads to high O 3 concentrations, the photolysis of which forms another CO 2 -regenerating catalytic cycle. For atmospheres with <0.1 ppm hydrogen, CO 2 is produced directly from the recombination of CO and O. These catalytic cycles place an upper limit of ∼50% on the amount of CO 2 that can be destroyed via photolysis, which is enough to generate Earth-like abundances of (abiotic) O 2 and O 3 . The conditions that lead to such high oxygen levels could be widespread on planets in the habitable zones of M dwarfs. Discrimination between biological and abiotic O 2 and O 3 in this case can perhaps be accomplished by noting the lack of water features in the reflectance and emission spectra of these planets, which necessitates observations at wavelengths longer than 0.95 μm

  2. CO2 emissions of nuclear electricity generation

    International Nuclear Information System (INIS)

    Wissel, Steffen; Mayer-Spohn, Oliver; Fahl, Ulrich; Blesl, Markus; Voss, Alfred

    2008-01-01

    A survey of LCA studies on nuclear electricity generation revealed life cycle CO 2 emissions ranging between 3 g/kWhe to 60 g/kWhe and above. Firstly, this paper points out the discrepancies in studies by estimating the CO 2 emissions of nuclear power generation. Secondly, the paper sets out to provide critical review of future developments of the fuel cycle for light water reactors and illustrates the impact of uncertainties on the specific CO 2 emissions of nuclear electricity generation. Each step in the fuel cycle will be considered and with regard to the CO 2 emissions analysed. Thereby different assumptions and uncertainty levels are determined for the nuclear fuel cycle. With the impacts of low uranium ore grades for mining and milling as well as higher burn-up rates future fuel characteristics are considered. Sensitivity analyses are performed for all fuel processing steps, for different technical specifications of light water reactors as well as for further external frame conditions. (authors)

  3. Atmospheric CH4 and CO2 enhancements and biomass burning emission ratios derived from satellite observations of the 2015 Indonesian fire plumes

    Directory of Open Access Journals (Sweden)

    R. J. Parker

    2016-08-01

    Full Text Available The 2015–2016 strong El Niño event has had a dramatic impact on the amount of Indonesian biomass burning, with the El Niño-driven drought further desiccating the already-drier-than-normal landscapes that are the result of decades of peatland draining, widespread deforestation, anthropogenically driven forest degradation and previous large fire events. It is expected that the 2015–2016 Indonesian fires will have emitted globally significant quantities of greenhouse gases (GHGs to the atmosphere, as did previous El Niño-driven fires in the region. The form which the carbon released from the combustion of the vegetation and peat soils takes has a strong bearing on its atmospheric chemistry and climatological impacts. Typically, burning in tropical forests and especially in peatlands is expected to involve a much higher proportion of smouldering combustion than the more flaming-characterised fires that occur in fine-fuel-dominated environments such as grasslands, consequently producing significantly more CH4 (and CO per unit of fuel burned. However, currently there have been no aircraft campaigns sampling Indonesian fire plumes, and very few ground-based field campaigns (none during El Niño, so our understanding of the large-scale chemical composition of these extremely significant fire plumes is surprisingly poor compared to, for example, those of southern Africa or the Amazon.Here, for the first time, we use satellite observations of CH4 and CO2 from the Greenhouse gases Observing SATellite (GOSAT made in large-scale plumes from the 2015 El Niño-driven Indonesian fires to probe aspects of their chemical composition. We demonstrate significant modifications in the concentration of these species in the regional atmosphere around Indonesia, due to the fire emissions.Using CO and fire radiative power (FRP data from the Copernicus Atmosphere Service, we identify fire-affected GOSAT soundings and show that peaks in fire activity are followed by

  4. Effects of tillage practice and atmospheric CO2 level on soil CO2 efflux

    Science.gov (United States)

    Elevated atmospheric carbon dioxide (CO2) affects both the quantity and quality of plant tissues, which impacts the cycling and storage of carbon (C) within plant/soil systems and thus the rate of CO2 release back to the atmosphere. Research to accurately quantify the effects of elevated CO2 and as...

  5. Atmospheric and geological CO2 damage costs in energy scenarios

    International Nuclear Information System (INIS)

    Smekens, K.E.L.; Van der Zwaan, B.C.C.

    2006-05-01

    Geological carbon dioxide capture and storage (CCS) is currently seriously considered for addressing, in the near term, the problem of climate change. CCS technology is available today and is expected to become an increasingly affordable CO2 abatement alternative. Whereas the rapidly growing scientific literature on CCS as well as experimental and commercial practice demonstrate the technological and economic feasibility of implementing this clean fossil fuel option on a large scale, relatively little attention has been paid so far to the risks and environmental externalities of geological storage of CO2. This paper assesses the effects of including CCS damage costs in a long-term energy scenario analysis for Europe. An external cost sensitivity analysis is performed with a bottom-up energy technology model that accounts not only for CCS technologies but also for their external costs. Our main conclusion is that in a business-as-usual scenario (i.e. without climate change intervention or externality internalisation), CCS technologies are likely to be deployed at least to some extent, mainly in the power generation sector, given the economic benefits of opportunities such as enhanced coal bed methane, oil and gas recovery. Under a strict climate (CO2 emissions) constraint, CCS technologies are deployed massively. With the simultaneous introduction of both CO2 and CCS taxation in the power sector, designed to internalise the external atmospheric and geological effects of CO2 emissions and storage, respectively, we find that CCS will only be developed if the climate change damage costs are at least of the order of 100 euro/t CO2 or the CO2 storage damage costs not more than a few euro/t CO2. When the internalised climate change damage costs are as high as 67 euro/t CO2, the expensive application of CCS to biomass-fuelled power plants (with negative net CO2 emissions) proves the most effective CCS alternative to reduce CO2 emissions, rather than CCS applied to fossil

  6. European Community Can Reduce CO2 Emissions by Sixty Percent : A Feasibility Study

    NARCIS (Netherlands)

    Mot, E.; Bartelds, H.; Esser, P.M.; Huurdeman, A.J.M.; Laak, P.J.A. van de; Michon, S.G.L.; Nielen, R.J.; Baar, H.J.W. de

    1993-01-01

    Carbon dioxide (CO2) emissions in the European Community (EC) can be reduced by roughly 60 percent. A great many measures need to be taken to reach this reduction, with a total annual cost of ECU 55 milliard. Fossil fuel use is the main cause of CO2 emissions into the atmosphere; CO2 emissions are

  7. Global CO2 emissions from cement production

    Science.gov (United States)

    Andrew, Robbie M.

    2018-01-01

    The global production of cement has grown very rapidly in recent years, and after fossil fuels and land-use change, it is the third-largest source of anthropogenic emissions of carbon dioxide. The required data for estimating emissions from global cement production are poor, and it has been recognised that some global estimates are significantly inflated. Here we assemble a large variety of available datasets and prioritise official data and emission factors, including estimates submitted to the UNFCCC plus new estimates for China and India, to present a new analysis of global process emissions from cement production. We show that global process emissions in 2016 were 1.45±0.20 Gt CO2, equivalent to about 4 % of emissions from fossil fuels. Cumulative emissions from 1928 to 2016 were 39.3±2.4 Gt CO2, 66 % of which have occurred since 1990. Emissions in 2015 were 30 % lower than those recently reported by the Global Carbon Project. The data associated with this article can be found at https://doi.org/10.5281/zenodo.831455.

  8. PEAT-CO2. Assessment of CO2 emissions from drained peatlands in SE Asia

    International Nuclear Information System (INIS)

    Hooijer, A.; Silvius, M.; Woesten, H.; Page, S.

    2006-12-01

    Forested tropical peatlands in SE Asia store at least 42,000 Megatonnes of soil carbon. This carbon is increasingly released to the atmosphere due to drainage and fires associated with plantation development and logging. Peatlands make up 12% of the SE Asian land area but account for 25% of current deforestation. Out of 27 million hectares of peatland, 12 million hectares (45%) are currently deforested and mostly drained. One important crop in drained peatlands is palm oil, which is increasingly used as a biofuel in Europe. In the PEAT-CO2 project, present and future emissions from drained peatlands were quantified using the latest data on peat extent and depth, present and projected land use and water management practice, decomposition rates and fire emissions. It was found that current likely CO2 emissions caused by decomposition of drained peatlands amounts to 632 Mt/y (between 355 and 874 Mt/y). This emission will increase in coming decades unless land management practices and peatland development plans are changed, and will continue well beyond the 21st century. In addition, over 1997-2006 an estimated average of 1400 Mt/y in CO2 emissions was caused by peatland fires that are also associated with drainage and degradation. The current total peatland CO2 emission of 2000 Mt/y equals almost 8% of global emissions from fossil fuel burning. These emissions have been rapidly increasing since 1985 and will further increase unless action is taken. Over 90% of this emission originates from Indonesia, which puts the country in 3rd place (after the USA and China) in the global CO2 emission ranking. It is concluded that deforested and drained peatlands in SE Asia are a globally significant source of CO2 emissions and a major obstacle to meeting the aim of stabilizing greenhouse gas emissions, as expressed by the international community. It is therefore recommended that international action is taken to help SE Asian countries, especially Indonesia, to better conserve

  9. Response of atmospheric CO2 to changes in land use

    International Nuclear Information System (INIS)

    King, A.W.; Emanuel, W.R.; Post, W.M.

    1991-01-01

    This chapter examines how different histories of CO 2 release from past changes in land use influence the simulation of past and future changes in atmospheric CO 2 . The authors first simulate past change in atmospheric CO 2 using reconstructed histories of land-use CO 2 release from a historical-ecological model of land-use change and CO 2 release. They examine the impact of each history on the coincidence between simulated and observed atmospheric CO 2 . They then compare these CO 2 release histories, and their contribution to coincidence or noncoincidence of simulation and observation, with histories reconstructed by deconvolution of the atmospheric CO 2 record. They conclude by exploring the implications of these deconvolved reconstructions for the simulation of future changes in atmospheric CO 2

  10. Forgotten carbon: indirect CO2 in greenhouse gas emission inventories

    International Nuclear Information System (INIS)

    Gillenwater, Michael

    2008-01-01

    National governments that are Parties to the United Nations Framework Convention on Climate Change (UNFCCC) are required to submit greenhouse gas (GHG) inventories accounting for the emissions and removals occurring within their geographic territories. The Intergovernmental Panel on Climate Change (IPCC) provides inventory methodology guidance to the Parties of the UNFCCC. This methodology guidance, and national inventories based on it, omits carbon dioxide (CO 2 ) from the atmospheric oxidation of methane, carbon monoxide, and non-methane volatile organic compounds emissions that result from several source categories. The inclusion of this category of 'indirect' CO 2 in GHG inventories increases global anthropogenic emissions (excluding land use and forestry) between 0.5 and 0.7%. However, the effect of inclusion on aggregate UNFCCC Annex I Party GHG emissions would be to reduce the growth of total emissions, from 1990 to 2004, by 0.2% points. The effect on the GHG emissions and emission trends of individual countries varies. The paper includes a methodology for calculating these emissions and discusses uncertainties. Indirect CO 2 is equally relevant for GHG inventories at other scales, such as global, regional, organizational, and facility. Similarly, project-based methodologies, such as those used under the Clean Development Mechanism, may need revising to account for indirect CO 2

  11. Toxic emissions and devalued CO2-neutrality

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    With reference to the paradigme shift regarding the formation of dioxins in municiplan solid waste incinerators experimental results are taken into account which lead to the suspicion that the same mechanism of de-novo-synthesis also applies to fireplace chimneys. This can explain the dioxin...... friendly effects of substituting wood burning for fossil fuels. With reference to Bent Sørensen's classical work on 'Renewable Energy' the assumption of CO2-neutrality regarding incineration is problematised when applied to plants with long rotation periods as trees. Registered CO2-emissions from wood...... burning are characterised together with particle and PAH emissions. The positive treatment of wood stove-technology in the Danish strategy for sustainable development (draft 2007) is critically evaluated and approaches to better regulation are identified....

  12. Achieving Negative CO2 Emissions by Protecting Ocean Chemistry

    Science.gov (United States)

    Cannara, A.

    2016-12-01

    Industrial Age CO2 added 1.8 trillion tons to the atmosphere. About ¼ has dissolved in seas. The rest still dissolves, bolstered by present emissions of >30 gigatons/year. Airborne & oceanic CO2 have induced sea warming & ocean acidification*. This paper suggests a way to induce a negative CO2-emissions environment for climate & oceans - preserve the planet`s dominant CO2-sequestration system ( 1 gigaton/year via calcifying sea life**) by promptly protecting ocean chemistry via expansion of clean power for both lime production & replacement of CO2-emitting sources. Provide natural alkali (CaO, MgO…) to oceans to maintain average pH above 8.0, as indicated by marine biologists. That alkali (lime) is available from past calcifying life's limestone deposits, so can be returned safely to seas once its CO2 is removed & permanently sequestered (Carbfix, BSCP, etc.***). Limestone is a dense source of CO2 - efficient processing per mole sequestered. Distribution of enough lime is possible via cargo-ship transits - 10,000 tons lime/transit, 1 million transits/year. New Panamax ships carry 120,000 tons. Just 10,000/transit allows gradual reduction of present & past CO2 emissions effects, if coupled with combustion-power reductions. CO2 separation from limestone, as in cement plants, consumes 400kWHrs of thermal energy per ton of output lime (or CO2). To combat yearly CO2 dissolution in seas, we must produce & distribute about 10gigatons of lime/year. Only nuclear power produces the clean energy (thousands of terawatt hours) to meet this need - 1000 dedicated 1GWe reactors, processing 12 cubic miles of limestone/year & sequestering CO2 into a similar mass of basalt. Basalt is common in the world. Researchers*** report it provides good, mineralized CO2 sequestration. The numbers above allow gradual CO2 reduction in air and seas, if we return to President Kennedy's energy path: http://tinyurl.com/6xgpkfa We're on an environmental precipice due to failure to eliminate

  13. Regional Ecosystem-Atmosphere CO2 Exchange Via Atmospheric Budgets

    Energy Technology Data Exchange (ETDEWEB)

    Davis, K J; Richardson, S J; Miles, N L

    2007-03-07

    Inversions of atmospheric CO2 mixing ratio measurements to determine CO2 sources and sinks are typically limited to coarse spatial and temporal resolution. This limits our ability to evaluate efforts to upscale chamber- and stand-level CO2 flux measurements to regional scales, where coherent climate and ecosystem mechanisms govern the carbon cycle. As a step towards the goal of implementing atmospheric budget or inversion methodology on a regional scale, a network of five relatively inexpensive CO2 mixing ratio measurement systems was deployed on towers in northern Wisconsin. Four systems were distributed on a circle of roughly 150-km radius, surrounding one centrally located system at the WLEF tower near Park Falls, WI. All measurements were taken at a height of 76 m AGL. The systems used single-cell infrared CO2 analyzers (Licor, model LI-820) rather than the siginificantly more costly two-cell models, and were calibrated every two hours using four samples known to within ± 0.2 ppm CO2. Tests prior to deployment in which the systems sampled the same air indicate the precision of the systems to be better than ± 0.3 ppm and the accuracy, based on the difference between the daily mean of one system and a co-located NOAA-ESRL system, is consistently better than ± 0.3 ppm. We demonstrate the utility of the network in two ways. We interpret regional CO2 differences using a Lagrangian parcel approach. The difference in the CO2 mixing ratios across the network is at least 2-3 ppm, which is large compared to the accuracy and precision of the systems. Fluxes estimated assuming Lagrangian parcel transport are of the same sign and magnitude as eddy-covariance flux measurements at the centrally-located WLEF tower. These results indicate that the network will be useful in a full inversion model. Second, we present a case study involving a frontal passage through the region. The progression of a front across the network is evident; changes as large as four ppm in one minute

  14. Smart Transportation CO2 Emission Reduction Strategies

    Science.gov (United States)

    Tarulescu, S.; Tarulescu, R.; Soica, A.; Leahu, C. I.

    2017-10-01

    Transport represents the sector with the fastest growing greenhouse gas emissions around the world. The main global objective is to reduce energy usage and associated greenhouse gas emissions from the transportation sector. For this study it was analyzed the road transportation system from Brasov Metropolitan area. The study was made for the transportation route that connects Ghimbav city to the main surrounding objectives. In this study ware considered four optimization measures: vehicle fleet renewal; building the detour belt for the city; road increasing the average travel speed; making bicycle lanes; and implementing an urban public transport system for Ghimbav. For each measure it was used a mathematical model to calculate the energy consumption and carbon emissions from the road transportation sector. After all four measures was analyzed is calculated the general energy consumption and CO2 reduction if this are applied from year 2017 to 2020.

  15. Multiscale observations of CO2, 13CO2, and pollutants at Four Corners for emission verification and attribution

    Science.gov (United States)

    Lindenmaier, Rodica; Dubey, Manvendra K.; Henderson, Bradley G.; Butterfield, Zachary T.; Herman, Jay R.; Rahn, Thom; Lee, Sang-Hyun

    2014-01-01

    There is a pressing need to verify air pollutant and greenhouse gas emissions from anthropogenic fossil energy sources to enforce current and future regulations. We demonstrate the feasibility of using simultaneous remote sensing observations of column abundances of CO2, CO, and NO2 to inform and verify emission inventories. We report, to our knowledge, the first ever simultaneous column enhancements in CO2 (3–10 ppm) and NO2 (1–3 Dobson Units), and evidence of δ13CO2 depletion in an urban region with two large coal-fired power plants with distinct scrubbing technologies that have resulted in ∆NOx/∆CO2 emission ratios that differ by a factor of two. Ground-based total atmospheric column trace gas abundances change synchronously and correlate well with simultaneous in situ point measurements during plume interceptions. Emission ratios of ∆NOx/∆CO2 and ∆SO2/∆CO2 derived from in situ atmospheric observations agree with those reported by in-stack monitors. Forward simulations using in-stack emissions agree with remote column CO2 and NO2 plume observations after fine scale adjustments. Both observed and simulated column ∆NO2/∆CO2 ratios indicate that a large fraction (70–75%) of the region is polluted. We demonstrate that the column emission ratios of ∆NO2/∆CO2 can resolve changes from day-to-day variation in sources with distinct emission factors (clean and dirty power plants, urban, and fires). We apportion these sources by using NO2, SO2, and CO as signatures. Our high-frequency remote sensing observations of CO2 and coemitted pollutants offer promise for the verification of power plant emission factors and abatement technologies from ground and space. PMID:24843169

  16. Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification

    Science.gov (United States)

    Zhang, Han; Cao, Long

    2016-01-01

    Ocean uptake of anthropogenic CO2 reduces pH and saturation state of calcium carbonate materials of seawater, which could reduce the calcification rate of some marine organisms, triggering a negative feedback on the growth of atmospheric CO2. We quantify the effect of this CO2-calcification feedback by conducting a series of Earth system model simulations that incorporate different parameterization schemes describing the dependence of calcification rate on saturation state of CaCO3. In a scenario with SRES A2 CO2 emission until 2100 and zero emission afterwards, by year 3500, in the simulation without CO2-calcification feedback, model projects an accumulated ocean CO2 uptake of 1462 PgC, atmospheric CO2 of 612 ppm, and surface pH of 7.9. Inclusion of CO2-calcification feedback increases ocean CO2 uptake by 9 to 285 PgC, reduces atmospheric CO2 by 4 to 70 ppm, and mitigates the reduction in surface pH by 0.003 to 0.06, depending on the form of parameterization scheme used. It is also found that the effect of CO2-calcification feedback on ocean carbon uptake is comparable and could be much larger than the effect from CO2-induced warming. Our results highlight the potentially important role CO2-calcification feedback plays in ocean carbon cycle and projections of future atmospheric CO2 concentrations. PMID:26838480

  17. Recent global CO2 flux inferred from atmospheric CO2 observations and its regional analyses

    Directory of Open Access Journals (Sweden)

    J. M. Chen

    2011-11-01

    Full Text Available The net surface exchange of CO2 for the years 2002–2007 is inferred from 12 181 atmospheric CO2 concentration data with a time-dependent Bayesian synthesis inversion scheme. Monthly CO2 fluxes are optimized for 30 regions of the North America and 20 regions for the rest of the globe. Although there have been many previous multiyear inversion studies, the reliability of atmospheric inversion techniques has not yet been systematically evaluated for quantifying regional interannual variability in the carbon cycle. In this study, the global interannual variability of the CO2 flux is found to be dominated by terrestrial ecosystems, particularly by tropical land, and the variations of regional terrestrial carbon fluxes are closely related to climate variations. These interannual variations are mostly caused by abnormal meteorological conditions in a few months in the year or part of a growing season and cannot be well represented using annual means, suggesting that we should pay attention to finer temporal climate variations in ecosystem modeling. We find that, excluding fossil fuel and biomass burning emissions, terrestrial ecosystems and oceans absorb an average of 3.63 ± 0.49 and 1.94 ± 0.41 Pg C yr−1, respectively. The terrestrial uptake is mainly in northern land while the tropical and southern lands contribute 0.62 ± 0.47, and 0.67 ± 0.34 Pg C yr−1 to the sink, respectively. In North America, terrestrial ecosystems absorb 0.89 ± 0.18 Pg C yr−1 on average with a strong flux density found in the south-east of the continent.

  18. Reducing CO2 emissions in Sierra Leone and Ghana

    International Nuclear Information System (INIS)

    Davidson, O.

    1991-01-01

    With soring population growth rates and minimal economic growth, the nations of Africa are afflicted with innumerable problems. Why then should Africa's developing countries worry about CO 2 emissions? First, because agricultural activities form the backbone of most African economies; thus, these nations may be particularly vulnerable to the negative impacts of climate change. Second, acting to reduce carbon emissions will bring about more efficient energy use. All of Africa could benefit from the improved use of energy. Finally, the accumulation of CO 2 in the atmosphere is a global problem with individual solutions; in order to reduce international emissions, all countries, including those in Africa, must contribute. Typical of many African countries, Ghana and Sierra Leone have among the lowest levels of energy demand per capita across the globe. primary energy demand per capita in these two West African nations equals about one quarter of the world's average and about one twentieth of the US average. This work summarizes the results of two long-term energy use and carbon emissions scenarios for Sierra Leone and Ghana. In the high emissions (HE) scenario for 2025, policy changes focused on galvanizing economic growth lead to significant increases in energy use and carbon emissions in Ghana and Sierra Leone between 1985 and 2025. In the low emissions (LE) scenario, the implementation of policies aimed specifically at curtailing CO 2 emissions significantly limits the increase in carbon in both nations by 2025

  19. CO2 emission trade from a fiscal perspective

    International Nuclear Information System (INIS)

    Klaassen, F.A.H.; Derksen, R.T.; Keijel, J.J.C.

    2004-06-01

    The report gives answers to questions as 'are CO2 emission permits assets or supplies?'; how to deal with forward contracts and options in CO2 emission permits 'fiscal-wise'; and 'which are the consequences of CO2 emissions trade for the rebate of pre-taxes?' Als attention is paid to trading system for NOx emission [nl

  20. The other GHG : steps taken to reduce CO2 emissions may contribute to increased levels of water vapour in the atmosphere

    International Nuclear Information System (INIS)

    Collison, M.

    2008-01-01

    As a result of the Intergovernmental Panel on Climate Change (IPCC), the Canadian oil and gas industry and government are now in the midst of a massive overhaul of hydrocarbon energy use and carbon dioxide (CO 2 ) management. However, human-enhanced water evaporation (HEWE) may also be a significant contributor to global climate warming. Human-caused distortions of the hydrological cycle can cause multiple localized weather disturbances. There is currently a thousand times more water vapor being emitted than CO 2 , and this is contributing to increased rainfall levels around the world. Expansion of the agriculture and growth of industry has caused significant diversions and redistributions of water. Most of the water used is evaporated in the northern hemisphere. Climate modellers are needed to analyze the impacts of human-enhanced water evaporation local climates and weather. The main sources of water emissions are government-controlled energy projects and subsidized irrigation projects. Current levels of water vapour emissions are between 10 and 100 times the value of warming per tonne as CO 2 . Details of various research projects to use salt water as a fuel for vehicles was provided, as well as methods of improving the water-gas shift reaction method of hydrogen production. 2 figs

  1. Atmospheric inversion of the surface CO2 flux with 13CO2 constraint

    Science.gov (United States)

    Chen, J. M.; Mo, G.; Deng, F.

    2013-10-01

    Observations of 13CO2 at 73 sites compiled in the GLOBALVIEW database are used for an additional constraint in a global atmospheric inversion of the surface CO2 flux using CO2 observations at 210 sites for the 2002-2004 period for 39 land regions and 11 ocean regions. This constraint is implemented using the 13CO2/CO2 flux ratio modeled with a terrestrial ecosystem model and an ocean model. These models simulate 13CO2 discrimination rates of terrestrial photosynthesis and respiration and ocean-atmosphere diffusion processes. In both models, the 13CO2 disequilibrium between fluxes to and from the atmosphere is considered due to the historical change in atmospheric 13CO2 concentration. For the 2002-2004 period, the 13CO2 constraint on the inversion increases the total land carbon sink from 3.40 to 3.70 Pg C yr-1 and decreases the total oceanic carbon sink from 1.48 to 1.12 Pg C yr-1. The largest changes occur in tropical areas: a considerable decrease in the carbon source in the Amazon forest, and this decrease is mostly compensated by increases in the ocean region immediately west of the Amazon and the southeast Asian land region. Our further investigation through different treatments of the 13CO2/CO2 flux ratio used in the inversion suggests that variable spatial distributions of the 13CO2 isotopic discrimination rate simulated by the models over land and ocean have considerable impacts on the spatial distribution of the inverted CO2 flux over land and the inversion results are not sensitive to errors in the estimated disequilibria over land and ocean.

  2. Framework for Assessing Biogenic CO2 Emissions from Stationary Sources

    Science.gov (United States)

    This revision of the 2011 report, Accounting Framework for Biogenic CO2 Emissions from Stationary Sources, evaluates biogenic CO2 emissions from stationary sources, including a detailed study of the scientific and technical issues associated with assessing biogenic carbon dioxide...

  3. Deep Sea Memory of High Atmospheric CO2 Concentration

    Science.gov (United States)

    Mathesius, Sabine; Hofmann, Matthias; Caldeira, Ken; Schellnhuber, Hans Joachim

    2015-04-01

    Carbon dioxide removal (CDR) from the atmosphere has been proposed as a powerful measure to mitigate global warming and ocean acidification. Planetary-scale interventions of that kind are often portrayed as "last-resort strategies", which need to weigh in if humankind keeps on enhancing the climate-system stock of CO2. Yet even if CDR could restore atmospheric CO2 to substantially lower concentrations, would it really qualify to undo the critical impacts of past emissions? In the study presented here, we employed an Earth System Model of Intermediate Complexity (EMIC) to investigate how CDR might erase the emissions legacy in the marine environment, focusing on pH, temperature and dissolved oxygen. Against a background of a world following the RCP8.5 emissions path ("business-as-usual") for centuries, we simulated the effects of two massive CDR interventions with CO2 extraction rates of 5 GtC yr-1 and 25 GtC yr-1, respectively, starting in 2250. We found that the 5 GtC yr-1 scheme would have only minor ameliorative influence on the oceans, even after several centuries of application. By way of contrast, the extreme 25 GtC yr-1 scheme eventually leads to tangible improvements. However, even with such an aggressive measure, past CO2 emissions leave a substantial legacy in the marine environment within the simulated period (i.e., until 2700). In summary, our study demonstrates that anthropogenic alterations of the oceans, caused by continued business-as-usual emissions, may not be reversed on a multi-centennial time scale by the most aspirational geoengineering measures. We also found that a transition from the RCP8.5 state to the state of a strong mitigation scenario (RCP2.6) is not possible, even under the assumption of extreme extraction rates (25 GtC yr-1). This is explicitly demonstrated by simulating additional scenarios, starting CDR already in 2150 and operating until the atmospheric CO2 concentration reaches 280 ppm and 180 ppm, respectively. The simulated

  4. Assesment of Energy Options for CO2 Emission Reduction

    International Nuclear Information System (INIS)

    Cavlina, Nikola

    2014-01-01

    Since the 1992 Earth Summit in Rio de Janeiro, global anthropogenic CO 2 emissions grew by 52% which caused an increase in 10.8% in the CO 2 concentration in the atmosphere, and it tipped the 400 ppm mark in May 2013. The Fifth Assessment Report on climate impacts from the Intergovernmental Panel on Climate Change (IPCC) confirmed earlier warnings that climate change is already stressing human communities, agriculture, and natural ecosystems, and the effects are likely to increase in the future. While European Union has long been committed to lowering carbon emissions, this places additional pressure on current EU goals for energy sector that includes significant reduction of CO 2 emissions. Current EU commitment has been formalized in so-called '20-20-20' plan, reducing carbon emissions, increasing energy efficiency and increasing energy production from renewables by 20% by 2020. Some EU member states are even more ambitious, like United Kingdom, planning to reduce carbon emissions by 80% by 2050. Bulk of carbon reduction will have to be achived in energy sector. In the power industry, most popular solution is use of solar and wind power. Since their production varies significantly during the day, for the purpose of base-load production they can be paired with gas-fired power plant. Other possible CO 2 -free solution is nuclear power plant. In this invited lecture, predicted cost of energy production for newly bulit nuclear power plant and newly built combination of wind or solar and gas-fired power plant are compared. Comparison was done using Levelized Unit of Energy Cost (LUEC). Calculations were performed using the Monte Carlo method. For input parameters that have biggest uncertainty (gas cost, CO 2 emission fee) those uncertainties were addressed not only through probability distribution around predicted value, but also through different scenarious. (author)

  5. Estimating CO2 Emission Reduction of Non-capture CO2 Utilization (NCCU) Technology

    International Nuclear Information System (INIS)

    Lee, Ji Hyun; Lee, Dong Woog; Gyu, Jang Se; Kwak, No-Sang; Lee, In Young; Jang, Kyung Ryoung; Shim, Jae-Goo; Choi, Jong Shin

    2015-01-01

    Estimating potential of CO 2 emission reduction of non-capture CO 2 utilization (NCCU) technology was evaluated. NCCU is sodium bicarbonate production technology through the carbonation reaction of CO 2 contained in the flue gas. For the estimating the CO 2 emission reduction, process simulation using process simulator (PRO/II) based on a chemical plant which could handle CO 2 of 100 tons per day was performed, Also for the estimation of the indirect CO 2 reduction, the solvay process which is a conventional technology for the production of sodium carbonate/sodium bicarbonate, was studied. The results of the analysis showed that in case of the solvay process, overall CO 2 emission was estimated as 48,862 ton per year based on the energy consumption for the production of NaHCO 3 (7.4 GJ/tNaHCO 3 ). While for the NCCU technology, the direct CO 2 reduction through the CO 2 carbonation was estimated as 36,500 ton per year and the indirect CO 2 reduction through the lower energy consumption was 46,885 ton per year which lead to 83,385 ton per year in total. From these results, it could be concluded that sodium bicarbonate production technology through the carbonation reaction of CO 2 contained in the flue was energy efficient and could be one of the promising technology for the low CO 2 emission technology.

  6. CO2 Emissions from Fuel Combustion 2011: Highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Durban, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: - estimates of CO2 emissions by country from 1971 to 2009; - selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; - CO2 emissions from international marine and aviation bunkers, and other relevant information. These estimates have been calculated using the IEA energy databases and the default methods and emission factors from the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.

  7. CO2 Emissions from Fuel Combustion 2011: Highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Durban, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: - estimates of CO2 emissions by country from 1971 to 2009; - selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; - CO2 emissions from international marine and aviation bunkers, and other relevant information. These estimates have been calculated using the IEA energy databases and the default methods and emission factors from the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.

  8. Norwegian emissions of CO2 1987-1994. A study of some effects of the CO2 tax

    International Nuclear Information System (INIS)

    Larsen, B.M.; Nesbakken, R.

    1997-01-01

    Several countries have introduced taxes on fossil fuels with the aim of reducing atmospheric emissions, partly because of local environmental goals (SO2, NOx) and partly to participate in a global effort to reduce emissions of greenhouse gases. Many macroeconomic studies, based on both global and national models, have been made of how emissions can be reduced with the help of taxes and the consequent reduction in GDP following the introduction of such taxes. Norway has had a CO2 tax for five years, thereby providing a unique opportunity to evaluate the effects of this tax on emissions. The paper provides a counterfactual analysis of energy consumption and emissions if no CO2 taxes had been introduced, compared with the actual situation in which such taxes exist. The effect of a CO2 tax on oil consumption, and thus CO2 emissions, is studied on the basis of partial economic models for various sectors of the Norwegian economy. The study indicates that the CO2 tax has had an impact on CO2 emissions in Norway. 7 figs., 3 tabs., 17 refs

  9. CO2 credit or energy credit in emission trading?

    International Nuclear Information System (INIS)

    Hu, E.

    2002-01-01

    Emission trading is a good concept and approach to tackle global warming. However, what ''currency'' or ''credit'' should be used in the trading has remained a debatable topic. This paper proposed an ''Energy Credit'' concept as an alternative to the ''CO 2 credit'' that is currently in place. From the thermodynamic point of view, the global warming problem is an ''energy balance'' problem. The energy credit concept is thought to be more thermodynamically correct and tackles the core of the global warming problem more directly. The Energy credit concept proposed can be defined as: the credit to offset the extra energy trapped/absorbed in the earth (and its atmosphere) due to the extra anthropogenic emission (or other activities) by a country or company. A couple of examples are given in the paper to demonstrate the concept of the Energy credit and its advantages over the CO 2 credit concept. (author)

  10. CO2 Emissions from Fuel Combustion - 2012 Highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Doha, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: estimates of CO2 emissions by country from 1971 to 2010; selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; and CO2 emissions from international marine and aviation bunkers, and other relevant information.

  11. CO2 Emissions from Fuel Combustion - 2012 Highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Doha, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: estimates of CO2 emissions by country from 1971 to 2010; selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; and CO2 emissions from international marine and aviation bunkers, and other relevant information.

  12. Charcoal cuts the CO2-emissions

    International Nuclear Information System (INIS)

    Aakervik, Anne Lise.

    1999-01-01

    According to this article, bio carbon, or charcoal, may be the way out for the Norwegian processing industry in attempting to reduce the emission of carbon dioxide. Norwegian ferro-alloy plants emit 3 million ton carbon dioxide per year, which comes from the use of coal and coke as reducing agents in the smelting process. If the fraction of bio carbon is increased by 15%, the emission of CO 2 may be reduced by about 1/2 million tonne per year. But the price of charcoal is much greater than that of fix C from coal and coke. Research is in progress on trying to produce bio carbon cheaper. Charcoal can be produced from all types of forest by pyrolysis. Waste heat from the pyrolysis can be sold and used for district heating. The most expensive part in the use of bio carbon will be timber felling and transport to the log pile. Small-scale and large-scale tests will be made to see if it is possible to make adequate charcoal from subarctic timber

  13. Emission of CO2 from energy crop production

    International Nuclear Information System (INIS)

    Turhollow, A.F.

    1991-01-01

    The production of cellulosic energy crops (e.g., short rotation woody crops and herbaceous crops) make a net contribution of CO 2 to the atmosphere to the extent that fossil-fuel based inputs are used in their production. The CO 2 released from the use of the biomass is merely CO 2 that has recently been removed from the atmosphere by the plant growth process. Fossil inputs used in the production of energy corps include energy invested in fertilizers and pesticides, and petroleum fuels used for machinery operation such as site preparation, weed control, harvesting, and hauling. Fossil inputs used come from petroleum, natural gas, and electricity derived from fossil sources. No fossil inputs for the capital used to produce fertilizers, pesticides, or machinery is calculated in this analysis. In this paper calculations are made for the short rotation woody crop hybrid poplar (Populus spp.), the annual herbaceous crop sorghum (Sorghum biocolor [L.] Moench), and the perennial herbaceous crop switchgrass (Panicum virgatum L.). For comparison purposes, emissions of CO 2 from corn (Zea mays L.) are calculated

  14. CO2 emissions vs. CO2 responsibility: An input-output approach for the Turkish economy

    International Nuclear Information System (INIS)

    Ipek Tunc, G.; Tueruet-Asik, Serap; Akbostanci, Elif

    2007-01-01

    Recently, global warming (greenhouse effect) and its effects have become one of the hottest topics in the world agenda. There have been several international attempts to reduce the negative effects of global warming. The Kyoto Protocol can be cited as the most important agreement which tries to limit the countries' emissions within a time horizon. For this reason, it becomes important to calculate the greenhouse gas emissions of countries. The aim of this study is to estimate the amount of CO 2 -the most important greenhouse gas-emissions, for the Turkish economy. An extended input-output model is estimated by using 1996 data in order to identify the sources of CO 2 emissions and to discuss the share of sectors in total emission. Besides, 'CO 2 responsibility', which takes into account the CO 2 content of imports, is estimated for the Turkish economy. The sectoral CO 2 emissions and CO 2 responsibilities are compared and these two notions are linked to foreign trade volume. One of the main conclusions is that the manufacturing industry has the first place in both of the rankings for CO 2 emissions and CO 2 responsibilities, while agriculture and husbandry has the last place

  15. Positive feedback between increasing atmospheric CO2 and ecosystem productivity

    Science.gov (United States)

    Gelfand, I.; Hamilton, S. K.; Robertson, G. P.

    2009-12-01

    Increasing atmospheric CO2 will likely affect both the hydrologic cycle and ecosystem productivity. Current assumptions that increasing CO2 will lead to increased ecosystem productivity and plant water use efficiency (WUE) are driving optimistic predictions of higher crop yields as well as greater availability of freshwater resources due to a decrease in evapotranspiration. The plant physiological response that drives these effects is believed to be an increase in carbon uptake either by (a) stronger CO2 gradient between the stomata and the atmosphere, or by (b) reduced CO2 limitation of enzymatic carboxylation within the leaf. The (a) scenario will lead to increased water use efficiency (WUE) in plants. However, evidence for increased WUE is mostly based on modeling studies, and experiments producing a short duration or step-wise increase in CO2 concentration (e.g. free-air CO2 enrichment). We hypothesize that the increase in atmospheric CO2 concentration is having a positive effect on ecosystem productivity and WUE. To investigate this hypothesis, we analyzed meteorological, ANPP, and soil CO2 flux datasets together with carbon isotopic ratio (13C/12C) of archived plant samples from the long term ecological research (LTER) program at Kellogg Biological Station. The datasets were collected between 1989 and 2007 (corresponding to an increase in atmospheric CO2 concentration of ~33 ppmv at Mauna Loa). Wheat (Triticum aestivum) samples taken from 1989 and 2007 show a significant decrease in the C isotope discrimination factor (Δ) over time. Stomatal conductance is directly related to Δ, and thus Δ is inversely related to plant intrinsic WUE (iWUE). Historical changes in the 13C/12C ratio (δ13C) in samples of a perennial forb, Canada goldenrod (Solidago canadensis), taken from adjacent successional fields, indicate changes in Δ upon uptake of CO2 as well. These temporal trends in Δ suggest a positive feedback between the increasing CO2 concentration in the

  16. CO2 emissions in the World in 2013

    International Nuclear Information System (INIS)

    Ecoiffier, Mathieu

    2015-12-01

    This publication presents and comments data of CO 2 emissions in the world and their evolution. It more particularly addresses CO 2 emissions due to energy combustion which represent more than 80 per cent of these emissions or 62 per cent of greenhouse gas emissions, and which increased in 2013 with respect to 2012 (+ 2.2 pc). The distribution of CO 2 emissions due to energy combustion in different continents and regions is indicated (levels in 1990, 2012 and 2013, evolutions). The decrease of the CO 2 emission intensity with respect to the GDP is briefly commented (evolution since 1970), as well as the level of CO 2 emissions per inhabitant in China with respect to that in the EU (evolutions since 1970). The evolution of CO 2 emissions is then analysed with respect to different determining parameters according to the Kaya equation (population, GDP, primary energy consumption and their evolution or relationship one to each other)

  17. CO2 emissions resulting from the energy use

    International Nuclear Information System (INIS)

    2004-01-01

    This document brings statistical data on the carbon dioxide emissions resulting from the energy use only. Tables and charts present data for the CO 2 emissions in France, in the world (2001-2002), in the OECD (2000-2002), the CO 2 emissions from electric power plants and refineries in France (1996-1999) and archives of statistics on CO 2 emissions. (A.L.B.)

  18. Atmospheric CO2 Variability Observed From ASCENDS Flight Campaigns

    Science.gov (United States)

    Lin, Bing; Browell, Edward; Campbell, Joel; Choi, Yonghoon; Dobler, Jeremy; Fan, Tai-Fang; Harrison, F. Wallace; Kooi, Susan; Liu, Zhaoyan; Meadows, Byron; hide

    2015-01-01

    Significant atmospheric CO2 variations on various spatiotemporal scales were observed during ASCENDS flight campaigns. For example, around 10-ppm CO2 changes were found within free troposphere in a region of about 200x300 sq km over Iowa during a summer 2014 flight. Even over extended forests, about 2-ppm CO2 column variability was measured within about 500-km distance. For winter times, especially over snow covered ground, relatively less horizontal CO2 variability was observed, likely owing to minimal interactions between the atmosphere and land surface. Inter-annual variations of CO2 drawdown over cornfields in the Mid-West were found to be larger than 5 ppm due to slight differences in the corn growing phase and meteorological conditions even in the same time period of a year. Furthermore, considerable differences in atmospheric CO2 profiles were found during winter and summer campaigns. In the winter CO2 was found to decrease from about 400 ppm in the atmospheric boundary layer (ABL) to about 392 ppm above 10 km, while in the summer CO2 increased from 386 ppm in the ABL to about 396 ppm in free troposphere. These and other CO2 observations are discussed in this presentation.

  19. The Global Land-Ocean Temperature Index in Relation to Sunspot Number, the Atlantic Multidecadal Oscillation Index, the Mauna Loa Atmospheric Concentration of CO2, and Anthropogenic Carbon Emissions

    Science.gov (United States)

    Wilson, Robert M.

    2013-01-01

    Global warming/climate change has been a subject of scientific interest since the early 19th century. In particular, increases in the atmospheric concentration of carbon dioxide (CO2) have long been thought to account for Earth's increased warming, although the lack of a dependable set of observational data was apparent as late as the mid 1950s. However, beginning in the late 1950s, being associated with the International Geophysical Year, the opportunity arose to begin accurate continuous monitoring of the Earth's atmospheric concentration of CO2. Consequently, it is now well established that the atmospheric concentration of CO2, while varying seasonally within any particular year, has steadily increased over time. Associated with this rising trend in the atmospheric concentration of CO2 is a rising trend in the surface-air and sea-surface temperatures (SSTs). This Technical Publication (TP) examines the statistical relationships between 10-year moving averages (10-yma) of the Global Land-Ocean Temperature Index (GLOTI), sunspot number (SSN), the Atlantic Multidecadal Oscillation (AMO) index, and the Mauna Loa CO2 (MLCO2) index for the common interval 1964-2006, where the 10-yma values are used to indicate trends in the data. Scatter plots using the 10-yma values between GLOTI and each of the other parameters are determined, both as single-variate and multivariate fits. Scatter plots are also determined for MLCO2 using single-variate and bivariate (BV) fits, based on the GLOTI alone and the GLOTI in combination with the AMO index. On the basis of the inferred preferential fits for MLCO2, estimates for MLCO2 are determined for the interval 1885-1964, thereby yielding an estimate of the preindustrial level of atmospheric concentration of CO2. Lastly, 10-yma values of MLCO2 are compared against 10-yma estimates of the total carbon emissions (TCE) to determine the likelihood that manmade sources of carbon emissions are indeed responsible for the recent warming now

  20. A role for atmospheric CO2 in preindustrial climate forcing

    NARCIS (Netherlands)

    Hoof, T.B. van; Wagner-Cremer, F.; Kürschner, W.M.; Visscher, H.

    2008-01-01

    Complementary to measurements in Antarctic ice cores, stomatal frequency analysis of leaves of land plants preserved in peat and lake deposits can provide a proxy record of preindustrial atmospheric CO2 concentration. CO2 trends based on leaf remains of Quercus robur (English oak) from the

  1. Financial development and sectoral CO2 emissions in Malaysia.

    Science.gov (United States)

    Maji, Ibrahim Kabiru; Habibullah, Muzafar Shah; Saari, Mohd Yusof

    2017-03-01

    The paper examines the impacts of financial development on sectoral carbon emissions (CO 2 ) for environmental quality in Malaysia. Since the financial sector is considered as one of the sectors that will contribute to Malaysian economy to become a developed country by 2020, we utilize a cointegration method to investigate how financial development affects sectoral CO 2 emissions. The long-run results reveal that financial development increases CO 2 emissions from the transportation and oil and gas sector and reduces CO 2 emissions from manufacturing and construction sectors. However, the elasticity of financial development is not significant in explaining CO 2 emissions from the agricultural sector. The results for short-run elasticities were also consistent with the long-run results. We conclude that generally, financial development increases CO 2 emissions and reduces environmental quality in Malaysia.

  2. CO2 emissions by the economic circuit in France

    International Nuclear Information System (INIS)

    Lenglart, F.; Lesieur, Ch.; Pasquier, J.L.

    2010-01-01

    Before commenting various statistical data on CO 2 emission in France, this report explains how these data have been established according to the 'Stiglitz' Commission recommendations, i.e. by integrating CO 2 emissions in the national accounts. While commenting the evolutions of CO 2 emissions in relationship with economic activity and giving table of world data, it outlines that France represents 3% of the World GDP, 1.3% of CO 2 emissions and 1% of the population. The relationship between standard of living and pollutant emissions are commented. As far as France is concerned and with a comparison with world data the shares of different sources of energy and of the different sectors in CO 2 emissions are indicated and commented. The report comments the influence of the domestic demand on foreign CO 2 emissions, the differences between households in terms of CO 2 emissions with respect to their revenues, the shares of household consumption and of CO 2 emissions among expense items, the influence of socio-professional, of age, and of household composition category on CO 2 emissions. Some methodological and computational aspects are given

  3. Effects of atmospheric CO2 enrichment on soil CO2 efflux in a young longleaf pine system

    Science.gov (United States)

    Elevated atmospheric carbon dioxide (CO2) can affect the quantity and quality of plant tissues which will impact carbon (C) cycling and storage in plant/soil systems and the release of CO2 back to the atmosphere. Research is needed to quantify the effects of elevated CO2 on soil CO2 efflux to predi...

  4. Coalfire related CO2 emissions and remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, P.K.

    2008-06-11

    Subsurface and surface coalfires are a serious problem in many coal-producing countries. Combustion can occur within the coal seams (underground or surface), in piles of stored coal, or in spoil dumps at the surface. While consuming a non renewable energy source, coalfires promote several environmental problems. Among all GHGs that are emitted from coalfires, CO2 is the most significant because of its high quantity. In connection to this environmental problem, the core aim of the present research is to develop a hyperspectral remote sensing and radiative transfer based model that is able to estimate CO2 concentration (ppmv) from coalfires. Since 1960s remote sensing is being used as a tool to detect and monitoring coalfires. With time, remote sensing has proven a reliable tool to identify and monitor coalfires. In the present study multi-temporal, multi-sensor and multi-spectral thermal remote sensing data are being used to detect and monitor coalfires. Unlike the earlier studies, the present study explores the possibilities of satellite derived emissivity to detect and monitor coalfires. Two methods of emissivity extraction from satellite data were tested, namely NDVI (Normalized Difference Vegetation Index) derived and TES (Temperature emissivity separation) in two study areas situated in India and China and it was observed that the satellite derived emissivity offers a better kinetic surface temperature of the surface to understand the spread and extent of the coalfires more effectively. In order to reduce coalfire related GHG emissions and to achieve more effective fire fighting plans it is crucial to understand the dynamics of coalfire. Multitemporal spaceborne remote sensing data can be used to study the migration and expresses the results as vectors, indicating direction and speed of migration. The present study proposes a 2D model that recognizes an initiation point of coalfire from thermal remote sensing data and considers local geological settings to

  5. Coalfires related CO2 emissions and remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, P.K.

    2008-06-11

    Subsurface and surface coalfires are a serious problem in many coal-producing countries. Combustion can occur within the coal seams (underground or surface), in piles of stored coal, or in spoil dumps at the surface. While consuming a non renewable energy source, coalfires promote several environmental problems. Among all GHGs that are emitted from coalfires, CO2 is the most significant because of its high quantity. In connection to this environmental problem, the core aim of the present research is to develop a hyperspectral remote sensing and radiative transfer based model that is able to estimate CO2 concentration (ppmv) from coalfires. Since 1960s remote sensing is being used as a tool to detect and monitoring coalfires. With time, remote sensing has proven a reliable tool to identify and monitor coalfires. In the present study multi-temporal, multi-sensor and multi-spectral thermal remote sensing data are being used to detect and monitor coalfires. Unlike the earlier studies, the present study explores the possibilities of satellite derived emissivity to detect and monitor coalfires. Two methods of emissivity extraction from satellite data were tested, namely NDVI (Normalized Difference Vegetation Index) derived and TES (Temperature emissivity separation) in two study areas situated in India and China and it was observed that the satellite derived emissivity offers a better kinetic surface temperature of the surface to understand the spread and extent of the coalfires more effectively. In order to reduce coalfire related GHG emissions and to achieve more effective fire fighting plans it is crucial to understand the dynamics of coalfire. Multitemporal spaceborne remote sensing data can be used to study the migration and expresses the results as vectors, indicating direction and speed of migration. The present study proposes a 2D model that recognizes an initiation point of coalfire from thermal remote sensing data and considers local geological settings to

  6. Coalfire related CO2 emissions and remote sensing

    International Nuclear Information System (INIS)

    Gangopadhyay, P.K.

    2008-01-01

    Subsurface and surface coalfires are a serious problem in many coal-producing countries. Combustion can occur within the coal seams (underground or surface), in piles of stored coal, or in spoil dumps at the surface. While consuming a non renewable energy source, coalfires promote several environmental problems. Among all GHGs that are emitted from coalfires, CO2 is the most significant because of its high quantity. In connection to this environmental problem, the core aim of the present research is to develop a hyperspectral remote sensing and radiative transfer based model that is able to estimate CO2 concentration (ppmv) from coalfires. Since 1960s remote sensing is being used as a tool to detect and monitoring coalfires. With time, remote sensing has proven a reliable tool to identify and monitor coalfires. In the present study multi-temporal, multi-sensor and multi-spectral thermal remote sensing data are being used to detect and monitor coalfires. Unlike the earlier studies, the present study explores the possibilities of satellite derived emissivity to detect and monitor coalfires. Two methods of emissivity extraction from satellite data were tested, namely NDVI (Normalized Difference Vegetation Index) derived and TES (Temperature emissivity separation) in two study areas situated in India and China and it was observed that the satellite derived emissivity offers a better kinetic surface temperature of the surface to understand the spread and extent of the coalfires more effectively. In order to reduce coalfire related GHG emissions and to achieve more effective fire fighting plans it is crucial to understand the dynamics of coalfire. Multitemporal spaceborne remote sensing data can be used to study the migration and expresses the results as vectors, indicating direction and speed of migration. The present study proposes a 2D model that recognizes an initiation point of coalfire from thermal remote sensing data and considers local geological settings to

  7. The declining uptake rate of atmospheric CO2 by land and ocean sinks

    Directory of Open Access Journals (Sweden)

    M. R. Raupach

    2014-07-01

    Full Text Available Through 1959–2012, an airborne fraction (AF of 0.44 of total anthropogenic CO2 emissions remained in the atmosphere, with the rest being taken up by land and ocean CO2 sinks. Understanding of this uptake is critical because it greatly alleviates the emissions reductions required for climate mitigation, and also reduces the risks and damages that adaptation has to embrace. An observable quantity that reflects sink properties more directly than the AF is the CO2 sink rate (kS, the combined land–ocean CO2 sink flux per unit excess atmospheric CO2 above preindustrial levels. Here we show from observations that kS declined over 1959–2012 by a factor of about 1 / 3, implying that CO2 sinks increased more slowly than excess CO2. Using a carbon–climate model, we attribute the decline in kS to four mechanisms: slower-than-exponential CO2 emissions growth (~ 35% of the trend, volcanic eruptions (~ 25%, sink responses to climate change (~ 20%, and nonlinear responses to increasing CO2, mainly oceanic (~ 20%. The first of these mechanisms is associated purely with the trajectory of extrinsic forcing, and the last two with intrinsic, feedback responses of sink processes to changes in climate and atmospheric CO2. Our results suggest that the effects of these intrinsic, nonlinear responses are already detectable in the global carbon cycle. Although continuing future decreases in kS will occur under all plausible CO2 emission scenarios, the rate of decline varies between scenarios in non-intuitive ways because extrinsic and intrinsic mechanisms respond in opposite ways to changes in emissions: extrinsic mechanisms cause kS to decline more strongly with increasing mitigation, while intrinsic mechanisms cause kS to decline more strongly under high-emission, low-mitigation scenarios as the carbon–climate system is perturbed further from a near-linear regime.

  8. The declining uptake rate of atmospheric CO2 by land and ocean sinks

    International Nuclear Information System (INIS)

    Raupach, M.R.; Gloor, M.; Sarmiento, J.L.; Gasser, T.

    2014-01-01

    Through 1959-2012, an airborne fraction (AF) of 0.44 of total anthropogenic CO 2 emissions remained in the atmosphere, with the rest being taken up by land and ocean CO 2 sinks. Understanding of this uptake is critical because it greatly alleviates the emissions reductions required for climate mitigation, and also reduces the risks and damages that adaptation has to embrace. An observable quantity that reflects sink properties more directly than the AF is the CO 2 sink rate (k S ), the combined land-ocean CO 2 sink flux per unit excess atmospheric CO 2 above pre industrial levels. Here we show from observations that k S declined over 1959-2012 by a factor of about 1/3, implying that CO 2 sinks increased more slowly than excess CO 2 . Using a carbon-climate model, we attribute the decline in k S to four mechanisms: slower-than-exponential CO 2 emissions growth (35% of the trend), volcanic eruptions (25 %), sink responses to climate change (20 %), and nonlinear responses to increasing CO 2 , mainly oceanic (20 %). The first of these mechanisms is associated purely with the trajectory of extrinsic forcing, and the last two with intrinsic, feedback responses of sink processes to changes in climate and atmospheric CO 2 . Our results suggest that the effects of these intrinsic, nonlinear responses are already detectable in the global carbon cycle. Although continuing future decreases in k S will occur under all plausible CO 2 emission scenarios, the rate of decline varies between scenarios in non intuitive ways because extrinsic and intrinsic mechanisms respond in opposite ways to changes in emissions: extrinsic mechanisms cause k S to decline more strongly with increasing mitigation, while intrinsic mechanisms cause k S to decline more strongly under high-emission, low-mitigation scenarios as the carbon-climate system is perturbed further from a near-linear regime. (authors)

  9. Volcanic CO2 Emissions and Glacial Cycles: Coupled Oscillations

    Science.gov (United States)

    Burley, J. M.; Huybers, P. J.; Katz, R. F.

    2016-12-01

    Following the mid-Pleistocene transition, the dominant period of glacial cycles changed from 40 ka to 100 ka. It is broadly accepted that the 40 ka glacial cycles were driven by cyclical changes in obliquity. However, this forcing does not explain the 100 ka glacial cycles. Mechanisms proposed for 100 ka cycles include isostatic bed depression and proglacial lakes destabilising the Laurentide ice sheet, non-linear responses to orbital eccentricity, and Antarctic ice sheets influencing deep-ocean stratification. None of these are universally accepted. Here we investigate the hypothesis that variations in volcanic CO2 emissions can cause 100 ka glacial cycles. Any proposed mechanism for 100 ka glacial cycles must give the Earth's climate system a memory of 10^4 - 10^5years. This timescale is difficult to achieve for surface processes, however it is possible for the solid Earth. Recent work suggests volcanic CO2 emissions change in response to glacial cycles [1] and that there could be a 50 ka delay in that response [2]. Such a lagged response could drive glacial cycles from 40 ka cycles to an integer multiple of the forcing period. Under what conditions could the climate system admit such a response? To address this, we use a simplified climate model modified from Huybers and Tziperman [3]. Our version comprises three component models for energy balance, ice sheet growth and atmospheric CO2 concentration. The model is driven by insolation alone with other components varying according to a system of coupled, differential equations. The model is run for 500 ka to produce several glacial cycles and the resulting changes in global ice volume and atmospheric CO2 concentration.We obtain a switch from 40 ka to 100 ka cycles as the volcanic CO2 response to glacial cycles is increased. These 100 ka cycles are phase-locked to obliquity, lasting 80 or 120 ka. Whilst the MOR response required (in this model) is larger than plausible estimates based on [2], it illustrates the

  10. National CO2 emissions trading in European perspective; Nationale CO2-emissiehandel in Europees perspectief

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    This report is the reaction of the Social and economic council (SER) in the Netherlands to the request of the Dutch Ministry of Housing, Spatial Planning en Environment (VROM) to formulate an advice on the final report of the Committee CO2 Trade (a.k.a the Vogtlander Committee). This Committee has drafted a proposal for a CO2 emission trade system in the Netherlands. The SER has also taken into account the proposal of the European Committee on a guideline for CO2 emission trade in the European Union (EU)

  11. Analysis of the potential of near-ground measurements of CO2 and CH4 in London, UK, for the monitoring of city-scale emissions using an atmospheric transport model

    Science.gov (United States)

    Boon, Alex; Broquet, Grégoire; Clifford, Deborah J.; Chevallier, Frédéric; Butterfield, David M.; Pison, Isabelle; Ramonet, Michel; Paris, Jean-Daniel; Ciais, Philippe

    2016-06-01

    Carbon dioxide (CO2) and methane (CH4) mole fractions were measured at four near-ground sites located in and around London during the summer of 2012 with a view to investigating the potential of assimilating such measurements in an atmospheric inversion system for the monitoring of the CO2 and CH4 emissions in the London area. These data were analysed and compared with simulations using a modelling framework suited to building an inversion system: a 2 km horizontal resolution south of England configuration of the transport model CHIMERE driven by European Centre for Medium-Range Weather Forecasts (ECMWF) meteorological forcing, coupled to a 1 km horizontal resolution emission inventory (the UK National Atmospheric Emission Inventory). First comparisons reveal that local sources, which cannot be represented in the model at a 2 km resolution, have a large impact on measurements. We evaluate methods to filter out the impact of some of the other critical sources of discrepancies between the measurements and the model simulation except that of the errors in the emission inventory, which we attempt to isolate. Such a separation of the impact of errors in the emission inventory should make it easier to identify the corrections that should be applied to the inventory. Analysis is supported by observations from meteorological sites around the city and a 3-week period of atmospheric mixing layer height estimations from lidar measurements. The difficulties of modelling the mixing layer depth and thus CO2 and CH4 concentrations during the night, morning and late afternoon lead to focusing on the afternoon period for all further analyses. The discrepancies between observations and model simulations are high for both CO2 and CH4 (i.e. their root mean square (RMS) is between 8 and 12 parts per million (ppm) for CO2 and between 30 and 55 parts per billion (ppb) for CH4 at a given site). By analysing the gradients between the urban sites and a suburban or rural reference site, we

  12. CO2 emissions: a peak level in 2010

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    After a reduction of CO 2 emissions in 2009 due to the financial crisis, these emissions have again reached a peak in 2010: 30.6 Gt, it means an increase by 5% compared to the previous peak. According to IEA (International Energy Agency): 44% of the emissions come from coal, 36% from oil and 20% from natural gas, and OECD countries are responsible of 40% of the CO 2 global emissions but only of 25% of their increase since 2009. For China and India the emissions of CO 2 have increased sharply due to their strong economic growth. (A.C.)

  13. Climate change and CO2 emission reductions

    International Nuclear Information System (INIS)

    Ha Duong, M.; Campos, A.S.

    2007-04-01

    This paper presents the results of an opinion poll performed on a representative sample of 1000 persons about their sensitivity to climate change and to environment protection, their knowledge about technologies which are useful for environment protection, their opinion about geological CO 2 sequestration, and technologies to be developed to struggle against climate warming

  14. Sintering of dioxide pellets in an oxidizing atmosphere (CO2)

    International Nuclear Information System (INIS)

    Santos, G.R.T.

    1992-01-01

    This work consists in the study of the sintering process of U O 2 pellets in an oxidizing atmosphere. Sintering tests were performed in an CO 2 atmosphere and the influence of temperature and time on the pellets density and microstructure were verified. The results obtained were compared to those from the conventional sintering process and its efficiency was confirmed. (author)

  15. Role of Atmospheric CO2 in the Ice Ages (Invited)

    Science.gov (United States)

    Toggweiler, J. R.

    2010-12-01

    Ice cores from Antarctica provide our most highly resolved records of glacial-interglacial climate change. They feature big transitions every 100,000 years or so in which Antarctica warms by up to 10 deg. C while the level of atmospheric CO2 rises by up to 100 ppm. We have no other records like these from any other location, so the assumption is often made that the Earth's mean temperature varies like the temperatures in Antarctica. The striking co-variation between the two records is taken to mean 1) that there is a causal relationship between the global temperature and atmospheric CO2 and 2) that atmospheric CO2 is a powerful agent of climate change during the ice ages. The problem is that the mechanism most often invoked to explain the CO2 variations operates right next to Antarctica and, as such, provides a fairly direct way to explain the temperature variations in Antarctica as well. If so, Antarctic temperatures go up and down for the same reason that atmospheric CO2 goes up and down, in which case no causation can be inferred. Climate models suggest that the 100-ppm CO2 increases during the big transitions did not increase surface temperatures by more than 2 deg. C. This is not nearly enough to explain the observed variability. A better reason for thinking that atmospheric CO2 is important is that its temporal variations are concentrated in the 100,000-yr band. In my presentation I will argue that atmospheric CO2 is important because it has the longest time scale in the system. We observe empirically that atmospheric CO2 remains low for 50,000 years during the second half of each 100,000-yr cycle. The northern ice sheets become especially large toward the ends of these intervals, and it is large ice sheets that make the Earth especially cold. This leads me to conclude that atmospheric CO2 is important because of its slow and persistent influence on the northern ice sheets over the second half of each 100,000-yr cycle.

  16. Atmospheric CO2 and abrupt climate change on submillennial timescales

    Science.gov (United States)

    Ahn, Jinho; Brook, Edward

    2010-05-01

    How atmospheric CO2 varies and is controlled on various time scales and under various boundary conditions is important for understanding how the carbon cycle and climate change are linked. Ancient air preserved in ice cores provides important information on past variations in atmospheric CO2. In particular, concentration records for intervals of abrupt climate change may improve understanding of mechanisms that govern atmospheric CO2. We present new multi-decadal CO2 records that cover Greenland stadial 9 (between Dansgaard-Oeschger (DO) events 8 and 9) and the abrupt cooling event at 8.2 ka. The CO2 records come from Antarctic ice cores but are well synchronized with Greenland ice core records using new high-resolution CH4 records,precisely defining the timing of CO2 change with respect to abrupt climate events in Greenland. Previous work showed that during stadial 9 (40~38 ka), CO2 rose by about 15~20 ppm over around 2,000 years, and at the same time temperatures in Antarctica increased. Dust proxies indicate a decrease in dust flux over the same period. With more detailed data and better age controls we now find that approximately half of the CO2 increase during stadial 9 occurred abruptly, over the course of decades to a century at ~39.6 ka. The step increase of CO2 is synchronous with a similar step increase of Antarctic isotopic temperature and a small abrupt change in CH4, and lags after the onset of decrease in dust flux by ~400 years. New atmospheric CO2 records at the well-known ~8.2 ka cooling event were obtained from Siple Dome ice core, Antarctica. Our preliminary CO2 data span 900 years and include 19 data points within the 8.2 ka cooling event, which persisted for ~160 years (Thomas et al., Quarternary Sci. Rev., 2007). We find that CO2 increased by 2~4 ppm during that cooling event. Further analyses will improve the resolution and better constrain the CO2 variability during other times in the early Holocene to determine if the variations observed

  17. Silicon microring refractometric sensor for atmospheric CO(2) gas monitoring.

    Science.gov (United States)

    Mi, Guangcan; Horvath, Cameron; Aktary, Mirwais; Van, Vien

    2016-01-25

    We report a silicon photonic refractometric CO(2) gas sensor operating at room temperature and capable of detecting CO(2) gas at atmospheric concentrations. The sensor uses a novel functional material layer based on a guanidine polymer derivative, which is shown to exhibit reversible refractive index change upon absorption and release of CO(2) gas molecules, and does not require the presence of humidity to operate. By functionalizing a silicon microring resonator with a thin layer of the polymer, we could detect CO(2) gas concentrations in the 0-500ppm range with a sensitivity of 6 × 10(-9) RIU/ppm and a detection limit of 20ppm. The microring transducer provides a potential integrated solution in the development of low-cost and compact CO(2) sensors that can be deployed as part of a sensor network for accurate environmental monitoring of greenhouse gases.

  18. Do forests best mitigate CO2 emissions to the atmosphere by setting them aside for maximization of carbon storage or by management for fossil fuel substitution?

    Science.gov (United States)

    Taeroe, Anders; Mustapha, Walid Fayez; Stupak, Inge; Raulund-Rasmussen, Karsten

    2017-07-15

    Forests' potential to mitigate carbon emissions to the atmosphere is heavily debated and a key question is if forests left unmanaged to store carbon in biomass and soil provide larger carbon emission reductions than forests kept under forest management for production of wood that can substitute fossil fuels and fossil fuel intensive materials. We defined a modelling framework for calculation of the carbon pools and fluxes along the forest energy and wood product supply chains over 200 years for three forest management alternatives (FMA): 1) a traditionally managed European beech forest, as a business-as-usual case, 2) an energy poplar plantation, and 3) a set-aside forest left unmanaged for long-term storage of carbon. We calculated the cumulative net carbon emissions (CCE) and carbon parity times (CPT) of the managed forests relative to the unmanaged forest. Energy poplar generally had the lowest CCE when using coal as the reference fossil fuel. With natural gas as the reference fossil fuel, the CCE of the business-as-usual and the energy poplar was nearly equal, with the unmanaged forest having the highest CCE after 40 years. CPTs ranged from 0 to 156 years, depending on the applied model assumptions. CCE and CPT were especially sensitive to the reference fossil fuel, material alternatives to wood, forest growth rates for the three FMAs, and energy conversion efficiencies. Assumptions about the long-term steady-state levels of carbon stored in the unmanaged forest had a limited effect on CCE after 200 years. Analyses also showed that CPT was not a robust measure for ranking of carbon mitigation benefits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Toxic emissions and devaluated CO2-neutrality

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    Environmental, energy and climate policies need fresh reflections. In order to evaluate toxics reduction policies the Stockholm Convention on Persistent Organic Pollutants is mandatory. Denmark's function as lead country for dioxin research in the context of the OSPAR Convention is contrasted...... with a climate policy whose goals of CO2-reduction were made operational by green-wash. Arguments are given for the devaluation of CO2- neutrality in case of burning wood. Alternative practices as storing C in high quality wood products and/or leaving wood in the forest are recommended. A counter......-productive effect of dioxin formation in the cooling phase of wood burning appliances has been registered akin to de-novo-synthesis in municipal solid waste incinerators. Researchers, regulators and the public are, however, still preoccupied by notions of oven design and operation parameters, assuming that dioxin...

  20. The oil market and international agreements on CO2 emissions

    International Nuclear Information System (INIS)

    Berger, K.; Fimreite, Oe.; Golombek, R.; Hoel, M.

    1991-01-01

    In order to avoid a relatively large risk of dramatic adverse climatic changes during the next century, greenhouse gas emissions must be reduced significantly relative to present emissions. CO 2 is the most important greenhouse gas, so any international agreement will certainly cover CO 2 emissions. Any international agreement to reduce emissions of CO 2 is going to have a significant impact on the markets for fossil fuels. The analysis shows that is not only the amount of CO 2 emissions permitted in an agreement which matters for fossil fuel prices, but also the type of agreement. Two obvious forms of agreements, which under certain assumptions both are cost efficient, are (a) tradeable emission permits, and (b) an international CO 2 tax. If the fossil fuel markets were perfectly competitive, these two types of agreements would have the same effect on the producer price of fossil fuels. However, fossil fuel markets are not completely competitive. It is shown that, under imperfect competition, direct regulation of the ''tradeable quotas'' type tends to imply higher producer prices than an international CO 2 tax giving the same total CO 2 emissions. A numerical illustration of the oil market indicates that the difference in producer prices for the two types of CO 2 agreements is quite significant. 6 refs., 2 figs., 1 tab

  1. Episodical CO2 emission during shoulder seasons in the arctic

    DEFF Research Database (Denmark)

    Friborg, Thomas; Elberling, Bo; Hansen, Birger

    soils. Our knowledge about the exchanges of CO2 and other trace gas fluxes in the arctic region has been constrained by the limited availability of measurements during the long winter season. For that reason only a small number of sites have been able to produce annual budgets of C exchange...... and the driving processes behind winter time exchange of CO2 are not fully understood. Here we present two very different examples of CO2 exchange from shoulder seasons in the Arctic. In an example from NE Greenland, eddy covariance measurements show that the snow cover has a significant effect on the release...... of CO2 during spring. The other example, from a study during late autumn and winter from high arctic Svalbard we found that episodical emissions of CO2 accounted for a significant part of the total CO2 emission form the site. The emission pattern could be associated with temperature variations...

  2. Strategic research on CO2 emission reduction for China. Application of MARKAL to China energy system

    International Nuclear Information System (INIS)

    Wang Yongping

    1995-09-01

    MARKAL was applied to the energy system for analyzing the CO 2 emission reduction in China over the time period from 1990 to 2050. First the Chinese Reference Energy System (CRES) was established based on the framework of MARKAL model. The following conclusions can be drawn from this study. When shifting from scenario LH (low useful energy demand and high import fuel prices) to HL (high demand and low prices), another 33 EJ of primary energy will be consumed and another 2.31 billion tons of CO 2 will be emitted in 2050. Detailed analyses on the disaggregation of CO 2 emissions by Kaya Formula show. The energy intensity (primary energy/GDP) decreases much faster in scenario HL, but the higher growth rate of GDP per capita is the overwhelming factor that results in higher CO 2 emission per capita in the baseline case of scenario HL in comparison with LH. When the carbon taxes are imposed on CO 2 emissions, the residential sector will make the biggest contribution to CO 2 emission abatement from a long-term point of view. However, it's difficult to stabilize CO 2 emission per capita before 2030 in both scenarios even with heavy carbon taxes. When nuclear moratorium occurs, more 560 million tons of CO 2 will be emitted to the atmosphere in 2050 under the same CO 2 tax regime. From the analysis of value flow, CO 2 emission reduction depends largely on new or advanced technologies particularly in the field of electricity generation. The competent technologies switch to those CO 2 less-emitting technologies when surcharging CO 2 emissions. Nuclear power shows significant potential in saving fossil energy resources and reducing CO 2 emissions. (J.P.N.)

  3. CO2 Emissions From Fuel Combustion. Highlights. 2013 Edition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    In the lead-up to the UN climate negotiations in Warsaw, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process, the IEA is making available for free download the ''Highlights'' version of CO2 Emissions from Fuel Combustion now for sale on IEA Bookshop. This annual publication contains, for more than 140 countries and regions: estimates of CO2 emissions from 1971 to 2011; selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; a decomposition of CO2 emissions into driving factors; and CO2emissions from international marine and aviation bunkers, key sources, and other relevant information. The nineteenth session of the Conference of the Parties to the Climate Change Convention (COP-19), in conjunction with the ninth meeting of the Parties to the Kyoto Protocol (CMP 9), met in Warsaw, Poland from 11 to 22 November 2013. This volume of ''Highlights'', drawn from the full-scale study, was specially designed for delegations and observers of the meeting in Warsaw.

  4. Simulating the integrated summertime Δ14CO2 signature from anthropogenic emissions over Western Europe

    Directory of Open Access Journals (Sweden)

    D. Bozhinova

    2014-07-01

    Full Text Available Radiocarbon dioxide (14CO2, reported in Δ14CO2 can be used to determine the fossil fuel CO2 addition to the atmosphere, since fossil fuel CO2 no longer contains any 14C. After the release of CO2 at the source, atmospheric transport causes dilution of strong local signals into the background and detectable gradients of Δ14CO2 only remain in areas with high fossil fuel emissions. This fossil fuel signal can moreover be partially masked by the enriching effect that anthropogenic emissions of 14CO2 from the nuclear industry have on the atmospheric Δ14CO2 signature. In this paper, we investigate the regional gradients in 14CO2 over the European continent and quantify the effect of the emissions from nuclear industry. We simulate the emissions and transport of fossil fuel CO2 and nuclear 14CO2 for Western Europe using the Weather Research and Forecast model (WRF-Chem for a period covering 6 summer months in 2008. We evaluate the expected CO2 gradients and the resulting Δ14CO2 in simulated integrated air samples over this period, as well as in simulated plant samples. We find that the average gradients of fossil fuel CO2 in the lower 1200 m of the atmosphere are close to 15 ppm at a 12 km × 12 km horizontal resolution. The nuclear influence on Δ14CO2 signatures varies considerably over the domain and for large areas in France and the UK it can range from 20 to more than 500% of the influence of fossil fuel emissions. Our simulations suggest that the resulting gradients in Δ14CO2 are well captured in plant samples, but due to their time-varying uptake of CO2, their signature can be different with over 3‰ from the atmospheric samples in some regions. We conclude that the framework presented will be well-suited for the interpretation of actual air and plant 14CO2 samples.

  5. Modelling Energy Systems and International Trade in CO2 Emission Quotas - The Kyoto Protocol and Beyond

    International Nuclear Information System (INIS)

    Persson, Tobias A.

    2002-01-01

    A transformation of the energy system in the 21st century is required if the CO 2 concentration in the atmosphere should be stabilized at a level that would prevent dangerous anthropogenic interference with the climate system. The industrialized countries have emitted most of the anthropogenic CO 2 released to the atmosphere since the beginning of the industrial era and still account for roughly two thirds of global fossil fuel related CO 2 emissions. Industrial country CO 2 emissions on a per capita basis are roughly five to ten times higher than those of developing countries. However, a global atmospheric CO 2 concentration target of 450 ppm, if adopted would require that global average per capita CO 2 emissions by the end of this century have to be comparable to those of developing countries today. The industrialized countries would have to reduce their emissions substantially and the emissions in developing countries could not follow a business-as-usual scenario. The transformation of the energy system and abatement of CO 2 emissions would need to occur in industrialized and developing countries. Energy-economy models have been developed to analyze of international trading in CO 2 emission permits. The thesis consists of three papers. The cost of meeting the Kyoto Protocol is estimated in the first paper. The Kyoto Protocol, which defines quantitative greenhouse gas emission commitments for industrialized countries over the period 2008-2012, is the first international agreement setting quantitative goals for abatement of CO 2 emissions from energy systems. The Protocol allows the creation of systems for trade in emission permits whereby countries exceeding their target levels can remain in compliance by purchasing surplus permits from other developed countries. However, a huge carbon surplus, which has been christened hot air, has been created in Russia and Ukraine since 1990 primarily because of the contraction of their economies. The current Unites States

  6. The equilibrium response to doubling atmospheric CO2

    International Nuclear Information System (INIS)

    Mitchell, J.F.B.

    1990-01-01

    The equilibrium response of climate to increased atmospheric carbon dioxide as simulated by general circulation models is assessed. Changes that are physically plausible are summarized, along with an indication of the confidence attributable to those changes. The main areas of uncertainty are highlighted. They include: equilibrium experiments with mixed-layer oceans focusing on temperature, precipitation, and soil moisture; equilibrium studies with dynamical ocean-atmosphere models; results deduced from equilibrium CO 2 experiments; and priorities for future research to improve atmosphere models

  7. Do Continental Shelves Act as an Atmospheric CO2 Sink?

    Science.gov (United States)

    Cai, W.

    2003-12-01

    Recent air-to-sea CO2 flux measurements at several major continental shelves (European Atlantic Shelves, East China Sea and U.S. Middle Atlantic Bight) suggest that shelves may act as a one-way pump and absorb atmospheric CO2 into the ocean. These observations also favor the argument that continental shelves are autotrophic (i.e., net production of organic carbon, OC). The U.S. South Atlantic Bight (SAB) contrasts these findings in that it acts as a strong source of CO2 to the atmosphere while simultaneously exporting dissolved inorganic carbon (DIC) to the open ocean. We report pCO2, DIC, and alkalinity data from the SAB collected in 8 cruises along a transect from the shore to the shelf break in the central SAB. The shelf-wide net heterotrophy and carbon exports in the SAB are subsidized by the export of OC from the abundant intertidal marshes, which are a sink for atmospheric CO2. It is proposed here that the SAB represents a marsh-dominated heterotrophic ocean margin as opposed to river-dominated autotrophic margins. To further investigate why margins may behave differently in term of CO2 sink/source, the physical and biological conditions of several western boundary current margins are compared. Based on this and other studies, DIC export flux from margins to the open ocean must be significant in the overall global ocean carbon budget.

  8. Seasonal and temporal CO2 dynamics in three tropical mangrove creeks - A revision of global mangrove CO2 emissions

    Science.gov (United States)

    Rosentreter, Judith A.; Maher, D. T.; Erler, D. V.; Murray, R.; Eyre, B. D.

    2018-02-01

    Continuous high-resolution surface water pCO2 and δ13C-CO2 and 222Rn (dry season only) were measured over two tidal cycles in the wet and dry season in three tropical tidal mangrove creeks on the north-eastern coast of Queensland, Australia. Mangrove surface water pCO2 followed a clear tidal pattern (ranging from 387 to 13,031 μatm) with higher pCO2-values in the wet season than in the dry season. The δ13C-CO2 in the mangrove waters ranged from -21.7 to -8.8‰ and was rather indicative of a mixed source than a distinct mangrove signature. Surface water CO2 was likely driven by a combination of mangrove and external carbon sources, e.g. exchange with groundwater/pore water enriched in 13C, or terrestrial carbon inputs with a significant contribution of C4-vegetation (sugar cane) source. The kinetic and equilibrium fractionation during the gas exchange at the water-atmosphere interface may have further caused a 13C-enrichment of the CO2 pool in the mangrove surface waters. Average CO2 evasion rates (58.7-277.6 mmol m-2 d-1) were calculated using different empirical gas transfer velocity models. Using our high-resolution time series data and previously published data, the average CO2 flux rate in mangrove ecosystems was estimated to be 56.5 ± 8.9 mmol m-2 d-1, which corresponds to a revised global mangrove CO2 emission of 34.1 ± 5.4 Tg C per year.

  9. Decoupling of CO2-emissions from Energy Intensive Industries

    DEFF Research Database (Denmark)

    Andersen, M. S.; Enevoldsen, M. K.; Ryelund, A. V.

    and taxes on the trends in CO2 emissions on the basis of a novel method that relies on sector-specific energy prices. Whereas previous research has been unable to account for the implications of complex tax exemptions and price discounts, the present report bridges the gap and provides innovative estimates....... This finding suggests that price increases, whether induced by taxes or market fluctuations, can be effective in curbing CO2 emissions when they accurately reflect the CO2 burden. It also suggests that CO2-specific taxes on fuels are more effective than end-user electricity taxes which do not reflect actual...

  10. The oil market and international agreements on CO2 emissions

    International Nuclear Information System (INIS)

    Berger, K.; Fimreite, O.; Golombek, R.; Hoel, M.

    1992-01-01

    According to most scientists, greenhouse gas emissions must be reduced significantly relative to current trends to avoid dramatic adverse climatic changes during the next century. CO 2 is the most important greenhouse gas, so any international agreement will certainly cover CO 2 emissions. Any international agreement to reduce emissions of CO 2 is going to have a significant impact on the markets for fossil fuels. The analysis shows that it is not only the amount of CO 2 emissions permitted in an agreement which matters for fossil fuel prices, but also the type of agreement. Two obvious forms of agreements, which under certain assumptions both are cost efficient, are (a) tradeable emission permits, and (b) an international CO 2 tax. If the fossil fuel markets were perfectly competitive, these two types of agreements would have the same effect on the producer price of fossil fuels. However, fossil fuel markets are not completely competitive. It is shown that, under imperfect competition, direct regulation of the 'tradeable quotas' type tends to imply higher producer prices and a larger efficiency loss than an international CO 2 tax giving the same total CO 2 emissions. A numerical illustration of the oil market indicates that the difference in producer prices for the two types of CO 2 agreements is quite significant. 6 refs., 2 figs., 2 tabs

  11. Analysis of CO2, CO and HC emission reduction in automobiles

    Science.gov (United States)

    Balan, K. N.; Valarmathi, T. N.; Reddy, Mannem Soma Harish; Aravinda Reddy, Gireddy; Sai Srinivas, Jammalamadaka K. M. K.; Vasan

    2017-05-01

    In the present scenario, the emission from automobiles is becoming a serious problem to the environment. Automobiles, thermal power stations and Industries majorly constitute to the emission of CO2, CO and HC. Though the CO2 available in the atmosphere will be captured by oceans, grasslands; they are not enough to control CO2 present in the atmosphere completely. Also advances in engine and vehicle technology continuously to reduce the emission from engine exhaust are not sufficient to reduce the HC and CO emission. This work concentrates on design, fabrication and analysis to reduce CO2, CO and HC emission from exhaust of automobiles by using molecular sieve 5A of 1.5mm. In this paper, the details of the fabrication, results and discussion about the process are discussed.

  12. Trends in global CO2 emissions. 2012 Report

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, J.G.J.; Peters, J.A.H.W. [PBL Netherlands Environmental Assessment Agency, Den Haag (Netherlands); Janssens-Maenhout, G. [Institute for Environment and Sustainability IES, European Commission' s Joint Research Centre JRC, Ispra (Italy)

    2012-07-15

    This report discusses the results of a trend assessment of global CO2 emissions up to 2011 and updates last year's assessment. This assessment focusses on the changes in annual CO2 emissions from 2010 to 2011, and includes not only fossil fuel combustion on which the BP reports are based, but also incorporates all other relevant CO2 emissions sources including flaring of waste gas during oil production, cement clinker production and other limestone uses, feedstock and other non-energy uses of fuels, and several other small sources. After a short description of the methods used (Chapter 2), we first present a summary of recent CO2 emission trends, by region and by country, and of the underlying trend of fossil fuel use, non-fossil energy and of other CO2 sources (Chapter 3). To provide a broader context of the global trends we also assess the cumulative global CO2 emissions of the last decade, i.e. since 2000, and compare it with scientific literature that analyse global emissions in relation to the target of 2C maximum global warming in the 21st century, which was adopted in the UN climate negotiations (Chapter 4). Compared to last year's report, Annex 1 includes a more detailed and updated discussion of the uncertainty in national and global CO2 emission estimates.

  13. Trends in global CO2 emissions. 2012 Report

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, J. G.J.; Peters, J. A.H.W. [PBL Netherlands Environmental Assessment Agency, Den Haag (Netherlands); Janssens-Maenhout, G. [Institute for Environment and Sustainability IES, European Commission' s Joint Research Centre JRC, Ispra (Italy)

    2012-07-15

    This report discusses the results of a trend assessment of global CO2 emissions up to 2011 and updates last year's assessment. This assessment focusses on the changes in annual CO2 emissions from 2010 to 2011, and includes not only fossil fuel combustion on which the BP reports are based, but also incorporates all other relevant CO2 emissions sources including flaring of waste gas during oil production, cement clinker production and other limestone uses, feedstock and other non-energy uses of fuels, and several other small sources. After a short description of the methods used (Chapter 2), we first present a summary of recent CO2 emission trends, by region and by country, and of the underlying trend of fossil fuel use, non-fossil energy and of other CO2 sources (Chapter 3). To provide a broader context of the global trends we also assess the cumulative global CO2 emissions of the last decade, i.e. since 2000, and compare it with scientific literature that analyse global emissions in relation to the target of 2C maximum global warming in the 21st century, which was adopted in the UN climate negotiations (Chapter 4). Compared to last year's report, Annex 1 includes a more detailed and updated discussion of the uncertainty in national and global CO2 emission estimates.

  14. Electricity system planning under the CO2 emission restriction

    International Nuclear Information System (INIS)

    Lim, Chae Young; Lee, Man Ki; Roh, Jae Hyung; Kim, Eun Hwan

    2004-01-01

    Objective of this study is to analyze how the restriction of CO 2 emission from power generation will affect the national electricity supply system. The role of nuclear power is investigated under the restriction of CO 2 emission in Korea. A simplified electricity system was modeled for the analysis. To analyze the impact of CO 2 emission restriction, 2 different scenarios were established and compared with the base scenario. The first scenario was 'CO 2 emission restriction with new nuclear power installation'. In this scenario, a CO 2 emission restriction of 0.11kg-C/kWh was imposed and there was no restriction on the nuclear power construction. While, in the second scenario, 'CO 2 emission restriction without new nuclear power installation' the same amount of CO 2 restriction was imposed with no consideration of nuclear power installation. It is found out that the current national emission target(0.11kg- C/kWh) in the electricity sector can not be achieved without nuclear and renewable(wind power) options considered

  15. Atmospheric Variability of CO2 impact on space observation Requirements

    Science.gov (United States)

    Swanson, A. L.; Sen, B.; Newhart, L.; Segal, G.

    2009-12-01

    If International governments are to reduce GHG levels by 80% by 2050, as recommended by most scientific bodies concerned with avoiding the most hazardous changes in climate, then massive investments in infrastructure and new technology will be required over the coming decades. Such an investment will be a huge commitment by governments and corporations, and while it will offer long-term dividends in lower energy costs, a healthier environment and averted additional global warming, the shear magnitude of upfront costs will drive a call for a monitoring and verification system. Such a system will be required to offer accountability to signatories of governing bodies, as well as, for the global public. Measuring the average global distribution of CO2 is straight forward, as exemplified by the long running station measurements managed by NOAA’s Global Monitoring Division that includes the longterm Keeling record. However, quantifying anthropogenic and natural source/sink distributions and atmospheric mixing have been much more difficult to constrain. And, yet, an accurate accounting of all anthropogenic source strengths is required for Global Treaty verification. The only way to accurately assess Global GHG emissions is to construct an integrated system of ground, air and space based observations with extensive chemical modeling capabilities. We look at the measurement requirements for the space based component of the solutions. To determine what space sensor performance requirements for ground resolution, coverage, and revisit, we have analyzed regional CO2 distributions and variability using NASA and NOAA aircraft flight campaigns. The results of our analysis are presented as variograms showing average spatial variability over several Northern Hemispheric regions. There are distinct regional differences with the starkest contrast between urban versus rural and Coastal Asia versus Coastal US. The results suggest specific consequences on what spatial and temporal

  16. Grey forecasting model for CO2 emissions: A Taiwan study

    International Nuclear Information System (INIS)

    Lin, Chiun-Sin; Liou, Fen-May; Huang, Chih-Pin

    2011-01-01

    Highlights: → CO 2 is the most frequently implicated in global warming. → The CARMA indicates that the Taichung coal-fired power plants had the highest CO 2 emissions in the world. → GM(1,1) prediction accuracy is fairly high. → The results show that the average residual error of the GM(1,1) was below 10%. -- Abstract: Among the various greenhouse gases associated with climate change, CO 2 is the most frequently implicated in global warming. The latest data from Carbon Monitoring for Action (CARMA) shows that the coal-fired power plant in Taichung, Taiwan emitted 39.7 million tons of CO 2 in 2007 - the highest of any power plant in the world. Based on statistics from Energy International Administration, the annual CO 2 emissions in Taiwan have increased 42% from 1997 until 2006. Taiwan has limited natural resources and relies heavily on imports to meet its energy needs, and the government must take serious measures control energy consumption to reduce CO 2 emissions. Because the latest data was from 2009, this study applied the grey forecasting model to estimate future CO 2 emissions in Taiwan from 2010 until 2012. Forecasts of CO 2 emissions in this study show that the average residual error of the GM(1,1) was below 10%. Overall, the GM(1,1) predicted further increases in CO 2 emissions over the next 3 years. Although Taiwan is not a member of the United Nations and is not bound by the Kyoto Protocol, the findings of this study provide a valuable reference with which the Taiwanese government could formulate measures to reduce CO 2 emissions by curbing the unnecessary the consumption of energy.

  17. Households' direct CO-2 emissions according to location

    International Nuclear Information System (INIS)

    Cavailhes, Jean; Hilal, Mohamed; Moreau, Sylvain; Bottin, Anne; Reperant, Patricia

    2012-08-01

    Limiting direct emissions of carbon dioxide (CO 2 ) by households is an important factor for achieving reductions in greenhouse gas emissions in compliance with the Kyoto Protocol and European policy. The two main sources of emissions are, in descending order, housing and commuting between home and the workplace or place of study. Average housing-related emissions are 3, 150 kg of CO 2 per year, reaching 4, 200 kg of CO 2 per year in mountain and semi-continental climates. Individual houses in urban centres, often old and with fuel-oil heating, emit more CO 2 than peri-urban dwellings, which are more recent and often have 100% electric heating. Conversely, emissions from commuting are higher in peri-urban areas, where the needs for transport are greater but less transport services are on offer. (authors)

  18. Carbon Dioxide Production Responsibility on the Basis of comparing in Situ and mean CO2 Atmosphere Concentration Data

    OpenAIRE

    Mavrodiev, S. Cht.; Pekevski, L.; Vachev, B.

    2008-01-01

    The method is proposed for estimation of regional CO2 and other greenhouses and pollutants production responcibility. The comparison of CO2 local emissions reduction data with world CO2 atmosphere data will permit easy to judge for overall effect in curbing not only global warming but also chemical polution.

  19. Trends in global CO2 emissions. 2013 Report

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, J.G.J.; Peters, J.A.H.W. [PBL Netherlands Environmental Assessment Agency, Den Haag (Netherlands); Janssens-Maenhout, G. [Institute for Environment and Sustainability IES, European Commission' s Joint Research Centre JRC, Ispra (Italy); Muntean, M. [Institute for Environment and Sustainability IES, Joint Research Centre JRC, Ispra (Italy)

    2013-10-15

    This report discusses the results of a trend assessment of global CO2 emissions up to 2012 and updates last year's assessment. This assessment focuses on the changes in annual CO2 emissions from 2011 to 2012, and includes not only fossil-fuel combustion on which the BP reports are based, but also incorporates other relevant CO2 emissions sources including flaring of waste gas during gas and oil production, cement clinker production and other limestone uses, feedstock and other non-energy uses of fuels, and several other small sources. The report clarifies the CO2 emission sources covered, and describes the methodology and data sources. More details are provided in Annex 1 over the 2010-2012 period, including a discussion of the degree of uncertainty in national and global CO2 emission estimates. Chapter 2 presents a summary of recent CO2 emission trends, per main country or region, including a comparison between emissions per capita and per unit of Gross Domestic Product (GDP), and of the underlying trend in fossil-fuel production and use, non-fossil energy and other CO2 sources. Specific attention is given to developments in shale gas and oil production and oil sands production and their impact on CO2 emissions. To provide a broader context of global emissions trends, international greenhouse gas mitigation targets and agreements are also presented, including different perspectives of emission accounting per country. In particular, annual trends with respect to the Kyoto Protocol target and Cancun agreements and cumulative global CO2 emissions of the last decade are compared with scientific literature that analyses global emissions in relation to the target of 2{sup 0}C maximum global warming in the 21st century, which was adopted in the UN climate negotiations. In addition, we briefly discuss the rapid development and implementation of various emission trading schemes, because of their increasing importance as a cross-cutting policy instrument for mitigating

  20. The extraction of CO2 from the atmosphere

    International Nuclear Information System (INIS)

    Hauet, Jean-Pierre

    2014-01-01

    After having indicated some methods which are considered as ridiculous, hazardous or ethically questionable, the author first presents of method of extraction of CO 2 from the atmosphere developed by a research team of the University of Calgary and applied by the Carbon Engineering Company. According to this concept, ambient air is circulated through an air-contactor in which air leaves its CO 2 to a potassium hydroxide flow which transforms into potassium carbonate. This hydroxide is then re-generated by exchange with calcium hydroxide. The thus formed calcium carbonate is finally thermally decomposed to release CO 2 . He also presents the BECCS (Bio-energy with carbon capture and storage) which has been put forward by the IPCC, evokes the cost of the extracted ton of CO 2 and the arguments of the opponents to this method

  1. Sensitivity Analysis for Atmospheric Infrared Sounder (AIRS) CO2 Retrieval

    Science.gov (United States)

    Gat, Ilana

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a thermal infrared sensor able to retrieve the daily atmospheric state globally for clear as well as partially cloudy field-of-views. The AIRS spectrometer has 2378 channels sensing from 15.4 micrometers to 3.7 micrometers, of which a small subset in the 15 micrometers region has been selected, to date, for CO2 retrieval. To improve upon the current retrieval method, we extended the retrieval calculations to include a prior estimate component and developed a channel ranking system to optimize the channels and number of channels used. The channel ranking system uses a mathematical formalism to rapidly process and assess the retrieval potential of large numbers of channels. Implementing this system, we identifed a larger optimized subset of AIRS channels that can decrease retrieval errors and minimize the overall sensitivity to other iridescent contributors, such as water vapor, ozone, and atmospheric temperature. This methodology selects channels globally by accounting for the latitudinal, longitudinal, and seasonal dependencies of the subset. The new methodology increases accuracy in AIRS CO2 as well as other retrievals and enables the extension of retrieved CO2 vertical profiles to altitudes ranging from the lower troposphere to upper stratosphere. The extended retrieval method for CO2 vertical profile estimation using a maximum-likelihood estimation method. We use model data to demonstrate the beneficial impact of the extended retrieval method using the new channel ranking system on CO2 retrieval.

  2. Energy consumption and CO2 emissions in Iran, 2025

    International Nuclear Information System (INIS)

    Mirzaei, Maryam; Bekri, Mahmoud

    2017-01-01

    Climate change and global warming as the key human societies' threats are essentially associated with energy consumption and CO 2 emissions. A system dynamic model was developed in this study to model the energy consumption and CO 2 emission trends for Iran over 2000–2025. Energy policy factors are considered in analyzing the impact of different energy consumption factors on environmental quality. The simulation results show that the total energy consumption is predicted to reach 2150 by 2025, while that value in 2010 is 1910, which increased by 4.3% yearly. Accordingly, the total CO 2 emissions in 2025 will reach 985 million tonnes, which shows about 5% increase yearly. Furthermore, we constructed policy scenarios based on energy intensity reduction. The analysis show that CO 2 emissions will decrease by 12.14% in 2025 compared to 2010 in the scenario of 5% energy intensity reduction, and 17.8% in the 10% energy intensity reduction scenario. The results obtained in this study provide substantial awareness regarding Irans future energy and CO 2 emission outlines. - Highlights: • Creation of an energy consumption model using system dynamics. • The effect of different policies on energy consumption and emission reductions. • An ascending trend for the environmental costs caused by CO 2 emissions is observed. • An urgent need for energy saving and emission reductions in Iran.

  3. Changes in CO2 emission intensities in the Mexican industry

    International Nuclear Information System (INIS)

    González, Domingo; Martínez, Manuel

    2012-01-01

    A CO 2 emission intensity analysis in the Mexican industry from 1965 to 2010 is carried out by taking into consideration four stages: 1965–1982, 1982–1994, 1994–2003, and 2004–2010. Based on the LMDI decomposition methodology, three influencing factors are analyzed: energy intensity, CO 2 coefficient, and structure in terms of their contributions of each individual attributes to the overall percent change of them as it was proposed in Choi and Ang (2011). The energy intensity effect was the driving factor behind the main decreases of CO 2 intensity, the CO 2 coefficient effect contributed to less extent to mitigate it, and the structure effect tended to increased it. It is observed that CO 2 intensity declined by 26.2% from 1965 to 2003, but it increased by 10.1% from 2004 to 2010. In addition, the move of Mexico from an economic model based on import-substitution to an export-oriented economy brought more importance to the Mexican industry intended to export, thus maintaining high levels of activity of industries such as cement, iron and steel, chemical, and petrochemical, while industries such as automotive, and ‘other’ industries grown significantly not only as far their energy consumptions and related CO 2 emissions but they also increased their contributions to the national economy. - Highlights: ► Industrial CO 2 emission intensity was reduced by 26.2% from 1965 to 2003. ► Industrial CO 2 emission intensity was increased by 10.1% from 2003 to 2010. ► 1965–2003: Intensity effect took down CO 2 emission intensity. ► 2003–2010: Export-oriented industries raised CO 2 emission intensity.

  4. Simulation of atmospheric CO2 over Europe and western Siberia using the regional scale model REMO

    International Nuclear Information System (INIS)

    Chevillard, A.; Ciais, P.; Lafont, S.

    2002-01-01

    The spatial distribution and the temporal variability of atmospheric CO 2 over Europe and western Siberia are investigated using the regional atmospheric model, REMO. The model, of typical horizontal resolution 50 km, is part of a nested modelling framework that has been established as a concerted action during the EUROSIBERIAN CARBONFLUX project. In REMO, the transport of CO 2 is simulated together with climate variables, which offers the possibility of calculating at each time step the land atmosphere CO 2 fluxes as driven by the modelled meteorology. The uptake of CO 2 by photosynthesis is calculated using a light use efficiency formulation, where the absorbed photosynthetically active solar radiation is inferred from satellite measurements. The release of CO 2 from plant and soil respiration is driven by the simulated climate and assumed to be in equilibrium with photosynthesis over the course of one year. Fossil CO 2 emissions and air-sea fluxes within the model domain are prescribed, whereas the influence of sources outside the model domain is computed from as a boundary condition CO 2 fields determined a global transport model. The modelling results are compared against pointwise eddy covariance fluxes, and against atmospheric CO 2 records. We show that a necessary condition to simulate realistically the variability of atmospheric CO 2 over continental Europe is to account for the diurnal cycle of biospheric exchange. Overall, for the study period of July 1998, REMO realistically simulates the short-term variability of fluxes and of atmospheric mixing ratios. However, the mean CO 2 gradients from western Europe to western Siberia are not correctly reproduced. This latter deficiency points out the key role of boundary conditions in a limited-area model, as well as the need for using more realistic geographic mean patterns of biospheric carbon fluxes

  5. Influence of travel behavior on global CO2 emissions

    NARCIS (Netherlands)

    Girod, B.; Vuuren, D.P. van; Vries, B. de

    2013-01-01

    Travel demand is rising steeply and its contribution to global CO2 emissions is increasing. Different studies have shown possible mitigation through technological options, but so far few studies have evaluated the implications of changing travel behavior on global travel demand, energy use and CO2

  6. Water loss from terrestrial planets with CO2-rich atmospheres

    International Nuclear Information System (INIS)

    Wordsworth, R. D.; Pierrehumbert, R. T.

    2013-01-01

    Water photolysis and hydrogen loss from the upper atmospheres of terrestrial planets is of fundamental importance to climate evolution but remains poorly understood in general. Here we present a range of calculations we performed to study the dependence of water loss rates from terrestrial planets on a range of atmospheric and external parameters. We show that CO 2 can only cause significant water loss by increasing surface temperatures over a narrow range of conditions, with cooling of the middle and upper atmosphere acting as a bottleneck on escape in other circumstances. Around G-stars, efficient loss only occurs on planets with intermediate CO 2 atmospheric partial pressures (0.1-1 bar) that receive a net flux close to the critical runaway greenhouse limit. Because G-star total luminosity increases with time but X-ray and ultraviolet/ultravoilet luminosity decreases, this places strong limits on water loss for planets like Earth. In contrast, for a CO 2 -rich early Venus, diffusion limits on water loss are only important if clouds caused strong cooling, implying that scenarios where the planet never had surface liquid water are indeed plausible. Around M-stars, water loss is primarily a function of orbital distance, with planets that absorb less flux than ∼270 W m –2 (global mean) unlikely to lose more than one Earth ocean of H 2 O over their lifetimes unless they lose all their atmospheric N 2 /CO 2 early on. Because of the variability of H 2 O delivery during accretion, our results suggest that many 'Earth-like' exoplanets in the habitable zone may have ocean-covered surfaces, stable CO 2 /H 2 O-rich atmospheres, and high mean surface temperatures.

  7. RISING ATMOSPHERIC CO2 AND CARBON SEQUESTRATION IN FORESTS

    Science.gov (United States)

    Rising CO2 concentrations in the Earth's atmosphere could alter Earth's climate system, but it is thought that higher concentrations may improve plant growth by way of the fertilization effect. Forests, an important part of the Earth's carbon cycle, are postulated to sequester a...

  8. ROOT-GROWTH AND FUNCTIONING UNDER ATMOSPHERIC CO2 ENRICHMENT

    NARCIS (Netherlands)

    STULEN, [No Value; DENHERTOG, J

    This paper examines the extent to which atmospheric CO2 enrichment may influence growth of plant roots and function in terms of uptake of water and nutrients, and carbon allocation towards symbionts. It is concluded that changes in dry matter allocation greatly depend on the experimental conditions

  9. Increase of atmospheric CO2 promotes phytoplankton productivity

    NARCIS (Netherlands)

    Schippers, P.; Lürling, M.F.L.L.W.; Scheffer, M.

    2004-01-01

    It is usually thought that unlike terrestrial plants, phytoplankton will not show a significant response to an increase of atmospheric CO2. Here we suggest that this view may be biased by a neglect of the effects of carbon (C) assimilation on the pH and the dissociation of the C species. We show

  10. Impacts of elevated atmospheric CO2 on forest trees and forest ecosystems: knowledge gaps

    International Nuclear Information System (INIS)

    Karnosky, D.F.

    2003-06-01

    Atmospheric CO 2 is rising rapidly, and options for slowing the CO 2 rise are politically charged as they largely require reductions in industrial CO 2 emissions for most developed countries. As forests cover some 43% of the Earth's surface, account for some 70% of terrestrial net primary production (NPP), and are being bartered for carbon mitigation, it is critically important that we continue to reduce the uncertainties about the impacts of elevated atmospheric CO 2 on forest tree growth, productivity, and forest ecosystem function. In this paper, 1 review knowledge gaps and research needs on the effects of elevated atmospheric CO 2 on forest above- and below-ground growth and productivity, carbon sequestration, nutrient cycling, water relations, wood quality, phonology, community dynamics and biodiversity, antioxidants and stress tolerance, interactions with air pollutants, heterotrophic interactions, and ecosystem functioning. Finally, 1 discuss research needs regarding modelling of the impacts of elevated atmospheric CO 2 on forests. Even though there has been a tremendous amount of research done with elevated CO 2 and forest trees, it remains difficult to predict future forest growth and productivity under elevated atmospheric CO 2 . Likewise, it is not easy to predict how forest ecosystem processes will respond to enriched CO 2 . The more we study the impacts of increasing CO 2 , the more we realize that tree and forest responses are yet largely uncertain due to differences in responsiveness by species, genotype, and functional group, and the complex interactions of elevated atmospheric CO 2 with soil fertility, drought, pests, and co-occurring atmospheric pollutants such as nitrogen deposition and O 3 . Furthermore, it is impossible to predict ecosystem-level responses based on short-term studies of young trees grown without interacting stresses and in small spaces without the element of competition. Long-term studies using free-air CO 2 enrichment (FACE

  11. An instructive comparison of Denmark and Sweden CO2 emissions

    International Nuclear Information System (INIS)

    Huffer, E.; Nifenecker, H.

    2007-02-01

    Denmark and Sweden are close neighbors, they have pretty much the same Climate, so that it is interesting to try to understand what makes them so different in their per capita GHG (Green House Gas) emissions from fuel combustion. Indeed, the CO 2 emissions of Denmark and Sweden are practically equal while the population of Sweden is much larger. Thus, the per capita CO 2 emissions of Denmark are 63 % larger than those of Sweden. Denmark resorts heavily to fossil fuels for its production of both its electric power and its industrial heat whereas Sweden resorts to other primary energy sources which are either renewable or do not emit CO 2 . True, Sweden is in a privileged situation for its access to hydro power and to biomass but Denmark could considerably reduce its CO 2 emissions if it were to call on nuclear power as Sweden has been doing. (A.L.B.)

  12. Reducing of CO2 emissions and its depositing into underground

    Directory of Open Access Journals (Sweden)

    Jaroslava Koudelková

    2005-11-01

    Full Text Available Increasing CO2 emissions caused especially by the combustion of fossil fuels rises a question of how this can be problem solved in the long term. There is several solutions which differ technically and financially. This paper deals with the CO2 capture from combustion processes or power plant processes, (CO2 can be captured from the flue gas, after combustion in oxygen and recirculated flue gas or from a synthesis gas before combustion. This paper presents possibilities of CO2 storagex captured in this way into underground (deep ocean, oil and gas fields, coal bed, aquifers.

  13. Modeling the transformation of atmospheric CO2 into microalgal biomass.

    Science.gov (United States)

    Hasan, Mohammed Fahad; Vogt, Frank

    2017-10-23

    Marine phytoplankton acts as a considerable sink of atmospheric CO 2 as it sequesters large quantities of this greenhouse gas for biomass production. To assess microalgae's counterbalancing of global warming, the quantities of CO 2 they fix need to be determined. For this task, it is mandatory to understand which environmental and physiological parameters govern this transformation from atmospheric CO 2 to microalgal biomass. However, experimental analyses are challenging as it has been found that the chemical environment has a major impact on the physiological properties of the microalgae cells (diameter typ. 5-20 μm). Moreover, the cells can only chemically interact with their immediate vicinity and thus compound sequestration needs to be studied on a microscopic spatial scale. Due to these reasons, computer simulations are a more promising approach than the experimental studies. Modeling software has been developed that describes the dissolution of atmospheric CO 2 into oceans followed by the formation of HCO 3 - which is then transported to individual microalgae cells. The second portion of this model describes the competition of different cell species for this HCO 3 - , a nutrient, as well as its uptake and utilization for cell production. Two microalgae species, i.e. Dunaliella salina and Nannochloropsis oculata, were cultured individually and in a competition situation under different atmospheric CO 2 conditions. It is shown that this novel model's predictions of biomass production are in very good agreement with the experimental flow cytometry results. After model validation, it has been applied to long-term prediction of phytoplankton generation. These investigations were motivated by the question whether or not cell production slows down as cultures grow. This is of relevance as a reduced cell production rate means that the increase in a culture's CO 2 -sinking capacity slows down as well. One implication resulting from this is that an increase in

  14. Social Learning and the Mitigation of Transport CO2 Emissions

    OpenAIRE

    Maha Al Sabbagh

    2017-01-01

    Social learning, a key factor in fostering behavioural change and improving decision making, is considered necessary for achieving substantial CO2 emission reductions. However, no empirical evidence exists on how it contributes to mitigation of transport CO2 emissions, or the extent of its influence on decision making. This paper presents evidence addressing these knowledge gaps. Social learning-oriented workshops were conducted to gather the views and preferences of participants from the gen...

  15. Macro economic analysis of CO2 emission limits for China

    International Nuclear Information System (INIS)

    Zhang, Z.X.; Folmer, H.; Van Beek, P.

    1995-01-01

    Using a newly developed time-recursive dynamic CGE model for energy and environmental policy analysis of the Chinese economy, a business-as-usual scenario is first developed assuming no specific policy intervention to limit the growth rate of CO2 emissions. Counter factual policy simulation is then carried out to compute the macroeconomic implications of a carbon tax to limit the Chinese energy-related CO2 emissions. 2 tabs., 5 refs

  16. Developing Benchmarking Criteria for CO2 Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Neelis, M.; Worrell, E.; Mueller, N.; Angelini, T. [Ecofys, Utrecht (Netherlands); Cremer, C.; Schleich, J.; Eichhammer, W. [The Fraunhofer Institute for Systems and Innovation research, Karlsruhe (Germany)

    2009-02-15

    A European Union (EU) wide greenhouse gas (GHG) allowance trading scheme (EU ETS) was implemented in the EU in 2005. In the first two trading periods of the scheme (running up to 2012), free allocation based on historical emissions was the main methodology for allocation of allowances to existing installations. For the third trading period (2013 - 2020), the European Commission proposed in January 2008 a more important role of auctioning of allowances rather then free allocation. (Transitional) free allocation of allowances to industrial sectors will be determined via harmonized allocation rules, where feasible based on benchmarking. In general terms, a benchmark based method allocates allowances based on a certain amount of emissions per unit of productive output (i.e. the benchmark). This study aims to derive criteria for an allocation methodology for the EU Emission Trading Scheme based on benchmarking for the period 2013 - 2020. To test the feasibility of the criteria, we apply them to four example product groups: iron and steel, pulp and paper, lime and glass. The basis for this study is the Commission proposal for a revised ETS directive put forward on 23 January 2008 and does not take into account any changes to this proposal in the co-decision procedure that resulted in the adoption of the Energy and Climate change package in December 2008.

  17. The millennial atmospheric lifetime of anthropogenic CO2

    International Nuclear Information System (INIS)

    Archer, D.

    2008-01-01

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO 2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere/ocean carbon cycle, which we review here. The largest fraction of the CO 2 recovery will take place on time scales of centuries, as CO 2 invades the ocean, but a significant fraction of the fossil fuel CO 2 , ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial/interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO 2 in the atmosphere

  18. Determinants of CO2 emissions in ASEAN countries using energy and mining indicators

    International Nuclear Information System (INIS)

    Nordin, Sayed Kushairi Sayed; Samat, Khairul Fadzli; Ismail, Siti Fatimah; Hamzah, Khairum; Halim, Bushra Abdul; Kun, Sek Siok

    2015-01-01

    Carbon dioxide (CO 2 ) is the main greenhouse gas emitted from human activities. Industrial revolution is one of the triggers to accelerate the quantity of CO 2 in the atmosphere which lead to undesirable changes in the cycle of carbon. Like China and United States which are affected by the economic development growth, the atmospheric CO 2 level in ASEAN countries is expected to be higher from year to year. This study focuses on energy and mining indicators, namely alternative and nuclear energy, energy production, combustible renewables and waste, fossil fuel energy consumption and the pump price for diesel fuel that contribute to CO 2 emissions. Six ASEAN countries were examined from 1970 to 2010 using panel data approach. The result shows that model of cross section-fixed effect is the most appropriate model with the value of R-squared is about 86%. Energy production and fossil fuel energy consumption are found to be significantly influenced to CO 2 emissions

  19. Determinants of CO2 emissions in ASEAN countries using energy and mining indicators

    Science.gov (United States)

    Nordin, Sayed Kushairi Sayed; Samat, Khairul Fadzli; Ismail, Siti Fatimah; Hamzah, Khairum; Halim, Bushra Abdul; Kun, Sek Siok

    2015-05-01

    Carbon dioxide (CO2) is the main greenhouse gas emitted from human activities. Industrial revolution is one of the triggers to accelerate the quantity of CO2 in the atmosphere which lead to undesirable changes in the cycle of carbon. Like China and United States which are affected by the economic development growth, the atmospheric CO2 level in ASEAN countries is expected to be higher from year to year. This study focuses on energy and mining indicators, namely alternative and nuclear energy, energy production, combustible renewables and waste, fossil fuel energy consumption and the pump price for diesel fuel that contribute to CO2 emissions. Six ASEAN countries were examined from 1970 to 2010 using panel data approach. The result shows that model of cross section-fixed effect is the most appropriate model with the value of R-squared is about 86%. Energy production and fossil fuel energy consumption are found to be significantly influenced to CO2 emissions.

  20. Modeling and validation of on-road CO2 emissions inventories at the urban regional scale

    International Nuclear Information System (INIS)

    Brondfield, Max N.; Hutyra, Lucy R.; Gately, Conor K.; Raciti, Steve M.; Peterson, Scott A.

    2012-01-01

    On-road emissions are a major contributor to rising concentrations of atmospheric greenhouse gases. In this study, we applied a downscaling methodology based on commonly available spatial parameters to model on-road CO 2 emissions at the 1 × 1 km scale for the Boston, MA region and tested our approach with surface-level CO 2 observations. Using two previously constructed emissions inventories with differing spatial patterns and underlying data sources, we developed regression models based on impervious surface area and volume-weighted road density that could be scaled to any resolution. We found that the models accurately reflected the inventories at their original scales (R 2 = 0.63 for both models) and exhibited a strong relationship with observed CO 2 mixing ratios when downscaled across the region. Moreover, the improved spatial agreement of the models over the original inventories confirmed that either product represents a viable basis for downscaling in other metropolitan regions, even with limited data. - Highlights: ► We model two on-road CO 2 emissions inventories using common spatial parameters. ► Independent CO 2 observations are used to validate the emissions models. ► The downscaled emissions models capture the urban spatial heterogeneity of Boston. ► Emissions estimates show a strong non-linear relationship with observed CO 2 . ► Our study is repeatable, even in areas with limited data. - This work presents a new, reproducible methodology for downscaling and validating on-road CO 2 emissions estimates.

  1. Economic Growth and CO2 Emissions in the European Union

    International Nuclear Information System (INIS)

    Bengochea-Morancho, A.; Martinez-Zarzoso, I.; Higon-Tamarit, F.

    2001-01-01

    This paper examines the relationship between economic growth and CO 2 emissions in the European Union. A panel data analysis for the period 1981 to 1995 is applied in order to estimate the relationship between Gross Domestic Product (GDP) growth and CO 2 emissions in ten selected European countries. The analysis shows important disparities between the most industrialised countries and the rest. The results do not seem to support a uniform policy to control emissions; they rather indicate that a reduction in emissions should be achieved by taking into account the specific economic situation and the industrial structure of each EU member state. 20 refs

  2. Committed CO2 Emissions of China's Coal-fired Power Plants

    Science.gov (United States)

    Suqin, J.

    2016-12-01

    The extent of global warming is determined by the cumulative effects of CO2 in the atmosphere. Coal-fired power plants, the largest anthropogenic source of CO2 emissions, produce large amount of CO2 emissions during their lifetimes of operation (committed emissions), which thus influence the future carbon emission space under specific targets on mitigating climate change (e.g., the 2 degree warming limit relative to pre-industrial levels). Comprehensive understanding of committed CO2 emissions for coal-fired power generators is urgently needed in mitigating global climate change, especially in China, the largest global CO2emitter. We calculated China's committed CO2 emissions from coal-fired power generators installed during 1993-2013 and evaluated their impact on future emission spaces at the provincial level, by using local specific data on the newly installed capacities. The committed CO2 emissions are calculated as the product of the annual coal consumption from newly installed capacities, emission factors (CO2emissions per unit crude coal consumption) and expected lifetimes. The sensitivities about generators lifetimes and the drivers on provincial committed emissions are also analyzed. Our results show that these relatively recently installed coal-fired power generators will lead to 106 Gt of CO2 emissions over the course of their lifetimes, which is more than three times the global CO2 emissions from fossil fuels in 2010. More than 80% (85 Gt) of their total committed CO2 will be emitted after 2013, which are referred to as the remaining emissions. Due to the uncertainties of generators lifetime, these remaining emissions would increase by 45 Gt if the lifetimes of China's coal-fired power generators were prolonged by 15 years. Furthermore, the remaining emissions are very different among various provinces owing to local developments and policy disparities. Provinces with large amounts of secondary industry and abundant coal reserves have higher committed

  3. Anthropogenic CO2 emissions from a megacity in the Yangtze River Delta of China.

    Science.gov (United States)

    Hu, Cheng; Liu, Shoudong; Wang, Yongwei; Zhang, Mi; Xiao, Wei; Wang, Wei; Xu, Jiaping

    2018-06-03

    Anthropogenic CO 2 emissions from cities represent a major source contributing to the global atmospheric CO 2 burden. Here, we examined the enhancement of atmospheric CO 2 mixing ratios by anthropogenic emissions within the Yangtze River Delta (YRD), China, one of the world's most densely populated regions (population greater than 150 million). Tower measurements of CO 2 mixing ratios were conducted from March 2013 to August 2015 and were combined with numerical source footprint modeling to help constrain the anthropogenic CO 2 emissions. We simulated the CO 2 enhancements (i.e., fluctuations superimposed on background values) for winter season (December, January, and February). Overall, we observed mean diurnal variation of CO 2 enhancement of 23.5~49.7 μmol mol -1 , 21.4~52.4 μmol mol -1 , 28.1~55.4 μmol mol -1 , and 29.5~42.4 μmol mol -1 in spring, summer, autumn, and winter, respectively. These enhancements were much larger than previously reported values for other countries. The diurnal CO 2 enhancements reported here showed strong similarity for all 3 years of the study. Results from source footprint modeling indicated that our tower observations adequately represent emissions from the broader YRD area. Here, the east of Anhui and the west of Jiangsu province contributed significantly more to the anthropogenic CO 2 enhancement compared to the other sectors of YRD. The average anthropogenic CO 2 emission in 2014 was 0.162 (± 0.005) mg m -2  s -1 and was 7 ± 3% higher than 2010 for the YRD. Overall, our emission estimates were significantly smaller (9.5%) than those estimated (0.179 mg m -2  s -1 ) from the EDGAR emission database.

  4. China CO2 emission accounts 1997–2015

    Science.gov (United States)

    Shan, Yuli; Guan, Dabo; Zheng, Heran; Ou, Jiamin; Li, Yuan; Meng, Jing; Mi, Zhifu; Liu, Zhu; Zhang, Qiang

    2018-01-01

    China is the world’s top energy consumer and CO2 emitter, accounting for 30% of global emissions. Compiling an accurate accounting of China’s CO2 emissions is the first step in implementing reduction policies. However, no annual, officially published emissions data exist for China. The current emissions estimated by academic institutes and scholars exhibit great discrepancies. The gap between the different emissions estimates is approximately equal to the total emissions of the Russian Federation (the 4th highest emitter globally) in 2011. In this study, we constructed the time-series of CO2 emission inventories for China and its 30 provinces. We followed the Intergovernmental Panel on Climate Change (IPCC) emissions accounting method with a territorial administrative scope. The inventories include energy-related emissions (17 fossil fuels in 47 sectors) and process-related emissions (cement production). The first version of our dataset presents emission inventories from 1997 to 2015. We will update the dataset annually. The uniformly formatted emission inventories provide data support for further emission-related research as well as emissions reduction policy-making in China. PMID:29337312

  5. China CO2 emission accounts 1997-2015

    Science.gov (United States)

    Shan, Yuli; Guan, Dabo; Zheng, Heran; Ou, Jiamin; Li, Yuan; Meng, Jing; Mi, Zhifu; Liu, Zhu; Zhang, Qiang

    2018-01-01

    China is the world's top energy consumer and CO2 emitter, accounting for 30% of global emissions. Compiling an accurate accounting of China's CO2 emissions is the first step in implementing reduction policies. However, no annual, officially published emissions data exist for China. The current emissions estimated by academic institutes and scholars exhibit great discrepancies. The gap between the different emissions estimates is approximately equal to the total emissions of the Russian Federation (the 4th highest emitter globally) in 2011. In this study, we constructed the time-series of CO2 emission inventories for China and its 30 provinces. We followed the Intergovernmental Panel on Climate Change (IPCC) emissions accounting method with a territorial administrative scope. The inventories include energy-related emissions (17 fossil fuels in 47 sectors) and process-related emissions (cement production). The first version of our dataset presents emission inventories from 1997 to 2015. We will update the dataset annually. The uniformly formatted emission inventories provide data support for further emission-related research as well as emissions reduction policy-making in China.

  6. Detection of CO2 leaks from carbon capture and storage sites with combined atmospheric CO2 and O-2 measurements

    NARCIS (Netherlands)

    van Leeuwen, Charlotte; Meijer, Harro A. J.

    2015-01-01

    This paper presents a transportable instrument that simultaneously measures the CO2 and (relative) O-2 concentration of the atmosphere with the purpose to aid in the detection of CO2 leaks from CCS sites. CO2 and O-2 are coupled in most processes on earth (e.g., photosynthesis, respiration and

  7. Estimation and reduction of CO2 emissions from crude oil distillation units

    International Nuclear Information System (INIS)

    Gadalla, M.; Olujic, Z.; Jobson, M.; Smith, R.

    2006-01-01

    Distillation systems are energy-intensive processes, and consequently contribute significantly to the greenhouse gases emissions (e.g. carbon dioxide (CO 2 ). A simple model for the estimation of CO 2 emissions associated with operation of heat-integrated distillation systems as encountered in refineries is introduced. In conjunction with a shortcut distillation model, this model has been used to optimize the process conditions of an existing crude oil atmospheric tower unit aiming at minimization of CO 2 emissions. Simulation results indicate that the total CO 2 emissions of the existing crude oil unit can be cut down by 22%, just by changing the process conditions accordingly, and that the gain in this respect can be doubled by integrating a gas turbine. In addition, emissions reduction is accompanied by substantial profit increase due to utility saving and/or export

  8. CO2 extraction : turning emissions to profit

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J. [ConocoPhillips Canada Resources Corp., Calgary, AB (Canada)

    2005-07-01

    This presentation described how ConocoPhillips extracts carbon dioxide (CO{sub 2}) from waste gas from its natural gas processes and sells it to industrial users. By extracting carbon dioxide, the company saves money and reduces energy consumption through greenhouse gas and sulphur emission reductions. The presentation discussed the company's Empress Straddle Plant and provided a process flow diagram of the plant. It then discussed how CO{sub 2} and sulphur gas are removed. New plants were also discussed as were CO{sub 2} extraction plant processes such as sulphur gas treating, separation, storage and disposal; and CO{sub 2} compression, refrigeration, storage, and transportation. The resulting savings were also presented. tabs., figs.

  9. Estimating marginal CO2 emissions rates for national electricity systems

    International Nuclear Information System (INIS)

    Hawkes, A.D.

    2010-01-01

    The carbon dioxide (CO 2 ) emissions reduction afforded by a demand-side intervention in the electricity system is typically assessed by means of an assumed grid emissions rate, which measures the CO 2 intensity of electricity not used as a result of the intervention. This emissions rate is called the 'marginal emissions factor' (MEF). Accurate estimation of MEFs is crucial for performance assessment because their application leads to decisions regarding the relative merits of CO 2 reduction strategies. This article contributes to formulating the principles by which MEFs are estimated, highlighting the strengths and weaknesses in existing approaches, and presenting an alternative based on the observed behaviour of power stations. The case of Great Britain is considered, demonstrating an MEF of 0.69 kgCO 2 /kW h for 2002-2009, with error bars at +/-10%. This value could reduce to 0.6 kgCO 2 /kW h over the next decade under planned changes to the underlying generation mix, and could further reduce to approximately 0.51 kgCO 2 /kW h before 2025 if all power stations commissioned pre-1970 are replaced by their modern counterparts. Given that these rates are higher than commonly applied system-average or assumed 'long term marginal' emissions rates, it is concluded that maintenance of an improved understanding of MEFs is valuable to better inform policy decisions.

  10. Peak energy consumption and CO2 emissions in China

    International Nuclear Information System (INIS)

    Yuan, Jiahai; Xu, Yan; Hu, Zheng; Zhao, Changhong; Xiong, Minpeng; Guo, Jingsheng

    2014-01-01

    China is in the processes of rapid industrialization and urbanization. Based on the Kaya identity, this paper proposes an analytical framework for various energy scenarios that explicitly simulates China's economic development, with a prospective consideration on the impacts of urbanization and income distribution. With the framework, China's 2050 energy consumption and associated CO 2 reduction scenarios are constructed. Main findings are: (1) energy consumption will peak at 5200–5400 million tons coal equivalent (Mtce) in 2035–2040; (2) CO 2 emissions will peak at 9200–9400 million tons (Mt) in 2030–2035, whilst it can be potentially reduced by 200–300 Mt; (3) China's per capita energy consumption and per capita CO 2 emission are projected to peak at 4 tce and 6.8 t respectively in 2020–2030, soon after China steps into the high income group. - Highlights: • A framework for modeling China's energy and CO 2 emissions is proposed. • Scenarios are constructed based on various assumptions on the driving forces. • Energy consumption will peak in 2035–2040 at 5200–5400 Mtce. • CO 2 emissions will peak in 2030–2035 at about 9300 Mt and be cut by 300 Mt in a cleaner energy path. • Energy consumption and CO 2 emissions per capita will peak soon after China steps into the high income group

  11. Impact of Biogas Stations on CO2 Emission from Agriculture

    Directory of Open Access Journals (Sweden)

    Josef Slaboch

    2017-01-01

    Full Text Available This paper deals with the effects of biogas stations on CO2 emissions produced within agricultural sector. In last years, owing to a positive policy of renewable energy resources a number of biogas stations in the CR has rapidly increased – actually over 350 agricultural biogas stations with the total installed power 365 MW are in operation. Concerning CO2 emissions from the agricultural sector, there is a presumption of decrease in produced emissions owing to decrease of influence of animal wastes which are processed just in the biogas stations. From the results it is obvious that CO2 emissions produced by agriculture in the CR decrease by 93.7 thousand tonnes annually. A presumption P1 that building of biogas stations will further support this trend is documented with results of a simple dynamic linear regression model. Further, elasticities of particular variables influencing the total emission from agriculture are investigated in the paper.

  12. How light, temperature, and measurement and growth [CO2] interactively control isoprene emission in hybrid aspen.

    Science.gov (United States)

    Niinemets, Ülo; Sun, Zhihong

    2015-02-01

    Plant isoprene emissions have been modelled assuming independent controls by light, temperature and atmospheric [CO2]. However, the isoprene emission rate is ultimately controlled by the pool size of its immediate substrate, dimethylallyl diphosphate (DMADP), and isoprene synthase activity, implying that the environmental controls might interact. In addition, acclimation to growth [CO2] can shift the share of the control by DMADP pool size and isoprene synthase activity, and thereby alter the environmental sensitivity. Environmental controls of isoprene emission were studied in hybrid aspen (Populus tremula × Populus tremuloides) saplings acclimated either to ambient [CO2] of 380 μmol mol(-1) or elevated [CO2] of 780 μmol mol(-1). The data demonstrated strong interactive effects of environmental drivers and growth [CO2] on isoprene emissions. Light enhancement of isoprene emission was the greatest at intermediate temperatures and was greater in elevated-[CO2]-grown plants, indicating greater enhancement of the DMADP supply. The optimum temperature for isoprene emission was higher at lower light, suggesting activation of alternative DMADP sinks at higher light. In addition, [CO2] inhibition of isoprene emission was lost at a higher temperature with particularly strong effects in elevated-[CO2]-grown plants. Nevertheless, DMADP pool size was still predicted to more strongly control isoprene emission at higher temperatures in elevated-[CO2]-grown plants. We argue that interactive environmental controls and acclimation to growth [CO2] should be incorporated in future isoprene emission models at the level of DMADP pool size. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Carbon-14 based determination of the biogenic fraction of industrial CO(2) emissions - application and validation.

    Science.gov (United States)

    Palstra, S W L; Meijer, H A J

    2010-05-01

    The (14)C method is a very reliable and sensitive method for industrial plants, emission authorities and emission inventories to verify data estimations of biogenic fractions of CO(2) emissions. The applicability of the method is shown for flue gas CO(2) samples that have been sampled in 1-h intervals at a coal- and wood-fired power plant and a waste incineration plant. Biogenic flue gas CO(2) fractions of 5-10% and 48-50% have been measured at the power plant and the waste incineration plant, respectively. The reliability of the method has been proven by comparison of the power plant results with those based on carbon mass input and output data of the power plant. At industrial plants with relatively low biogenic CO(2) fraction (<10%) the results need to be corrected for sampled (14)CO(2) from atmospheric air. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. The influence of using LPG device on the CO2 emissions from personal passenger cars

    Directory of Open Access Journals (Sweden)

    Viliam Carach

    2007-12-01

    Full Text Available Traffic, mostly the air and car traffic is the biggest producer of CO2 (51% at present. CO2 is one of the most important greenhouse gases with more than 50 % of emissions contributing to this major global ecological problem. A rising concetration of CO2 in the atmosphere leads to higher global temperatures. The main problem is the rise of CO2 emissions in most developed countries despite international undertakings accepted in 80´s. This is the main reason for finding solutions to reduce the amount of CO2 emissions in the traffic. One of many solutions is the use of LPG fuel. The purpose of this article is to quantify the efficiency of using LPG in personal passenger cars.

  15. Biomass burial and storage to reduce atmospheric CO2

    Science.gov (United States)

    Zeng, N.

    2012-04-01

    To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. It is estimated that a theoretical carbon sequestration potential for wood burial is 10 ± 5 GtC/y, but probably 1-3 GtC/y can be realized in practice. Burying wood has other benefits including minimizing CO2 source from deforestation, extending the lifetime of reforestation carbon sink, and reducing fire danger. There are possible environmental impacts such as nutrient lock-up which nevertheless appears manageable, but other environmental concerns and factors will likely set a limit so that only part of the full potential can be realized. Based on data from forest industry, the cost for wood burial is estimated to be 14/tCO2 (50/tC), lower than the typical cost for power plant CO2 capture with geological storage. The low cost for carbon sequestration with wood burial is possible because the technique uses the natural process of photosynthesis to remove carbon from the atmosphere. The technique is low tech, distributed, safe, and can be stopped at any time, thus an attractive option for large-scale implementation in a world-wide carbon market.

  16. CO2 emissions and mitigation potential in China's ammonia industry

    International Nuclear Information System (INIS)

    Zhou Wenji; Zhu Bing; Li Qiang; Ma Tieju; Hu Shanying; Griffy-Brown, Charla

    2010-01-01

    Significant pressure from increasing CO 2 emissions and energy consumption in China's industrialization process has highlighted a need to understand and mitigate the sources of these emissions. Ammonia production, as one of the most important fundamental industries in China, represents those heavy industries that contribute largely to this sharp increasing trend. In the country with the largest population in the world, ammonia output has undergone fast growth spurred by increasing demand for fertilizer of food production since 1950s. However, various types of technologies implemented in the industry make ammonia plants in China operate with huge differences in both energy consumption and CO 2 emissions. With consideration of these unique features, this paper attempts to estimate the amount of CO 2 emission from China's ammonia production, and analyze the potential for carbon mitigation in the industry. Based on the estimation, related policy implications and measures required to realize the potential for mitigation are also discussed.

  17. An Atmospheric CO2 Record Across the End-Cretaceous Extinction

    Science.gov (United States)

    Royer, D. L.; Milligan, J. N.; Kowalczyk, J.

    2017-12-01

    A bolide impact and flood-basalt emissions likely caused large changes to the end-Cretaceous carbon cycle. Presently, there is only one proxy record for atmospheric CO2 that captures these changes (Beerling et al., 2002, PNAS 99: 7836-7840). These authors estimated CO2 from the calibrated stomatal indices of Ginkgo dated to within 105 yrs before and after the extinction ( 300-500 ppm) in addition to that of Stenochlaena, a fern disaster taxa present in the Raton Basin, New Mexico, 2300 ppm). We revisited these fossil collections and applied a newer and more robust CO2 proxy that is based on leaf gas-exchange principles and does not require calibrations with present-day species (Franks et al., 2014, Geophys Res Lett 41: 4685-4694). We reconstruct pre- and post-extinction CO2 concentrations of 650 ppm from Ginkgo, compared to 850 ppm directly after the extinction from Stenochlaena. This change in CO2 of 200 ppm can be readily explained with carbon cycle models as a consequence of either the bolide impact or flood-basalt emissions. Placing these CO2 estimates into the broader context of other leaf gas-exchange CO2 estimates for the Cenozoic, the Earth system sensitivity was 3 K per CO2 doubling during the early Paleogene, before steepening to >6 K several million years before the Eocene-Oligocene boundary.

  18. Dependency of climate change and carbon cycle on CO2 emission pathways

    International Nuclear Information System (INIS)

    Nohara, Daisuke; Yoshida, Yoshikatsu; Misumi, Kazuhiro; Ohba, Masamichi

    2013-01-01

    Previous research has indicated that the response of globally average temperature is approximately proportional to cumulative CO 2 emissions, yet evidence of the robustness of this relationship over a range of CO 2 emission pathways is lacking. To address this, we evaluate the dependency of climate and carbon cycle change on CO 2 emission pathways using a fully coupled climate–carbon cycle model. We design five idealized pathways (including an overshoot scenario for cumulative emissions), each of which levels off to final cumulative emissions of 2000 GtC. The cumulative emissions of the overshoot scenario reach 4000 GtC temporarily, subsequently reducing to 2000 GtC as a result of continuous negative emissions. Although we find that responses of climatic variables and the carbon cycle are largely independent of emission pathways, a much weakened Atlantic meridional overturning circulation (AMOC) is projected in the overshoot scenario despite cessation of emissions. This weakened AMOC is enhanced by rapid warming in the Arctic region due to considerable temporary elevation of atmospheric CO 2 concentration and induces the decline of surface air temperature and decrease of precipitation over the northern Atlantic and Europe region. Moreover, the weakened AMOC reduces CO 2 uptake by the Atlantic and Arctic oceans. However, the weakened AMOC contributes little to the global carbon cycle. In conclusion, although climate variations have been found to be dependent on emission pathways, the global carbon cycle is relatively independent of these emission pathways, at least superficially. (letter)

  19. Nuclear power and its role in limiting CO2 emissions

    International Nuclear Information System (INIS)

    Suparman

    2012-01-01

    The objective of this study is to analyze the proper role of nuclear power in the long term energy planning by comparing different type of scenarios in terms of CO2 emission reduction, based on the Business-as-Usual (BAU) scenario. For this purpose, a MESSAGE (Model of Energy Supply Systems and their General Environmental impacts) was used to develop energy planning as well as CO2 emission projection. A sensitivity analysis for CO2 reduction rates of 2.%, 3%, 4% and 5% have been done. From this sensitivity analysis, it can be concluded that nuclear will be a part of optimum solution under CO2 limitation of at least 3% from BAU condition. The more the environmental standards are tightened and enforced the more and the earlier nuclear power becomes part of the optimum generation mix. (author)

  20. Energy consumption and CO2 emissions in Iran, 2025.

    Science.gov (United States)

    Mirzaei, Maryam; Bekri, Mahmoud

    2017-04-01

    Climate change and global warming as the key human societies' threats are essentially associated with energy consumption and CO 2 emissions. A system dynamic model was developed in this study to model the energy consumption and CO 2 emission trends for Iran over 2000-2025. Energy policy factors are considered in analyzing the impact of different energy consumption factors on environmental quality. The simulation results show that the total energy consumption is predicted to reach 2150 by 2025, while that value in 2010 is 1910, which increased by 4.3% yearly. Accordingly, the total CO 2 emissions in 2025 will reach 985million tonnes, which shows about 5% increase yearly. Furthermore, we constructed policy scenarios based on energy intensity reduction. The analysis show that CO 2 emissions will decrease by 12.14% in 2025 compared to 2010 in the scenario of 5% energy intensity reduction, and 17.8% in the 10% energy intensity reduction scenario. The results obtained in this study provide substantial awareness regarding Irans future energy and CO 2 emission outlines. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Energy development and CO2 emissions in China

    International Nuclear Information System (INIS)

    Xiaolin Xi

    1993-03-01

    The objective of this research is to provide a better understanding of future Chinese energy development and CO 2 emissions from burning fossil fuels. This study examines the current Chinese energy system, estimates CO 2 emissions from burning fossil fuels and projects future energy use and resulting CO 2 emissions up to the year of 2050. Based on the results of the study, development strategies are proposed and policy implications are explored. This study first develops a Base scenario projection of the Chinese energy development based upon a sectoral analysis. The Base scenario represents a likely situation of future development, but many alternatives are possible. To explore this range of alternatives, a systematic uncertainty analysis is performed. The Base scenario also represents an extrapolation of current policies and social and economic trends. As such, it is not necessarily the economically optimal future course for Chinese energy development. To explore this issue, an optimization analysis is performed. For further understanding of developing Chinese energy system and reducing CO 2 emissions, a Chinese energy system model with 84 supply and demand technologies has been constructed in MARKAL, a computer LP optimization program for energy systems. Using this model, various technological options and economic aspects of energy development and CO 2 emissions reduction in China during the 1985-2020 period are examined

  2. Regional impacts of climate change and atmospheric CO2 on future ocean carbon uptake: a multi model linear feedback analysis

    International Nuclear Information System (INIS)

    Roy, Tilla; Bopp, Laurent; Gehlen, Marion; Cadule, Patricia; Schneider, Birgit; Frolicher, Thomas L.; Segschneider, Joachim; Tjiputra, Jerry; Heinze, Christoph; Joos, Fortunat

    2011-01-01

    The increase in atmospheric CO 2 over this century depends on the evolution of the oceanic air-sea CO 2 uptake, which will be driven by the combined response to rising atmospheric CO 2 itself and climate change. Here, the future oceanic CO 2 uptake is simulated using an ensemble of coupled climate-carbon cycle models. The models are driven by CO 2 emissions from historical data and the Special Report on Emissions Scenarios (SRES) A2 high-emission scenario. A linear feedback analysis successfully separates the regional future (2010-2100) oceanic CO 2 uptake into a CO 2 -induced component, due to rising atmospheric CO 2 concentrations, and a climate-induced component, due to global warming. The models capture the observation based magnitude and distribution of anthropogenic CO 2 uptake. The distributions of the climate-induced component are broadly consistent between the models, with reduced CO 2 uptake in the sub polar Southern Ocean and the equatorial regions, owing to decreased CO 2 solubility; and reduced CO 2 uptake in the mid-latitudes, owing to decreased CO 2 solubility and increased vertical stratification. The magnitude of the climate-induced component is sensitive to local warming in the southern extra-tropics, to large freshwater fluxes in the extra-tropical North Atlantic Ocean, and to small changes in the CO 2 solubility in the equatorial regions. In key anthropogenic CO 2 uptake regions, the climate-induced component offsets the CO 2 - induced component at a constant proportion up until the end of this century. This amounts to approximately 50% in the northern extra-tropics and 25% in the southern extra-tropics and equatorial regions. Consequently, the detection of climate change impacts on anthropogenic CO 2 uptake may be difficult without monitoring additional tracers, such as oxygen. (authors)

  3. Regional impacts of climate change and atmospheric CO2 on future ocean carbon uptake: a multi model linear feedback analysis

    International Nuclear Information System (INIS)

    Roy, Tilla; Bopp, Laurent; Gehlen, Marion; Cadule, Patricia

    2011-01-01

    The increase in atmospheric CO 2 over this century depends on the evolution of the oceanic air-sea CO 2 uptake, which will be driven by the combined response to rising atmospheric CO 2 itself and climate change. Here, the future oceanic CO 2 uptake is simulated using an ensemble of coupled climate-carbon cycle models. The models are driven by CO 2 emissions from historical data and the Special Report on Emissions Scenarios (SRES) A2 high-emission scenario. A linear feedback analysis successfully separates the regional future (2010-2100) oceanic CO 2 uptake into a CO 2 -induced component, due to rising atmospheric CO 2 concentrations, and a climate-induced component, due to global warming. The models capture the observation based magnitude and distribution of anthropogenic CO 2 uptake. The distributions of the climate-induced component are broadly consistent between the models, with reduced CO 2 uptake in the sub-polar Southern Ocean and the equatorial regions, owing to decreased CO 2 solubility; and reduced CO 2 uptake in the mid latitudes, owing to decreased CO 2 solubility and increased vertical stratification. The magnitude of the climate-induced component is sensitive to local warming in the southern extra tropics, to large freshwater fluxes in the extra tropical North Atlantic Ocean, and to small changes in the CO 2 solubility in the equatorial regions. In key anthropogenic CO 2 uptake regions, the climate-induced component offsets the CO 2 - induced component at a constant proportion up until the end of this century. This amounts to approximately 50% in the northern extra tropics and 25% in the southern extra tropics and equatorial regions. Consequently, the detection of climate change impacts on anthropogenic CO 2 uptake may be difficult without monitoring additional tracers, such as oxygen. (authors)

  4. CO2 emissions from soil incubated with sugarcane straw and ...

    African Journals Online (AJOL)

    SAM

    2014-08-13

    Aug 13, 2014 ... CO2 emissions peaked at 5.45, 10.82, 14.00, 11.92 and 11.20, 14.47, 15.98,and 14.74 µg mol of. CO2 g-1 s-1 within the ... of mineral N for plants and microorganisms. The .... incubation and were highest when incubated at 30°C with average daily ... because the majority of labile C had been consumed.

  5. Influence of European passenger cars weight to exhaust CO2 emissions

    International Nuclear Information System (INIS)

    Zervas, Efthimios; Lazarou, Christos

    2008-01-01

    The increase of atmospheric CO 2 concentration influences climate changes. The road transport sector is one of the main anthropogenic sources of CO 2 emissions in the European Union (EU). One of the main parameters influencing CO 2 emissions from passenger cars (PCs) is their weight, which increases during last years. For the same driving distance, heavier vehicles need more work than lighter ones, because they have to move an extra weight, and thus more fuel is consumed and thus increased CO 2 emissions. The weight control of new PCs could be an efficient way to control their CO 2 emissions. After an analysis of the EU new PCs market, their segment distribution and their weight, some estimations for 2020 are presented. Based on this analysis, 13 base scenarios using several ways for the control of the weight of future European new PCs are used to estimate their CO 2 emissions and the benefit of each scenario. The results show that a significant benefit on CO 2 emissions could be achieved if the weight of each PC does not exceed an upper limit, especially if this limit is quite low. The benefit obtained by limitations of weight is higher than the benefit obtained from the expected decreased future fuel consumption. Similar results are obtained when the weight of new PCs does not exceed an upper limit within each segment, or when the weight of each new PC decreases. (author)

  6. Does Non-Fossil Energy Usage Lower CO2 Emissions? Empirical Evidence from China

    Directory of Open Access Journals (Sweden)

    Deshan Li

    2016-08-01

    Full Text Available This paper uses an autoregressive distributed lag model (ARDL to examine the dynamic impact of non-fossil energy consumption on carbon dioxide (CO2 emissions in China for a given level of economic growth, trade openness, and energy usage between 1965 and 2014. The results suggest that the variables are in a long-run equilibrium. ARDL estimation indicates that consumption of non-fossil energy plays a crucial role in curbing CO2 emissions in the long run but not in the short term. The results also suggest that, in both the long and short term, energy consumption and trade openness have a negative impact on the reduction of CO2 emissions, while gross domestic product (GDP per capita increases CO2 emissions only in the short term. Finally, the Granger causality test indicates a bidirectional causality between CO2 emissions and energy consumption. In addition, this study suggests that non-fossil energy is an effective solution to mitigate CO2 emissions, providing useful information for policy-makers wishing to reduce atmospheric CO2.

  7. Optimal CO2 Enrichment Considering Emission from Soil for Cucumber Greenhouses

    International Nuclear Information System (INIS)

    Lee, D.H.; Lee, K.S.; Cho, Y.J.; Kim, H.J.; Choi, J.M.; Chung, S.O.

    2012-01-01

    Reducing carbon dioxide (CO2) exhaust has become a major issue for society in the last few years, especially since the initial release of the Kyoto Protocol in 1997 that strictly limited the emissions of greenhouse gas for each country. One of the primary sectors affecting the levels of atmospheric greenhouse gases is agriculture where CO2 is not only consumed by plants but also produced from various types of soil and agricultural ecosystems including greenhouses. In greenhouse cultivation, CO2 concentration plays an essential role in the photosynthesis process of crops. Optimum control of greenhouse CO2 enrichment based on accurate monitoring of the added CO2 can improve profitability through efficient crop production and reduce environmental impact, compared to traditional management practices. In this study, a sensor-based control system that could estimate the required CO2 concentration considering emission from soil for cucumber greenhouses was developed and evaluated. The relative profitability index (RPI) was defined by the ratio of growth rate to supplied CO2. RPI for a greenhouse controlled at lower set point of CO2 concentration (500 μmol * mol -1 ) was greater than that of greenhouse at higher set point (800 μmol * mol -1 ). Evaluation tests to optimize CO2 enrichment concluded that the developed control system would be applicable not only to minimize over-exhaust of CO2 but also to maintain the crop profitability

  8. Anomalous CO2 Emissions in Different Ecosystems Around the World

    Science.gov (United States)

    Sanchez-Canete, E. P.; Moya Jiménez, M. R.; Kowalski, A. S.; Serrano-Ortiz, P.; López-Ballesteros, A.; Oyonarte, C.; Domingo, F.

    2016-12-01

    As an important tool for understanding and monitoring ecosystem dynamics at ecosystem level, the eddy covariance (EC) technique allows the assessment of the diurnal and seasonal variation of the net ecosystem exchange (NEE). Despite the high temporal resolution data available, there are still many processes (in addition to photosynthesis and respiration) that, although they are being monitored, have been neglected. Only a few authors have studied anomalous CO2 emissions (non biological), and have related them to soil ventilation, photodegradation or geochemical processes. The aim of this study is: 1) to identify anomalous short term CO2 emissions in different ecosystems distributed around the world, 2) to determine the meteorological variables that are influencing these emissions, and 3) to explore the potential processes that can be involved. We have studied EC data together with other meteorological ancillary variables obtained from the FLUXNET database (version 2015) and have found more than 50 sites with anomalous CO2 emissions in different ecosystem types such as grasslands, croplands or savannas. Data were filtered according to the FLUXNET quality control flags (only data with quality control flag equal to 0 was used) and correlation analysis were performed with NEE and ancillary data. Preliminary results showed strong and highly significant correlations between meteorological variables and anomalous CO2 emissions. Correlation results showed clear differing behaviors between ecosystems types, which could be related to the different processes involved in the anomalous CO2 emissions. We suggest that anomalous CO2 emissions are happening globally and therefore, their contribution to the global net ecosystem carbon balance requires further investigation in order to better understand its drivers.

  9. State of the Carbon Cycle - Consequences of Rising Atmospheric CO2

    Science.gov (United States)

    Moore, D. J.; Cooley, S. R.; Alin, S. R.; Brown, M. E.; Butman, D. E.; French, N. H. F.; Johnson, Z. I.; Keppel-Aleks, G.; Lohrenz, S. E.; Ocko, I.; Shadwick, E. H.; Sutton, A. J.; Potter, C. S.; Yu, R. M. S.

    2016-12-01

    The rise of atmospheric CO2, largely attributable to human activity through fossil fuel emissions and land-use change, has been dampened by carbon uptake by the ocean and terrestrial biosphere. We outline the consequences of this carbon uptake as direct and indirect effects on terrestrial and oceanic systems and processes for different regions of North America and the globe. We assess the capacity of these systems to continue to act as carbon sinks. Rising CO2 has decreased seawater pH; this process of ocean acidification has impacted some marine species and altered fundamental ecosystem processes with further effects likely. In terrestrial ecosystems, increased atmospheric CO2 causes enhanced photosynthesis, net primary production, and increased water-use efficiency. Rising CO2 may change vegetation composition and carbon storage, and widespread increases in water use efficiency likely influence terrestrial hydrology and biogeochemical cycling. Consequences for human populations include changes to ecosystem services including cultural activities surrounding land use, agricultural or harvesting practices. Commercial fish stocks have been impacted and crop production yields have been changed as a result of rising CO2. Ocean and terrestrial effects are contingent on, and feedback to, global climate change. Warming and modified precipitation regimes impact a variety of ecosystem processes, and the combination of climate change and rising CO2 contributes considerable uncertainty to forecasting carbon sink capacity in the ocean and on land. Disturbance regime (fire and insects) are modified with increased temperatures. Fire frequency and intensity increase, and insect lifecycles are disrupted as temperatures move out of historical norms. Changes in disturbance patterns modulate the effects of rising CO2 depending on ecosystem type, disturbance frequency, and magnitude of events. We discuss management strategies designed to limit the rise of atmospheric CO2 and reduce

  10. State of the Carbon Cycle - Consequences of Rising Atmospheric CO2

    Science.gov (United States)

    Moore, David J.; Cooley, Sarah R.; Alin, Simone R.; Brown, Molly; Butman, David E.; French, Nancy H. F.; Johnson, Zackary I.; Keppel-Aleks; Lohrenz, Steven E.; Ocko, Ilissa; hide

    2016-01-01

    The rise of atmospheric CO2, largely attributable to human activity through fossil fuel emissions and land-use change, has been dampened by carbon uptake by the ocean and terrestrial biosphere. We outline the consequences of this carbon uptake as direct and indirect effects on terrestrial and oceanic systems and processes for different regions of North America and the globe. We assess the capacity of these systems to continue to act as carbon sinks. Rising CO2 has decreased seawater pH; this process of ocean acidification has impacted some marine species and altered fundamental ecosystem processes with further effects likely. In terrestrial ecosystems, increased atmospheric CO2 causes enhanced photosynthesis, net primary production, and increased water-use efficiency. Rising CO2 may change vegetation composition and carbon storage, and widespread increases in water use efficiency likely influence terrestrial hydrology and biogeochemical cycling. Consequences for human populations include changes to ecosystem services including cultural activities surrounding land use, agricultural or harvesting practices. Commercial fish stocks have been impacted and crop production yields have been changed as a result of rising CO2. Ocean and terrestrial effects are contingent on, and feedback to, global climate change. Warming and modified precipitation regimes impact a variety of ecosystem processes, and the combination of climate change and rising CO2 contributes considerable uncertainty to forecasting carbon sink capacity in the ocean and on land. Disturbance regime (fire and insects) are modified with increased temperatures. Fire frequency and intensity increase, and insect lifecycles are disrupted as temperatures move out of historical norms. Changes in disturbance patterns modulate the effects of rising CO2 depending on ecosystem type, disturbance frequency, and magnitude of events. We discuss management strategies designed to limit the rise of atmospheric CO2 and reduce

  11. Temporal variations of atmospheric CO2 and CO at Ahmedabad in western India

    Science.gov (United States)

    Chandra, Naveen; Lal, Shyam; Venkataramani, S.; Patra, Prabir K.; Sheel, Varun

    2016-05-01

    About 70 % of the anthropogenic carbon dioxide (CO2) is emitted from the megacities and urban areas of the world. In order to draw effective emission mitigation policies for combating future climate change as well as independently validating the emission inventories for constraining their large range of uncertainties, especially over major metropolitan areas of developing countries, there is an urgent need for greenhouse gas measurements over representative urban regions. India is a fast developing country, where fossil fuel emissions have increased dramatically in the last three decades and are predicted to continue to grow further by at least 6 % per year through to 2025. The CO2 measurements over urban regions in India are lacking. To overcome this limitation, simultaneous measurements of CO2 and carbon monoxide (CO) have been made at Ahmedabad, a major urban site in western India, using a state-of-the-art laser-based cavity ring down spectroscopy technique from November 2013 to May 2015. These measurements enable us to understand the diurnal and seasonal variations in atmospheric CO2 with respect to its sources (both anthropogenic and biospheric) and biospheric sinks. The observed annual average concentrations of CO2 and CO are 413.0 ± 13.7 and 0.50 ± 0.37 ppm respectively. Both CO2 and CO show strong seasonality with lower concentrations (400.3 ± 6.8 and 0.19 ± 0.13 ppm) during the south-west monsoon and higher concentrations (419.6 ± 22.8 and 0.72 ± 0.68 ppm) during the autumn (SON) season. Strong diurnal variations are also observed for both the species. The common factors for the diurnal cycles of CO2 and CO are vertical mixing and rush hour traffic, while the influence of biospheric fluxes is also seen in the CO2 diurnal cycle. Using CO and CO2 covariation, we differentiate the anthropogenic and biospheric components of CO2 and found significant contributions of biospheric respiration and anthropogenic emissions in the late night (00:00-05:00 h, IST

  12. Temporal variations of atmospheric CO2 and CO at Ahmedabad in western India

    Directory of Open Access Journals (Sweden)

    N. Chandra

    2016-05-01

    Full Text Available About 70 % of the anthropogenic carbon dioxide (CO2 is emitted from the megacities and urban areas of the world. In order to draw effective emission mitigation policies for combating future climate change as well as independently validating the emission inventories for constraining their large range of uncertainties, especially over major metropolitan areas of developing countries, there is an urgent need for greenhouse gas measurements over representative urban regions. India is a fast developing country, where fossil fuel emissions have increased dramatically in the last three decades and are predicted to continue to grow further by at least 6 % per year through to 2025. The CO2 measurements over urban regions in India are lacking. To overcome this limitation, simultaneous measurements of CO2 and carbon monoxide (CO have been made at Ahmedabad, a major urban site in western India, using a state-of-the-art laser-based cavity ring down spectroscopy technique from November 2013 to May 2015. These measurements enable us to understand the diurnal and seasonal variations in atmospheric CO2 with respect to its sources (both anthropogenic and biospheric and biospheric sinks. The observed annual average concentrations of CO2 and CO are 413.0 ± 13.7 and 0.50 ± 0.37 ppm respectively. Both CO2 and CO show strong seasonality with lower concentrations (400.3 ± 6.8 and 0.19 ± 0.13 ppm during the south-west monsoon and higher concentrations (419.6 ± 22.8 and 0.72 ± 0.68 ppm during the autumn (SON season. Strong diurnal variations are also observed for both the species. The common factors for the diurnal cycles of CO2 and CO are vertical mixing and rush hour traffic, while the influence of biospheric fluxes is also seen in the CO2 diurnal cycle. Using CO and CO2 covariation, we differentiate the anthropogenic and biospheric components of CO2 and found significant contributions of biospheric respiration and anthropogenic

  13. Atmospheric CO2 and climate: Importance of the transient response

    International Nuclear Information System (INIS)

    Schneider, S.H.; Thompson, S.L.

    1981-01-01

    Preliminary studies suggest that the thermal inertia of the upper layers of the oceans, combined with vertical mixing of deeper oceanic waters, could delay the response of the globally averaged surface temperature to an increasing atmospheric CO 2 concentration by a decade or so relative to equilibrium calculations. This study extends the global analysis of the transient response to zonal averages, using a hierarchy of simple energy balance models and vertical mixing assumptions for water exchange between upper and deeper oceanic layers. It is found that because of the latitudinal dependence of both thermal inertia and radiative and dynamic energy exchange mechanisms, the approach toward equilibrium of the surface temperature of various regions of the earth will be significantly different from the global average approach. This suggests that the actual time evolution of the horizontal surface temperature gradients--and any associated regional climatic anomalies-may well be significantly different from that suggested by equilibrium climatic modeling simulations (or those computed with a highly unrealistic geographic distribution of ocean thermal capacity). Also, the transient response as a function of latitude is significantly different between globally equivalent CO 2 and solar constant focusing runs. It is suggested that the nature of the transient response is a major uncertainty in characterizing the CO 2 problem and that study of this topic should become a major priority for future research. An appendix puts this issue in the context of the overall CO 2 problem

  14. Problems in the Relationship between CO2 Emissions and Global Warming

    Directory of Open Access Journals (Sweden)

    Ferenc Kovács

    2005-03-01

    Full Text Available In the analysis of environmental conditions and impacts, the viewpoint that greenhouse gases, primarily anthropogenic (industrial, human carbon dioxide, play a determining role in the change of global temperatures, ( the increase experienced in the last one and a half decade, has been given widespread publicity recently. Coal-fired power plants are the first to blame for the increase in atmospheric CO2 concentrations in the last two centuries. The study indicates possibilities to increase the efficiency of coal-fired power plants, which would involve a considerable reduction in CO2 emissions with an identical production volume of electrical energy. On the basis of the analysis of the amount of fossil fuels used, the amount of CO2 emissions and changes in the concentrations of atmospheric CO2, it is shown that no correlation can be proved between the factors investigated and changes in global temperatures.

  15. The Potential for Forestry to Reduce Net CO2 Emissions

    International Nuclear Information System (INIS)

    Eriksson, Erik

    2006-01-01

    Forestry may have an important role to play in attempts to reduce atmospheric CO 2 levels, since countries may choose to account for forest management activities to fulfil their commitments under the Kyoto Protocol. However, the effectiveness of such efforts may depend on the forest management strategies applied. This thesis is based on four separate studies in which the potential for forest management strategies to decrease net CO 2 emissions was considered. Long-term field experiments and models were used to: evaluate the impact of different thinning regimes; study broad-leaved stands growing on abandoned farmland with different rotation lengths; predict the effects of using different rotation lengths on carbon accumulation and fossil fuel substitution; and perform an integrated analysis of forest management practices and the potential to substitute fossil fuels by wood products. To evaluate the effects of the management regimes considered, carbon stocks in the investigated stands and the potential of the resulting biomass to substitute fossil fuel were estimated. No significant differences were found in biomass production between the thinning regimes for Norway spruce (Picea abies (L.) Karst.) stands, but the standing biomass was significantly larger in unthinned stands, indicating that to maximize the carbon stock in tree biomass thinnings should be avoided. For Scots pine (Pinus sylvestris L.), thinned and fertilized stands produced significantly more biomass (2.60-2.72 ton d.w./ha/yr) than unthinned and unfertilized stands (2.17-2.34 ton d.w./ha/yr) in the northern regions. These findings indicate that fertilization might be a viable measure to increase production of biomass with the potential to replace fossil fuel and energy-intensive material. In addition, for broad-leaved trees stands on abandoned farmland, management regimes with a short rotation were found to be better for maximizing the substitution of fossil fuel than regimes with a long rotation

  16. ICT, openness and CO2 emissions in Africa.

    Science.gov (United States)

    Asongu, Simplice A

    2018-04-01

    This study investigates how information and communication technology (ICT) complements globalisation in order to influence CO 2 emissions in 44 Sub-Saharan African countries over the period 2000-2012. ICT is measured with internet penetration and mobile phone penetration whereas globalisation is designated in terms of trade and financial openness. The empirical evidence is based on the generalised method of moments. The findings broadly show that ICT can be employed to dampen the potentially negative effect of globalisation on environmental degradation like CO 2 emissions. Practical, policy and theoretical implications are discussed.

  17. Swedish CO2-emissions 1900-2010: an exploratory note

    International Nuclear Information System (INIS)

    Kristroem, Bengt; Lundgren, Tommy

    2005-01-01

    This paper projects Swedish CO 2 -emissions during the period 2000-2010 based on data covering 1900-1999. Swedish climate policy is currently based on the assumption that carbon emissions will increase, ceteris paribus, by 5-15% relative to the 1990 level. This forecast has motivated a number of policy measures, including carbon taxes, subsidies and an 'information package'. We find, however, that CO 2 -emissions may well be lower in the future. This outcome is broadly consistent with the literature on the Environmental Kuznets Curve, which portrays the relationship between emissions and GDP. The key contribution of this paper is that our analysis is based on a long time series. Current literature is invariably based on 'short' panel data sets, while we study a single country through several phases of development. Our analysis also sheds some light on the key importance played by nuclear power for carbon emission projections

  18. Essays on the Determinants of Energy Related CO2 Emissions =

    Science.gov (United States)

    Moutinho, Victor Manuel Ferreira

    Overall, amongst the most mentioned factors for Greenhouse Gases (GHG) growth are the economic growth and the energy demand growth. To assess the determinants GHG emissions, this thesis proposed and developed a new analysis which links the emissions intensity to its main driving factors. In the first essay, we used the 'complete decomposition' technique to examine CO2 emissions intensity and its components, considering 36 economic sectors and the 1996-2009 periods in Portugal. The industry (in particular 5 industrial sectors) is contributing largely to the effects of variation of CO2 emissions intensity. We concluded, among others, the emissions intensity reacts more significantly to shocks in the weight of fossil fuels in total energy consumption compared to shocks in other variables. In the second essay, we conducted an analysis for 16 industrial sectors (Group A) and for the group of the 5 most polluting manufacturing sectors (Group B) based on the convergence examination for emissions intensity and its main drivers, as well as on an econometric analysis. We concluded that there is sigma convergence for all the effects with exception to the fossil fuel intensity, while gamma convergence was verified for all the effects, with exception of CO2 emissions by fossil fuel and fossil fuel intensity in Group B. From the econometric approach we concluded that the considered variables have a significant importance in explaining CO2 emissions and CO2 emissions intensity. In the third essay, the Tourism Industry in Portugal over 1996-2009 period was examined, specifically two groups of subsectors that affect the impacts on CO2 emissions intensity. The generalized variance decomposition and the impulse response functions pointed to sectors that affect tourism more directly, i. e. a bidirectional causality between the intensity of emissions and energy intensity. The effect of intensity of emissions is positive on energy intensity, and the effect of energy intensity on

  19. Mastering the market of CO2 emission quotas

    International Nuclear Information System (INIS)

    2004-05-01

    On January 1, 2005, a system of trade of carbon dioxide emission quotas, also called 'market of tradable emission permits', will be implemented in the European Union. This system is one of the 3 flexibility mechanisms foreseen by the Kyoto protocol in order to reduce the global economic cost of the fight against climatic change. The aim of this seminar is to clarify the process of transfer of the European directive into French law. It comprises 8 presentations dealing with: the objectives of tradable emission quotas (greenhouse effect, Kyoto commitments, short and long term stakes); presentation of the European directive about the trade system of greenhouse gas emissions; transposition of the directive into French law (fields of application, sectors and facilities concerned, possible exemptions, first national plan of quotas allocation); voluntary emission abatement commitments by industrial companies member of the AERES; quotas recording and management, control of trades; companies strategy (investment for CO 2 abatement or purchase of quotas, impact on industries and competitiveness); experience feedback of emission quotas trading in foreign countries (international CO 2 market development); CO 2 emission quotas linked with cogeneration (emissions from cogeneration facilities, possible allocation, impact for cogeneration companies, approaches in other European countries in this domain); perspectives and conclusions. (J.S.)

  20. Costs of mitigating CO2 emissions from passenger aircraft

    Science.gov (United States)

    Schäfer, Andreas W.; Evans, Antony D.; Reynolds, Tom G.; Dray, Lynnette

    2016-04-01

    In response to strong growth in air transportation CO2 emissions, governments and industry began to explore and implement mitigation measures and targets in the early 2000s. However, in the absence of rigorous analyses assessing the costs for mitigating CO2 emissions, these policies could be economically wasteful. Here we identify the cost-effectiveness of CO2 emission reductions from narrow-body aircraft, the workhorse of passenger air transportation. We find that in the US, a combination of fuel burn reduction strategies could reduce the 2012 level of life cycle CO2 emissions per passenger kilometre by around 2% per year to mid-century. These intensity reductions would occur at zero marginal costs for oil prices between US$50-100 per barrel. Even larger reductions are possible, but could impose extra costs and require the adoption of biomass-based synthetic fuels. The extent to which these intensity reductions will translate into absolute emissions reductions will depend on fleet growth.

  1. Achieving CO2 Emissions Reduction Goals with Energy Infrastructure Projects

    International Nuclear Information System (INIS)

    Eberlinc, M.; Medved, K.; Simic, J.

    2013-01-01

    The EU has set its short-term goals in the Europe 2020 Strategy (20% of CO 2 emissions reduction, 20% increase in energy efficiency, 20% share of renewables in final energy). The analyses show that the EU Member States in general are on the right track of achieving these goals; they are even ahead (including Slovenia). But setting long-term goals by 2050 is a tougher challenge. Achieving CO 2 emissions reduction goes hand in hand with increasing the share of renewables and strategically planning the projects, which include exploiting the potential of renewable sources of energy (e.g. hydropower). In Slovenia, the expected share of hydropower in electricity production from large HPPs in the share of renewables by 2030 is 1/3. The paper includes a presentation of a hydro power plants project on the middle Sava river in Slovenia and its specifics (influenced by the expansion of the Natura 2000 protected sites and on the other hand by the changes in the Environment Protection Law, which implements the EU Industrial Emissions Directive and the ETS Directive). Studies show the importance of the HPPs in terms of CO 2 emissions reduction. The main conclusion of the paper shows the importance of energy infrastructure projects, which contribute to on the one hand the CO 2 emissions reduction and on the other the increase of renewables.(author)

  2. Does Silicate Weathering of Loess Affect Atmospheric CO2?

    Science.gov (United States)

    Anderson, S. P.

    2002-12-01

    Weathering of glacial loess may be a significant, yet unrecognized, component of the carbon cycle. Glaciers produce fine-grained sediment, exposing vast amounts of mineral surface area to weathering processes, yet silicate mineral weathering rates at glacier beds and of glacial till are not high. Thus, despite the tremendous potential for glaciers to influence global weathering rates and atmospheric CO2 levels, this effect has not been demonstrated. Loess, comprised of silt-clay sizes, may be the key glacial deposit in which silicate weathering rates are high. Loess is transported by wind off braid plains of rivers, and deposited broadly (order 100 km from the source) in vegetated areas. Both the fine grain size, and hence large mineral surface area, and presence of vegetation should render loess deposits highly susceptible to silicate weathering. These deposits effectively extend the geochemical impact of glaciation in time and space, and bring rock flour into conditions conducive to chemical weathering. A simple 1-d model of silicate weathering fluxes from a soil profile demonstrates the potential of loess deposition to enhance CO2 consumption. At each time step, computed mineral dissolution (using anorthite and field-based rate constants) modifies the size of mineral grains within the soil. In the case of a stable soil surface, this results in a gradual decline in weathering fluxes and CO2 consumption through time, as finer grain sizes dissolve away. Computed weathering fluxes for a typical loess, with an initial mean grain size of 25 μm, are an order of magnitude greater than fluxes from a non-loess soil that differs only in having a mean grain size of 320 μm. High weathering fluxes are maintained through time if loess is continually deposited. Deposition rates as low as 0.01 mm/yr (one loess grain thickness per year) can lead to a doubling of CO2 consumption rates within 5 ka. These results suggest that even modest loess deposition rates can significantly

  3. Attribution of atmospheric CO2 and temperature increases to regions: importance of preindustrial land use change

    International Nuclear Information System (INIS)

    Pongratz, Julia; Caldeira, Ken

    2012-01-01

    The historical contribution of each country to today’s observed atmospheric CO 2 excess and higher temperatures has become a basis for discussions around burden-sharing of greenhouse gas reduction commitments in political negotiations. However, the accounting methods have considered greenhouse gas emissions only during the industrial era, neglecting the fact that land use changes (LUC) have caused emissions long before the Industrial Revolution. Here, we hypothesize that considering preindustrial LUC affects the attribution because the geographic pattern of preindustrial LUC emissions differs significantly from that of industrial-era emissions and because preindustrial emissions have legacy effects on today’s atmospheric CO 2 concentrations and temperatures. We test this hypothesis by estimating CO 2 and temperature increases based on carbon cycle simulations of the last millennium. We find that accounting for preindustrial LUC emissions results in a shift of attribution of global temperature increase from the industrialized countries to less industrialized countries, in particular South Asia and China, by up to 2–3%, a level that may be relevant for political discussions. While further studies are needed to span the range of plausible quantifications, our study demonstrates the importance of including preindustrial emissions for the most scientifically defensible attribution. (letter)

  4. CO2 emissions from the transport of China's exported goods

    International Nuclear Information System (INIS)

    Andersen, Otto; Goessling, Stefan; Simonsen, Morten; Walnum, Hans Jakob; Peeters, Paul; Neiberger, Cordula

    2010-01-01

    Emissions of greenhouse gases in many European countries are declining, and the European Union (EU) believes it is on track in achieving emission reductions as agreed upon in the Kyoto Agreement and the EU's more ambitious post-Kyoto climate policy. However, a number of recent publications indicate that emission reductions may also have been achieved because production has been shifted to other countries, and in particular China. If a consumption perspective is applied, emissions in industrialized countries are substantially higher, and may not have declined at all. Significantly, emissions from transports are omitted in consumption-based calculations. As all trade involves transport, mostly by cargo ship, but also by air, transports add considerably to overall emissions growth incurred in production shifts. Consequently, this article studies the role of transports in creating emissions of CO 2 , based on the example of exports from China. Results are discussed with regard to their implications for global emission reductions and post-Kyoto negotiations.

  5. Utopia Switzerland (2) - A Country Without CO2 Emissions

    International Nuclear Information System (INIS)

    Streit, Marco

    2008-01-01

    Global warming and climate change are major themes in the today's energy policy discussion. Awarding Al Gore and the IPCC with the Nobel price in 2007 shows the importance of the climate change for the whole world. That we are running into climatic problems is already known since several decades and possibilities to solve the CO 2 emissions were proposed and discussed since years, but a reduction in the CO 2 emissions is not detectable. This might be due to the fact, that the major part of CO 2 production (traffic and heating) is not consequently touched. It seems to be easier to discuss about renewable energies in the electricity market than in other areas. And the consequences of discussing stepping out of nuclear all over the world, has enforced the problem. Although the renaissance of nuclear has started and the known positive impact to the climate from this energy source, it is not forced to be the solution for the biggest problem of the near future. There are only a few countries worldwide which produce electricity without or with only small amounts of CO 2 emissions like Norway or Switzerland. Those countries could be demonstration countries to show the possibilities for reducing and avoiding CO 2 emissions. Would it be possible to replace all fossil energy sources during a reasonable period of time by using nuclear energy and hydrogen as an energy storage system? Is this scenario technical feasible and of economic interest for a small, developed country like Switzerland? If yes, Switzerland might be a good candidate to establish the first CO 2 -free industrial developed state in the world. Looking much more ahead this study will discuss a simple but might be effective scenario for Switzerland. The study is based on a paper presented at IYNC 2006 and will update the used data as well as going in more details. (authors)

  6. BRAZILIAN ECONOMIC GROWTH AND THE EMISSION OF CO2

    Directory of Open Access Journals (Sweden)

    Cleyzer Adrian Cunha

    2013-07-01

    Full Text Available The objective of paper is verifying empirically the relationship between GDP per capita and CO2 emissions in Brazil in the period 1980-2006. The scope of work was limited to this natural resource due to its role in economic activity, as an important input in the production process in the Brazilian energy matrix. Among the main results is that there is a long-term relationship and simultaneous causality between variables and GDP per capita CO2 emissions. This evidence, coupled with the fact that the series used were not stationary in level, impossible to estimate the Environmental Kuznets Curve (EKC, which is the main theoretical basis used in empirical work related to the theme. The VAR / VEC has been estimated and found elasticity between economic growth and CO2 emission was 7.32, ie, in the long run, we can infer that an increase of 1% in GDP per capita increases by 7, 32% CO2 emissions.

  7. CO2 emissions from Super-light Structures

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Bagger, Anne

    2011-01-01

    CO2 emission from the construction of buildings is seldom taken into account because focus is primarily on building operation. New technologies have therefore mainly been developed to reduce the energy consumption connected to operation. Super-light technology is a new structural principle giving...

  8. Estimates of CO2 traffic emissions from mobile concentration measurements

    Science.gov (United States)

    Maness, H. L.; Thurlow, M. E.; McDonald, B. C.; Harley, R. A.

    2015-03-01

    We present data from a new mobile system intended to aid in the design of upcoming urban CO2-monitoring networks. Our collected data include GPS probe data, video-derived traffic density, and accurate CO2 concentration measurements. The method described here is economical, scalable, and self-contained, allowing for potential future deployment in locations without existing traffic infrastructure or vehicle fleet information. Using a test data set collected on California Highway 24 over a 2 week period, we observe that on-road CO2 concentrations are elevated by a factor of 2 in congestion compared to free-flow conditions. This result is found to be consistent with a model including vehicle-induced turbulence and standard engine physics. In contrast to surface concentrations, surface emissions are found to be relatively insensitive to congestion. We next use our model for CO2 concentration together with our data to independently derive vehicle emission rate parameters. Parameters scaling the leading four emission rate terms are found to be within 25% of those expected for a typical passenger car fleet, enabling us to derive instantaneous emission rates directly from our data that compare generally favorably to predictive models presented in the literature. The present results highlight the importance of high spatial and temporal resolution traffic data for interpreting on- and near-road concentration measurements. Future work will focus on transport and the integration of mobile platforms into existing stationary network designs.

  9. Increased N2O emission by inhibited plant growth in the CO2 leaked soil environment: Simulation of CO2 leakage from carbon capture and storage (CCS) site.

    Science.gov (United States)

    Kim, You Jin; He, Wenmei; Ko, Daegeun; Chung, Haegeun; Yoo, Gayoung

    2017-12-31

    Atmospheric carbon dioxide (CO 2 ) concentrations is continuing to increase due to anthropogenic activity, and geological CO 2 storage via carbon capture and storage (CCS) technology can be an effective way to mitigate global warming due to CO 2 emission. However, the possibility of CO 2 leakage from reservoirs and pipelines exists, and such leakage could negatively affect organisms in the soil environment. Therefore, to determine the impacts of geological CO 2 leakage on plant and soil processes, we conducted a greenhouse study in which plants and soils were exposed to high levels of soil CO 2 . Cabbage, which has been reported to be vulnerable to high soil CO 2 , was grown under BI (no injection), NI (99.99% N 2 injection), and CI (99.99% CO 2 injection). Mean soil CO 2 concentration for CI was 66.8-76.9% and the mean O 2 concentrations in NI and CI were 6.6-12.7%, which could be observed in the CO 2 leaked soil from the pipelines connected to the CCS sites. The soil N 2 O emission was increased by 286% in the CI, where NO 3 - -N concentration was 160% higher compared to that in the control. This indicates that higher N 2 O emission from CO 2 leakage could be due to enhanced nitrification process. Higher NO 3 - -N content in soil was related to inhibited plant metabolism. In the CI treatment, chlorophyll content decreased and chlorosis appeared after 8th day of injection. Due to the inhibited root growth, leaf water and nitrogen contents were consistently lowered by 15% under CI treatment. Our results imply that N 2 O emission could be increased by the secondary effects of CO 2 leakage on plant metabolism. Hence, monitoring the environmental changes in rhizosphere would be very useful for impact assessment of CCS technology. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Future concentrations of atmospheric greenhouse gases CO2, CFC and CH4 - an assessment on the educational level

    International Nuclear Information System (INIS)

    Hoppenau, S.

    1992-01-01

    A model on the educational level is described to estimate effective future atmospheric CO 2 concentrations. The effects of chlorofluorocarbon and methane emission and deforestation are taken into account. The influence of different emission scenarios on the time evolution of greenhouse-gas concentration are illustrated. Future global energy policies are discussed both under the aspects of rising world population and the reduction in global CO 2 emissions. The model can be handled on a PC or even on a pocket calculator

  11. Economics and the refinery's CO2 emissions allocation problem

    International Nuclear Information System (INIS)

    Pierru, A.

    2007-01-01

    The establishment of a market for CO 2 emission rights in Europe leads oil-refining companies to add a cost associated with carbon emissions to the objective function of linear programming models used to manage refineries. These models may be used to compute the marginal contribution of each finished product to the CO 2 emissions of the refinery. Babusiaux (Oil. Gas Sci. Technol., 58, 2003, 685-692) has shown that, under some conditions, this marginal contribution is a relevant means of allocating the carbon emissions of the refinery. Thus, it can be used in a well-to-wheel Life Cycle Assessment. In fact, this result holds if the demand equations are the only binding constraints with a non-zero right-hand side coefficient. This is not the case for short-run models with fixed capacity. Then, allocating CO 2 emissions on a marginal basis tends to over-value (or undervalue) the total volume of emissions. In order to extend the existing methodology, we discuss two distinct solutions to this problem, inspired by economic theory: adapting either the Aumann-Shapley cost sharing method (Values of non-atomic games, 1974, Princeton University Press) or the Ramsey pricing formula (Econ. J., 37, 1927, 47-61; J. Econ. Theory, 3, 1971, 219-240). We compare these two solutions, with a strong argument in favour of Ramsey prices, based on the determination of the optimal environmental tax rate to which imported finished products should be subject. (author)

  12. Forecasting of CO2 emissions from fuel combustion using trend analysis

    International Nuclear Information System (INIS)

    Koene, Aylin Cigdem; Bueke, Tayfun

    2010-01-01

    The accelerating use of fossil fuels since the Industrial Revolution and the rapid destruction of forests causes a significant increase in greenhouse gases. The increasing threat of global warming and climate change has been the major, worldwide, ongoing concern especially in the last two decades. The impacts of global warming on the world economy have been assessed intensively by researchers since the 1990s. Worldwide organizations have been attempting to reduce the adverse impacts of global warming through intergovernmental and binding agreements. Carbon dioxide (CO 2 ) is one of the most foremost greenhouse gases in the atmosphere. The energy sector is dominated by the direct combustion of fuels, a process leading to large emissions of CO 2 . CO 2 from energy represents about 60% of the anthropogenic greenhouse gas emissions of global emissions. This percentage varies greatly by country, due to diverse national energy structures. The top-25 emitting countries accounted 82.27% of the world CO 2 emissions in 2007. In the same year China was the largest emitter and generated 20.96% of the world total. Trend analysis is based on the idea that what has happened in the past gives traders an idea of what will happen in the future. In this study, trend analysis approach has been employed for modelling to forecast of energy-related CO 2 emissions. To this aim first, trends in CO 2 emissions for the top-25 countries and the world total CO 2 emissions during 1971-2007 are identified. On developing the regression analyses, the regression analyses with R 2 values less than 0.94 showing insignificant influence in statistical tests have been discarded. Statistically significant trends are indicated in eleven countries namely, India, South Korea, Islamic Republic of Iran, Mexico, Australia, Indonesia, Saudi Arabia, Brazil, South Africa, Taiwan, Turkey and the world total. The results obtained from the analyses showed that the models for those countries can be used for CO 2

  13. Seasonal climate change patterns due to cumulative CO2 emissions

    Science.gov (United States)

    Partanen, Antti-Ilari; Leduc, Martin; Damon Matthews, H.

    2017-07-01

    Cumulative CO2 emissions are near linearly related to both global and regional changes in annual-mean surface temperature. These relationships are known as the transient climate response to cumulative CO2 emissions (TCRE) and the regional TCRE (RTCRE), and have been shown to remain approximately constant over a wide range of cumulative emissions. Here, we assessed how well this relationship holds for seasonal patterns of temperature change, as well as for annual-mean and seasonal precipitation patterns. We analyzed an idealized scenario with CO2 concentration growing at an annual rate of 1% using data from 12 Earth system models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Seasonal RTCRE values for temperature varied considerably, with the highest seasonal variation evident in the Arctic, where RTCRE was about 5.5 °C per Tt C for boreal winter and about 2.0 °C per Tt C for boreal summer. Also the precipitation response in the Arctic during boreal winter was stronger than during other seasons. We found that emission-normalized seasonal patterns of temperature change were relatively robust with respect to time, though they were sub-linear with respect to emissions particularly near the Arctic. Moreover, RTCRE patterns for precipitation could not be quantified robustly due to the large internal variability of precipitation. Our results suggest that cumulative CO2 emissions are a useful metric to predict regional and seasonal changes in precipitation and temperature. This extension of the TCRE framework to seasonal and regional climate change is helpful for communicating the link between emissions and climate change to policy-makers and the general public, and is well-suited for impact studies that could make use of estimated regional-scale climate changes that are consistent with the carbon budgets associated with global temperature targets.

  14. Recent widespread tree growth decline despite increasing atmospheric CO2.

    Science.gov (United States)

    Silva, Lucas C R; Anand, Madhur; Leithead, Mark D

    2010-07-21

    The synergetic effects of recent rising atmospheric CO(2) and temperature are expected to favor tree growth in boreal and temperate forests. However, recent dendrochronological studies have shown site-specific unprecedented growth enhancements or declines. The question of whether either of these trends is caused by changes in the atmosphere remains unanswered because dendrochronology alone has not been able to clarify the physiological basis of such trends. Here we combined standard dendrochronological methods with carbon isotopic analysis to investigate whether atmospheric changes enhanced water use efficiency (WUE) and growth of two deciduous and two coniferous tree species along a 9 degrees latitudinal gradient across temperate and boreal forests in Ontario, Canada. Our results show that although trees have had around 53% increases in WUE over the past century, growth decline (measured as a decrease in basal area increment--BAI) has been the prevalent response in recent decades irrespective of species identity and latitude. Since the 1950s, tree BAI was predominantly negatively correlated with warmer climates and/or positively correlated with precipitation, suggesting warming induced water stress. However, where growth declines were not explained by climate, WUE and BAI were linearly and positively correlated, showing that declines are not always attributable to warming induced stress and additional stressors may exist. Our results show an unexpected widespread tree growth decline in temperate and boreal forests due to warming induced stress but are also suggestive of additional stressors. Rising atmospheric CO2 levels during the past century resulted in consistent increases in water use efficiency, but this did not prevent growth decline. These findings challenge current predictions of increasing terrestrial carbon stocks under climate change scenarios.

  15. Glacial-interglacial atmospheric CO2 change: a possible

    Directory of Open Access Journals (Sweden)

    L. C. Skinner

    2009-09-01

    Full Text Available So far, the exploration of possible mechanisms for glacial atmospheric CO2 drawdown and marine carbon sequestration has tended to focus on dynamic or kinetic processes (i.e. variable mixing-, equilibration- or export rates. Here an attempt is made to underline instead the possible importance of changes in the standing volumes of intra-oceanic carbon reservoirs (i.e. different water-masses in influencing the total marine carbon inventory. By way of illustration, a simple mechanism is proposed for enhancing the marine carbon inventory via an increase in the volume of relatively cold and carbon-enriched deep water, analogous to modern Lower Circumpolar Deep Water (LCDW, filling the ocean basins. A set of simple box-model experiments confirm the expectation that a deep sea dominated by an expanded LCDW-like watermass holds more CO2, without any pre-imposed changes in ocean overturning rate, biological export or ocean-atmosphere exchange. The magnitude of this "standing volume effect" (which operates by boosting the solubility- and biological pumps might be as large as the contributions that have previously been attributed to carbonate compensation, terrestrial biosphere reduction or ocean fertilisation for example. By providing a means of not only enhancing but also driving changes in the efficiency of the biological- and solubility pumps, this standing volume mechanism may help to reduce the amount of glacial-interglacial CO2 change that remains to be explained by other mechanisms that are difficult to assess in the geological archive, such as reduced mass transport or mixing rates in particular. This in turn could help narrow the search for forcing conditions capable of pushing the global carbon cycle between glacial and interglacial modes.

  16. Frozen cropland soil in northeast China as source of N2O and CO2 emissions.

    Science.gov (United States)

    Miao, Shujie; Qiao, Yunfa; Han, Xiaozeng; Brancher Franco, Roberta; Burger, Martin

    2014-01-01

    Agricultural soils are important sources of atmospheric N2O and CO2. However, in boreal agro-ecosystems the contribution of the winter season to annual emissions of these gases has rarely been determined. In this study, soil N2O and CO2 fluxes were measured for 6 years in a corn-soybean-wheat rotation in northeast China to quantify the contribution of wintertime N2O and CO2 fluxes to annual emissions. The treatments were chemical fertilizer (NPK), chemical fertilizer plus composted pig manure (NPKOM), and control (Cont.). Mean soil N2O fluxes among all three treatments in the winter (November-March), when soil temperatures are below -7°C for extended periods, were 0.89-3.01 µg N m(-2) h(-1), and in between the growing season and winter (October and April), when freeze-thaw events occur, 1.73-5.48 µg N m(-2) h(-1). The cumulative N2O emissions were on average 0.27-1.39, 0.03-0.08 and 0.03-0.11 kg N2O_N ha(-1) during the growing season, October and April, and winter, respectively. The average contributions of winter N2O efflux to annual emissions were 6.3-12.1%. In all three seasons, the highest N2O emissions occurred in NPKOM, while NPK and Cont. emissions were similar. Cumulative CO2 emissions were 2.73-4.94, 0.13-0.20 and 0.07-0.11 Mg CO2-C ha(-1) during growing season, October and April, and winter, respectively. The contribution of winter CO2 to total annual emissions was 2.0-2.4%. Our results indicate that in boreal agricultural systems in northeast China, CO2 and N2O emissions continue throughout the winter.

  17. Organic chemistry in a CO2 rich early Earth atmosphere

    Science.gov (United States)

    Fleury, Benjamin; Carrasco, Nathalie; Millan, Maëva; Vettier, Ludovic; Szopa, Cyril

    2017-12-01

    The emergence of life on the Earth has required a prior organic chemistry leading to the formation of prebiotic molecules. The origin and the evolution of the organic matter on the early Earth is not yet firmly understood. Several hypothesis, possibly complementary, are considered. They can be divided in two categories: endogenous and exogenous sources. In this work we investigate the contribution of a specific endogenous source: the organic chemistry occurring in the ionosphere of the early Earth where the significant VUV contribution of the young Sun involved an efficient formation of reactive species. We address the issue whether this chemistry can lead to the formation of complex organic compounds with CO2 as only source of carbon in an early atmosphere made of N2, CO2 and H2, by mimicking experimentally this type of chemistry using a low pressure plasma reactor. By analyzing the gaseous phase composition, we strictly identified the formation of H2O, NH3, N2O and C2N2. The formation of a solid organic phase is also observed, confirming the possibility to trigger organic chemistry in the upper atmosphere of the early Earth. The identification of Nitrogen-bearing chemical functions in the solid highlights the possibility for an efficient ionospheric chemistry to provide prebiotic material on the early Earth.

  18. Effects of Atmospheric CO2 Enrichment on Soil CO2 Efflux in a Young Longleaf Pine System

    OpenAIRE

    Runion, G. Brett; Butnor, J. R.; Prior, S. A.; Mitchell, R. J.; Rogers, H. H.

    2012-01-01

    The southeastern landscape is composed of agricultural and forest systems that can store carbon (C) in standing biomass and soil. Research is needed to quantify the effects of elevated atmospheric carbon dioxide (CO2) on terrestrial C dynamics including CO2 release back to the atmosphere and soil sequestration. Longleaf pine savannahs are an ecologically and economically important, yet understudied, component of the southeastern landscape. We investigated the effects of ambient and elevated C...

  19. The Influence of Various Operation Modes on Diesel Passenger Cars CO2 Emissions

    Directory of Open Access Journals (Sweden)

    Arina Negoițescu

    2015-07-01

    Full Text Available The amount of emissions released into the atmosphere by polluting sources was significantly reduced due to the limitations introduced by the EU. Since one of the main sources affecting air quality is the car, researches regarding the influence of various factors on exhaust emissions are carried out. As CO2 is the main pollutant responsible for the greenhouse effect, the article treats the influence of vehicle load and traffic levels, running modes, the electric consumer’s utilization, and driving style on CO2 emissions for cars equipped with diesel engine. The results from the conducted study can contribute to adopt solutions in order to decrease the concentration of CO2 emissions from cars equipped with diesel engines.

  20. Influence of trade on national CO2 emissions

    International Nuclear Information System (INIS)

    Munksgaard, Jesper; Pade, Lise-Lotte; Minx, Jan; Lenzen, Manfred

    2005-01-01

    International trade has an impact on national CO 2 emissions and consequently on the ability to fulfil national CO 2 reduction targets. Through goods and services traded in a globally interdependent world, the consumption in each country is linked to greenhouse gas emissions in other countries. It has been argued that in order to achieve equitable reduction targets, international trade has to be taken into account when assessing nations' responsibility for abating climate change. Especially for open economies such as Denmark, greenhouse gases embodied in internationally traded commodities can have a considerable influence on the national 'greenhouse gas responsibility'. By using input-output modelling, we analyse the influence from international trade on national CO 2 emissions. The aim is to show that trade is the key to define CO 2 responsibility on a macroeconomic level and that imports should be founded in a multi-region model approach. Finally, the paper concludes on the need to consider the impact from foreign trade when negotiating reduction targets and base line scenarios. (Author)

  1. A joint global carbon inversion system using both CO2 and 13CO2 atmospheric concentration data

    Science.gov (United States)

    Chen, Jing M.; Mo, Gang; Deng, Feng

    2017-03-01

    Observations of 13CO2 at 73 sites compiled in the GLOBALVIEW database are used for an additional constraint in a global atmospheric inversion of the surface CO2 flux using CO2 observations at 210 sites (62 collocated with 13CO2 sites) for the 2002-2004 period for 39 land regions and 11 ocean regions. This constraint is implemented using prior CO2 fluxes estimated with a terrestrial ecosystem model and an ocean model. These models simulate 13CO2 discrimination rates of terrestrial photosynthesis and ocean-atmosphere diffusion processes. In both models, the 13CO2 disequilibrium between fluxes to and from the atmosphere is considered due to the historical change in atmospheric 13CO2 concentration. This joint inversion system using both13CO2 and CO2 observations is effectively a double deconvolution system with consideration of the spatial variations of isotopic discrimination and disequilibrium. Compared to the CO2-only inversion, this 13CO2 constraint on the inversion considerably reduces the total land carbon sink from 3.40 ± 0.84 to 2.53 ± 0.93 Pg C year-1 but increases the total oceanic carbon sink from 1.48 ± 0.40 to 2.36 ± 0.49 Pg C year-1. This constraint also changes the spatial distribution of the carbon sink. The largest sink increase occurs in the Amazon, while the largest source increases are in southern Africa, and Asia, where CO2 data are sparse. Through a case study, in which the spatial distribution of the annual 13CO2 discrimination rate over land is ignored by treating it as a constant at the global average of -14. 1 ‰, the spatial distribution of the inverted CO2 flux over land was found to be significantly modified (up to 15 % for some regions). The uncertainties in our disequilibrium flux estimation are 8.0 and 12.7 Pg C year-1 ‰ for land and ocean, respectively. These uncertainties induced the unpredictability of 0.47 and 0.54 Pg C year-1 in the inverted CO2 fluxes for land and ocean, respectively. Our joint inversion system is therefore

  2. CO2 emissions and reduction potential in China's chemical industry

    International Nuclear Information System (INIS)

    Zhu, Bing; Zhou, Wenji; Hu, Shanying; Li, Qiang; Griffy-Brown, Charla; Jin, Yong

    2010-01-01

    GHG (Increasing greenhouse gas) emissions in China imposes enormous pressure on China's government and society. The increasing GHG trend is primarily driven by the fast expansion of high energy-intensive sectors including the chemical industry. This study investigates energy consumption and CO 2 emissions in the processes of chemical production in China through calculating the amounts of CO 2 emissions and estimating the reduction potential in the near future. The research is based on a two-level perspective which treats the entire industry as Level one and six key sub-sectors as Level two, including coal-based ammonia, calcium carbide, caustic soda, coal-based methanol, sodium carbonate, and yellow phosphorus. These two levels are used in order to address the complexity caused by the fact that there are more than 40 thousand chemical products in this industry and the performance levels of the technologies employed are extremely uneven. Three scenarios with different technological improvements are defined to estimate the emissions of the six sub-sectors and analyze the implied reduction potential in the near future. The results highlight the pivotal role that regulation and policy administration could play in controlling the CO 2 emissions by promoting average technology performances in this industry.

  3. Study on CO2 emission reduction using ENPEP in Korea

    International Nuclear Information System (INIS)

    Moon, K. H.; Kim, S. S.; Song, K. D.; Im, C. Y.

    2003-01-01

    ENPEP was used to analyze the role of nuclear power in mitigating carbon emission in power generation sector. In this study, base scenario reflects business as usual case in Korea. Additional two scenarios were established. One stands for fuel switch scenario, where nuclear power plants scheduled to be introduced after 2008 were assumed to be replaced by Coal Power Plant, the other one is established to see the impact of carbon tax. In this scenario carbon tax(50$/ton-C0 2 ) is imposed on coal power plants from 2008. It is resulted that fuel switch from nuclear to coal in power generation sector has a great effect on CO 2 emission, while carbon tax imposition makes a slight contribution to the reduction of CO 2 emission. These findings mean that the role of nuclear power in Korea is important in view of the GHG mitigation

  4. Economics of the Nuclear Energy Considered CO2 Emission

    International Nuclear Information System (INIS)

    Kim, Su Jin; Kim, Yong Min

    2011-01-01

    The energy consumption in Korea has greatly increased along with its rapid economic growth and industrialization since the 1970s. Total energy consumption increased at an average annual growth rate. Due to the lack of domestic energy resources, however, the overseas dependence rate of energy consumption has continuously increased. Also Climate change, resulting from increases in greenhouse gas emissions (GHG), is considered one of the biggest environmental dangers facing the world today. The objective and approach of this study are to compare the different types of scenarios in terms of the power plant type and CO 2 emission from each power plant. We estimated cost of electricity generation using fuel cost, O and M cost(Operation and Maintenance Cost) and CO 2 emission

  5. The CO2-tax and its ability to reduce CO2 emissions related to oil and gas production in Norway

    International Nuclear Information System (INIS)

    Roemo, F.; Lund, M.W.

    1994-01-01

    The primary ambition of the paper is to illustrate some relevant effects of the CO 2 -tax, and draw the line from company adaptation via national ambitions and goals to global emission consequences. The CO 2 -tax is a success for oil and gas production only to the extent that the CO 2 emission per produced unit oil/gas is reduced as a consequence of the tax. If not, the CO 2 -tax is a pure fiscal tax and has no qualitative impact on the CO 2 emissions. The reduction potential is then isolated to the fact that some marginal fields will not be developed, and the accelerated close down of fields in production. The paper indicates that a significant replacement of older gas turbines at a certain level of the CO 2 -tax could be profitable for the companies. This is dependent on change in turbine energy utilization, and the investment cost. The CO 2 -tax is a political success for the nation if it is a significant contributor to achieve national emission goals. Furthermore, is the CO 2 -tax an environmental success only to the extent it contributes to reductions in the CO 2 emissions globally. The paper indicates that there are possibilities for major suboptimal adaptations in connection with national CO 2 -taxation of the oil and gas production. 13 refs., 6 figs

  6. The impact of CO2 emissions on economic growth: evidence from selected higher CO2 emissions economies.

    Science.gov (United States)

    Azam, Muhammad; Khan, Abdul Qayyum; Bin Abdullah, Hussin; Qureshi, Muhammad Ejaz

    2016-04-01

    The main purpose of this work is to analyze the impact of environmental degradation proxied by CO2 emissions per capita along with some other explanatory variables namely energy use, trade, and human capital on economic growth in selected higher CO2 emissions economies namely China, the USA, India, and Japan. For empirical analysis, annual data over the period spanning between 1971 and 2013 are used. After using relevant and suitable tests for checking data properties, the panel fully modified ordinary least squares (FMOLS) method is employed as an analytical technique for parameter estimation. The panel group FMOLS results reveal that almost all variables are statistically significant, whereby test rejects the null hypotheses of non cointegration, demonstrating that all variables play an important role in affecting the economic growth role across countries. Where two regressors namely CO2 emissions and energy use show significantly negative impacts on economic growth, for trade and human capital, they tend to show the significantly positive impact on economic growth. However, for the individual analysis across countries, the panel estimate suggests that CO2 emissions have a significant positive relationship with economic growth for China, Japan, and the USA, while it is found significantly negative in case of India. The empirical findings of the study suggest that appropriate and prudent policies are required in order to control pollution emerging from areas other than liquefied fuel consumption. The ultimate impact of shrinking pollution will help in supporting sustainable economic growth and maturation as well as largely improve society welfare.

  7. Strategies and costs for reducing CO2 emissions in Finland

    International Nuclear Information System (INIS)

    Lehtilae, A.; Pirilae, P.

    1993-01-01

    In this study cost-efficient measures for the abatement of energy-related CO 2 emissions in Finland are analyzed, and the direct costs of such measures are estimated. The time frame considered is the period up to the year 2010. Furthermore, the probable impacts of an energy/CO 2 -tax on the Finnish energy system are worked out, and an attempt is made to assess the effectiveness of a tax scheme as an economic instrument for achieving CO 2 emission targets. The primary methodological tool in the analyses has been the model of the Finnish energy system developed at the Technical Research Centre of Finland (VTT) within the project. The model facilitates the search for cost-efficient emission control strategies over a period of several decades. Structural and technological changes in the energy system, e.g. fuel and technology substitution, new technologies, efficiency improvements, and energy-saving measures have been allowed for in the model. The results of the analyses show that achieving the target of returning the CO 2 emissions to the 1990 level by the year 2000 would be very difficult and costly in Finland. In the case of a nuclear moratorium it would be reasonable to delay the target by ten years. Even in the delayed cases achieving the target would require extensive structural changes and substantial energy-saving measures in the absence of additional nuclear energy. Coal use would have to be severely restricted, whereas the use of biomass and natural gas should be more than doubled compared to the 1990 levels. According to the results, a CO 2 tax would clearly be a more efficient instrument than a tax based on the energy content of a fuel

  8. Some scenarios of CO2 emission from the energy system

    International Nuclear Information System (INIS)

    Liik, O.; Landsberg, M.

    1996-01-01

    After Estonia regained its independence, planning of energy policy became topical. Since 1989, several expert groups have worked on the urgent problems and developments of Estonia's power engineering. Comprehensive energy system planning by mathematical modeling was accomplished in 1994. Then Tallinn Technical University acquired the MARKAL model from the Swedish National Board for Industrial and Technical Development (NUTEK). The influence of air pollution constraints on energy system development was first investigated in 1995. At the end of 1995, under the U.S. Country Studies Program, a detailed analysis of future CO 2 emissions and their reduction options began. During 1990-1993, energy demand lowered due to economic decline and sharp rise in the fuel and energy prices as well as a decrease in electricity exports, has resulting in 50% reduction of CO 2 emissions. For the same reasons, Estonia has been able to meet the requirements set in the agreements on SO 2 and NO x emissions with no special measures or costs. To meet the rigid ing SO 2 restrictions and growing energy consumption in the future, Estonia must invest in abatement and in new clean and efficient oil-shale combustion technology. Along with the old oil-shale plants closing and electricity consumption growing, other fuels will be used. The increase in energy demand then should not be fast due to constantly rising prices and efficient energy use. Measures to reduce SO 2 , and NO x emissions will also reduce CO 2 . In MARKAL runs the 1990 level of CO 2 emissions will be exceeded only along with high demand growth and absence of emissions control. Restricted availability of imported fuels and nuclear power or enabling electricity import can change the results significantly. The results discussed here can also change because the data base is being improved (such as detailed description of energy networks, description of demand-side technologies, accounting of energy conservation measures, addition of

  9. Abatement of CO2 emissions in the European Union

    International Nuclear Information System (INIS)

    Lesourne, J.; Keppler, J.H.; Jaureguy-Naudin, Maite; Smeers, Yves; Bouttes, Jean-Paul; Trochet, Jean-Michel; Dassa, Francois; Neuhoff, Karsten

    2008-01-01

    This first monograph of the Ifri program on European Governance and Geopolitics of Energy is devoted to the control of carbon dioxide emissions within the European Union. Since it is almost unanimously accepted that Greenhouse Gas emissions constitute the main cause of the observed increase of the world average temperature, the system implemented by the European Union to limit and decrease the CO 2 emissions is a significant pillar of the EU energy policy, the two others being the acceptance by the Member States of long-term commitments (for instance on the future share of renewable energy sources in their energy balance sheet) and the establishment of an internal market for electricity and gas. Though simple in principle, the European Union Greenhouse Gas Emission Trading Scheme (EU ETS) is in fact rather complex, and only experts really understand its merits and its deficiencies. These deficiencies are real and will have to be corrected in the future for the system to be effective. At this moment, when the 2005-2007 trial phase of the EU ETS is ending, the monograph has the purpose to stimulate the discussion between experts and to enable all those interested in the topic to understand the issues and to take part in the public debates on the subject. The monograph contains five papers: - 'An Overview of the CO 2 Emission Control System in the European Union' by Jacques Lesourne and Maite Jaureguy-Naudin. - 'Description and Assessment of EU CO 2 Regulations' by Yves Smeers. - 'Assessment of EU CO 2 Regulations' by Jean-Paul Bouttes, Jean-Michel Trochet and Francois Dassa. - 'Investment in Low Carbon Technologies, Policies for the Power Sector' by Karsten Neuhoff. - 'Lessons Learned from the 2005-2007 Trial Phase of the EU Emission Trading System' by Jan Horst Keppler

  10. Decentralized production of hydrogen from hydrocarbons with reduced CO2 emission

    International Nuclear Information System (INIS)

    Nazim Muradov; Franklyn Smith; Cunping Huang; Ali T-Raissi

    2006-01-01

    Currently, most of the industrial hydrogen production is based on steam methane reforming process that releases significant amount of CO 2 into the atmosphere. CO 2 sequestration is one approach to solving the CO 2 emission problem for large centralized hydrogen plants, but it would be impractical for decentralized H 2 production units. The objective of this paper is to explore new routes to hydrogen production from natural gas without (or drastically reduced) CO 2 emissions. One approach analyzed in this paper is based on thermo-catalytic decomposition (TCD) of hydrocarbons (e.g., methane) to hydrogen gas and elemental carbon. The paper discusses some technological aspects of the TCD process development: (1) thermodynamic analysis of TCD using AspenPlus chemical process simulator, (2) heat input options to the endothermic process, (3) catalyst activity issues, etc. Production of hydrogen and carbon via TCD of methane was experimentally verified using carbon-based catalysts. (authors)

  11. Possibility of reducing CO2 emissions from internal combustion engines

    Science.gov (United States)

    Drabik, Dawid; Mamala, Jarosław; Śmieja, Michał; Prażnowski, Krzysztof

    2017-10-01

    Article defines on the possibility of reduction CO2 of the internal combustion engine and presents the analysis based on originally conducted studies. The increase in overall engine efficiency is sought after by all engineers dealing with engine construction, one of the major ways to reduce CO2 emissions is to increase the compression ratio. The application of the compression ratio that has been increased constructional in the engine will, on one hand, bring about the increase in the theoretical efficiency, but, on the other hand, require a system for pressure control at a higher engine load in order to prevent engine knocking. For the purposes of the article there was carried out a number of studies and compiled results, and on their basis determined what have a major impact on the reducing CO2.

  12. Quantifying global fossil-fuel CO2 emissions: from OCO-2 to optimal observing designs

    Science.gov (United States)

    Ye, X.; Lauvaux, T.; Kort, E. A.; Oda, T.; Feng, S.; Lin, J. C.; Yang, E. G.; Wu, D.; Kuze, A.; Suto, H.; Eldering, A.

    2017-12-01

    Cities house more than half of the world's population and are responsible for more than 70% of the world anthropogenic CO2 emissions. Therefore, quantifications of emissions from major cities, which are only less than a hundred intense emitting spots across the globe, should allow us to monitor changes in global fossil-fuel CO2 emissions, in an independent, objective way. Satellite platforms provide favorable temporal and spatial coverage to collect urban CO2 data to quantify the anthropogenic contributions to the global carbon budget. We present here the optimal observation design for future NASA's OCO-2 and Japanese GOSAT missions, based on real-data (i.e. OCO-2) experiments and Observing System Simulation Experiments (OSSE's) to address different error components in the urban CO2 budget calculation. We identify the major sources of emission uncertainties for various types of cities with different ecosystems and geographical features, such as urban plumes over flat terrains, accumulated enhancements within basins, and complex weather regimes in coastal areas. Atmospheric transport errors were characterized under various meteorological conditions using the Weather Research and Forecasting (WRF) model at 1-km spatial resolution, coupled to the Open-source Data Inventory for Anthropogenic CO2 (ODIAC) emissions. We propose and discuss the optimized urban sampling strategies to address some difficulties from the seasonality in cloud cover and emissions, vegetation density in and around cities, and address the daytime sampling bias using prescribed diurnal cycles. These factors are combined in pseudo data experiments in which we evaluate the relative impact of uncertainties on inverse estimates of CO2 emissions for cities across latitudinal and climatological zones. We propose here several sampling strategies to minimize the uncertainties in target mode for tracking urban fossil-fuel CO2 emissions over the globe for future satellite missions, such as OCO-3 and future

  13. Economics of reducing CO2 emissions from China

    International Nuclear Information System (INIS)

    Wu Zhongxin

    1991-01-01

    Relative to the nations of the industrialized world, developing countries emit far lower levels of CO 2 per capita. In coming years, however, as the developing world experiences more rapid rates of economic and population growth, their carbon emissions per capita inevitably will rise. Therefore, developing countries should be encouraged both to adopt more advanced energy technologies in order to improve the efficiency of energy exploration, transportation, generation and end-use and to replace carbon-intensive fuels sources with less carbon-intensive sources (non-fossil fuels and renewable energy). By incorporating methods aimed at curtailing carbon emissions into their energy development strategies, developing nations can reduce the risks posed by higher CO 2 emissions. However, adopting more advanced energy technologies generally entails high costs. These higher prices serve as a particularly large obstacle for developing nations. In order to serve the common interest of protecting the global environment, international funds should be devoted to cover the high costs of reducing developing world CO 2 emissions

  14. North America's net terrestrial CO2 exchange with the atmosphere 1990-2009

    Science.gov (United States)

    King, A. W.; Andres, R. J.; Davis, K. J.; Hafer, M.; Hayes, D. J.; Huntzinger, D. N.; de Jong, B.; Kurz, W. A.; McGuire, A. D.; Vargas, R.; Wei, Y.; West, T. O.; Woodall, C. W.

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land-atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990-2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from -890 to -280 Tg C yr-1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, "best" estimates (i.e., measures of central tendency) are -472 ± 281 Tg C yr-1 based on the mean and standard deviation of the distribution and -360 Tg C yr-1 (with an interquartile range of -496 to -337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990-2009 equal to 1720 Tg C yr-1 and assuming the estimate of -472 Tg C yr-1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was 1720:472, or nearly 4:1.

  15. North America's net terrestrial CO2 exchange with the atmosphere 1990–2009

    Science.gov (United States)

    King, A.W.; Andres, R.J.; Davis, K.J.; Hafer, M.; Hayes, D.J.; Huntzinger, Deborah N.; de Jong, Bernardus; Kurz, W.A.; McGuire, A. David; Vargas, Rodrigo I.; Wei, Y.; West, Tristram O.; Woodall, Christopher W.

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land–atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990–2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from −890 to −280 Tg C yr−1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, "best" estimates (i.e., measures of central tendency) are −472 ± 281 Tg C yr−1 based on the mean and standard deviation of the distribution and −360 Tg C yr−1 (with an interquartile range of −496 to −337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990–2009 equal to 1720 Tg C yr−1 and assuming the estimate of −472 Tg C yr−1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was

  16. Impact of renewables deployment on the CO2 price and the CO2 emissions in the European electricity sector

    International Nuclear Information System (INIS)

    Van den Bergh, Kenneth; Delarue, Erik; D'haeseleer, William

    2013-01-01

    As of 2005, electricity generators in Europe operate under the European Union Emission Trading System (EU ETS). At the same time, European Member States have launched support mechanisms to stimulate the deployment of renewable electricity sources (RES-E). RES-E injections displace CO 2 emissions within the sectors operating under the EU ETS and they reduce the demand for European Union Allowances (EUAs), thereby reducing the EUA price. This paper presents the results of an ex post analysis to quantify the impact of RES-E deployment on the EUA price and CO 2 emissions in the Western and Southern European electricity sector during the period from 2007 to 2010, following from an operational partial equilibrium model of the electricity sector. This study shows that the CO 2 displacement from the electricity sector to other ETS sectors due to RES-E deployment can be up to more than 10% of historical CO 2 emissions in the electricity sector. The EUA price decrease caused by RES-E deployment turns out to be likely significant. - Author-Highlights: • We assessed the impact of renewables deployment in the period 2007–2010. • Impact on CO 2 emissions in the electricity sector and the CO 2 price is considered. • CO 2 emissions decreased by up to 10% of historical emissions. • CO 2 price decrease due to renewables turns out to be likely significant

  17. Seasonal Variations of Atmospheric CO2 over Fire Affected Regions Based on GOSAT Observations

    Science.gov (United States)

    Shi, Y.; Matsunaga, T.

    2016-12-01

    Abstract: The carbon dioxide (CO2) emissions released from biomass burning significantly affect the temporal variations of atmospheric CO2 concentrations. Based on a long-term (July 2009-June 2015) retrieved datasets by the Greenhouse Gases Observing Satellite (GOSAT), the seasonal cycle and interannual variations of column-averaged volume mixing ratios of atmospheric carbon dioxide (XCO2) in four fire affected continental regions were investigated. The results showed Northern Africa had the largest seasonal variations after removing its regional long-term trend of XCO2 with peak-to-peak amplitude of 6.2 ppm within the year, higher than central South America (2.4 ppm), Southern Africa (3.8 ppm) and Australia (1.7 ppm). The detrended regional XCO2 was found to be positively correlated with the fire CO2 emissions during fire activity period and negatively correlated with vegetation photosynthesis activity with different seasonal variabilities. Northern Africa recorded the largest change of seasonal variations of detrended XCO2 with a total of 12.8 ppm during fire seasons, higher than central South America, Southern Africa and Australia with 5.4 ppm, 6.7 ppm and 2.2 ppm, respectively. During fire episode, the positive detrended XCO2 was noticed during June-November in central South America, December-June in Northern Africa, May-November in Southern Africa. The Pearson correlation coefficients between the variations of detrended XCO2 and fire CO2 emissions from GFED4 (Global Fire Emissions Database v4) achieved best correlations in Southern Africa (R=0.77, p<0.05). Meanwhile, Southern Africa also experienced a significant negative relationship between the variations of detrended XCO2 and vegetation activity (R=-0.84, p<0.05). This study revealed that fire CO2 emissions and vegetation activity contributed greatly to the seasonal variations of GOSAT XCO2 dataset.

  18. CO2 emission standards and investment in carbon capture

    International Nuclear Information System (INIS)

    Eide, Jan; Sisternes, Fernando J. de; Herzog, Howard J.; Webster, Mort D.

    2014-01-01

    Policy makers in a number of countries have proposed or are considering proposing CO 2 emission standards for new fossil fuel-fired power plants. The proposed standards require coal-fired power plants to have approximately the same carbon emissions as an uncontrolled natural gas-fired power plant, effectively mandating the adoption of carbon capture and sequestration (CCS) technologies for new coal plants. However, given the uncertainty in the capital and operating costs of a commercial scale coal plant with CCS, the impact of such a standard is not apparent a priori. We apply a stochastic generation expansion model to determine the impact of CO 2 emission standards on generation investment decisions, and in particular for coal plants with CCS. Moreover, we demonstrate how the incentive to invest in coal-CCS from emission standards depends on the natural gas price, the CO 2 price, and the enhanced oil recovery price, as well as on the level of the emission standard. This analysis is the first to consider the entire power system and at the same time allow the capture percentage for CCS plants to be chosen from a continuous range to meet the given standard at minimum cost. Previous system level studies have assumed that CCS plants capture 90% of the carbon, while studies of individual units have demonstrated the costs of carbon capture over a continuous range. We show that 1) currently proposed levels of emission standards are more likely to shift fossil fuel generation from coal to natural gas rather than to incentivize investment in CCS; 2) tighter standards that require some carbon reductions from natural gas-fired power plants are more likely than proposed standards to incentivize investments in CCS, especially on natural gas plants, but also on coal plants at high gas prices; and 3) imposing a less strict emission standard (emission rates higher than natural gas but lower than coal; e.g., 1500 lbs/MWh) is more likely than current proposals to incentivize

  19. Advanced emission control system: CO2 sequestration using algae integrated management system (AIMS)

    International Nuclear Information System (INIS)

    Syed Isa Syed Alwi; Mohd Norsham Che Yahya; Ruzanna Abdul Rahman

    2010-01-01

    One of the companies under Algae tech, Sasaran Bio fuel Sdn. Bhd. provides project management, technology transfer and technical expertise to develop a solution to minimize and mitigate Carbon Dioxide (CO 2 ) emissions through the diversion of the CO 2 to open algal ponds and enclosed photo-bioreactors as algal propagation technologies to consume CO 2 waste stream. The company is presently consulting a listed company from Indonesia to address the technology know-how and implementation of microalgae development from the flue gas of the Groups power plants. Nowadays, one of the aspects that contribute to the air pollution is the emission of flue gases from the factories. So, we provide a system that can reduce the emission of flue gas to the atmosphere and at the same time, cultivate certain strain of algae. With the technology, Algae Integrated Management System (AIMS), it will be for sure a new beginning for way to reduce air pollution. The utilization of power plant resources for growing selected microalgae at a low energy cost for valuable products and bio-fuels while providing CO 2 sequestering. In the same time, it also a low cost algae agriculture. By doing so, it provides all year algae production which can be an income. This residual energy used CO 2 produced from power stations and industrial plants to feed the process (CO 2 recycling and bio-fixation) in cultivation of algae. This will be a low cost flue gas (CO 2 ) to the developer. In a nutshell, CO 2 Sequestration by algae reactors is a potential to reduce greenhouse gas emission by using the CO 2 in the stack gases to produce algae. (author)

  20. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux

    Science.gov (United States)

    A. Christopher Oishi; Sari Palmroth; Kurt H. Johnsen; Heather R. McCarthy; Ram. Oren

    2014-01-01

    Soil CO2 efflux (Fsoil) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity,...

  1. CO2 and CH4 fluxes and carbon balance in the atmospheric interaction of boreal peatlands

    International Nuclear Information System (INIS)

    Alm, J.

    1997-01-01

    and root associated heterotrophic CO 2 release. Much of the spatial variability in the gas fluxes was attributed to the microsite properties in natural peatlands. Winter CO 2 and CH 4 emissions were important components in the C balance, comprising 10Ae30 % of the annual gas release from peat. According to the simulation results, the CH 4 release from expanding peatlands could have contributed to the early interglacial atmospheric warming during several millennia, at least prior to the ombrotrophication and increased peat accumulation from about 3500 years BP onwards. The atmospheric cooling effect by peat accumulation is less clear. (orig.)

  2. Does replacing coal with wood lower CO2 emissions? Dynamic lifecycle analysis of wood bioenergy

    Science.gov (United States)

    Sterman, John D.; Siegel, Lori; Rooney-Varga, Juliette N.

    2018-01-01

    Bioenergy is booming as nations seek to cut their greenhouse gas emissions. The European Union declared biofuels to be carbon-neutral, triggering a surge in wood use. But do biofuels actually reduce emissions? A molecule of CO2 emitted today has the same impact on radiative forcing whether it comes from coal or biomass. Biofuels can only reduce atmospheric CO2 over time through post-harvest increases in net primary production (NPP). The climate impact of biofuels therefore depends on CO2 emissions from combustion of biofuels versus fossil fuels, the fate of the harvested land and dynamics of NPP. Here we develop a model for dynamic bioenergy lifecycle analysis. The model tracks carbon stocks and fluxes among the atmosphere, biomass, and soils, is extensible to multiple land types and regions, and runs in ≈1s, enabling rapid, interactive policy design and sensitivity testing. We simulate substitution of wood for coal in power generation, estimating the parameters governing NPP and other fluxes using data for forests in the eastern US and using published estimates for supply chain emissions. Because combustion and processing efficiencies for wood are less than coal, the immediate impact of substituting wood for coal is an increase in atmospheric CO2 relative to coal. The payback time for this carbon debt ranges from 44-104 years after clearcut, depending on forest type—assuming the land remains forest. Surprisingly, replanting hardwood forests with fast-growing pine plantations raises the CO2 impact of wood because the equilibrium carbon density of plantations is lower than natural forests. Further, projected growth in wood harvest for bioenergy would increase atmospheric CO2 for at least a century because new carbon debt continuously exceeds NPP. Assuming biofuels are carbon neutral may worsen irreversible impacts of climate change before benefits accrue. Instead, explicit dynamic models should be used to assess the climate impacts of biofuels.

  3. CO2 emissions, energy usage, and output in Central America

    International Nuclear Information System (INIS)

    Apergis, Nicholas; Payne, James E.

    2009-01-01

    This study extends the recent work of Ang (2007) [Ang, J.B., 2007. CO 2 emissions, energy consumption, and output in France. Energy Policy 35, 4772-4778] in examining the causal relationship between carbon dioxide emissions, energy consumption, and output within a panel vector error correction model for six Central American countries over the period 1971-2004. In long-run equilibrium energy consumption has a positive and statistically significant impact on emissions while real output exhibits the inverted U-shape pattern associated with the Environmental Kuznets Curve (EKC) hypothesis. The short-run dynamics indicate unidirectional causality from energy consumption and real output, respectively, to emissions along with bidirectional causality between energy consumption and real output. In the long-run there appears to be bidirectional causality between energy consumption and emissions.

  4. Reduction of CO2 emissions by influencing fuel prices

    International Nuclear Information System (INIS)

    Keller, M.; Zbinden, R.; Haan, P.; Gruetter, J.; Ott, W.

    2002-01-01

    The CO 2 law stipulates quantitative targets for CO 2 emissions (reductions of 10% by 2010 compared with 1990, 15% for heating fuels, 8% for motor fuels). For motor fuels, it is currently estimated that the target will be missed by about 15%, or 2 to 2.5 million tonnes of CO 2 . In order to reach the targets, therefore, all measures that can be taken to reduce emissions are to be checked out and, where sensible and possible, implemented too. The subject of this study is the preferential treatment of diesel, natural gas, liquefied gas and bio-fuels as far as taxation is concerned, with compensation of tax losses on the petrol side. Also, the possibilities for promoting energy-efficient cars are looked at. The reduction of the price for diesel (at least 25 Swiss cents when compensated for via the petrol price) is considered to be unsuitable for reaching the targets because, in the final analysis, fuel sales - the determining factor for the CO 2 emissions that are charged to Switzerland - will increase instead of decreasing. Also, reservations are expressed from the environmental point of view (increased NO x emissions and, in particular, emissions of particulate matter). The modified measure proposed (fixed difference between the prices for petrol and diesel of 25 Swiss cents, for example) is looked at less critically, because it does actually lead to a reduction of CO 2 , even if only a modest one (approx. 10% of the gap to be bridged). On the environmental side, the same reservations apply. Bonus-malus systems, on the other hand, permit a selective choice of the objects of promotion (efficient and, possibly, low-emission vehicles), avoid the unjust preferential treatment of goods traffic and can be implemented without disturbing international price structures (fuel tourism). A bonus-malus system applied at purchase (e.g. different levels of car taxation) is considered to be more efficient than a differentiation in vehicle (road) tax. The promotion of gas is a

  5. Research concepts to reduce CO2 emissions at technical conditions

    International Nuclear Information System (INIS)

    Geigle, K.P.; Lammel, O.; Kutne, P.; Schutz, H.; Luckerath, R.; Aigner, M.

    2009-01-01

    Carbon dioxide (CO 2 ) emissions are thought to contribute to climate change and therefore, there is a significant motivation for current gas turbine burner development to reduce those emissions. In order to support burner development, the German Aerospace Center (DLR) utilizes high pressure testing in combination with optical diagnostics enabled by good optical access and numerical simulation. This paper discussed 3 primary activities on CO 2 reduction that have been accomplished recently, notably the simulation of burner development based on the flameless oxidation concept, characterization of syngas combustion behaviour and studying parameters influencing oxyfuel combustion. Enhanced FLOX burner development and flameless oxidation were illustrated and an experimental realization of DLR FLOX burner V1 for operation up to 30 bars was discussed. Several experiments were illustrated and outlined. Computational fluid dynamics and other simulation models were presented. It was concluded that optical diagnostics applicable to high pressure combustion and numerical simulation proved to be extremely helpful for design optimization. 14 refs., 9 figs.

  6. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux.

    Science.gov (United States)

    Oishi, A Christopher; Palmroth, Sari; Johnsen, Kurt H; McCarthy, Heather R; Oren, Ram

    2014-04-01

    Soil CO2 efflux (Fsoil ) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long-term effects of these factors on Fsoil are less clear. Expanding on previous studies at the Duke Free-Air CO2 Enrichment (FACE) site, we quantified the effects of elevated [CO2] and N fertilization on Fsoil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient unfertilized plots, annual Fsoil increased under elevated [CO2] (ca. 17%) and decreased with N (ca. 21%). N fertilization under elevated [CO2] reduced Fsoil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity, but declined after productivity saturated. Despite treatment-induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Interannually, low soil water content decreased annual Fsoil from potential values - estimated based on temperature alone assuming nonlimiting soil water content - by ca. 0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO2]. Variability in soil N availability among plots accounted for the spatial variability in Fsoil , showing a decrease of ca. 114 g C m(-2) yr(-1) per 1 g m(-2) increase in soil N availability, with consistently higher Fsoil in elevated [CO2] plots ca. 127 g C per 100 ppm [CO2] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO2] and N fertilization on Fsoil in this stand are sustained beyond the early stages of stand development and

  7. Estimate of Possible CO2 Emission Reduction in Slovenia

    International Nuclear Information System (INIS)

    Plavcak, V.-P.; Jevsek, F.; Tirsek, A.

    1998-01-01

    The first estimation of possible CO 2 emission reduction, according to the obligations from Kyoto Protocol, is prepared. The results show that the required 8% reduction of greenhouses gases in Slovenia in the period from 2008 to 2012 with regard to year 1986 will require a through analytical treatment not only in electric power sector but also in transport and industry sectors, which are the main pollutants. (author)

  8. Calculation of CO2 emissions from the italian energy system

    International Nuclear Information System (INIS)

    Contaldi, M.; La Motta, S.

    2001-01-01

    The calculation of CO2 emissions from the Italian energy system is the object of this work. The inventory method used is the Reference Approach from the Intergovernmental Panel for Climate Change (IPCC, 1996 revised Guidelines for National Greenhouse Gas Inventories) and the energy consumption data are taken from the Italian Energy Balance edited by the Ministry of Industry. The years analysed are those from 1990 to 2000 [it

  9. Planning for Economic Growth with Reduced CO2 Emissions in Provincial China: The Case of Jiangxi

    Directory of Open Access Journals (Sweden)

    Yu-Lin Tsou

    Full Text Available ABSTRACT: Since the Industrial Revolution, the concentration of greenhouse gases (GHG, primarily carbon dioxide (CO2, has put increasing pressure on the atmosphere's ability to absorb them. China is the fastest growing major economy in the world, and is following a process of rapid industrialization. This process, however, contributes dramatically to global warming through major CO2 emissions. The widespread provision of electricity through coal-fired power plants is just one contributor, but industrial structures, transportation systems, and the construction of large superblock residential towers also play major roles. The large cities and industrialized provinces of China emit the most CO2, a fact that requires serious attention. However, stemming this trend elsewhere in China would provide a greater opportunity for success in reducing overall CO2 emissions in the country. Consequently, the question this paper addresses is what policies can be adopted to reduce CO2 emissions in provinces in China where development is still in its early stages, while maintaining economic growth. Jiangxi is a province that has historically been a major agricultural area. In recent years, however, because of the economic development policies of the Chinese central government, the province's rich mineral deposits, favorable location, and convenient transportation system are attracting more investments and projects for development (Statistical Bureau of Jiangxi, 2010. Jiangxi, then, provides an excellent case study because the province, although developing quickly, might still produce less CO2 if proper growth policies and actions are implemented. According to the results of this research, CO2 emissions would indeed decline in Jiangxi if the province would adopt new technology for electricity generation and increase the GDP role of the service sector. KEYWORDS: Provincial Chinese development, economic growth and global warming, CO2 emissions in China, Chinese

  10. Regional impacts of climate change and atmospheric CO2 on future ocean carbon uptake: A multi-model linear feedback analysis

    OpenAIRE

    Roy Tilla; Bopp Laurent; Gehlen Marion; Schneider Birgitt; Cadule Patricia; Frölicher Thomas; Segschneider Jochen; Tijputra Jerry; Heinze Christoph; Joos Fortunat

    2011-01-01

    The increase in atmospheric CO2 over this century depends on the evolution of the oceanic air–sea CO2 uptake which will be driven by the combined response to rising atmospheric CO2 itself and climate change. Here the future oceanic CO2 uptake is simulated using an ensemble of coupled climate–carbon cycle models. The models are driven by CO2 emissions from historical data and the Special Report on Emissions Scenarios (SRES) A2 high emission scenario. A linear feedback analysis successfully sep...

  11. Reducing CO2 emissions and energy consumption of heat-integrated distillation systems.

    Science.gov (United States)

    Gadalla, Mamdouh A; Olujic, Zarko; Jansens, Peter J; Jobson, Megan; Smith, Robin

    2005-09-01

    Distillation systems are energy and power intensive processes and contribute significantly to the greenhouse gases emissions (e.g. carbon dioxide). Reducing CO2 emissions is an absolute necessity and expensive challenge to the chemical process industries in orderto meetthe environmental targets as agreed in the Kyoto Protocol. A simple model for the calculation of CO2 emissions from heat-integrated distillation systems is introduced, considering typical process industry utility devices such as boilers, furnaces, and turbines. Furnaces and turbines consume large quantities of fuels to provide electricity and process heats. As a result, they produce considerable amounts of CO2 gas to the atmosphere. Boilers are necessary to supply steam for heating purposes; besides, they are also significant emissions contributors. The model is used in an optimization-based approach to optimize the process conditions of an existing crude oil atmospheric tower in order to reduce its CO2 emissions and energy demands. It is also applied to generate design options to reduce the emissions from a novel internally heat-integrated distillation column (HIDiC). A gas turbine can be integrated with these distillation systems for larger emissions reduction and further energy savings. Results show that existing crude oil installations can save up to 21% in energy and 22% in emissions, when the process conditions are optimized. Additionally, by integrating a gas turbine, the total emissions can be reduced further by 48%. Internal heat-integrated columns can be a good alternative to conventional heat pump and other energy intensive close boiling mixtures separations. Energy savings can reach up to 100% with respect to reboiler heat requirements. Emissions of these configurations are cut down by up to 83%, compared to conventional units, and by 36%, with respect to heat pump alternatives. Importantly, cost savings and more profit are gained in parallel to emissions minimization.

  12. The potential of satellite spectro-imagery for monitoring CO2 emissions from large cities

    Directory of Open Access Journals (Sweden)

    G. Broquet

    2018-02-01

    Full Text Available This study assesses the potential of 2 to 10 km resolution imagery of CO2 concentrations retrieved from the shortwave infrared measurements of a space-borne passive spectrometer for monitoring the spatially integrated emissions from the Paris area. Such imagery could be provided by missions similar to CarbonSat, which was studied as a candidate Earth Explorer 8 mission by the European Space Agency (ESA. This assessment is based on observing system simulation experiments (OSSEs with an atmospheric inversion approach at city scale. The inversion system solves for hourly city CO2 emissions and natural fluxes, or for these fluxes per main anthropogenic sector or ecosystem, during the 6 h before a given satellite overpass. These 6 h correspond to the period during which emissions produce CO2 plumes that can be identified on the image from this overpass. The statistical framework of the inversion accounts for the existence of some prior knowledge with 50 % uncertainty on the hourly or sectorial emissions, and with ∼ 25 % uncertainty on the 6 h mean emissions, from an inventory based on energy use and carbon fuel consumption statistics. The link between the hourly or sectorial emissions and the vertically integrated column of CO2 observed by the satellite is simulated using a coupled flux and atmospheric transport model. This coupled model is built with the information on the spatial and temporal distribution of emissions from the emission inventory produced by the local air-quality agency (Airparif and a 2 km horizontal resolution atmospheric transport model. Tests are conducted for different realistic simulations of the spatial coverage, resolution, precision and accuracy of the imagery from sun-synchronous polar-orbiting missions, corresponding to the specifications of CarbonSat and Sentinel-5 or extrapolated from these specifications. First, OSSEs are conducted with a rather optimistic configuration in which the inversion system

  13. The potential of satellite spectro-imagery for monitoring CO2 emissions from large cities

    Science.gov (United States)

    Broquet, Grégoire; Bréon, François-Marie; Renault, Emmanuel; Buchwitz, Michael; Reuter, Maximilian; Bovensmann, Heinrich; Chevallier, Frédéric; Wu, Lin; Ciais, Philippe

    2018-02-01

    This study assesses the potential of 2 to 10 km resolution imagery of CO2 concentrations retrieved from the shortwave infrared measurements of a space-borne passive spectrometer for monitoring the spatially integrated emissions from the Paris area. Such imagery could be provided by missions similar to CarbonSat, which was studied as a candidate Earth Explorer 8 mission by the European Space Agency (ESA). This assessment is based on observing system simulation experiments (OSSEs) with an atmospheric inversion approach at city scale. The inversion system solves for hourly city CO2 emissions and natural fluxes, or for these fluxes per main anthropogenic sector or ecosystem, during the 6 h before a given satellite overpass. These 6 h correspond to the period during which emissions produce CO2 plumes that can be identified on the image from this overpass. The statistical framework of the inversion accounts for the existence of some prior knowledge with 50 % uncertainty on the hourly or sectorial emissions, and with ˜ 25 % uncertainty on the 6 h mean emissions, from an inventory based on energy use and carbon fuel consumption statistics. The link between the hourly or sectorial emissions and the vertically integrated column of CO2 observed by the satellite is simulated using a coupled flux and atmospheric transport model. This coupled model is built with the information on the spatial and temporal distribution of emissions from the emission inventory produced by the local air-quality agency (Airparif) and a 2 km horizontal resolution atmospheric transport model. Tests are conducted for different realistic simulations of the spatial coverage, resolution, precision and accuracy of the imagery from sun-synchronous polar-orbiting missions, corresponding to the specifications of CarbonSat and Sentinel-5 or extrapolated from these specifications. First, OSSEs are conducted with a rather optimistic configuration in which the inversion system is perfectly informed about the

  14. CO2 emissions driven by wind are produced at global scale

    Science.gov (United States)

    Rosario Moya, M.; Sánchez-Cañete, Enrique P.; Kowalski, Andrew S.; Serrano-Ortiz, Penélope; López-Ballesteros, Ana; Oyonarte, Cecilio; Domingo, Francisco

    2017-04-01

    As an important tool for understanding and monitoring ecosystem dynamics at ecosystem level, the eddy covariance (EC) technique allows the assessment of the diurnal and seasonal variation of the net ecosystem exchange (NEE). Despite the high temporal resolution data, there are still many processes (in addition to photosynthesis and respiration) that, although they are being monitored, have been neglected. Only a few authors have studied anomalous CO2 emissions (non biological), and have related them to soil ventilation, photodegradation or geochemical processes. The aims of this study are: 1) to identify anomalous daytime CO2 emissions in different ecosystems distributed around the world, 2) to determine the meteorological variables that influence these emissions, and 3) to explore the potential processes which can be involved. We have studied EC data together with other meteorological ancillary variables obtained from the FLUXNET database and have found more than 50 sites with anomalous CO2 emissions in different ecosystem types such as grasslands, croplands or savannas. Data were filtered according to the FLUXNET quality control flags (only data with maximum quality were used, i.e. control flag equal to 0) and daytime (shortwave radiation incoming > 50 W m-2). Partial Spearman correlation analyses were performed between NEE and ancillary data: air temperature, vapour pressure deficit, soil temperature, precipitation, atmospheric pressure, soil water content, incoming photosynthetic photon flux density, friction velocity and net radiation. When necessary, ancillary variables were gap-filled using the MDS method (Reichstein et al. 2005). Preliminary results showed strong and highly significant correlations between friction velocity and anomalous CO2 emissions, suggesting that these emissions were mainly produced by ventilation events. Anomalous CO2 emissions were found mainly in arid ecosystems and sites with hot and dry summers. We suggest that anomalous CO2

  15. Diurnal, synoptic and seasonal variability of atmospheric CO2 in the Paris megacity area

    Science.gov (United States)

    Xueref-Remy, Irène; Dieudonné, Elsa; Vuillemin, Cyrille; Lopez, Morgan; Lac, Christine; Schmidt, Martina; Delmotte, Marc; Chevallier, Frédéric; Ravetta, François; Perrussel, Olivier; Ciais, Philippe; Bréon, François-Marie; Broquet, Grégoire; Ramonet, Michel; Spain, T. Gerard; Ampe, Christophe

    2018-03-01

    Most of the global fossil fuel CO2 emissions arise from urbanized and industrialized areas. Bottom-up inventories quantify them but with large uncertainties. In 2010-2011, the first atmospheric in situ CO2 measurement network for Paris, the capital of France, began operating with the aim of monitoring the regional atmospheric impact of the emissions coming from this megacity. Five stations sampled air along a northeast-southwest axis that corresponds to the direction of the dominant winds. Two stations are classified as rural (Traînou - TRN; Montgé-en-Goële - MON), two are peri-urban (Gonesse - GON; Gif-sur-Yvette - GIF) and one is urban (EIF, located on top of the Eiffel Tower). In this study, we analyze the diurnal, synoptic and seasonal variability of the in situ CO2 measurements over nearly 1 year (8 August 2010-13 July 2011). We compare these datasets with remote CO2 measurements made at Mace Head (MHD) on the Atlantic coast of Ireland and support our analysis with atmospheric boundary layer height (ABLH) observations made in the center of Paris and with both modeled and observed meteorological fields. The average hourly CO2 diurnal cycles observed at the regional stations are mostly driven by the CO2 biospheric cycle, the ABLH cycle and the proximity to urban CO2 emissions. Differences of several µmol mol-1 (ppm) can be observed from one regional site to the other. The more the site is surrounded by urban sources (mostly residential and commercial heating, and traffic), the more the CO2 concentration is elevated, as is the associated variability which reflects the variability of the urban sources. Furthermore, two sites with inlets high above ground level (EIF and TRN) show a phase shift of the CO2 diurnal cycle of a few hours compared to lower sites due to a strong coupling with the boundary layer diurnal cycle. As a consequence, the existence of a CO2 vertical gradient above Paris can be inferred, whose amplitude depends on the time of the day and on

  16. Diurnal, synoptic and seasonal variability of atmospheric CO2 in the Paris megacity area

    Directory of Open Access Journals (Sweden)

    I. Xueref-Remy

    2018-03-01

    Full Text Available Most of the global fossil fuel CO2 emissions arise from urbanized and industrialized areas. Bottom-up inventories quantify them but with large uncertainties. In 2010–2011, the first atmospheric in situ CO2 measurement network for Paris, the capital of France, began operating with the aim of monitoring the regional atmospheric impact of the emissions coming from this megacity. Five stations sampled air along a northeast–southwest axis that corresponds to the direction of the dominant winds. Two stations are classified as rural (Traînou – TRN; Montgé-en-Goële – MON, two are peri-urban (Gonesse – GON; Gif-sur-Yvette – GIF and one is urban (EIF, located on top of the Eiffel Tower. In this study, we analyze the diurnal, synoptic and seasonal variability of the in situ CO2 measurements over nearly 1 year (8 August 2010–13 July 2011. We compare these datasets with remote CO2 measurements made at Mace Head (MHD on the Atlantic coast of Ireland and support our analysis with atmospheric boundary layer height (ABLH observations made in the center of Paris and with both modeled and observed meteorological fields. The average hourly CO2 diurnal cycles observed at the regional stations are mostly driven by the CO2 biospheric cycle, the ABLH cycle and the proximity to urban CO2 emissions. Differences of several µmol mol−1 (ppm can be observed from one regional site to the other. The more the site is surrounded by urban sources (mostly residential and commercial heating, and traffic, the more the CO2 concentration is elevated, as is the associated variability which reflects the variability of the urban sources. Furthermore, two sites with inlets high above ground level (EIF and TRN show a phase shift of the CO2 diurnal cycle of a few hours compared to lower sites due to a strong coupling with the boundary layer diurnal cycle. As a consequence, the existence of a CO2 vertical gradient above Paris can be inferred, whose amplitude depends

  17. Inter-annual variability and trend detection of urban CO2, CH4 and CO emissions

    Science.gov (United States)

    Lauvaux, T.; Deng, A.; Gurney, K. R.; Nathan, B.; Ye, X.; Oda, T.; Karion, A.; Hardesty, M.; Harvey, R. M.; Richardson, S.; Whetstone, J. R.; Hutyra, L.; Davis, K. J.; Brewer, A.; Gaudet, B. J.; Turnbull, J. C.; Sweeney, C.; Shepson, P. B.; Miles, N.; Bonin, T.; Wu, K.; Balashov, N. V.

    2017-12-01

    The Indianapolis Flux (INFLUX) Experiment has conducted an unprecedented volume of atmospheric greenhouse gas measurements across the Indianapolis metropolitan area from aircraft, remote-sensing, and tower-based observational platforms. Assimilated in a high-resolution urban inversion system, atmospheric data provide an independent constraint to existing emission products, directly supporting the integration of economic data into urban emission systems. We present here the first multi-year assessment of carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO) emissions from anthropogenic activities in comparison to multiple bottom-up emission products. Biogenic CO2 fluxes are quantified using an optimized biogeochemical model at high resolution, further refined within the atmospheric inversion system. We also present the first sector-based inversion by jointly assimilating CO2 and CO mixing ratios to quantify the dominant sectors of emissions over the entire period (2012-2015). The detected trend in CO2 emissions over 2012-2015 from both bottom-up emission products and tower-based inversions agree within a few percent, with a decline in city emissions over the 3-year time period. Major changes occur at the primary power plant, suggesting a decrease in energy production within the city limits. The joint assimilation of CO2 and CO mixing ratios confirms the absence of trends in other sectors. However, top-down and bottom-up approaches tend to disagree annually, with a decline in urban emissions suggested by atmospheric data in 2014 that is several months earlier than is observed in the bottom-up products. Concerning CH4 emissions, the inversion shows a decrease since mid-2014 which may be due to lower landfill emissions or lower energy consumption (from coal and natural gas). This first demonstration of a high-accuracy long-term greenhouse gas measurement network merged with a high-resolution bottom-up information system highlights the potential for informing

  18. The improvement of CO2 emission reduction policies based on system dynamics method in traditional industrial region with large CO2 emission

    International Nuclear Information System (INIS)

    Li, Fujia; Dong, Suocheng; Li, Zehong; Li, Yu; Li, Shantong; Wan, Yongkun

    2012-01-01

    Some traditional industrial regions are characterized by high industrial proportion and large CO 2 emission. They are facing dual pressures of maintaining economic growth and largely reducing CO 2 emission. From the perspective of study of typological region, taking the typical traditional industrial region—Liaoning Province of China as a case, this study establishes a system dynamics model named EECP and dynamically simulates CO 2 emission trends under different conditions. Simulation results indicate, compared to the condition without CO 2 emission reduction policies, CO 2 emission intensity under the condition of implementing CO 2 emission reduction policies of “Twelfth Five-Year Plan” is decreased by 11% from 2009 to 2030, but the economic cost is high, making the policies implementation faces resistance. Then some improved policies are offered and proved by EECP model that they can reduce CO 2 emission intensity after 2021 and decrease the negative influence to GDP, realizing the improvement objects of reducing CO 2 emission and simultaneously keeping a higher economy growth speed. The improved policies can provide reference for making and improving CO 2 emission reduction policies in other traditional industrial regions with large CO 2 emission. Simultaneously, EECP model can provide decision-makers with reference and help for similar study of energy policy. - Highlights: ► We build EECP model for CO 2 emission reduction study in traditional industry region. ► By the model, we simulate CO 2 emission trend and improve emission reduction policy. ► By improvement, both CO 2 emission intensity and economic cost can be largely reduced. ► Besides CO 2 emission is reduced effectively, higher GDP increment speed is kept. ► EECP model can be widely used for making and improving regional energy policies.

  19. CO2 Emissions Generated by a Fall AGU Meeting

    Science.gov (United States)

    osborn, G.; Malowany, K. S.; Samolczyk, M. A.

    2011-12-01

    The process of reporting on and discussing geophysical phenomena, including emissions of greenhouse gases, generates more greenhouse gases. At the 2010 fall meeting of the AGU, 19,175 delegates from 81 countries, including, for example, Eritrea, Nepal, and Tanzania, traveled a total of 156,000,000 km to congregate in San Francisco for five days. With data on home bases of participants provided by AGU, we estimated the CO2 emissions generated by travel and hotel stays of those participants. The majority of the emissions from the meeting resulted from air travel . In order to estimate the footprint of such travel, (a) distances from the largest airport in each country and American state (except Canada and California) to San Francisco were tabulated , (b) basic distances were converted to emissions using the TerraPass (TRX Travel Analytics) carbon calculator, (c) it was assumed that half the California participants would fly and half would drive, (d) it was assumed that half of Canadians would fly out of Toronto and half out of Vancouver, and (e) a fudge factor of 10% was added to air travel emissions to account for connecting flights made by some participants to the main airports in the respective countries (connecting flights are disproportionately significant because of high output during takeoff acceleration). Driving impacts were estimated with a Transport Direct/RAC Motoring Services calculator using a 2006 Toyota Corolla as a standard car. An average driving distance of 50 km to the departure airport, and from the airport upon return, was assumed. Train impacts were estimated using the assumption that all flying participants would take BART from SFO. Accomodation impacts were estimated using an Environmental Protection Agency calculator, an assumed average stay of 3 nights, and the assumption that 500 participants commuted from local residences or stayed with friends. The above assumptions lead to an estimate, which we consider conservative, of 19 million kg of

  20. Benchmarking and the allocation of emission rights. European Parliament agreement on CO2 emission trade

    International Nuclear Information System (INIS)

    Harmsen, H.

    2003-01-01

    July 2, 2003, the Parliament of the European Union approved the directive for CO2 emission trade, which means that the energy-intensive industry and businesses in Europe have to deal with cost for CO2 emission from 2005 onwards. It is estimated that the Dutch government will have to distribute circa 90 million ton of CO2 emission rights (1.8 billion euro at a price of 20 euro per ton CO2). In order to realize a fair and transparent distribution of the rights use can be made of the Covenant Benchmarking for Energy Efficiency [nl

  1. Social Learning and the Mitigation of Transport CO2 Emissions

    Directory of Open Access Journals (Sweden)

    Maha Al Sabbagh

    2017-01-01

    Full Text Available Social learning, a key factor in fostering behavioural change and improving decision making, is considered necessary for achieving substantial CO2 emission reductions. However, no empirical evidence exists on how it contributes to mitigation of transport CO2 emissions, or the extent of its influence on decision making. This paper presents evidence addressing these knowledge gaps. Social learning-oriented workshops were conducted to gather the views and preferences of participants from the general public in Bahrain on selected transport CO2 mitigation measures. Social preferences were inputted into a deliberative decision-making model and then compared to a previously prepared participative model. An analysis of the results revealed that social learning could contribute to changes in views, preferences and acceptance regarding mitigation measures, and these changes were statistically significant at an alpha level of 0.1. Thus, while social learning evidently plays an important role in the decision-making process, the impacts of using other participatory techniques should also be explored.

  2. Exchange of carbonyl sulfide (OCS) between soils and atmosphere under various CO2 concentrations

    Science.gov (United States)

    Bunk, Rüdiger; Behrendt, Thomas; Yi, Zhigang; Andreae, Meinrat O.; Kesselmeier, Jürgen

    2017-06-01

    A new continuous integrated cavity output spectroscopy analyzer and an automated soil chamber system were used to investigate the exchange processes of carbonyl sulfide (OCS) between soils and the atmosphere under laboratory conditions. The exchange patterns of OCS between soils and the atmosphere were found to be highly dependent on soil moisture and ambient CO2 concentration. With increasing soil moisture, OCS exchange ranged from emission under dry conditions to an uptake within an optimum moisture range, followed again by emission at high soil moisture. Elevated CO2 was found to have a significant impact on the exchange rate and direction as tested with several soils. There is a clear tendency toward a release of OCS at higher CO2 levels (up to 7600 ppm), which are typical for the upper few centimeters within soils. At high soil moisture, the release of OCS increased sharply. Measurements after chloroform vapor application show that there is a biotic component to the observed OCS exchange. Furthermore, soil treatment with the fungi inhibitor nystatin showed that fungi might be the dominant OCS consumers in the soils we examined. We discuss the influence of soil moisture and elevated CO2 on the OCS exchange as a change in the activity of microbial communities. Physical factors such as diffusivity that are governed by soil moisture also play a role. Comparing KM values of the enzymes to projected soil water CO2 concentrations showed that competitive inhibition is unlikely for carbonic anhydrase and PEPCO but might occur for RubisCO at higher CO2 concentrations.

  3. The energy-climate challenge: Recent trends in CO2 emissions from fuel combustion

    International Nuclear Information System (INIS)

    Quadrelli, Roberta; Peterson, Sierra

    2007-01-01

    Fossil fuel combustion is the single largest human influence on climate, accounting for 80% of anthropogenic greenhouse gas emissions. This paper presents trends in world carbon dioxide (CO 2 ) emissions from fossil fuel combustion worldwide, based on the estimates of the International Energy Agency (IEA) [IEA, 2006a. CO 2 Emissions from Fuel Combustion 1971-2004. International Energy Agency, Paris, France]. Analyzing the drivers of CO 2 emissions, the paper considers regions, types of fuel, sectors, and socio-economic indicators. The paper then examines the growing body of climate change mitigation policies and measures, both multinational and federal. Policies discussed include the Kyoto Protocol, the European Union Emissions Trading Scheme, and the potential measures to be implemented in 2012 and beyond. CO 2 emissions of recent years have grown at the highest rates ever recorded, an observed trend incompatible with stabilizing atmospheric concentrations of greenhouse gases and avoiding long-term climate change. Within this aggregate upward trend, a comparison of emissions sources proves dynamic: while industrialized countries have so far dominated historical emissions, rapid growth in energy demand of developing economies, led by China, may soon spur their absolute emissions beyond those of industrialized countries. To provide context for the drivers of CO 2 emissions, the paper examines fuel sources, from coal to biofuels, and fuel use in the production of heat and electricity, in transport, in industrial production and in households. The sectoral analysis illustrates the primacy, in terms of emissions growth and absolute emissions, of two sectors: electricity and heat generation, and transport. A discussion of several socio-economic emissions drivers complements the paper's analysis of mitigation mechanisms. As illustrated, emissions per capita and emissions per unit of economic production, as measured in gross domestic product (GDP), vary widely between

  4. Portable laser spectrometer for airborne and ground-based remote sensing of geological CO2 emissions.

    Science.gov (United States)

    Queisser, Manuel; Burton, Mike; Allan, Graham R; Chiarugi, Antonio

    2017-07-15

    A 24 kg, suitcase sized, CW laser remote sensing spectrometer (LARSS) with a ~2 km range has been developed. It has demonstrated its flexibility in measuring both atmospheric CO2 from an airborne platform and terrestrial emission of CO2 from a remote mud volcano, Bledug Kuwu, Indonesia, from a ground-based sight. This system scans the CO2 absorption line with 20 discrete wavelengths, as opposed to the typical two-wavelength online offline instrument. This multi-wavelength approach offers an effective quality control, bias control, and confidence estimate of measured CO2 concentrations via spectral fitting. The simplicity, ruggedness, and flexibility in the design allow for easy transportation and use on different platforms with a quick setup in some of the most challenging climatic conditions. While more refinement is needed, the results represent a stepping stone towards widespread use of active one-sided gas remote sensing in the earth sciences.

  5. Future CO2 Emissions and Climate Change from Existing Energy Infrastructure

    Science.gov (United States)

    Davis, S. J.; Caldeira, K.; Matthews, D.

    2010-12-01

    If current greenhouse gas (GHG) concentrations remain constant, the world would be committed to several centuries of increasing global mean temperatures and sea level rise. By contrast, near elimination of anthropogenic CO2 emissions would be required to produce diminishing GHG concentrations consistent with stabilization of mean temperatures. Yet long-lived energy and transportation infrastructure now operating can be expected to contribute substantial CO2 emissions over the next 50 years. Barring widespread retrofitting of existing power plants with carbon capture and storage (CCS) technologies or the early decommissioning of serviceable infrastructure, these “committed emissions” represent infrastructural inertia which may be the primary contributor to total future warming commitment. With respect to GHG emissions, infrastructural inertia may be thought of as having two important and overlapping components: (i) infrastructure that directly releases GHGs to the atmosphere, and (ii) infrastructure that contributes to the continued production of devices that emit GHGs to the atmosphere. For example, the interstate highway and refueling infrastructure in the United States facilitates continued production of gasoline-powered automobiles. Here, we focus only on the warming commitment from infrastructure that directly releases CO2 to the atmosphere. Essentially, we answer the question: What if no additional CO2-emitting devices (e.g., power plants, motor vehicles) were built, but all the existing CO2-emitting devices were allowed to live out their normal lifetimes? What CO2 levels and global mean temperatures would we attain? Of course, the actual lifetime of devices may be strongly influenced by economic and policy constraints. For instance, a ban on new CO2-emitting devices would create tremendous incentive to prolong the lifetime of existing devices. Thus, our scenarios are not realistic, but offer a means of gauging the threat of climate change from existing

  6. Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6

    Directory of Open Access Journals (Sweden)

    H. Graven

    2017-12-01

    Full Text Available The isotopic composition of carbon (Δ14C and δ13C in atmospheric CO2 and in oceanic and terrestrial carbon reservoirs is influenced by anthropogenic emissions and by natural carbon exchanges, which can respond to and drive changes in climate. Simulations of 14C and 13C in the ocean and terrestrial components of Earth system models (ESMs present opportunities for model evaluation and for investigation of carbon cycling, including anthropogenic CO2 emissions and uptake. The use of carbon isotopes in novel evaluation of the ESMs' component ocean and terrestrial biosphere models and in new analyses of historical changes may improve predictions of future changes in the carbon cycle and climate system. We compile existing data to produce records of Δ14C and δ13C in atmospheric CO2 for the historical period 1850–2015. The primary motivation for this compilation is to provide the atmospheric boundary condition for historical simulations in the Coupled Model Intercomparison Project 6 (CMIP6 for models simulating carbon isotopes in the ocean or terrestrial biosphere. The data may also be useful for other carbon cycle modelling activities.

  7. Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6

    Science.gov (United States)

    Graven, Heather; Allison, Colin E.; Etheridge, David M.; Hammer, Samuel; Keeling, Ralph F.; Levin, Ingeborg; Meijer, Harro A. J.; Rubino, Mauro; Tans, Pieter P.; Trudinger, Cathy M.; Vaughn, Bruce H.; White, James W. C.

    2017-12-01

    The isotopic composition of carbon (Δ14C and δ13C) in atmospheric CO2 and in oceanic and terrestrial carbon reservoirs is influenced by anthropogenic emissions and by natural carbon exchanges, which can respond to and drive changes in climate. Simulations of 14C and 13C in the ocean and terrestrial components of Earth system models (ESMs) present opportunities for model evaluation and for investigation of carbon cycling, including anthropogenic CO2 emissions and uptake. The use of carbon isotopes in novel evaluation of the ESMs' component ocean and terrestrial biosphere models and in new analyses of historical changes may improve predictions of future changes in the carbon cycle and climate system. We compile existing data to produce records of Δ14C and δ13C in atmospheric CO2 for the historical period 1850-2015. The primary motivation for this compilation is to provide the atmospheric boundary condition for historical simulations in the Coupled Model Intercomparison Project 6 (CMIP6) for models simulating carbon isotopes in the ocean or terrestrial biosphere. The data may also be useful for other carbon cycle modelling activities.

  8. Evaluation system for CO2 emission of hot asphalt mixture

    Directory of Open Access Journals (Sweden)

    Bo Peng

    2015-04-01

    Full Text Available The highway construction industry plays an important role in economic and development, but is also a primary source of carbon emission. Accordingly, with the global climate change, energy conservation and reduction of carbon emissions have become critical issues in the highway construction industry. However, to date, a model for the highway construction industry has not been established. Hence, to implement a low-carbon construction model for highways, this study divided asphalt pavement construction into aggregate stacking, aggregate supply, and other stages, and compiled a list of energy consumption investigation. An appropriate calculation model of CO2 emission was then built. Based on the carbon emission calculation model, the proportion of carbon emissions in each stage was analyzed. The analytic hierarchy process was used to establish the system of asphalt pavement construction with a judgment matrix, thereby enabling calculation of the weight coefficient of each link. In addition, the stages of aggregate heating, asphalt heating, and asphalt mixture mixing were defined as key stages of asphalt pavement construction. Carbon emissions at these stages accounted for approximately 90% of the total carbon emissions. Carbon emissions at each stage and their impact on the environment were quantified and compared. The energy saving construction schemes as well as the environmental and socioeconomic benefits were then proposed. Through these schemes, significant reductions in carbon emissions and costs can be achieved. The results indicate that carbon emissions reduce by 32.30% and 35.93%, whereas costs reduce by 18.58% and 6.03%. The proposed energy-saving and emission reduction scheme can provide a theoretical basis and technical support for the development of low-carbon highway construction.

  9. Urban CO2 emissions metabolism: The Hestia Project

    Science.gov (United States)

    Gurney, K. R.; Razlivanov, I.; Zhou, Y.; Song, Y.

    2011-12-01

    A central expression of urban metabolism is the consumption of energy and the resulting environmental impact, particularly the emission of CO2 and other greenhouse gases. Quantification of energy and emissions has been performed for numerous cities but rarely has this been done in explicit space/time detail. Here, we present the Hestia Project, an effort aimed at building a high resolution (eg. building and road link-specific, hourly) fossil fuel CO2 emissions data product for the urban domain. A complete data product has been built for the city of Indianapolis and work is ongoing for the city of Los Angeles (Figure 1). The effort in Indianapolis is now part of a larger effort aimed at a convergent top-down/bottom-up assessment of greenhouse gas emissions, called INFLUX. Our urban-level quantification relies on a mixture of data and modeling structures. We start with the sector-specific Vulcan Project estimate at the mix of geocoded and county-wide levels. The Hestia aim is to distribute the Vulcan result in space and time. Two components take the majority of effort: buildings and onroad emissions. For the buildings, we utilize an energy building model which we constrain through lidar data, county assessor parcel data and GIS layers. For onroad emissions, we use a combination of traffic data and GIS road layers maintaining vehicle class information. Finally, all pointwise data in the Vulcan Project are transferred to our urban landscape and additional time distribution is performed. A key benefit of the approach taken in this study is the tracking and archiving of fuel and process-level detail (eg. combustion process, other pollutants), allowing for a more thorough understanding and analysis of energy throughputs in the urban environment. Next steps in this research from the metabolism perspective is to consider the carbon footprint of material goods and their lateral transfer in addition to the connection between electricity consumption and production.

  10. COMPARISON OF CO2-EMISSIONS OF HOUSEHOLDS HEATED BY NATURAL GAS AND FIREWOOD

    Directory of Open Access Journals (Sweden)

    MÓNIKA PALÁDI

    2013-12-01

    Full Text Available In terms of climate protection, one of the most important questions is the reduction of the GHG emission. In this study, I compared CO2 -emission of households heated by natural gas and firewood, which had similar heated area and volume of air, considering the carbon-dioxide absorbing of forests of the households heated by firewood. Natural gas is a fossil fuel; however, the firewood (solid biomass is a renewable energy resource. One of the main features of renewable energy sources is to get into the atmosphere less CO2 than fossil fuels. The renewable energy resources emit into the air just as much CO2 as they absorb during their life cycle.

  11. National plan of allocation of CO2 emission quotas

    International Nuclear Information System (INIS)

    2006-01-01

    The directive 2003/87/CE of the European parliament and council from October 13, 2003 establishes a trading system of CO 2 emission quotas for some companies of the energy generation industry, of the manufacturing industry and of services. These quotas are tradable and negotiable and an initial amount of quotas is allocated to these companies according to their facilities in concern. The national plan of quotas allocation must precise the total amount of tradable emissions and its share among the different sectors of activity and facilities. The first project of allocation plan was transmitted to the European Commission on July 6, 2004 after its public consultation between June 8 and June 29 2004. Modifications have been added to meet the requests of the Commission and the French plan was finally approved on December 17, 2004 for an annual amount of 156.51 Mt of CO 2 quotas during the 2005-2007 period. This paper precises the modifications requested by the commission, the modifications of the French juridical system necessary to complete the implementation of the French part of the European quotas trading system, the elaboration of the next allocation plan for the 2008-2012 period, and the link between the European emissions trading system and the 'joint implementation' and 'clean development ' mechanisms implemented by the Kyoto protocol. (J.S.)

  12. Enhanced photosynthetic efficiency in trees world-wide by rising atmospheric CO2 levels

    Science.gov (United States)

    Ehlers, Ina; Wieloch, Thomas; Groenendijk, Peter; Vlam, Mart; van der Sleen, Peter; Zuidema, Pieter A.; Robertson, Iain; Schleucher, Jürgen

    2014-05-01

    The atmospheric CO2 concentration is increasing rapidly due to anthropogenic emissions but the effect on the Earth's biosphere is poorly understood. The ability of the biosphere to fix CO2 through photosynthesis will determine future atmospheric CO2 concentrations as well as future productivity of crops and forests. Manipulative CO2 enrichment experiments (e.g. FACE) are limited to (i) short time spans, (ii) few locations and (iii) large step increases in [CO2]. Here, we apply new stable isotope methodology to tree-ring archives, to study the effect of increasing CO2 concentrations retrospectively during the past centuries. We cover the whole [CO2] increase since industrialization, and sample trees with global distribution. Instead of isotope ratios of whole molecules, we use intramolecular isotope distributions, a new tool for tree-ring analysis with decisive advantages. In experiments on annual plants, we have found that the intramolecular distribution of deuterium (equivalent to ratios of isotopomer abundances) in photosynthetic glucose depends on growth [CO2] and reflects the metabolic flux ratio of photosynthesis to photorespiration. By applying this isotopomer methodology to trees from Oak Ridge FACE experiment, we show that this CO2 response is present in trees on the leaf level. This CO2 dependence constitutes a physiological signal, which is transferred to the wood of the tree rings. In trees from 13 locations on all continents the isotopomer ratio of tree-ring cellulose is correlated to atmospheric [CO2] during the past 200 years. The shift of the isotopomer ratio is universal for all 12 species analyzed, including both broad-leafed trees and conifers. Because the trees originate from sites with widely differing D/H ratios of precipitation, the generality of the response demonstrates that the signal is independent of the source isotope ratio, because it is encoded in an isotopomer abundance ratio. This decoupling of climate signals and physiological

  13. Toward verifying fossil fuel CO2 emissions with the CMAQ model: motivation, model description and initial simulation.

    Science.gov (United States)

    Liu, Zhen; Bambha, Ray P; Pinto, Joseph P; Zeng, Tao; Boylan, Jim; Huang, Maoyi; Lei, Huimin; Zhao, Chun; Liu, Shishi; Mao, Jiafu; Schwalm, Christopher R; Shi, Xiaoying; Wei, Yaxing; Michelsen, Hope A

    2014-04-01

    Motivated by the question of whether and how a state-of-the-art regional chemical transport model (CTM) can facilitate characterization of CO2 spatiotemporal variability and verify CO2 fossil-fuel emissions, we for the first time applied the Community Multiscale Air Quality (CMAQ) model to simulate CO2. This paper presents methods, input data, and initial results for CO2 simulation using CMAQ over the contiguous United States in October 2007. Modeling experiments have been performed to understand the roles of fossil-fuel emissions, biosphere-atmosphere exchange, and meteorology in regulating the spatial distribution of CO2 near the surface over the contiguous United States. Three sets of net ecosystem exchange (NEE) fluxes were used as input to assess the impact of uncertainty of NEE on CO2 concentrations simulated by CMAQ. Observational data from six tall tower sites across the country were used to evaluate model performance. In particular, at the Boulder Atmospheric Observatory (BAO), a tall tower site that receives urban emissions from Denver CO, the CMAQ model using hourly varying, high-resolution CO2 fossil-fuel emissions from the Vulcan inventory and Carbon Tracker optimized NEE reproduced the observed diurnal profile of CO2 reasonably well but with a low bias in the early morning. The spatial distribution of CO2 was found to correlate with NO(x), SO2, and CO, because of their similar fossil-fuel emission sources and common transport processes. These initial results from CMAQ demonstrate the potential of using a regional CTM to help interpret CO2 observations and understand CO2 variability in space and time. The ability to simulate a full suite of air pollutants in CMAQ will also facilitate investigations of their use as tracers for CO2 source attribution. This work serves as a proof of concept and the foundation for more comprehensive examinations of CO2 spatiotemporal variability and various uncertainties in the future. Atmospheric CO2 has long been modeled

  14. Atmospheric 14C changes resulting from fossil fuel CO2 release and cosmic ray flux variability

    International Nuclear Information System (INIS)

    Stuiver, M.; Quay, P.D.

    1981-01-01

    A high-precision tree-ring record of the atmospheric 14 C levels between 1820 and 1954 is presented. Good agreement is obtained between measured and model calculated 19th and 20th century atmospheric δ 14 C levels when both fossil fuel CO 2 release and predicted natural variations in 14 C production are taken into account. The best fit is obtained by using a box-diffusion model with an oceanic eddy diffusion coefficient of 3 cm 2 /s, a CO 2 atmosphere-ocean gas exchange rate of 21 moles msup(-2) yrsup(-1) and biospheric residence time of 60 years. For trees in the state of Washington the measured 1949-1951 atmospheric δ 14 C level was 20.0 +- 1.2per mille below the 1855-1864 level. Model calculations indicate that in 1950 industrial CO 2 emissions are responsible for at least 85% of the δ 14 C decline, whereas natural variability accounts for the remaining 15%. (orig.)

  15. An equivalence factor between CO2 avoided emissions and sequestration. Description and applications in forestry

    International Nuclear Information System (INIS)

    Costa, P.M.; Wilson, C.

    2000-01-01

    Concern about the issue of permanence and reversibility of the effects of carbon sequestration has led to the need to devise accounting methods that quantify the temporal value of storing carbon that has been actively sequestered or removed from the atmosphere, as compared to carbon stored as a result of activities taken to avoid emissions. This paper describes a method for accounting for the atmospheric effects of sequestration-based land-use projects in relation to the duration of carbon storage. Firstly, the time period over which sequestered carbon should be stored in order to counteract the radiative forcing effect of carbon emissions was calculated, based on the residence time and decay pattern of atmospheric CO2, its Absolute Global Warming Potential. This time period was called the equivalence time, and was calculated to be approximately 55 years. From this equivalence time, the effect of storage of 1 t CO2 for 1 year was derived, and found to be similar to preventing the effect of the emission of 0.0182 t CO2. Potential applications of this tonne.year figure, here called the equivalence factor, are then discussed in relation to the estimation of atmospheric benefits over time of sequestration-based land use projects. 15 refs

  16. Responsible for 45 000 tons CO2 emissions

    International Nuclear Information System (INIS)

    Nedrelid, Ola N.

    2006-01-01

    Waste combustion has much better tax conditions in Sweden compared to Norway. Today waste is being transported from Norway to Sweden, resulting in a 45 000 ton emission of CO 2 every year, when the waste could have remained in Norway, utilized as regained energy in district heating. The tax regime, however, does not provide the conditions for a profitable use of the waste in Norway. The district heating association is disappointed with the new government's proposed fiscal budget, which only worsens the competitive situation for Norway handling its own waste (ml)

  17. Uncertainty quantification of CO2 emission reduction for maritime shipping

    International Nuclear Information System (INIS)

    Yuan, Jun; Ng, Szu Hui; Sou, Weng Sut

    2016-01-01

    The International Maritime Organization (IMO) has recently proposed several operational and technical measures to improve shipping efficiency and reduce the greenhouse gases (GHG) emissions. The abatement potentials estimated for these measures have been further used by many organizations to project future GHG emission reductions and plot Marginal Abatement Cost Curves (MACC). However, the abatement potentials estimated for many of these measures can be highly uncertain as many of these measures are new, with limited sea trial information. Furthermore, the abatements obtained are highly dependent on ocean conditions, trading routes and sailing patterns. When the estimated abatement potentials are used for projections, these ‘input’ uncertainties are often not clearly displayed or accounted for, which can lead to overly optimistic or pessimistic outlooks. In this paper, we propose a methodology to systematically quantify and account for these input uncertainties on the overall abatement potential forecasts. We further propose improvements to MACCs to better reflect the uncertainties in marginal abatement costs and total emissions. This approach provides a fuller and more accurate picture of abatement forecasts and potential reductions achievable, and will be useful to policy makers and decision makers in the shipping industry to better assess the cost effective measures for CO 2 emission reduction. - Highlights: • We propose a systematic method to quantify uncertainty in emission reduction. • Marginal abatement cost curves are improved to better reflect the uncertainties. • Percentage reduction probability is given to determine emission reduction target. • The methodology is applied to a case study on maritime shipping.

  18. The feasibility of domestic CO2 emissions trading in Poland

    International Nuclear Information System (INIS)

    Missfeldt, F.; Hauff, J.

    2000-09-01

    In early 2000, neither a comprehensive upstream system nor an all-encompassing downstream approach to CO 2 emissions permit trading seems feasible in Poland. However, a pilot emissions trading system in the power and Combined Heat and Power (CHP) sector is thought to be a realistic option in the near future. A comprehensive upstream approach would require permits for the carbon contained in fossil fuels produced or imported in Poland. It is ruled out due to the perceived difficulties of the inclusion of the coal sector in such a system. While inclusion of the gas sector, and especially of the oil sector, seems possible within a relatively short time, relying on an upstream approach without the coal sector is not advisable. Once the restructuring of the coal sector as well as the privatization of the gas and oil sector is advanced, an upstream approach might become an option again. A comprehensive downstream approach would regulate CO 2 emissions at their source, that is mostly at point of combustion of fossil fuels. A system which includes industry, households and transport can be assumed to be infeasible. Instead, a 'core program' was examined, which would focus on power and heat generation as well as energy intensive industries. Such an approach was found feasible in principle. Currently, however, only the largest emitters could be easily integrated in a reliable system. Drawing the line between those included and those excluded from such a partial system requires careful analysis. Including all enterprises in the relevant sectors would require significant improvements in monitoring and reporting reliability. A pilot emissions permit trading system could be introduced in the professional power and heat sector. Here, awareness concerning the instrument was found to be high and the system could be based on monitoring requirements already required by law. Gradual inclusion of more relevant sectors and eventual combination with an upstream component to include oil

  19. Quantification of fossil fuel CO2 emissions at the urban scale: Results from the Indianapolis Flux Project (INFLUX)

    Science.gov (United States)

    Turnbull, J. C.; Cambaliza, M. L.; Sweeney, C.; Karion, A.; Newberger, T.; Tans, P. P.; Lehman, S.; Davis, K. J.; Miles, N. L.; Richardson, S.; Lauvaux, T.; Shepson, P.; Gurney, K. R.; Song, Y.; Razlivanov, I. N.

    2012-12-01

    Emissions of fossil fuel CO2 (CO2ff) from anthropogenic sources are the primary driver of observed increases in the atmospheric CO2 burden, and hence global warming. Quantification of the magnitude of fossil fuel CO2 emissions is vital to improving our understanding of the global and regional carbon cycle, and independent evaluation of reported emissions is essential to the success of any emission reduction efforts. The urban scale is of particular interest, because ~75% CO2ff is emitted from urban regions, and cities are leading the way in attempts to reduce emissions. Measurements of 14CO2 can be used to determine CO2ff, yet existing 14C measurement techniques require laborious laboratory analysis and measurements are often insufficient for inferring an urban emission flux. This presentation will focus on how 14CO2 measurements can be combined with those of more easily measured ancillary tracers to obtain high resolution CO2ff mixing ratio estimates and then infer the emission flux. A pilot study over Sacramento, California showed strong correlations between CO2ff and carbon monoxide (CO) and demonstrated an ability to quantify the urban flux, albeit with large uncertainties. The Indianapolis Flux Project (INFLUX) aims to develop and assess methods to quantify urban greenhouse gas emissions. Indianapolis was chosen as an ideal test case because it has relatively straightforward meteorology; a contained, isolated, urban region; and substantial and well-known fossil fuel CO2 emissions. INFLUX incorporates atmospheric measurements of a suite of gases and isotopes including 14C from light aircraft and from a network of existing tall towers surrounding the Indianapolis urban area. The recently added CO2ff content is calculated from measurements of 14C in CO2, and then convolved with atmospheric transport models and ancillary data to estimate the urban CO2ff emission flux. Significant innovations in sample collection include: collection of hourly averaged samples to

  20. A terrestrial biosphere model optimized to atmospheric CO2 concentration and above ground woody biomass

    Science.gov (United States)

    Saito, M.; Ito, A.; Maksyutov, S. S.

    2013-12-01

    This study documents an optimization of a prognostic biosphere model (VISIT; Vegetation Integrative Similator for Trace gases) to observations of atmospheric CO2 concentration and above ground woody biomass by using a Bayesian inversion method combined with an atmospheric tracer transport model (NIES-TM; National Institute for Environmental Studies / Frontier Research Center for Global Change (NIES/FRCGC) off-line global atmospheric tracer transport model). The assimilated observations include 74 station records of surface atmospheric CO2 concentration and aggregated grid data sets of above ground woody biomass (AGB) and net primary productivity (NPP) over the globe. Both the biosphere model and the atmospheric transport model are used at a horizontal resolution of 2.5 deg x 2.5 deg grid with temporal resolutions of a day and an hour, respectively. The atmospheric transport model simulates atmospheric CO2 concentration with nine vertical levels using daily net ecosystem CO2 exchange rate (NEE) from the biosphere model, oceanic CO2 flux, and fossil fuel emission inventory. The models are driven by meteorological data from JRA-25 (Japanese 25-year ReAnalysis) and JCDAS (JMA Climate Data Assimilation System). Statistically optimum physiological parameters in the biosphere model are found by iterative minimization of the corresponding Bayesian cost function. We select thirteen physiological parameter with high sensitivity to NEE, NPP, and AGB for the minimization. Given the optimized physiological parameters, the model shows error reductions in seasonal variation of the CO2 concentrations especially in the northern hemisphere due to abundant observation stations, while errors remain at a few stations that are located in coastal coastal area and stations in the southern hemisphere. The model also produces moderate estimates of the mean magnitudes and probability distributions in AGB and NPP for each biome. However, the model fails in the simulation of the terrestrial

  1. A Broad Bank Lidar for Precise Atmospheric CO2 Column Absorption Measurement from Space

    Science.gov (United States)

    Georgieva, E. M.; Heaps, W. S.; Huang, W.

    2010-01-01

    Accurate global measurement of carbon dioxide column with the aim of discovering and quantifying unknown sources and sinks has been a high priority for the last decade. In order to uncover the "missing sink" that is responsible for the large discrepancies in the budget the critical precision for a measurement from space needs to be on the order of 1 ppm. To better understand the CO2 budget and to evaluate its impact on global warming the National Research Council (NRC) in its recent decadal survey report (NACP) to NASA recommended a laser based total CO2 mapping mission in the near future. That's the goal of Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission - to significantly enhance the understanding of the role of CO2 in the global carbon cycle. Our current goal is to develop an ultra precise, inexpensive new lidar system for column measurements of CO2 changes in the lower atmosphere that uses a Fabry-Perot interferometer based system as the detector portion of the instrument and replaces the narrow band laser commonly used in lidars with a high power broadband source. This approach reduces the number of individual lasers used in the system and considerably reduces the risk of failure. It also tremendously reduces the requirement for wavelength stability in the source putting this responsibility instead on the Fabry- Perot subsystem.

  2. CO2 emissions of installations concerned by the directive quotas 2003/87/CE

    International Nuclear Information System (INIS)

    2003-01-01

    This document provides data on the the carbon dioxide emissions: emissions of reference for the allocation (t CO 2 ), annual allocation of quotas (t CO 2 ), % of reduction for 2005-2007 against reference emissions, % of reduction for 2005-2007 against the 2002 emissions, allocation of quotas for the period 2005-2007 (t CO 2 ). (A.L.B.)

  3. Reducing CO2-Emission by using Eco-Cements

    Science.gov (United States)

    Voit, K.; Bergmeister, K.; Janotka, I.

    2012-04-01

    CO2 concentration in the air is rising constantly. Globally, cement companies are emitting nearly two billion tonnes/year of CO2 (or around 6 to 7 % of the planet's total CO2 emissions) by producing portland cement clinker. At this pace, by 2025 the cement industry will be emitting CO2 at a rate of 3.5 billion tones/year causing enormous environmental damage (Shi et al., 2011; Janotka et al., 2012). At the dawn of the industrial revolution in the mid-eighteenth century the concentration of CO2 was at a level of ca. 280 ppm. 200 years later at the time of World War II the CO2 level had risen to 310 ppm what results in a rate of increase of 0,15 ppm per year for that period (Shi et al., 2011). In November 2011 the CO2 concentration reached a value of 391 ppm (NOAA Earth System Research Laboratory, 2011), a rise of ca. 81 ppm in 66 years and an increased rate of around 1,2 ppm/year respectively. In the same period cement production in tons of cement has multiplied by a factor of ca. 62 (Kelly & Oss, US Geological Survey, 2010). Thus new CO2-saving eco-cement types are gaining in importance. In these cement types the energy-consuming portland cement clinker is partially replaced by latent hydraulic additives such as blast furnace slag, fly ash or zeolite. These hydraulic additives do not need to be fired in the rotary furnace. They ony need to be pulverized to the required grain size and added to the ground portland cement clinker. Hence energy is saved by skipping the engery-consuming firing process, in addition there is no CO2-degassing as there is in the case of lime burning. Therefore a research project between Austria and Slovakia, funded by the EU (Project ENVIZEO), was initiated in 2010. The main goal of this project is to develop new CEM V eco-types of cements and certificate them for common usage. CEM V is a portland clinker saving cement kind that allows the reduction of clinker to a proportion of 40-64% for CEM V/A and 20-39% for CEM V/B respectively by the

  4. The CO2 emission in urbanic soils in the conditions of intensive technogenic pollution

    Science.gov (United States)

    Deviatova, Tatiana; Alaeva, Liliia; Negrobova, Elena; Kramareva, Tatiana

    2017-04-01

    Massive industrial pollution of the environment including soils leads to drastic changes in the vital activity of microorganisms, plants and animals. As objects of research was selected soils of the industrial and residential zones, farmland soils, forest soils. Comparative analysis showed that the emission of CO2 urbanizable increase compared to the suburban soils in recreational areas is 1.5 times, in the residential and industrial zones - in 3-5 times. In addition, identified a local point located in the vicinity of chemical plants, where soil CO2 emission increased up to 40 times compared to the suburban soils. Air technogenic pollution of soils by industrial emissions and transport enhances the mineralization of soil organic matter, increases its lability. These trends are associated with nonspecific adaptive reactions of the soil microbial complex in terms of pollution. Strengthening of the processes of mineralization may be due to the increase in the proportion of fungi in the microbial community. According to numerous reports they are more resistant to pollution compared to bacteria and actinomycetes. Admission to the soil organic matter of anthropogenic origin also increases the process of mineralization. According to the findings, low concentrations of petroleum products lead to increased "breathing" of the soil. Strengthening of the processes of mineralization and, consequently, of CO2 emissions, in the conditions of technogenic pollution of the soils identified in our studies, confirmed by numerous studies by other authors. According to reports in Russia the emission of CO2 from soils is 4.5 times higher than the industrial receipt of its atmosphere. The contribution of local anthropogenic CO2 emissions is not so significant compared to the indirect influence of soil pollution on increased CO2 emissions. Consequently, the expansion of technogenic contaminated soil is becoming a more significant factor adversely affecting the state of the atmosphere

  5. Soil CO2 flux in response to elevated atmospheric CO2 and nitrogen fertilization: patterns and methods

    Science.gov (United States)

    James M. Vose; Katherine J. Elliott; D.W. Johnson

    1995-01-01

    The evolution of carbon dioxide (CO2) from soils is due to the metabolic activity of roots, mycorrhizae, and soil micro- and macro-organisms. Although precise estimates of carbon (C) recycled to the atmosphere from belowground sources are unavailable, Musselman and Fox (1991) propose that the belowground contribution exceeds 100 Pg y-1...

  6. Enhancement of farmland greenhouse gas emissions from leakage of stored CO2: simulation of leaked CO2 from CCS.

    Science.gov (United States)

    Zhang, Xueyan; Ma, Xin; Wu, Yang; Li, Yue

    2015-06-15

    The effects of leaked CO2 on plant and soil constitute a key objective of carbon capture and storage (CCS) safety. The effects of leaked CO2 on trace soil gas (e.g., methane (CH4) and nitrous oxide (N2O) emissions in farmlands are not well-understood. This study simulated the effects of elevated soil CO2 on CH4 and N2O through pot experiments. The results revealed that significant increases of CH4 and N2O emissions were induced by the simulated CO2 leakages; the emission rates of CH4 and N2O were substantial, reaching about 222 and 48 times than that of the control, respectively. The absolute global warming potentials (GWPs) of the additional CH4 and N2O are considerable, but the cumulative GWPs of the additional CH4 and N2O only accounted for 0.03% and 0.06%, respectively, of the cumulative amount of leaked CO2 under high leakage conditions. The results demonstrate that leakage from CCS projects may lead to additional greenhouse gas emissions from soil; however, in general, the amount of additional CH4 and N2O emissions is negligible when compared with the amount of leaked CO2. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. A multinational model for CO2 reduction: defining boundaries of future CO2 emissions in nine countries

    International Nuclear Information System (INIS)

    Kram, Tom; Hill, Douglas.

    1996-01-01

    A need to make substantial future reductions in greenhouse gas emissions would require major changes in national energy systems. Nine industrialized countries have explored the technical boundaries of CO 2 emission restrictions during the next 40 to 50 years using comparable scenario assumptions and a standard model, MARKAL. Quantitative results for the countries are shown side by side in a set of energy maps that compare the least-cost evolution of the national energy systems by the main factors that contribute to CO 2 emissions. The ability to restrict future CO 2 emissions and the most cost-effective measures for doing so differ among the countries; an international agreement that would mandate substantial emission restrictions among countries by an equal percentage reduction is clearly impossible. The results are a first step toward a basis for allocating such international reductions, and the multinational process by which they were produced provides an example for further international greenhouse gas abatement costing studies. (Author)

  8. Uncovering China’s transport CO2 emission patterns at the regional level

    International Nuclear Information System (INIS)

    Guo, Bin; Geng, Yong; Franke, Bernd; Hao, Han; Liu, Yaxuan; Chiu, Anthony

    2014-01-01

    With China’s rapid economic development, its transport sector has experienced a dramatic growth, leading to a large amount of related CO 2 emission. This paper aims to uncover China’s transport CO 2 emission patterns at the regional and provincial level. We first present the CO 2 emission features from transport sector in 30 Chinese provinces, including per capita emissions, emission intensities, and historical evolution of annual CO 2 emission. We then quantify the related driving forces by adopting both period-wise and time-series LMDI analysis. Results indicate that significant regional CO 2 emission disparities exist in China’s transport sector. The eastern region had higher total CO 2 emissions and per capita CO 2 emissions, but lower CO 2 emission intensities in its transport sector. The western region had higher CO 2 emission intensities and experienced a rapid CO 2 emission increase. The CO 2 emission increments in the eastern provinces were mainly contributed by both economic activity effect and population effect, while energy intensity partially offset the emission growth and energy structure had a marginal effect. However, in the central and western provinces, both economic activity effect and energy intensity effect induced the CO 2 emission increases, while the effects from population and energy structure change were limited. - Highlights: • The CO 2 emission features from transport sector in 30 Chinese provinces were presented. • The driving forces of CO 2 emissions from transport sector were quantified. • Regional disparities on China’s transport sector CO 2 emission exist. • Region-specific mitigation policies on transport sector CO 2 emission are needed

  9. Reducing CO2 Emissions through Lightweight Design and Manufacturing

    Science.gov (United States)

    Carruth, Mark A.; Allwood, Julian M.; Milford, Rachel L.

    2011-05-01

    To meet targeted 50% reductions in industrial CO2 emissions by 2050, demand for steel and aluminium must be cut. Many steel and aluminium products include redundant material, and the manufacturing routes to produce them use more material than is necessary. Lightweight design and optimized manufacturing processes offer a means of demand reduction, whilst creating products to perform the same service as existing ones. This paper examines two strategies for demand reduction: lightweight product design; and minimizing yield losses through the product supply chain. Possible mass savings are estimated for specific case-studies on metal-intensive products, such as I-beams and food cans. These estimates are then extrapolated to other sectors to produce a global estimate for possible demand reductions. Results show that lightweight product design may offer potential mass savings of up to 30% for some products, whilst yield in the production of others could be improved by over 20%. If these two strategies could be combined for all products, global demand for steel and aluminium would be reduced by nearly 50%. The impact of demand reduction on CO2 emissions is presented, and barriers to the adoption of new, lightweight technologies are discussed.

  10. Elevated atmospheric CO2 negatively impacts photosynthesis through radiative forcing and physiology-mediated climate feedback

    Science.gov (United States)

    Zhu, Peng; Zhuang, Qianlai; Ciais, Philippe; Welp, Lisa; Li, Wenyu; Xin, Qinchuan

    2017-02-01

    Increasing atmospheric CO2 affects photosynthesis involving directly increasing leaf carboxylation rates, stomatal closure, and climatic effects. The direct effects are generally thought to be positive leading to increased photosynthesis, while its climatic effects can be regionally positive or negative. These effects are usually considered to be independent from each other, but they are in fact coupled through interactions between land surface exchanges of gases and heat and the physical climate system. In particular, stomatal closure reduces evapotranspiration and increases sensible heat emissions from ecosystems, leading to decreased atmospheric moisture and precipitation and local warming. We use a coupled earth system model to attribute the influence of the increase in CO2 on gross primary productivity (GPP) during the period of 1930-2011. In our model, CO2 radiative effects cause climate change that has only a negligible effect on global GPP (a reduction of 0.9 ± 2% during the last 80 years) because of opposite responses between tropical and northern biomes. On the other hand, CO2 physiological effects on GPP are both positive, by increased carboxylation rates and water use efficiency (7.1 ± 0.48% increase), and negative, by vegetation-climate feedback reducing precipitation, as a consequence of decreased transpiration and increased sensible heat in areas without water limitation (2.7 ± 1.76% reduction).When considering the coupled atmosphere-vegetation system, negative climate feedback on photosynthesis and plant growth due to the current level of CO2 opposes 29-38% of the gains from direct fertilization effects.

  11. CO2 capture by ionic liquids - an answer to anthropogenic CO2 emissions?

    Science.gov (United States)

    Sanglard, Pauline; Vorlet, Olivier; Marti, Roger; Naef, Olivier; Vanoli, Ennio

    2013-01-01

    Ionic liquids (ILs) are efficient solvents for the selective removal of CO2 from flue gas. Conventional, offthe-shelf ILs are limited in use to physisorption, which restricts their absorption capacity. After adding a chemical functionality like amines or alcohols, absorption of CO2 occurs mainly by chemisorption. This greatly enhances CO2 absorption and makes ILs suitable for potential industrial applications. By carefully choosing the anion and the cation of the IL, equimolar absorption of CO2 is possible. This paper reviews the current state of the art of CO2 capture by ILs and presents the current research in this field performed at the ChemTech Institute of the Ecole d'Ingénieurs et d'Architectes de Fribourg.

  12. Is guava phenolic metabolism influenced by elevated atmospheric CO2?

    Science.gov (United States)

    Mendes de Rezende, Fernanda; Pereira de Souza, Amanda; Silveira Buckeridge, Marcos; Maria Furlan, Cláudia

    2015-01-01

    Seedlings of Psidium guajava cv. Pedro Sato were distributed into four open-top chambers: two with ambient CO(2) (∼390 ppm) and two with elevated CO(2) (∼780 ppm). Monthly, five individuals of each chamber were collected, separated into root, stem and leaves and immediately frozen in liquid nitrogen. Chemical parameters were analyzed to investigate how guava invests the surplus carbon. For all classes of phenolic compounds analyzed only tannins showed significant increase in plants at elevated CO(2) after 90 days. There was no significant difference in dry biomass, but the leaves showed high accumulation of starch under elevated CO(2). Results suggest that elevated CO(2) seems to be favorable to seedlings of P. guajava, due to accumulation of starch and tannins, the latter being an important anti-herbivore substance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Framing Climate Goals in Terms of Cumulative CO2-Forcing-Equivalent Emissions

    Science.gov (United States)

    Jenkins, S.; Millar, R. J.; Leach, N.; Allen, M. R.

    2018-03-01

    The relationship between cumulative CO2 emissions and CO2-induced warming is determined by the Transient Climate Response to Emissions (TCRE), but total anthropogenic warming also depends on non-CO2 forcing, complicating the interpretation of emissions budgets based on CO2 alone. An alternative is to frame emissions budgets in terms of CO2-forcing-equivalent (CO2-fe) emissions—the CO2 emissions that would yield a given total anthropogenic radiative forcing pathway. Unlike conventional "CO2-equivalent" emissions, these are directly related to warming by the TCRE and need to fall to zero to stabilize warming: hence, CO2-fe emissions generalize the concept of a cumulative carbon budget to multigas scenarios. Cumulative CO2-fe emissions from 1870 to 2015 inclusive are found to be 2,900 ± 600 GtCO2-fe, increasing at a rate of 67 ± 9.5 GtCO2-fe/yr. A TCRE range of 0.8-2.5°C per 1,000 GtC implies a total budget for 0.6°C of additional warming above the present decade of 880-2,750 GtCO2-fe, with 1,290 GtCO2-fe implied by the Coupled Model Intercomparison Project Phase 5 median response, corresponding to 19 years' CO2-fe emissions at the current rate.

  14. Seasonal dynamics of soil CO2 emission in the boreal forests in Central Siberia

    Science.gov (United States)

    Makhnykina, A. V.; Prokishkin, A. S.; Zyryanov, V.; Verkhovets, S. V.

    2016-12-01

    A large amount of carbon in soil is released to the atmosphere through soil respiration, which is the main pathway of transferring carbon from terrestrial ecosystems (Comstedt et al., 2011). Considering that boreal forests is a large terrestrial sink (Tans et al., 1990) and represent approximately 11 % of the Earth's total land area (Gower et al., 2001), even a small change in soil respiration could significantly intensify - or mitigate - current atmospheric increases of CO2, with potential feedbacks to climate change. The objectives of the present study are: (a) to study the dynamic of CO2emission from the soil surface during summer season (from May to October); (b) to identify the reaction of soil respiration to different amount of precipitation as the main limiting factor in the region. The research was carried out in the pine forests in Central Siberia (60°N, 90°E), Russia. Sample plots were represented by the lichen pine forest, moss pine forest, mixed forest and anthropogenic destroyed area. We used the automated soil CO2 flux system based on the infrared gas analyzer LI-8100 for measuring the soil efflux. Soil temperature was measured with Soil Temperature Probe Type E in three depths 5, 10, 15 cm. Volumetric soil moisture was measured with Theta Probe Model ML2. The presence and type of ground cover substantially affects the value of soil respiration fluxes. The carbon dioxide emission from the soil surface averaged was 5.4 ±2.3 μmol CO2 m-2 s-1. The destroyed area without plant cover demonstrated the lowest soil respiration (0.1-5.6 μmol CO2 m-2 s-1). The lowest soil respiration among forested areas was observed in the feathermoss pine forest. The lichen pine forest soil respiration was characterized by averages values. The maximum soil respiration values and seasonal fluctuations were obtained in the mixed forest (2.3-29.3 μmol CO2 m-2 s-1). The analysis of relation between soil CO2 efflux and amount of precipitation showed that the site without any

  15. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks

    International Nuclear Information System (INIS)

    Canadella, J.G.; Raupacha, M.R.; Le Quere, C.; Buitenhuis, E.T.; Gillett, N.P.; Field, C.B.; Ciais, P.; Conway, T.J.; Houghton, R.A.; Marland, G.

    2007-01-01

    The growth rate of atmospheric carbon dioxide (CO2), the largest human contributor to human-induced climate change, is increasing rapidly. Three processes contribute to this rapid increase. Two of these processes concern emissions. Recent growth of the world economy combined with an increase in its carbon intensity have led to rapid growth in fossil fuel CO2 emissions since 2000: comparing the 1990s with 2000-2006, the emissions growth rate increased from 1.3% to 3.3%/y. The third process is indicated by increasing evidence (P 0.89) for a long-term (50-year) increase in the airborne fraction (AF) of CO2 emissions, implying a decline in the efficiency of CO2 sinks on land and oceans in absorbing anthropogenic emissions. Since 2000, the contributions of these three factors to the increase in the atmospheric CO2 growth rate have been ∼65 ± 16% from increasing global economic activity, 17 ± 6% from the increasing carbon intensity of the global economy, and 18 ± 15% from the increase in AF. An increasing AF is consistent with results of climate-carbon cycle models, but the magnitude of the observed signal appears larger than that estimated by models. All of these changes characterize a carbon cycle that is generating stronger-than-expected and sooner-than-expected climate forcing. airborne fraction anthropogenic carbon emissions carbon-climate feedback terrestrial and ocean carbon emissions vulnerabilities of the carbon cycle

  16. CO2 removals and CO2 and non-CO2 trace gas emissions affected by human activity in the forests in the Republic of macedonia

    International Nuclear Information System (INIS)

    Grupche, Ljupcho; Lozanovski, Risto; Markovska, Natasha

    2001-01-01

    During 2000 and 2001 inventories of CO 2 removals and emissions caused by changes in forest and other woody biomass stocks, as well as the inventories of CO 2 and non-CO 2 trace gas emissions caused by forest conversions (accidental burning) were carried out. According to the forest area in ha, and depending on the differences between the annual biomass increment and annual biomass consumption, about 30-50% of total annual carbon uptake increment is released through the biomass consumption from stocks. 50-70% of the net annual carbon uptake converted to CO 2 identify the annual removals of this gas, which is on average 1805 Gg/yr, ranging between 1485 and 2243 Gg/yr. From 1990 to 1998 on average 4700 ha forest area (min. 110 ha in 1991, max. 14420 ha in 1993) was burned. Proportionally to the burned area, there was a release on average of 18.62 kt C annually (min. 0.42 kt C, max. 57.11 kt), related to 136.07 kt CO 2 on average (min. 1.5 kt CO 2 , max. 209.22 kt CO 2 ). (Original)

  17. 40 CFR 75.19 - Optional SO2, NOX, and CO2 emissions calculation for low mass emissions (LME) units.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Optional SO2, NOX, and CO2 emissions... § 75.19 Optional SO2, NOX, and CO2 emissions calculation for low mass emissions (LME) units. (a... input, NOX, SO2, and CO2 mass emissions, and NOX emission rate under this part. If the owner or operator...

  18. CAUSAL RELATIONSHIP BETWEEN ENERGY CONSUMPTION, ECONOMIC GROWTH AND CO2 EMISSIONS: A DYNAMIC PANEL DATA APPROACH

    Directory of Open Access Journals (Sweden)

    Chaido Dritsaki

    2014-04-01

    Full Text Available Energy plays an important role in economic development worldwide. The increase of energy consumption showed that CO2 emissions in the atmosphere have increased dramatically, and these lead many scientists to push governments of the developing countries to take action for the formulation of environmental policies. Many studies have attempted to look for the direction of causality between energy consumption (EC, economic growth (GDP and CO2 emissions mainly on developing countries. This paper, therefore, applies the panel unit root tests, panel cointegration methods and panel causality test to investigate the relationship between energy consumption (EC, economic growth (GDP and CO2 emissions for three countries of Southern Europe (Greece, Spain, and Portugal covering the annual period 1960-2009. The FMOLS and DOLS are then used to estimate the long run relationship between the variables. The findings of this study reveal that there is a short-run bilateral causal link between the examined variables. However, in the long run, there is a unidirectional causality running from CO2 emissions to energy consumption (EC, and economic growth (GDP and a bilateral causality between energy consumption and economic growth. This indicates that energy is a force for economic growth both in short and long run as it is driven from economic growth. Moreover, to face the heterogeneity on the three countries of Southern Europe we use the FMOLS and DOLS estimation methods.

  19. The Characteristics of Peats and Co2 Emission Due to Fire in Industrial Plant Forests

    Science.gov (United States)

    Ratnaningsih, Ambar Tri; Rayahu Prasytaningsih, Sri

    2017-12-01

    Riau Province has a high threat to forest fire in peat soils, especially in industrial forest areas. The impact of fires will produce carbon (CO2) emissions in the atmosphere. The magnitude of carbon losses from the burning of peatlands can be estimated by knowing the characteristics of the fire peat and estimating CO2 emissions produced. The objectives of the study are to find out the characteristics of fire-burning peat, and to estimate carbon storage and CO2 emissions. The location of the research is in the area of industrial forest plantations located in Bengkalis Regency, Riau Province. The method used to measure peat carbon is the method of lost in ignation. The results showed that the research location has a peat depth of 600-800 cm which is considered very deep. The Peat fiber content ranges from 38 to 75, classified as hemic peat. The average bulk density was 0.253 gram cm-3 (0.087-0,896 gram cm-3). The soil ash content is 2.24% and the stored peat carbon stock with 8 meter peat thickness is 10723,69 ton ha-1. Forest fire was predicted to burn peat to a depth of 100 cm and produced CO2 emissions of 6,355,809 tons ha-1.

  20. Influence of natural and anthropogenic factors on the dynamics of CO2 emissions from chernozems soil

    Science.gov (United States)

    Syabruk, Olesia

    2017-04-01

    Twentieth century marked a significant expansion of agricultural production. Soil erosion caused by human activity, conversion of forests and grasslands to cropland, desertification, burning nutrient residues, drainage, excessive cultivation led to intense oxidation of soil carbon to the atmosphere and allocation of additional amounts of CO2. According to the UN Intergovernmental Panel on Climate Change, agriculture is one of the main sources of greenhouse gases emissions to the atmosphere. The thesis reveals main patterns of the impact of natural and anthropogenic factors on CO2 emissions in the chernozems typical and podzolized in a Left-bank Forest-Steppe of Ukraine, seasonal and annual dynamics. New provisions for conducting monitoring CO2 emissions from soil were developed by combining observations in natural and controlled conditions, which allows isolating the impact of hydrological, thermal and trophic factors. During the research, the methods for operational monitoring of emission of carbon losses were improved, using a portable infrared gas analyzer, which allows receiving information directly in the field. It was determined that the volumes of emission losses of carbon chernozems typical and podzolized Left-bank Forest-Steppe of Ukraine during the growing season are 480-910 kg/ha and can vary depending on the soil treatment ±( 4,0 - 6,0) % and fertilizer systems ± (3,8 - 7,1) %. The significant impact of long application of various fertilizer systems and soil treatment on the intensity of carbon dioxide emissions was investigated. It was found that most emission occurs in organic- mineral fertilizers systems with direct seeding. The seasonal dynamics of the potential capacity of the soil to produce CO2 were researched. Under identical conditions of humidity and temperature it has maximum in June and July and the gradual extinction of the autumn. It was determined that the intensity of the CO2 emission from the surface of chernozem fluctuates daily from

  1. The Decomposition Analysis of CO2 Emission and Economic Growth in Pakistan India and China

    Directory of Open Access Journals (Sweden)

    Muhammad Irfan Javaid Attari

    2011-12-01

    Full Text Available The conflict between economic growth and keeping greenhouse gases (GHG at controllable levels is one of the ultimate challenges of this century. The aim of Kyoto Protocol is to keep the level of carbon dioxide (CO2 below a certain threshold level. The purpose of this paper is to study the effect of CO2 emission on economic growth by conducting the regional analysis of PIC nations i.e. Pakistan, India and China. The study also provides the detail information regarding the atmospheric emission by applying decomposition analysis. It is suggested that environmental policies need more attention in the region by keeping the differences aside. So, the emission trading is considered to be the new concept. The approach should be introduced to tackle down the global warming in the region. Now it is time to respond because the low Carbon Economy is the reality.

  2. Tropical epiphytes in a CO 2-rich atmosphere

    Science.gov (United States)

    Monteiro, José Alberto Fernandez; Zotz, Gerhard; Körner, Christian

    2009-01-01

    We tested the effect on epiphyte growth of a doubling of pre-industrial CO 2 concentration (280 vs. 560 ppm) combined with two light (three fold) and two nutrition (ten fold) treatments under close to natural humid conditions in daylight growth cabinets over 6 months. Across co-treatments and six species, elevated CO 2 increased relative growth rates by only 6% ( p = 0.03). Although the three C3 species, on average, grew 60% faster than the three CAM species, the two groups did not significantly differ in their CO 2 response. The two Orchidaceae, Bulbophyllum (CAM) and Oncidium (C3) showed no CO 2 response, and three out of four Bromeliaceae showed a positive one: Aechmea (CAM, +32% p = 0.08), Catopsis (C3, +11% p = 0.01) and Vriesea (C3, +4% p = 0.02). In contrast, the representative of the species-rich genus Tillandsia (CAM), which grew very well under experimental conditions, showed no stimulation. On average, high light increased growth by 21% and high nutrients by 10%. Interactions between CO 2, light and nutrient treatments (low vs. high) were inconsistent across species. CO 2 responsive taxa such as Catopsis, could accelerate tropical forest dynamics and increase branch breakage, but overall, the responses to doubling CO 2 of these epiphytes was relatively small and the responses were taxa specific.

  3. CO2 diffuse emission from maar lake: An example in Changbai volcanic field, NE China

    Science.gov (United States)

    Sun, Yutao; Guo, Zhengfu; Liu, Jiaqi; Du, Jianguo

    2018-01-01

    Numerous maars and monogenetic volcanic cones are distributed in northeast China, which are related to westward deep subduction of the Pacific Ocean lithosphere, comprising a significant part of the "Pacific Ring of Fire". It is well known that diffuse CO2 emissions from monogenetic volcanoes, including wet (e.g., maar lake) and dry degassing systems (e.g., soil diffuse emission, fault degassing, etc.), may contribute to budget of globally nature-derived greenhouse gases. However, their relationship between wet (e.g., maar lake) and concomitant dry degassing systems (e.g., soil diffuse emission, fault degassing, etc.) related to monogenetic volcanic field is poorly understood. Yuanchi maar, one of the typical monogenetic volcanic systems, is located on the eastern flank of Tianchi caldera in Changbai volcanic field of northeast China, which displays all of three forms of CO2 degassing including the maar lake, soil micro-seepage and fault degassing. Measurements of efflux of CO2 diffusion from the Yuanchi maar system (YMS) indicate that the average values of CO2 emissions from soil micro-seepage, fault degassing and water-air interface diffusion are 24.3 ± 23.3 g m- 2 d- 1, 39.2 ± 22.4 g m- 2 d- 1 and 2.4 ± 1.1 g m- 2 d- 1, respectively. The minimum output of CO2 diffuse emission from the YMS to the atmosphere is about 176.1 ± 88.3 ton/yr, of which 80.4% results from the dry degassing system. Degassing from the fault contributes to the most of CO2 emissions in all of the three forms of degassing in the YMS. Contributions of mantle, crust, air and organic CO2 to the soil gas are 0.01-0.10%, 10-20%, 32-36% and 48-54%, respectively, which are quantitatively constrained by a He-C isotope coupling calculation model. We propose that CO2 exsolves from the upper mantle melting beneath the Tianchi caldera, which migrates to the crustal magma chamber and further transports to the surface of YMS along the deep fault system. During the transportation processes, the emission

  4. The Effect of Thermal Convection on Earth-Atmosphere CO2 Gas Exchange in Aggregated Soil

    Science.gov (United States)

    Ganot, Y.; Weisbrod, N.; Dragila, M. I.

    2011-12-01

    Gas transport in soils and surface-atmosphere gas exchange are important processes that affect different aspects of soil science such as soil aeration, nutrient bio-availability, sorption kinetics, soil and groundwater pollution and soil remediation. Diffusion and convection are the two main mechanisms that affect gas transport, fate and emissions in the soils and in the upper vadose zone. In this work we studied CO2 soil-atmosphere gas exchange under both day-time and night-time conditions, focusing on the impact of thermal convection (TCV) during the night. Experiments were performed in a climate-controlled laboratory. One meter long columns were packed with matrix of different grain size (sand, gravel and soil aggregates). Air with 2000 ppm CO2 was injected into the bottom of the columns and CO2 concentration within the columns was continuously monitored by an Infra Red Gas Analyzer. Two scenarios were compared for each soil: (1) isothermal conditions, representing day time conditions; and (2) thermal gradient conditions, i.e., atmosphere colder than the soil, representing night time conditions. Our results show that under isothermal conditions, diffusion is the major mechanism for surface-atmosphere gas exchange for all grain sizes; while under night time conditions the prevailing mechanism is dependent on the air permeability of the matrix: for sand and gravel it is diffusion, and for soil aggregates it is TCV. Calculated CO2 flux for the soil aggregates column shows that the TCV flux was three orders of magnitude higher than the diffusive flux.

  5. 222Rn and 14CO2 concentrations in the surface layer of the atmosphere

    International Nuclear Information System (INIS)

    Holy, K.; Chudy, M.; Sivo, A.; Richtarikova, M.; Boehm, R.; Polaskova, A.; Vojtyla, P.; Bosa, I.; Hola, O.

    2002-01-01

    Long-term monitoring of the Δ 14 C in the atmospheric near-ground CO 2 has been realized in Bratislava and Zlkovce, situated near the nuclear power plant Jaslovske Bohunice. Until 1993, the monthly mean Δ 14 C values showed a high variability. The annual means of Δ 14 C were about 30 per mille higher at Zlkovce than in highly industrialised Bratislava. An important change in the behaviour of the 14 C data has occurred since 1993. The records from both stations show the similar course, mainly due to the fact that there do not occur deep winter minima in Bratislava. This behaviour corresponds to the lower values of the total fossil fuel CO 2 emissions in the years after 1993 when compared to the previous years. At present, both sets of data show that the 14 C concentration is about 10% above the natural level. Since 1987 also the 222 Rn concentration in the surface layer of the atmosphere has been measured in Bratislava. These measurements provided an extensive set of the 222 Rn data characteristic for the inland environment with high level of atmospheric pollution. The seasonal and daily variations of the 222 Rn concentration were observed. The investigation of the relation between the monthly mean diurnal courses of the 222 Rn concentration and the atmospheric stability proved a high correlation between them. The 222 Rn data were used to interpret the anomalous Δ 14 C values in the surface layer of the atmosphere. (author)

  6. The CO2 emissions bond to the energy combustion in the world during 2003-2004

    International Nuclear Information System (INIS)

    2006-11-01

    This analysis shows a stabilization of the CO 2 emissions in France (+0,3%), the continuous increase of the CO 2 emissions in the world (+5%), a chinese economic growth which generates many CO 2 and a gap of 1 to 20 of the emissions per inhabitant from the Africa to the United States. Data of CO 2 emissions are detailed for the countries and are given in function of the population and the gross domestic product. (A.L.B.)

  7. Continental-scale enrichment of atmospheric 14CO2 from the nuclear power industry: potential impact on the estimation of fossil fuel-derived CO2

    Science.gov (United States)

    Graven, H. D.; Gruber, N.

    2011-12-01

    The 14C-free fossil carbon added to atmospheric CO2 by combustion dilutes the atmospheric 14C/C ratio (Δ14C), potentially providing a means to verify fossil CO2 emissions calculated using economic inventories. However, sources of 14C from nuclear power generation and spent fuel reprocessing can counteract this dilution and may bias 14C/C-based estimates of fossil fuel-derived CO2 if these nuclear influences are not correctly accounted for. Previous studies have examined nuclear influences on local scales, but the potential for continental-scale influences on Δ14C has not yet been explored. We estimate annual 14C emissions from each nuclear site in the world and conduct an Eulerian transport modeling study to investigate the continental-scale, steady-state gradients of Δ14C caused by nuclear activities and fossil fuel combustion. Over large regions of Europe, North America and East Asia, nuclear enrichment may offset at least 20% of the fossil fuel dilution in Δ14C, corresponding to potential biases of more than -0.25 ppm in the CO2 attributed to fossil fuel emissions, larger than the bias from plant and soil respiration in some areas. Model grid cells including high 14C-release reactors or fuel reprocessing sites showed much larger nuclear enrichment, despite the coarse model resolution of 1.8°×1.8°. The recent growth of nuclear 14C emissions increased the potential nuclear bias over 1985-2005, suggesting that changing nuclear activities may complicate the use of Δ14C observations to identify trends in fossil fuel emissions. The magnitude of the potential nuclear bias is largely independent of the choice of reference station in the context of continental-scale Eulerian transport and inversion studies, but could potentially be reduced by an appropriate choice of reference station in the context of local-scale assessments.

  8. Energy solutions for CO2 emission peak and subsequent decline

    DEFF Research Database (Denmark)

    Risø International Energy Conference 2009 took place 14 – 16 September 2009. The conference focused on: • Future global energy development options Scenario and policy issues • Measures to achieve CO2 emission peak in 2015 – 2020 and subsequent decline • Renewable energy supply technologies...... such as bioenergy, wind and solar • Centralized energy technologies such as clean coal technologies • Energy conversion, energy carriers and energy storage, including fuel cells and hydrogen technologies • Providing renewable energy for the transport sector • Systems aspects for the various regions throughout...... the world • End-use technologies, efficiency improvements in supply and end use • Energy savings The proceedings are prepared from papers presented at the conference and received with corrections, if any, until the final deadline on 3 August 2009....

  9. The urgent need to internalize CO2 emission costs

    International Nuclear Information System (INIS)

    Goodland, R.; El Serafy, S.

    1998-01-01

    Despite growing manifestations of global warming and the commitment of most nations to move towards reducing greenhouse gas (GHG) emissions, a simple device that can be effective in reducing GHG emissions continues to be overlooked or even rejected. This is to acknowledge the fact that carbon emissions inflict global costs that are not borne by emitters. This paper advocates that all activities emitting or saving carbon emissions should internalize the carbon cost inflicted or avoided by new projects involving CO 2 . Considering the current wide range of carbon cost estimates, the paper recommends that a two-stage approach be adopted. Firstly, incorporate carbon costs in project analysis only theoretically in order to differentiate objectively among alternative designs involving carbon emissions of varying degrees. Different estimates of the costs of a ton of carbon would be used in order to test the sensitivity of rates of return to alternative carbon costs. While this process would have the effect of screening the allocation of scarce investment funds among projects that affect global warming in different degrees, it should be viewed as only a first step. Secondly, we advocate a rigorous process of passing through estimated carbon costs to the ultimate users of the services of carbon-emitting projects and processes. It is this ultimate process that will secure the urgently needed transition from the current dependence on fossil fuels to more benign sources of energy that would reduce climate-change risks. Since the time available is limited, the paper points out the urgency of these proposals that are crucial for sustainability

  10. CO(2), CO, and Hg emissions from the Truman Shepherd and Ruth Mullins coal fires, eastern Kentucky, USA.

    Science.gov (United States)

    O'Keefe, Jennifer M K; Henke, Kevin R; Hower, James C; Engle, Mark A; Stracher, Glenn B; Stucker, J D; Drew, Jordan W; Staggs, Wayne D; Murray, Tiffany M; Hammond, Maxwell L; Adkins, Kenneth D; Mullins, Bailey J; Lemley, Edward W

    2010-03-01

    Carbon dioxide (CO(2)), carbon monoxide (CO), and mercury (Hg) emissions were quantified for two eastern Kentucky coal-seam fires, the Truman Shepherd fire in Floyd County and the Ruth Mullins fire in Perry County. This study is one of the first to estimate gas emissions from coal fires using field measurements at gas vents. The Truman Shepherd fire emissions are nearly 1400t CO(2)/yr and 16kg Hg/yr resulting from a coal combustion rate of 450-550t/yr. The sum of CO(2) emissions from seven vents at the Ruth Mullins fire is 726+/-72t/yr, suggesting that the fire is consuming about 250-280t coal/yr. Total Ruth Mullins fire CO and Hg emissions are estimated at 21+/-1.8t/yr and >840+/-170g/yr, respectively. The CO(2) emissions are environmentally significant, but low compared to coal-fired power plants; for example, 3.9x10(6)t CO(2)/yr for a 514-MW boiler in Kentucky. Using simple calculations, CO(2) and Hg emissions from coal-fires in the U.S. are estimated at 1.4x10(7)-2.9x10(8)t/yr and 0.58-11.5t/yr, respectively. This initial work indicates that coal fires may be an important source of CO(2), CO, Hg and other atmospheric constituents.

  11. Formulation of a Network and the Study of Reaction Paths for the Sustainable Reduction of CO2 Emissions

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Kongpanna, Pichayapan; Roh, Kosan

    and commercial processes. Within these there are high-purity emissions and low-purity emissions. Rather than sending these to the atmosphere, it is possible to collect them and use them for other purposes. Targeting some of the largest contributors: power generation, manufacturing, chemical industry...... amounts of CO2 and other greenhouse gases, and creating more energy efficient processes....

  12. Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific

    Science.gov (United States)

    Vay, S. A.; Woo, J.-H.; Anderson, B. E.; Thornhill, K. L.; Blake, D. R.; Westberg, D. J.; Kiley, C. M.; Avery, M. A.; Sachse, G. W.; Streets, D. G.; Tsutsumi, Y.; Nolf, S. R.

    2003-10-01

    We report here airborne measurements of atmospheric CO2 over the western North Pacific during the March-April 2001 Transport and Chemical Evolution over the Pacific (TRACE-P) mission. The CO2 spatial distributions were notably influenced by cyclogenesis-triggered transport of regionally polluted continental air masses. Examination of the CO2 to C2H2/CO ratio indicated rapid outflow of combustion-related emissions in the free troposphere below 8 km. Although the highest CO2 mixing ratios were measured within the Pacific Rim region, enhancements were also observed further east over the open ocean at locations far removed from surface sources. Near the Asian continent, discrete plumes encountered within the planetary boundary layer contained up to 393 ppmv of CO2. Coincident enhancements in the mixing ratios of C2Cl4, C2H2, and C2H4 measured concurrently revealed combustion and industrial sources. To elucidate the source distributions of CO2, an emissions database for Asia was examined in conjunction with the chemistry and 5-day backward trajectories that revealed the WNW/W sector of northeast Asia was a major contributor to these pollution events. Comparisons of NOAA/CMDL and JMA surface data with measurements obtained aloft showed a strong latitudinal gradient that peaked between 35° and 40°N. We estimated a net CO2 flux from the Asian continent of approximately 13.93 Tg C day-1 for late winter/early spring with the majority of the export (79%) occurring in the lower free troposphere (2-8 km). The apportionment of the flux between anthropogenic and biospheric sources was estimated at 6.37 Tg C day-1 and 7.56 Tg C day-1, respectively.

  13. Sugarcane vinasse CO2 gasification and release of ash-forming matters in CO2 and N2 atmospheres.

    Science.gov (United States)

    Dirbeba, Meheretu Jaleta; Brink, Anders; DeMartini, Nikolai; Lindberg, Daniel; Hupa, Mikko

    2016-10-01

    Gasification of sugarcane vinasse in CO2 and the release of ash-forming matters in CO2 and N2 atmospheres were investigated using a differential scanning calorimetry and thermogravimetric analyzer (DSC-TGA) at temperatures between 600 and 800°C. The results showed that pyrolysis is the main mechanism for the release of the organics from vinasse. Release of ash-forming matters in the vinasse is the main cause for vinasse char weight losses in the TGA above 700°C. The losses are higher in N2 than in CO2, and increase considerably with temperature. CO2 gasification also consumes the carbon in the vinasse chars while suppressing alkali release. Alkali release was also significant due to volatilization of KCl and reduction of alkali sulfate and carbonate by carbon. The DSC measured thermal events during heating up in N2 atmosphere that correspond to predicted melting temperatures of alkali salts in the char. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Atmospheric CO2 capture for the artificial photosynthetic system

    Science.gov (United States)

    Nogalska, Adrianna; Zukowska, Adrianna; Garcia-Valls, Ricard

    2017-11-01

    The scope of these studies is to evaluate the ambient CO2 capture abilities of the membrane contactor system in the same conditions as leaves works during photosynthesis, such as ambient temperature, pressure and low CO2 concentration, where the only driving force is the concentration gradient. The polysulfone membrane was made by phase inversion process and characterized by ESEM micrographs which were used to determine the thickness, asymmetry and pore size. Besides, the porosity of the membrane was measured from the membrane and polysulfone density correlation and hydrophobicity was analyzed by contact angle measurements. Moreover, the compatibility of the membrane and absorbent solution was evaluated, in order to exclude wetting issues. The prepared membranes were introduced in a cross flow module and used as contactor between the CO2 and the potassium hydroxide solution, as absorbing media. The influence of the membrane thickness, absorbent stirring rate and absorption time, on CO2 capture were evaluated. The results show that the efficiency of our CO2 capture system is similar to stomatal carbon dioxide assimilation rate.

  15. The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum).

    Science.gov (United States)

    Xu, Ming

    2015-07-20

    This study examined the optimal atmospheric CO2 concentration of the CO2 fertilization effect on the growth of winter wheat with growth chambers where the CO2 concentration was controlled at 400, 600, 800, 1000, and 1200 ppm respectively. I found that initial increase in atmospheric CO2 concentration dramatically enhanced winter wheat growth through the CO2 fertilization effect. However, this CO2 fertilization effect was substantially compromised with further increase in CO2 concentration, demonstrating an optimal CO2 concentration of 889.6, 909.4, and 894.2 ppm for aboveground, belowground, and total biomass, respectively, and 967.8 ppm for leaf photosynthesis. Also, high CO2 concentrations exceeding the optima not only reduced leaf stomatal density, length and conductance, but also changed the spatial distribution pattern of stomata on leaves. In addition, high CO2 concentration also decreased the maximum carboxylation rate (Vc(max)) and the maximum electron transport rate (J(max)) of leaf photosynthesis. However, the high CO2 concentration had little effect on leaf length and plant height. The optimal CO2 fertilization effect found in this study can be used as an indicator in selecting and breeding new wheat strains in adapting to future high atmospheric CO2 concentrations and climate change. Copyright © 2015. Published by Elsevier GmbH.

  16. Measurement of atmospheric CO2 column concentrations to cloud tops with a pulsed multi-wavelength airborne lidar

    Science.gov (United States)

    Mao, Jianping; Ramanathan, Anand; Abshire, James B.; Kawa, Stephan R.; Riris, Haris; Allan, Graham R.; Rodriguez, Michael; Hasselbrack, William E.; Sun, Xiaoli; Numata, Kenji; Chen, Jeff; Choi, Yonghoon; Yang, Mei Ying Melissa

    2018-01-01

    We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA) lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was ˜ 5 % for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 µs wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90 % of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  17. Measurement of Atmospheric CO2 Column Concentrations to Cloud Tops With a Pulsed Multi-Wavelength Airborne Lidar

    Science.gov (United States)

    Mao, Jianping; Ramanathan, Anand; Abshire, James B.; Kawa, Stephan R.; Riris, Haris; Allan, Graham R.; Rodriguez, Michael R.; Hasselbrack, William E.; Sun, Xiaoli; Numata, Kenji; hide

    2018-01-01

    We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA) lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was approx. 5% for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 micro-s wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90% of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  18. Measurement of atmospheric CO2 column concentrations to cloud tops with a pulsed multi-wavelength airborne lidar

    Directory of Open Access Journals (Sweden)

    J. Mao

    2018-01-01

    Full Text Available We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was ∼ 5 % for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 µs wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90 % of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  19. Response of ocean acidification to a gradual increase and decrease of atmospheric CO2

    International Nuclear Information System (INIS)

    Cao, Long; Zhang, Han; Zheng, Meidi; Wang, Shuangjing

    2014-01-01

    We perform coupled climate–carbon cycle model simulations to examine changes in ocean acidity in response to idealized change of atmospheric CO 2 . Atmospheric CO 2 increases at a rate of 1% per year to four times its pre-industrial level of 280 ppm and then decreases at the same rate to the pre-industrial level. Our simulations show that changes in surface ocean chemistry largely follow changes in atmospheric CO 2 . However, changes in deep ocean chemistry in general lag behind the change in atmospheric CO 2 because of the long time scale associated with the penetration of excess CO 2 into the deep ocean. In our simulations with the effect of climate change, when atmospheric CO 2 reaches four times its pre-industrial level, global mean aragonite saturation horizon (ASH) shoals from the pre-industrial value of 1288 to 143 m. When atmospheric CO 2 returns from the peak value of 1120 ppm to pre-industrial level, ASH is 630 m, which is approximately the value of ASH when atmospheric CO 2 first increases to 719 ppm. At pre-industrial CO 2 9% deep-sea cold-water corals are surrounded by seawater that is undersaturated with aragonite. When atmospheric CO 2 reaches 1120 ppm, 73% cold-water coral locations are surrounded by seawater with aragonite undersaturation, and when atmospheric CO 2 returns to the pre-industrial level, 18% cold-water coral locations are surrounded by seawater with aragonite undersaturation. Our analysis indicates the difficulty for some marine ecosystems to recover to their natural chemical habitats even if atmospheric CO 2 content can be lowered in the future. (paper)

  20. CO2 Emissions in an Oil Palm Plantation on Tropical Peat in Malaysia

    Science.gov (United States)

    Leclerc, M.; Zhang, G.; Jantan, N. M.; Harun, M. H.; Kamarudin, N.; Choo, Y. M.

    2016-12-01

    Tropical peats are large contributors to greenhouse gas emissions and differ markedly from their counterparts at temperate latitudes. The rapid deforestation and subsequent land conversion of tropical virgin forests in Southeast Asia have been decried by environmental groups worldwide even though there is currently little robust scientific evidence to ascertain the net amount of greenhouse gas released to the atmosphere. The conversion to oil palm plantation at a large scale further exacerbates the situation. This paper shows preliminary data on CO2 emissions in a converted oil palm plantation grown on tropical peat in northeast Malaysia.

  1. Re-Examining Embodied SO2 and CO2 Emissions in China

    Directory of Open Access Journals (Sweden)

    Rui Huang

    2018-05-01

    Full Text Available CO2 and SO2, while having different environmental impacts, are both linked to the burning of fossil fuels. Research on joint patterns of CO2 emissions and SO2 emissions may provide useful information for decision-makers to reduce these emissions effectively. This study analyzes both CO2 emissions and SO2 emissions embodied in interprovincial trade in 2007 and 2010 using multi-regional input–output analysis. Backward and forward linkage analysis shows that Production and Supply of Electric Power and Steam, Non-metal Mineral Products, and Metal Smelting and Pressing are key sectors for mitigating SO2 and CO2 emissions along the national supply chain. The total SO2 emissions and CO2 emissions of these sectors accounted for 81% and 76% of the total national SO2 emissions and CO2 emissions, respectively.

  2. Regulation of senescence under elevated atmospheric CO2 via ubiquitin modification

    OpenAIRE

    Aoyama, Shoki; Lu, Yu; Yamaguchi, Junji; Sato, Takeo

    2014-01-01

    Elevated atmospheric CO2 concentration is a serious global environmental problem. Elevated CO2 affects plant growth by changing primary metabolism, closely related to carbon (C) and nitrogen (N) availability. Under sufficient N conditions, plant growth is dramatically promoted by elevated CO2. When N availability is limited, however, elevated CO2 disrupts the balance between cellular C and N (C/N). Disruption of the C/N balance is regarded as an important factor in plant growth defects. Here ...

  3. Trend of CO2 emissions of the 30 largest power plants in Germany

    International Nuclear Information System (INIS)

    Hermann, Hauke

    2014-01-01

    The brochure on the trend of CO 2 emissions of the 30 largest power plants in Germany includes tables of the emissions of these power plants. The CO 2 emissions of these power plants in 2013 (25% of the total German greenhouse gas emissions) have increased by 5% compared to 2012. The total CO 2 emission sin Germany increased by 1.5%. The differences between brown coal and black coal fired power plants are discussed.

  4. Earth 2075 (CO2) - can Ocean-Amplified Carbon Capture (oacc) Impart Atmospheric CO2-SINKING Ability to CCS Fossil Energy?

    Science.gov (United States)

    Fry, R.; Routh, M.; Chaudhuri, S.; Fry, S.; Ison, M.; Hughes, S.; Komor, C.; Klabunde, K.; Sethi, V.; Collins, D.; Polkinghorn, W.; Wroobel, B.; Hughes, J.; Gower, G.; Shkolnik, J.

    2017-12-01

    Previous attempts to capture atmospheric CO2 by algal blooming were stalled by ocean viruses, zooplankton feeding, and/or bacterial decomposition of surface blooms, re-releasing captured CO2 instead of exporting it to seafloor. CCS fossil energy coupling could bypass algal bloom limits—enabling capture of 10 GtC/yr atmospheric CO2 by selective emiliania huxleyi (EHUX) blooming in mid-latitude open oceans, far from coastal waters and polar seas. This could enable a 500 GtC drawdown, 350 ppm restoration by 2050, 280 ppm CO2 by 2075, and ocean pH 8.2. White EHUX blooms could also reflect sunlight back into outer space and seed extra ocean cloud cover, via DMS release, to raise albedo 1.8%—restoring preindustrial temperature (ΔT = 0°C) by 2030. Open oceans would avoid post-bloom anoxia, exclusively a coastal water phenomenon. The EHUX calcification reaction initially sources CO2, but net sinking prevails in follow-up equilibration reactions. Heavier-than-water EHUX sink captured CO2 to the sea floor before surface decomposition occurs. Seeding EHUX high on their nonlinear growth curve could accelerate short-cycle secondary open-ocean blooming—overwhelming mid-latitude viruses, zooplankton, and competition from other algae. Mid-latitude "ocean deserts" exhibit low viral, zooplankton, and bacterial counts. Thermocline prevents nutrient upwelling that would otherwise promote competing algae. Adding nitrogen nutrient would foster exclusive EHUX blooming. Elevated EHUX seed levels could arise from sealed, pH-buffered, floating, seed-production bioreactors infused with 10% CO2 from carbon feedstock supplied by inland CCS fossil power plants capturing 90% of emissions as liquid CO2. Deep-water SPAR platforms extract natural gas from beneath the sea floor. On-platform Haber and pH processing could convert extracted CH4 to buffered NH4+ nutrient, enabling ≥0.7 GtC/yr of bioreactor seed production and 10 GtC/yr of amplified secondary open-ocean CO2 capture—making CCS

  5. Developing a lower-cost atmospheric CO2 monitoring system using commercial NDIR sensor

    Science.gov (United States)

    Arzoumanian, E.; Bastos, A.; Gaynullin, B.; Laurent, O.; Vogel, F. R.

    2017-12-01

    Cities release to the atmosphere about 44 % of global energy-related CO2. It is clear that accurate estimates of the magnitude of anthropogenic and natural urban emissions are needed to assess their influence on the carbon balance. A dense ground-based CO2 monitoring network in cities would potentially allow retrieving sector specific CO2 emission estimates when combined with an atmospheric inversion framework using reasonably accurate observations (ca. 1 ppm for hourly means). One major barrier for denser observation networks can be the high cost of high precision instruments or high calibration cost of cheaper and unstable instruments. We have developed and tested a novel inexpensive NDIR sensors for CO2 measurements which fulfils cost and typical parameters requirements (i.e. signal stability, efficient handling, and connectivity) necessary for this task. Such sensors are essential in the market of emissions estimates in cities from continuous monitoring networks as well as for leak detection of MRV (monitoring, reporting, and verification) services for industrial sites. We conducted extensive laboratory tests (short and long-term repeatability, cross-sensitivities, etc.) on a series of prototypes and the final versions were also tested in a climatic chamber. On four final HPP prototypes the sensitivity to pressure and temperature were precisely quantified and correction&calibration strategies developed. Furthermore, we fully integrated these HPP sensors in a Raspberry PI platform containing the CO2 sensor and additional sensors (pressure, temperature and humidity sensors), gas supply pump and a fully automated data acquisition unit. This platform was deployed in parallel to Picarro G2401 instruments in the peri-urban site Saclay - next to Paris, and in the urban site Jussieu - Paris, France. These measurements were conducted over several months in order to characterize the long-term drift of our HPP instruments and the ability of the correction and calibration

  6. China’s provincial CO2 emissions embodied in international and interprovincial trade

    International Nuclear Information System (INIS)

    Guo Ju’e; Zhang Zengkai; Meng Lei

    2012-01-01

    Trades create a mechanism of embodied CO 2 emissions transfer among regions, causing distortion on the total emissions. As the world’s second largest economy, China has a large scale of trade, which results in the serious problem of embodied CO 2 emissions transfer. This paper analyzes the characteristics of China’s CO 2 emissions embodied in international and interprovincial trade from the provincial perspective. The multi-regional Input–Output Model is used to clarify provincial CO 2 emissions from geographical and sectoral dimensions, including 30 provinces and 28 sectors. Two calculating principles (production accounting principle and consumption accounting principle, ) are applied. The results show that for international trade, the eastern area accounts for a large proportion in China’s embodied CO 2 emissions. The sectors as net exporters and importers of embodied CO 2 emissions belong to labor-intensive and energy-intensive industries, respectively. For interprovincial trade, the net transfer of embodied CO 2 emissions is from the eastern area to the central area, and energy-intensive industries are the main contributors. With the largest amount of direct CO 2 emissions, the eastern area plays an important role in CO 2 emissions reduction. The central and western areas need supportive policies to avoid the transfer of industries with high emissions. - Highlights: ► China’s embodied CO 2 emissions are analyzed from the provincial perspective. ► Eastern provinces have larger CO 2 emissions embodied in international trade. ► Embodied CO 2 emissions are mainly transferred from eastern area to central area. ► Coastal provinces play important roles in CO 2 emissions reduction. ► Inland provinces need supportive policies on emissions reduction.

  7. Energy use, cost and CO2 emissions of electric cars

    International Nuclear Information System (INIS)

    van Vliet, Oscar; Brouwer, Anne Sjoerd; Kuramochi, Takeshi; van den Broek, Machteld; Faaij, Andre

    2011-01-01

    We examine efficiency, costs and greenhouse gas emissions of current and future electric cars (EV), including the impact from charging EV on electricity demand and infrastructure for generation and distribution. Uncoordinated charging would increase national peak load by 7% at 30% penetration rate of EV and household peak load by 54%, which may exceed the capacity of existing electricity distribution infrastructure. At 30% penetration of EV, off-peak charging would result in a 20% higher, more stable base load and no additional peak load at the national level and up to 7% higher peak load at the household level. Therefore, if off-peak charging is successfully introduced, electric driving need not require additional generation capacity, even in case of 100% switch to electric vehicles. GHG emissions from electric driving depend most on the fuel type (coal or natural gas) used in the generation of electricity for charging, and range between 0 g km -1 (using renewables) and 155 g km -1 (using electricity from an old coal-based plant). Based on the generation capacity projected for the Netherlands in 2015, electricity for EV charging would largely be generated using natural gas, emitting 35-77 g CO 2 eq km -1 . We find that total cost of ownership (TCO) of current EV are uncompetitive with regular cars and series hybrid cars by more than 800 EUR year -1 . TCO of future wheel motor PHEV may become competitive when batteries cost 400 EUR kWh -1 , even without tax incentives, as long as one battery pack can last for the lifespan of the vehicle. However, TCO of future battery powered cars is at least 25% higher than of series hybrid or regular cars. This cost gap remains unless cost of batteries drops to 150 EUR kWh -1 in the future. Variations in driving cost from charging patterns have negligible influence on TCO. GHG abatement costs using plug-in hybrid cars are currently 400-1400 EUR tonne -1 CO 2eq and may come down to -100 to 300 EUR tonne -1 . Abatement cost using

  8. The greenhouse effect and the amount of CO2 emissions in Romania

    International Nuclear Information System (INIS)

    Manea, Gh.

    1992-01-01

    In order to reduce the CO 2 emissions, responsible by the greenhouse effect on Terra, an international control for monitoring them is to be instated. The development of methods for reducing the CO 2 emissions, implies the identification and evaluation of the CO 2 sources, the forecasting of probable evolution of the CO 2 emissions, and also the assessment of the economic impact. This paper tries to accomplish such an evaluation and to draft several scenarios for reduction of the CO 2 emissions. Also considerations about the suitability of the Romanian adhesion to the international treaties regarding the greenhouse effect monitoring are presented. (author). 7 tabs

  9. Analysis of CO2 emissions reduction in the Malaysian transportation sector: An optimisation approach

    International Nuclear Information System (INIS)

    Mustapa, Siti Indati; Bekhet, Hussain Ali

    2016-01-01

    The demand for transport services is expected to rise, causing the CO 2 emissions level to increase as well. In Malaysia, the transportation sector accounts for 28% of total CO 2 emissions, of which 85% comes from road transport. By 2020, Malaysia is targeting a reduction in CO 2 emissions intensity by up to 40% and in this effort the role of road transport is paramount. This paper attempts to investigate effective policy options that can assist Malaysia in reducing the CO 2 emissions level. An Optimisation model is developed to estimate the potential CO 2 emissions mitigation strategies for road transport by minimising the CO 2 emissions under the constraint of fuel cost and demand travel. Several mitigation strategies have been applied to analyse the effect of CO 2 emissions reduction potential. The results demonstrate that removal of fuel price subsidies can result in reductions of up to 652 ktonnes of fuel consumption and CO 2 emissions can be decreased by 6.55%, which would enable Malaysia to hit its target by 2020. CO 2 emissions can be reduced significantly, up to 20%, by employing a combination of mitigation policies in Malaysia. This suggests that appropriate mitigation policies can assist the country in its quest to achieve the CO 2 emissions reduction target. - Highlights: • An optimisation model for CO 2 emissions reduction in Malaysia's road transport is formulated. • Sensible policy options to achieve the CO 2 emissions reduction target are provided. • Increase in fuel price has induced shift towards fuel efficient vehicles. • The CO 2 emissions can be reduced up to 5.7 MtCO 2 with combination of mitigation policies.

  10. Cost of lower NO x emissions: Increased CO 2 emissions from heavy-duty diesel engines

    Science.gov (United States)

    Krishnamurthy, Mohan; Carder, Daniel K.; Thompson, Gregory; Gautam, Mridul

    This paper highlights the effect of emissions regulations on in-use emissions from heavy-duty vehicles powered by different model year engines. More importantly, fuel economy data for pre- and post-consent decree engines are compared. The objective of this study was to determine the changes in brake-specific emissions of NO x as a result of emission regulations, and to highlight the effect these have had on brake-specific CO 2 emission; hence, fuel consumption. For this study, in-use, on-road emission measurements were collected. Test vehicles were instrumented with a portable on-board tailpipe emissions measurement system, WVU's Mobile Emissions Measurement System, and were tested on specific routes, which included a mix of highway and city driving patterns, in order to collect engine operating conditions, vehicle speed, and in-use emission rates of CO 2 and NO x. Comparison of on-road in-use emissions data suggests NO x reductions as high as 80% and 45% compared to the US Federal Test Procedure and Not-to-Exceed standards for model year 1995-2002. However, the results indicate that the fuel consumption; hence, CO 2 emissions increased by approximately 10% over the same period, when the engines were operating in the Not-to-Exceed region.

  11. Quantifying the drivers of ocean-atmosphere CO2 fluxes

    Science.gov (United States)

    Lauderdale, Jonathan M.; Dutkiewicz, Stephanie; Williams, Richard G.; Follows, Michael J.

    2016-07-01

    A mechanistic framework for quantitatively mapping the regional drivers of air-sea CO2 fluxes at a global scale is developed. The framework evaluates the interplay between (1) surface heat and freshwater fluxes that influence the potential saturated carbon concentration, which depends on changes in sea surface temperature, salinity and alkalinity, (2) a residual, disequilibrium flux influenced by upwelling and entrainment of remineralized carbon- and nutrient-rich waters from the ocean interior, as well as rapid subduction of surface waters, (3) carbon uptake and export by biological activity as both soft tissue and carbonate, and (4) the effect on surface carbon concentrations due to freshwater precipitation or evaporation. In a steady state simulation of a coarse-resolution ocean circulation and biogeochemistry model, the sum of the individually determined components is close to the known total flux of the simulation. The leading order balance, identified in different dynamical regimes, is between the CO2 fluxes driven by surface heat fluxes and a combination of biologically driven carbon uptake and disequilibrium-driven carbon outgassing. The framework is still able to reconstruct simulated fluxes when evaluated using monthly averaged data and takes a form that can be applied consistently in models of different complexity and observations of the ocean. In this way, the framework may reveal differences in the balance of drivers acting across an ensemble of climate model simulations or be applied to an analysis and interpretation of the observed, real-world air-sea flux of CO2.

  12. Study of nuclear heat application systems for arresting CO2 emission

    International Nuclear Information System (INIS)

    Fumizawa, Motoo; Inaba, Yoshitomo; Hishida, Makoto; Ogata, Kan; Yamada, Seiya.

    1996-11-01

    The objective of the paper is to investigate the systems for arresting CO 2 emission and for the effective utilization of fossil fuel. We studied the fossil fuel reforming systems to decrease the CO 2 emission rate per unit amount of heat generation by fossil fuel. Feed materials for reforming system were natural gas, crude oil, oil sand, oil shale and coal. Products by reforming were hydrogen, methane, methanol and gasoline. We examined CO 2 emission ratio of ten systems with different feed material and product. The CO 2 emission ratio was the ratio of CO 2 emission rate per unit amount of heat generation between the products and the feed materials, and was the important index. As the results, the CO 2 emission ratio for the coal to methane reforming system using steam gasifier had the lowest value of 51%. It means that the CO 2 emission rate of the product from the coal to methane reforming system was 51% of the emission rate of the feed material, that is, the system is very effective to arrest the CO 2 emission. The CO 2 emission ratio increases in the following order: the reforming systems from coal to methanol, heavy oil to hydrogen and natural gas to hydrogen. It was clarified that the system of coal to methane reforming was very effective for arresting CO 2 emission compared to the other systems, moreover the nuclear heat using rate and thermal efficiency of the plant of the system were the highest. (author)

  13. Role of nuclear energy in CO2 emissions reduction

    International Nuclear Information System (INIS)

    Schaefer, H.

    1995-01-01

    Between 1675 and 1992 worldwide primary energy consumption has been multiplied by about 100 and has reached about 11 billions of tons of equivalent weight of coal, while human population has been multiplied by 8 and will probably reach 9 billions in 2030. The increase of atmospheric CO 2 production due to fossil fuel burn up will become a critical pollution and climatic problem which can be significantly reduced by a more widely use of nuclear energy in replacement of primary energies. However, perspectives of nuclear energy depend principally on the safety improvements of nuclear plants and on the solutions found to solve the management of radioactive waste. Renewable energies sources such as photovoltaic plants, wind engines, hydraulic plants have not yet been used at a large scale because they require large surfaces for their installation. To avoid any monolithic solution to solve the energy and environmental problems, a combination of renewable and nuclear energies seems to be a good compromise. For instance, the conception of a safety non-refueling nuclear reactor with an overheating hybrid system combining solar and fossil fuel energies should be conceivable. (J.S.)

  14. Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits.

    Science.gov (United States)

    Fairbairn, Eduardo M R; Americano, Branca B; Cordeiro, Guilherme C; Paula, Thiago P; Toledo Filho, Romildo D; Silvoso, Marcos M

    2010-09-01

    This paper presents a study of cement replacement by sugar cane bagasse ash (SCBA) in industrial scale aiming to reduce the CO(2) emissions into the atmosphere. SCBA is a by-product of the sugar/ethanol agro-industry abundantly available in some regions of the world and has cementitious properties indicating that it can be used together with cement. Recent comprehensive research developed at the Federal University of Rio de Janeiro/Brazil has demonstrated that SCBA maintains, or even improves, the mechanical and durability properties of cement-based materials such as mortars and concretes. Brazil is the world's largest sugar cane producer and being a developing country can claim carbon credits. A simulation was carried out to estimate the potential of CO(2) emission reductions and the viability to issue certified emission reduction (CER) credits. The simulation was developed within the framework of the methodology established by the United Nations Framework Convention on Climate Change (UNFCCC) for the Clean Development Mechanism (CDM). The State of São Paulo (Brazil) was chosen for this case study because it concentrates about 60% of the national sugar cane and ash production together with an important concentration of cement factories. Since one of the key variables to estimate the CO(2) emissions is the average distance between sugar cane/ethanol factories and the cement plants, a genetic algorithm was developed to solve this optimization problem. The results indicated that SCBA blended cement reduces CO(2) emissions, which qualifies this product for CDM projects. 2010 Elsevier Ltd. All rights reserved.

  15. Tracking industrial energy efficiency and CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-25

    Industry accounts for about one-third of global energy demand. Most of that energy is used to produce raw materials: chemicals, iron and steel, non-metallic minerals, pulp and paper and non-ferrous metals. Just how efficiently is this energy put to work? This question was on the minds of the G8 leaders at their summit in Gleneagles in 2005, when they set a 'Plan of Action for Climate Change, Clean Energy and Sustainable Development'. They called upon the International Energy Agency to provide information and advice in a number of areas including special attention to the industrial sector. Tracking Industrial Energy Efficiency and CO2 Emissions responds to the G8 request. This major new analysis shows how industrial energy efficiency has improved dramatically over the last 25 years. Yet important opportunities for additional gains remain, which is evident when the efficiencies of different countries are compared. This analysis identifies the leaders and the laggards. It explains clearly a complex issue for non-experts. With new statistics, groundbreaking methodologies, thorough analysis and advice, and substantial industry consultation, this publication equips decision makers in the public and private sectors with the essential information that is needed to reshape energy use in manufacturing in a more sustainable manner.

  16. Tracking industrial energy efficiency and CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-25

    Industry accounts for about one-third of global energy demand. Most of that energy is used to produce raw materials: chemicals, iron and steel, non-metallic minerals, pulp and paper and non-ferrous metals. Just how efficiently is this energy put to work? This question was on the minds of the G8 leaders at their summit in Gleneagles in 2005, when they set a 'Plan of Action for Climate Change, Clean Energy and Sustainable Development'. They called upon the International Energy Agency to provide information and advice in a number of areas including special attention to the industrial sector. Tracking Industrial Energy Efficiency and CO2 Emissions responds to the G8 request. This major new analysis shows how industrial energy efficiency has improved dramatically over the last 25 years. Yet important opportunities for additional gains remain, which is evident when the efficiencies of different countries are compared. This analysis identifies the leaders and the laggards. It explains clearly a complex issue for non-experts. With new statistics, groundbreaking methodologies, thorough analysis and advice, and substantial industry consultation, this publication equips decision makers in the public and private sectors with the essential information that is needed to reshape energy use in manufacturing in a more sustainable manner.

  17. How much can wind reduce the French CO2 emissions?

    International Nuclear Information System (INIS)

    Flocard, H.

    2010-03-01

    This report analyses the information recently made available by the French electricity transport network RTE (Reseau de Transport d'Electricite). It consists in a detailed data set which gives the time evolution of the power either consumed by the country or generated with the diverse production modes exploited by utilities within France. For the first time the French public is also provided some analytical information on a major renewable energy: wind. Our analysis shows that the French wind-turbine-fleet efficiency over last fall-winter semester is 24.3%. The wind production displays the strong fluctuations expected for this intermittent non-controllable energy. It is observed that the time and energy distributions of the power delivered by the French wind turbines are not related to the increased electricity needs which occurred during a semester where a few cold waves hit the country. As a consequence, the controllable productions which already ensure the balance of consumption versus production had also to carry the extra load associated with the handling of wind fluctuations. In a second part of this report, based on the actual data provided by RTE, the report determines the maximal reduction of the CO 2 emissions which can be expected from the completion of the national wind energy program endorsed by the government. We conclude that in the absence of a significant strengthening of the electric network and an increase of the national energy storage capacity, the wind energy policy decided by the French government will only yield limited results on the reduction of both the GHG emissions and the country reliance on fossil fuel burning plants. (author)

  18. Wine ethanol 14C as a tracer for fossil fuel CO2 emissions in Europe: Measurements and model comparison

    Science.gov (United States)

    Palstra, Sanne W. L.; Karstens, Ute; Streurman, Harm-Jan; Meijer, Harro A. J.

    2008-11-01

    14C (radiocarbon) in atmospheric CO2 is the most direct tracer for the presence of fossil-fuel-derived CO2 (CO2-ff). We demonstrate the 14C measurement of wine ethanol as a way to determine the relative regional atmospheric CO2-ff concentration compared to a background site ("regional CO2-ff excess") for specific harvest years. The carbon in wine ethanol is directly back traceable to the atmospheric CO2 that the plants assimilate. An important advantage of using wine is that the atmosphere can be monitored annually back in time. We have analyzed a total of 165 wines, mainly from harvest years 1990-1993 and 2003-2004, among which is a semicontinuous series (1973-2004) of wines from one vineyard in southwest Germany. The results show clear spatial and temporal variations in the regional CO2-ff excess values. We have compared our measured regional CO2-ff excess values of 2003 and 2004 with those simulated by the REgional MOdel (REMO). The model results show a bias of almost +3 parts per million (ppm) CO2-ff compared with those of the observations. The modeled differences between 2003 and 2004, however, which can be used as a measure for the variability in atmospheric mixing and transport processes, show good agreement with those of the observations all over Europe. Correcting for interannual variations using modeled data produces a regional CO2-ff excess signal that is potentially useful for the verification of trends in regional fossil fuel consumption. In this fashion, analyzing 14C from wine ethanol offers the possibility to observe fossil fuel emissions back in time on many places in Europe and elsewhere.

  19. A comparative assessment of different options to reduce CO2 emissions. Working paper

    International Nuclear Information System (INIS)

    Messner, S.; Nakicenovic, N.

    1992-03-01

    The IIASA research project on Environmentally Compatible Energy Strategies includes the assessment of options and measures for mitigating global CO 2 emissions. The basis of this assessment is the comparative inventory of technological and economic measures including efficiency improvement, conservation, enhanced use of low-carbon fuels, carbon free sources of energy and measures for removing carbon from fuels, flue gases and also from the atmosphere such as afforestation, and finally also measures for enhancement of carbon sinks. To include all potential options, the comparison is based on energy end-use accounting for the fully interlinked energy conversion chain up to energy resources. The analysis is supported by a fully interactive data bank system, CO2DB, that is capable of evaluating full energy chains with respect to their economic, technical and environmental parameters. The paper reports energy requirements, cost and CO 2 emissions for different energy chains providing industrial drives, cooling and air transport services. At additional cost, emissions can be reduced drastically on all these end-use categories. (authors)

  20. Mars - CO2 adsorption and capillary condensation on clays: Significance for volatile storage and atmospheric history

    Science.gov (United States)

    Fanale, F. P.; Cannon, W. A.

    1979-01-01

    Results on the adsorbate-adsorbent system CO2-nontronite are reported at 230, 196, and 158 deg K, covering the range of subsurface regolith temperature on Mars. A three-part regolith-atmosphere-cap model reveals that cold nontronite, and expanding clays in general, are far better but far more complex CO2 adsorbers than cold pulverized basalt. In addition, the layered terrain, and possibly the adjacent debris mantle, contains about 2% or more by mass of atmosphere-exchangeable CO2 and the total regolith inventory of available adsorbed CO2 is estimated to be 400 g/ sq cm.

  1. CO2 sequestration. World CO2 emission reduction by forest plantations on agricultural land up to 2050

    International Nuclear Information System (INIS)

    Dameron, V.; Barbier, C.; Riedacker, A.

    2005-01-01

    The main objective of this study was to determine the possible contribution on CO 2 emission reductions of new forest plantations on agricultural land which may become available in the world from now to 2050. Emission reductions have been calculated by taking into account potential changes in carbon stocks on afforested land (in biomass and soil) and replacement with biomass of fossil fuel and material such as steel, aluminium or concrete. Increase of carbon stocks in wood as building material and final conversion of wood recycled from buildings into energy to replace fossil fuel have also been taken into account. CO 2 emission reductions (or carbon benefits) from afforested agricultural land become significant only after 2030 or 2050, and even at a later stage with long rotations. In the case of the latter, about 100 years are needed to get the full benefits. Forest plantations can therefore only be considered as long term options

  2. Comparison of CO2 Emissions Data for 30 Cities from Different Sources

    Science.gov (United States)

    Nakagawa, Y.; Koide, D.; Ito, A.; Saito, M.; Hirata, R.

    2017-12-01

    Many sources suggest that cities account for a large proportion of global anthropogenic greenhouse gas emissions. Therefore, in search for the best ways to reduce total anthropogenic greenhouse gas emissions, a focus on the city emission is crucial. In this study, we collected CO2 emissions data in 30 cities during 1990-2015 and evaluated the degree of variance between data sources. The CO2 emissions data were obtained from academic papers, municipal reports, and high-resolution emissions maps (CIDIACv2016, EDGARv4.2, ODIACv2016, and FFDASv2.0). To extract urban CO2 emissions from the high-resolution emissions maps, urban fraction ranging from 0 to 1 was calculated for each 1×1 degree grid cell using the global land cover data (SYNMAP). Total CO2 emissions from the grid cells in which urban fraction occupies greater than or equal to 0.9 were regarded as urban CO2 emissions. The estimated CO2 emissions varied greatly depending on the information sources, even in the same year. There was a large difference between CO2 emissions collected from academic papers, municipal reports, and those extracted from high-resolution emissions maps. One reason is that they use different city boundaries. That is, the city proper (i.e. the political city boundary) is often defined as the city boundary in academic papers and municipal reports, whereas the urban area is used in the high-resolution emissions maps. Furthermore, there was a large variation in CO2 emissions collected from academic papers and municipal reports. These differences may be due to the difference in the assumptions such as allocation ratio of CO2 emissions to producers and consumers. In general, the consumption-based assignment of emissions gives higher estimates of urban CO2 emission in comparison with production-based assignment. Furthermore, there was also a large variation in CO2 emissions extracted from high-resolution emissions maps. This difference would be attributable to differences in information used

  3. Near stabilisation of CO2 emissions in the world in 2014

    International Nuclear Information System (INIS)

    Ecoiffier, Mathieu

    2016-03-01

    This publication proposes discussions and comments of tables and graphs of statistics regarding evolutions of CO 2 emissions during the last decades. It is noticed that CO 2 emissions only had a 0.5 per cent increase in 2014, i.e. nearly stagnation. These variations and data are analysed with respect to countries and geographical regions. Thus, it is outlined that CO 2 emissions per inhabitant in China are higher than in Europe, that the intensity of CO 2 emission with respect to GDP is strongly decreasing (-4.4 per cent), that the decrease of energy intensity slowed down the growth of world emission since 1990

  4. CO2 emissions, nuclear energy, renewable energy and economic growth in the US

    International Nuclear Information System (INIS)

    Menyah, Kojo; Wolde-Rufael, Yemane

    2010-01-01

    This study explores the causal relationship between carbon dioxide (CO 2 ) emissions, renewable and nuclear energy consumption and real GDP for the US for the period 1960-2007. Using a modified version of the Granger causality test, we found a unidirectional causality running from nuclear energy consumption to CO 2 emissions without feedback but no causality running from renewable energy to CO 2 emissions. The econometric evidence seems to suggest that nuclear energy consumption can help to mitigate CO 2 emissions, but so far, renewable energy consumption has not reached a level where it can make a significant contribution to emissions reduction.

  5. Industrial CO2 emissions in China based on the hypothetical extraction method: Linkage analysis

    International Nuclear Information System (INIS)

    Wang, Yuan; Wang, Wenqin; Mao, Guozhu; Cai, Hua; Zuo, Jian; Wang, Lili; Zhao, Peng

    2013-01-01

    Fossil fuel-related CO 2 emissions are regarded as the primary sources of global climate change. Unlike direct CO 2 emissions for each sector, CO 2 emissions associated with complex linkages among sectors are usually ignored. We integrated the input–output analysis with the hypothetical extraction method to uncover the in-depth characteristics of the inter-sectoral linkages of CO 2 emissions. Based on China's 2007 data, this paper compared the output and demand emissions of CO 2 among eight blocks. The difference between the demand and output emissions of a block indicates that CO 2 is transferred from one block to another. Among the sectors analyzed in this study, the Energy industry block has the greatest CO 2 emissions with the Technology industry, Construction and Service blocks as its emission's primary destinations. Low-carbon industries that have lower direct CO 2 emissions are deeply anchored to high-carbon ones. If no effective measures are taken to limit final demand emissions or adjust energy structure, shifting to an economy that is low-carbon industries oriented would entail a decrease in CO 2 emission intensity per unit GDP but an increase in overall CO 2 emissions in absolute terms. The results are discussed in the context of climate-change policy. - Highlights: • Quantitatively analyze the characteristics of inter-industrial CO 2 emission linkages. • Propose the linkage measuring method of CO 2 emissions based on the modified HEM. • Detect the energy industry is a key sector on the output of embodied carbon. • Conclude that low-carbon industries are deeply anchored to high-carbon industries

  6. Atmospheric deposition, CO2, and change in the land carbon sink

    DEFF Research Database (Denmark)

    Martinez-Fernandez, Cristina; Vicca, Sara; Janssens, Ivan A.

    2017-01-01

    Concentrations of atmospheric carbon dioxide (CO2) have continued to increase whereas atmospheric deposition of sulphur and nitrogen has declined in Europe and the USA during recent decades. Using time series of flux observations from 23 forests distributed throughout Europe and the USA, and gene...... show the need to include the effects of changing atmospheric composition, beyond CO2, to assess future dynamics of carbon-climate feedbacks not currently considered in earth system/climate modelling....

  7. Decoupling economic growth from CO2 emissions: A decomposition analysis of China's household energy consumption

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Ma

    2016-09-01

    Full Text Available This paper analyzes Chinese household CO2 emissions in 1994–2012 based on the Logarithmic Mean Divisia Index (LMDI structure decomposition model, and discusses the relationship between household CO2 emissions and economic growth based on a decoupling indicator. The results show that in 1994–2012, household CO2 emissions grew in general and displayed an accelerated growth trend during the early 21st century. Economic growth leading to an increase in energy consumption is the main driving factor of CO2 emission growth (an increase of 1.078 Gt CO2 with cumulative contribution rate of 55.92%, while the decline in energy intensity is the main cause of CO2 emission growth inhibition (0.723 Gt CO2 emission reduction with cumulative contribution rate of 38.27%. Meanwhile, household CO2 emissions are in a weak state of decoupling in general. The change in CO2 emissions caused by population and economic growth shows a weak decoupling and expansive decoupling state, respectively. The CO2 emission change caused by energy intensity is in a state of strong decoupling, and the change caused by energy consumption structure fluctuates between a weak and a strong decoupling state.

  8. Mechanisms of glacial-to-future atmospheric CO2 effects on plant immunity.

    Science.gov (United States)

    Williams, Alex; Pétriacq, Pierre; Schwarzenbacher, Roland E; Beerling, David J; Ton, Jurriaan

    2018-04-01

    The impacts of rising atmospheric CO 2 concentrations on plant disease have received increasing attention, but with little consensus emerging on the direct mechanisms by which CO 2 shapes plant immunity. Furthermore, the impact of sub-ambient CO 2 concentrations, which plants have experienced repeatedly over the past 800 000 yr, has been largely overlooked. A combination of gene expression analysis, phenotypic characterisation of mutants and mass spectrometry-based metabolic profiling was used to determine development-independent effects of sub-ambient CO 2 (saCO 2 ) and elevated CO 2 (eCO 2 ) on Arabidopsis immunity. Resistance to the necrotrophic Plectosphaerella cucumerina (Pc) was repressed at saCO 2 and enhanced at eCO 2 . This CO 2 -dependent resistance was associated with priming of jasmonic acid (JA)-dependent gene expression and required intact JA biosynthesis and signalling. Resistance to the biotrophic oomycete Hyaloperonospora arabidopsidis (Hpa) increased at both eCO 2 and saCO 2 . Although eCO 2 primed salicylic acid (SA)-dependent gene expression, mutations affecting SA signalling only partially suppressed Hpa resistance at eCO 2 , suggesting additional mechanisms are involved. Induced production of intracellular reactive oxygen species (ROS) at saCO 2 corresponded to a loss of resistance in glycolate oxidase mutants and increased transcription of the peroxisomal catalase gene CAT2, unveiling a mechanism by which photorespiration-derived ROS determined Hpa resistance at saCO 2 . By separating indirect developmental impacts from direct immunological effects, we uncover distinct mechanisms by which CO 2 shapes plant immunity and discuss their evolutionary significance. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  9. Using global warming potential to compare methane and CO2 emissions

    International Nuclear Information System (INIS)

    Dufresne, J.L.

    2009-01-01

    Greenhouse gases affect the planetary heat budget. Any change of their concentration affects this budget and therefore the global mean surface temperature of the Earth. These gases have different radiative properties and different lifetimes in the atmosphere, which prevents any direct comparison of the consequences of their emissions on global warming. Almost twenty years ago, the Intergovernmental Panel on Climate Change (IPCC) proposed the global warming potential (GWP) as an index to compare the emissions of the various greenhouse gases. In a recent paper, it has been stated that the use of GWP leads to strongly underestimating the global warming due to constant methane emissions compared to that of constant CO 2 emissions. Here we show that it is not really the case. The GWP enables comparisons of global warming due to constant emissions for any prescribed period, 100 years being often used. But this comparison is not universal. For instance, the impact of methane is underestimated at the beginning of the chosen period while the impact of CO 2 is underestimated after this period

  10. Effectiveness of carbon dioxide removal in lowering atmospheric CO2 and reversing global warming in the context of 1.5 degrees

    Science.gov (United States)

    Zickfeld, K.; Azevedo, D.

    2017-12-01

    The majority of emissions scenarios that limit warming to 2°C, and nearly all emission scenarios that do not exceed 1.5°C warming by the year 2100 require artificial removal of CO2 from the atmosphere. Carbon dioxide removal (CDR) technologies in these scenarios are required to offset emissions from sectors that are difficult or costly to decarbonize and to generate global `net negative' emissions, allowing to compensate for earlier emissions and to meet long-term climate stabilization targets after overshoot. Only a few studies have explored the Earth system response to CDR and large uncertainties exist regarding the effect of CDR on the carbon cycle and its effectiveness in reversing climate impacts after overshoot. Here we explore the effectiveness of CDR in lowering atmospheric CO2 ("carbon cycle effectiveness") and cool global climate ("cooling effectiveness"). We force the University of Victoria Earth System Climate Model, a model of intermediate complexity, with a set of negative CO2 emissions pulses of different magnitude and applied from different background atmospheric CO2 concentrations. We find the carbon cycle effectiveness of CDR - defined as the change in atmospheric CO2 per unit CO2 removed - decreases with the amount of CO2 removed from the atmosphere and increases at higher background CO2 concentrations from which CDR is applied due to nonlinear responses of carbon sinks to CO2 and climate. The cooling effectiveness - defined as the change in global mean surface air temperature per unit CO2 removed - on the other hand, is largely insensitive to the amount of CO2 removed, but decreases if CDR is applied at higher atmospheric CO2 concentrations, due to the logarithmic relationship between atmospheric CO2 and radiative forcing. Based on our results we conclude that CDR is more effective in restoring a lower atmospheric CO2 concentration and reversing impacts directly linked to CO2 at lower levels of overshoot. CDR's effectiveness in restoring a

  11. Estimation of CO2 emission for each process in the Japanese steel industry: a process analysis

    International Nuclear Information System (INIS)

    Sakamoto, Y.; Tonooka, Y.

    2000-01-01

    The CO 2 emission for each process in the Japanese steel industry is estimated by a process analysis using statistical data in order to evaluate the possibility of reducing CO 2 emissions. The emission factor of CO 2 for each product and also for crude steel produced from an integrated steel plant route and an electric arc furnaces route is estimated and compared. The CO 2 emissions can be estimated from production amounts of products for each process and for crude steel. The CO 2 emission of blast furnaces is the largest and that of rolling and piping follows. The emission factor of CO 2 of crude steel produced from an integrated steel plant route is approximately 3.8 times as high as that produced via an electric arc furnace route. (Author)

  12. Is there a decrease in the sink of atmospheric CO2 in the Nordic seas?

    International Nuclear Information System (INIS)

    Olsen, Are; Anderson, Leif G.

    2002-01-01

    It is well known that the seas off Norway sink a lot of carbon dioxide from the atmosphere, mainly because of the large heat loss from the sea in the area, which makes CO 2 more soluble in the water. Whether this sink has increased after the industrial revolution and thereby contributes to slowing down the increase of atmospheric CO 2 is uncertain. That is, it is uncertain whether there is a sink of anthropogenic CO 2 . There are indications that the opposite is true, that the sink of CO 2 in this area has slowed down along with the rise in the concentration of atmospheric CO 2 . Storing of anthropogenic CO 2 , however, takes place at higher latitudes where deep-water formation occurs, such as in the Nordic seas, where water that is saturated with anthropogenic CO 2 is transported down in the deep sea and becomes shielded from the atmosphere. Model calculations show that increased CO 2 in the atmosphere will reduce the sink of this gas in the Nordic seas. This conclusion is supported by observations from the Barents Sea

  13. Feasibility study on energy saving and reduction of CO2 emissions at Pertamina's Cilacap Refinery

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective of saving energy and reducing greenhouse gas emission, a basic survey has been performed on the atmospheric crude oil distillation units and the high vacuum distillation units at Cilacap Refinery in Indonesia. The first site survey in September 2000 has carried out a survey on the situation of the facilities and operation upon obtaining the facility data and operation information from Pertamina. As a result, it was revealed that there is a room of improvement in the heat recovery, whereas a modification design was executed on the improvement proposals on the heat exchanger system. However, the second site survey in November 2000 has revealed that Pertamina had executed in 1998 through 1999 the de-bottlenecking project on the crude oil atmospheric distillation units (two units) and the high vacuum distillation units (two units), by which the capability has been expanded, and the heat recovery rate has been increased. It is not possible to look for extremely large enhancement of the heat recovery rate beyond that point, and the reduction of CO2 emission would also be small. As a result of discussions, the present project was found capable of reducing annually the CO2 emission by 36,500 tons. (NEDO)

  14. Hemiparasite abundance in an alpine treeline ecotone increases in response to atmospheric CO(2) enrichment.

    Science.gov (United States)

    Hättenschwiler, Stephan; Zumbrunn, Thomas

    2006-02-01

    Populations of the annual hemiparasites Melampyrum pratense L. and Melampyrum sylvaticum L. were studied at the treeline in the Swiss Alps after 3 years of in situ CO(2) enrichment. The total density of Melampyrum doubled to an average of 44 individuals per square meter at elevated CO(2) compared to ambient CO(2). In response to elevated CO(2), the height of the more abundant and more evenly distributed M. pratense increased by 20%, the number of seeds per fruit by 21%, and the total seed dry mass per fruit by 27%, but the individual seed size did not change. These results suggest that rising atmospheric CO(2) may stimulate the reproductive output and increase the abundance of Melampyrum in the alpine treeline ecotone. Because hemiparasites can have important effects on community dynamics and ecosystem processes, notably the N cycle, changing Melampyrum abundance may potentially influence the functioning of alpine ecosystems in a future CO(2)-rich atmosphere.

  15. Carbon-14 based determination of the biogenic fraction of industrial CO2 emissions : Application and validation

    NARCIS (Netherlands)

    Palstra, S. W. L.; Meijer, H. A. J.

    The C-14 method is a very reliable and sensitive method for industrial plants, emission authorities and emission inventories to verify data estimations of biogenic fractions of CO2 emissions. The applicability of the method is shown for flue gas CO2 samples that have been sampled in I-h intervals at

  16. CO2 emissions from the production and combustion of fuel ethanol from corn

    International Nuclear Information System (INIS)

    Marland, G.; Turhollow, A.F.

    1991-01-01

    This paper deals with the carbon dioxide fluxes associated with the use of one biomass fuel, ethanol derived from corn. In a sustainable agricultural system, there is no net CO 2 flux to the atmosphere from the corn itself but there is a net CO 2 flux due to the fossil-fuel supplements currently used to produce and process corn. A comparison between ethanol from corn and gasoline from crude oil becomes very complex because of the variability of corn yield, the lack of available data on corn processing, and the complexity of treating the multiple products from corn processing. When the comparison is made on an energy content basis only, with no consideration of how the products are to be used, and at the margin of the current U.S. energy system, it appears that there is a net CO 2 saving associated with ethanol from corn. This net saving in CO 2 emissions may be as large as 40% or as small as 20%, depending on how one chooses to evaluate the by-product credits. This analysis also demonstrates that the frequently posed question, whether the energy inputs to ethanol exceed the energy outputs, would not be an over-riding consideration even if it were true, because most of the inputs are as coal and natural gas, whereas the output is as a high-quality liquid fuel. (author)

  17. CO2 emissions abatement and geologic sequestration - industrial innovations and stakes - status of researches in progress

    International Nuclear Information System (INIS)

    2005-01-01

    This colloquium was jointly organized by the French institute of petroleum (IFP), the French agency of environmental and energy mastery (Ademe) and the geological and mining research office (BRGM). This press kit makes a status of the advances made in CO 2 emissions abatement and geological sequestration: technological advances of CO 2 capture and sequestration, geological reservoir dimensioning with respect to the problem scale, duration of such an interim solution, CO 2 emissions abatement potentialities of geological sequestration, regulatory, economical and financial implications, international stakes of greenhouse gas emissions. This press kit comprises a press release about the IFP-Ademe-BRGM colloquium, a slide presentation about CO 2 abatement and sequestration, and four papers: a joint IFP-Ademe-BRGM press conference, IFP's answers to CO 2 emissions abatement, Ademe's actions in CO 2 abatement and sequestration, and BRGM's experience in CO 2 sequestration and climatic change expertise. (J.S.)

  18. Exploring the relation between urbanization and residential CO2 emissions in China: a PTR approach

    OpenAIRE

    Hu, Zongyi; Tang, Liwei

    2013-01-01

    Recent empirical work suggests that urbanization and residential CO2 emissions are related. This paper investigates the nonlinear impact of urbanization on residential CO2 emissions over the period 1997–2011 in China by applying the Candelon et al. (2012) methodology. The results show that the relationship between urbanization and residential CO2 emissions is negative over the sample which is inconsistent with the previous studies. In addition, we find the absolute difference of the estimated...

  19. An analysis of Chinas CO2 emission peaking target and pathways

    OpenAIRE

    He, Jian-Kun

    2017-01-01

    China has set the goal for its CO2 emissions to peak around 2030, which is not only a strategic decision coordinating domestic sustainable development and global climate change mitigation but also an overarching target and a key point of action for Chinas resource conservation, environmental protection, shift in economic development patterns, and CO2 emission reduction to avoid climate change. The development stage where China maps out the CO2 emission peak target is earlier than that of the ...

  20. Comment on "Scrutinizing the carbon cycle and CO2residence time in the atmosphere" by H. Harde

    Science.gov (United States)

    Köhler, Peter; Hauck, Judith; Völker, Christoph; Wolf-Gladrow, Dieter A.; Butzin, Martin; Halpern, Joshua B.; Rice, Ken; Zeebe, Richard E.

    2018-05-01

    Harde (2017) proposes an alternative accounting scheme for the modern carbon cycle and concludes that only 4.3% of today's atmospheric CO2 is a result of anthropogenic emissions. As we will show, this alternative scheme is too simple, is based on invalid assumptions, and does not address many of the key processes involved in the global carbon cycle that are important on the timescale of interest. Harde (2017) therefore reaches an incorrect conclusion about the role of anthropogenic CO2 emissions. Harde (2017) tries to explain changes in atmospheric CO2 concentration with a single equation, while the most simple model of the carbon cycle must at minimum contain equations of at least two reservoirs (the atmosphere and the surface ocean), which are solved simultaneously. A single equation is fundamentally at odds with basic theory and observations. In the following we will (i) clarify the difference between CO2 atmospheric residence time and adjustment time, (ii) present recently published information about anthropogenic carbon, (iii) present details about the processes that are missing in Harde (2017), (iv) briefly discuss shortcoming in Harde's generalization to paleo timescales, (v) and comment on deficiencies in some of the literature cited in Harde (2017).

  1. Removing traffic emissions from CO2 time series measured at a tall tower using mobile measurements and transport modeling

    Science.gov (United States)

    Schmidt, Andres; Rella, Chris W.; Göckede, Mathias; Hanson, Chad; Yang, Zhenlin; Law, Beverly E.

    2014-11-01

    In recent years, measurements of atmospheric carbon dioxide with high precision and accuracy have become increasingly important for climate change research, in particular to inform terrestrial biosphere models. Anthropogenic carbon dioxide emissions from fossil fuel burning have long been recognized to contribute a significant portion of the carbon dioxide in the atmosphere. Here, we present an approach to remove the traffic related carbon dioxide emissions from mole fractions measured at a tall tower by using the corresponding carbon monoxide measurements in combination with footprint analyses and transport modeling. This technique improves the suitability of the CO2 data to be used in inverse modeling approaches of atmosphere-biosphere exchange that do not account for non-biotic portions of CO2. In our study region in Oregon, road traffic emissions are the biggest source of anthropogenic carbon dioxide and carbon monoxide. A three-day mobile campaign covering 1700 km of roads in northwestern Oregon was performed during summer of 2012 using a laser-based Cavity Ring-Down Spectrometer. The mobile measurements incorporated different roads including main highways, urban streets, and back-roads, largely within the typical footprint of a tall CO/CO2 observation tower in Oregon's Willamette Valley. For the first time, traffic related CO:CO2 emission ratios were measured directly at the sources during an on-road campaign under a variety of different driving conditions. An average emission ratio of 7.43 (±1.80) ppb CO per ppm CO2 was obtained for the study region and applied to separate the traffic related portion of CO2 from the mole fraction time series. The road traffic related portion of the CO2 mole fractions measured at the tower site reached maximum values ranging from 9.8 to 12 ppm, depending on the height above the surface, during summer 2012.

  2. Root Damage by Insects Reverses the Effects of Elevated Atmospheric CO2 on Eucalypt Seedlings

    OpenAIRE

    Johnson, Scott N.; Riegler, Markus

    2013-01-01

    Predicted increases in atmospheric carbon dioxide (CO2) are widely anticipated to increase biomass accumulation by accelerating rates of photosynthesis in many plant taxa. Little, however, is known about how soil-borne plant antagonists might modify the effects of elevated CO2 (eCO2), with root-feeding insects being particularly understudied. Root damage by insects often reduces rates of photosynthesis by disrupting root function and imposing water deficits. These insects therefore have consi...

  3. Impact of atmospheric and terrestrial CO2 feedbacks on fertilization-induced marine carbon uptake

    Science.gov (United States)

    Oschlies, A.

    2009-08-01

    The sensitivity of oceanic CO2 uptake to alterations in the marine biological carbon pump, such as brought about by natural or purposeful ocean fertilization, has repeatedly been investigated by studies employing numerical biogeochemical ocean models. It is shown here that the results of such ocean-centered studies are very sensitive to the assumption made about the response of the carbon reservoirs on the atmospheric side of the sea surface. Assumptions made include prescribed atmospheric pCO2, an interactive atmospheric CO2 pool exchanging carbon with the ocean but not with the terrestrial biosphere, and an interactive atmosphere that exchanges carbon with both oceanic and terrestrial carbon pools. The impact of these assumptions on simulated annual to millennial oceanic carbon uptake is investigated for a hypothetical increase in the C:N ratio of the biological pump and for an idealized enhancement of phytoplankton growth. Compared to simulations with interactive atmosphere, using prescribed atmospheric pCO2 overestimates the sensitivity of the oceanic CO2 uptake to changes in the biological pump, by about 2%, 25%, 100%, and >500% on annual, decadal, centennial, and millennial timescales, respectively. The smaller efficiency of the oceanic carbon uptake under an interactive atmosphere is due to the back flux of CO2 that occurs when atmospheric CO2 is reduced. Adding an interactive terrestrial carbon pool to the atmosphere-ocean model system has a small effect on annual timescales, but increases the simulated fertilization-induced oceanic carbon uptake by about 4%, 50%, and 100% on decadal, centennial, and millennial timescales, respectively, for pCO2 sensitivities of the terrestrial carbon storage in the middle range of the C4MIP models (Friedlingstein et al., 2006). For such sensitivities, a substantial fraction of oceanic carbon uptake induced by natural or purposeful ocean fertilization originates, on timescales longer than decades, not from the atmosphere

  4. Use of data mining techniques to classify soil CO2 emission induced by crop management in sugarcane field.

    Science.gov (United States)

    Farhate, Camila Viana Vieira; Souza, Zigomar Menezes de; Oliveira, Stanley Robson de Medeiros; Tavares, Rose Luiza Moraes; Carvalho, João Luís Nunes

    2018-01-01

    Soil CO2 emissions are regarded as one of the largest flows of the global carbon cycle and small changes in their magnitude can have a large effect on the CO2 concentration in the atmosphere. Thus, a better understanding of this attribute would enable the identification of promoters and the development of strategies to mitigate the risks of climate change. Therefore, our study aimed at using data mining techniques to predict the soil CO2 emission induced by crop management in sugarcane areas in Brazil. To do so, we used different variable selection methods (correlation, chi-square, wrapper) and classification (Decision tree, Bayesian models, neural networks, support vector machine, bagging with logistic regression), and finally we tested the efficiency of different approaches through the Receiver Operating Characteristic (ROC) curve. The original dataset consisted of 19 variables (18 independent variables and one dependent (or response) variable). The association between cover crop and minimum tillage are effective strategies to promote the mitigation of soil CO2 emissions, in which the average CO2 emissions are 63 kg ha-1 day-1. The variables soil moisture, soil temperature (Ts), rainfall, pH, and organic carbon were most frequently selected for soil CO2 emission classification using different methods for attribute selection. According to the results of the ROC curve, the best approaches for soil CO2 emission classification were the following: (I)-the Multilayer Perceptron classifier with attribute selection through the wrapper method, that presented rate of false positive of 13,50%, true positive of 94,20% area under the curve (AUC) of 89,90% (II)-the Bagging classifier with logistic regression with attribute selection through the Chi-square method, that presented rate of false positive of 13,50%, true positive of 94,20% AUC of 89,90%. However, the (I) approach stands out in relation to (II) for its higher positive class accuracy (high CO2 emission) and lower

  5. An ensemble approach to simulate CO2 emissions from natural fires

    Science.gov (United States)

    Eliseev, A. V.; Mokhov, I. I.; Chernokulsky, A. V.

    2014-06-01

    This paper presents ensemble simulations with the global climate model developed at the A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS CM). These simulations are forced by historical reconstructions of concentrations of well-mixed greenhouse gases (CO2, CH4, and N2O), sulfate aerosols (both in the troposphere and stratosphere), extent of crops and pastures, and total solar irradiance for AD 850-2005 (hereafter all years are taken as being AD) and by the Representative Concentration Pathway (RCP) scenarios for the same forcing agents until the year 2300. Our model implements GlobFIRM (Global FIRe Model) as a scheme for calculating characteristics of natural fires. Comparing to the original GlobFIRM model, in our implementation, the scheme is extended by a module accounting for CO2 release from soil during fires. The novel approach of our paper is to simulate natural fires in an ensemble fashion. Different ensemble members in the present paper are constructed by varying the values of parameters of the natural fires module. These members are constrained by the GFED-3.1 data set for the burnt area and CO2 release from fires and further subjected to Bayesian averaging. Our simulations are the first coupled model assessment of future changes in gross characteristics of natural fires. In our model, the present-day (1998-2011) global area burnt due to natural fires is (2.1 ± 0.4) × 106 km2 yr-1 (ensemble mean and intra-ensemble standard deviation are presented), and the respective CO2 emissions to the atmosphere are (1.4 ± 0.2) Pg C yr-1. The latter value is in agreement with the corresponding GFED estimates. The area burnt by natural fires is generally larger than the GFED estimates except in boreal Eurasia, where it is realistic, and in Australia, where it is smaller than these estimates. Regionally, the modelled CO2 emissions are larger (smaller) than the GFED estimates in Europe (in the tropics and north-eastern Eurasia). From

  6. Evaluation Analysis of the CO2 Emission and Absorption Life Cycle for Precast Concrete in Korea

    Directory of Open Access Journals (Sweden)

    Taehyoung Kim

    2016-07-01

    Full Text Available To comply with recent international trends and initiatives, and in order to help achieve sustainable development, Korea has established a greenhouse gas (GHG emission reduction target of 37% (851 million tons of the business as usual (BAU rate by 2030. Regarding environmentally-oriented standards such as the IGCC (International Green Construction Code, there are also rising demands for the assessment on CO2 emissions during the life cycle in accordance with ISO (International Standardization Organization’s Standard 14040. At present, precast concrete (PC engineering-related studies primarily cover structural and construction aspects, including improvement of structural performance in the joint, introduction of pre-stressed concrete and development of half PC. In the manufacture of PC, steam curing is mostly used for the early-strength development of concrete. In steam curing, a large amount of CO2 is produced, causing an environmental problem. Therefore, this study proposes a method to assess CO2 emissions (including absorption throughout the PC life cycle by using a life cycle assessment (LCA method. Using the proposed assessment method, CO2 emissions during the life cycle of a precast concrete girder (PCG were assessed. In addition, CO2 absorption was assessed against a PCG using conventional carbonation and CO2 absorption-related models. As a result, the CO2 emissions throughout the life cycle of the PCG were 1365.6 (kg-CO2/1 PCG. The CO2 emissions during the production of raw materials among the CO2 emissions throughout the life cycle of the PCG were 1390 (kg-CO2/1 PCG, accounting for a high portion to total CO2 emissions (nearly 90%. In contrast, the transportation and manufacture stages were 1% and 10%, respectively, having little effect on total CO2 emissions. Among the use of the PCG, CO2 absorption was mostly decided by the CO2 diffusion coefficient and the amount of CO2 absorption by cement paste. The CO2 absorption by carbonation

  7. CO2 emission costs and Gas/Coal competition for power production

    International Nuclear Information System (INIS)

    Santi, Federico

    2005-01-01

    This paper demonstrates how a CO 2 emission reduction programme can change the competition between the two power production technologies which will probably dominate the future of the Italian power industry: the coal fired USC steam power plant and the natural gas fired CCGT power plant. An economic value of the CO 2 emission is calculated, in order to make the short-run-marginal-cost (or the long-run-marginal-cost). equal for both technologies, under a CO 2 emission trading scheme and following a single-plant specific CO 2 emission homogenizing approach [it

  8. Empirical Study of Decomposition of CO2 Emission Factors in China

    Directory of Open Access Journals (Sweden)

    Yadong Ning

    2013-01-01

    Full Text Available China’s CO2 emissions increase has attracted world’s attention. It is of great importance to analyze China’s CO2 emission factors to restrain the CO2 rapid growing. The CO2 emissions of industrial and residential consumption sectors in China during 1980–2010 were calculated in this paper. The expanded decomposition model of CO2 emissions was set up by adopting factor-separating method based on the basic principle of the Kaya identities. The results showed that CO2 emissions of industrial and residential consumption sectors increase year after year, and the scale effect of GDP is the most important factor affecting CO2 emissions of industrial sector. Decreasing the specific gravity of secondary industry and energy intensity is more effective than decreasing the primary industry and tertiary industry. The emissions reduction effect of structure factor is better than the efficiency factor. For residential consumption sector, CO2 emissions increase rapidly year after year, and the economy factor (the increase of wealthy degree or income is the most important factor. In order to slow down the growth of CO2 emissions, it is an important way to change the economic growth mode, and the structure factor will become a crucial factor.

  9. CO2 emissions, energy consumption and economic growth in China: A panel data analysis

    International Nuclear Information System (INIS)

    Wang, S.S.; Zhou, D.Q.; Zhou, P.; Wang, Q.W.

    2011-01-01

    This paper examines the causal relationships between carbon dioxide emissions, energy consumption and real economic output using panel cointegration and panel vector error correction modeling techniques based on the panel data for 28 provinces in China over the period 1995-2007. Our empirical results show that CO 2 emissions, energy consumption and economic growth have appeared to be cointegrated. Moreover, there exists bidirectional causality between CO 2 emissions and energy consumption, and also between energy consumption and economic growth. It has also been found that energy consumption and economic growth are the long-run causes for CO 2 emissions and CO 2 emissions and economic growth are the long-run causes for energy consumption. The results indicate that China's CO 2 emissions will not decrease in a long period of time and reducing CO 2 emissions may handicap China's economic growth to some degree. Some policy implications of the empirical results have finally been proposed. - Highlights: → We conduct a panel data analysis of the energy-CO 2 -economy nexus in China. → CO 2 emissions, energy use and economic growth appear to be cointegrated. → There exists bidirectional causality between energy consumption and economic growth. → Energy consumption and economic growth are the long-run causes for CO 2 emissions.

  10. Stabilization of emission of CO2: A computable general equilibrium assessment

    International Nuclear Information System (INIS)

    Glomsroed, S.; Vennemo, H.; Johnsen, T.

    1992-01-01

    A multisector computable general equilibrium model is used to study economic development perspectives in Norway if CO 2 emissions were stabilized. The effects discussed include impacts on main macroeconomic indicators and economic growth, sectoral allocation of production, and effects on the market for energy. The impact of other pollutants than CO 2 on emissions is assessed along with the related impact on noneconomic welfare. The results indicate that CO 2 emissions might be stabilized in Norway without dramatically reducing economic growth. Sectoral allocation effects are much larger. A substantial reduction in emissions to air other than CO 2 is found, yielding considerable gains in noneconomic welfare. 25 refs., 6 tabs., 2 figs

  11. Panel estimation for urbanization, energy consumption and CO2 emissions: A regional analysis in China

    International Nuclear Information System (INIS)

    Zhang Chuanguo; Lin Yan

    2012-01-01

    As urbanization accelerates, urban areas play a leading role in energy consumption and CO 2 emissions in China. The existing research is extensively concerned with the relationships between urbanization, energy consumption and CO 2 emissions in recent years, but little attention has been paid to the regional differences. This paper is an analysis of the impact of urbanization on energy consumption and CO 2 emissions at the national and regional levels using the STIRPAT model and provincial panel data from 1995 to 2010 in China. The results showed that urbanization increases energy consumption and CO 2 emissions in China. The effects of urbanization on energy consumption vary across regions and decline continuously from the western region to the central and eastern regions. The impact of urbanization on CO 2 emissions in the central region is greater than that in the eastern region. The impact of urbanization on energy consumption is greater than the impact on CO 2 emissions in the eastern region. And some evidences support the argument of compact city theory. These results not only contribute to advancing the existing literature, but also merit particular attention from policy makers and urban planners in China. - Highlights: ► We analyze the impact of urbanization on energy use and CO 2 emissions in China. ► Urbanization increases energy consumption and CO 2 emissions in China. ► The effects of urbanization on energy use and CO 2 emissions vary across regions.

  12. A Study on the Analysis of CO2 Emissions of Apartment Housing in the Construction Process

    Directory of Open Access Journals (Sweden)

    Jonggeon Lee

    2018-01-01

    Full Text Available Recent research in the construction industry has focused on the reduction of CO2 emission using quantitative assessment of building life. However, most of this research has focused on the operational stage of a building’s life cycle. Few comprehensive studies of CO2 emissions during building construction have been performed. The purpose of this study is to analyze the CO2 emissions of an apartment housing during the construction process. The quantity of CO2 emissions associated with the utilization of selected building materials and construction equipment were used to estimate the CO2 emissions related to the apartment housing life cycle. In order to set the system boundary for the construction materials, equipment, and transportation used, 13 types of construction work were identified; then the CO2 emissions produced by the identified materials were calculated for each type of construction work. The comprehensive results showed that construction work involving reinforced concrete accounted for more than 73% of the total CO2 emissions. The CO2 emissions related to reinforced concrete work was mainly due to transportation from the supplier to the construction site. Therefore, at the time that reinforced concrete is being supplied, shipping distance and fuel economy management of concrete transportation vehicles should be considered thoroughly for significant reduction of CO2 emissions.

  13. A new gridded on-road CO2 emissions inventory for the United States, 1980-2011

    Science.gov (United States)

    Gately, C.; Hutyra, L.; Sue Wing, I.

    2013-12-01

    On-road transportation is responsible for 28% of all U.S. fossil fuel CO2 emissions. However, mapping vehicle emissions at regional scales is challenging due to data limitations. Existing emission inventories have used spatial proxies such as population and road density to downscale national or state level data, which may introduce errors where the proxy variables and actual emissions are weakly correlated. We have developed a national on-road emissions inventory product based on roadway-level traffic data obtained from the Highway Performance Monitoring System. We produce annual estimates of on-road CO2 emissions at a 1km spatial resolution for the contiguous United States for the years 1980 through 2011. For the year 2011 we also produce an hourly emissions product at the 1km scale using hourly traffic volumes from hundreds of automated traffic counters across the country. National on-road emissions rose at roughly 2% per year from 1980 to 2006, with emissions peaking at 1.71 Tg CO2 in 2007. However, while national emissions have declined 6% since the peak, we observe considerable regional variation in emissions trends post-2007. While many states show stable or declining on-road emissions, several states and metropolitan areas in the Midwest, mountain west and south had emissions increases of 3-10% from 2008 to 2011. Our emissions estimates are consistent with state-reported totals of gasoline and diesel fuel consumption. This is in contrast to on-road CO2 emissions estimated by the Emissions Database of Global Atmospheric Research (EDGAR), which we show to be inconsistent in matching on-road emissions to published fuel consumption at the scale of U.S. states, due to the non-linear relationships between emissions and EDGAR's chosen spatial proxies at these scales. Since our emissions estimates were generated independent of population density and other demographic data, we were able to conduct a panel regression analysis to estimate the relationship between these

  14. Reducing the CO2 emissions from fossil fuel power plans by exhaust gas treatment

    International Nuclear Information System (INIS)

    David, Elena

    2007-01-01

    The emission of carbon dioxide (CO 2 ) and other pollutants which result from burning fossil fuels has been identified as the major contributor to global warming and climate change. However, for the short term, at least for the next 10-20 years, the world will continue to rely on fossil fuels as the source of primary energy. The challenge for the fossil the fuel industry is to find cost-effective solutions that will reduce the release of CO 2 and other pollutants into the atmosphere. The focus of this paper is on the ability to treat the exhaust gas from fossil fuel power plants in order to capture and store the CO 2 and remove the other pollutants such as SO x and NO x which are released into the atmosphere. In summary, capture/separation costs represent the largest financial impediment for this type of plants. Hence, efficient, cost-effective capture/separation technologies need to be developed to allow their large-scale use. (author)

  15. Non-CO2 Greenhouse Gas Emissions in China 2012: Inventory and Supply Chain Analysis

    Science.gov (United States)

    Zhang, Bo; Zhang, Yaowen; Zhao, Xueli; Meng, Jing

    2018-01-01

    Reliable inventory information is critical in informing emission mitigation efforts. Using the latest officially released emission data, which is production based, we take a consumption perspective to estimate the non-CO2 greenhouse gas (GHG) emissions for China in 2012. The non-CO2 GHG emissions, which cover CH4, N2O, HFCs, PFCs, and SF6, amounted to 2003.0 Mt. CO2-eq (including 1871.9 Mt. CO2-eq from economic activities), much larger than the total CO2 emissions in some developed countries. Urban consumption (30.1%), capital formation (28.2%), and exports (20.6%) derived approximately four fifths of the total embodied emissions in final demand. Furthermore, the results from structural path analysis help identify critical embodied emission paths and key economic sectors in supply chains for mitigating non-CO2 GHG emissions in Chinese economic systems. The top 20 paths were responsible for half of the national total embodied emissions. Several industrial sectors such as Construction, Production and Supply of Electricity and Steam, Manufacture of Food and Tobacco and Manufacture of Chemicals, and Chemical Products played as the important transmission channels. Examining both production- and consumption-based non-CO2 GHG emissions will enrich our understanding of the influences of industrial positions, final consumption demands, and trades on national non-CO2 GHG emissions by considering the comprehensive abatement potentials in the supply chains.

  16. Factors influencing CO2 emissions in China's power industry: Co-integration analysis

    International Nuclear Information System (INIS)

    Zhao, Xiaoli; Ma, Qian; Yang, Rui

    2013-01-01

    More than 40% of China's total CO 2 emissions originate from the power industry. The realization of energy saving and emission reduction within China's power industry is therefore crucial in order to achieve CO 2 emissions reduction in this country. This paper applies the autoregressive-distributed lag (ARDL) co-integration model to study the major factors which have influenced CO 2 emissions within China's power industry from 1980 to 2010. Results have shown that CO 2 emissions from China's power industry have been increasing rapidly. From 1980 to 2010, the average annual growth rate was 8.5%, and the average growth rate since 2002 has amounted to 10.5%. Secondly, the equipment utilization hour (as an indicator of the power demand) has the greatest influence on CO 2 emissions within China's power industry. In addition, the impact of the industrial added value of the power sector on CO 2 emissions is also positive from a short-term perspective. Thirdly, the Granger causality results imply that one of the important motivators behind China's technological progress, within the power industry, originates from the pressures created by a desire for CO 2 emissions reduction. Finally, this paper provides policy recommendations for energy saving and emission reduction for China's power industry. - Highlights: ► We study the major factors influencing China's power industry CO 2 emissions. ► The average annual growth rate of CO 2 emission from power industry is calculated. ► Installed capacity has the greatest influence on power industry CO 2 emission. ► The Granger causality between CO 2 emission and its effecting factors is analyzed

  17. Soil CO2 emissions as a proxy for heat and mass flow assessment, Taupō Volcanic Zone, New Zealand

    Science.gov (United States)

    Bloomberg, S.; Werner, Cynthia A.; Rissmann, C.F.; Mazot, A.; Horton, Travis B.; Gravley, D; Kennedy, B.; Oze, C

    2014-01-01

    The quantification of heat and mass flow between deep reservoirs and the surface is important for understanding magmatic and hydrothermal systems. Here, we use high-resolution measurement of carbon dioxide flux (φCO2) and heat flow at the surface to characterize the mass (CO2 and steam) and heat released to the atmosphere from two magma-hydrothermal systems. Our soil gas and heat flow surveys at Rotokawa and White Island in the Taupō Volcanic Zone, New Zealand, include over 3000 direct measurements of φCO2 and soil temperature and 60 carbon isotopic values on soil gases. Carbon dioxide flux was separated into background and magmatic/hydrothermal populations based on the measured values and isotopic characterization. Total CO2 emission rates (ΣCO2) of 441 ± 84 t d−1 and 124 ± 18 t d−1were calculated for Rotokawa (2.9 km2) and for the crater floor at White Island (0.3 km2), respectively. The total CO2 emissions differ from previously published values by +386 t d−1 at Rotokawa and +25 t d−1 at White Island, demonstrating that earlier research underestimated emissions by 700% (Rotokawa) and 25% (White Island). These differences suggest that soil CO2 emissions facilitate more robust estimates of the thermal energy and mass flux in geothermal systems than traditional approaches. Combining the magmatic/hydrothermal-sourced CO2 emission (constrained using stable isotopes) with reservoir H2O:CO2mass ratios and the enthalpy of evaporation, the surface expression of thermal energy release for the Rotokawa hydrothermal system (226 MWt) is 10 times greater than the White Island crater floor (22.5 MWt).

  18. Effect of elevated atmospheric CO2 and vegetation type on microbiota associated with decomposing straw

    DEFF Research Database (Denmark)

    Frederiksen, Helle B.; Ronn, R.; Christensen, S.

    2001-01-01

    Straw from wheat plants grown at ambient and elevated atmospheric CO2 concentrations was placed in litterbags in a grass fallow field and a wheat field. The CO2 treatment induced an increase in straw concentration of ash-free dry mass from 84% to 93% and a decrease in nitrogen concentration from ...

  19. Phloem function: A key to understanding and manipulating plant responses to rising atmospheric [CO2]?

    Science.gov (United States)

    Increasing atmospheric carbon dioxide concentration ([CO2]) directly stimulates photosynthesis and reduces stomatal conductance in C3 plants. Both of these physiological effects have the potential to alter phloem function at elevated [CO2]. Recent research has clearly established that photosynthetic...

  20. Atmospheric CO2 and O3 alter competition for soil nitrogen in developing forests

    Science.gov (United States)

    Donald R. Zak; Mark E. Kubiske; Kurt S. Pregitzer; Andrew J. Burton

    2012-01-01

    Plant growth responses to rising atmospheric CO2 and O3 vary among genotypes and between species, which could plausibly influence the strength of competitive interactions for soil N. Ascribable to the size-symmetric nature of belowground competition, we reasoned that differential growth responses to CO2...

  1. Sensitivity study of optimal CO2 emission paths using a simplified structural integrated assessment model (SIAM)

    International Nuclear Information System (INIS)

    Hasselmann, K.; Hasselmann, S.; Giering, R.; Ocana, V.; Storch, H. von

    1997-01-01

    A structurally highly simplified, globally integrated coupled climate-economic costs model SIAM (Structural Integrated Assessment Model) is used to compute optimal paths of global CO 2 emissions that minimize the net sum of climate damage and mitigation costs. It studies the sensitivity of the computed optimal emission paths. The climate module is represented by a linearized impulse-response model calibrated against a coupled ocean-atmosphere general circulation climate model and a three-dimensional global carbon-cycle model. The cost terms are presented by expressions designed with respect to input assumptions. These include the discount rates for mitigation and damage costs, the inertia of the socio-economic system, and the dependence of climate damages on the changes in temperature and the rate of change of temperature. Different assumptions regarding these parameters are believed to cause the marked divergences of existing cost-benefit analyses. The long memory of the climate system implies that very long time horizons of several hundred years need to be considered to optimize CO 2 emissions on time scales relevant for a policy of sustainable development. Cost-benefit analyses over shorter time scales of a century or two can lead to dangerous underestimates of the long term climate impact of increasing greenhouse-gas emissions. To avert a major long term global warming, CO 2 emissions need to be reduced ultimately to very low levels. This may be done slowly but should not be interpreted as providing a time cushion for inaction: the transition becomes more costly the longer the necessary mitigation policies are delayed. However, the long time horizon provides adequate flexibility for later adjustments. Short term energy conservation alone is insufficient and can be viewed only as a useful measure in support of the necessary long term transition to carbon-free energy technologies. 46 refs., 9 figs., 2 tabs

  2. Improved quantification of CO2 emission at Campi Flegrei by combined Lagrangian Stochastic and Eulerian dispersion modelling

    Science.gov (United States)

    Pedone, Maria; Granieri, Domenico; Moretti, Roberto; Fedele, Alessandro; Troise, Claudia; Somma, Renato; De Natale, Giuseppe

    2017-12-01

    This study investigates fumarolic CO2 emissions at Campi Flegrei (Southern Italy) and their dispersion in the lowest atmospheric boundary layer. We innovatively utilize a Lagrangian Stochastic dispersion model (WindTrax) combined with an Eulerian model (DISGAS) to diagnose the dispersion of diluted gas plumes over large and complex topographic domains. New measurements of CO2 concentrations acquired in February and October 2014 in the area of Pisciarelli and Solfatara, the two major fumarolic fields of Campi Flegrei caldera, and simultaneous measurements of meteorological parameters are used to: 1) test the ability of WindTrax to calculate the fumarolic CO2 flux from the investigated sources, and 2) perform predictive numerical simulations to resolve the mutual interference between the CO2 emissions of the two adjacent areas. This novel approach allows us to a) better quantify the CO2 emission of the fumarolic source, b) discriminate ;true; CO2 contributions for each source, and c) understand the potential impact of the composite CO2 plume (Pisciarelli ;plus; Solfatara) on the highly populated areas inside the Campi Flegrei caldera.

  3. Potential effects of emission taxes on CO2 emissions in OECD and LDC countries. Working paper

    International Nuclear Information System (INIS)

    Messner, S.; Strubegger, M.

    1990-12-01

    A set of existing optimization models representing the energy systems of the OECD and LDC countries (the LDC region covers all less developed countries excluding centrally planned economies) with a time horizon up to 2020 was applied to derive first-order estimates of the techno-economic potential for emission reduction. The driving force for the introduction of reduction measures was a scheme of taxes levied on the emissions of 6 relevant pollutants-including the greenhouse gases CO 2 and methane. The tax levels introduced are based on the taxes discussed by the Swedish government administration; they are the break-even point to test which measures are cost-effective and which emission levels can be reached at these costs. The regional models offer the choice between the following alternatives as response to increases in expenditures caused by emission taxes: (*) Reduction of final energy demand by supplying the requested services by other means (i.e., conservation). (*) Substitution of 'dirty' fuels by fuels entailing less pollution. (*) Introduction of 'clean' technologies for the same purposes (e.g., a combined cycle based on coal gasification is a much cleaner process for electricity generation from coal than conventional coal power plants). (*) For SO 2 and NO x emissions pollution reduction technologies (i.e., scrubbers and catalysts) can be added to existing technologies in order to reduce emissions. Alternative scenarios with emission taxes are compared to a base scenario without taxes related to pollutant emissions. The results indicate that an increase in CO 2 emissions in the OECD and LDC regions of 47% over the next 30 years in the base scenario would be changed into stabilization up to 2010 by measures induced by the tax levels introduced. Thereafter, however, energy consumption growth in the LDC area, in conjunction with the exhaustion of economically viable emission reduction measures, reverse this trend: CO 2 emissions start to increase again after

  4. Economic growth and CO2 emissions in Malaysia: A cointegration analysis of the Environmental Kuznets Curve

    International Nuclear Information System (INIS)

    Saboori, Behnaz; Sulaiman, Jamalludin; Mohd, Saidatulakmal

    2012-01-01

    This paper attempts to establish a long-run as well as causal relationship between economic growth and carbon dioxide (CO 2 ) emissions for Malaysia. Using data for the years from 1980 to 2009, the Environmental Kuznets Curve (EKC) hypothesis was tested utilizing the Auto Regressive Distributed Lag (ARDL) methodology. The empirical results suggest the existence of a long-run relationship between per capita CO 2 emissions and real per capita Gross Domestic Product (GDP) when the CO 2 emissions level is the dependent variable. We found an inverted-U shape relationship between CO 2 emissions and GDP in both short and long-run, thus supporting the EKC hypothesis. The Granger Causality test based on the Vector Error Correction Model (VECM) presents an absence of causality between CO 2 emissions and economic growth in the short-run while demonstrating uni-directional causality from economic growth to CO 2 emissions in the long-run. - Highlights: ► We tested the dynamic relationship between economic growth and CO 2 emissions. ► The Environmental Kuznets Curve hypothesis was tested using bounds testing approach. ► The empirical analysis confirms the existence of EKC for Malaysia. ► Causality results in an absence of causality between CO 2 and income in the short-run. ► There is uni-directional causality from income to CO 2 emissions in the long-run.

  5. Elevated [CO2] magnifies isoprene emissions under heat and improves thermal resistance in hybrid aspen

    OpenAIRE

    Sun, Zhihong; H?ve, Katja; Vislap, Vivian; Niinemets, ?lo

    2013-01-01

    Isoprene emissions importantly protect plants from heat stress, but the emissions become inhibited by instantaneous increase of [CO2], and it is currently unclear how isoprene-emitting plants cope with future more frequent and severe heat episodes under high [CO2]. Hybrid aspen (Populus tremula x Populus tremuloides) saplings grown under ambient [CO2] of 380 ?mol mol?1 and elevated [CO2] of 780 ?mol mol?1 were used to test the hypothesis that acclimation to elevated [CO2] reduces the inhibito...

  6. Reduced calcification of marine plankton in response to increased atmospheric CO2.

    Science.gov (United States)

    Riebesell, U; Zondervan, I; Rost, B; Tortell, P D; Zeebe, R E; Morel, F M

    2000-09-21

    The formation of calcareous skeletons by marine planktonic organisms and their subsequent sinking to depth generates a continuous rain of calcium carbonate to the deep ocean and underlying sediments. This is important in regulating marine carbon cycling and ocean-atmosphere CO2 exchange. The present rise in atmospheric CO2 levels causes significant changes in surface ocean pH and carbonate chemistry. Such changes have been shown to slow down calcification in corals and coralline macroalgae, but the majority of marine calcification occurs in planktonic organisms. Here we report reduced calcite production at increased CO2 concentrations in monospecific cultures of two dominant marine calcifying phytoplankton species, the coccolithophorids Emiliania huxleyi and Gephyrocapsa oceanica. This was accompanied by an increased proportion of malformed coccoliths and incomplete coccospheres. Diminished calcification led to a reduction in the ratio of calcite precipitation to organic matter production. Similar results were obtained in incubations of natural plankton assemblages from the north Pacific ocean when exposed to experimentally elevated CO2 levels. We suggest that the progressive increase in atmospheric CO2 concentrations may therefore slow down the production of calcium carbonate in the surface ocean. As the process of calcification releases CO2 to the atmosphere, the response observed here could potentially act as a negative feedback on atmospheric CO2 levels.

  7. Net uptake of atmospheric CO2 by coastal submerged aquatic vegetation

    Science.gov (United States)

    Tokoro, Tatsuki; Hosokawa, Shinya; Miyoshi, Eiichi; Tada, Kazufumi; Watanabe, Kenta; Montani, Shigeru; Kayanne, Hajime; Kuwae, Tomohiro

    2014-01-01

    ‘Blue Carbon’, which is carbon captured by marine living organisms, has recently been highlighted as a new option for climate change mitigation initiatives. In particular, coastal ecosystems have been recognized as significant carbon stocks because of their high burial rates and long-term sequestration of carbon. However, the direct contribution of Blue Carbon to the uptake of atmospheric CO2 through air-sea gas exchange remains unclear. We performed in situ measurements of carbon flows, including air-sea CO2 fluxes, dissolved inorganic carbon changes, net ecosystem production, and carbon burial rates in the boreal (Furen), temperate (Kurihama), and subtropical (Fukido) seagrass meadows of Japan from 2010 to 2013. In particular, the air-sea CO2 flux was measured using three methods: the bulk formula method, the floating chamber method, and the eddy covariance method. Our empirical results show that submerged autotrophic vegetation in shallow coastal waters can be functionally a sink for atmospheric CO2. This finding is contrary to the conventional perception that most near-shore ecosystems are sources of atmospheric CO2. The key factor determining whether or not coastal ecosystems directly decrease the concentration of atmospheric CO2 may be net ecosystem production. This study thus identifies a new ecosystem function of coastal vegetated systems; they are direct sinks of atmospheric CO2. PMID:24623530

  8. Could a geological storage of the CO2 emissions from Romanian power plants become a joint implementation project?

    International Nuclear Information System (INIS)

    Matei, Magdalena; Ene, Simona; Necula, Catalina; Matei, Lucian; Marinescu, Mihai

    2006-01-01

    Full text: Emissions trading is a solution that is most compatible with deregulated electricity markets. The Directive 2003/87/CE referring to CO 2 emission trading within Europe entered into force and till 31 March 2004 all the countries had to present to the Commission their national plan to comply with Directive's rules. Recent predictions of the Intergovernmental Panel on Climate Change indicate that global warming will accelerate within this century. CO 2 emitted by the burning of fossil fuels is thought to be a main driving factor of climate change. With the potential to produce power without releasing CO 2 into the atmosphere, CO 2 capturing may become an important part of the post- Kyoto strategies of many countries. Underground storage of CO 2 seems to be one of the most attractive alternative. Potential targets for CO 2 injection are: - depleted oil reservoirs, possibly in combination with enhanced oil recovery - former gas fields, possibly with additional gas production - deep aquifers containing saline, non-drinkable water - deep and unminable coal seams (exchange of absorbed methane by CO 2 with simultaneous gas production) - geothermal wells, after heat extraction from the aquifers - residual volumes of former deep coal and salt mines. An environmental political decision about the option of CO 2 underground storage has to consider forecasts about developments of global climate, societies, and economics. Due to the forthcoming emission trading there is a growing interest in underground storage options for CO 2 in Europe now. Flexible mechanisms agreed by Kyoto Protocol, namely the Project-based Joint Implementation (Art. 6) and the Emission Trading (Art. 17) could help Romania to attract investment with a long term impact on emissions reduction. The brief identification of major CO 2 emissions sources and of possible CO 2 geological storage capacities (coal mines, aquifers, geothermal wells, oil and gas fields) shows that it is very probable to

  9. The Value of CO2-Geothermal Bulk Energy Storage to Reducing CO2 Emissions Compared to Conventional Bulk Energy Storage Technologies

    Science.gov (United States)

    Ogland-Hand, J.; Bielicki, J. M.; Buscheck, T. A.

    2016-12-01

    Sedimentary basin geothermal resources and CO2 that is captured from large point sources can be used for bulk energy storage (BES) in order to accommodate higher penetration and utilization of variable renewable energy resources. Excess energy is stored by pressurizing and injecting CO2 into deep, porous, and permeable aquifers that are ubiquitous throughout the United States. When electricity demand exceeds supply, some of the pressurized and geothermally-heated CO2 can be produced and used to generate electricity. This CO2-BES approach reduces CO2 emissions directly by storing CO2 and indirectly by using some of that CO2 to time-shift over-generation and displace CO2 emissions from fossil-fueled power plants that would have otherwise provided electricity. As such, CO2-BES may create more value to regional electricity systems than conventional pumped hydro energy storage (PHES) or compressed air energy storage (CAES) approaches that may only create value by time-shifting energy and indirectly reducing CO2 emissions. We developed and implemented a method to estimate the value that BES has to reducing CO2 emissions from regional electricity systems. The method minimizes the dispatch of electricity system components to meet exogenous demand subject to various CO2 prices, so that the value of CO2 emissions reductions can be estimated. We applied this method to estimate the performance and value of CO2-BES, PHES, and CAES within real data for electricity systems in California and Texas over the course of a full year to account for seasonal fluctuations in electricity demand and variable renewable resource availability. Our results suggest that the value of CO2-BES to reducing CO2 emissions may be as much as twice that of PHES or CAES and thus CO2-BES may be a more favorable approach to energy storage in regional electricity systems, especially those where the topography is not amenable to PHES or the subsurface is not amenable to CAES.

  10. Phenol-Formaldehyde Resin-Based Carbons for CO2 Separation at Sub-Atmospheric Pressures

    Directory of Open Access Journals (Sweden)

    Noelia Álvarez-Gutiérrez

    2016-03-01

    Full Text Available The challenge of developing effective separation and purification technologies that leave much smaller energy footprints is greater for carbon dioxide (CO2 than for other gases. In addition to its involvement in climate change, CO2 is present as an impurity in biogas and bio-hydrogen (biological production by dark fermentation, in post-combustion processes (flue gas, CO2-N2 and many other gas streams. Selected phenol-formaldehyde resin-based activated carbons prepared in our laboratory have been evaluated under static conditions (adsorption isotherms as potential adsorbents for CO2 separation at sub-atmospheric pressures, i.e., in post-combustion processes or from biogas and bio-hydrogen streams. CO2, H2, N2, and CH4 adsorption isotherms at 25 °C and up to 100 kPa were obtained using a volumetric equipment and were correlated by applying the Sips model. Adsorption equilibrium was then predicted for multicomponent gas mixtures by extending the multicomponent Sips model and the Ideal Adsorbed Solution Theory (IAST in conjunction with the Sips model. The CO2 uptakes of the resin-derived carbons from CO2-CH4, CO2-H2, and CO2-N2 at atmospheric pressure were greater than those of the reference commercial carbon (Calgon BPL. The performance of the resin-derived carbons in terms of equilibrium of adsorption seems therefore relevant to CO2 separation in post-combustion (flue gas, CO2-N2 and in hydrogen fermentation (CO2-H2, CO2-CH4.

  11. RELATIONSHIP BETWEEN ATMOSPHERIC CO_2 AND CH_4 CONCENTRATIONS AT SYOWA STATION, ANTARCTICA

    OpenAIRE

    アオキ, シュウジ; ナカザワ, タカキヨ; ムラヤマ, ショウヘイ; シミズ, アキラ; ハヤシ, マサヒコ; イワイ, クニモト; Shuhji, AOKI; Takakiyo, NAKAZAWA; Shohei, MURAYAMA; Akira, SHIMIZU; Masahiko, HAYASHI; Kunimoto, IWAI

    1994-01-01

    Precise measurements of the atmospheric CO_2 and CH_4 concentrations have been continued at Syowa Station since 1984 and 1987,respectively. Measured concentrations show secular increase, together with seasonal cycle and irregular variations. Negative correlation is clearly seen between the secular trends of the CO_2 and CH_4 concentrations. The increase rates of CO_2 and CH_4 show oscillations with periods of 2.3 to 2.8 years. The phases of the average seasonal cycles of CO_2 and CH_4 coincid...

  12. A STELLA model to estimate soil CO2 emissions from a short-rotation woody crop

    Science.gov (United States)

    Ying Ouyang; Theodor D. Leininger; Jeff Hatten; Prem B. Parajuli

    2012-01-01

    The potential for climatic factors as well as soil–plant–climate interactions to change as a result of rising levels of atmospheric CO2 concentration is an issue of increasing international environmental concern. Agricultural and forest practices and managements may be important contributors to mitigating elevated atmospheric CO2...

  13. Wine ethanol C-14 as a tracer for fossil fuel CO2 emissions in Europe : Measurements and model comparison

    NARCIS (Netherlands)

    Palstra, Sanne W. L.; Karstens, Ute; Streurman, Harm-Jan; Meijer, Harro A. J.

    2008-01-01

    C-14 (radiocarbon) in atmospheric CO2 is the most direct tracer for the presence of fossil-fuel-derived CO2 (CO2-ff). We demonstrate the C-14 measurement of wine ethanol as a way to determine the relative regional atmospheric CO2-ff concentration compared to a background site ("regional CO2-ff

  14. Energy technology patents–CO2 emissions nexus: An empirical analysis from China

    International Nuclear Information System (INIS)

    Wang Zhaohua; Yang Zhongmin; Zhang Yixiang; Yin Jianhua

    2012-01-01

    Energy technology innovation plays a crucial role in reducing carbon emissions. This paper investigates whether there is relationship between energy technology patents and CO 2 emissions of 30 provinces in mainland China during 1997–2008. Gross domestic product (GDP) is included in the study due to its impact on CO 2 emissions and energy technology innovation, thus avoiding the problem of omitted variable bias. Furthermore, we investigate three cross-regional groups, namely eastern, central and western China. The results show that domestic patents for fossil-fueled technologies have no significant effect on CO 2 emissions reduction; however, domestic patents for carbon-free energy technologies appear to play an important role in reducing CO 2 emissions, which is significant in eastern China, but is not significant in central, western and national level of China. The results of this study enrich energy technology innovation theories and provide some implications for energy technology policy making. - Highlights: ► We studied the causality between energy technology patents and CO 2 emissions using dynamic panel data approach. ► There is a long-run equilibrium relationship among energy technology patents, CO 2 emissions and GDP. ► Domestic patents for fossil-fueled technologies have no significant effect on CO 2 emissions reduction. ► Domestic patents for carbon-free energy technologies appear to play an important role in reducing CO 2 emissions. ► This study provides some references for the future energy technology policy making.

  15. The impacts of non-renewable and renewable energy on CO2 emissions in Turkey.

    Science.gov (United States)

    Bulut, Umit

    2017-06-01

    As a result of great increases in CO 2 emissions in the last few decades, many papers have examined the relationship between renewable energy and CO 2 emissions in the energy economics literature, because as a clean energy source, renewable energy can reduce CO 2 emissions and solve environmental problems stemming from increases in CO 2 emissions. When one analyses these papers, he/she will observe that they employ fixed parameter estimation methods, and time-varying effects of non-renewable and renewable energy consumption/production on greenhouse gas emissions are ignored. In order to fulfil this gap in the literature, this paper examines the effects of non-renewable and renewable energy on CO 2 emissions in Turkey over the period 1970-2013 by employing fixed parameter and time-varying parameter estimation methods. Estimation methods reveal that CO 2 emissions are positively related to non-renewable energy and renewable energy in Turkey. Since policy makers expect renewable energy to decrease CO 2 emissions, this paper argues that renewable energy is not able to satisfy the expectations of policy makers though fewer CO 2 emissions arise through production of electricity using renewable sources. In conclusion, the paper argues that policy makers should implement long-term energy policies in Turkey.

  16. Analyses of CO2 emissions embodied in Japan-China trade

    International Nuclear Information System (INIS)

    Liu Xianbing; Ishikawa, Masanobu; Wang Can; Dong Yanli; Liu Wenling

    2010-01-01

    This paper examines CO 2 emissions embodied in Japan-China trade. Besides directly quantifying the flow of CO 2 emissions between the two countries by using a traditional input-output (IO) model, this study also estimates the effect of bilateral trade to CO 2 emissions by scenario analysis. The time series of quantifications indicate that CO 2 emissions embodied in exported goods from Japan to China increased overall from 1990 to 2000. The exported CO 2 emissions from China to Japan greatly increased in the first half of the 1990s. However, by 2000, the amount of emissions had reduced from 1995 levels. Regardless, there was a net export of CO 2 emissions from China to Japan during 1990-2000. The scenario comparison shows that the bilateral trade has helped the reduction of CO 2 emissions. On average, the Chinese economy was confirmed to be much more carbon-intensive than Japan. The regression analysis shows a significant but not perfect correlation between the carbon intensities at the sector level of the two countries. In terms of CO 2 emission reduction opportunities, most sectors of Chinese industry could benefit from learning Japanese technologies that produce lower carbon intensities.

  17. CO2 deficit in temperate forest soils receiving high atmospheric N-deposition.

    Science.gov (United States)

    Fleischer, Siegfried

    2003-02-01

    Evidence is provided for an internal CO2 sink in forest soils, that may have a potential impact on the global CO2-budget. Lowered CO2 fraction in the soil atmosphere, and thus lowered CO2 release to the aboveground atmosphere, is indicated in high N-deposition areas. Also at forest edges, especially of spruce forest, where additional N-deposition has occurred, the soil CO2 is lowered, and the gradient increases into the closed forest. Over the last three decades the capacity of the forest soil to maintain the internal sink process has been limited to a cumulative supply of approximately 1000 and 1500 kg N ha(-1). Beyond this limit the internal soil CO2 sink becomes an additional CO2 source, together with nitrogen leaching. This stage of "nitrogen saturation" is still uncommon in closed forests in southern Scandinavia, however, it occurs in exposed forest edges which receive high atmospheric N-deposition. The soil CO2 gradient, which originally increases from the edge towards the closed forest, becomes reversed.

  18. Responses of C4 grasses to atmospheric CO2 enrichment : I. Effect of irradiance.

    Science.gov (United States)

    Sionit, Nasser; Patterson, David T

    1984-12-01

    The growth and photosynethetic responses to atmospheric CO 2 enrichment of 4 species of C 4 grasses grown at two levels of irradiance were studied. We sought to determine whether CO 2 enrichment would yield proportionally greater growth enhancement in the C 4 grasses when they were grown at low irradiance than when grown at high irradiance. The species studied were Echinochloa crusgalli, Digitaria sanguinalis, Eleusine indica, and Setaria faberi. Plants were grown in controlled environment chambers at 350, 675 and 1,000 μl 1 -1 CO 2 and 1,000 or 150 μmol m -2 s -1 photosynthetic photon flux density (PPFD). An increase in CO 2 concentration and PPFD significantly affected net photosynthesis and total biomass production of all plants. Plants grown at low PPFD had significantly lower rates of photosynthesis, produced less biomass, and had reduced responses to increases in CO 2 . Plants grown in CO 2 -enriched atmosphere had lower photosynthetic capacity relative to the low CO 2 grown plants when exposed to lower CO 2 concentration at the time of measurement, but had greater rate of photosynthesis when exposed to increasing PPFD. The light level under which the plants were growing did not influence the CO 2 compensation point for photosynthesis.

  19. Fungal Community Responses to Past and Future Atmospheric CO2 Differ by Soil Type

    Science.gov (United States)

    Ellis, J. Christopher; Fay, Philip A.; Polley, H. Wayne; Jackson, Robert B.

    2014-01-01

    Soils sequester and release substantial atmospheric carbon, but the contribution of fungal communities to soil carbon balance under rising CO2 is not well understood. Soil properties likely mediate these fungal responses but are rarely explored in CO2 experiments. We studied soil fungal communities in a grassland ecosystem exposed to a preindustrial-to-future CO2 gradient (250 to 500 ppm) in a black clay soil and a sandy loam soil. Sanger sequencing and pyrosequencing of the rRNA gene cluster revealed that fungal community composition and its response to CO2 differed significantly between soils. Fungal species richness and relative abundance of Chytridiomycota (chytrids) increased linearly with CO2 in the black clay (P 0.7), whereas the relative abundance of Glomeromycota (arbuscular mycorrhizal fungi) increased linearly with elevated CO2 in the sandy loam (P = 0.02, R2 = 0.63). Across both soils, decomposition rate was positively correlated with chytrid relative abundance (r = 0.57) and, in the black clay soil, fungal species richness. Decomposition rate was more strongly correlated with microbial biomass (r = 0.88) than with fungal variables. Increased labile carbon availability with elevated CO2 may explain the greater fungal species richness and Chytridiomycota abundance in the black clay soil, whereas increased phosphorus limitation may explain the increase in Glomeromycota at elevated CO2 in the sandy loam. Our results demonstrate that soil type plays a key role in soil fungal responses to rising atmospheric CO2. PMID:25239904

  20. Constraining East Asian CO2 emissions with GOSAT retrievals: methods and policy implications

    Science.gov (United States)

    Shim, C.; Henze, D. K.; Deng, F.

    2017-12-01

    The world largest CO2 emissions are from East Asia. However, there are large uncertainties in CO2 emission inventories, mainly because of imperfections in bottom-up statistics and a lack of observations for validating emission fluxes, particularly over China. Here we tried to constrain East Asian CO2 emissions with GOSAT retrievals applying 4-Dvar GEOS-Chem and its adjoint model. We applied the inversion to only the cold season (November - February) in 2009 - 2010 since the summer monsoon and greater transboundary impacts in spring and fall greatly reduced the GOSAT retrievals. In the cold season, the a posteriori CO2 emissions over East Asia generally higher by 5 - 20%, particularly Northeastern China shows intensively higher in a posteriori emissions ( 20%), where the Chinese government is recently focusing on mitigating the air pollutants. In another hand, a posteriori emissions from Southern China are lower 10 - 25%. A posteriori emissions in Korea and Japan are mostly higher by 10 % except over Kyushu region. With our top-down estimates with 4-Dvar CO2 inversion, we will evaluate the current regional CO2 emissions inventories and potential uncertainties in the sectoral emissions. This study will help understand the quantitative information on anthropogenic CO2 emissions over East Asia and will give policy implications for the mitigation targets.

  1. Spatial variation of sediment mineralization supports differential CO2 emissions from a tropical hydroelectric reservoir

    Directory of Open Access Journals (Sweden)

    Simone Jaqueline Cardoso

    2013-04-01

    Full Text Available Substantial amounts of organic matter (OM from terrestrial ecosystems are buried as sediments in inland waters. It is still unclear to what extent this OM constitutes a sink of carbon, and how much of it is returned to the atmosphere upon mineralization to carbon dioxide (CO2. The construction of reservoirs affects the carbon cycle by increasing OM sedimentation at the regional scale. In this study we determine the OM mineralization in the sediment of three zones (river, transition and dam of a tropical hydroelectric reservoir in Brazil as well as identify the composition of the carbon pool available for mineralization. We measured sediment OC mineralization rates and related them to the composition of the OM, bacterial abundance and pCO2 of the surface water of the reservoir. Terrestrial OM was an important substrate for the mineralization. In the river and transition zones most of the OM was allochthonous (56 % and 48 %, respectively while the dam zone had the lowest allochthonous contribution (7 %. The highest mineralization rates were found in the transition zone (154.80 ± 33.50 mg C m-2 d-1 and the lowest in the dam (51.60 ± 26.80 mg C m-2 d-1. Moreover, mineralization rates were significantly related to bacterial abundance (r2 = 0.50, p < 0.001 and pCO2 in the surface water of the reservoir (r2 = 0.73, p < 0.001. The results indicate that allochthonous OM has different contributions to sediment mineralization in the three zones of the reservoir. Further, the sediment mineralization, mediated by heterotrophic bacteria metabolism, significantly contributes to CO2 supersaturation in the water column, resulting in higher pCO2 in the river and transition zones in comparison with the dam zone, affecting greenhouse gas emission estimations from hydroelectric reservoirs.

  2. Reduction of emissions and geological storage of CO2. Innovation an industrial stakes

    International Nuclear Information System (INIS)

    Mandil, C.; Podkanski, J.; Socolow, R.; Dron, D.; Reiner, D.; Horrocks, P.; Fernandez Ruiz, P.; Dechamps, P.; Stromberg, L.; Wright, I.; Gazeau, J.C.; Wiederkehr, P.; Morcheoine, A.; Vesseron, P.; Feron, P.; Feraud, A.; Torp, N.T.; Christensen, N.P.; Le Thiez, P.; Czernichowski, I.; Hartman, J.; Roulet, C.; Roberts, J.; Zakkour, P.; Von Goerne, G.; Armand, R.; Allinson, G.; Segalen, L.; Gires, J.M.; Metz, B.; Brillet, B.

    2005-01-01

    An international symposium on the reduction of emissions and geological storage of CO 2 was held in Paris from 15 to 16 September 2005. The event, jointly organized by IFP, ADEME and BRGM, brought together over 400 people from more than 25 countries. It was an opportunity to review the international stakes related to global warming and also to debate ways of reducing CO 2 emissions, taking examples from the energy and transport sectors. The last day was dedicated to technological advances in the capture and geological storage of CO 2 and their regulatory and economic implications. This document gathers the available transparencies and talks presented during the colloquium: Opening address by F. Loos, French Minister-delegate for Industry; Session I - Greenhouse gas emissions: the international stakes. Outlook for global CO 2 emissions. The global and regional scenarios: Alternative scenarios for energy use and CO 2 emissions until 2050 by C. Mandil and J. Podkanski (IEA), The stabilization of CO 2 emissions in the coming 50 years by R. Socolow (Princeton University). Evolution of the international context: the stakes and 'factor 4' issues: Costs of climate impacts and ways towards 'factor 4' by D. Dron (ENS Mines de Paris), CO 2 emissions reduction policy: the situation in the United States by D. Reiner (MIT/Cambridge University), Post-Kyoto scenarios by P. Horrocks (European Commission), Possibilities for R and D in CO 2 capture and storage in the future FP7 program by P. Fernandez Ruiz and P. Dechamps (European Commission). Session II - CO 2 emission reductions in the energy and transport sectors. Reducing CO 2 emissions during the production and conversion of fossil energies (fixed installations): Combined cycles using hydrogen by G. Haupt (Siemens), CO 2 emission reductions in the oil and gas industry by I. Wright (BP). Reducing CO 2 emissions in the transport sector: Sustainable transport systems by P. Wiederkehr (EST International), The prospects for reducing

  3. Evolutionary History of Atmospheric CO2 during the Late Cenozoic from Fossilized Metasequoia Needles.

    Directory of Open Access Journals (Sweden)

    Yuqing Wang

    Full Text Available The change in ancient atmospheric CO2 concentrations provides important clues for understanding the relationship between the atmospheric CO2 concentration and global temperature. However, the lack of CO2 evolution curves estimated from a single terrestrial proxy prevents the understanding of climatic and environmental impacts due to variations in data. Thus, based on the stomatal index of fossilized Metasequoia needles, we reconstructed a history of atmospheric CO2 concentrations from middle Miocene to late Early Pleistocene when the climate changed dramatically. According to this research, atmospheric CO2 concentration was stabile around 330-350 ppmv in the middle and late Miocene, then it decreased to 278-284 ppmv during the Late Pliocene and to 277-279 ppmv during the Early Pleistocene, which was almost the same range as in preindustrial time. According to former research, this is a time when global temperature decreased sharply. Our results also indicated that from middle Miocene to Pleistocene, global CO2 level decreased by more than 50 ppmv, which may suggest that CO2 decrease and temperature decrease are coupled.