WorldWideScience

Sample records for atmospheric aerosol desarrollo

  1. Atmospheric aerosol system: An overview

    International Nuclear Information System (INIS)

    Prospero, J.M.; Charlson, R.J.; Mohnen, V.; Jaenicke, R.; Delany, A.C.; Moyers, J.; Zoller, W.; Rahn, K.

    1983-01-01

    Aerosols could play a critical role in many processes which impact on our lives either indirectly (e.g., climate) or directly (e.g., health). However, our ability to assess these possible impacts is constrained by our limited knowledge of the physical and chemical properties of aerosols, both anthropogenic and natural. This deficiency is attributable in part to the fact that aerosols are the end product of a vast array of chemical and physical processes. Consequently, the properties of the aerosol can exhibit a great deal of variability in both time and space. Furthermore, most aerosol studies have focused on measurements of a single aerosol characteristic such as composition or size distribution. Such information is generally not useful for the assessment of impacts because the degree of impact may depend on the integral properties of the aerosol, for example, the aerosol composition as a function of particle size. In this overview we discuss recent work on atmospheric aerosols that illustrates the complex nature of the aerosol chemical and physical system, and we suggest strategies for future research. A major conclusion is that man has had a great impact on the global budgets of certain species, especially sulfur and nitrogen, that play a dominant role in the atmospheric aerosol system. These changes could conceivably affect climate. Large-scale impacts are implied because it has recently been demonstrated that natural and pollutant aerosol episodes can be propagated over great distances. However, at present there is no evidence linking anthropogenic activities with a persistent increase in aerosol concentrations on a global scale. A major problem in assessing man's impact on the atmospheric aerosol system and on global budgets is the absence of aerosol measurements in remote marine and continental areas

  2. Lidar investigations of atmospheric aerosols over Sofia

    International Nuclear Information System (INIS)

    Dreischuh, T.; Deleva, A.; Peshev, Z.; Grigorov, I.; Kolarov, G.; Stoyanov, D.

    2016-01-01

    An overview is given of the laser remote sensing of atmospheric aerosols and related processes over the Sofia area performed in the Institute of Electronics, Bulgarian Academy of Sciences, during the last three years. Results from lidar investigations of the optical characteristics of atmospheric aerosols obtained in the frame of the European Aerosol Research Lidar Network, as well as from the lidar mapping of near-surface aerosol fields for remote monitoring of atmospheric pollutants are presented and discussed in this paper.

  3. Natural and Anthropogenic Influences on Atmospheric Aerosol Variability

    Energy Technology Data Exchange (ETDEWEB)

    Asmi, A.

    2012-07-01

    Aerosol particles are everywhere in the atmosphere. They are a key factor in many important processes in the atmosphere, including cloud formation, scattering of incoming solar radiation and air chemistry. The aerosol particles have relatively short lifetimes in lower atmosphere, typically from days to weeks, and thus they have a high spatial and temporal variability. This thesis concentrates on the extent and reasons of sub-micron aerosol particle variability in the lower atmosphere, using both global atmospheric models and analysis of observational data. Aerosol number size distributions in the lower atmosphere are affected strongly by the new particle formation. Perhaps more importantly, a strong influence new particle formation is also evident in the cloud condensation nuclei (CCN) concentrations, suggesting a major role of the sulphuric acid driven new particle formation in the climate system. In this thesis, the sub-micron aerosol number size distributions in the European regional background air were characterized for the first time from consistent, homogenized and comparable datasets. Some recent studies have suggested that differences in aerosol emissions between weekdays could also affect the weather via aerosol-cloud interactions. In this thesis, the weekday-to-weekday variation of CCN sized aerosol number concentrations in Europe were found to be much smaller than expected from earlier studies, based on particle mass measurements. This result suggests that a lack of week-day variability in meteorology is not necessarily a sign of weak aerosol-cloud interactions. An analysis of statistically significant trends in past decades of measured aerosol number concentrations from Europe, North America, Pacific islands and Antarctica generally show decreases in concentrations. The analysis of these changes show that a potential explanation for the decreasing trends is the general reduction of anthropogenic emissions, especially SO{sub 2}, although a combination of

  4. Aerosols radioactivity in the Bratislava atmosphere

    International Nuclear Information System (INIS)

    Sykora, I.; Chudy, M.; Durana, L.; Holy, K.; Meresova, J.

    2001-01-01

    In our laboratory we measured temporal variation of 7 Be concentration in the atmosphere in period 1977 -1994 years. The aerosols were collected through every month at Hydrometeorological Institute in Bratislava-Koliba, latitude 48 grad 10' and altitude 286 m above sea level. Since end of year 2000 we have started to continue monitoring radioactivity of atmosphere aerosols in new locality in Bratislava-Mlynska dolina. Beside 7 Be we measured also 210 Pb radionuclide aerosols concentration. For measured values 7 Be concentrations are considered corrections for decay radionuclide during the time of filters collection, time between end of collection and measurement and decay during the time of measurement. Obtained results for 7 Be concentrations in aerosols shows seasonal summer maximum, but for 210 Pb concentration in aerosols the seasonal variations are not evident. The temporal variations of this radionuclide which is originated in ground-level atmosphere are more sensitive on meteorological factors and can be also influenced by the industrial activity. For better understanding is needed long term monitoring. (authors)

  5. Long term atmospheric aerosol characterization in the Amazon Basin

    Science.gov (United States)

    Artaxo, Paulo; Gerab, Fábio; Yamasoe, Marcia A.

    This chapter presents a characterization of atmospheric aerosols collected in different places in the Amazon Basin. Both the biogenic aerosol emission from the forest and the particulate material which is emitted to the atmosphere due to the large scale man-made burns during the dry season were studied. The samples were collected during a three year period at three different locations in the Amazon (Cuiabá, Alta Floresta and Serra do Navio), using stacked filter units. Aerosol samples were also collected directly over fires of cerrado vegetation and tropical primary forest burns The samples were analyzed using several techniques for a number of elements. Gravimetric analyses were used to determine the total atmospheric aerosol concentration. Multivariate statistical analysis was used in order to identify and characterize the sources of the atmospheric aerosol present in the sampled regions. Cerrado burning emissions were enriched compared to forest ones, specially for Cl, K and Zn. High atmospheric aerosol concentrations were observed in large amazonian areas due to emissions from man-made burns in the period from June to September. The emissions from burns dominate the fine fraction of the atmospheric aerosol with characteristic high contents of black carbon, S and K. Aerosols emitted in biomass burning process are correlated to the increase in the aerosol optical thickness of the atmosphere during the Amazonian dry season. The Serra do Navio aerosol is characterized by biogenic emissions with strong marine influence. The presence of trace elements characteristic of soil particulate associated with this marine contribution indicates the existence of aerosol transport from Africa to South America. Similar composition characteristics were observed in the biogenic emission aerosols from Serra do Navio and Alta Floresta.

  6. Airborne Atmospheric Aerosol Measurement System

    Science.gov (United States)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  7. Atmospheric and aerosol chemistry

    International Nuclear Information System (INIS)

    McNeill, V. Faye; Ariya, Parisa A.; McGill Univ. Montreal, QC

    2014-01-01

    This series presents critical reviews of the present position and future trends in modern chemical research. Short and concise reports on chemistry, each written by the world renowned experts. Still valid and useful after 5 or 10 years. More information as well as the electronic version of the whole content available at: springerlink.com. Christian George, Barbara D'Anna, Hartmut Herrmann, Christian Weller, Veronica Vaida, D. J. Donaldson, Thorsten Bartels-Rausch, Markus Ammann Emerging Areas in Atmospheric Photochemistry. Lisa Whalley, Daniel Stone, Dwayne Heard New Insights into the Tropospheric Oxidation of Isoprene: Combining Field Measurements, Laboratory Studies, Chemical Modelling and Quantum Theory. Neil M. Donahue, Allen L. Robinson, Erica R. Trump, Ilona Riipinen, Jesse H. Kroll Volatility and Aging of Atmospheric Organic Aerosol. P. A. Ariya, G. Kos, R. Mortazavi, E. D. Hudson, V. Kanthasamy, N. Eltouny, J. Sun, C. Wilde Bio-Organic Materials in the Atmosphere and Snow: Measurement and Characterization V. Faye McNeill, Neha Sareen, Allison N. Schwier Surface-Active Organics in Atmospheric Aerosols.

  8. Pathways, Impacts, and Policies on Severe Aerosol Injections into the Atmosphere: 2011 Severe Atmospheric Aerosols Events Conference

    KAUST Repository

    Weil, Martin

    2012-09-01

    The 2011 severe atmospheric events conference, held on August 11-12, 2011, Hamburg, Germany, discussed climatic and environmental changes as a result of various kinds of huge injections of aerosols into the atmosphere and the possible consequences for the world population. Various sessions of the conference dealt with different aspects of large aerosol injections and severe atmospheric aerosol events along the geologic time scale. A presentation about radiative heating of aerosols as a self-lifting mechanism in the Australian forest fires discussed the question of how the impact of tropical volcanic eruptions depends on the eruption season. H.-F. Graf showed that cloud-resolving plume models are more suitable to predict the volcanic plume height and dispersion than one-dimensional models. G. Stenchikov pointed out that the absorbing smoke plumes in the upper troposphere can be partially mixed into the lower stratosphere because of the solar heating and lofting effect.

  9. Pathways, Impacts, and Policies on Severe Aerosol Injections into the Atmosphere: 2011 Severe Atmospheric Aerosols Events Conference

    KAUST Repository

    Weil, Martin; Grassl, Hartmut; Hoshyaripour, Gholamali; Kloster, Silvia; Kominek, Jasmin; Misios, Stergios; Scheffran, Juergen; Starr, Steven; Stenchikov, Georgiy L.; Sudarchikova, Natalia; Timmreck, Claudia; Zhang, Dan; Kalinowski, Martin

    2012-01-01

    The 2011 severe atmospheric events conference, held on August 11-12, 2011, Hamburg, Germany, discussed climatic and environmental changes as a result of various kinds of huge injections of aerosols into the atmosphere and the possible consequences for the world population. Various sessions of the conference dealt with different aspects of large aerosol injections and severe atmospheric aerosol events along the geologic time scale. A presentation about radiative heating of aerosols as a self-lifting mechanism in the Australian forest fires discussed the question of how the impact of tropical volcanic eruptions depends on the eruption season. H.-F. Graf showed that cloud-resolving plume models are more suitable to predict the volcanic plume height and dispersion than one-dimensional models. G. Stenchikov pointed out that the absorbing smoke plumes in the upper troposphere can be partially mixed into the lower stratosphere because of the solar heating and lofting effect.

  10. Atmospheric residence times of continental aerosols

    International Nuclear Information System (INIS)

    Balkanski, Y.J.

    1991-01-01

    The global atmospheric distributions of Rn-222 are simulated with a three-dimensional model of atmospheric transport based on the meteorology of the NASA Goddard Institute for Space Studies (GISS) general circulation model. The short-lived radioactive gas Rn-222 (half-life = 3.8d) is emitted almost exclusively from land, at a relatively uniform rate; hence it is an excellent tracer of continental influences. Lead-210 is produced by decay of Rn-222 and immediately condenses to preexisting aerosol surfaces. It provides an excellent measure of aerosol residence times in the atmosphere because its source is accurately defined by the Rn-222 distribution. Results from the three-dimensional model are compared to measurements of Rn-222 and Pb-210 atmospheric concentrations to evaluate model's long-range transport over oceanic regions and to study the deposition mechanisms of atmospheric aerosols. Model results for Rn-222 are used to examine the long-range transport of continental air over two selected oceanic regions, the subantarctic Indian Ocean and the North Pacific. It is shown that the fast transport of air from southern Africa causes substantial continental pollution at southern mid-latitudes, a region usually regarded as pristine. Air over the North Pacific is heavily impacted by continental influences year round, but the altitude at which the transport occurs varies seasonally. Observations of aerosols at island sites, which are commonly used as diagnostics of continental influences, may be misleading because they do not account for influences at high altitude and because aerosols are efficiently scavenged by deposition during transport. The study of Pb-210 focuses on defining the residence times of submicron aerosols in the troposphere. Scavenging in wet convective updrafts is found to provide the dominant sink on a global scale

  11. Aerosol Properties of the Atmospheres of Extrasolar Giant Planets

    Energy Technology Data Exchange (ETDEWEB)

    Lavvas, P. [Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, Université de Reims Champagne Ardenne, Reims (France); Koskinen, T., E-mail: panayotis.lavvas@univ-reims.fr [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ (United States)

    2017-09-20

    We use a model of aerosol microphysics to investigate the impact of high-altitude photochemical aerosols on the transmission spectra and atmospheric properties of close-in exoplanets, such as HD 209458 b and HD 189733 b. The results depend strongly on the temperature profiles in the middle and upper atmospheres, which are poorly understood. Nevertheless, our model of HD 189733 b, based on the most recently inferred temperature profiles, produces an aerosol distribution that matches the observed transmission spectrum. We argue that the hotter temperature of HD 209458 b inhibits the production of high-altitude aerosols and leads to the appearance of a clearer atmosphere than on HD 189733 b. The aerosol distribution also depends on the particle composition, photochemical production, and atmospheric mixing. Due to degeneracies among these inputs, current data cannot constrain the aerosol properties in detail. Instead, our work highlights the role of different factors in controlling the aerosol distribution that will prove useful in understanding different observations, including those from future missions. For the atmospheric mixing efficiency suggested by general circulation models, we find that the aerosol particles are small (∼nm) and probably spherical. We further conclude that a composition based on complex hydrocarbons (soots) is the most likely candidate to survive the high temperatures in hot-Jupiter atmospheres. Such particles would have a significant impact on the energy balance of HD 189733 b’s atmosphere and should be incorporated in future studies of atmospheric structure. We also evaluate the contribution of external sources to photochemical aerosol formation and find that their spectral signature is not consistent with observations.

  12. Aerosolization and Atmospheric Transformation of Engineered Nanoparticles

    Science.gov (United States)

    Tiwari, Andrea J.

    While research on the environmental impacts of engineered nanoparticles (ENPs) is growing, the potential for them to be chemically transformed in the atmosphere has been largely ignored. The overall objective of this work was to assess the atmospheric transformation of carbonaceous nanoparticles (CNPs). The research focuses on C60 fullerene because it is an important member of the carbonaceous nanoparticle (CNP) family and is used in a wide variety of applications. The first specific objective was to review the potential of atmospheric transformations to alter the environmental impacts of CNPs. We described atmospheric processes that were likely to physically or chemically alter aerosolized CNPs and demonstrated their relevance to CNP behavior and toxicity in the aqueous and terrestrial environment. In order to investigate the transformations of CNP aerosols under controlled conditions, we developed an aerosolization technique that produces nano-scale aerosols without using solvents, which can alter the surface chemistry of the aerosols. We demonstrated the technique with carbonaceous (C60) and metal oxide (TiO2, CeO2) nanoparticle powders. All resulting aerosols exhibited unimodal size distributions and mode particle diameters below 100 nm. We used the new aerosolization technique to investigate the reaction between aerosolized C60 and atmospherically realistic levels of ozone (O3) in terms of reaction products, reaction rate, and oxidative stress potential. We identified C60O, C60O2, and C60O3 as products of the C60-O3 reaction. We demonstrated that the oxidative stress potential of C 60 may be enhanced by exposure to O3. We found the pseudo-first order reaction rate to be 9 x 10-6 to 2 x 10 -5 s-1, which is several orders of magnitude lower than the rate for several PAH species under comparable conditions. This research has demonstrated that a thorough understanding of atmospheric chemistry of ENPs is critical for accurate prediction of their environmental

  13. Atmospheric Residence Times of Continental Aerosols.

    Science.gov (United States)

    Balkanski, Yves Jacques

    The global atmospheric distributions of ^{222}Rn and ^{210 }Pb are simulated with a three-dimensional model of atmospheric transport based on the meteorology of the NASA GISS^1>=neral circulation model. The short-lived radioactive gas ^ {222}Rn (half-life = 3.8d) is emitted almost exclusively from land, at a relatively uniform rate; hence it is an excellent tracer of continental influences. Lead -210 is produced by decay of ^{222} Rn and immediately condenses to preexisting aerosol surfaces. It provides an excellent measure of aerosol residence times in the atmosphere because its source is accurately defined by the ^{222} Rn distribution. Results from the three-dimensional model are compared to measurements of ^ {222}Rn and ^{210 }Pb atmospheric concentrations to evaluate model's long-range transport over oceanic regions and to study the deposition mechanisms of atmospheric aerosols. Model results for ^{222} Rn are used to examine the long-range transport of continental air over two selected oceanic regions, the subantartic Indian Ocean and the North Pacific. It is shown that fast transport of air from southern Africa causes substantial continental pollution at southern mid-latitudes, a region usually regarded as pristine. Air over the North Pacific is heavily impacted by continental influences year round, but the altitude at which the transport occurs varies seasonally. Observations of aerosols at island sites, which are commonly used as diagnostics of continental influences, may be misleading because they do not account for influences at high altitude and because aerosols are efficiently scavenged by deposition during transport. The study of ^{210}Pb focuses on defining the residence times of submicron aerosols in the troposphere. Scavenging in wet convective updrafts is found to provide the dominant sink on a global scale. The globally averaged residence time for ^{210 }Pb-containing aerosols in the troposphere is 7 days. The average increase in residence time

  14. Present role of PIXE in atmospheric aerosol research

    Energy Technology Data Exchange (ETDEWEB)

    Maenhaut, Willy, E-mail: Willy.Maenhaut@UGent.be

    2015-11-15

    In the 1980s and 1990s nearly half of the elemental analyses of atmospheric aerosol samples were performed by PIXE. Since then, other techniques for elemental analysis became available and there has been a steady increase in studies on organic aerosol constituents and other aspects of aerosols, especially in the areas of nucleation (new particle formation), optical properties, and the role of aerosol particles in cloud formation and properties. First, a brief overview and discussion is given of the developments and trends in atmospheric aerosol analysis and research of the past three decades. Subsequently, it is indicated that there is still invaluable work to be done by PIXE in atmospheric aerosol research, especially if one teams up with other aerosol researchers and performs complementary measurements, e.g., on small aerosol samples that are taken with high-time resolution. Fine examples of such research are the work done by the Lund group in the CARIBIC aircraft studies and the analysis of circular streaker samples by the Florence PIXE group. These and other examples are presented and other possibilities of PIXE are indicated.

  15. Atmospheric and aerosol chemistry

    Energy Technology Data Exchange (ETDEWEB)

    McNeill, V. Faye [Columbia Univ., New York, NY (United States). Dept. of Chemical Engineering; Ariya, Parisa A. (ed.) [McGill Univ. Montreal, QC (Canada). Dept. of Chemistry; McGill Univ. Montreal, QC (Canada). Dept. of Atmospheric and Oceanic Sciences

    2014-09-01

    This series presents critical reviews of the present position and future trends in modern chemical research. Short and concise reports on chemistry, each written by the world renowned experts. Still valid and useful after 5 or 10 years. More information as well as the electronic version of the whole content available at: springerlink.com. Christian George, Barbara D'Anna, Hartmut Herrmann, Christian Weller, Veronica Vaida, D. J. Donaldson, Thorsten Bartels-Rausch, Markus Ammann Emerging Areas in Atmospheric Photochemistry. Lisa Whalley, Daniel Stone, Dwayne Heard New Insights into the Tropospheric Oxidation of Isoprene: Combining Field Measurements, Laboratory Studies, Chemical Modelling and Quantum Theory. Neil M. Donahue, Allen L. Robinson, Erica R. Trump, Ilona Riipinen, Jesse H. Kroll Volatility and Aging of Atmospheric Organic Aerosol. P. A. Ariya, G. Kos, R. Mortazavi, E. D. Hudson, V. Kanthasamy, N. Eltouny, J. Sun, C. Wilde Bio-Organic Materials in the Atmosphere and Snow: Measurement and Characterization V. Faye McNeill, Neha Sareen, Allison N. Schwier Surface-Active Organics in Atmospheric Aerosols.

  16. Dust in the Sky: Atmospheric Composition. Modeling of Aerosol Optical Thickness

    Science.gov (United States)

    Chin, Mian; Ginoux, Paul; Kinne, Stefan; Torres, Omar; Holben, Brent; Duncan, Bryan; Martin, Randall; Logan, Jennifer; Higurashi, Akiko; Nakajima, Teruyuki

    2000-01-01

    Aerosol is any small particle of matter that rests suspended in the atmosphere. Natural sources, such as deserts, create some aerosols; consumption of fossil fuels and industrial activity create other aerosols. All the microscopic aerosol particles add up to a large amount of material floating in the atmosphere. You can see the particles in the haze that floats over polluted cities. Beyond this visible effect, aerosols can actually lower temperatures. They do this by blocking, or scattering, a portion of the sun's energy from reaching the surface. Because of this influence, scientists study the physical properties of atmospheric aerosols. Reliable numerical models for atmospheric aerosols play an important role in research.

  17. Origins of atmospheric aerosols. Basic concepts on aerosol main physical properties; L`aerosol atmospherique: ses origines quelques notions sur les principales proprietes physiques des aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Renoux, A. [Paris-12 Univ., 94 - Creteil (France). Laboratoire de Physique des aerosols et de transferts des contaminations

    1996-12-31

    Natural and anthropogenic sources of atmospheric aerosols are reviewed and indications of their concentrations and granulometry are given. Calculation of the lifetime of an atmospheric aerosol of a certain size is presented and the various modes of aerosol granulometry and their relations with photochemical and physico-chemical processes in the atmosphere are discussed. The main physical, electrical and optical properties of aerosols are also presented: diffusion coefficient, dynamic mobility and relaxation time, Stokes number, limit rate of fall, electrical mobility, optical diffraction

  18. Modelization and numerical simulation of atmospheric aerosols dynamics

    International Nuclear Information System (INIS)

    Debry, Edouard

    2004-01-01

    Chemical-transport models are now able to describe in a realistic way gaseous pollutants behavior in the atmosphere. Nevertheless atmospheric pollution also exists as a fine suspended particles, called aerosols which interact with gaseous phase, solar radiation, and have their own dynamic behavior. The goal of this thesis is the modelization and numerical simulation of the General Dynamic Equation of aerosols (GDE). Part I deals with some theoretical aspects of aerosol modelization. Part II is dedicated to the building of one size resolved aerosol model (SIREAM). In part III we perform the reduction of this model in order to use it in dispersion models as POLAIR3D. Several modelization issues are still opened: organic aerosol matter, externally mixed aerosols, coupling with turbulent mixing, and nano-particles. (author) [fr

  19. PIXE analysis of atmospheric aerosol and hydrometeor particles

    International Nuclear Information System (INIS)

    Groeneveld, K.O.; Hofmann, D.; Georgii, H.W.

    1993-01-01

    Atmospheric aerosol and hydrometeor particles act decisively on our weather, climate and thereby on all living conditions on Earth. Particle induced X-ray emission (PIXE) analysis has been demonstrated to be an extremely valuable tool for quantitative and qualitative elemental analysis of aerosol particles and hydrometeors. Reliability and detection limits of PIXE are determined, including comparison with other techniques. Aerosol particles are collected on a global scale in ground stations, or by ships and by planes. Correlation between wind direction and elemental composition of atmospheric aerosols, elemental particle size distributions of the tropospheric aerosol, aerosol elemental composition in particle size fractions in the case of long range transport, transport pathways of pollution aerosol, and trace element content precipitation are discussed. Hydrometeors were studied in the form of rain, snow, fog, dew and frost. The time dependence of the melting process of snow was studied in detail, in particular the washout phenomena of impurity ions. (orig.)

  20. Remote sensing for studying atmospheric aerosols in Malaysia

    Science.gov (United States)

    Kanniah, Kasturi D.; Kamarul Zaman, Nurul A. F.

    2015-10-01

    The aerosol system is Southeast Asia is complex and the high concentrations are due to population growth, rapid urbanization and development of SEA countries. Nevertheless, only a few studies have been carried out especially at large spatial extent and on a continuous basis to study atmospheric aerosols in Malaysia. In this review paper we report the use of remote sensing data to study atmospheric aerosols in Malaysia and document gaps and recommend further studies to bridge the gaps. Satellite data have been used to study the spatial and seasonal patterns of aerosol optical depth (AOD) in Malaysia. Satellite data combined with AERONET data were used to delineate different types and sizes of aerosols and to identify the sources of aerosols in Malaysia. Most of the aerosol studies performed in Malaysia was based on station-based PM10 data that have limited spatial coverage. Thus, satellite data have been used to extrapolate and retrieve PM10 data over large areas by correlating remotely sensed AOD with ground-based PM10. Realising the critical role of aerosols on radiative forcing numerous studies have been conducted worldwide to assess the aerosol radiative forcing (ARF). Such studies are yet to be conducted in Malaysia. Although the only source of aerosol data covering large region in Malaysia is remote sensing, satellite observations are limited by cloud cover, orbital gaps of satellite track, etc. In addition, relatively less understanding is achieved on how the atmospheric aerosol interacts with the regional climate system. These gaps can be bridged by conducting more studies using integrated approach of remote sensing, AERONET and ground based measurements.

  1. Comprehensive Measurement of Atmospheric Aerosols with a Wide Range Aerosol Spectrometer

    International Nuclear Information System (INIS)

    Keck, L; Pesch, M; Grimm, H

    2011-01-01

    A wide range aerosol spectrometer (WRAS) was used for comprehensive long term measurements of aerosol size distributions. The system combines the results of an optical aerosol spectrometer with the results of a Scanning Mobility Particle Sizer (SMPS) to record essentially the full size range (5 nm - 32 μm) of atmospheric particles in 72 channels. Measurements were carried out over one year (2009) at the Global Atmospheric Watch (GAW)-Station Hohenpeissenberg, Bavaria. Total particle number concentrations obtained from the aerosol size distributions were compared to the total number concentrations measured by a Condensation Particle Counter (CPC). The comparison showed an excellent agreement of the data. The high time resolution of 5 minutes allows the combination of the measured size distributions with meteorological data and correlations to gaseous pollutants (CO, NOx and SO2). A good correlation of particle number and CO concentrations was found for long distance transported small particles, which were probably mainly soot particles. Correlations to NOx were observed for aerosols from local sources such as traffic emissions. The formation of secondary aerosols from gaseous precursors was also observed. Episodes of relatively high concentration of particles in the range of 2-3 μm were probably caused by pollen.

  2. Characterization of regional atmospheric aerosols over Hungary by PIXE elemental analysis

    International Nuclear Information System (INIS)

    Koltay, E.; Szabo, G.; Borbely Kiss, I.; Somorjai, E.; Kiss, A.Z.

    1994-01-01

    Studying the characteristic features of atmospheric aerosols emitted by natural and anthropogenic sources is of basic importance for a detailed understanding of the physics and chemistry of the atmosphere. Environmental pollution by atmospheric aerosols and their impact can be tested in the same way, too. The separation of natural and anthropogenic components of the aerosol can be done through enrichment factors and size distribution curves deduced from analytical information. The Particle Induced X-ray Emission (PIXE) technique has been applied in aerosol studies by the authors. Results obtained on atmospheric aerosols collected over Hungary and presented in terms of concentrations, enrichment factors, regional signatures, deposition velocities, transport properties and apportionment of sources illustrate the scope and proportions of the potential contribution of PIXE to the methodology of atmospheric aerosol studies. Continued activity planned in the framework of the present CRP may widen the scope of the investigations mainly in the field of size-fractioned sampling and - possibly - in the direction of individual characterization of aerosol particles. (author). 14 refs

  3. Organic aerosol formation during the atmospheric degradation of toluene.

    Science.gov (United States)

    Hurley, M D; Sokolov, O; Wallington, T J; Takekawa, H; Karasawa, M; Klotz, B; Barnes, I; Becker, K H

    2001-04-01

    Organic aerosol formation during the atmospheric oxidation of toluene was investigated using smog chamber systems. Toluene oxidation was initiated by the UV irradiation of either toluene/air/NOx or toluene/air/CH3ONO/NO mixtures. Aerosol formation was monitored using scanning mobility particle sizers and toluene loss was monitored by in-situ FTIR spectroscopy or GC-FID techniques. The experimental results show that the reaction of OH radicals, NO3 radicals and/or ozone with the first generation products of toluene oxidation are sources of organic aerosol during the atmospheric oxidation of toluene. The aerosol results fall into two groups, aerosol formed in the absence and presence of ozone. An analytical expression for aerosol formation is developed and values are obtained for the yield of the aerosol species. In the absence of ozone the aerosol yield, defined as aerosol formed per unit toluene consumed once a threshold for aerosol formation has been exceeded, is 0.075 +/- 0.004. In the presence of ozone the aerosol yield is 0.108 +/- 0.004. This work provides experimental evidence and a simple theory confirming the formation of aerosol from secondary reactions.

  4. Extraction and Characterization of Surfactants from Atmospheric Aerosols.

    Science.gov (United States)

    Nozière, Barbara; Gérard, Violaine; Baduel, Christine; Ferronato, Corinne

    2017-04-21

    Surface-active compounds, or surfactants, present in atmospheric aerosols are expected to play important roles in the formation of liquid water clouds in the Earth's atmosphere, a central process in meteorology, hydrology, and for the climate system. But because specific extraction and characterization of these compounds have been lacking for decades, very little is known on their identity, properties, mode of action and origins, thus preventing the full understanding of cloud formation and its potential links with the Earth's ecosystems. In this paper we present recently developed methods for 1) the targeted extraction of all the surfactants from atmospheric aerosol samples and for the determination of 2) their absolute concentrations in the aerosol phase and 3) their static surface tension curves in water, including their Critical Micelle Concentration (CMC). These methods have been validated with 9 references surfactants, including anionic, cationic and non-ionic ones. Examples of results are presented for surfactants found in fine aerosol particles (diameter <1 μm) collected at a coastal site in Croatia and suggestions for future improvements and other characterizations than those presented are discussed.

  5. Do atmospheric aerosols form glasses?

    Directory of Open Access Journals (Sweden)

    D. A. Pedernera

    2008-09-01

    Full Text Available A new process is presented by which water soluble organics might influence ice nucleation, ice growth, chemical reactions and water uptake of aerosols in the upper troposphere: the formation of glassy aerosol particles. Glasses are disordered amorphous (non-crystalline solids that form when a liquid is cooled without crystallization until the viscosity increases exponentially and molecular diffusion practically ceases. The glass transition temperatures, Tg, homogeneous ice nucleation temperatures, Thom, and ice melting temperatures, Tm, of various aqueous inorganic, organic and multi-component solutions are investigated with a differential scanning calorimeter. The investigated solutes are: various polyols, glucose, raffinose, levoglucosan, an aromatic compound, sulfuric acid, ammonium bisulfate and mixtures of dicarboxylic acids (M5, of dicarboxylic acids and ammonium sulfate (M5AS, of two polyols, of glucose and ammonium nitrate, and of raffinose and M5AS. The results indicate that aqueous solutions of the investigated inorganic solutes show Tg values that are too low to be of atmospheric importance. In contrast, aqueous organic and multi-component solutions readily form glasses at low but atmospherically relevant temperatures (≤230 K. To apply the laboratory data to the atmospheric situation, the measured phase transition temperatures were transformed from a concentration to a water activity scale by extrapolating water activities determined between 252 K and 313 K to lower temperatures. The obtained state diagrams reveal that the higher the molar mass of the aqueous organic or multi-component solutes, the higher Tg of their respective solutions at a given water activity. To a lesser extent, Tg also depends on the hydrophilicity of the organic solutes. Therefore, aerosol particles containing larger (≳150 g mol−1 and

  6. Volatile organic compounds and secondary organic aerosol in the Earth's atmosphere

    International Nuclear Information System (INIS)

    Galbally, Ian

    2007-01-01

    Full text: Recent research, when considered as a whole, suggests that a substantial fraction of both gas-phase and aerosol atmospheric organics have not been, or have very rarely been, directly measured. A review of the global budget for organic gases shows that we cannot account for the loss of approximately half the non-methane organic carbon entering the atmosphere. We suggest that this unaccounted-for loss most likely occurs through formation of secondary organic aerosols (SOAs), indicating that the source for these aerosols is an order of magnitude larger than current estimates. There is evidence that aged secondary organic aerosol can participate in both direct and indirect (cloud modifying) radiative forcing and that this influence may change with other global climate change. Even though our knowledge of the organic composition of the atmosphere is limited, these compounds clearly influence the reactive chemistry of the atmosphere and the formation, composition, and climate impact of aerosols A major challenge in the coming decade of atmospheric chemistry research will be to elucidate the sources, structure, chemistry, fate and influences of these clearly ubiquitous yet poorly constrained organic atmospheric constituents

  7. Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research

    Energy Technology Data Exchange (ETDEWEB)

    Moffet, Ryan C.; Tivanski, Alexei V.; Gilles, Mary K.

    2011-01-20

    Scanning transmission x-ray microscopy (STXM) combines x-ray microscopy and near edge x-ray absorption fine structure spectroscopy (NEXAFS). This combination provides spatially resolved bonding and oxidation state information. While there are reviews relevant to STXM/NEXAFS applications in other environmental fields (and magnetic materials) this chapter focuses on atmospheric aerosols. It provides an introduction to this technique in a manner approachable to non-experts. It begins with relevant background information on synchrotron radiation sources and a description of NEXAFS spectroscopy. The bulk of the chapter provides a survey of STXM/NEXAFS aerosol studies and is organized according to the type of aerosol investigated. The purpose is to illustrate the current range and recent growth of scientific investigations employing STXM-NEXAFS to probe atmospheric aerosol morphology, surface coatings, mixing states, and atmospheric processing.

  8. Desorption atmospheric pressure photoionization high-resolution mass spectrometry: a complementary approach for the chemical analysis of atmospheric aerosols.

    Science.gov (United States)

    Parshintsev, Jevgeni; Vaikkinen, Anu; Lipponen, Katriina; Vrkoslav, Vladimir; Cvačka, Josef; Kostiainen, Risto; Kotiaho, Tapio; Hartonen, Kari; Riekkola, Marja-Liisa; Kauppila, Tiina J

    2015-07-15

    On-line chemical characterization methods of atmospheric aerosols are essential to increase our understanding of physicochemical processes in the atmosphere, and to study biosphere-atmosphere interactions. Several techniques, including aerosol mass spectrometry, are nowadays available, but they all suffer from some disadvantages. In this research, desorption atmospheric pressure photoionization high-resolution (Orbitrap) mass spectrometry (DAPPI-HRMS) is introduced as a complementary technique for the fast analysis of aerosol chemical composition without the need for sample preparation. Atmospheric aerosols from city air were collected on a filter, desorbed in a DAPPI source with a hot stream of toluene and nitrogen, and ionized using a vacuum ultraviolet lamp at atmospheric pressure. To study the applicability of the technique for ambient aerosol analysis, several samples were collected onto filters and analyzed, with the focus being on selected organic acids. To compare the DAPPI-HRMS data with results obtained by an established method, each filter sample was divided into two equal parts, and the second half of the filter was extracted and analyzed by liquid chromatography/mass spectrometry (LC/MS). The DAPPI results agreed with the measured aerosol particle number. In addition to the targeted acids, the LC/MS and DAPPI-HRMS methods were found to detect different compounds, thus providing complementary information about the aerosol samples. DAPPI-HRMS showed several important oxidation products of terpenes, and numerous compounds were tentatively identified. Thanks to the soft ionization, high mass resolution, fast analysis, simplicity and on-line applicability, the proposed methodology has high potential in the field of atmospheric research. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Chemical Thermodynamics of Aqueous Atmospheric Aerosols: Modeling and Microfluidic Measurements

    Science.gov (United States)

    Nandy, L.; Dutcher, C. S.

    2017-12-01

    Accurate predictions of gas-liquid-solid equilibrium phase partitioning of atmospheric aerosols by thermodynamic modeling and measurements is critical for determining particle composition and internal structure at conditions relevant to the atmosphere. Organic acids that originate from biomass burning, and direct biogenic emission make up a significant fraction of the organic mass in atmospheric aerosol particles. In addition, inorganic compounds like ammonium sulfate and sea salt also exist in atmospheric aerosols, that results in a mixture of single, double or triple charged ions, and non-dissociated and partially dissociated organic acids. Statistical mechanics based on a multilayer adsorption isotherm model can be applied to these complex aqueous environments for predictions of thermodynamic properties. In this work, thermodynamic analytic predictive models are developed for multicomponent aqueous solutions (consisting of partially dissociating organic and inorganic acids, fully dissociating symmetric and asymmetric electrolytes, and neutral organic compounds) over the entire relative humidity range, that represent a significant advancement towards a fully predictive model. The model is also developed at varied temperatures for electrolytes and organic compounds the data for which are available at different temperatures. In addition to the modeling approach, water loss of multicomponent aerosol particles is measured by microfluidic experiments to parameterize and validate the model. In the experimental microfluidic measurements, atmospheric aerosol droplet chemical mimics (organic acids and secondary organic aerosol (SOA) samples) are generated in microfluidic channels and stored and imaged in passive traps until dehydration to study the influence of relative humidity and water loss on phase behavior.

  10. Determination of atmospheric aerosol properties over land using satellite measurements

    NARCIS (Netherlands)

    Kokhanovsky, A.A.; Leeuw, G. de

    2009-01-01

    Mostly, aerosol properties are poorly understood because the aerosol properties are very sparse. The first workshop on the determination of atmospheric aerosol properties over land using satellite measurements is convened in Bremen, Germany. In this workshop, the topics of discussions included a

  11. Aerosol counterflow two-jets unit for continuous measurement of the soluble fraction of atmospheric aerosols.

    Science.gov (United States)

    Mikuska, Pavel; Vecera, Zbynek

    2005-09-01

    A new type of aerosol collector employing a liquid at laboratory temperature for continuous sampling of atmospheric particles is described. The collector operates on the principle of a Venturi scrubber. Sampled air flows at high linear velocity through two Venturi nozzles "atomizing" the liquid to form two jets of a polydisperse aerosol of fine droplets situated against each other. Counterflow jets of droplets collide, and within this process, the aerosol particles are captured into dispersed liquid. Under optimum conditions (air flow rate of 5 L/min and water flow rate of 2 mL/min), aerosol particles down to 0.3 microm in diameter are quantitatively collected in the collector into deionized water while the collection efficiency of smaller particles decreases. There is very little loss of fine aerosol within the aerosol counterflow two-jets unit (ACTJU). Coupling of the aerosol collector with an annular diffusion denuder located upstream of the collector ensures an artifact-free sampling of atmospheric aerosols. Operation of the ACTJU in combination with on-line detection devices allows in situ automated analysis of water-soluble aerosol species (e.g., NO2-, NO3-)with high time resolution (as high as 1 s). Under the optimum conditions, the limit of detection for particulate nitrite and nitrate is 28 and 77 ng/m(3), respectively. The instrument is sufficiently rugged for its application at routine monitoring of aerosol composition in the real time.

  12. Modification of combustion aerosols in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Weingartner, E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-07-01

    Combustion aerosols particles are released on large scale into the atmosphere in the industrialized regions as well as in the tropics (by wood fires). The particles are subjected to various aging processes which depend on the size, morphology, and chemical composition of the particles. The interaction of combustion particles with sunlight and humidity as well as adsorption and desorption of volatile material to or from the particles considerably changes their physical and chemical properties and thus their residence time in the atmosphere. This is of importance because combustion particles are known to have a variety of health effects on people. Moreover, atmospheric aerosol particles have an influence on climate, directly through the reflection and absorption of solar radiation and indirectly through modifying the optical properties and lifetime of clouds. In a first step, a field experiment was carried out to study the sources and characteristics of combustion aerosols that are emitted from vehicles in a road tunnel. It was found that most of the fine particles were tail pipe emissions of diesel powered vehicles. The calculation shows that on an average these vehicles emit about 300 mg fine particulate matter per driven kilometer. This emission factor is at least 100 times higher than the mean emission factor estimated for gasoline powered vehicles. Furthermore, it is found that during their residence time in the tunnel, the particles undergo significant changes: The particles change towards a more compact structure. The conclusion is reached that this is mainly due to adsorption of volatile material from the gas phase to the particle surface. In the atmosphere, the life cycle as well as the radiative and chemical properties of an aerosol particle is strongly dependent on its response to humidity. Therefore the hygroscopic behavior of combustion particles emitted from single sources (i.e. from a gasoline and a diesel engine) were studied in laboratory experiments.

  13. Atmospheric Aerosol Properties and Climate Impacts

    Science.gov (United States)

    Chin, Mian; Kahn, Ralph A.; Remer, Lorraine A.; Yu, Hongbin; Rind, David; Feingold, Graham; Quinn, Patricia K.; Schwartz, Stephen E.; Streets, David G.; DeCola, Phillip; hide

    2009-01-01

    This report critically reviews current knowledge about global distributions and properties of atmospheric aerosols, as they relate to aerosol impacts on climate. It assesses possible next steps aimed at substantially reducing uncertainties in aerosol radiative forcing estimates. Current measurement techniques and modeling approaches are summarized, providing context. As a part of the Synthesis and Assessment Product in the Climate Change Science Program, this assessment builds upon recent related assessments, including the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4, 2007) and other Climate Change Science Program reports. The objectives of this report are (1) to promote a consensus about the knowledge base for climate change decision support, and (2) to provide a synthesis and integration of the current knowledge of the climate-relevant impacts of anthropogenic aerosols for policy makers, policy analysts, and general public, both within and outside the U.S government and worldwide.

  14. Mapping atmospheric aerosols with a citizen science network of smartphone spectropolarimeters

    NARCIS (Netherlands)

    Snik, F.; Rietjens, J.H.H.; Apituley, A.; Volten, H.; Mijling, B.; Di Noia, A.; Heikamp, S.; Heinsbroek, R.C.; Hasekamp, O.P.; Smit. , J.M.; Vonk, J.; Stam, D.M.; van Harten, G.; de Boer, J.; Keller, C.U.; iSPEX citizen scientists; Stuut, J.B.W.; Wernand, M.R.; Philippart, C.J.M.

    2014-01-01

    To assess the impact of atmospheric aerosols on health, climate, and air traffic, aerosol properties must be measured with fine spatial and temporal sampling. This can be achieved by actively involving citizens and the technology they own to form an atmospheric measurement network. We establish this

  15. Aerosol influence on energy balance of the middle atmosphere of Jupiter.

    Science.gov (United States)

    Zhang, Xi; West, Robert A; Irwin, Patrick G J; Nixon, Conor A; Yung, Yuk L

    2015-12-22

    Aerosols are ubiquitous in planetary atmospheres in the Solar System. However, radiative forcing on Jupiter has traditionally been attributed to solar heating and infrared cooling of gaseous constituents only, while the significance of aerosol radiative effects has been a long-standing controversy. Here we show, based on observations from the NASA spacecraft Voyager and Cassini, that gases alone cannot maintain the global energy balance in the middle atmosphere of Jupiter. Instead, a thick aerosol layer consisting of fluffy, fractal aggregate particles produced by photochemistry and auroral chemistry dominates the stratospheric radiative heating at middle and high latitudes, exceeding the local gas heating rate by a factor of 5-10. On a global average, aerosol heating is comparable to the gas contribution and aerosol cooling is more important than previously thought. We argue that fractal aggregate particles may also have a significant role in controlling the atmospheric radiative energy balance on other planets, as on Jupiter.

  16. Multiangle Implementation of Atmospheric Correction (MAIAC): 2. Aerosol Algorithm

    Science.gov (United States)

    Lyapustin, A.; Wang, Y.; Laszlo, I.; Kahn, R.; Korkin, S.; Remer, L.; Levy, R.; Reid, J. S.

    2011-01-01

    An aerosol component of a new multiangle implementation of atmospheric correction (MAIAC) algorithm is presented. MAIAC is a generic algorithm developed for the Moderate Resolution Imaging Spectroradiometer (MODIS), which performs aerosol retrievals and atmospheric correction over both dark vegetated surfaces and bright deserts based on a time series analysis and image-based processing. The MAIAC look-up tables explicitly include surface bidirectional reflectance. The aerosol algorithm derives the spectral regression coefficient (SRC) relating surface bidirectional reflectance in the blue (0.47 micron) and shortwave infrared (2.1 micron) bands; this quantity is prescribed in the MODIS operational Dark Target algorithm based on a parameterized formula. The MAIAC aerosol products include aerosol optical thickness and a fine-mode fraction at resolution of 1 km. This high resolution, required in many applications such as air quality, brings new information about aerosol sources and, potentially, their strength. AERONET validation shows that the MAIAC and MOD04 algorithms have similar accuracy over dark and vegetated surfaces and that MAIAC generally improves accuracy over brighter surfaces due to the SRC retrieval and explicit bidirectional reflectance factor characterization, as demonstrated for several U.S. West Coast AERONET sites. Due to its generic nature and developed angular correction, MAIAC performs aerosol retrievals over bright deserts, as demonstrated for the Solar Village Aerosol Robotic Network (AERONET) site in Saudi Arabia.

  17. Neutron activation analysis of atmospheric aerosol

    International Nuclear Information System (INIS)

    Obrusnik, I.

    1986-01-01

    Neutron activation analysis (NAA) is a modern analytical method well suited for the analysis of atmospheric aerosols. Particular steps of the NAA procedure and especially different types of aerosol sampling and sample preparation for analysis are discussed in detail. Several possible NAA techniques are described and the advantages of a purely instrumental technique with short and long irradiation are pointed out. Important performance characteristics of the NAA method such as precision, accuracy, sensitivity and detection limits are also discussed. Different applications of NAA in environmental studies are reviewed. (author)

  18. Atmospheric pollution in the mediterranean area: geochemical studies of aerosols and rain waters

    International Nuclear Information System (INIS)

    Caboi, R.; Chester, R.

    1998-01-01

    It is now recognised that the atmosphere is a major pathway for the transport of material to the oceans. The material in the atmosphere is present as gaseous and particulate (aerosol) phases. Aerosols may be removed from the atmosphere by a combination of 'dry' (i.e. not involving an atmospheric aqueous phase) and 'wet' (precipitation scavenging) processes. Thus, aerosols are intimately related to rain waters, and interactions between the two are discusses below in relation to the input of material to the Mediterranean Sea

  19. High-power laser radiation in atmospheric aerosols: Nonlinear optics of aerodispersed media

    Science.gov (United States)

    Zuev, V. E.; Zemlianov, A. A.; Kopytin, Iu. D.; Kuzikovskii, A. V.

    The bulk of this book contains the results of investigations carried out at the Institute of Atmospheric Optics, Siberian Branch, USSR Academy of Science with the participation of the authors. The microphysical and optical characteristics of atmospheric aerosols are considered, taking into account light scattering by a single aerosol particle, light scattering by a system of particles, the scattering phase matrix, light scattering by clouds and fogs, light scattering by hazes, and scattering phase functions of polydispersed aerosols. Other topics studies are related to low-energy (subexplosive) effects of radiation on individual particles, the formation of clear zones in clouds and fogs due to the vaporization of droplets under regular regimes, self-action of a wave beam in a water aerosol under conditions of regular droplet vaporization, laser beam propagation through an explosively evaporating water-droplet aerosol, the propagation of high-power laser radiation through hazes, the ionization and optical breakdown in aerosol media, and laser monitoring of a turbid atmosphere using nonlinear effects.

  20. Heterogeneous Uptake of HO2 Radicals onto Atmospheric Aerosols

    Science.gov (United States)

    George, I. J.; Matthews, P. S.; Brooks, B.; Goddard, A.; Whalley, L. K.; Baeza-Romero, M. T.; Heard, D. E.

    2011-12-01

    The hydroxyl (OH) and hydroperoxyl (HO2) radicals, together known as HOx, play a vital role in atmospheric chemistry by controlling the oxidative capacity of the troposphere. The atmospheric lifetime and concentrations of many trace reactive species, such as volatile organic compounds (VOCs), are determined by HOx radical levels. Therefore, the ability to accurately predict atmospheric HOx concentrations from a detailed knowledge of their sources and sinks is a very useful diagnostic tool to assess our current understanding of atmospheric chemistry. Several recent field studies have observed significantly lower concentrations of HO2 radicals than predicted using box models, where HO2 loss onto aerosols was suggested as a possible missing sink [1, 2]. However, the mechanism on HO2 uptake onto aerosols and its impact on ambient HOx levels are currently not well understood. To improve our understanding of this process, we have conducted laboratory experiments to measure HO2 uptake coefficients onto submicron aerosol particles. The FAGE (Fluorescence Assay by Gas Expansion) technique, a highly sensitive laser induced fluorescence based detection method, was used to monitor HO2 uptake kinetics onto aerosol particles in an aerosol flow tube. The application of the FAGE technique allowed for kinetic experiments to be performed under low HO2 concentrations, i.e. [HO2] atomizing dilute salt solutions or by homogeneous nucleation. HO2 uptake coefficients (γ) have been measured for single-component solid and aqueous inorganic salt and organic aerosol particles with a wide range of hygroscopicities. HO2 uptake coefficients on solid particles were below the detection limit (γ < 0.001), whereas on aqueous aerosols uptake coefficients were somewhat larger (γ = 0.001 - 0.008). HO2 uptake coefficients were highest on aerosols containing metal ions, such as Cu and Fe. Humidity and aerosol pH did not significantly impact the reactive HO2 uptake. Preliminary experiments have also

  1. a Study of the Origin of Atmospheric Organic Aerosols

    Science.gov (United States)

    Hildemann, Lynn Mary

    1990-01-01

    The sources of ambient organic particulate matter in urban areas are investigated through a program of emission source measurements, atmospheric measurements, and mathematical modeling of source/receptor relationships. A dilution sampler intended to collect fine organic aerosol from combustion sources is designed to simulate atmospheric cooling and dilution processes, so that organic vapors which condense under ambient conditions will be collected as particulate matter. This system is used to measure the emissions from a boiler burning distillate oil, a home fireplace, catalyst and noncatalyst automobiles, heavy-duty diesel trucks, natural gas home appliances, and meat cooking operations. Alternate techniques are used to sample the particulate matter emitted from cigarette smoking, a roofing tar pot, paved road dust, brake lining wear, tire wear, and vegetative detritus. The bulk chemical characteristics of the fine aerosol fraction are presented for each source. Over half of the fine aerosol mass emitted from automobiles, wood burning, meat cooking, home appliances, cigarettes, and tar pots is shown to consist of organic compounds. The organic material collected from these sources is analyzed using high-resolution gas chromatography. Using a simple analytical protocol, a quantitative, 50-parameter characterization of the elutable fine organic aerosol emitted from each source type is obtained, which proves to be a unique fingerprint that can be used to distinguish most sources from each other. A mathematical model is used to predict the characteristics of fine ambient organic aerosol in the Los Angeles area that would prevail if the primary organic emissions are transported without chemical reaction. The model is found to track the seasonal variations observed in the ambient aerosol at the three sites studied. Emissions from vehicles and fireplaces are identified as significant sources of solvent-extractable organic aerosol. Differences between the model

  2. Nuclear analytical techniques applied to characterization of atmospheric aerosols in Amazon Region

    International Nuclear Information System (INIS)

    Gerab, Fabio; Artaxo, Paulo

    1996-01-01

    This work presents the atmospheric aerosols characterization that exist in different regions of Amazon basin. The biogenic aerosol emission by forest, as well as the atmospheric emissions of particulate materials due to biomass burning, were analyzed. Samples of aerosol particles were collected during three years in two different locations of Amazon region using Stacked Unit Filters. In order to study these samples some analytical nuclear techniques were used. The high concentrations of aerosols as a result of biomass burning process were observed in the period of june-september

  3. PIXE application to the study of atmospheric aerosol

    International Nuclear Information System (INIS)

    Zhu Guanghua

    1998-11-01

    In order to confirm the measurement accuracy of PIXE (Particle Induced X-ray Emission), cross-check test were carried out between three laboratories. Thirty single element samples and one plural elements sample were used in the test. The agreements between three laboratories were evaluated to be better than 10% for the most of tested samples. The reproducibility test showed very good agreement and the dispersion in three times repeated PIXE measurements was within 6% on average. Using an automatic time sequence step sampler in Beijing collected atmospheric aerosol samples. Element concentrations were analyzed by PIXE technique. Then the data were analyzed by the absolute principal factor analysis (APFA) to evaluate the principal components and the percent variance explained by them. As a result, it shows that the PIXE analysis combed with statistical method can effectively resolve the aerosol components in urban area and distinguish between local and remote area aerosol components. The atmospheric aerosol samples were collected at four representative sites with an 8-stage cascade impactor sampler and analyzed for their elemental mass concentrations by PIXE analytic method. Based on some indicator elements, the characteristics of size distributions of particles from different sources were obtained

  4. Atmospheric Aerosol Emissions Related to the Mediterranean Seawater Biogeochemistry

    Science.gov (United States)

    Sellegri, K.; Schwier, A.; Rose, C.; Gazeau, F. P. H.; Guieu, C.; D'anna, B.; Ebling, A. M.; Pey, J.; Marchand, N.; Charriere, B.; Sempéré, R.; Mas, S.

    2016-02-01

    Marine aerosols contribute significantly to the global aerosol load and consequently has an important impact on the Earth's climate. Different factors influence the way they are produced at the air/seawater interface. The sea state (whitecap coverage, temperature, etc. ) influence the size and concentration of primarily produced particles but also biogeochemical characteristics of the seawater influence both the physical and chemical primary fluxes to the atmosphere. An additional aerosol source of marine aerosol to the atmosphere is the formation of new particles by gaz-to-particle conversion, i.e. nucleation. How the seawater and surface microlayer biogeochemical compositions influences the aerosol emissions is still a large debate. In order to study marine emissions, one approach is to use semi-controlled environments such as mesocosms. Within the MedSea and SAM projects, we characterize the primary Sea Spray Aerosol (SSA) during mesocosms experiments performed during different seasons in the Mediteranean Sea. Mesocosms were either left unchanged as control or enriched by addition of nutriments in order to create different levels of phytoplanctonic activities. The mesocosms waters were daily analyzed for their chemical and biological composition (DOC, CDOM, TEP, Chl-a, virus, bacteria, phytoplankton and zooplankton concentrations). SSA production by bubble bursting was daily simulated in a dedicated set-up. The size segregated SSA number fluxes, cloud condensation nuclei (CCN) properties, and chemical composition were determined as a function of the seawater characteristics. We show that the SSA organic content was clearly correlated to the seawater Chl-a level, provided that the mesocosm was not enriched to create an artificial phytoplanctonic bloom. In our experiments, the enrichment of the seawater with natural surface microlayer did not impact the SSA organic content nor its CCN properties. At last, nucleation of secondary particles were observed to occur in

  5. Results of concentration measurements of artificial radioactive aerosols in the lower atmosphere; Resultats des mesures de concentration, dans la basse atmosphere, des aerosols radioactifs artificiels

    Energy Technology Data Exchange (ETDEWEB)

    Ardouin, B; Jehanno, C; Labeyrie, J; Lambert, G; Tanaevsky, O; Vassy, E [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    This report gives the results of the measurements of artificial gross-{beta}-radioactivity in aerosols in the lower atmosphere; these measurements have been made by the Electronic Physics Service of the Electronic Department, and by the Atmospheric Physics Laboratory of the Paris Science Faculty. The measurements were begun in September 1956 and were continued in an increasing number of stations both in France and in the rest of the world. The present report deals with the period up to the end of august 1961, that is up to the end of the nuclear moratorium. After recalling the constitution and the properties of radioactive aerosols present in the atmosphere, the authors describe the measurement methods, estimate their accuracy and discuss various aspects of the results. (authors) [French] Ce rapport contient les resultats des mesures de radioactivite {beta} globale d'origine artificielle des aerosols dans la basse atmosphere, effectuees conjointement par le Service d'Electronique Physique du Departement d'Electronique et le Laboratoire de Physique de l'Atmosphere de la Faculte des Sciences de Paris. Les mesures ont commence en septembre 1956 et ont ete poursuivies dans un nombre croissant de stations, tant en France que dans le reste du monde. Le present rapport s'arrete a la fin aout 1961, c'est-a-dire au moment de la reprise des essais nucleaires. Apres avoir rappele la constitution et les proprietes des aerosols radioactifs presents dans l'atmosphere, les auteurs indiquent les methodes de mesure utilisees, evaluent leur precision et discutent les differents aspects des resultats de leurs mesures. (auteurs)

  6. SMEX03 Atmospheric Aerosol Optical Properties Data: Oklahoma

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of observations of atmospheric parameters including spectral aerosol optical depths, precipitable water, sky radiance distributions and...

  7. Vertical profiles of atmospheric fluorescent aerosols observed by a mutil-channel lidar spectrometer system

    Science.gov (United States)

    Huang, Z.; Huang, J.; Zhou, T.; Sugimoto, N.; Bi, J.

    2015-12-01

    Zhongwei Huang1*, Jianping Huang1, Tian Zhou1, Nobuo Sugimoto2, Jianrong Bi1 and Jinsen Shi11Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China. 2Atmospheric Environment Division, National Institutes for Environmental Studies, Tsukuba, Japan Email: huangzhongwei@lzu.edu.cn Abstract Atmospheric aerosols have a significant impact on regional and globe climate. The challenge in quantifying aerosol direct radiative forcing and aerosol-cloud interactions arises from large spatial and temporal heterogeneity of aerosol concentrations, compositions, sizes, shape and optical properties (IPCC, 2007). Lidar offers some remarkable advantages for determining the vertical structure of atmospheric aerosols and their related optical properties. To investigate the characterization of atmospheric aerosols (especially bioaerosols) with high spatial and temporal resolution, we developed a Raman/fluorescence/polarization lidar system employed a multi-channel spectrometer, with capabilities of providing measurements of Raman scattering and laser-induced fluorescence excitation at 355 nm from atmospheric aerosols. Meanwhile, the lidar system operated polarization measurements both at 355nm and 532nm wavelengths, aiming to obtain more information of aerosols. It employs a high power pulsed laser and a received telescope with 350mm diameter. The receiver could simultaneously detect a wide fluorescent spectrum about 178 nm with spectral resolution 5.7 nm, mainly including an F/3.7 Crossed Czerny-Turner spectrograph, a grating (1200 gr/mm) and a PMT array with 32 photocathode elements. Vertical structure of fluorescent aerosols in the atmosphere was observed by the developed lidar system at four sites across northwest China, during 2014 spring field observation that conducted by Lanzhou University. It has been proved that the developed lidar could detect the fluorescent aerosols with high temporal and

  8. Remote Sensing of Aerosol in the Terrestrial Atmosphere from Space: New Missions

    Science.gov (United States)

    Milinevsky, G.; Yatskiv, Ya.; Degtyaryov, O.; Syniavskyi, I.; Ivanov, Yu.; Bovchaliuk, A.; Mishchenko, M.; Danylevsky, V.; Sosonkin, M.; Bovchaliuk, V.

    2015-01-01

    The distribution and properties of atmospheric aerosols on a global scale are not well known in terms of determination of their effects on climate. This mostly is due to extreme variability of aerosol concentrations, properties, sources, and types. Aerosol climate impact is comparable to the effect of greenhouse gases, but its influence is more difficult to measure, especially with respect to aerosol microphysical properties and the evaluation of anthropogenic aerosol effect. There are many satellite missions studying aerosol distribution in the terrestrial atmosphere, such as MISR/Terra, OMI/Aura, AVHHR, MODIS/Terra and Aqua, CALIOP/CALIPSO. To improve the quality of data and climate models, and to reduce aerosol climate forcing uncertainties, several new missions are planned. The gap in orbital instruments for studying aerosol microphysics has arisen after the Glory mission failed during launch in 2011. In this review paper, we describe several planned aerosol space missions, including the Ukrainian project Aerosol-UA that obtains data using a multi-channel scanning polarimeter and wide-angle polarimetric camera. The project is designed for remote sensing of the aerosol microphysics and cloud properties on a global scale.

  9. Contributions of Organic Sources to Atmospheric Aerosol Particle Concentrations and Growth

    Science.gov (United States)

    Russell, L. M.

    2017-12-01

    Organic molecules are important contributors to aerosol particle mass and number concentrations through primary emissions as well as secondary growth in the atmosphere. New techniques for measuring organic aerosol components in atmospheric particles have improved measurements of this contribution in the last 20 years, including Scanning Transmission X-ray Microscopy Near Edge X-ray Absorption Fine Structure (STXM-NEXAFS), Fourier Transform Infrared spectroscopy (FTIR), and High-Resolution Aerosol Mass Spectrometry (AMS). STXM-NEXAFS individual aerosol particle composition illustrated the variety of morphology of organic components in marine aerosols, the inherent relationships between organic composition and shape, and the links between atmospheric aerosol composition and particles produced in smog chambers. This type of single particle microscopy has also added to size distribution measurements by providing evidence of how surface-controlled and bulk-controlled processes contribute to the growth of particles in the atmosphere. FTIR analysis of organic functional groups are sufficient to distinguish combustion, marine, and terrestrial organic particle sources and to show that each of those types of sources has a surprisingly similar organic functional group composition over four different oceans and four different continents. Augmenting the limited sampling of these off-line techniques with side-by-side inter-comparisons to online AMS provides complementary composition information and consistent quantitative attribution to sources (despite some clear method differences). Single-particle AMS techniques using light scattering and event trigger modes have now also characterized the types of particles found in urban, marine, and ship emission aerosols. Most recently, by combining with off-line techniques, single particle composition measurements have separated and quantified the contributions of organic, sulfate and salt components from ocean biogenic and sea spray

  10. Mobile Atmospheric Aerosol and Radiation Characterization Observatory (MAARCO)

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: MAARCO is designed as a stand-alone facility for basic atmospheric research and the collection of data to assist in validating aerosol and weather models....

  11. Interaction of radon progeny with atmospheric aerosols

    International Nuclear Information System (INIS)

    Morawska, Lidia

    1994-01-01

    The radiological health hazard due to the airborne radon progeny depends on three factors (i) radon concentration in the air, (ii) radon progeny concentration, and (iii) active particle size distribution. Conclusions as to the health hazard cannot be drawn without full understanding of the interaction mechanisms between radon progeny and atmospheric aerosols. The aim of this work was to study the interaction mechanisms between radon progeny, natural environmental aerosols and environmental tobacco smoke (ETS). The experiments were performed under controlled laboratory conditions of radon concentration (1.85 and 3.70 Bq m -3 ), relative humidity (35, 50, 75 and 95%) and ETS generation. The size distribution of radioactivity carrying aerosols was measured using a wire screen diffusion battery system and size distribution of all airborne aerosols using a differential mobility particle sizer. The paper presents and discusses the results of activity size distribution and radon progeny concentration measurements for different environmental conditions. 7 refs., 2 tabs

  12. Atmospheric acidification of mineral aerosols: a source of bioavailable phosphorus for the oceans

    Directory of Open Access Journals (Sweden)

    A. Nenes

    2011-07-01

    Full Text Available Primary productivity of continental and marine ecosystems is often limited or co-limited by phosphorus. Deposition of atmospheric aerosols provides the major external source of phosphorus to marine surface waters. However, only a fraction of deposited aerosol phosphorus is water soluble and available for uptake by phytoplankton. We propose that atmospheric acidification of aerosols is a prime mechanism producing soluble phosphorus from soil-derived minerals. Acid mobilization is expected to be pronounced where polluted and dust-laden air masses mix. Our hypothesis is supported by the soluble compositions and reconstructed pH values for atmospheric particulate matter samples collected over a 5-yr period at Finokalia, Crete. In addition, at least tenfold increase in soluble phosphorus was observed when Saharan soil and dust were acidified in laboratory experiments which simulate atmospheric conditions. Aerosol acidification links bioavailable phosphorus supply to anthropogenic and natural acidic gas emissions, and may be a key regulator of ocean biogeochemistry.

  13. An advanced technique for speciation of organic nitrogen in atmospheric aerosols

    Science.gov (United States)

    Samy, S.; Robinson, J.; Hays, M. D.

    2011-12-01

    The chemical composition of organic nitrogen (ON) in the environment is a research topic of broad significance. The topic intersects the branches of atmospheric, aquatic, and ecological science; thus, a variety of instrumentation, analytical methods, and data interpretation tools have evolved for determination of ON. Recent studies that focus on atmospheric particulate nitrogen (N) suggest a significant fraction (20-80%) of total N is bound in organic compounds. The sources, bioavailability and transport mechanisms of these N-containing compounds can differ, producing a variety of environmental consequences. Amino acids (AA) are a key class of atmospheric ON compounds that can contribute to secondary organic aerosol (SOA) formation and potentially influence water cycles, air pollutant scavenging, and the radiation balance. AA are water-soluble organic compounds (WSOC) that can significantly alter the acid-base chemistry of aerosols, and may explain the buffering capacity that impacts heterogeneous atmospheric chemistry. The chemical transformations that N-containing organic compounds (including AA) undergo can increase the light-absorbing capacity of atmospheric carbon via formation of 'brown carbon'. Suggested sources of atmospheric AA include: marine surface layer transport from bursting sea bubbles, the suspension of bacteria, fungi, algae, pollen, spores, or biomass burning. Methodology for detection of native (underivatized) amino acids (AA) in atmospheric aerosols has been developed and validated (Samy et al., 2011). This presentation describes the use of LC-MS (Q-TOF) and microwave-assisted gas phase hydrolysis for detection of free and combined amino acids in aerosols collected in a Southeastern U.S. forest environment. Accurate mass detection and the addition of isotopically labeled surrogates prior to sample preparation allows for sensitive quantitation of target AA in a complex aerosol matrix. A total of 16 native AA were detected above the reporting

  14. Unintended consequences of atmospheric injection of sulphate aerosols.

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Patrick Vane; Kobos, Peter Holmes; Goldstein, Barry

    2010-10-01

    Most climate scientists believe that climate geoengineering is best considered as a potential complement to the mitigation of CO{sub 2} emissions, rather than as an alternative to it. Strong mitigation could achieve the equivalent of up to -4Wm{sup -2} radiative forcing on the century timescale, relative to a worst case scenario for rising CO{sub 2}. However, to tackle the remaining 3Wm{sup -2}, which are likely even in a best case scenario of strongly mitigated CO{sub 2} releases, a number of geoengineering options show promise. Injecting stratospheric aerosols is one of the least expensive and, potentially, most effective approaches and for that reason an examination of the possible unintended consequences of the implementation of atmospheric injections of sulphate aerosols was made. Chief among these are: reductions in rainfall, slowing of atmospheric ozone rebound, and differential changes in weather patterns. At the same time, there will be an increase in plant productivity. Lastly, because atmospheric sulphate injection would not mitigate ocean acidification, another side effect of fossil fuel burning, it would provide only a partial solution. Future research should aim at ameliorating the possible negative unintended consequences of atmospheric injections of sulphate injection. This might include modeling the optimum rate and particle type and size of aerosol injection, as well as the latitudinal, longitudinal and altitude of injection sites, to balance radiative forcing to decrease negative regional impacts. Similarly, future research might include modeling the optimum rate of decrease and location of injection sites to be closed to reduce or slow rapid warming upon aerosol injection cessation. A fruitful area for future research might be system modeling to enhance the possible positive increases in agricultural productivity. All such modeling must be supported by data collection and laboratory and field testing to enable iterative modeling to increase the

  15. Virtual cascade impactors for the collection of radioactive atmospheric aerosols

    International Nuclear Information System (INIS)

    Berner, A.

    1988-01-01

    Starting from impaction theory, the properties of virtual impaction stages are discussed and compared to classical impactors. Virtual impaction stages offer the benefit of sampling coarse particles without bouncing and reentrainment, but turbulent mixing affects the performance of virtual stages. Future research should concentrate on special configurations for reducing the effects of turbulent mixing. Virtual impaction stages for sampling radioactive aerosols are to be designed in regard of the analytical requirements, the purpose of the measurements, and the aerosol. Therefore, the aerosol components expected in radioactive aerosols are discussed on the background of the multimodal model, which relates the size distribution to the genesis and the history of the aerosol. Reference is made to recent data of the radioactive atmospheric aerosol

  16. Real-time analysis of ambient organic aerosols using aerosol flowing atmospheric-pressure afterglow mass spectrometry (AeroFAPA-MS)

    Science.gov (United States)

    Brüggemann, Martin; Karu, Einar; Stelzer, Torsten; Hoffmann, Thorsten

    2015-04-01

    Organic aerosol accounts for a major fraction of atmospheric aerosols and has implications on the earth's climate and human health. However, due to the chemical complexity its measurement remains a major challenge for analytical instrumentation.1 Here, we present the development, characterization and application of a new soft ionization technique that allows mass spectrometric real-time detection of organic compounds in ambient aerosols. The aerosol flowing atmospheric-pressure afterglow (AeroFAPA) ion source utilizes a helium glow discharge plasma to produce excited helium species and primary reagent ions. Ionization of the analytes occurs in the afterglow region after thermal desorption and results mainly in intact molecular ions, facilitating the interpretation of the acquired mass spectra. In the past, similar approaches were used to detect pesticides, explosives or illicit drugs on a variety of surfaces.2,3 In contrast, the AeroFAPA source operates 'online' and allows the detection of organic compounds in aerosols without a prior precipitation or sampling step. To our knowledge, this is the first application of an atmospheric-pressure glow discharge ionization technique to ambient aerosol samples. We illustrate that changes in aerosol composition and concentration are detected on the time scale of seconds and in the ng-m-3 range. Additionally, the successful application of AeroFAPA-MS during a field study in a mixed forest region in Central Europe is presented. Several oxidation products of monoterpenes were clearly identified using the possibility to perform tandem MS experiments. The acquired data are in agreement with previous studies and demonstrate that AeroFAPA-MS is a suitable tool for organic aerosol analysis. Furthermore, these results reveal the potential of this technique to enable new insights into aerosol formation, growth and transformation in the atmosphere. References: 1) IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The

  17. Spatio-temporal variability of aerosols in the tropics relationship with atmospheric and oceanic environments

    Science.gov (United States)

    Zuluaga-Arias, Manuel D.

    2011-12-01

    Earth's radiation budget is directly influenced by aerosols through the absorption of solar radiation and subsequent heating of the atmosphere. Aerosols modulate the hydrological cycle indirectly by modifying cloud properties, precipitation and ocean heat storage. In addition, polluting aerosols impose health risks in local, regional and global scales. In spite of recent advances in the study of aerosols variability, uncertainty in their spatio-temporal distributions still presents a challenge in the understanding of climate variability. For example, aerosol loading varies not only from year to year but also on higher frequency intraseasonal time scales producing strong variability on local and regional scales. An assessment of the impact of aerosol variability requires long period measurements of aerosols at both regional and global scales. The present dissertation compiles a large database of remotely sensed aerosol loading in order to analyze its spatio-temporal variability, and how this load interacts with different variables that characterize the dynamic and thermodynamic states of the environment. Aerosol Index (AI) and Aerosol Optical Depth (AOD) were used as measures of the atmospheric aerosol load. In addition, atmospheric and oceanic satellite observations, and reanalysis datasets is used in the analysis to investigate aerosol-environment interactions. A diagnostic study is conducted to produce global and regional aerosol satellite climatologies, and to analyze and compare the validity of aerosol retrievals. We find similarities and differences between the aerosol distributions over various regions of the globe when comparing the different satellite retrievals. A nonparametric approach is also used to examine the spatial distribution of the recent trends in aerosol concentration. A significant positive trend was found over the Middle East, Arabian Sea and South Asian regions strongly influenced by increases in dust events. Spectral and composite analyses

  18. Atmospheric aerosol in an urban area: Comparison of measurement instruments and methodologies and pulmonary deposition assessment

    International Nuclear Information System (INIS)

    Berico, M.; Luciani, A.; Formignani, M.

    1996-07-01

    In March 1995 a measurement campaign of atmospheric aerosol in the Bologna urban area (Italy) was carried out. A transportable laboratory, set up by ENEA (Italian national Agency for New Technologies, Energy and the Environment) Environmental Department (Bologna), was utilized with instruments for measurement of atmospheric aerosol and meteorological parameters. The aim of this campaign was of dual purpose: to characterize aerosol in urban area and to compare different instruments and methodologies of measurements. Mass concentrations measurements, evaluated on a 23-hour period with total filter, PM10 dichotomous sampler and low pressure impactor (LPI Berner), have provided information respectively about total suspended particles, respirable fraction and granulometric parameters of aerosol. Eight meteorologic parameters, number concentration of submicromic fraction of aerosol and mass concentration of micromic fraction have been continually measured. Then, in a daytime period, several number granulometries of atmospheric aerosol have also been estimated by means of diffusion battery system. Results related to different measurement methodologies and granulometric characteristics of aerosol are presented here. Pulmonary deposition of atmospheric aerosol is finally calculated, using granulometries provided by LPI Brener and ICRP 66 human respiratory tract model

  19. PIXE analysis of atmospheric aerosols in the city of Buenos Aires

    International Nuclear Information System (INIS)

    Ozafran, M.J.; Vazquez, M.E.; Burlon, A.

    1999-01-01

    Lead pollution present in atmospheric aerosols in the city Buenos Aires was measured in 1989, using Heavy Ion PIXE. Since then, environmental conditions have changed significantly. The usage of unleaded gasoline was introduced, and the utilisation of compressed natural gas as car fuel has increased. Recently, a new sampling campaign of atmospheric aerosols has started, partly in collaboration with the Greenpeace Foundation. The present studies reveal that lead pollution in Buenos Aires has significantly decreased since 1989. The concentrations of other elements are determined as well. (author)

  20. An on-line modelling study of the direct effect of atmospheric aerosols over Europe

    International Nuclear Information System (INIS)

    Palacios, L.; Baro, R.; Jimenez-Guerrero, P.

    2015-01-01

    Atmospheric aerosols affect human health, ecosystems, materials, visibility and Earth’s climate. Those effects are studied in this present work and depend mainly on the aerosol optical properties and how they influence the Earth’s radiation budget. Such properties can be divided on direct and semi-direct effect, produced by the scattering and absorption of radiation; and indirect effect, which influences the aerosols-cloud interactions. The aim of this work is to assess the direct effect through the study of the mean temperature; the radiation that reaches the Earth’s surface and at the top of the atmosphere; and the interaction of these meteorological variables with particulate matter (PM10). Results indicate decreases in temperature and radiation that reaches the Earth's surface, together with increases in the outgoing radiation at top of the atmosphere, and changes in the particulate matter, thus proving a colder climate due to the direct effect of atmospheric aerosols. (Author)

  1. An on-line modelling study of the direct effect of atmospheric aerosols over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, L.; Baro, R.; Jimenez-Guerrero, P.

    2015-07-01

    Atmospheric aerosols affect human health, ecosystems, materials, visibility and Earth’s climate. Those effects are studied in this present work and depend mainly on the aerosol optical properties and how they influence the Earth’s radiation budget. Such properties can be divided on direct and semi-direct effect, produced by the scattering and absorption of radiation; and indirect effect, which influences the aerosols-cloud interactions. The aim of this work is to assess the direct effect through the study of the mean temperature; the radiation that reaches the Earth’s surface and at the top of the atmosphere; and the interaction of these meteorological variables with particulate matter (PM10). Results indicate decreases in temperature and radiation that reaches the Earth's surface, together with increases in the outgoing radiation at top of the atmosphere, and changes in the particulate matter, thus proving a colder climate due to the direct effect of atmospheric aerosols. (Author)

  2. An on-line modelling study of the direct effect of atmospheric aerosols over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, L.; Baro, R.; Jimenez-Guerrero, P.

    2015-07-01

    Atmospheric aerosols affect human health, ecosystems, materials, visibility and Earths climate. Those effects are studied in this present work and depend mainly on the aerosol optical properties and how they influence the Earths radiation budget. Such properties can be divided on direct and semi-direct effect, produced by the scattering and absorption of radiation; and indirect effect, which influences the aerosols-cloud interactions. The aim of this work is to assess the direct effect through the study of the mean temperature; the radiation that reaches the Earths surface and at the top of the atmosphere; and the interaction of these meteorological variables with particulate matter (PM10). Results indicate decreases in temperature and radiation that reaches the Earth's surface, together with increases in the outgoing radiation at top of the atmosphere, and changes in the particulate matter, thus proving a colder climate due to the direct effect of atmospheric aerosols. (Author)

  3. Mapping atmospheric aerosols with a citizen science network of smartphone spectropolarimeters

    Science.gov (United States)

    Snik, Frans; Rietjens, Jeroen H. H.; Apituley, Arnoud; Volten, Hester; Mijling, Bas; Di Noia, Antonio; Heikamp, Stephanie; Heinsbroek, Ritse C.; Hasekamp, Otto P.; Smit, J. Martijn; Vonk, Jan; Stam, Daphne M.; Harten, Gerard; Boer, Jozua; Keller, Christoph U.

    2014-10-01

    To assess the impact of atmospheric aerosols on health, climate, and air traffic, aerosol properties must be measured with fine spatial and temporal sampling. This can be achieved by actively involving citizens and the technology they own to form an atmospheric measurement network. We establish this new measurement strategy by developing and deploying iSPEX, a low-cost, mass-producible optical add-on for smartphones with a corresponding app. The aerosol optical thickness (AOT) maps derived from iSPEX spectropolarimetric measurements of the daytime cloud-free sky by thousands of citizen scientists throughout the Netherlands are in good agreement with the spatial AOT structure derived from satellite imagery and temporal AOT variations derived from ground-based precision photometry. These maps show structures at scales of kilometers that are typical for urban air pollution, indicating the potential of iSPEX to provide information about aerosol properties at locations and at times that are not covered by current monitoring efforts.

  4. Atmospheric aerosol dispersion models and their applications to environmental risk assessment

    Directory of Open Access Journals (Sweden)

    Andrzej Mazur

    2014-03-01

    Full Text Available Introduction. Numerical models of dispersion of atmospheric pollutants are widely used to forecast the spread of contaminants in the air and to analyze the effects of this phenomenon. The aim of the study is to investigate the possibilities and the quality of diagnosis and prediction of atmospheric transport of aerosols in the air using the dispersion model of atmospheric pollutants, developed at the Institute of Meteorology and Water Management (IMWM in Warsaw. Material and methods. A model of the dispersion of atmospheric pollutants, linked with meteorological models in a diagnostic mode, was used to simulate the transport of the cloud of aerosols released during the crash near the town of Ożydiw (Ukraine and of volcanic ash – during the volcanic eruption of Eyjafjallajökull in Iceland. Results. Possible directions of dispersion of pollutants in the air and its concentration in the atmosphere and deposition to the soil were assessed. The analysis of temporal variability of concentrations of aerosols in the atmosphere confirmed that the model developed at IMWM is an effective tool for diagnosis of air quality in the area of Poland as well as for determination of exposure duration to the aerosol clouds for different weather scenarios. Conclusions. The results are a confirmation of the thesis, that because in the environmental risk assessment, an important element is not only current information on the level of pollution concentrations, but also the time of exposure to pollution and forecast of these elements, and consequently the predicted effects on man or the environment in general; so it is necessary to use forecasting tools, similar to presented application. The dispersion model described in the paper is an operational tool for description, analysis and forecasting of emergency situations in case of emissions of hazardous substances.

  5. Adsorption of radioactive I2 gas onto atmospheric aerosol

    International Nuclear Information System (INIS)

    Noguchi, Hiroshi; Murata, Mikio; Suzuki, Katsumi.

    1990-01-01

    Laboratory scale experiments on the adsorption of radioactive elemental iodine (I 2 ) gas onto atmospheric aerosol showed that the adsorption reached an equilibrium state in about twelve minutes at high initial I 2 concentrations. The proportion of iodine which was adsorbed on the aerosol gradually decreased with increading initial I 2 concentration ranging over 10 -13 to 10 -9 g/cm 3 at a reaction time of 31 min but was almost constant at a reaction time of 2 min. A fraction of iodine desorbed from particulate iodine as mainly I 2 gas. An adsorption isotherm of atmospheric aerosol for I 2 gas was estimated from the experimental data of long reaction time and high I 2 concentrations. Using this adsorption isotherm, a theoretical equation, which was similar to our previous equation, was derived to explain the experimental results. A geometric mean and standard deviation of sticking probability in the equation were estimated to be 1.2 x 10 -2 and 2.7, respectively. Almost all experimental data were within ranges of calculated results considering the geometric standard deviation of sticking probability. (author)

  6. Microbiology and atmospheric processes: chemical interactions of primary biological aerosols

    Directory of Open Access Journals (Sweden)

    L. Deguillaume

    2008-07-01

    Full Text Available This paper discusses the influence of primary biological aerosols (PBA on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that PBA represent a significant fraction of air particulate matter and hence affect the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms, namely fungal spores and bacteria, can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of PBA in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.

  7. Atmospheric aerosol brown carbon in the high Himalayas

    Science.gov (United States)

    Kirillova, Elena; Decesari, Stefano; Marinoni, Angela; Bonasoni, Paolo; Vuillermoz, Elisa; Facchini, M. Cristina; Fuzzi, Sandro

    2016-04-01

    Anthropogenic light-absorbing atmospheric aerosol can reach very high concentrations in the planetary boundary layer in South-East Asia ("brown clouds"), affecting atmospheric transparency and generating spatial gradients of temperature over land with a possible impact on atmospheric dynamics and monsoon circulation. Besides black carbon (BC), an important light-absorbing component of anthropogenic aerosols is the organic carbon component known as 'brown carbon' (BrC). In this research, we provided first measurements of atmospheric aerosol BrC in the high Himalayas during different seasons. Aerosol sampling was conducted at the GAW-WMO Global station "Nepal Climate Observatory-Pyramid" (NCO-P) located in the high Khumbu valley at 5079 m a.s.l. in the foothills of Mt. Everest. PM10 aerosol samples were collected from July 2013 to November 2014. The sampling strategy was set up in order to discriminate the daytime valley breeze bringing polluted air masses up to the observatory and free tropospheric air during nighttime. Water-soluble BrC (WS-BrC) and methanol-soluble BrC (MeS-BrC) were extracted and analyzed using a UV/VIS spectrophotometer equipped with a 50 cm liquid waveguide capillary cell. In the polluted air masses, the highest levels of the BrC light absorption coefficient at 365 nm (babs365) were observed during the pre-monsoon season (1.83±1.46 Mm-1 for WS-BrC and 2.86±2.49 Mm-1 for MeS-BrC) and the lowest during the monsoon season (0.21±0.22 Mm-1 for WS-BrC and 0.32±0.29 Mm-1 for MeS-BrC). The pre-monsoon season is the most frequently influenced by a strong atmospheric brown cloud (ABC) transport to NCO-P due to increased convection and mixing layer height over South Asia combined with the highest up-valley wind speed and the increase of the emissions from open fires due to the agricultural practice along the Himalayas foothills and the Indo-Gangetic Plain. In contrast, the monsoon season is characterized by a weakened valley wind regime and an

  8. Effects of continental anthropogenic sources on organic aerosols in the coastal atmosphere of East China

    International Nuclear Information System (INIS)

    Shang, Dongjie; Hu, Min; Guo, Qingfeng; Zou, Qi; Zheng, Jing; Guo, Song

    2017-01-01

    Although organic compounds in marine atmospheric aerosols have significant effects on climate and marine ecosystems, they have rarely been studied, especially in the coastal regions of East China. To assess the origins of the organic aerosols in the East China coastal atmosphere, PM 2.5 samples were collected from the atmospheres of the Yellow Sea, the East China Sea, and Changdao Island during the CAPTAIN (Campaign of Air PolluTion At INshore Areas of Eastern China) field campaign in the spring of 2011. The marine atmospheric aerosol samples that were collected were grouped based on the backward trajectories of their air masses. The organic carbon concentrations in the PM 2.5 samples from the marine and Changdao Island atmospheres were 5.5 ± 3.1 μgC/m 3 and 6.9 ± 2.4 μgC/m 3 , respectively, which is higher than in other coastal water atmospheres. The concentration of polycyclic aromatic hydrocarbons (PAHs) in the marine atmospheric PM 2.5 samples was 17.0 ± 20.2 ng/m 3 , indicating significant continental anthropogenic influences. The influences of fossil fuels and biomass burning on the composition of organic aerosols in the coastal atmosphere of East China were found to be highly dependent on the origins of the air masses. Diesel combustion had a strong impact on air masses from the Yangtze River Delta (YRD), and gasoline emissions had a more significant impact on the “North China” marine atmospheric samples. The “Northeast China” marine atmospheric samples were most impacted by biomass burning. Coal combustion contributed significantly to the compositions of all of the atmospheric samples. The proportions of secondary compounds increased as samples aged in the marine atmosphere indicating that photochemical oxidation occured during transport. Our results quantified ecosystem effects on marine atmospheric aerosols and highlighted the uncertainties that arise when modeling marine atmospheric PM 2.5 without considering high spatial resolution

  9. The theory of the interaction of atmospheric aerosol with underlying surface

    International Nuclear Information System (INIS)

    Buikov, M.V.

    1993-01-01

    The interaction of wind with underlying surfaces through resuspension makes a great contribution to the total amount of atmospheric aerosols. The dry deposition process results in cleaning of the atmosphere and contamination of near-surface air layers of soil and vegetation. This paper examines the theory leading to an exact solution of the problem of turbulent transportation of pollution taking into account resuspension and dry-deposition. This may be useful for the interpretation of observational data and for the improvement of calculation methods to describe aerosol exchange at surfaces in air. (author)

  10. Distributions and climate effects of atmospheric aerosols from the preindustrial era to 2100 along Representative Concentration Pathways (RCPs simulated using the global aerosol model SPRINTARS

    Directory of Open Access Journals (Sweden)

    T. Takemura

    2012-12-01

    Full Text Available Global distributions and associated climate effects of atmospheric aerosols were simulated using a global aerosol climate model, SPRINTARS, from 1850 to the present day and projected forward to 2100. Aerosol emission inventories used by the Coupled Model Intercomparison Project Phase 5 (CMIP5 were applied to this study. Scenarios based on the Representative Concentration Pathways (RCPs were used for the future projection. Aerosol loading in the atmosphere has already peaked and is now reducing in Europe and North America. However, in Asia where rapid economic growth is ongoing, aerosol loading is estimated to reach a maximum in the first half of this century. Atmospheric aerosols originating from the burning of biomass have maintained high loadings throughout the 21st century in Africa, according to the RCPs. Evolution of the adjusted forcing by direct and indirect aerosol effects over time generally correspond to the aerosol loading. The probable future pathways of global mean forcing differ based on the aerosol direct effect for different RCPs. Because aerosol forcing will be close to the preindustrial level by the end of the 21st century for all RCPs despite the continuous increases in greenhouse gases, global warming will be accelerated with reduced aerosol negative forcing.

  11. iSPEX: everybody can measure atmospheric aerosols with a smartphone spectropolarimeter

    Science.gov (United States)

    Snik, F.; Heikamp, S.; de Boer, J.; Keller, C. U.; van Harten, G.; Smit, J. M.; Rietjens, J. H. H.; Hasekamp, O.; Stam, D. M.; Volten, H.; iSPEX Team

    2012-04-01

    An increasing amount people carry a mobile phone with internet connection, camera and large computing power. iSPEX, a spectropolarimetric add-on with complementary app, instantly turns a smartphone into a scientific instrument to measure dust and other aerosols in our atmosphere. A measurement involves scanning the blue sky, which yields the angular behavior of the degree of linear polarization as a function of wavelength, which can unambiguously be interpreted in terms of size, shape and chemical composition of the aerosols in the sky directly above. The measurements are tagged with location and pointing information, and submitted to a central database where they will be interpreted and compiled into an aerosol map. Through crowdsourcing, many people will thus be able to contribute to a better assessment of health risks of particulate matter and of whether or not volcanic ash clouds are dangerous for air traffic. It can also contribute to the understanding of the relationship between atmospheric aerosols and climate change. We will give a live presentation of the first iSPEX prototype. Furthermore, we will present the design and the plans for producing the iSPEX add-on, app and website. We aim to distribute thousands of iSPEX units, such that a unique network of aerosol measurement equipment is created. Many people will thus contribute to the solution of several urgent social and scientific problems, and learn about the nature of light, remote sensing and the issues regarding atmospheric aerosols in the process. In particular we focus on school classes where smartphones are usually considered a nuisance, whereas now they can be a crucial part of various educational programs in science class.

  12. Nuclear analytical techniques applied to the large scale measurements of atmospheric aerosols in the amazon region

    International Nuclear Information System (INIS)

    Gerab, Fabio

    1996-03-01

    This work presents the characterization of the atmosphere aerosol collected in different places of the Amazon Basin. We studied both the biogenic emission from the forest and the particulate material which is emitted to the atmosphere due to the large scale man-made burning during the dry season. The samples were collected during a three year period at two different locations in the Amazon, namely the Alta Floresta (MT) and Serra do Navio (AP) regions, using stacked unit filters. These regions represent two different atmospheric compositions: the aerosol is dominated by the forest natural biogenic emission at Serra do Navio, while at Alta Floresta it presents an important contribution from the man-made burning during the dry season. At Alta Floresta we took samples in gold in order to characterize mercury emission to the atmosphere related to the gold prospection activity in Amazon. Airplanes were used for aerosol sampling during the 1992 and 1993 dry seasons to characterize the atmospheric aerosol contents from man-made burning in large Amazonian areas. The samples were analyzed using several nuclear analytic techniques: Particle Induced X-ray Emission for the quantitative analysis of trace elements with atomic number above 11; Particle Induced Gamma-ray Emission for the quantitative analysis of Na; and Proton Microprobe was used for the characterization of individual particles of the aerosol. Reflectancy technique was used in the black carbon quantification, gravimetric analysis to determine the total atmospheric aerosol concentration and Cold Vapor Atomic Absorption Spectroscopy for quantitative analysis of mercury in the particulate from the Alta Floresta gold shops. Ionic chromatography was used to quantify ionic contents of aerosols from the fine mode particulate samples from Serra do Navio. Multivariate statistical analysis was used in order to identify and characterize the sources of the atmospheric aerosol present in the sampled regions. (author)

  13. Field and Laboratory Studies of Atmospheric Organic Aerosol

    Science.gov (United States)

    Coggon, Matthew Mitchell

    This thesis is the culmination of field and laboratory studies aimed at assessing processes that affect the composition and distribution of atmospheric organic aerosol. An emphasis is placed on measurements conducted using compact and high-resolution Aerodyne Aerosol Mass Spectrometers (AMS). The first three chapters summarize results from aircraft campaigns designed to evaluate anthropogenic and biogenic impacts on marine aerosol and clouds off the coast of California. Subsequent chapters describe laboratory studies intended to evaluate gas and particle-phase mechanisms of organic aerosol oxidation. The 2013 Nucleation in California Experiment (NiCE) was a campaign designed to study environments impacted by nucleated and/or freshly formed aerosol particles. Terrestrial biogenic aerosol with > 85% organic mass was observed to reside in the free troposphere above marine stratocumulus. This biogenic organic aerosol (BOA) originated from the Northwestern United States and was transported to the marine atmosphere during periodic cloud-clearing events. Spectra recorded by a cloud condensation nuclei counter demonstrated that BOA is CCN active. BOA enhancements at latitudes north of San Francisco, CA coincided with enhanced cloud water concentrations of organic species such as acetate and formate. Airborne measurements conducted during the 2011 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) were aimed at evaluating the contribution of ship emissions to the properties of marine aerosol and clouds off the coast of central California. In one study, analysis of organic aerosol mass spectra during periods of enhanced shipping activity yielded unique tracers indicative of cloud-processed ship emissions (m/z 42 and 99). The variation of their organic fraction (f42 and f 99) was found to coincide with periods of heavy (f 42 > 0.15; f99 > 0.04), moderate (0.05 controlled organic plume emitted from the R/V Point Sur. Under sunny conditions, nucleated particles composed

  14. Structural aspects of the atmospheric aerosol of the Amazon basin

    International Nuclear Information System (INIS)

    Artaxo Netto, P.E.; Orsini, C.M.Q.

    1982-01-01

    The results presented on this paper may be considered as complementary to the ones published on two previous papers about the natural atmospheric aerosol of the Amazon Basin, and the effects, on these physical-chemical systems of the large scale brushfires carried out from time to time on that region. The experiments have been performed in August-September, 1980, simultaneously to the ones of the 'Projeto Queimadas - 1980' promoted by the National Center for Atmospheric Research from the U.S.A.. The new results here in presented are size distribution concentration data as log-probability curves for the detected tracer-elements; from these curves, by introducing a new technique, is was possible to derive the corresponding log-normal curves. These last curves can be used conveniently to characterize the atmospheric aerosol system which is under investigation. (Author) [pt

  15. Concentration of elements in atmospheric aerosol in Bratislava

    International Nuclear Information System (INIS)

    Meresova, J.; Florek, M.; Holy, K.; Sykora, I.; Frontasyeva, M.V.; Pavlov, S.S.

    2006-01-01

    The concentrations of 41 chemical elements (heavy metals, rare earths, and actinides) were determined in atmospheric aerosol using nuclear and related analytical techniques. The sampling location in Bratislava (Slovak Republic). The main goal of this study is the quantification of the atmospheric pollution and its trend. The elemental content in filters was measured using instrumental neutron activation analysis at IBR-2 reactor in JINR Dubna and by atomic absorption spectrometry in Bratislava. The obtained results confirm the decreasing trend of pollution by most of the heavy metals in Bratislava atmosphere, and they are compared with the contents of pollutants in atmosphere of other cities. We determined also the composition of clear filter materials. (Authors)

  16. Deposition of aerosols formed by HCDA due to decay heat transport in inner containment atmospheres

    International Nuclear Information System (INIS)

    Vate, J.F. van de

    1976-01-01

    Coupling of decay heat transfer by aerosol-laden inner containment atmospheres with aerosol deposition from such atmospheres leads to useful and simple models for calculation of the time dependence of the aerosol mass concentration. Special attention is given to thermophoretic deposition (dry case) and condensation followed by gravitational deposition (wet case). Attractive features of the models are: 1) coagulation can be omitted and therefore complicated and doubtful calculations on coagulation are avoided, 2) material and particle size of the aerosol are not important for the aerosol decay rate, 3) the aerosol decay rate is related to the decay heat production which is known function of time, and the relevant part of it must be assessed usually for other purposes as well. (orig.) [de

  17. Some considerations about the natural atmospheric radioactive aerosol

    International Nuclear Information System (INIS)

    Renoux, A.; Madelaine, G.

    1985-01-01

    From experiments made in Brest by the use of a semi-automatic device for direct measurements of atmospheric radon (the double filter method), we obtained daily average values of Radon 222 concentration, and establish that the values obtained are completely different according to the wind direction. We establish that radioactive balance is never realized in the air between radon and its daughters RaA(Po218), RaB(Pb214) and RaC(Bi214); the state of radioactive balance strongly depends on wind direction. We also study the ionic state of the radioactive aerosol accruing from Radon 222. Using an experimental system consisting of absolute filters, diffusion batteries, cascade impactors and ions tubes, we establish the size distribution of natural radioactive aerosol. We thus show 40% of the natural atmospheric radioactivity is located on particles whose radii are inferior to 2 . 10-2 mm. A good agreement is provided between the theory and our experimental points

  18. Effects of continental anthropogenic sources on organic aerosols in the coastal atmosphere of East China.

    Science.gov (United States)

    Shang, Dongjie; Hu, Min; Guo, Qingfeng; Zou, Qi; Zheng, Jing; Guo, Song

    2017-10-01

    Although organic compounds in marine atmospheric aerosols have significant effects on climate and marine ecosystems, they have rarely been studied, especially in the coastal regions of East China. To assess the origins of the organic aerosols in the East China coastal atmosphere, PM 2.5 samples were collected from the atmospheres of the Yellow Sea, the East China Sea, and Changdao Island during the CAPTAIN (Campaign of Air PolluTion At INshore Areas of Eastern China) field campaign in the spring of 2011. The marine atmospheric aerosol samples that were collected were grouped based on the backward trajectories of their air masses. The organic carbon concentrations in the PM 2.5 samples from the marine and Changdao Island atmospheres were 5.5 ± 3.1 μgC/m 3 and 6.9 ± 2.4 μgC/m 3 , respectively, which is higher than in other coastal water atmospheres. The concentration of polycyclic aromatic hydrocarbons (PAHs) in the marine atmospheric PM 2.5 samples was 17.0 ± 20.2 ng/m 3 , indicating significant continental anthropogenic influences. The influences of fossil fuels and biomass burning on the composition of organic aerosols in the coastal atmosphere of East China were found to be highly dependent on the origins of the air masses. Diesel combustion had a strong impact on air masses from the Yangtze River Delta (YRD), and gasoline emissions had a more significant impact on the "North China" marine atmospheric samples. The "Northeast China" marine atmospheric samples were most impacted by biomass burning. Coal combustion contributed significantly to the compositions of all of the atmospheric samples. The proportions of secondary compounds increased as samples aged in the marine atmosphere indicating that photochemical oxidation occured during transport. Our results quantified ecosystem effects on marine atmospheric aerosols and highlighted the uncertainties that arise when modeling marine atmospheric PM 2.5 without considering high spatial resolution source

  19. Carbonaceous content of atmospheric aerosols in Lisbon urban atmosphere

    Science.gov (United States)

    Mirante, Fátima; Oliveira, C.; Martins, N.; Pio, C.; Caseiro, A.; Cerqueira, M.; Alves, C.; Oliveira, C.; Oliveira, J.; Camões, F.; Matos, M.; Silva, H.

    2010-05-01

    Lisbon is the capital city of Portugal with about 565,000 residents and a population density of 6,600 inhabitants per square kilometre. The town is surrounded by satellite cities, forming together a region known as "Lisbon Metropolitan Area" with about 3 million inhabitants. It is estimated that more than one million citizens come into the Lisbon area every day from the outskirts, leading to elevated traffic densities and intense traffic jams. Airborne particulate matter limit values are frequently exceeded, with important consequences on air pollution levels and obvious negative impacts on human health. Atmospheric aerosols are known to have in their structure significant amounts of carbonaceous material. The knowledge of the aerosols carbon content, particularly on their several carbon forms (as TC, EC and OC, meaning respectively Total, Elemental and Organic carbon) is often required to provide information for source attribution. In order to assess the vehicles PM input, two sampling campaigns (summer and winter periods) were carried out in 2008 in Lisbon in two contrasting sites, a roadside and an urban background site. Particulate matter was collected in two fractions on quartz fibre filters using Hi-Vol samplers (coarse fraction, 2.5µmwork was performed under Project PAHLIS (Polycyclic Aromatic Hydrocarbons Contamination in Lisbon Urban Atmosphere - PTDC/AMB/65699/2006) financed by "Fundação para a Ciência e a Tecnologia" - FCT. Fátima Mirante acknowledges FCT her PhD grant (SFRH/BD/45473/2008).

  20. Experimental Characterization of Radiation Forcing due to Atmospheric Aerosols

    Science.gov (United States)

    Sreenivas, K. R.; Singh, D. K.; Ponnulakshmi, V. K.; Subramanian, G.

    2011-11-01

    Micro-meteorological processes in the nocturnal atmospheric boundary layer (NBL) including the formation of radiation-fog and the development of inversion layers are controlled by heat transfer and the vertical temperature distribution close to the ground. In a recent study, it has been shown that the temperature profile close to the ground in stably-stratified, NBL is controlled by the radiative forcing due to suspended aerosols. Estimating aerosol forcing is also important in geo-engineering applications to evaluate the use of aerosols to mitigate greenhouse effects. Modeling capability in the above scenarios is limited by our knowledge of this forcing. Here, the design of an experimental setup is presented which can be used for evaluating the IR-radiation forcing on aerosols under either Rayleigh-Benard condition or under conditions corresponding to the NBL. We present results indicating the effect of surface emissivities of the top and bottom boundaries and the aerosol concentration on the temperature profiles. In order to understand the observed enhancement of the convection-threshold, we have determined the conduction-radiation time constant of an aerosol laden air layer. Our results help to explain observed temperature profiles in the NBL, the apparent stability of such profiles and indicate the need to account for the effect of aerosols in climatic/weather models.

  1. The role of ammonia in the chemistry of atmospheric aerosols

    International Nuclear Information System (INIS)

    Brosset, C.

    1979-01-01

    Data is presented on the concentrations of hydrogen and ammonium ions in aerosol samples taken under various meteorological conditions in different areas of Sweden, and implications for the atmospheric chemistry of aerosols are discussed. Particle compositions at coastal and inland stations were determined during situations when particle concentrations increased as much as a hundred times due to atmospheric transport from Europe or air movements from the east or west. Analysis of particle compositions during both types of particle episodes reveals variations in the H(+)/NH4(+) ratio which indicate that particles present over agricultural areas take up ammonia from the ground and release it over a forest district with acid lakes. The ratio is found to be dependent on the atmospheric partial pressure of ammonia at equilibrium, with the flow of ammonia to or from the ground and transport conditions also likely to influence the ratio

  2. Study on the surfactants present in atmospheric aerosols collected in the Okinawa Japan

    Science.gov (United States)

    Kamegawa, A.; Kasaba, T.; Shimabukuro, W.; Arakaki, T.

    2017-12-01

    The main constituent of atmospheric aerosols is organic substances, which occupy 20 to 70% of the mass. Organic matters in the aerosols contain organic acids, protein and humic acid, which behave similar to surfactants. Since surfactants contain both hydrophobic and hydrophilic functional groups in the molecule, they can play important roles in cloud formation and can affect climate change, but detailed mechanisms and magnitude are not well understood. In addition, surfactants can cause asthma, allergy, dry eye and so on. In this study, our aim is to characterize surfactants in the aerosols collected in different seasons in Okinawa, Japan. Atmospheric aerosols were collected at Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) during Sep. 2013 and July 2014. Surfactants in the environment are comprised of artificially synthesized compounds and naturally derived organics so we only differentiate them into anionic and cationic surfactants. Colorimetric methods were used to determine the concentrations of anionic surfactants as methylene blue active substance (MBAS). Cationic surfactants were also measured by colorimetric method as disulfine blue active substance (DBAS) and showed always below detection limit. Thus, we only discuss anionic surfactants measured as MBAS. Water soluble organic carbon (WSOC) and metal concentrations were also measured for the same aerosol samples. Concentrations of MBAS in the studied samples were 2-3 times higher in spring, fall and winter than those collected in summer. MBAS concentration in the aerosols showed strong correlation with sulfate ion and WSOC, and slightly weaker correlation with nss-sulfate ion. Among the metals, only sodium ion showed a relatively strong correlation with MBAS concentrations. It is suggested that the anionic surfactants in the studied aerosols are mainly derived from marine sources.

  3. Current Research in Lidar Technology Used for the Remote Sensing of Atmospheric Aerosols

    Science.gov (United States)

    Comerón, Adolfo; Muñoz-Porcar, Constantino; Rocadenbosch, Francesc; Rodríguez-Gómez, Alejandro; Sicard, Michaël

    2017-01-01

    Lidars are active optical remote sensing instruments with unique capabilities for atmospheric sounding. A manifold of atmospheric variables can be profiled using different types of lidar: concentration of species, wind speed, temperature, etc. Among them, measurement of the properties of aerosol particles, whose influence in many atmospheric processes is important but is still poorly stated, stands as one of the main fields of application of current lidar systems. This paper presents a review on fundamentals, technology, methodologies and state-of-the art of the lidar systems used to obtain aerosol information. Retrieval of structural (aerosol layers profiling), optical (backscatter and extinction coefficients) and microphysical (size, shape and type) properties requires however different levels of instrumental complexity; this general outlook is structured following a classification that attends these criteria. Thus, elastic systems (detection only of emitted frequencies), Raman systems (detection also of Raman frequency-shifted spectral lines), high spectral resolution lidars, systems with depolarization measurement capabilities and multi-wavelength instruments are described, and the fundamentals in which the retrieval of aerosol parameters is based is in each case detailed. PMID:28632170

  4. A contribution to the study of atmospheric aerosols in urban, marine and oceanic areas

    International Nuclear Information System (INIS)

    Butor, Jean-Francois

    1980-01-01

    A study of atmospheric aerosols, especially marine aerosols, was carried out, using impactors and nuclepore filters in association with electron microscopy techniques. The performances of the experimental device were first determined carefully and a generator of monodisperse aerosols was built at the laboratory in order to measure the efficiency of the filters used. It was demonstrated that the chief atmospheric particulate constituents could be determined by electron microscopy. The particle-size distribution of oceanic aerosols was next studied on the basis of the results of three measurement campaigns carried out in the Atlantic ocean. In Brest, where urban aerosols more or less affected by the meteorological conditions can be found superimposed to marine aerosols, an assessment was made of the effects of moderate anthropogeneous pollution on marine aerosols as measured in the Atlantic ocean. Two cases of marine aerosol disturbance, the former by an accidental marine pollution, the latter linked to a natural local phenomenon are related and a model of the marine aerosol in the Northern Atlantic ocean is proposed which takes into account the mean particle size spectra, the characteristic parameters of its three-modal distribution and the qualitative analysis of particles. (author) [fr

  5. The electrical charging of inactive aerosols in high ionised atmosphere, the electrical charging of artificial beta radioactive aerosols; Le processus de charge electrique: des aerosols non radioactifs en milieu fortement ionise, des aerosols radioactifs artificiels emetteurs beta

    Energy Technology Data Exchange (ETDEWEB)

    Gensdarmes, F

    2000-07-01

    The electrical properties of aerosols greatly influence their transport and deposition in a containment. In a bipolar ionic atmosphere, a neutral electric charge on aerosols is commonly assumed. However, many studies report a different charge distribution in some situations, like highly ionised atmosphere or in the case of radioactive aerosols. Such situations could arise from a hypothetical accident in a nuclear power plant. Within the framework of safety studies which are carried out at IPSN, our aims were the study of electrical properties of aerosols in highly ionised atmosphere, and the study of artificial radioactive aerosols, in order to suggest experimental validation of available theories. For this purpose, we designed an experimental device that allows us to measure non-radioactive aerosol charge distribution under high gamma irradiation, up to 10{sup 4} Gy/h. With our experimental device we also studied the properties of small ions in the medium. Our results show a variation of the charge distribution in highly ionised atmosphere. The charge increases with the dose of gamma ray. We have related this variation with the one of the small ions in the gases, according to theoretical prediction. However, the model overestimates slightly our experimental results. In the case of the radioactive aerosols, we have designed an original experimental device, which allows us to study the charge distribution of a {sup 137}Cs aerosol. Our results show that the electric charging of such aerosols is strongly dependent on evolution parameters in a containment. So, our results underline a great enhancement of self-charging of particles which are sampled in a confined medium. Our results are qualitatively in agreement with the theoretical model; nevertheless the latter underestimates appreciably the self-charging, owing to the fact that wall effects are not taken into account. (author)

  6. Marine Emissions and Atmospheric Processing Influence Aerosol Mixing States in the Bering Strait and Chukchi Sea

    Science.gov (United States)

    Kirpes, R.; Rodriguez, B.; Kim, S.; Park, K.; China, S.; Laskin, A.; Pratt, K.

    2017-12-01

    The Arctic region is rapidly changing due to sea ice loss and increasing oil/gas development and shipping activity. These changes influence aerosol sources and composition, resulting in complex aerosol-cloud-climate feedbacks. Atmospheric particles were collected aboard the R/V Araon in July-August 2016 in the Alaskan Arctic along the Bering Strait and Chukchi Sea. Offline analysis of individual particles by microscopic and spectroscopic techniques provided information on particle size, morphology, and chemical composition. Sea spray aerosol (SSA) and organic aerosol (OA) particles were the most commonly observed particle types, and sulfate was internally mixed with both SSA and OA. Evidence of multiphase sea spray aerosol reactions was observed, with varying degrees of chlorine depletion observed along the cruise. Notably, atmospherically processed SSA, completely depleted in chlorine, and internally mixed organic and sulfate particles, were observed in samples influenced by the central Arctic Ocean. Changes in particle composition due to fog processing were also investigated. Due to the changing aerosol sources and atmospheric processes in the Arctic region, it is crucial to understand aerosol composition in order to predict climate impacts.

  7. Contribution of anthropogenic aerosols in direct radiative forcing and atmospheric heating rate over Delhi in the Indo-Gangetic Basin.

    Science.gov (United States)

    Srivastava, Atul K; Singh, Sachchidanand; Tiwari, S; Bisht, D S

    2012-05-01

    The present work is aimed to understand direct radiation effects due to aerosols over Delhi in the Indo-Gangetic Basin (IGB) region, using detailed chemical analysis of surface measured aerosols during the year 2007. An optically equivalent aerosol model was formulated on the basis of measured aerosol chemical compositions along with the ambient meteorological parameters to derive radiatively important aerosol optical parameters. The derived aerosol parameters were then used to estimate the aerosol direct radiative forcing at the top of the atmosphere, surface, and in the atmosphere. The anthropogenic components measured at Delhi were found to be contributing ∼ 72% to the composite aerosol optical depth (AOD(0.5) ∼ 0.84). The estimated mean surface and atmospheric forcing for composite aerosols over Delhi were found to be about -69, -85, and -78 W m(-2) and about +78, +98, and +79 W m(-2) during the winter, summer, and post-monsoon periods, respectively. The anthropogenic aerosols contribute ∼ 90%, 53%, and 84% to the total aerosol surface forcing and ∼ 93%, 54%, and 88% to the total aerosol atmospheric forcing during the above respective periods. The mean (± SD) surface and atmospheric forcing for composite aerosols was about -79 (± 15) and +87 (± 26) W m(-2) over Delhi with respective anthropogenic contributions of ∼ 71% and 75% during the overall period of observation. Aerosol induced large surface cooling, which was relatively higher during summer as compared to the winter suggesting an increase in dust loading over the station. The total atmospheric heating rate at Delhi averaged during the observation was found to be 2.42  ±  0.72 K day(-1), of which the anthropogenic fraction contributed as much as ∼ 73%.

  8. Spatial and Temporal Variations of Atmospheric Aerosol in Osaka

    Directory of Open Access Journals (Sweden)

    Sonoyo Mukai

    2013-05-01

    Full Text Available It is well known that the aerosol distribution in Asia is complex due to both the increasing emissions of the anthropogenic aerosols associated with economic growth and the behavior of natural dusts. Therefore, detailed observations of atmospheric particles in Asian urban cities are important. In this work, we focus on the spatial and temporal variations of atmospheric particles around Higashi-Osaka in Japan. Higashi-Osaka is located in the eastern part of Osaka, the second-largest city in Japan, and is famous for small- and medium-sized manufacturing enterprises. For this study, we placed various ground measurement devices around the Higashi-Osaka campus of Kinki University including a Cimel sunphotometer supported by NASA/AERONET (Aerosol robotics network, suspended particulate matter (SPM sampler and LIDAR (light detection and ranging. Individual particle analyses with a SEM (scanning electron microscope/EDX (energy-dispersive X-ray analyzer show the temporal variations of particle properties, such as size, shape and components, during a dust event on 21 March 2010. The simultaneous measurement using a portable sun photometer with AERONET was conducted from April to November 2011. A comparison of the data at each site and the combination of the observed LIDAR data and model simulations indicate the difference in the transportation processes between dust and anthropogenic particles. We suppose this difference is attributed to the differences in the vertical aerosol profiles, where one aerosol is transported over Mount Ikoma and the other is blocked by it.

  9. Atmospheric aerosol in an urban area: Comparison of measurement instruments and methodologies and pulmonary deposition assessment; Aerosol atmosferico in area urbanae di misura e valutazione di deposizione polmonare

    Energy Technology Data Exchange (ETDEWEB)

    Berico, M; Luciani, A; Formignani, M [ENEA, Centro Ricerche Bologna (Italy). Dip. Ambiente

    1996-07-01

    In March 1995 a measurement campaign of atmospheric aerosol in the Bologna urban area (Italy) was carried out. A transportable laboratory, set up by ENEA (Italian national Agency for New Technologies, Energy and the Environment) Environmental Department (Bologna), was utilized with instruments for measurement of atmospheric aerosol and meteorological parameters. The aim of this campaign was of dual purpose: to characterize aerosol in urban area and to compare different instruments and methodologies of measurements. Mass concentrations measurements, evaluated on a 23-hour period with total filter, PM10 dichotomous sampler and low pressure impactor (LPI Berner), have provided information respectively about total suspended particles, respirable fraction and granulometric parameters of aerosol. Eight meteorologic parameters, number concentration of submicromic fraction of aerosol and mass concentration of micromic fraction have been continually measured. Then, in a daytime period, several number granulometries of atmospheric aerosol have also been estimated by means of diffusion battery system. Results related to different measurement methodologies and granulometric characteristics of aerosol are presented here. Pulmonary deposition of atmospheric aerosol is finally calculated, using granulometries provided by LPI Brener and ICRP 66 human respiratory tract model.

  10. Scattering of aerosol particles by a Hermite-Gaussian beam in marine atmosphere.

    Science.gov (United States)

    Huang, Qingqing; Cheng, Mingjian; Guo, Lixin; Li, Jiangting; Yan, Xu; Liu, Songhua

    2017-07-01

    Based on the complex-source-point method and the generalized Lorenz-Mie theory, the scattering properties and polarization of aerosol particles by a Hermite-Gaussian (HG) beam in marine atmosphere is investigated. The influences of beam mode, beam width, and humidity on the scattered field are analyzed numerically. Results indicate that when the number of HG beam modes u (v) increase, the radar cross section of aerosol particles alternating appears at maximum and minimum values in the forward and backward scattering, respectively, because of the special petal-shaped distribution of the HG beam. The forward and backward scattering of aerosol particles decreases with the increase in beam waist. When beam waist is less than the radius of the aerosol particle, a minimum value is observed in the forward direction. The scattering properties of aerosol particles by the HG beam are more sensitive to the change in relative humidity compared with those by the plane wave and the Gaussian beam (GB). The HG beam shows superiority over the plane wave and the GB in detecting changes in the relative humidity of marine atmosphere aerosol. The effects of relative humidity on the polarization of the HG beam have been numerically analyzed in detail.

  11. Size distributions of various radioactive aerosols in the ground-level atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, G.; Baust, E.

    1963-11-15

    To know the size spectra of radioactive aerosols is important for many reasons. Among others, the efficiency of measuring devices or biological processes, as for instance, retention in the lungs, depend on particle size.The work described deals mainly with two different components of radioactive aerosols in the atmosphere: the natural radon daughters and the fission products originating from nuclear test explosions.

  12. Chemistry of Atmospheric Aerosols at Pacifichem 2015 Congress

    Energy Technology Data Exchange (ETDEWEB)

    Nizkorodov, Sergey [Univ. of California, Irvine, CA (United States)

    2016-12-28

    This grant was used to provide participant support for a symposium entitled “Chemistry of Atmospheric Aerosols” at the 2015 International Chemical Congress of Pacific Basin Societies (Pacifichem) that took place in Honolulu, Hawaii, USA, on December 15-20, 2015. The objective was to help attract both distinguished scientists as well as more junior researchers, including graduate students, to this international symposium by reducing the financial barrier for its attendance. It was the second time a symposium devoted to Atmospheric Aerosols was part of the Pacifichem program. This symposium provided a unique opportunity for the scientists from different countries to gather in one place and discuss the cutting edge advances in the cross-disciplinary areas of aerosol research. To achieve the highest possible impact, the PI and the symposium co-organizers actively advertised the symposium by e-mail and by announcements at other conferences. A number of people responded, and the end result was a very busy program with about 100 oral and poster presentation described in the attached PDF file. Presentations by invited speakers occupied approximately 30% of time in each of the sessions. In addition to the invited speakers, each session also had contributed presentations, including those by graduate students and postdoctoral researchers. This symposium gathered established aerosol chemists from a number of countries including United States, Canada, China, Japan, Korea, Australia, Brazil, Hongkong, Switzerland, France, and Germany. There were plenty of time for the attendees to discuss new ideas and potential collaborations both during the oral sessions and at the poster sessions of the symposium. The symposium was very beneficial to graduate student researchers, postdoctoral fellows, and junior researchers whose prior exposure to international aerosol chemistry science had been limited. The symposium provided junior researchers with a much broader perspective of aerosol

  13. Changes in atmospheric aerosol loading retrieved from space based measurements during the past decade

    Science.gov (United States)

    Yoon, J.; Burrows, J. P.; Vountas, M.; von Hoyningen-Huene, W.; Chang, D. Y.; Richter, A.; Hilboll, A.

    2013-10-01

    Atmospheric aerosol, generated from natural and anthropogenic sources, plays a key role in regulating visibility, air quality, and acid deposition. It is directly linked to and impacts on human health. It also reflects and absorbs incoming solar radiation and thereby influences the climate change. The cooling by aerosols is now recognized to have partly masked the atmospheric warming from fossil fuel combustion emissions. The role and potential management of short-lived climate pollutants such as aerosol are currently a topic of much scientific and public debate. Our limited knowledge of atmospheric aerosol and its influence on the Earth's radiation balance has a significant impact on the accuracy and error of current predictions of the future global climate change. In the past decades, environmental legislation in industrialized countries has begun to limit the release of anthropogenic pollutants. In contrast, in Asia as a result of the recent rapid economic development, emissions from industry and traffic have increased dramatically. In this study, the temporal changes/trends of atmospheric aerosols, derived from the satellite instruments MODIS (on board Terra and Aqua), MISR (Terra), and SeaWiFS (OrbView-2) during the past decade, are investigated. Whilst the aerosol optical thickness, AOT, over Western Europe decreases (i.e. by up to about -40% from 2003 to 2008) and parts of North America, a statistically significant increase (about +34% in the same period) over East China is observed and attributed to both the increase in industrial output and the Asian desert dust.

  14. Small-scale Scheimpflug lidar for aerosol extinction coefficient and vertical atmospheric transmittance detection.

    Science.gov (United States)

    Sun, Guodong; Qin, Laian; Hou, Zaihong; Jing, Xu; He, Feng; Tan, Fengfu; Zhang, Silong

    2018-03-19

    In this paper, a new prototypical Scheimpflug lidar capable of detecting the aerosol extinction coefficient and vertical atmospheric transmittance at 1 km above the ground is described. The lidar system operates at 532 nm and can be used to detect aerosol extinction coefficients throughout an entire day. Then, the vertical atmospheric transmittance can be determined from the extinction coefficients with the equation of numerical integration in this area. CCD flat fielding of the image data is used to mitigate the effects of pixel sensitivity variation. An efficient method of two-dimensional wavelet transform according to a local threshold value has been proposed to reduce the Gaussian white noise in the lidar signal. Furthermore, a new iteration method of backscattering ratio based on genetic algorithm is presented to calculate the aerosol extinction coefficient and vertical atmospheric transmittance. Some simulations are performed to reduce the different levels of noise in the simulated signal in order to test the precision of the de-noising method and inversion algorithm. The simulation result shows that the root-mean-square errors of extinction coefficients are all less than 0.02 km -1 , and that the relative errors of the atmospheric transmittance between the model and inversion data are below 0.56% for all cases. The feasibility of the instrument and the inversion algorithm have also been verified by an optical experiment. The average relative errors of aerosol extinction coefficients between the Scheimpflug lidar and the conventional backscattering elastic lidar are 3.54% and 2.79% in the full overlap heights of two time points, respectively. This work opens up new possibilities of using a small-scale Scheimpflug lidar system for the remote sensing of atmospheric aerosols.

  15. Ecological aspects of Moessbauer study of iron-containing atmospheric aerosols

    International Nuclear Information System (INIS)

    Kopcewicz, B.; Kopcewicz, M.

    2000-01-01

    Moessbauer spectroscopy was applied to analyze the iron compounds in atmospheric aerosol. Seasonal variations of iron concentration in atmospheric air measured over twenty years in Poland are discussed. It was observed that the concentration of iron sulfides (FeS, FeS 2 ) related to coal combustion dropped significantly, however, concentration of iron oxides and iron oxyhydroxides related to fuel combustion increased

  16. Increased aerosol content in the atmosphere over Ukraine during summer 2010

    Science.gov (United States)

    Galytska, Evgenia; Danylevsky, Vassyl; Hommel, René; Burrows, John P.

    2018-04-01

    In this paper we assessed the influence of biomass burning during forest fires throughout summer (1 June-31 August) 2010 on aerosol abundance, dynamics, and its properties over Ukraine. We also considered influences and effects over neighboring countries: European Russia, Estonia, Belarus, Poland, Moldova, and Romania. We used MODIS satellite instrument data to study fire distribution. We also used ground-based remote measurements from the international sun photometer network AERONET plus MODIS and CALIOP satellite instrument data to determine the aerosol content and optical properties in the atmosphere over Eastern Europe. We applied the HYSPLIT model to investigate atmospheric dynamics and model pathways of particle transport. As with previous studies, we found that the highest aerosol content was observed over Moscow in the first half of August 2010 due to the proximity of the most active fires. Large temporal variability of the aerosol content with pronounced pollution peaks during 7-17 August was observed at the Ukrainian (Kyiv and Sevastopol), Belarusian (Minsk), Estonian (Toravere), and Romanian (Bucharest) AERONET sites. We analyzed aerosol spatiotemporal distribution over Ukraine using MODIS AOD 550 nm and further compared with the Kyiv AERONET site sun photometer measurements; we also compared CALIOP AOD 532 nm with MODIS AOD data. We analyzed vertical distribution of aerosol extinction at 532 nm, retrieved from CALIOP measurements, for the territory of Ukraine at locations where high AOD values were observed during intense fires. We estimated the influence of fires on the spectral single scattering albedo, size distribution, and complex refractive indices using Kyiv AERONET measurements performed during summer 2010. In this study we showed that the maximum AOD in the atmosphere over Ukraine recorded in summer 2010 was caused by particle transport from the forest fires in Russia. Those fires caused the highest AOD 500 nm over the Kyiv site, which in

  17. he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study

    Energy Technology Data Exchange (ETDEWEB)

    Keene, William C. [University of Virginia; Long, Michael S. [University of Virginia

    2013-05-20

    This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistry's MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences

  18. Atmospheric aerosol and gas sensing using Scheimpflug lidar

    Science.gov (United States)

    Mei, Liang; Brydegaard, Mikkel

    2015-04-01

    This work presents a new lidar technique for atmospheric remote sensing based on Scheimpflug principle, which describes the relationship between nonparallel image- and object-planes[1]. When a laser beam is transmitted into the atmosphere, the implication is that the backscattering echo of the entire illuminated probe volume can be in focus simultaneously without diminishing the aperture. The range-resolved backscattering echo can be retrieved by using a tilted line scan or two-dimensional CCD/CMOS camera. Rather than employing nanosecond-pulsed lasers, cascade detectors, and MHz signal sampling, all of high cost and complexity, we have developed a robust and inexpensive atmospheric lidar system based on compact laser diodes and array detectors. We present initial applications of the Scheimpflug lidar for atmospheric aerosol monitoring in bright sunlight, with a 3 W, 808 nm CW laser diode. Kilohertz sampling rates are also achieved with applications for wind speed and entomology [2]. Further, a proof-of-principle demonstration of differential absorption lidar (DIAL) based on the Scheimpflug lidar technique is presented [3]. By utilizing a 30 mW narrow band CW laser diode emitting at around 760 nm, the detailed shape of an oxygen absorption line can be resolved remotely with an integration time of 6 s and measurement cycle of 1 minute during night time. The promising results demonstrated in this work show potential for the Scheimpflug lidar technique for remote atmospheric aerosol and gas sensing, and renews hope for robust and realistic instrumentation for atmospheric lidar sensing. [1] F. Blais, "Review of 20 years of range sensor development," Journal of Electronic Imaging, vol. 13, pp. 231-243, Jan 2004. [2] M. Brydegaard, A. Gebru, and S. Svanberg, "Super resolution laser radar with blinking atmospheric particles - application to interacting flying insects " Progress In Electromagnetics Research, vol. 147, pp. 141-151, 2014. [3] L. Mei and M. Brydegaard

  19. The role of ion-induced aerosol formation in the lower atmosphere

    International Nuclear Information System (INIS)

    Raes, Frank; Janssens, Augustin; Dingenen, Rita van

    1986-01-01

    The rate of ion-induced aerosol formation in a H 2 0-H 2 S0 4 mixture depends on the relative humidity, the relative acidity and the number of ions (clusters) available for nucleation. Figure 1 shows the rates of homogeneous and ion-induced aerosol formation as a function of the H 2 S0 4 sup((gas)) concentration, for conditions prevailing in the lower atmosphere. The rate of ion-induced aerosol formation is plotted for different concentrations of pre-existing aerosol. It can be seen that ion-induced aerosol formation will only play a role in the formation of new particles when (1) the H 2 S0 4 sup((gas)) concentration is confined within the critical values for ion-induced and homogeneous aerosol formation (about 5 x 10 7 and 4 x 10 8 cm -3 respectively), and (2) the concentration of pre-existing aerosol is lower than about 5 x 10 3 cm -3 (Dp = 0.1 μm). It will be shown by numerical calculations that such conditions may be expected above the oceans. (author)

  20. Nuclear microprobe analysis and source apportionment of individual atmospheric aerosol particles

    International Nuclear Information System (INIS)

    Artaxo, P.; Rabello, M.L.C.; Watt, F.; Grime, G.; Swietlicki, E.

    1993-01-01

    In atmospheric aerosol reserach, one key issue is to determine the sources of the airborne particles. Bulk PIXE analysis coupled with receptor modeling provides a useful, but limited view of the aerosol sources influencing one particular site or sample. The scanning nuclear microprobe (SNM) technique is a microanalytical technique that gives unique information on individual aerosol particles. In the SNM analyses a 1.0 μm size 2.4 MeV proton beam from the Oxford SNM was used. The trace elements with Z>11 were measured by the particle induced X-ray emission (PIXE) method with detection limits in the 1-10 ppm range. Carbon, nitrogen and oxygen are measured simultaneously using Rutherford backscattering spectrometry (RBS). Atmospheric aerosol particles were collected at the Brazilian Antarctic Station and at biomass burning sites in the Amazon basin tropical rain forest in Brazil. In the Antarctic samples, the sea-salt aerosol particles were clearly predominating, with NaCl and CaSO 4 as major compounds with several trace elements as Al, Si, P, K, Mn, Fe, Ni, Cu, Zn, Br, Sr, and Pb. Factor analysis of the elemental data showed the presence of four components: 1) Soil dust particles; 2) NaCl particles; 3) CaSO 4 with Sr; and 4) Br and Mg. Strontium, observed at 20-100 ppm levels, was always present in the CaSO 4 particles. The hierarchical cluster procedure gave results similar to the ones obtained through factor analysis. For the tropical rain forest biomass burning aerosol emissions, biogenic particles with a high organic content dominate the particle population, while K, P, Ca, Mg, Zn, and Si are the dominant elements. Zinc at 10-200 ppm is present in biogenic particles rich in P and K. The quantitative aspects and excellent detection limits make SNM analysis of individual aerosol particles a very powerful analytical tool. (orig.)

  1. Evaluation of atmospheric aerosol and tropospheric ozone effects on global terrestrial ecosystem carbon dynamics

    Science.gov (United States)

    Chen, Min

    The increasing human activities have produced large amounts of air pollutants ejected into the atmosphere, in which atmospheric aerosols and tropospheric ozone are considered to be especially important because of their negative impacts on human health and their impacts on global climate through either their direct radiative effect or indirect effect on land-atmosphere CO2 exchange. This dissertation dedicates to quantifying and evaluating the aerosol and tropospheric ozone effects on global terrestrial ecosystem dynamics using a modeling approach. An ecosystem model, the integrated Terrestrial Ecosystem Model (iTem), is developed to simulate biophysical and biogeochemical processes in terrestrial ecosystems. A two-broad-band atmospheric radiative transfer model together with the Moderate-Resolution Imaging Spectroradiometer (MODIS) measured atmospheric parameters are used to well estimate global downward solar radiation and the direct and diffuse components in comparison with observations. The atmospheric radiative transfer modeling framework were used to quantify the aerosol direct radiative effect, showing that aerosol loadings cause 18.7 and 12.8 W m -2 decrease of direct-beam Photosynthetic Active Radiation (PAR) and Near Infrared Radiation (NIR) respectively, and 5.2 and 4.4 W m -2 increase of diffuse PAR and NIR, respectively, leading to a total 21.9 W m-2 decrease of total downward solar radiation over the global land surface during the period of 2003-2010. The results also suggested that the aerosol effect may be overwhelmed by clouds because of the stronger extinction and scattering ability of clouds. Applications of the iTem with solar radiation data and with or without considering the aerosol loadings shows that aerosol loading enhances the terrestrial productions [Gross Primary Production (GPP), Net Primary Production (NPP) and Net Ecosystem Production (NEP)] and carbon emissions through plant respiration (RA) in global terrestrial ecosystems over the

  2. Elemental composition of aerosol particles from two atmospheric monitoring stations in the Amazon Basin

    International Nuclear Information System (INIS)

    Artaxo, P.; Gerab, F.; Rabello, M.L.C.

    1993-01-01

    One key region for the study of processes that are changing the composition of the global atmosphere is the Amazon Basin tropical rain forest. The high rate of deforestation and biomass burning is emitting large amounts of gases and fine-mode aerosol particles to the global atmosphere. Two background monitoring stations are operating continuously measuring aerosol composition, at Cuiaba, and Serra do Navio. Fine- and coarse-mode aerosol particles are being collected using stacked filter units. Particle induced X-ray emission (PIXE) was used to measure concentrations of up to 21 elements: Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br, Rb, Sr, Zr, and Pb. The elemental composition was measured at the new PIXE facility from the University of Sao Paulo, using a dedicated 5SDH tandem Pelletron nuclear accelerator. Absolute principal factor analysis (APFA) has derived absolute elemental source profiles. At the Serra do Navio sampling site a very clean background aerosol is being observed. Biogenic aerosol dominates the fine-mode mass concentration, with the presence of K, P, S, Cl, Zn, Br, and FPM. Three components dominate the aerosol composition: Soil dust particles, the natural biogenic release by the forest, and a marine aerosol component. At the Cuiaba site, during the dry season, a strong component of biomass burning is observed. An aerosol mass concentration up to 120 μg/m 3 was measured. APFA showed three components: Soil dust (Al, Ca, Ti, Mn, Fe), biomass burning (soot, FPM, K, Cl) and natural biogenic particles (K, S, Ca, Mn, Zn). The fine-mode biogenic component of both sites shows remarkable similarities, although the two sampling sites are 3000 km apart. Several essential plant nutrients like P, K, S, Ca, Ni and others are transported in the atmosphere as a result of biomass burning processes. (orig.)

  3. Direct radiative forcing properties of atmospheric aerosols over semi-arid region, Anantapur in India

    Energy Technology Data Exchange (ETDEWEB)

    Kalluri, Raja Obul Reddy; Gugamsetty, Balakrishnaiah [Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh (India); Kotalo, Rama Gopal, E-mail: krgverma@yahoo.com [Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh (India); Nagireddy, Siva Kumar Reddy; Tandule, Chakradhar Rao; Thotli, Lokeswara Reddy [Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh (India); Rajuru Ramakrishna, Reddy [Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh (India); Srinivasa Ramanujan Institute of Technology, B.K. Samudram Mandal, Anantapur 515 701, Andhra Pradesh (India); Surendranair, Suresh Babu [Space Physics Laboratory, Vikram Sarabhai Space Centre, Trivandrum 695 022, Kerala (India)

    2016-10-01

    This paper describes the aerosols optical, physical characteristics and the aerosol radiative forcing pertaining to semi-arid region, Anantapur for the period January 2013-December 2014. Collocated measurements of Aerosol Optical Depth (AOD) and Black Carbon mass concentration (BC) are carried out by using MICROTOPS II and Aethalometer and estimated the aerosol radiative forcing over this location. The mean values of AOD at 500 nm are found to be 0.47 ± 0.09, 0.34 ± 0.08, 0.29 ± 0.06 and 0.30 ± 0.07 during summer, winter, monsoon and post-monsoon respectively. The Angstrom exponent (α{sub 380–1020}) value is observed maximum in March (1.25 ± 0.19) and which indicates the predominance of fine - mode aerosols and lowest in the month of July (0.33 ± 0.14) and may be due to the dominance of coarse-mode aerosols. The diurnal variation of BC is exhibited two height peaks during morning 07:00–08:00 (IST) and evening 19:00–21:00 (IST) hours and one minima noticed during afternoon (13:00–16:00). The highest monthly mean BC concentration is observed in the month of January (3.4 ± 1.2 μg m{sup −3}) and the lowest in July (1.1 ± 0.2 μg m{sup −3}). The estimated Aerosol Direct Radiative Forcing (ADRF) in the atmosphere is found to be + 36.8 ± 1.7 W m{sup −2}, + 26.9 ± 0.2 W m{sup −2}, + 18.0 ± 0.6 W m{sup −2} and + 18.5 ± 3.1 W m{sup −2} during summer, winter, monsoon and post-monsoon seasons, respectively. Large difference between TOA and BOA forcing is observed during summer which indicate the large absorption of radiant energy (36.80 W m{sup −2}) which contributes more increase in atmospheric heating by ~ 1 K/day. The BC contribution on an average is found to be 64% and is responsible for aerosol atmospheric heating. - Highlights: • The mean values of AOD{sub 500} are found to be high during summer whereas low in monsoon. • The highest values of BC are observed in January and the lowest in the month of July. • The annual mean

  4. Direct radiative forcing properties of atmospheric aerosols over semi-arid region, Anantapur in India

    International Nuclear Information System (INIS)

    Kalluri, Raja Obul Reddy; Gugamsetty, Balakrishnaiah; Kotalo, Rama Gopal; Nagireddy, Siva Kumar Reddy; Tandule, Chakradhar Rao; Thotli, Lokeswara Reddy; Rajuru Ramakrishna, Reddy; Surendranair, Suresh Babu

    2016-01-01

    This paper describes the aerosols optical, physical characteristics and the aerosol radiative forcing pertaining to semi-arid region, Anantapur for the period January 2013-December 2014. Collocated measurements of Aerosol Optical Depth (AOD) and Black Carbon mass concentration (BC) are carried out by using MICROTOPS II and Aethalometer and estimated the aerosol radiative forcing over this location. The mean values of AOD at 500 nm are found to be 0.47 ± 0.09, 0.34 ± 0.08, 0.29 ± 0.06 and 0.30 ± 0.07 during summer, winter, monsoon and post-monsoon respectively. The Angstrom exponent (α_3_8_0_–_1_0_2_0) value is observed maximum in March (1.25 ± 0.19) and which indicates the predominance of fine - mode aerosols and lowest in the month of July (0.33 ± 0.14) and may be due to the dominance of coarse-mode aerosols. The diurnal variation of BC is exhibited two height peaks during morning 07:00–08:00 (IST) and evening 19:00–21:00 (IST) hours and one minima noticed during afternoon (13:00–16:00). The highest monthly mean BC concentration is observed in the month of January (3.4 ± 1.2 μg m"−"3) and the lowest in July (1.1 ± 0.2 μg m"−"3). The estimated Aerosol Direct Radiative Forcing (ADRF) in the atmosphere is found to be + 36.8 ± 1.7 W m"−"2, + 26.9 ± 0.2 W m"−"2, + 18.0 ± 0.6 W m"−"2 and + 18.5 ± 3.1 W m"−"2 during summer, winter, monsoon and post-monsoon seasons, respectively. Large difference between TOA and BOA forcing is observed during summer which indicate the large absorption of radiant energy (36.80 W m"−"2) which contributes more increase in atmospheric heating by ~ 1 K/day. The BC contribution on an average is found to be 64% and is responsible for aerosol atmospheric heating. - Highlights: • The mean values of AOD_5_0_0 are found to be high during summer whereas low in monsoon. • The highest values of BC are observed in January and the lowest in the month of July. • The annual mean atmospheric forcing is found to be

  5. Protection of atmospheric air against radioactive gas and aerosol contaminants

    International Nuclear Information System (INIS)

    Zykova, A.S.

    1984-01-01

    Measures for contamination protection of atmospheric air subdivided into active and passive ones, are considered. The active measures envisage: development and application of waste-free flowsheets, use of flowsheets which restrict formation of gaseous-aerosol discharges; application of highly efficient treatment facilities torage. Dispersion of radioactive substances, released with discharges to the atmosphere, using high stacks; development of the corresponding site-selection solutions and arrangement of sanitary protective zones belong to passive measures. Measures for protection of atmospheric air also include waste and air contamination monitoring. The measures described are considered as applied to NPPs

  6. Development of a 10 Hz measurement system for atmospheric aerosol concentration

    International Nuclear Information System (INIS)

    Bouarouri, Assia

    2014-01-01

    The goal is to develop an aerosol charger based on a corona discharge for atmospheric concentration measurements (10 3 -10 5 cm -3 ) within a response time of 100 ms. Two ion sources, point-to-hole and wire-to-slit have been characterized. The increase of the ion flow in the post-discharge by EHD ion confinement in both the discharge gap and the hole has been shown. At first, using an experimental survey driven in two mixing configurations, concentric and face-to-face, we have confirmed the aerosol diffusion charging law which depends on aerosol diameter and N i .t product, with N i , the ions concentration and t, the charging time. Thus, the originality of this charger relies on the very high heterogeneity of unipolar ion densities (N i 0 ≥10 9 cm -3 ) required to compensate the charging time of 50 ms. In these conditions, we have shown that aerosol diameter and the charging dynamic (which depends also on the diameter) control the aerosol trajectory. The chargers have, next, been compared in different operating conditions, mainly in terms of the maximal charging and the minimal losses. In the chosen charger (point-to-hole ion source and concentric mixing), the relations charge/mobility and losses according to diameter have been characterized. We have also shown the linearity of the charged particles current with the aerosol concentration which allows the current-concentration data inversion. The preliminary measurement system composed by the charger, the separator and the particle current measurements, satisfies the objectives of the study in terms of the concentration detection limit (10 3 cm -3 ) and the response time (100 ms). We have thus shown the feasibility of an atmospheric aerosol concentration measurement system at 10 Hz using a corona discharge charger provided that the separation power is improved. Furthermore, knowing that aerosol losses are negligible and the lower limit of the partial charging, the developed charger is adaptable with other

  7. Geographical Distribution and Sources of Nutrients in Atmospheric Aerosol Over the Pacific Ocean

    Science.gov (United States)

    Uematsu, M.

    2016-12-01

    The Pacific Ocean, the world's largest (occupying about 30% of the Earth's total surface area) has several distinguishing biogeochemical features. In the western Pacific, dust particles originating from arid and semi-arid regions in Asia and Australia are transported to the north and south, respectively. Biomass burning emissions from Southeast Asia are exported to the tropical Pacific, and anthropogenic substances flowing out of Asia and Eurasia spread both regionally and globally. Over high primary productive areas such as the subarctic North Pacific, the equatorial Pacific and the Southern Ocean, biogenic gasses are released to the atmosphere and transported to other areas. These processes may affect cloud and rainfall patterns, air quality, and the radiative balance of downwind regions. The deposition of atmospheric aerosols containing iron and other essential nutrients is important for biogeochemical cycles in the oceans because this source of nutrients helps sustain primary production and affects food-web structure; these effects in turn influence the chemical properties of marine atmosphere. From an atmospheric chemistry standpoint, sea-salt aerosols produced by strong winds and marine biogenic gases emitted from highly productive waters affect the physicochemical characteristics of marine aerosols. As phytoplankton populations are patchy and atmospheric processes sporadic, the interactions between atmospheric chemical constituents and marine biota vary for different regions as well as seasonally and over longer timescales. To address these and other emerging issues, and more generally to better understand the important biogeochemical processes and interactions occurring over the open oceans, more long-term recurrent research cruises with standardized atmospheric shipboard measurements will be needed in the future.

  8. Evaluation and application of passive and active optical remote sensing methods for the measurement of atmospheric aerosol properties

    Energy Technology Data Exchange (ETDEWEB)

    Mielonen, T.

    2010-07-01

    Atmospheric aerosol particles affect the atmosphere's radiation balance by scattering and absorbing sunlight. Moreover, the particles act as condensation nuclei for clouds and affect their reflectivity. In addition, aerosols have negative health effects and they reduce visibility. Aerosols are emitted into the atmosphere from both natural and anthropogenic sources. Different types of aerosols have different effects on the radiation balance, thus global monitoring and typing of aerosols is of vital importance. In this thesis, several remote sensing methods used in the measurement of atmospheric aerosols are evaluated. Remote sensing of aerosols can be done with active and passive instruments. Passive instruments measure radiation emitted by the sun and the Earth while active instruments have their own radiation source, for example a black body radiator or laser. The instruments utilized in these studies were sun photometers (PFR, Cimel), lidars (POLLYXT, CALIOP), transmissiometer (OLAF) and a spectroradiometer (MODIS). Retrieval results from spaceborne instruments (MODIS, CALIOP) were evaluated with ground based measurements (PFR, Cimel). In addition, effects of indicative aerosol model assumptions on the calculated radiative transfer were studied. Finally, aerosol particle mass at the ground level was approximated from satellite measurements and vertical profiles of aerosols measured with a lidar were analyzed. For the evaluation part, these studies show that the calculation of aerosol induced attenuation of radiation based on aerosol size distribution measurements is not a trivial task. In addition to dry aerosol size distribution, the effect of ambient relative humidity on the size distribution and the optical properties of the aerosols need to be known in order to achieve correct results from the calculations. Furthermore, the results suggest that aerosol size parameters retrieved from passive spaceborne measurements depend heavily on surgace reflectance

  9. Sugars in atmospheric aerosols over the Eastern Mediterranean

    Science.gov (United States)

    Theodosi, Christina; Panagiotopoulos, Christos; Nouara, Amel; Zarmpas, Pavlos; Nicolaou, Panagiota; Violaki, Kalliopi; Kanakidou, Maria; Sempéré, Richard; Mihalopoulos, Nikolaos

    2017-04-01

    The role of biomass combustion and primary bio-particles in atmospheric PM10 aerosols in the Eastern Mediterranean over a two-year period was estimated by studying sugar tracers. Sugar concentrations ranged from 6 to 334 ng m-3, while their contributions to the organic carbon (OC) and water soluble organic carbon (WSOC) pools were 3 and 11%, respectively. Over the studied period, glucose and levoglucosan were the two most abundant sugars accounting equally about 25% of the total sugar concentration in PM10 aerosols whereas fructose, sucrose, and mannitol represented 18%, 15% and 10%, respectively. Primary saccharides (glucose, fructose, and sucrose) peaked at the beginning of spring (21, 17 and 15 ng m-3, respectively), indicating significant contributions of bioaerosols to the total organic aerosol mass. On the other hand, higher concentrations of anhydrosugars (burning biomass tracers including levoglucosan, mannosan and galactosan) were recorded in winter (19, 1.4 and 0.2 ng m-3, respectively) than in summer (9.1, 1.1 and 0.5 ng m-3, respectively). Levoglucosan was the dominant monosaccharide in winter (37% of total sugars) with less contribution in summer (19%) probably in relation with enhanced photochemical oxidation reactions by hydroxyl (ṡOH) radicals impacting anhydrosugars. We estimate that atmospheric oxidation by ṡOH decreases levoglucosan levels by 54% during summer. Biomass burning, based on levoglucosan observations, was estimated to contribute up to 13% to the annual average OC measured at Finokalia. Annual OC, WSOC, and carbohydrate dry deposition fluxes for the studied period were estimated to 414, 175, and 9 mg C m-2 y-1, respectively. Glucose and levoglucosan accounted for 34% and 2% of the total sugar fluxes. According to our estimations, atmospheric OC and WSOC inputs account for ˜0.70% of the carbon produced by annual primary production (PP) in the Cretan Sea. Considering the entire Mediterranean, dry deposition of OC could provide at

  10. Study of the behaviour of artificial radioactive aerosols. Applications to some problems of atmospheric circulation (1963)

    International Nuclear Information System (INIS)

    Lambert, G.

    1963-11-01

    The aim of this work, consists in the examination of the behaviour of radioactive aerosols produced in the atmosphere by nuclear explosions, in order to deduce the most general laws governing atmospheric circulation and diffusion. After having given a general table of the radioactive aerosols present the authors consider the validity and the precision of the measurement methods and the concentration of the aerosols at ground level and in the upper atmosphere, as well as their deposition on the ground. The existence is thus demonstrated of a tropospheric equatorial barrier and of discontinuous and seasonal aspects of stratosphere-troposphere transfers. The role is shown of precipitations and dry auto-filtration in the lower atmosphere cleaning processes. This work makes it possible to describe the general behaviour of dust from the stratosphere, and to improve the total radioactive contamination of the globe. (author) [fr

  11. SIRTA, a ground-based atmospheric observatory for cloud and aerosol research

    Directory of Open Access Journals (Sweden)

    M. Haeffelin

    2005-02-01

    Full Text Available Ground-based remote sensing observatories have a crucial role to play in providing data to improve our understanding of atmospheric processes, to test the performance of atmospheric models, and to develop new methods for future space-borne observations. Institut Pierre Simon Laplace, a French research institute in environmental sciences, created the Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA, an atmospheric observatory with these goals in mind. Today SIRTA, located 20km south of Paris, operates a suite a state-of-the-art active and passive remote sensing instruments dedicated to routine monitoring of cloud and aerosol properties, and key atmospheric parameters. Detailed description of the state of the atmospheric column is progressively archived and made accessible to the scientific community. This paper describes the SIRTA infrastructure and database, and provides an overview of the scientific research associated with the observatory. Researchers using SIRTA data conduct research on atmospheric processes involving complex interactions between clouds, aerosols and radiative and dynamic processes in the atmospheric column. Atmospheric modellers working with SIRTA observations develop new methods to test their models and innovative analyses to improve parametric representations of sub-grid processes that must be accounted for in the model. SIRTA provides the means to develop data interpretation tools for future active remote sensing missions in space (e.g. CloudSat and CALIPSO. SIRTA observation and research activities take place in networks of atmospheric observatories that allow scientists to access consistent data sets from diverse regions on the globe.

  12. Modelling iodide – iodate speciation in atmospheric aerosol: Contributions of inorganic and organic iodine chemistry

    Directory of Open Access Journals (Sweden)

    S. Pechtl

    2007-01-01

    Full Text Available The speciation of iodine in atmospheric aerosol is currently poorly understood. Models predict negligible iodide concentrations but accumulation of iodate in aerosol, both of which is not confirmed by recent measurements. We present an updated aqueous phase iodine chemistry scheme for use in atmospheric chemistry models and discuss sensitivity studies with the marine boundary layer model MISTRA. These studies show that iodate can be reduced in acidic aerosol by inorganic reactions, i.e., iodate does not necessarily accumulate in particles. Furthermore, the transformation of particulate iodide to volatile iodine species likely has been overestimated in previous model studies due to negligence of collision-induced upper limits for the reaction rates. However, inorganic reaction cycles still do not seem to be sufficient to reproduce the observed range of iodide – iodate speciation in atmospheric aerosol. Therefore, we also investigate the effects of the recently suggested reaction of HOI with dissolved organic matter to produce iodide. If this reaction is fast enough to compete with the inorganic mechanism, it would not only directly lead to enhanced iodide concentrations but, indirectly via speed-up of the inorganic iodate reduction cycles, also to a decrease in iodate concentrations. Hence, according to our model studies, organic iodine chemistry, combined with inorganic reaction cycles, is able to reproduce observations. The presented chemistry cycles are highly dependent on pH and thus offer an explanation for the large observed variability of the iodide – iodate speciation in atmospheric aerosol.

  13. Analysis of water-soluble fraction of metals in atmospheric aerosols using aerosol counterflow two-jets unit and chemiluminescent detection

    Czech Academy of Sciences Publication Activity Database

    Vojtěšek, Martin; Mikuška, Pavel; Večeřa, Zbyněk; Křůmal, Kamil

    2012-01-01

    Roč. 92, č. 4 (2012), s. 432-449 ISSN 0306-7319 R&D Projects: GA MŽP SP/1A3/148/08; GA MŽP SP/1B7/189/07; GA MŽP SP/1A3/55/08 Institutional research plan: CEZ:AV0Z40310501 Keywords : atmospheric aerosols * metals * continuous aerosol collector Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.240, year: 2012

  14. Volatility measurement of atmospheric submicron aerosols in an urban atmosphere in southern China

    Science.gov (United States)

    Cao, Li-Ming; Huang, Xiao-Feng; Li, Yuan-Yuan; Hu, Min; He, Ling-Yan

    2018-02-01

    Aerosol pollution has been a very serious environmental problem in China for many years. The volatility of aerosols can affect the distribution of compounds in the gas and aerosol phases, the atmospheric fates of the corresponding components, and the measurement of the concentration of aerosols. Compared to the characterization of chemical composition, few studies have focused on the volatility of aerosols in China. In this study, a thermodenuder aerosol mass spectrometer (TD-AMS) system was deployed to study the volatility of non-refractory submicron particulate matter (PM1) species during winter in Shenzhen. To our knowledge, this paper is the first report of the volatilities of aerosol chemical components based on a TD-AMS system in China. The average PM1 mass concentration during the experiment was 42.7±20.1 µg m-3, with organic aerosol (OA) being the most abundant component (43.2 % of the total mass). The volatility of chemical species measured by the AMS varied, with nitrate showing the highest volatility, with a mass fraction remaining (MFR) of 0.57 at 50 °C. Organics showed semi-volatile characteristics (the MFR was 0.88 at 50 °C), and the volatility had a relatively linear correlation with the TD temperature (from the ambient temperature to 200 °C), with an evaporation rate of 0.45 % °C-1. Five subtypes of OA were resolved from total OA using positive matrix factorization (PMF) for data obtained under both ambient temperature and high temperatures through the TD, including a hydrocarbon-like OA (HOA, accounting for 13.5 %), a cooking OA (COA, 20.6 %), a biomass-burning OA (BBOA, 8.9 %), and two oxygenated OAs (OOAs): a less-oxidized OOA (LO-OOA, 39.1 %) and a more-oxidized OOA (MO-OOA, 17.9 %). Different OA factors presented different volatilities, and the volatility sequence of the OA factors at 50 °C was HOA (MFR of 0.56) > LO-OOA (0.70) > COA (0.85) ≈ BBOA (0.87) > MO-OOA (0.99), which was not completely consistent with the sequence of their O

  15. MATRIX (Multiconfiguration Aerosol TRacker of mIXing state: an aerosol microphysical module for global atmospheric models

    Directory of Open Access Journals (Sweden)

    S. E. Bauer

    2008-10-01

    Full Text Available A new aerosol microphysical module MATRIX, the Multiconfiguration Aerosol TRacker of mIXing state, and its application in the Goddard Institute for Space Studies (GISS climate model (ModelE are described. This module, which is based on the quadrature method of moments (QMOM, represents nucleation, condensation, coagulation, internal and external mixing, and cloud-drop activation and provides aerosol particle mass and number concentration and particle size information for up to 16 mixed-mode aerosol populations. Internal and external mixing among aerosol components sulfate, nitrate, ammonium, carbonaceous aerosols, dust and sea-salt particles are represented. The solubility of each aerosol population, which is explicitly calculated based on its soluble and insoluble components, enables calculation of the dependence of cloud drop activation on the microphysical characterization of multiple soluble aerosol populations.

    A detailed model description and results of box-model simulations of various aerosol population configurations are presented. The box model experiments demonstrate the dependence of cloud activating aerosol number concentration on the aerosol population configuration; comparisons to sectional models are quite favorable. MATRIX is incorporated into the GISS climate model and simulations are carried out primarily to assess its performance/efficiency for global-scale atmospheric model application. Simulation results were compared with aircraft and station measurements of aerosol mass and number concentration and particle size to assess the ability of the new method to yield data suitable for such comparison. The model accurately captures the observed size distributions in the Aitken and accumulation modes up to particle diameter 1 μm, in which sulfate, nitrate, black and organic carbon are predominantly located; however the model underestimates coarse-mode number concentration and size, especially in the marine environment

  16. The Atmospheric Aerosols And Their Effects On Cloud Albedo And Radiative Forcing

    International Nuclear Information System (INIS)

    Stefan, S.; Iorga, G.; Zoran, M.

    2007-01-01

    The aim of this study is to provide results of the theoretical experiments in order to improve the estimates of indirect effect of aerosol on the cloud albedo and consequently on the radiative forcing. The cloud properties could be changed primarily because of changing of both the aerosol type and concentration in the atmosphere. Only a part of aerosol interacts effectively with water and will, in turn, determine the number concentration of cloud droplets (CDNC). We calculated the CDNC, droplet effective radius (reff), cloud optical thickness (or), cloud albedo and radiative forcing, for various types of aerosol. Our results show into what extent the change of aerosol characteristics (number concentration and chemical composition) on a regional scale can modify the cloud reflectivity. Higher values for cloud albedo in the case of the continental (urban) clouds were obtained

  17. Evidence for the role of organics in aerosol particle formation under atmospheric conditions

    International Nuclear Information System (INIS)

    Metzger, A.; Dommen, J.; Duplissy, J.; Prevot, A.S.H.; Weingartner, E.; Baltensperger, U.; Verheggen, B.; Riipinen, I.; Kulmala, M.; Spracklen, D.V.; Carslaw, K.S.

    2010-01-01

    New particle formation in the atmosphere is an important parameter in governing the radiative forcing of atmospheric aerosols. However, detailed nucleation mechanisms remain ambiguous, as laboratory data have so far not been successful in explaining atmospheric nucleation. We investigated the formation of new particles in a smog chamber simulating the photochemical formation of H2SO4 and organic condensable species. Nucleation occurs at H2SO4 concentrations similar to those found in the ambient atmosphere during nucleation events. The measured particle formation rates are proportional to the product of the concentrations of H2SO4 and an organic molecule. This suggests that only one H2SO4 molecule and one organic molecule are involved in the rate-limiting step of the observed nucleation process. Parameterizing this process in a global aerosol model results in substantially better agreement with ambient observations compared to control runs.

  18. Modeling the evolution of the aerosol cloud of toxicants in the atmosphere

    Directory of Open Access Journals (Sweden)

    Bondarchuk Ivan

    2017-01-01

    Full Text Available Using the methods of mathematical modeling, the formation and evolution of aerosol clouds of toxicants in the atmosphere from the chemical industry enterprises, thermal power engineering and rocket carriers of space vehicles is analyzed. The processes of dynamic interaction of drops between themselves and a two-phase flow, processes of agglomeration, crushing and evaporation of aerosol particles are taken into account. The results of numerical calculations are presented.

  19. Photochemical Formation of Aerosol in Planetary Atmospheres: Photon and Water Mediated Chemistry of SO_2

    Science.gov (United States)

    Kroll, Jay A.; Donaldson, D. J.; Vaida, Veronica

    2016-06-01

    Sulfur compounds have been observed in a number of planetary atmospheres throughout our solar system. Our current understanding of sulfur chemistry explains much of what we observe in Earth's atmosphere. However, several discrepancies between modeling and observations of the Venusian atmosphere show there are still problems in our fundamental understanding of sulfur chemistry. This is of particular concern due to the important role sulfur compounds play in the formation of aerosols, which have a direct impact on planetary climates, including Earth's. We investigate the role of water complexes in the hydration of sulfur oxides and dehydration of sulfur acids and will present spectroscopic studies to document such effects. I will present recent work investigating mixtures of SO_2 and water that generate large quantities of aerosol when irradiated with solar UV light, even in the absence of traditional OH chemistry. I will discuss a proposed mechanism for the formation of sulfurous acid (H_2SO_3) and present recent experimental work that supports this proposed mechanism. Additionally, the implications that photon-induced hydration of SO_2 has for aerosol formation in the atmosphere of earth as well as other planetary atmospheres will be discussed.

  20. Infrared remote sensing of atmospheric aerosols; Apports du sondage infrarouge a l'etude des aerosols atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Pierangelo, C

    2005-09-15

    The 2001 report from the Intergovernmental Panel on Climate Change emphasized the very low level of understanding of atmospheric aerosol effects on climate. These particles originate either from natural sources (dust, volcanic aerosols...) or from anthropogenic sources (sulfates, soot...). They are one of the main sources of uncertainty on climate change, partly because they show a very high spatio-temporal variability. Observation from space, being global and quasi-continuous, is therefore a first importance tool for aerosol studies. Remote sensing in the visible domain has been widely used to obtain a better characterization of these particles and their effect on solar radiation. On the opposite, remote sensing of aerosols in the infrared domain still remains marginal. Yet, not only the knowledge of the effect of aerosols on terrestrial radiation is needed for the evaluation of their total radiative forcing, but also infrared remote sensing provides a way to retrieve other aerosol characteristics (observations are possible at night and day, over land and sea). In this PhD dissertation, we show that aerosol optical depth, altitude and size can be retrieved from infrared sounder observations. We first study the sensitivity of aerosol optical properties to their micro-physical properties, we then develop a radiative transfer code for scattering medium adapted to the very high spectral resolution of the new generation sounder NASA-Aqua/AIRS, and we finally focus on the inverse problem. The applications shown here deal with Pinatubo stratospheric volcanic aerosol, observed with NOAA/HIRS, and with the building of an 8 year climatology of dust over sea and land from this sounder. Finally, from AIRS observations, we retrieve the optical depth at 10 {mu}m, the average altitude and the coarse mode effective radius of mineral dust over sea. (author)

  1. Nuclear Emergency and the Atmospheric Dispersion of Nuclear Aerosols: Discussion of the Shared Nuclear Future - 13163

    International Nuclear Information System (INIS)

    Rana, Mukhtar A.; Ali, Nawab; Akhter, Parveen; Khan, E.U.

    2013-01-01

    This paper has a twofold objective. One is to analyze the current status of high-level nuclear waste disposal along with presentation of practical perspectives about the environmental issues involved. Present disposal designs and concepts are analyzed on a scientific basis and modifications to existing designs are proposed from the perspective of environmental safety. Other is to understand the aerosol formation in the atmosphere for the case of the leakage from the nuclear waste containers or a nuclear accident. Radio-nuclides released from the waste will attach themselves to the existing aerosols in the atmosphere along with formation of new aerosols. Anticipating the nuclear accident when a variety of radioactive aerosols will form and exist in the atmosphere, as a simple example, measurement of naturally existing radioactive aerosols are made in the atmosphere of Islamabad and Murree. A comparison with similar measurements in 3 cities of France is provided. Measurement of radionuclides in the atmosphere, their attachment to aerosols and follow up transport mechanisms are key issues in the nuclear safety. It is studied here how "7Be concentration in the atmospheric air varies in the capital city of Islamabad and a Himalaya foothill city of Murree (Pakistan). Present results are compared with recent related published results to produce a "7Be concentration versus altitude plot up to an altitude of 4000 m (a.s.l.). Origin and variance of "7Be concentration at different altitudes is discussed in detail. The relevance of results presented here with the evaluation of implications of Chernobyl and Fukushima nuclear disasters has been discussed in a conclusive manner. It is the first international report of a joint collaboration/project. The project is being generalized to investigate and formulate a smooth waste storage and disposal policy. The project will address the fission and fusion waste reduction, its storage, its recycling, air, water and soil quality

  2. Nuclear Emergency and the Atmospheric Dispersion of Nuclear Aerosols: Discussion of the Shared Nuclear Future - 13163

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Mukhtar A. [Science-Admin Coherence Cell (SACC), PINSTECH Admin Blk, PAEC, Islamabad (Pakistan); Ali, Nawab [Physics Division, Directorate of Science, Pakistan Institute of Nuclear Science and Technology (PINSTECH), P.O. Nilore, Islamabad (Pakistan); Akhter, Parveen [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad (Pakistan); Khan, E.U. [Department of Physics, International Islamic University (IIU), Kettle Fields, Kashmir Highways, Islamabad (Pakistan)

    2013-07-01

    This paper has a twofold objective. One is to analyze the current status of high-level nuclear waste disposal along with presentation of practical perspectives about the environmental issues involved. Present disposal designs and concepts are analyzed on a scientific basis and modifications to existing designs are proposed from the perspective of environmental safety. Other is to understand the aerosol formation in the atmosphere for the case of the leakage from the nuclear waste containers or a nuclear accident. Radio-nuclides released from the waste will attach themselves to the existing aerosols in the atmosphere along with formation of new aerosols. Anticipating the nuclear accident when a variety of radioactive aerosols will form and exist in the atmosphere, as a simple example, measurement of naturally existing radioactive aerosols are made in the atmosphere of Islamabad and Murree. A comparison with similar measurements in 3 cities of France is provided. Measurement of radionuclides in the atmosphere, their attachment to aerosols and follow up transport mechanisms are key issues in the nuclear safety. It is studied here how {sup 7}Be concentration in the atmospheric air varies in the capital city of Islamabad and a Himalaya foothill city of Murree (Pakistan). Present results are compared with recent related published results to produce a {sup 7}Be concentration versus altitude plot up to an altitude of 4000 m (a.s.l.). Origin and variance of {sup 7}Be concentration at different altitudes is discussed in detail. The relevance of results presented here with the evaluation of implications of Chernobyl and Fukushima nuclear disasters has been discussed in a conclusive manner. It is the first international report of a joint collaboration/project. The project is being generalized to investigate and formulate a smooth waste storage and disposal policy. The project will address the fission and fusion waste reduction, its storage, its recycling, air, water and soil

  3. Direct radiative forcing properties of atmospheric aerosols over semi-arid region, Anantapur in India.

    Science.gov (United States)

    Kalluri, Raja Obul Reddy; Gugamsetty, Balakrishnaiah; Kotalo, Rama Gopal; Nagireddy, Siva Kumar Reddy; Tandule, Chakradhar Rao; Thotli, Lokeswara Reddy; Rajuru Ramakrishna, Reddy; Surendranair, Suresh Babu

    2016-10-01

    This paper describes the aerosols optical, physical characteristics and the aerosol radiative forcing pertaining to semi-arid region, Anantapur for the period January 2013-December 2014. Collocated measurements of Aerosol Optical Depth (AOD) and Black Carbon mass concentration (BC) are carried out by using MICROTOPS II and Aethalometer and estimated the aerosol radiative forcing over this location. The mean values of AOD at 500nm are found to be 0.47±0.09, 0.34±0.08, 0.29±0.06 and 0.30±0.07 during summer, winter, monsoon and post-monsoon respectively. The Angstrom exponent (α380-1020) value is observed maximum in March (1.25±0.19) and which indicates the predominance of fine - mode aerosols and lowest in the month of July (0.33±0.14) and may be due to the dominance of coarse-mode aerosols. The diurnal variation of BC is exhibited two height peaks during morning 07:00-08:00 (IST) and evening 19:00-21:00 (IST) hours and one minima noticed during afternoon (13:00-16:00). The highest monthly mean BC concentration is observed in the month of January (3.4±1.2μgm(-3)) and the lowest in July (1.1±0.2μgm(-3)). The estimated Aerosol Direct Radiative Forcing (ADRF) in the atmosphere is found to be +36.8±1.7Wm(-2), +26.9±0.2Wm(-2), +18.0±0.6Wm(-2) and +18.5±3.1Wm(-2) during summer, winter, monsoon and post-monsoon seasons, respectively. Large difference between TOA and BOA forcing is observed during summer which indicate the large absorption of radiant energy (36.80Wm(-2)) which contributes more increase in atmospheric heating by ~1K/day. The BC contribution on an average is found to be 64% and is responsible for aerosol atmospheric heating. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Application of PIXE technique to studies on global warming/cooling effect of atmospheric aerosols

    International Nuclear Information System (INIS)

    Kasahara, M.; Hoeller, R.; Tohno, S.; Onishi, Y.; Ma, C.-J.

    2002-01-01

    During the last decade, the importance of global warming has been recognized worldwide. Atmospheric aerosols play an important role in the global warming/cooling effects. The physicochemical properties of aerosol particles are fundamental to understanding such effects. In this study, the PIXE technique was applied to measure the average chemical properties of aerosols. Micro-PIXE was also applied to investigate the mixing state of the individual aerosol particle. The chemical composition data were used to estimate the optical properties of aerosols. The average values of aerosol radiative forcing were -1.53 w/m 2 in Kyoto and +3.3 w/m 2 in Nagoya, indicating cooling and warming effects respectively. The difference of radiative forcing in the two cities may be caused by the large difference in chemical composition of aerosols

  5. Influence of the atmospheric aerosol and air pollution on solar albedo of the earth. Vol. 4

    International Nuclear Information System (INIS)

    Mayhoub, A.B.; Mohamed, K.S.

    1996-01-01

    The effect of increasing atmospheric aerosol and air pollutant concentration on the solar albedo and consequently upon the heat budget near the earth's surface is studied. The magnitude of aerosol absorption coefficient to back-scattering coefficient B ab /B bs is calculated. This study will be used to estimate atmospheric stability categories and other meteorological parameters which are affected by thermal state radiation balance of the atmosphere as mixing and inversion height of Inshas nuclear reactor site. Consequently, concentration distribution of radioactive release from Inshas can be evaluated.. 4 figs., 5 tabs

  6. Influence of the atmospheric aerosol and air pollution on solar albedo of the earth. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    Mayhoub, A B; Mohamed, K S [Mathematics and Theoretical Physics Department, Nuclear Research Center, Atomic Energy Auhtority, Cairo, (Egypt)

    1996-03-01

    The effect of increasing atmospheric aerosol and air pollutant concentration on the solar albedo and consequently upon the heat budget near the earth`s surface is studied. The magnitude of aerosol absorption coefficient to back-scattering coefficient B{sub ab}/B{sub bs} is calculated. This study will be used to estimate atmospheric stability categories and other meteorological parameters which are affected by thermal state radiation balance of the atmosphere as mixing and inversion height of Inshas nuclear reactor site. Consequently, concentration distribution of radioactive release from Inshas can be evaluated.. 4 figs., 5 tabs.

  7. Modeling the Effects of Inhomogeneous Aerosols on the Hot Jupiter Kepler-7b’s Atmospheric Circulation

    Science.gov (United States)

    Roman, Michael; Rauscher, Emily

    2017-11-01

    Motivated by observational evidence of inhomogeneous clouds in exoplanetary atmospheres, we investigate how proposed simple cloud distributions can affect atmospheric circulations and infrared emission. We simulated temperatures and winds for the hot Jupiter Kepler-7b using a three-dimensional atmospheric circulation model that included a simplified aerosol radiative transfer model. We prescribed fixed cloud distributions and scattering properties based on results previously inferred from Kepler-7b optical phase curves, including inhomogeneous aerosols centered along the western terminator and hypothetical cases in which aerosols additionally extended across much of the planet’s nightside. In all cases, a strong jet capable of advecting aerosols from a cooler nightside to dayside was found to persist, but only at the equator. Colder temperatures at mid and polar latitudes might permit aerosol to form on the dayside without the need for advection. By altering the deposition and redistribution of heat, aerosols along the western terminator produced an asymmetric heating that effectively shifts the hottest spot further east of the substellar point than expected for a uniform distribution. The addition of opaque high clouds on the nightside can partly mitigate this enhanced shift by retaining heat that contributes to warming west of the hotspot. These expected differences in infrared phase curves could place constraints on proposed cloud distributions and their infrared opacities for brighter hot Jupiters.

  8. Toward Quantifying the Mass-Based Hygroscopicity of Individual Submicron Atmospheric Aerosol Particles with STXM/NEXAFS and SEM/EDX

    Science.gov (United States)

    Yancey Piens, D.; Kelly, S. T.; OBrien, R. E.; Wang, B.; Petters, M. D.; Laskin, A.; Gilles, M. K.

    2014-12-01

    The hygroscopic behavior of atmospheric aerosols influences their optical and cloud-nucleation properties, and therefore affects climate. Although changes in particle size as a function of relative humidity have often been used to quantify the hygroscopic behavior of submicron aerosol particles, it has been noted that calculations of hygroscopicity based on size contain error due to particle porosity, non-ideal volume additivity and changes in surface tension. We will present a method to quantify the hygroscopic behavior of submicron aerosol particles based on changes in mass, rather than size, as a function of relative humidity. This method results from a novel experimental approach combining scanning transmission x-ray microscopy with near-edge x-ray absorption fine spectroscopy (STXM/NEXAFS), as well as scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM/EDX) on the same individual particles. First, using STXM/NEXAFS, our methods are applied to aerosol particles of known composition ‒ for instance ammonium sulfate, sodium bromide and levoglucosan ‒ and validated by theory. Then, using STXM/NEXAFS and SEM/EDX, these methods are extended to mixed atmospheric aerosol particles collected in the field at the DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility at the Southern Great Planes sampling site in Oklahoma, USA. We have observed and quantified a range of hygroscopic behaviors which are correlated to the composition and morphology of individual aerosol particles. These methods will have implications for parameterizing aerosol mixing state and cloud-nucleation activity in atmospheric models.

  9. Some results of an experimental study of the atmospheric aerosol in Tomsk: A combined approach

    Energy Technology Data Exchange (ETDEWEB)

    Zuev, V.V. [Institute of Atmospheric Optics, Tomsk (Russian Federation)

    1996-04-01

    As widely accepted, aerosols strongly contribute to the formation of the earth`s radiation balance through the absorption and scattering of solar radiation. In addition, aerosols, being active condensation nuclei, also have a role in the cloud formation process. In this paper, results are presented of aerosol studies undertaken at the field measurement sites of the Institute of Atmospheric Optics in Tomsk and the Tomsk region.

  10. Clays as mineral dust aerosol: An integrated approach to studying climate, atmospheric chemistry, and biogeochemical effects of atmospheric clay minerals in an undergraduate research laboratory

    Science.gov (United States)

    Hatch, C. D.; Crane, C. C.; Harris, K. J.; Thompson, C. E.; Miles, M. K.; Weingold, R. M.; Bucuti, T.

    2011-12-01

    Entrained mineral dust aerosol accounts for 45% of the global annual atmospheric aerosol load and can have a significant influence on important environmental issues, including climate, atmospheric chemistry, cloud formation, biogeochemical processes, visibility, and human health. 70% of all mineral aerosol mass originating from Africa consists of layered aluminosilicates, including illite, kaolinite, and montmorillonite clays. Clay minerals are a largely neglected component of mineral aerosol, yet they have unique physiochemical properties, including a high reactive surface area, large cation exchange capacities, small particle sizes, and a relatively large capacity to take up adsorbed water, resulting in expansion of clay layers (and a larger reactive surface area for heterogeneous interactions) in some cases. An integrated laboratory research approach has been implemented at Hendrix College, a Primarily Undergraduate Institution, in which undergraduate students are involved in independent and interdisciplinary research projects that relate the chemical aging processes (heterogeneous chemistry) of clay minerals as a major component of mineral aerosol to their effects on climate (water adsorption), atmospheric chemistry (trace gas uptake), and biogeochemistry (iron dissolution and phytoplankton biomarker studies). Preliminary results and future directions will be reported.

  11. Aerosol impacts on regional trends in atmospheric stagnation

    Science.gov (United States)

    Mascioli, N. R.; Fiore, A. M.; Previdi, M. J.

    2017-12-01

    Extreme pollution events pose a significant threat to human health and are a leading cause of premature mortality worldwide. While emissions of atmospheric pollutants and their precursors are projected to decrease in the future due to air quality legislation, future climate change may affect the underlying meteorological conditions that contribute to extreme pollution events. Stagnation events, characterized by weak winds and an absence of precipitation, contribute to extreme pollution by halting the removal of pollutants via advection and wet deposition. Here, we use a global climate model (GFDL-CM3) to show that regional stagnation trends over the historical period (1860-2005) are driven by changes in anthropogenic aerosol emissions, rather than rising greenhouse gases. In the northeastern and central United States, aerosol-induced changes in surface and upper level winds have produced significant decreases in the number of stagnant summer days, while decreasing precipitation in the southeast US has increased the number of stagnant summer days. Significant drying over eastern China in response to aerosol forcing contributed to increased stagnation. Additionally, this region was found to be particularly sensitive to changes in local emissions, indicating that improving air quality will also lessen stagnation. In Europe, we find a dipole pattern wherein stagnation decreases over southern Europe and increases over northern Europe in response to global increases in aerosol emissions. We hypothesize that this is due to changes in the large-scale circulation patterns associated with a poleward shift of the North Atlantic storm track. We find that in the future, the combination of declining aerosol emissions and the continued rise of greenhouse gas emissions will lead to a reversal of the historical stagnation trends.

  12. Constraining the atmospheric composition of the day-night terminators of HD 189733b: Atmospheric retrieval with aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Min [Institute for Computational Science, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Irwin, Patrick G. J.; Fletcher, Leigh N.; Barstow, Joanna K. [Department of Atmospheric, Oceanic, and Planetary Physics, University of Oxford, OX1 3PU Oxford (United Kingdom); Heng, Kevin, E-mail: lee@physik.uzh.ch [Center for Space and Habitability, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2014-07-01

    A number of observations have shown that Rayleigh scattering by aerosols dominates the transmission spectrum of HD 189733b at wavelengths shortward of 1 μm. In this study, we retrieve a range of aerosol distributions consistent with transmission spectroscopy between 0.3-24 μm that were recently re-analyzed by Pont et al. To constrain the particle size and the optical depth of the aerosol layer, we investigate the degeneracies between aerosol composition, temperature, planetary radius, and molecular abundances that prevent unique solutions for transit spectroscopy. Assuming that the aerosol is composed of MgSiO{sub 3}, we suggest that a vertically uniform aerosol layer over all pressures with a monodisperse particle size smaller than about 0.1 μm and an optical depth in the range 0.002-0.02 at 1 μm provides statistically meaningful solutions for the day/night terminator regions of HD 189733b. Generally, we find that a uniform aerosol layer provide adequate fits to the data if the optical depth is less than 0.1 and the particle size is smaller than 0.1 μm, irrespective of the atmospheric temperature, planetary radius, aerosol composition, and gaseous molecules. Strong constraints on the aerosol properties are provided by spectra at wavelengths shortward of 1 μm as well as longward of 8 μm, if the aerosol material has absorption features in this region. We show that these are the optimal wavelengths for quantifying the effects of aerosols, which may guide the design of future space observations. The present investigation indicates that the current data offer sufficient information to constrain some of the aerosol properties of HD189733b, but the chemistry in the terminator regions remains uncertain.

  13. Sensitivity of boreal-summer circulation and precipitation to atmospheric aerosols in selected regions – Part 2: The Americas

    Directory of Open Access Journals (Sweden)

    G. Walker

    2009-10-01

    Full Text Available Aerosol perturbations over selected land regions are imposed in Version-4 of the Goddard Earth Observing System (GEOS-4 general circulation model (GCM to assess the influence of increasing aerosol concentrations on regional circulation patterns and precipitation in four selected regions: India, Africa, and North and South America. Part 1 of this paper addresses the responses to aerosol perturbations in India and Africa. This paper presents the same for aerosol perturbations over the Americas. GEOS-4 is forced with prescribed aerosols based on climatological data, which interact with clouds using a prognostic scheme for cloud microphysics including aerosol nucleation of water and ice cloud hydrometeors. In clear-sky conditions the aerosols interact with radiation. Thus the model includes comprehensive physics describing the aerosol direct and indirect effects on climate (hereafter ADE and AIE respectively. Each simulation is started from analyzed initial conditions for 1 May and was integrated through June-July-August of each of the six years: 1982–1987 to provide a 6-ensemble set. Results are presented for the difference between simulations with double the climatological aerosol concentration and one-half the climatological aerosol concentration for three experiments: two where the ADE and AIE are applied separately and one in which both the ADE and AIE are applied. The ADE and AIE both yield reductions in net radiation at the top of the atmosphere and surface while the direct absorption of shortwave radiation contributes a net radiative heating in the atmosphere. A large net heating of the atmosphere is also apparent over the subtropical North Atlantic Ocean that is attributable to the large aerosol perturbation imposed over Africa. This atmospheric warming and the depression of the surface pressure over North America contribute to a northward shift of the inter-Tropical Convergence Zone over northern South America, an increase in

  14. Sensitivity of boreal-summer circulation and precipitation to atmospheric aerosols in selected regions &ndash Part 2: The Americas

    Directory of Open Access Journals (Sweden)

    E. M. Wilcox

    2009-10-01

    Full Text Available Aerosol perturbations over selected land regions are imposed in Version-4 of the Goddard Earth Observing System (GEOS-4 general circulation model (GCM to assess the influence of increasing aerosol concentrations on regional circulation patterns and precipitation in four selected regions: India, Africa, and North and South America. Part 1 of this paper addresses the responses to aerosol perturbations in India and Africa. This paper presents the same for aerosol perturbations over the Americas. GEOS-4 is forced with prescribed aerosols based on climatological data, which interact with clouds using a prognostic scheme for cloud microphysics including aerosol nucleation of water and ice cloud hydrometeors. In clear-sky conditions the aerosols interact with radiation. Thus the model includes comprehensive physics describing the aerosol direct and indirect effects on climate (hereafter ADE and AIE respectively. Each simulation is started from analyzed initial conditions for 1 May and was integrated through June-July-August of each of the six years: 1982–1987 to provide a 6-ensemble set. Results are presented for the difference between simulations with double the climatological aerosol concentration and one-half the climatological aerosol concentration for three experiments: two where the ADE and AIE are applied separately and one in which both the ADE and AIE are applied. The ADE and AIE both yield reductions in net radiation at the top of the atmosphere and surface while the direct absorption of shortwave radiation contributes a net radiative heating in the atmosphere. A large net heating of the atmosphere is also apparent over the subtropical North Atlantic Ocean that is attributable to the large aerosol perturbation imposed over Africa. This atmospheric warming and the depression of the surface pressure over North America contribute to a northward shift of the inter-Tropical Convergence Zone over northern South America, an increase in

  15. Chemical composition and sources of atmospheric aerosols at Djougou (Benin)

    Science.gov (United States)

    Ouafo-Leumbe, Marie-Roumy; Galy-Lacaux, Corinne; Liousse, Catherine; Pont, Veronique; Akpo, Aristide; Doumbia, Thierno; Gardrat, Eric; Zouiten, Cyril; Sigha-Nkamdjou, Luc; Ekodeck, Georges Emmanuel

    2017-06-01

    In the framework of the INDAAF (International Network to study Deposition and Atmospheric chemistry in AFrica) program, atmospheric aerosols were collected in PM2.5 and PM10 size fractions at Djougou, Benin, in the West Africa, from November, 2005 to October, 2009. Particulate carbon, ionic species, and trace metals were analyzed. Weekly PM2.5 and PM10 total mass concentrations varied between 0.7 and 47.3 µg m-3 and 1.4-148.3 µg m-3, respectively. We grouped the aerosol chemical compounds into four classes: dust, particulate organic matter (POM), elemental carbon (EC), and ions. We studied the annual variation of each class to determine their contribution in the total aerosol mass concentration and finally to investigate their potential emission sources. On an annual basis, the species presented a well-marked seasonality, with the peak of mass concentration for both sizes registered in dry season, 67 ± 2 to 86 ± 9 versus 14 ± 9 to 34 ± 5% in wet season. These values emphasized the seasonality of the emissions and the relative weak interannual standard deviation indicates the low variability of the seasonality. At the seasonal scale, major contributions to the aerosol chemistry in the dry season are: dust (26-59%), POM (30-59%), EC (5-9%), and ions (3-5%), suggesting a predominance of Sahelian and Saharan dust emissions and biomass burning source in this season. In the wet season, POM is predominant, followed by dust, EC, and ions. These results point out the contribution of surrounded biofuel combustion used for cooking and biogenic emissions during the wet season.

  16. Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids

    Science.gov (United States)

    Jing, Bo; Wang, Zhen; Tan, Fang; Guo, Yucong; Tong, Shengrui; Wang, Weigang; Zhang, Yunhong; Ge, Maofa

    2018-04-01

    While nitrate salts have critical impacts on environmental effects of atmospheric aerosols, the effects of coexisting species on hygroscopicity of nitrate salts remain uncertain. The hygroscopic behaviors of nitrate salt aerosols (NH4NO3, NaNO3, Ca(NO3)2) and their internal mixtures with water-soluble organic acids were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA). The nitrate salt / organic acid mixed aerosols exhibit varying phase behavior and hygroscopic growth depending upon the type of components in the particles. Whereas pure nitrate salt particles show continuous water uptake with increasing relative humidity (RH), the deliquescence transition is still observed for ammonium nitrate particles internally mixed with organic acids such as oxalic acid and succinic acid with a high deliquescence point. The hygroscopicity of submicron aerosols containing sodium nitrate and an organic acid is also characterized by continuous growth, indicating that sodium nitrate tends to exist in a liquid-like state under dry conditions. It is observed that in contrast to the pure components, the water uptake is hindered at low and moderate RH for calcium nitrate particles containing malonic acid or phthalic acid, suggesting the potential effects of mass transfer limitation in highly viscous mixed systems. Our findings improve fundamental understanding of the phase behavior and water uptake of nitrate-salt-containing aerosols in the atmospheric environment.

  17. Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids

    Directory of Open Access Journals (Sweden)

    B. Jing

    2018-04-01

    Full Text Available While nitrate salts have critical impacts on environmental effects of atmospheric aerosols, the effects of coexisting species on hygroscopicity of nitrate salts remain uncertain. The hygroscopic behaviors of nitrate salt aerosols (NH4NO3, NaNO3, Ca(NO32 and their internal mixtures with water-soluble organic acids were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA. The nitrate salt ∕ organic acid mixed aerosols exhibit varying phase behavior and hygroscopic growth depending upon the type of components in the particles. Whereas pure nitrate salt particles show continuous water uptake with increasing relative humidity (RH, the deliquescence transition is still observed for ammonium nitrate particles internally mixed with organic acids such as oxalic acid and succinic acid with a high deliquescence point. The hygroscopicity of submicron aerosols containing sodium nitrate and an organic acid is also characterized by continuous growth, indicating that sodium nitrate tends to exist in a liquid-like state under dry conditions. It is observed that in contrast to the pure components, the water uptake is hindered at low and moderate RH for calcium nitrate particles containing malonic acid or phthalic acid, suggesting the potential effects of mass transfer limitation in highly viscous mixed systems. Our findings improve fundamental understanding of the phase behavior and water uptake of nitrate-salt-containing aerosols in the atmospheric environment.

  18. Atmospheric carbonaceous aerosols from Indo-Gangetic Plain and Central Himalaya: impact of anthropogenic sources.

    Science.gov (United States)

    Ram, Kirpa; Sarin, M M

    2015-01-15

    In the present-day scenario of growing anthropogenic activities, carbonaceous aerosols contribute significantly (∼20-70%) to the total atmospheric particulate matter mass and, thus, have immense potential to influence the Earth's radiation budget and climate on a regional to global scale. In addition, formation of secondary organic aerosols is being increasingly recognized as an important process in contributing to the air-pollution and poor visibility over urban regions. It is, thus, essential to study atmospheric concentrations of carbonaceous species (EC, OC and WSOC), their mixing state and absorption properties on a regional scale. This paper presents the comprehensive data on emission sources, chemical characteristics and optical properties of carbonaceous aerosols from selected urban sites in the Indo-Gangetic Plain (IGP) and from a high-altitude location in the central Himalaya. The mass concentrations of OC, EC and WSOC exhibit large spatio-temporal variability in the IGP. This is attributed to seasonally varying emissions from post-harvest agricultural-waste burning, their source strength, boundary layer dynamics and secondary aerosol formation. The high concentrations of OC and SO4(2-), and their characteristic high mass scattering efficiency, contribute significantly to the aerosol optical depth and scattering coefficient. This has implications to the assessment of single scattering albedo and aerosol radiative forcing on a regional scale. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Secondary organic aerosol importance in the future atmosphere

    International Nuclear Information System (INIS)

    Tsigaridis, K.; Kanakidou, M.

    2007-01-01

    In order to investigate the secondary organic aerosol (SOA) response to changes in biogenic volatile organic compounds (VOC) emissions in the future atmosphere and how important will SOA be relative to the major anthropogenic aerosol component (sulfate), the global three-dimensional chemistry/transport model TM3 has been used. Emission estimates of biogenic VOC (BVOC) and anthropogenic gases and particles from the literature for the year 2100 have been adopted. According to our present-day model simulations, isoprene oxidation produces 4.6 Tg SOA yr -1 , that is less than half of the 12.2 Tg SOA yr -1 formed by the oxidation of other BVOC. In the future, nitrate radicals and ozone become more important than nowadays, but remain minor oxidants for both isoprene and aromatics. SOA produced by isoprene is estimated to almost triple, whereas the production from other BVOC more than triples. The calculated future SOA burden change, from 0.8 Tg at present to 2.0 Tg in the future, is driven by changes in emissions, oxidant levels and pre-existing particles. The non-linearity in SOA formation and the involved chemical and physical feedbacks prohibit the quantitative attribution of the computed changes to the above-mentioned individual factors. In 2100, SOA burden is calculated to exceed that of sulfate, indicating that SOA might become more important than nowadays. These results critically depend on the biogenic emissions and thus are subject to the high uncertainty associated with these emissions estimated due to the insufficient knowledge on plant response to carbon dioxide changes. Nevertheless, they clearly indicate that the change in oxidants and primary aerosol caused by human activities can contribute as much as the change in BVOC emissions to the increase of the biogenic SOA production in the future atmosphere. (authors)

  20. Sources and atmospheric processing of organic aerosol in the Mediterranean: insights from aerosol mass spectrometer factor analysis

    Directory of Open Access Journals (Sweden)

    L. Hildebrandt

    2011-12-01

    Full Text Available Atmospheric particles were measured in the late winter (25 February–26 March 2009 at a remote coastal site on the island of Crete, Greece during the Finokalia Aerosol Measurement Experiment-2009. A quadrupole aerosol mass spectrometer (Q-AMS was employed to quantify the size-resolved chemical composition of non-refractory submicron aerosol, and a thermodenuder was used to analyze the organic aerosol (OA volatility. Complementary measurements included particle size distributions from a scanning mobility particle sizer, inorganic and organic particle composition from filter analysis, air ion concentrations, O3, NOx and NOy concentrations, and meteorological measurements. Factor analysis was performed on the OA mass spectra, and the variability in OA composition could best be explained with three OA components. The oxygenated organic aerosol (OOA was similar in composition and volatility to the summertime OA previously measured at this site and may represent an effective endpoint in particle-phase oxidation of organics. The two other OA components, one associated with amines (Amine-OA and the other probably associated with the burning of olive branches (OB-OA, had very low volatility but were less oxygenated. Hydrocarbon-like organic aerosol (HOA was not detected. The absence of OB-OA and Amine-OA in the summer data may be due to lower emissions and/or photochemical conversion of these components to OOA.

  1. Relative importance of nitrate and sulfate aerosol production mechanisms in urban atmospheres

    International Nuclear Information System (INIS)

    Middleton, P.; Kiang, C.S.

    1979-01-01

    The relative importance of the various sulfate and nitrate aerosol production mechanisms is calculated for different atmospheric conditions. The calculation scheme used to determine the rates of nitrate and sulfate production, based on the concept that vapor transfer to the aerosols and nitrate and sulfate formation within the aerosols are coupled kinetic processes, considers sulfate formation by ozone and hydrogen peroxide oxidation and catalytic oxidation in the presence of soot, iron and manganese of sulfite solutions and sulfuric acid condensation and nitrate formation by the liquid-phase oxidation of dissolved nitrogen oxides for different initial gas concentrations and particle compositions and sizes. It is found that sulfate production is higher under daytime conditions, primarily proceeding by mechanisms involving sulfuric acid and hydrogen peroxide, while at night oxidation processes on the surface of the aerosol film are more important. Nitrate tends to decrease nighttime sulfate production due to an increase in aerosol acidity and nitrate production is found to be higher under nighttime conditions and in the winter

  2. Waterspout as a special type of atmospheric aerosol dusty plasma

    Science.gov (United States)

    Rantsev-Kartinov, Valentin A.

    2004-11-01

    An analysis of databases of photographic images of oceanic surface revealed the presence of oceanic skeletal structures (OSS) [1] Rantsev-Kartinov V.A., Preprint . The OSSs presumably differ from the formerly found skeletal structures (SS) (Phys. Lett. A 306 (2002) 175) only by the fact that OSS are filled in with the closely packed blocks of a smaller size, up to thin, tens of microns-sized capillaries. The SSs in the Earth atmosphere were suggested [1] to be produced during atmospheric electricity activity by the volcanic-born dust. The fall-out of such SSs on the oceanic surface is a material source of OSS. Here we suggest that an OSS block [1] in the form of vertically oriented floating cylinder may be a stimulator of waterspout (WS). The main body of WS may be interpreted as a special type of atmospheric aerosol dusty plasma, and WS column - as a long-lived filament, being formed in the process of electric breakdown between the cloud and oceanic surface. The charged water drops aerosol may behave similar to microdust and lift upward to the cloud by the electrostatic force. With such a capillary&;electrostatic model of WS, it appears possible to interpret many effects related to WS.

  3. A Decade of Field Changing Atmospheric Aerosol Research: Outcomes of EPA’s STAR Program

    Science.gov (United States)

    Conference: Gordon Research Conference in Atmospheric Chemistry, July 28 – August 2, 2013, VermontPresentation Type: PosterTitle: An Analysis of EPA’s STAR Program and a Decade of Field Changing Research in Atmospheric AerosolsAuthors: Kristina M. Wagstrom1,2, Sherri ...

  4. Laboratory Experiments and Instrument Development for the Study of Atmospheric Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Davidovits, Paul

    2011-12-10

    Soot particles are generated by incomplete combustion of fossil and biomass fuels. Through direct effects clear air aerosols containing black carbon (BC) such as soot aerosols, absorb incoming light heating the atmosphere, while most other aerosols scatter light and produce cooling. Even though BC represents only 1-2% of the total annual emissions of particulate mass to the atmosphere, it has been estimated that the direct radiative effect of BC is the second-most important contributor to global warming after absorption by CO2. Ongoing studies continue to underscore the climate forcing importance of black carbon. However, estimates of the radiative effects of black carbon on climate remain highly uncertain due to the complexity of particles containing black carbon. Quantitative measurement of BC is challenging because BC often occurs in highly non-spherical soot particles of complex morphology. Freshly emitted soot particles are typically fractal hydrophobic aggregates. The aggregates consist of black carbon spherules with diameters typically in the range of about 15-40 nm, and they are usually coated by adsorbed polyaromatic hydrocarbons (PAHs) produced during combustion. Diesel-generated soot particles are often emitted with an organic coating composed primarily of lubricating oil and unburned fuel, as well as well as PAH compounds. Sulfuric acid has also been detected in diesel and aircraft-emitted soot particles. In the course of aging, these particle coatings may be substantially altered by chemical reactions and/or the deposition of other materials. Such processes transform the optical and CCN properties of the soot aerosols in ways that are not yet well understood. Our work over the past seven years consisted of laboratory research, instrument development and characterization, and field studies with the central focus of improving our understanding of the black carbon aerosol climate impacts. During the sixth year as well as during this seventh year (no

  5. Infrared remote sensing of atmospheric aerosols; Apports du sondage infrarouge a l'etude des aerosols atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Pierangelo, C.

    2005-09-15

    The 2001 report from the Intergovernmental Panel on Climate Change emphasized the very low level of understanding of atmospheric aerosol effects on climate. These particles originate either from natural sources (dust, volcanic aerosols...) or from anthropogenic sources (sulfates, soot...). They are one of the main sources of uncertainty on climate change, partly because they show a very high spatio-temporal variability. Observation from space, being global and quasi-continuous, is therefore a first importance tool for aerosol studies. Remote sensing in the visible domain has been widely used to obtain a better characterization of these particles and their effect on solar radiation. On the opposite, remote sensing of aerosols in the infrared domain still remains marginal. Yet, not only the knowledge of the effect of aerosols on terrestrial radiation is needed for the evaluation of their total radiative forcing, but also infrared remote sensing provides a way to retrieve other aerosol characteristics (observations are possible at night and day, over land and sea). In this PhD dissertation, we show that aerosol optical depth, altitude and size can be retrieved from infrared sounder observations. We first study the sensitivity of aerosol optical properties to their micro-physical properties, we then develop a radiative transfer code for scattering medium adapted to the very high spectral resolution of the new generation sounder NASA-Aqua/AIRS, and we finally focus on the inverse problem. The applications shown here deal with Pinatubo stratospheric volcanic aerosol, observed with NOAA/HIRS, and with the building of an 8 year climatology of dust over sea and land from this sounder. Finally, from AIRS observations, we retrieve the optical depth at 10 {mu}m, the average altitude and the coarse mode effective radius of mineral dust over sea. (author)

  6. A terrestrial ecosystem model (SOLVEG) coupled with atmospheric gas and aerosol exchange processes

    International Nuclear Information System (INIS)

    Katata, Genki; Ota, Masakazu

    2017-01-01

    In order to predict the impact of atmospheric pollutants (gases and aerosols) to the terrestrial ecosystem, new schemes for calculating the processes of dry deposition of gases and aerosols, and water and carbon cycles in terrestrial ecosystems were implemented in the one-dimensional atmosphere-SOiL-VEGetation model, SOLVEG. We made performance tests at various vegetation areas to validate the newly developed schemes. In this report, the detail in each modeled process is described with an instruction how to use the modified SOLVEG. The framework of 'terrestrial ecosystem model' was developed for investigation of a change in water, energy, and carbon cycles associated with global warming and air pollution and its impact on terrestrial ecosystems. (author)

  7. The System of the Calibration for Visibility Measurement Instrument Under the Atmospheric Aerosol Simulation Environment

    Directory of Open Access Journals (Sweden)

    Shu Zhifeng

    2016-01-01

    Full Text Available Visibility is one of the most important parameters for meteorological observation and numerical weather prediction (NWP.It is also an important factor in everyday life, mainly for surface and air traffic especially in the Aeronautical Meteorology. The visibility decides the taking off and landing of aircraft. If the airport visibility is lower than requirement for aircraft taking off stipulated by International Civil Aviation Administration, then the aircraft must be parked at the airport. So the accurate measurement of visibility is very important. Nowadays, many devices can be measured the visibility or meteorological optical range (MOR such as Scatterometers, Transmissometers and visibility lidar. But there is not effective way to verify the accuracy of these devices expect the artificial visual method. We have developed a visibility testing system that can be calibration and verification these devices. The system consists of laser transmitter, optical chopper, phase-locking amplifier, the moving optic receiving system, signal detection and data acquisition system, atmospheric aerosol simulation chamber. All of them were placed in the atmosphere aerosol simulation chamber with uniform aerosol concentration. The Continuous wave laser, wavelength 550nm, has been transmitted into the collimation system then the laser beam expanded into 40mm diameter for compressing the laser divergence angle before modulated by optical chopper. The expanding beam transmitting in the atmosphere aerosol cabin received by the optic receiving system moving in the 50m length precision guide with 100mm optical aperture. The data of laser signal has been acquired by phase-locking amplifier every 5 meter range. So the 10 data points can be detected in the 50 meters guide once. The slope of the fitting curve can be obtained by linear fitting these data using the least square method. The laser extinction coefficient was calculated from the slope using the Koschmieder

  8. Investigation of methods for physical characteristics of atmospheric aerosols and ground dust fractions on radioactive contaminated areas

    International Nuclear Information System (INIS)

    Artem'ev, O.I.; Osintsev, A.Yu.; Gaziev, Ya.I.; Gordeev, S.K.

    2005-01-01

    The paper presents data about current situation and trends to develop investigation methods for physical characteristics of atmospheric aerosols and ground dust fractions that are observed on the former Semipalatinsk Test Site area and adjacent regions. It was considered one of the options for comprehensive collection of radioactive aerosols as fallout within control area of atmospheric contamination and underlying surface with aerosol products of the man-caused dusting on the former STS area to determine rates of 'dry' deposition and ground-based activity concentration contained in these products of radionuclides at different distances from place of dusting. (author)

  9. Volatility measurement of atmospheric submicron aerosols in an urban atmosphere in southern China

    Directory of Open Access Journals (Sweden)

    L.-M. Cao

    2018-02-01

    Full Text Available Aerosol pollution has been a very serious environmental problem in China for many years. The volatility of aerosols can affect the distribution of compounds in the gas and aerosol phases, the atmospheric fates of the corresponding components, and the measurement of the concentration of aerosols. Compared to the characterization of chemical composition, few studies have focused on the volatility of aerosols in China. In this study, a thermodenuder aerosol mass spectrometer (TD-AMS system was deployed to study the volatility of non-refractory submicron particulate matter (PM1 species during winter in Shenzhen. To our knowledge, this paper is the first report of the volatilities of aerosol chemical components based on a TD-AMS system in China. The average PM1 mass concentration during the experiment was 42.7±20.1 µg m−3, with organic aerosol (OA being the most abundant component (43.2 % of the total mass. The volatility of chemical species measured by the AMS varied, with nitrate showing the highest volatility, with a mass fraction remaining (MFR of 0.57 at 50 °C. Organics showed semi-volatile characteristics (the MFR was 0.88 at 50 °C, and the volatility had a relatively linear correlation with the TD temperature (from the ambient temperature to 200 °C, with an evaporation rate of 0.45 % °C−1. Five subtypes of OA were resolved from total OA using positive matrix factorization (PMF for data obtained under both ambient temperature and high temperatures through the TD, including a hydrocarbon-like OA (HOA, accounting for 13.5 %, a cooking OA (COA, 20.6 %, a biomass-burning OA (BBOA, 8.9 %, and two oxygenated OAs (OOAs: a less-oxidized OOA (LO-OOA, 39.1 % and a more-oxidized OOA (MO-OOA, 17.9 %. Different OA factors presented different volatilities, and the volatility sequence of the OA factors at 50 °C was HOA (MFR of 0.56  >  LO-OOA (0.70  >  COA (0.85  ≈  BBOA (0.87

  10. Aerosol composition and microstructure in the smoky atmosphere of Moscow during the August 2010 extreme wildfires

    Science.gov (United States)

    Popovicheva, O. B.; Kistler, M.; Kireeva, E. D.; Persiantseva, N. M.; Timofeev, M. A.; Shoniya, N. K.; Kopeikin, V. M.

    2017-01-01

    This is a comprehensive study of the physicochemical characterization of multicomponent aerosols in the smoky atmosphere of Moscow during the extreme wildfires of August 2010 and against the background atmosphere of August 2011. Thermal-optical analysis, liquid and ion chromatography, IR spectroscopy, and electron microscopy were used to determine the organic content (OC) and elemental content (EC) of carbon, organic/inorganic and ionic compounds, and biomass burning markers (anhydrosaccharides and the potassium ion) and study the morphology and elemental composition of individual particles. It has been shown that the fires are characterized by an increased OC/EC ratio and high concentrations of ammonium, potassium, and sulfate ions in correlation with an increased content of levoglucosan as a marker of biomass burning. The organic compounds containing carbonyl groups point to the process of photochemical aging and the formation of secondary organic aerosols in the urban atmosphere when aerosols are emitted from forest fires. A cluster analysis of individual particles has indicated that when the smokiest atmosphere is characterized by prevailing soot/tar ball particles, which are smoke-emission micromarkers.

  11. Application of remote sensing techniques to study aerosol water vapour uptake in a real atmosphere

    Science.gov (United States)

    Fernández, A. J.; Molero, F.; Becerril-Valle, M.; Coz, E.; Salvador, P.; Artíñano, B.; Pujadas, M.

    2018-04-01

    In this work, a study of several observations of aerosol water uptake in a real (non-controlled) atmosphere, registered by remote sensing techniques, are presented. In particular, three events were identified within the Atmospheric Boundary Layer (ABL) and other two events were detected in the free troposphere (beyond the top of the ABL). Then, aerosol optical properties were measured at different relative humidity (RH) conditions by means of a multi-wavelength (MW) Raman lidar located at CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Research Centre for Energy, Environment and Technology) facilities in Madrid (Spain). Additionally, aerosol optical and microphysical properties provided by automatic sun and sky scanning spectral radiometers (CIMEL CE-318) and a meteorological analysis complement the study. However, a detailed analysis only could be carried out for the cases observed within the ABL since well-mixed atmospheric layers are required to properly characterize these processes. This characterization of aerosol water uptake is based on the curve described by the backscatter coefficient at 532 nm as a function of RH which allows deriving the enhancement factor. Thus, the Hänel parameterization is utilized, and the results obtained are in the range of values reported in previous studies, which shows the suitability of this approach to study such hygroscopic processes. Furthermore, the anti-correlated pattern observed on backscatter-related Ångström exponent (532/355 nm) and RH indicates plausible signs of aerosol hygroscopic growth. According to the meteorological analysis performed, we attribute such hygroscopic behaviour to marine aerosols which are advected from the Atlantic Ocean to the low troposphere in Madrid. We have also observed an interesting response of aerosols to RH at certain levels which it is suggested to be due to a hysteresis process. The events registered in the free troposphere, which deal with volcano

  12. Atmospheric Sampling of Aerosols to Stratospheric Altitudes using High Altitude Balloons

    Science.gov (United States)

    Jerde, E. A.; Thomas, E.

    2010-12-01

    Although carbon dioxide represents a long-lived atmospheric component relevant to global climate change, it is also understood that many additional contributors influence the overall climate of Earth. Among these, short-lived components are more difficult to incorporate into models due to uncertainties in the abundances of these both spatially and temporally. Possibly the most significant of these short-lived components falls under the heading of “black carbon” (BC). There are numerous overlapping definitions of BC, but it is basically carbonaceous in nature and light absorbing. Due to its potential as a climate forcer, an understanding of the BC population in the atmosphere is critical for modeling of radiative forcing. Prior measurements of atmospheric BC generally consist of airplane- and ground-based sampling, typically below 5000 m and restricted in time and space. Given that BC has a residence time on the order of days, short-term variability is easily missed. Further, since the radiative forcing is a result of BC distributed through the entire atmospheric column, aircraft sampling is by definition incomplete. We are in the process of planning a more comprehensive sampling of the atmosphere for BC using high-altitude balloons. Balloon-borne sampling is a highly reliable means to sample air through the entire troposphere and into the lower stratosphere. Our system will incorporate a balloon and a flight train of two modules. One module will house an atmospheric sampler. This sampler will be single-stage (samples all particle sizes together), and will place particles directly on an SEM sample stub for analysis. The nozzle depositing the sample will be offset from the center of the stub, placing the aerosol particles toward the edge. At various altitudes, the stub will be rotated 45 degrees, providing 6-8 sample “cuts” of particle populations through the atmospheric column. The flights will reach approximately 27 km altitude, above which the balloons

  13. Mean residence times of atmospheric aerosols in the boundary layer as determined from 210Bi/210Pb activity ratios

    International Nuclear Information System (INIS)

    Papastefanou, C.; Bondietti, E.A.

    1991-01-01

    Concentrations of radioactive 210 Pb and 210 Bi were measured in surface air after chemical separation and radiochemical analysis in an annual cycle and were used to determine aerosol residence times in the lower atmosphere. It was concluded that residence times of 8 days would apply to aerosols of 0.3 μm activity median aerodynamic diameter (AMAD). Cascade impactor data are also presented in relating the residence times and the AMAD of atmospheric aerosols. (author)

  14. CalWater 2 - Precipitation, Aerosols, and Pacific Atmospheric Rivers Experiment

    Science.gov (United States)

    Spackman, J. R.; Ralph, F. M.; Prather, K. A.; Cayan, D. R.; DeMott, P. J.; Dettinger, M. D.; Fairall, C. W.; Leung, L. R.; Rosenfeld, D.; Rutledge, S. A.; Waliser, D. E.; White, A. B.

    2014-12-01

    Emerging research has identified two phenomena that play key roles in the variability of the water supply and the incidence of extreme precipitation events along the West Coast of the United States. These phenomena include the role of (1) atmospheric rivers (ARs) in delivering much of the precipitation associated with major storms along the U.S. West Coast, and (2) aerosols—from local sources as well as those transported from remote continents—and their modulating effects on western U.S. precipitation. A better understanding of these processes is needed to reduce uncertainties in weather predictions and climate projections of extreme precipitation and its effects, including the provision of beneficial water supply. This presentation summarizes the science objectives and strategies to address gaps associated with (1) the evolution and structure of ARs including cloud and precipitation processes and air-sea interaction, and (2) aerosol interaction with ARs and the impact on precipitation, including locally-generated aerosol effects on orographic precipitation along the U.S. West Coast. Observations are proposed for multiple winter seasons as part of a 5-year broad interagency vision referred to as CalWater 2 to address these science gaps (http://esrl.noaa.gov/psd/calwater). In January-February 2015, a field campaign has been planned consisting of a targeted set of aircraft and ship-based measurements and associated evaluation of data in near-shore regions of California and in the eastern Pacific. In close coordination with NOAA, DOE's Atmospheric Radiation Measurement (ARM) program is also contributing air and shipborne facilities for ACAPEX (ARM Cloud Aerosol and Precipitation Experiment), a DOE-sponsored study complementing CalWater 2. Ground-based measurements from NOAA's HydroMeteorological Testbed (HMT) network in California and aerosol chemical instrumentation at Bodega Bay, California have been designed to add important near surface-level context for the

  15. Atmospheric aerosol layers over Bangkok Metropolitan Region from CALIPSO observations

    Science.gov (United States)

    Bridhikitti, Arika

    2013-06-01

    Previous studies suggested that aerosol optical depth (AOD) from the Earth Observing System satellite retrievals could be used for inference of ground-level air quality in various locations. This application may be appropriate if pollution in elevated atmospheric layers is insignificant. This study investigated the significance of elevated air pollution layers over the Bangkok Metropolitan Region (BMR) from all available aerosol layer scenes taken from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) for years 2007 to 2011. The results show that biomass burning smoke layers alone were the most frequently observed. The smoke layers accounted for high AOD variations and increased AOD levels. In the dry seasons, the smoke layers alone with high AOD levels were likely brought to the BMR via northeasterly to easterly prevailing winds and found at altitudes above the typical BMR mixing heights of approximately 0.7 to 1.5 km. The smoke should be attributed to biomass burning emissions outside the BMR.

  16. Potentialities and Limits of ICESAT-2 Observation for Atmospheric Aerosol Investigation

    Directory of Open Access Journals (Sweden)

    Mona L.

    2016-01-01

    Full Text Available ICESat-2(Ice, Cloud, and land Elevation Satellite-2, slated for launch in 2017, will continue the important observations of ice-sheet elevation change, sea-ice freeboard, and vegetation canopy height begun by ICESat in 2003. Among the other potential applications, ICESat-2 could provide some information about atmospheric aerosol over Polar Regions thanks to the lidar instrument. In this context, it is essential to demonstrate the ICESat-2 capability of providing vertical profiles of the aerosol backscatter coefficient and to define its potentialities and limits. First results of this investigation are reported and will be presented at the conference.

  17. Effects of multiple scattering and atmospheric aerosol on the polarization of the twilight sky

    International Nuclear Information System (INIS)

    Ugolnikov, Oleg S.; Postylyakov, Oleg V.; Maslov, Igor A.

    2004-01-01

    The paper presents a review of a number of wide-angle polarization CCD-measurements of the twilight sky in V and R color bands with effective wavelengths 550 and 700nm. The basic factors affecting (usually decreasing) the polarization of the twilight sky are the atmospheric aerosol scattering and multiple scattering. These effects were distinguished from each other, and a method of multiple-scattering separation is discussed. The results are compared with the data of numerical simulation of radiative transfer in the atmosphere for different aerosol models. The whole twilight period is divided into different stages with different mechanisms forming the twilight-sky polarization properties

  18. Volcanic Plume Impact on the Atmosphere and Climate: O- and S-Isotope Insight into Sulfate Aerosol Formation

    Directory of Open Access Journals (Sweden)

    Erwan Martin

    2018-05-01

    Full Text Available The impact of volcanic eruptions on the climate has been studied over the last decades and the role played by sulfate aerosols appears to be major. S-bearing volcanic gases are oxidized in the atmosphere into sulfate aerosols that disturb the radiative balance on earth at regional to global scales. This paper discusses the use of the oxygen and sulfur multi-isotope systematics on volcanic sulfates to understand their formation and fate in more or less diluted volcanic plumes. The study of volcanic aerosols collected from air sampling and ash deposits at different distances from the volcanic systems (from volcanic vents to the Earth poles is discussed. It appears possible to distinguish between the different S-bearing oxidation pathways to generate volcanic sulfate aerosols whether the oxidation occurs in magmatic, tropospheric, or stratospheric conditions. This multi-isotopic approach represents an additional constraint on atmospheric and climatic models and it shows how sulfates from volcanic deposits could represent a large and under-exploited archive that, over time, have recorded atmospheric conditions on human to geological timescales.

  19. The critical assessment of vapour pressure estimation methods for use in modelling the formation of atmospheric organic aerosol

    Directory of Open Access Journals (Sweden)

    M. H. Barley

    2010-01-01

    Full Text Available A selection of models for estimating vapour pressures have been tested against experimental data for a set of compounds selected for their particular relevance to the formation of atmospheric aerosol by gas-liquid partitioning. The experimental vapour pressure data (all <100 Pa of 45 multifunctional compounds provide a stringent test of the estimation techniques, with a recent complex group contribution method providing the best overall results. The effect of errors in vapour pressures upon the formation of organic aerosol by gas-liquid partitioning in an atmospherically relevant example is also investigated. The mass of organic aerosol formed under typical atmospheric conditions was found to be very sensitive to the variation in vapour pressure values typically present when comparing estimation methods.

  20. Study of particle size and trace metal distribution in atmospheric aerosols of islamabad

    International Nuclear Information System (INIS)

    Shah, M.H.; Shaheen, N.

    2009-01-01

    Atmospheric aerosol samples were collected on glass fibre filters using high volume air samplers Half of each aerosol sample was solubilized in nitric acid/hydrochloric acid based wet digestion method and the concentration of trace metals was determined through flame atomic absorption spectrophotometer. Among the eight trace metals analyzed, mean concentration recorded for Zn (844 ng/m3), Fe (642 ng/m3) and Pb (253 ng/m3), was found to be higher than mean levels of Mn, Cr and Co. The size distribution of the collected particulate samples was carried out on mastersizer, which revealed PM/sub 100-10/ as the major fraction (55 %) followed by PM/sub 2.5-10/ (28 %). The correlation study evidenced a strong tendency of trace metals to be associated with fine particulate fractions. The atmospheric trace metal levels showed that the mean metal concentrations in the atmosphere of Islamabad are far higher than background and European urban sites mainly due to the anthropogenic emissions. (author)

  1. Laboratory Studies of Planetary Hazes: composition of cool exoplanet atmospheric aerosols with very high resolution mass spectrometry

    Science.gov (United States)

    Moran, Sarah E.; Horst, Sarah; He, Chao; Flandinet, Laurene; Moses, Julianne I.; Orthous-Daunay, Francois-Regis; Vuitton, Veronique; Wolters, Cedric; Lewis, Nikole

    2017-10-01

    We present first results of the composition of laboratory-produced exoplanet haze analogues. With the Planetary HAZE Research (PHAZER) Laboratory, we simulated nine exoplanet atmospheres of varying initial gas phase compositions representing increasing metallicities (100x, 1000x, and 10000x solar) and exposed them to three different temperature regimes (600, 400, and 300 K) with two different “instellation” sources (a plasma source and a UV lamp). The PHAZER exoplanet experiments simulate a temperature and atmospheric composition phase space relevant to the expected planetary yield of the Transiting Exoplanet Survey Satellite (TESS) mission as well as recently discovered potentially habitable zone exoplanets in the TRAPPIST-1, LHS-1140, and Proxima Centauri systems. Upon exposure to the energy sources, all of these experiments produced aerosol particles, which were collected in a dry nitrogen glove box and then analyzed with an LTQ Orbitrap XL™ Hybrid Ion Trap-Orbitrap Mass Spectrometer utilizing m/z ranging from 50 to 1000. The collected aerosol samples were found to contain complex organics. Constraining the composition of these aerosols allows us to better understand the photochemical and dynamical processes ongoing in exoplanet atmospheres. Moreover, these data can inform our telescope observations of exoplanets, which is of critical importance as we enter a new era of exoplanet atmosphere observation science with the upcoming launch of the James Webb Space Telescope. The molecular makeup of these haze particles provides key information for understanding exoplanet atmospheric spectra, and constraining the structure and behavior of clouds, hazes, and other aerosols is at the forefront of exoplanet atmosphere science.

  2. A simple method to compute the change in earth-atmosphere radiative balance due to a stratospheric aerosol layer

    Science.gov (United States)

    Lenoble, J.; Tanre, D.; Deschamps, P. Y.; Herman, M.

    1982-01-01

    A computer code was developed in terms of a three-layer model for the earth-atmosphere system, using a two-stream approximation for the troposphere and stratosphere. The analysis was limited to variable atmosphere loading by solar radiation over an unperturbed section of the atmosphere. The scattering atmosphere above a Lambertian ground layer was considered in order to derive the planar albedo and the spherical albedo. Attention was given to the influence of the aerosol optical thickness in the stratosphere, the single scattering albedo and asymmetry factor, and the sublayer albedo. Calculations were performed of the zonal albedo and the planetary radiation balance, taking into account a stratospheric aerosol layer containing H2SO4 droplets and volcanic ash. The resulting ground temperature disturbance was computed using a Budyko (1969) climate model. Local decreases in the albedo in the summer were observed in high latitudes, implying a heating effect of the aerosol. An accompanying energy loss of 23-27 W/sq m was projected, which translates to surface temperature decreases of either 1.1 and 0.45 C, respectively, for background and volcanic aerosols.

  3. Study of atmospheric aerosol by means of nuclear techniques with accelerator at LABEC

    International Nuclear Information System (INIS)

    Calzolai, G.

    2011-01-01

    The atmospheric aerosols, despite their tiny concentration in the air, have a relevant impact on a wide range of issues, spanning from the local to the global scale. Many epidemiologic studies on human exposures to ambient particulate matter have clearly established a statistically significant correlation between fine-particles concentration in the air and health effects. Moreover, increasing interest originates by the role of aerosols in climate change, and in particular in global warming and changes in hydrological cycles. Nuclear techniques have been demonstrated to be an effective tool for aerosol study. In particular, the IBA (Ion Beam Analysis) techniques may allow the detection of all the elements present in the aerosol samples. Radiocarbon measurements, performed by AMS (Accelerator Mass Spectrometry), can give fundamental information about the sources of the aerosol carbonaceous fraction. Without claiming to be exhaustive, a brief description of the role of these techniques in the aerosol study is given in the present paper, with a special attention to their application at the INFN-LABEC laboratory of Florence.

  4. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Massachusetts Institute of Technology; Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.; Kessler, Sean H.; Canagaratna, Manjula R.; Wilson, Kevin R.; Altieri, Katye E.; Mazzoleni, Lynn R.; Wozniak, Andrew S.; Bluhm, Hendrik; Mysak, Erin R.; Smith, Jared D.; Kolb, Charles E.; Worsnop, Douglas R.

    2010-11-05

    A detailed understanding of the sources, transformations, and fates of organic species in the environment is crucial because of the central roles that organics play in human health, biogeochemical cycles, and Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state (OSC), a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of OSC , using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number (nC).

  5. Size-differentiated composition of inorganic atmospheric aerosols of both marine and polluted continental origin

    Science.gov (United States)

    Harrison, Roy M.; Pio, Casimiro A.

    Atmospheric aerosols were sampled with a high volume impactor/diffusion battery system and the collected fractions analysed for their major water-soluble inorganic constituents. Sulphate, nitrate and chloride showed bimodal distributions; sulphate and nitrate were mainly associated with NH 4+, having approximately log-normal distributions with modes at 1.0 μm. In unpolluted maritime air, chlorides appeared as salts of sodium and magnesium with average modes at c. 5 μm, whilst in polluted air masses significant concentrations of ammonium chloride sub-μm aerosols were detected. Sodium nitrate and sodium sulphate aerosols having average modes of c. 3.5 μm were observed in mixed maritime/polluted air masses. The dimensions of these particles indicate formation from absorption of H 2SO 4 and HNO 3 at the surface of marine NaCl particles. The concentration of H + was very low, but the possibility of its neutralization by atmospheric ammonia during sampling was ruled out by parallel air sampling using an 'ammonia denuder'.

  6. Combined ground-based and satellite remote sensing of atmospheric aerosol and Earth surface in the Antarctic

    Science.gov (United States)

    Chaikovsky, Anatoli; Korol, Michail; Malinka, A.; Zege, E.; Katsev, I.; Prikhach, A.; Denisov, S.; Dick, V.; Goloub, P.; Blarel, L.; Chaikovskaya, L.; Lapyonok, A.; Podvin, T.; Denishchik-Nelubina, N.; Fedarenka, A.; Svidinsky, V.

    2016-01-01

    The paper presents lecture materials given at the Nineteenth International Conference and School on Quantum Electronics "Laser Physics and Applications" (19th ICSQE) in 2016, Sozopol, Bulgaria and contains the results of the 10-year research of Belarusian Antarctic expeditions to study the atmospheric aerosol and Earth surface in Antarctica. The works focus on the studying variability and trends of aerosol, cloud and snow characteristics in the Antarctic and the links of these processes with the long range transport of atmospheric pollutants and climate changes.

  7. Aerosol size and chemical composition measurements at the Polar Environment Atmospheric Research Lab (PEARL) in Eureka, Nunavut

    Science.gov (United States)

    Hayes, P. L.; Tremblay, S.; Chang, R. Y. W.; Leaitch, R.; Kolonjari, F.; O'Neill, N. T.; Chaubey, J. P.; AboEl Fetouh, Y.; Fogal, P.; Drummond, J. R.

    2016-12-01

    This study presents observations of aerosol chemical composition and particle number size distribution at the Polar Environment Atmospheric Research Laboratory (PEARL) in the Canadian High Arctic (80N, 86W). The current aerosol measurement program at PEARL has been ongoing for more than a year providing long-term observations of Arctic aerosol size distributions for both coarse and fine modes. Particle nucleation events were frequently observed during the summers of 2015 and 2016. The size distribution data are also compared against similar measurements taken at the Alert Global Atmospheric Watch Observatory (82N, 62W) for July and August 2015. The nucleation events are correlated at the two sites, despite a distance of approximately 500 km, suggesting regional conditions favorable for particle nucleation and growth during this period. Size resolved chemical composition measurements were also carried out using an aerosol mass spectrometer. The smallest measured particles between 40 and 60 nm are almost entirely organic aerosol (OA) indicating that the condensation of organic vapors is responsible for particle growth events and possibly particle nucleation. This conclusion is further supported by the relatively high oxygen content of the OA, which is consistent with secondary formation of OA via atmospheric oxidation.Lastly, surface measurements of the aerosol scattering coefficient are compared against the coefficient values calculated using Mie theory and the measured aerosol size distribution. Both the actual and the calculated scattering coefficients are then compared to sun photometer measurements to understand the relationship between surface and columnar aerosol optical properties. The measurements at PEARL provide a unique combination of surface and columnar data sets on aerosols in the High Arctic, a region where such measurements are scarce despite the important impact of aerosols on Arctic climate.PEARL research is supported by the Natural Sciences and

  8. Lidar-measurement of the atmospheric aerosols' extinction based on the field study SAMUM-1; Lidar-Messung der Extinktion des atmosphaerischen Aerosols am Beispiel der Feldstudie SAMUM-1

    Energy Technology Data Exchange (ETDEWEB)

    Esselborn, Michael

    2008-07-01

    In the frame of this thesis a high-resolution spectral LIDAR (HSRL) was used for the field study SAMUM during May/June 2006 and January/February 2008 on board of the research aircraft Falcon. The intensity of the LIDAR signals are mainly influences by backscattering and extinction of atmospheric particles (aerosols). Using a narrow-band optical filter the HSRL allows the measurement of the molecular backscattering besides the total atmospheric backscattering. During SAMUM-1 the optical properties of the Sahara dust aerosols were measured for the first time, esp. its extinction, the ratio extinction/backscattering and the depolarization close to the source region. The results of the optical density of the aerosols were compared with satellite-based data. South of the Atlas-mountains optical aerosol densities in the range of 0.50 to 0.60 were measured.

  9. Desorption atmospheric pressure photoionization high-resolution mass spectrometry: a complementary approach for the chemical analysis of atmospheric aerosols

    Czech Academy of Sciences Publication Activity Database

    Parshintsev, J.; Vaikkinen, A.; Lipponen, K.; Vrkoslav, Vladimír; Cvačka, Josef; Kostiainen, R.; Kotiaho, T.; Hartonen, K.; Riekkola, M. L.; Kauppila, T. J.

    2015-01-01

    Roč. 29, č. 13 (2015), s. 1233-1241 ISSN 0951-4198 Grant - others:GA AV ČR(CZ) M200551204 Institutional support: RVO:61388963 Keywords : atmospheric aerosols * mass spectrometry * ambient ionization Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 2.226, year: 2015

  10. Atmospheric Transport of Arid Aerosol from Desert Regions of Central Asia

    Science.gov (United States)

    Chen, Boris; Solomon, Paul; Sitnov, Sergei; Grechko, Evgeny; Maximenkov, Leonid; Artamonova, Maria; Pogarski, Fedor

    2010-05-01

    Investigation of atmospheric transport of arid aerosol from Central Asia was held within the ISTC project 3715. Particular attention was paid to the removal of aerosol from the Aral Sea region and its further transport, because aerosol and pollutants emission from Central Asia affect the airspace of the entire Asian continent. At the same time measurements of aerosols in the atmosphere of Central Asia are holding in a small number of stations, and currently available data are insufficient to define the initial conditions and/or verification of models of long-range transport. To identify sources of pollution transported from Central Asia, in Kyrgyzstan measurement and sampling of air were organized: at the station on the northern slope of the Kirgiz Range, 30 km south of Bishkek, at an altitude of 1700 m above sea level (Bishkek Site, 42,683N; 74,694E ), and on permanent alpine Teploklyuchenka lidar station in the Central Tien Shan at an altitude of 2000 m above sea level (Lidar Site, 42,467N; 78,533E). The chemical analysis of collected aerosol and soils samples was carried out. Measurements of aerosol at these stations have been merged with the simulation of the trajectories of air masses in the study region and with the satellite (the Terra and Aqua satellites) observations of aerosol optical thickness in this region. Satellite data for the region 43-47 N, and 58-62 E (Aral Sea) from April 2008 to September 2009 were analyzed. The moments were selected, when the value of aerosol optical thickness (AOT) was greatest (more than 0.5), and the transport from the Aral Sea region to the observation sites took place. For each of these days, the forward trajectories, which started at 6 points within the region, were calculated using the HYSPLIT model. The days, on which the trajectories reached the BISHKEK and LIDAR sites, were determined from the data obtained. Calculations on the basis of the RAMS model were performed for these days. These calculations were performed

  11. Characterization of atmospheric aerosol in Buenos Aires, Argentina

    International Nuclear Information System (INIS)

    Jasan, R.C.; Pla, R.R.; Invernizzi, R.; Dos Santos, M.

    2009-01-01

    PM10 and PM2.5 samples were taken using a Gent sampler to characterize the atmospheric aerosol of Buenos Aires metropolitan area. A total of 114 samples were collected from October 2005 to October 2006 at one urban site, every third day, for 24 h. Samples were analyzed by neutron activation, and black carbon and mass concentration were determined. In both fractions, elemental and gravimetric mass concentrations were compared with historical data. Enrichment factors, backward trajectories and factor analysis were calculated. The attribution of pollution sources is discussed. (author)

  12. Role of the Atmospheric General Circulation on the Temporal Variability of the Aerosol Distribution over Dakar (Senegal)

    Science.gov (United States)

    Senghor, Habib; Machu, Eric; Hourdin, Frederic; Thierno Gaye, Amadou; Gueye, Moussa; Simina Drame, Mamadou

    2016-04-01

    The natural or anthropogenic aerosols play an important role on the climate system and the human health through their optical and physical properties. To evaluate the potential impacts of these aerosols, it is necessary to better understand their temporal variability in relation with the atmospheric ciculation. Some previous case studies have pointed out the influence of the sea-breeze circulation on the vertical distribution of the aerosols along the Western African coast. In the present work, Lidar (Ceilometer CL31; located at Dakar) data are used for the period 2012-2014 together with Level-3 data from CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) between 2007 and 2014 for studying the seasonal cycle of the vertical distribution of aerosols over Dakar (17.5°W, 14.74°N). Both instruments show strong seasonal variability with a maximum of aerosol occurrence in May over Dakar. The CL31 shows a crucial impact of sea-breeze circulation on the diurnal cycle of the Mixed Atmospheric Boundary Layer and a strong dust signal in spring in the nocturnal low-level jet (LLJ) located between 500 and 1000 m altitudes over Dakar.

  13. Development of Methodologies from Determination of Organic Components from Atmospheric Aerosol; Desarrollo de Metodologias para la Determinacion de Componentes Organicos del Aerosol Atmosferico

    Energy Technology Data Exchange (ETDEWEB)

    Pindado, O; Perez, R; Garcia, R; Barrado, A I; Sevillano, M L; Gonzalez, D

    2006-07-01

    It is presented method for the organic compound determination, such as n-alkanes, PAH's, alcohols and fatty acids that are comprised the particulate matter of aerosol. The procedure is based on sampling the particulate matter over quartz fibre filters that will be extracted by means of the Soxhiet technique, and later they will be divided by means of silicagel column. PAH's is analyzed by means of HPLCm whereas the rest is analyzed by GC-MS and for it, acids and alcohol must be previously derivatized with BSTFA.12 samples took shelter of fractions PMIO and PM2.5 of the aerosol of country side like application of the method. (Author) 60 refs.

  14. Development of Methodologies from Determination of Organic Components from Atmospheric Aerosol; Desarrollo de Metodologias para la Determinacion de Componentes Organicos del Aerosol Atmosferico

    Energy Technology Data Exchange (ETDEWEB)

    Pindado, O.; Perez, R.; Garcia, R.; Barrado, A. I.; Sevillano, M. L.; Gonzalez, D.

    2006-07-01

    It is presented method for the organic compound determination, such as n-alkanes, PAH's, alcohols and fatty acids that are comprised the particulate matter of aerosol. The procedure is based on sampling the particulate matter over quartz fibre filters that will be extracted by means of the Soxhiet technique, and later they will be divided by means of silicagel column. PAH's is analyzed by means of HPLCm whereas the rest is analyzed by GC-MS and for it, acids and alcohol must be previously derivatized with BSTFA.12 samples took shelter of fractions PMIO and PM2.5 of the aerosol of country side like application of the method. (Author) 60 refs.

  15. Impact of aerosol particles on the structure of an atmospheric pressure microwave plasma afterglow

    Energy Technology Data Exchange (ETDEWEB)

    Chen Chunku [Ceramic and Composite Materials Centre, 209 Farris Engineering Centre, University of New Mexico, Albuquerque, NM (United States); Phillips, Jonathan [Los Alamos National Laboratory, MS C930, Los Alamos, NM (United States)

    2002-05-21

    Several novel ceramic processing technologies (e.g. oxide ceramic melting and spheroidization) using an atmospheric pressure microwave plasma torch were recently developed in our lab. Understanding the processes and optimization requires complete characterization of the plasma as a function of operating condition. As a first step, a non-intrusive spectroscopic method was employed to map rotational (gas), electron and excitation temperatures and electron densities of the afterglow region of microwave generated atmospheric plasmas with and without alumina particle aerosol. Two-dimensional spatially resolved mapping of rotational (gas), excitation and electron temperatures and electron densities as a function of operating conditions during material processing were developed. It was shown that the passage of an aerosol dramatically changes the structure of the afterglow. Also the non-equilibrium nature of microwave generated atmospheric argon plasma was confirmed, suggesting that only multi-temperature models are capable of modelling this region of the plasma. (author)

  16. Measurement of radioactive aerosols as an original indicator of atmospheric pollution in urban areas

    International Nuclear Information System (INIS)

    Le Petit, G.; Millies-Lacroix, J. C.

    1998-01-01

    The Service Radioanalyses, Chimie et Environnment (Departement Analyses Surveillance de l'Environnement) of the French Atomic Energy Commission, located in suburban Paris, has for many years been conducting atmospheric radioactivity measurements. Since 1994, the laboratory has been using high volume air samplers equipped with filters for the weekly collection of atmospheric aerosols at a mean rate of about 600 m 3 .h -1 . The polypropylene filters, with a collection efficiency in excess of 93%, are compacted after sampling. The atmospheric radioactivity is measured by HP Ge gamma spectrometry after decay of short-lived natural relationship products. A study conducted in 1996 shows good correlation between the evolution with time of some of the indicators routinely used by AIRPARIF, the organization in charge of monitoring the air quality in the Ile-de-France region, to measure atmospheric pollution in the Paris area (SO 2 , NO) and that related to radioactivity of terrestrial ( 210 Pb, 40 K) and anthropogenic ( 137 Cs) origin, as well as the amount of aerosols collected. Further, the distribution in time of the atmospheric radioactivity of cosmogenic origin ( 7 Be) shows a yearly evolution somewhat similar to that observed with ozone

  17. The Influence of Air-Sea Fluxes on Atmospheric Aerosols During the Summer Monsoon Over the Tropical Indian Ocean

    Science.gov (United States)

    Zavarsky, Alex; Booge, Dennis; Fiehn, Alina; Krüger, Kirstin; Atlas, Elliot; Marandino, Christa

    2018-01-01

    During the summer monsoon, the western tropical Indian Ocean is predicted to be a hot spot for dimethylsulfide emissions, the major marine sulfur source to the atmosphere, and an important aerosol precursor. Other aerosol relevant fluxes, such as isoprene and sea spray, should also be enhanced, due to the steady strong winds during the monsoon. Marine air masses dominate the area during the summer monsoon, excluding the influence of continentally derived pollutants. During the SO234-2/235 cruise in the western tropical Indian Ocean from July to August 2014, directly measured eddy covariance DMS fluxes confirm that the area is a large source of sulfur to the atmosphere (cruise average 9.1 μmol m-2 d-1). The directly measured fluxes, as well as computed isoprene and sea spray fluxes, were combined with FLEXPART backward and forward trajectories to track the emissions in space and time. The fluxes show a significant positive correlation with aerosol data from the Terra and Suomi-NPP satellites, indicating a local influence of marine emissions on atmospheric aerosol numbers.

  18. Infrared Absorption by Atmospheric Aerosols in Mexico City during MILAGRO.

    Science.gov (United States)

    Kelley, K. L.; Mangu, A.; Gaffney, J. S.; Marley, N. A.

    2007-12-01

    found as colloidal materials in surface and groundwaters (4). Examples of the IR spectra obtained and variance as a function of time at the two sites will be presented. The spectra are taken in Kubelka - Munk format, which also allows the infrared absorption strengths to be evaluated as function of wavelength. The wavelength dependence of the aerosol complex refractive index (m = n + ik) in the infrared spectral region is determined by application of the Kramers Kronig function. The importance of the aerosol absorption in the infrared spectral region to radiative forcing will be discussed. 1. N.A. Marley, J.S. Gaffney, and M.M. Cunningham,Environ. Sci. Technol. 27 2864-2869 (1993). 2. N.A. Marley, J.S. Gaffney, and M.M. Cunningham, Spectroscopy 7 44-53 (1992). 3. J.S. Gaffney and N.A. Marley, Atmospheric Environment, New Directions contribution, 32, 2873-2874 (1998). 4. N.A. Marley, J.S. Gaffney, and K.A. Orlandini, Chapter 7 in Humic/Fulvic Acids and Organic Colloidal Materials in the Environment, ACS Symposium Series 651, American Chemical Society, Washington, D.C., pp. 96-107, 1996. This work was performed as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX- Mex) under the support of the Atmospheric Science Program. This research was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64328.

  19. Impact of agriculture crop residue burning on atmospheric aerosol loading – a study over Punjab State, India

    Directory of Open Access Journals (Sweden)

    Darshan Singh

    2010-02-01

    Full Text Available The present study deals with the impact of agriculture crop residue burning on aerosol properties during October 2006 and 2007 over Punjab State, India using ground based measurements and multi-satellite data. Spectral aerosol optical depth (AOD and Ångström exponent (α values exhibited larger day to day variation during crop residue burning period. The monthly mean Ångström exponent "α" and turbidity parameter "β" values during October 2007 were 1.31±0.31 and 0.36±0.21, respectively. The higher values of "α" and "β" suggest turbid atmospheric conditions with increase in fine mode aerosols over the region during crop residue burning period. AURA-OMI derived Aerosol Index (AI and Nitrogen dioxide (NO2 showed higher values over the study region during October 2007 compared to October 2006 suggesting enhanced atmospheric pollution associated with agriculture crop residue burning.

  20. Estimation of atmospheric columnar organic matter (OM) mass concentration from remote sensing measurements of aerosol spectral refractive indices

    Science.gov (United States)

    Zhang, Ying; Li, Zhengqiang; Sun, Yele; Lv, Yang; Xie, Yisong

    2018-04-01

    Aerosols have adverse effects on human health and air quality, changing Earth's energy balance and lead to climate change. The components of aerosol are important because of the different spectral characteristics. Based on the low hygroscopic and high scattering properties of organic matter (OM) in fine modal atmospheric aerosols, we develop an inversion algorithm using remote sensing to obtain aerosol components including black carbon (BC), organic matter (OM), ammonium nitrate-like (AN), dust-like (DU) components and aerosol water content (AW). In the algorithm, the microphysical characteristics (i.e. volume distribution and complex refractive index) of particulates are preliminarily separated to fine and coarse modes, and then aerosol components are retrieved using bimodal parameters. We execute the algorithm using remote sensing measurements of sun-sky radiometer at AERONET site (Beijing RADI) in a period from October of 2014 to January of 2015. The results show a reasonable distribution of aerosol components and a good fit for spectral feature calculations. The mean OM mass concentration in atmospheric column is account for 14.93% of the total and 56.34% of dry and fine-mode aerosol, being a fairly good correlation (R = 0.56) with the in situ observations near the surface layer.

  1. Causes and consequences of decreasing atmospheric organic aerosol in the United States

    Science.gov (United States)

    Ridley, D. A.; Heald, C. L.; Ridley, K. J.; Kroll, J. H.

    2018-01-01

    Exposure to atmospheric particulate matter (PM) exacerbates respiratory and cardiovascular conditions and is a leading source of premature mortality globally. Organic aerosol contributes a significant fraction of PM in the United States. Here, using surface observations between 1990 and 2012, we show that organic carbon has declined dramatically across the entire United States by 25–50%; accounting for more than 30% of the US-wide decline in PM. The decline is in contrast with the increasing organic aerosol due to wildfires and no clear trend in biogenic emissions. By developing a carbonaceous emissions database for the United States, we show that at least two-thirds of the decline in organic aerosol can be explained by changes in anthropogenic emissions, primarily from vehicle emissions and residential fuel burning. We estimate that the decrease in anthropogenic organic aerosol is responsible for averting 180,000 (117,000–389,000) premature deaths between 1990 and 2012. The unexpected decrease in organic aerosol, likely a consequence of the implementation of Clean Air Act Amendments, results in 84,000 (30,000–164,000) more lives saved than anticipated by the EPA between 2000 and 2010.

  2. Lidar-measurement of the atmospheric aerosols' extinction based on the field study SAMUM-1; Lidar-Messung der Extinktion des atmosphaerischen Aerosols am Beispiel der Feldstudie SAMUM-1

    Energy Technology Data Exchange (ETDEWEB)

    Esselborn, Michael

    2008-07-01

    In the frame of this thesis a high-resolution spectral LIDAR (HSRL) was used for the field study SAMUM during May/June 2006 and January/February 2008 on board of the research aircraft Falcon. The intensity of the LIDAR signals are mainly influences by backscattering and extinction of atmospheric particles (aerosols). Using a narrow-band optical filter the HSRL allows the measurement of the molecular backscattering besides the total atmospheric backscattering. During SAMUM-1 the optical properties of the Sahara dust aerosols were measured for the first time, esp. its extinction, the ratio extinction/backscattering and the depolarization close to the source region. The results of the optical density of the aerosols were compared with satellite-based data. South of the Atlas-mountains optical aerosol densities in the range of 0.50 to 0.60 were measured.

  3. Atmospheric aerosol radiative forcing over a semi-continental location Tripura in North-East India: Model results and ground observations.

    Science.gov (United States)

    Dhar, Pranab; De, Barin Kumar; Banik, Trisanu; Gogoi, Mukunda M; Babu, S Suresh; Guha, Anirban

    2017-02-15

    Northeast India (NEI) is located within the boundary of the great Himalayas in the north and the Bay of Bengal (BoB) in the southwest, experiences the mixed influence of the westerly dust advection from the Indian desert, anthropogenic aerosols from the highly polluted Indo-Gangetic Plains (IGP) and marine aerosols from BoB. The present study deals with the estimation and characterization of aerosol radiative forcing over a semi-continental site Tripura, which is a strategic location in the western part of NEI having close proximity to the outflow of the IGP. Continuous long term measurements of aerosol black carbon (BC) mass concentrations and columnar aerosol optical depth (AOD) are used for the estimation of aerosol radiative forcing in each monthly time scale. The study revealed that the surface forcing due to aerosols was higher during both winter and pre-monsoon seasons, having comparable values of 32W/m 2 and 33.45W/m 2 respectively. The atmospheric forcing was also higher during these months due to increased columnar aerosol loadings (higher AOD ~0.71) shared by abundant BC concentrations (SSA ~0.7); while atmospheric forcing decreased in monsoon due to reduced magnitude of BC (SSA ~0.94 in July) as well as columnar AOD. The top of the atmosphere (TOA) forcing is positive in pre-monsoon and monsoon months with the highest positive value of 3.78W/m 2 in June 2012. The results are discussed in light of seasonal source impact and transport pathways from adjacent regions. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Uncertainty evaluation in correlated quantities: application to elemental analysis of atmospheric aerosols

    International Nuclear Information System (INIS)

    Espinosa, A.; Miranda, J.; Pineda, J. C.

    2010-01-01

    One of the aspects that are frequently overlooked in the evaluation of uncertainty in experimental data is the possibility that the involved quantities are correlated among them, due to different causes. An example in the elemental analysis of atmospheric aerosols using techniques like X-ray Fluorescence (X RF) or Particle Induced X-ray Emission (PIXE). In these cases, the measured elemental concentrations are highly correlated, and then are used to obtain information about other variables, such as the contribution from emitting sources related to soil, sulfate, non-soil potassium or organic matter. This work describes, as an example, the method required to evaluate the uncertainty in variables determined from correlated quantities from a set of atmospheric aerosol samples collected in the Metropolitan Area of the Mexico Valley and analyzed with PIXE. The work is based on the recommendations of the Guide for the Evaluation of Uncertainty published by the International Organization for Standardization. (Author)

  5. Pyrotechnical production of labelled aerosols and their use in the ground atmosphere

    International Nuclear Information System (INIS)

    Kuehn, W.K.G.; Alps, W.

    1977-01-01

    As the emission of radioactive substances in the atmosphere is only allowed for a few short-lined radionuclides, the possibility of producing aerosols pyrotechnically and to simultaneously label them with easily activated tracers was investigated. It has the following advantages: 1) The activation analysis guarantees a high detection sensitivity with a tracer element of large cross section. 2) There is no danger to the environment due to radioactivity during testing. 3) In general, there are no limits to the amount of indicator substance used. 4) The pyrotechnically produced aerosol can be used at any position of the atmosphere whereby line sources, point sources and pulse sources can be produced with the generator. The generator can be shot by a signal pistol to the desired height in order to label harmful substances or other (emission) points as well. 5) The source is extremely mobile due to the small measurements and uncomplicated construction of the generator. (orig./RW) [de

  6. Radiation forcing by the atmospheric aerosols in the nocturnal boundary layer

    Science.gov (United States)

    Singh, D. K.; Ponnulakshami, V. K.; Mukund, V.; Subramanian, G.; Sreenivas, K. R.

    2013-05-01

    We have conducted experimental and theoretical studies on the radiation forcing due to suspended aerosols in the nocturnal boundary layer. We present radiative, conductive and convective equilibrium profile for different bottom boundaries where calculated Rayleigh number is higher than the critical Rayleigh number in laboratory conditions. The temperature profile can be fitted using an exponential distribution of aerosols concentration field. We also present the vertical temperature profiles in a nocturnal boundary in the presence of fog in the field. Our results show that during the presence of fog in the atmosphere, the ground temperature is greater than the dew-point temperature. The temperature profiles before and after the formation of fog are also observed to be different.

  7. Inverse problem for particle size distributions of atmospheric aerosols using stochastic particle swarm optimization

    International Nuclear Information System (INIS)

    Yuan Yuan; Yi Hongliang; Shuai Yong; Wang Fuqiang; Tan Heping

    2010-01-01

    As a part of resolving optical properties in atmosphere radiative transfer calculations, this paper focuses on obtaining aerosol optical thicknesses (AOTs) in the visible and near infrared wave band through indirect method by gleaning the values of aerosol particle size distribution parameters. Although various inverse techniques have been applied to obtain values for these parameters, we choose a stochastic particle swarm optimization (SPSO) algorithm to perform an inverse calculation. Computational performances of different inverse methods are investigated and the influence of swarm size on the inverse problem of computation particles is examined. Next, computational efficiencies of various particle size distributions and the influences of the measured errors on computational accuracy are compared. Finally, we recover particle size distributions for atmospheric aerosols over Beijing using the measured AOT data (at wavelengths λ=0.400, 0.690, 0.870, and 1.020 μm) obtained from AERONET at different times and then calculate other AOT values for this band based on the inverse results. With calculations agreeing with measured data, the SPSO algorithm shows good practicability.

  8. Study of the behaviour of artificial radioactive aerosols. Applications to some problems of atmospheric circulation (1963); Etude du comportement dcs aerosols radioactifs artificiels. Applications a quelques problemes de circulation atmospherique (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-11-15

    The aim of this work, consists in the examination of the behaviour of radioactive aerosols produced in the atmosphere by nuclear explosions, in order to deduce the most general laws governing atmospheric circulation and diffusion. After having given a general table of the radioactive aerosols present the authors consider the validity and the precision of the measurement methods and the concentration of the aerosols at ground level and in the upper atmosphere, as well as their deposition on the ground. The existence is thus demonstrated of a tropospheric equatorial barrier and of discontinuous and seasonal aspects of stratosphere-troposphere transfers. The role is shown of precipitations and dry auto-filtration in the lower atmosphere cleaning processes. This work makes it possible to describe the general behaviour of dust from the stratosphere, and to improve the total radioactive contamination of the globe. (author) [French] L'objectif de ce travail consiste a examiner le comportement des aerosols radioactifs introduits dans l'atmosphere par les explosions nucleaires, pour en deduire les lois les plus generals de la circulation et diffusion atmospheriques. Apres avoir dresse un tableau d'ensemble des aerosols radioactifs presents, on examine la validite et la precision des methodes de mesure de leur concentration, au niveau du sol et en haute atmosphere, ainsi que de leur depot a la surface du sol. On met ainsi en evidence l'existence d'une barriere equatoriale tropospherique; l'aspect discontinu et saisonnier des transferts stratosphere-troposphere; le role des precipitations et de l'auto-filtration seche, dans les processus de nettoyage de la basse atmosphere. Ces etudes permettent de decrire le comportement general des poussieres d'origine stratospherique et d'ameliorer le bilan de la contamination radioactive du globe. (auteur)

  9. Study of the behaviour of artificial radioactive aerosols. Applications to some problems of atmospheric circulation (1963); Etude du comportement dcs aerosols radioactifs artificiels. Applications a quelques problemes de circulation atmospherique (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-11-15

    The aim of this work, consists in the examination of the behaviour of radioactive aerosols produced in the atmosphere by nuclear explosions, in order to deduce the most general laws governing atmospheric circulation and diffusion. After having given a general table of the radioactive aerosols present the authors consider the validity and the precision of the measurement methods and the concentration of the aerosols at ground level and in the upper atmosphere, as well as their deposition on the ground. The existence is thus demonstrated of a tropospheric equatorial barrier and of discontinuous and seasonal aspects of stratosphere-troposphere transfers. The role is shown of precipitations and dry auto-filtration in the lower atmosphere cleaning processes. This work makes it possible to describe the general behaviour of dust from the stratosphere, and to improve the total radioactive contamination of the globe. (author) [French] L'objectif de ce travail consiste a examiner le comportement des aerosols radioactifs introduits dans l'atmosphere par les explosions nucleaires, pour en deduire les lois les plus generals de la circulation et diffusion atmospheriques. Apres avoir dresse un tableau d'ensemble des aerosols radioactifs presents, on examine la validite et la precision des methodes de mesure de leur concentration, au niveau du sol et en haute atmosphere, ainsi que de leur depot a la surface du sol. On met ainsi en evidence l'existence d'une barriere equatoriale tropospherique; l'aspect discontinu et saisonnier des transferts stratosphere-troposphere; le role des precipitations et de l'auto-filtration seche, dans les processus de nettoyage de la basse atmosphere. Ces etudes permettent de decrire le comportement general des poussieres d'origine stratospherique et d'ameliorer le bilan de la contamination radioactive du globe. (auteur)

  10. On the dynamics of fine aerosols artificially produced. Application to the atmosphere

    International Nuclear Information System (INIS)

    Perrin, Marie-Line

    1980-01-01

    We take advantage of the developments of a new method of measurement, using a diffusion battery, to analyse the evolution of ultra-fine particles generated as a result of gas-phase reactions (radiolysis and photolysis). The evolution of aerosols instantaneously produced by radiolysis of gaseous impurities is studied and a theoretical model from the coagulation equation's resolution is shown to well describe the phenomena. Experiments with aerosols continuously produced by photo-oxidation of SO 2 show the effect of the condensable molecules production rate and the preexisting aerosol, on the subsequent growth of the primary embryos. Different theoretical models are qualitatively and quantitatively verified. Our experiments are then extended to 'in situ' measurements in urban and marine atmospheres, and in every case, we quantitatively determine the importance of each intervening process, namely nucleation, coagulation and condensation. (author) [fr

  11. Maxwell-Stefan diffusion: a framework for predicting condensed phase diffusion and phase separation in atmospheric aerosol

    Science.gov (United States)

    Fowler, Kathryn; Connolly, Paul J.; Topping, David O.; O'Meara, Simon

    2018-02-01

    The composition of atmospheric aerosol particles has been found to influence their micro-physical properties and their interaction with water vapour in the atmosphere. Core-shell models have been used to investigate the relationship between composition, viscosity and equilibration timescales. These models have traditionally relied on the Fickian laws of diffusion with no explicit account of non-ideal interactions. We introduce the Maxwell-Stefan diffusion framework as an alternative method, which explicitly accounts for non-ideal interactions through activity coefficients. e-folding time is the time it takes for the difference in surface and bulk concentration to change by an exponential factor and was used to investigate the interplay between viscosity and solubility and the effect this has on equilibration timescales within individual aerosol particles. The e-folding time was estimated after instantaneous increases in relative humidity to binary systems of water and an organic component. At low water mole fractions, viscous effects were found to dominate mixing. However, at high water mole fractions, equilibration times were more sensitive to a range in solubility, shown through the greater variation in e-folding times. This is the first time the Maxwell-Stefan framework has been applied to an atmospheric aerosol core-shell model and shows that there is a complex interplay between the viscous and solubility effects on aerosol composition that requires further investigation.

  12. Characteristics and Composition of Atmospheric Aerosols in Phimai, Central Thailand During BASE-ASIA

    Science.gov (United States)

    Li, Can; Tsay, Si-Chee; Hsu, N. Christina; Kim, Jin Young; Howell, Steven G.; Huebert, Barry J.; Ji, Qiang; Jeong, Myeong-Jae; Wang, Sheng-Hsiang; Hansell, Richard A.; hide

    2012-01-01

    Popular summary: Atmospheric aerosols play an important role in the Earth's climate system, and can also have adverse effects on air quality and human health. The environmental impacts of aerosols, on the other hand, are highly regional, since their temporal/spatial distribution is inhomogeneous and highly depends on the regional emission sources. To better understand the effects of aerosols, intensive field experiments are necessary to characterize the chemical and physical properties on a region-by-region basis. From late February to early May in 2006, NASA/GSFC's SMARTLabs facility was deployed at a rural site in central Thailand, Southeast Asia, to conduct a field experiment dubbed BASE-ASIA (Biomass-burning Aerosols in South East-Asia: Smoke Impact Assessment). The group was joined by scientists from the University of Hawaii and other regional institutes. Comprehensive measurements were made during the experiment, including aerosol chemical composition, optical and microphysical properties, as well as surface energetics and local . meteorology. This study analyzes part of the data from the BASE-ASIA experiment. It was found that, even for the relatively remote rural site, the aerosol loading was still substantial. Besides agricultural burning in the area, industrial pollution near the Bangkok metropolitan area, about 200 km southeast of the site, and even long-range transport from China, also contribute to the area's aerosol loading. The results indicate that aerosol pollution has developed into a regional problem for northern Indochina, and may become more severe as the region's population and economy continue to grow. Abstract: Comprehensive measurements of atmospheric aerosols were made in Phimai, central Thailand (15.l83 N, 102.565 E, elevation: 206 m) during the BASE-ASIA field experiment from late February to early May in 2006. The observed aerosol loading was sizable for this rural site (mean aerosol scattering: 108 +/- 64 Mm(exp -1); absorption: 15

  13. Sampling and characterization of aerosols formed in the atmospheric hydrolysis of UF6

    International Nuclear Information System (INIS)

    Bostick, W.D.; McCulla, W.H.; Pickrell, P.W.; Branam, D.A.

    1983-01-01

    When gaseous UF 6 is released into the atmosphere, it rapidly reacts with ambient moisture to form an aerosol of uranyl fluoride and HF. As part of our Safety Analysis program, we have performed several experimental releases of UF 6 (from natural uranium) in contained volumes in order to investigate techniques for sampling and characterizing the aerosol materials. The aggregrate particle morphology and size distribution have been found to be dependent upon several conditions, including the relative humidity at the time of the release and the elapse time after the release. Aerosol composition and settling rate have been investigated using isokinetic samplers for the separate collection of UO 2 F 2 and HF, and via laser spectroscopic remote sensing (Mie scatter and infrared spectroscopy). 8 references

  14. Simulated nutrient dissolution of Asian aerosols in various atmospheric waters: Potential links to marine primary productivity

    Science.gov (United States)

    Wang, Lingyan; Bi, Yanfeng; Zhang, Guosen; Liu, Sumei; Zhang, Jing; Xu, Zhaomeng; Ren, Jingling; Zhang, Guiling

    2017-09-01

    To probe the bioavailability and environmental mobility of aerosol nutrient elements (N, P, Si) in atmospheric water (rainwater, cloud and fog droplets), ten total suspended particulate (TSP) samples were collected at Fulong Mountain, Qingdao from prevailing air mass trajectory sources during four seasons. Then, a high time-resolution leaching experiment with simulated non-acidic atmospheric water (non-AAW, Milli-Q water, pH 5.5) and subsequently acidic atmospheric water (AAW, hydrochloric acid solution, pH 2) was performed. We found that regardless of the season or source, a monotonous decreasing pattern was observed in the dissolution of N, P and Si compounds in aerosols reacted with non-AAW, and the accumulated dissolved curves of P and Si fit a first-order kinetic model. No additional NO3- + NO2- dissolved out, while a small amount of NH4+ in Asian dust (AD) samples was released in AAW. The similar dissolution behaviour of P and Si from non-AAW to AAW can be explained by the Transition State Theory. The sources of aerosols related to various minerals were the natural reasons that affected the amounts of bioavailable phosphorus and silicon in aerosols (i.e., solubility), which can be explained by the dissolution rate constant of P and Si in non-AAW with lower values in mineral aerosols. The acid/particle ratio and particle/liquid ratio also have a large effect on the solubility of P and Si, which was implied by Pearson correlation analysis. Acid processing of aerosols may have great significance for marine areas with limited P and Si and post-acidification release increases of 1.1-10-fold for phosphorus and 1.2-29-fold for silicon. The decreasing mole ratio of P and Si in AAW indicates the possibility of shifting from a Si-limit to a P-limit in aerosols in the ocean, which promotes the growth of diatoms prior to other algal species.

  15. Aerosol release from a hot sodium pool and behaviour in inert gas atmosphere

    International Nuclear Information System (INIS)

    Sauter, H.; Schuetz, W.

    1986-01-01

    In the KfK-NALA program, experiments were carried out on the subject of aerosol release from a contaminated sodium pool into inert gas atmosphere under various conditions. Besides the determination of retention factors for fuel and fission products, the sodium aerosol system was investigated and characterized, concerning aerosol generation (evaporation rate), particle size, mass concentration, and deposition behaviour. Pool temperatures were varied between 700 and 1000 K at different geometrical and convective conditions. Technical scale experiments with a 531-cm 2 pool surface area were performed at natural convection in a 2.2-m 3 heated vessel, as well as additional small scale experiments at forced convection and 38.5-cm 2 pool surface area. A best-fit formula is given for the specific evaporation rate into a 400 K argon atmosphere. Approximately, the very convenient relation (dm/dt) (kg/m 2 /h) = 0.1 p (mm Hg) was found. The sodium aerosol diameter lay between 0.6 μm, less than 1 sec after production, and 2.5 μm at maximum concentration. The deposition behaviour was characterized by very small quantities ( 80%) on the bottom cover of the vessel. In the model theoretic studies with the PARDISEKO code, calculations were performed of the mass concentration, particle diameter and deposition behaviour. Agreement with the experimental values could not be achieved until a modulus was introduced to allow for turbulent deposition. (author)

  16. Aerosol and monsoon climate interactions over Asia: AEROSOL AND MONSOON CLIMATE INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhanqing [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Lau, W. K. -M. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Ramanathan, V. [Department of Atmospheric and Climate Sciences, University of California, San Diego California USA; Wu, G. [Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing China; Ding, Y. [National Climate Center, China Meteorological Administration, Beijing China; Manoj, M. G. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Liu, J. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Qian, Y. [Pacific Northwest National Laboratory, Richland Washington USA; Li, J. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Zhou, T. [Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing China; Fan, J. [Pacific Northwest National Laboratory, Richland Washington USA; Rosenfeld, D. [Institute of Earth Sciences, Hebrew University, Jerusalem Israel; Ming, Y. [Geophysical Fluid Dynamic Laboratory, NOAA, Princeton New Jersey USA; Wang, Y. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena California USA; Huang, J. [College of Atmospheric Sciences, Lanzhou University, Lanzhou China; Wang, B. [Department of Atmospheric Sciences, University of Hawaii, Honolulu Hawaii USA; School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing China; Xu, X. [Chinese Academy of Meteorological Sciences, Beijing China; Lee, S. -S. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Cribb, M. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Zhang, F. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Yang, X. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Zhao, C. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Takemura, T. [Research Institute for Applied Mechanics, Kyushu University, Fukuoka Japan; Wang, K. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Xia, X. [Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing China; Yin, Y. [School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing China; Zhang, H. [National Climate Center, China Meteorological Administration, Beijing China; Guo, J. [Chinese Academy of Meteorological Sciences, Beijing China; Zhai, P. M. [Chinese Academy of Meteorological Sciences, Beijing China; Sugimoto, N. [National Institute for Environmental Studies, Tsukuba Japan; Babu, S. S. [Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram India; Brasseur, G. P. [Max Planck Institute for Meteorology, Hamburg Germany

    2016-11-15

    Asian monsoons and aerosols have been studied extensively which are intertwined in influencing the climate of Asia. This paper provides a comprehensive review of ample studies on Asian aerosol, monsoon and their interactions. The region is the primary source of aerosol emissions of varies species, influenced by distinct weather and climatic regimes. On continental scale, aerosols reduce surface insolation and weaken the land-ocean thermal contrast, thus inhibiting the development of monsoons. Locally, aerosol radiative effects alter the thermodynamic stability and convective potential of the lower atmosphere leading to reduced temperatures, increased atmospheric stability, and weakened wind and atmospheric circulation. The atmospheric thermodynamic state may also be altered by the aerosol serving as cloud condensation nuclei or ice nuclei. Many mechanisms have been put forth regarding how aerosols modulate the amplitude, frequency, intensity, and phase of numerous monsoon climate variables. A wide range of theoretical, observational, and modeling findings on the Asian monsoon, aerosols, and their interactions are synthesized. A new paradigm is proposed on investigating aerosol-monsoon interactions, in which natural aerosols such as desert dust, black carbon from biomass burning, and biogenic aerosols from vegetation are considered integral components of an intrinsic aerosol-monsoon climate system, subject to external forcings of global warming, anthropogenic aerosols, and land use and change. Future research on aerosol-monsoon interactions calls for an integrated approach and international collaborations based on long-term sustained observations, process measurements, and improved models, as well as using observations to constrain model simulations and projections.

  17. Measurement of radioactive aerosols as an original indicator of atmospheric pollution in urban areas

    International Nuclear Information System (INIS)

    Le Petit, G.; Millies-Lacroix, J.-C.; Simon, F.

    1998-01-01

    The Service Radioanalyses, Chimie et Environnement (Departement Analyses Surveillance de l'Environnement) of the French Atomic Energy Commission, located in suburban Paris, has for many years been conducting atmospheric radioactivity measurements. Since 1994, the laboratory has been using high volume air samplers equipped with filters for the weekly collection of atmospheric aerosols at a mean rate of about 600 m 3 .h -1 . The polypropylene filters, with a collection efficiency in excess of 93%, are compacted after sampling. The atmospheric radioactivity is measured by HP Ge gamma spectrometry after decay of short-lived natural relationship products. A study conducted in 1996 shows good correlation between the evolution with time of some of the indicators routinely used by AIRPARIF, the organization in charge of monitoring of the air quality in the Ile-de-France region, to measure atmospheric pollution in the Paris area (SO 2 , NO) and that related to radioactivity of terrestrial ( 210 Pb, 40 K) and anthropogenic ( 137 Cs) origin, as well as the amount of aerosols collected. Further, the distribution in time of the atmospheric radioactivity of cosmogenic origin ( 7 Be) shows a yearly evolution somewhat similar to that observed with ozone. (author). 16 refs., 21 figs., 1 tab

  18. Assessing the impact of aerosol-atmosphere interactions in convection-permitting regional climate simulations: the Rolf medicane in 2011

    Science.gov (United States)

    José Gómez-Navarro, Juan; María López-Romero, José; Palacios-Peña, Laura; Montávez, Juan Pedro; Jiménez-Guerrero, Pedro

    2017-04-01

    A critical challenge for assessing regional climate change projections relies on improving the estimate of atmospheric aerosol impact on clouds and reducing the uncertainty associated with the use of parameterizations. In this sense, the horizontal grid spacing implemented in state-of-the-art regional climate simulations is typically 10-25 kilometers, meaning that very important processes such as convective precipitation are smaller than a grid box, and therefore need to be parameterized. This causes large uncertainties, as closure assumptions and a number of parameters have to be established by model tuning. Convection is a physical process that may be strongly conditioned by atmospheric aerosols, although the solution of aerosol-cloud interactions in warm convective clouds remains nowadays a very important scientific challenge, rendering parametrization of these complex processes an important bottleneck that is responsible from a great part of the uncertainty in current climate change projections. Therefore, the explicit simulation of convective processes might improve the quality and reliability of the simulations of the aerosol-cloud interactions in a wide range of atmospheric phenomena. Particularly over the Mediterranean, the role of aerosol particles is very important, being this a crossroad that fuels the mixing of particles from different sources (sea-salt, biomass burning, anthropogenic, Saharan dust, etc). Still, the role of aerosols in extreme events in this area such as medicanes has been barely addressed. This work aims at assessing the role of aerosol-atmosphere interaction in medicanes with the help of the regional chemistry/climate on-line coupled model WRF-CHEM run at a convection-permitting resolution. The analysis is exemplary based on the "Rolf" medicane (6-8 November 2011). Using this case study as reference, four sets of simulations are run with two spatial resolutions: one at a convection-permitting configuration of 4 km, and other at the

  19. Liquid chromatography-dopant-assisted atmospheric pressure photoionization-mass spectrometry: Application to the analysis of aldehydes in atmospheric aerosol particles.

    Science.gov (United States)

    Ruiz-Jiménez, José; Hautala, Sanna; Parshintsev, Jevgeni; Laitinen, Totti; Hartonen, Kari; Petäjä, Tuukka; Kulmala, Markku; Riekkola, Marja-Liisa

    2013-01-01

    A complete methodology based on LC-anisole-toluene dopant-assisted atmospheric pressure photoionization-IT-MS was developed for the determination of aldehydes in atmospheric aerosol particles. For the derivatization, ultrasound was used to accelerate the reaction between the target analytes and 2,4-dinitrophenylhydrazine. The developed methodology was validated for three different samples, gas phase, ultrafine (Dp = 30 ± 4 nm; where Dp stands for particle diameter) and all-sized particles, collected on Teflon filters. The method quantitation limits ranged from 5 to 227 pg. The accuracy and the potential matrix effects were evaluated using standard addition methodology. Recoveries ranged between 91.7 and 109.9%, and the repeatability and the reproducibility of the method developed between 0.5 and 8.0% and between 2.9 and 11.1%, respectively. The results obtained by the developed methodology compared to those provided by the previously validated method revealed no statistical differences. The method developed was applied to the determination of aldehydes in 16 atmospheric aerosol samples (30 nm and all-sized samples) collected at the Station for Measuring Forest Ecosystem-Atmosphere Relations II during spring 2011. The mean concentrations of aldehydes, and oxidation products of terpenes were between 0.05 and 82.70 ng/m(3). © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The impact of atmospheric mineral aerosol deposition on the albedo of snow and sea ice: are snow and sea ice optical properties more important than mineral aerosol optical properties?

    OpenAIRE

    M. L. Lamare; J. Lee-Taylor; M. D. King

    2015-01-01

    Knowledge of the albedo of polar regions is crucial for understanding a range of climatic processes that have an impact on a global scale. Light absorbing impurities in atmospheric aerosols deposited on snow and sea ice by aeolian transport absorb solar radiation, reducing albedo. Here, the effects of five mineral aerosol deposits reducing the albedo of polar snow and sea ice are considered. Calculations employing a coupled atmospheric and snow/sea ice radiative-transfer model (TUV-snow) show...

  1. Characterization of atmospheric aerosols in Ile-de-France: Local contribution and Long range transport

    International Nuclear Information System (INIS)

    Cuesta, J.E.

    2006-06-01

    Atmospheric aerosols interact directly in a great number of processes related to climate change and public health, modifying the energy budget and partly determining the quality of the air we breathe. In my PhD, I chose to study the perturbation, if not the aggravation, of the living conditions in Ile-de-France associated to aerosol transport episodes in the free troposphere. This situation is rather frequent and still badly known. To achieve my study, I developed the observation platform 'TReSS' Transportable Remote Sensing Station, whose instruments were developed at the Laboratoire de Meteorology Dynamique by the LiMAG team. 'TReSS' consists of a new high-performance 'Mini-Lidar' and of two standard radiometers: a sun photometer and a thermal infrared radiometer. The principle of my experimental approach is the synergy of the vertical Lidar profiles and the particle size distributions over the column, obtained by the 'Almucantar' inversion of sun photometer data. The new 'Lidar and Almucantar' method characterizes the vertical distribution by layer and the optical micro-physical properties of the local and transported aerosols. Firstly, I undertook the characterization of the Paris aerosol, mainly of anthropogenic origin. Their radiative properties were analyzed in the daily and yearly scales. Then, I conducted a statistical multi-year study of transport episodes and a two-week study case, representative of a succession of desert dust intrusion in Ile-de-France. My PhD work concludes by a study on the impact of biomass burning aerosols during the heat wave on August 2003. I study the impact of the transported aerosols into the local radiative budget and the possible consequences on the diurnal cycle of the atmospheric boundary layer. (author)

  2. Atmospheric washout of radioactive aerosol for different types of precipitation events

    International Nuclear Information System (INIS)

    Bernauer, Felix

    2015-01-01

    Ionizing radiation is widely used in many applications such as medical diagnostics and radiotherapy, where the beneficial aspect of radiation exposure is obvious. However, the exposure of human beings to ionizing radiation may also have some negative effects on human health. After the Fukushima Dai-Ichi nuclear power plant accident measured deposition patterns did not match to patterns predicted by atmospheric transport models used in decision support systems. It was suggested that one reason for these discrepancies might be that these models do not differentiate between deposition by rain and snow. Up to now much effort has been spent on the theoretical and experimental investigation of the washout of atmospheric aerosol particles by rain. In contrast, only limited knowledge is available on the washout efficiency of snow, due to the complexity of the process. Therefore, the aim of the presented work was to analyze wet deposition of aerosol particles and particle bound radionuclides in different types of precipitation events. The thesis focused on below-cloud scavenging of aerosol particles in a size range from 10 nm to 510 nm in solid phase precipitation events. It is based on measurements of natural precipitation and natural aerosol particle concentration that were performed in the free atmosphere, at the Environmental Research Station Schneefernerhaus. For this purpose, a method was developed to characterize and classify precipitation events, which goes beyond the common differentiation between liquid, mixed and solid phase precipitation. The method included use of a 2D-Video Disdrometer (2DVD), that was adapted for the detection of mixed and solid phase hydrometeors (e.g. snowflakes). A new matching algorithm, that was developed for this thesis, allowed detection of solid, mixed and liquid phase hydrometeors with a maximum dimension larger than 0.5 mm. On the basis of shape and velocity descriptors, a classification algorithm that differentiates between three

  3. Atmospheric washout of radioactive aerosol for different types of precipitation events

    Energy Technology Data Exchange (ETDEWEB)

    Bernauer, Felix

    2015-12-15

    Ionizing radiation is widely used in many applications such as medical diagnostics and radiotherapy, where the beneficial aspect of radiation exposure is obvious. However, the exposure of human beings to ionizing radiation may also have some negative effects on human health. After the Fukushima Dai-Ichi nuclear power plant accident measured deposition patterns did not match to patterns predicted by atmospheric transport models used in decision support systems. It was suggested that one reason for these discrepancies might be that these models do not differentiate between deposition by rain and snow. Up to now much effort has been spent on the theoretical and experimental investigation of the washout of atmospheric aerosol particles by rain. In contrast, only limited knowledge is available on the washout efficiency of snow, due to the complexity of the process. Therefore, the aim of the presented work was to analyze wet deposition of aerosol particles and particle bound radionuclides in different types of precipitation events. The thesis focused on below-cloud scavenging of aerosol particles in a size range from 10 nm to 510 nm in solid phase precipitation events. It is based on measurements of natural precipitation and natural aerosol particle concentration that were performed in the free atmosphere, at the Environmental Research Station Schneefernerhaus. For this purpose, a method was developed to characterize and classify precipitation events, which goes beyond the common differentiation between liquid, mixed and solid phase precipitation. The method included use of a 2D-Video Disdrometer (2DVD), that was adapted for the detection of mixed and solid phase hydrometeors (e.g. snowflakes). A new matching algorithm, that was developed for this thesis, allowed detection of solid, mixed and liquid phase hydrometeors with a maximum dimension larger than 0.5 mm. On the basis of shape and velocity descriptors, a classification algorithm that differentiates between three

  4. Comprehensive characterisation of atmospheric aerosols in Budapest, Hungary: physicochemical properties of inorganic species

    Science.gov (United States)

    Salma, Imre; Maenhaut, Willy; Zemplén-Papp, Éva; Záray, Gyula

    As part of an air pollution project in Budapest, aerosol samples were collected by stacked filter units and cascade impactors at an urban background site, two downtown sites, and within a road tunnel in field campaigns conducted in 1996, 1998 and 1999. Some criteria pollutants were also measured at one of the downtown sites. The aerosol samples were analysed by one or more of the following methods: instrumental neutron activation analysis, particle-induced X-ray emission analysis, a light reflection technique, gravimetry, thermal profiling carbon analysis and capillary electrophoresis. The quantities measured or derived include atmospheric concentrations of elements (from Na to U), of particulate matter, of black and elemental carbon, and total carbonaceous fraction, of some ionic species (e.g., nitrate and sulphate) in the fine ( EAD) or in both coarse (10- 2 μm EAD) and fine size fractions, atmospheric concentrations of NO, NO 2, SO 2, CO and total suspended particulate matter, and meteorological parameters. The analytical results were used for characterisation of the concentration levels, elemental composition, time trends, enrichment of and relationships among the aerosol species in coarse and fine size fractions, for studying their fine-to-coarse concentration ratios, spatial and temporal variability, for determining detailed elemental mass size distributions, and for examining the extent of chemical mass closure.

  5. Characterization of atmospheric aerosol near motor way: Bassa Valle Susa (Italy)

    International Nuclear Information System (INIS)

    Berico, M.; Castellani, C.M.; Formignani, M.

    1995-10-01

    Results related to the experimental measurement campaign to characterize atmospheric aerosol carried out near Avigliana (Turin) from 18 to 22 October 1994 are presented in this paper. In the frame of the project aimed at evaluating the impact of the mountain motor way A-32 Rivoli-Bardonecchia-Frejus on the Susa Valley environment and on man the present measurement campaign is the second, and last, one envisaged in the project. The sampling place is in the initial part of the Susa Valley while previous measurements were carried out in the high part of it. Mass mean concentrations result greater in the low than in the high part of the valley approximately by a factor of 3. It is not possible to prove a difference between the 3 sampling positions transversely placed from 20 to 80 m. in comparison with the motor way axis. Whereas mass mean concentrations dropped substantially due to atmospheric precipitations during the last two measurement day. Aerosol granulometry in mass for the accumulation and the coarse mode do not differ from that evaluated in the high part of the valley and fitting granulometric parameters are consistent with those previously evalated

  6. Tropospheric Aerosols

    Science.gov (United States)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  7. Land-atmosphere-aerosol coupling in North China during 2000­-2013

    Science.gov (United States)

    Wei, J.; Jin, Q.; Yang, Z. L.; Zhou, L.

    2017-12-01

    North China is one of the most densely populated regions in the world. To its west, north, and northwest, the world's largest afforestation project has been going on for decades. At the same time, North China has been suffering from air pollution because of its large fossil fuel consumption. Here we show that the changes in land cover and aerosol concentration are coupled with the variations of land surface temperature, cloud cover, and surface solar radiation during the summer 2000-2013. Model experiments show that the interannual variation of aerosol concentration in North China is mainly a result of the varying atmospheric circulation. The increasing vegetation cover due to afforestation has enhanced surface evapotranspiration (ET) and cooled the local surface, and precipitation is observed to be increasing with ET. The model with prescribed increasing vegetation cover can simulate the increasing ET but cannot reproduce the increasing precipitation. Although this may be caused by model biases, the lack of aerosol processes in the model could also be a potential cause.

  8. Glyoxal contribution to aerosols over Los Angeles

    Science.gov (United States)

    Balcerak, Ernie

    2012-01-01

    Laboratory and field studies have indicated that glyoxal (chemical formula OCHCHO), an atmospheric oxidation product of isoprene and aromatic compounds, may contribute to secondary organic aerosols in the atmosphere, which can block sunlight and affect atmospheric chemistry. Some aerosols are primary aerosols, emitted directly into the atmosphere, while others are secondary, formed through chemical reactions in the atmosphere. Washenfelder et al. describe in situ glyoxal measurements from Pasadena, Calif., near Los Angeles, made during summer 2010. They used three different methods to calculate the contribution of glyoxal to secondary atmospheric aerosol and found that it is responsible for 0-0.2 microgram per cubic meter, or 0-4%, of the secondary organic aerosol mass. The researchers also compared their results to those of a previous study that calculated the glyoxal contribution to aerosol for Mexico City. Mexico City had higher levels of organic aerosol mass from glyoxal. They suggest that the lower contribution of glyoxal to aerosol concentrations for Los Angeles may be due to differences in the composition or water content of the aerosols above the two cities. (Journal of Geophysical Research-Atmospheres, doi:10.1029/2011JD016314, 2011)

  9. A study on characteristics and sources of winter time atmospheric aerosols in Kyoto and Seoul using PIXE and supplementary analysis

    International Nuclear Information System (INIS)

    Ma, C.-J.; Kasahara, M.; Tohno, S.; Yeo, H.-G.

    1999-01-01

    Atmospheric aerosols were collected using a two stages filter sampler to classify into the fine and coarse fraction in Kyoto and Seoul in winter season. Elemental concentrations of aerosols were analyzed by PIXE and EAS as well as ion concentrations by IC. Analyzed data were used to source of aerosol particles. (author)

  10. Heterogeneous conversion of NO2 on secondary organic aerosol surfaces: A possible source of nitrous acid (HONO in the atmosphere?

    Directory of Open Access Journals (Sweden)

    R. Bröske

    2003-01-01

    Full Text Available The heterogeneous conversion of NO2 on different secondary organic aerosols (SOA was investigated with the focus on a possible formation of nitrous acid (HONO. In one set of experiments different organic aerosols were produced in the reactions of O3 with alpha-pinene, limonene or catechol and OH radicals with toluene or limonene, respectively. The aerosols were sampled on filters and exposed to humidified NO2  mixtures under atmospheric conditions. The estimated upper limits for the uptake coefficients of NO2  and the reactive uptake coefficients NO2  -> HONO are in the range of 10-6 and 10-7, respectively. The integrated HONO formation for 1 h reaction time was 13 cm-2 geometrical surface and 17 g-1 particle mass. In a second set of experiments the conversion of NO2 into HONO in the presence of organic particles was carried out in an aerosol flow tube under atmospheric conditions. In this case the aerosols were produced in the reaction of O3 with beta-pinene, limonene or catechol, respectively. The upper limits for the reactive uptake coefficients NO2 -> HONO were in the range of 7 x 10-7 - 9 x 10-6. The results from the present study show that heterogeneous formation of nitrous acid on secondary organic aerosols (SOA is unimportant for the atmosphere.

  11. Atmospheric and marine controls on aerosol iron solubility in seawater

    OpenAIRE

    Baker, A.R.; Croot, Peter

    2010-01-01

    The fraction of atmospherically deposited iron which dissolves in seawater, or becomes available to phytoplankton for growth, is a key determinant of primary productivity in many open ocean regions. As such this parameter plays an important part in the global oceanic cycles of iron and carbon, and yet the factors that control iron dissolution from aerosol are very poorly understood. In this manuscript we seek to synthesise the available knowledge of these factors, which operate in the atmos...

  12. Comprehensive Airborne in Situ Characterization of Atmospheric Aerosols: From Angular Light Scattering to Particle Microphysics

    Science.gov (United States)

    Espinosa, W. Reed

    A comprehensive understanding of atmospheric aerosols is necessary both to understand Earth's climate as well as produce skillful air quality forecasts. In order to advance our understanding of aerosols, the Laboratory for Aerosols, Clouds and Optics (LACO) has recently developed the Imaging Polar Nephelometer instrument concept for the in situ measurement of aerosol scattering properties. Imaging Nephelometers provide measurements of absolute phase function and polarized phase function over a wide angular range, typically 3 degrees to 177 degrees, with an angular resolution smaller than one degree. The first of these instruments, the Polarized Imaging Nephelometer (PI-Neph), has taken part in five airborne field experiments and is the only modern aerosol polar nephelometer to have flown aboard an aircraft. A method for the retrieval of aerosol optical and microphysical properties from I-Neph measurements is presented and the results are compared with existing measurement techniques. The resulting retrieved particle size distributions agree to within experimental error with measurements made by commercial optical particle counters. Additionally, the retrieved real part of the refractive index is generally found to be within the predicted error of 0.02 from the expected values for three species of humidified salt particles, whose refractive index is well established. A synopsis is then presented of aerosol scattering measurements made by the PI-Neph during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and the Deep Convection Clouds and Chemistry (DC3) field campaigns. To better summarize these extensive datasets a novel aerosol classification scheme is developed, making use of ancillary data that includes gas tracers, chemical composition, aerodynamic particle size and geographic location, all independent of PI-Neph measurements. Principal component analysis (PCA) is then used to reduce the

  13. Atmospheric processing of combustion aerosols as a source of soluble iron to the open ocean

    OpenAIRE

    伊藤, 彰記; ITO, Akinori

    2015-01-01

    The majority of bioavailable iron (Fe) from the atmosphere is delivered from arid and semiarid regions to the oceans because the global deposition of iron from combustion sources is small compared with that from mineral dust. Atmospheric processing of mineral aerosols by inorganic and organic acids from anthropogenic and natural sources has been shown to increase the iron solubility of soils (initially < 0.5%) up to about 10%. On the other hand, atmospheric observations have shown that iron i...

  14. Evaluation of applicability of high-resolution multiangle imaging photo-polarimetric observations for aerosol atmospheric correction

    Science.gov (United States)

    Kalashnikova, Olga; Garay, Michael; Xu, Feng; Diner, David; Seidel, Felix

    2016-07-01

    Multiangle spectro-polarimetric measurements have been advocated as an additional tool for better understanding and quantifying the aerosol properties needed for atmospheric correction for ocean color retrievals. The central concern of this work is the assessment of the effects of absorbing aerosol properties on remote sensing reflectance measurement uncertainty caused by neglecting UV-enhanced absorption of carbonaceous particles and by not accounting for dust nonsphericity. In addition, we evaluate the polarimetric sensitivity of absorbing aerosol properties in light of measurement uncertainties achievable for the next generation of multi-angle polarimetric imaging instruments, and demonstrate advantages and disadvantages of wavelength selection in the UV/VNIR range. In this work a vector Markov Chain radiative transfer code including bio-optical models was used to quantitatively evaluate in water leaving radiances between atmospheres containing realistic UV-enhanced and non-spherical aerosols and the SEADAS carbonaceous and dust-like aerosol models. The phase matrices for the spherical smoke particles were calculated using a standard Mie code, while those for non-spherical dust particles were calculated using the numerical approach developed for modeling dust for the AERONET network of ground-based sunphotometers. As a next step, we have developed a retrieval code that employs a coupled Markov Chain (MC) and adding/doubling radiative transfer method for joint retrieval of aerosol properties and water leaving radiance from Airborne Multiangle SpectroPolarimetric Imager-1 (AirMSPI-1) polarimetric observations. The AirMSPI-1 instrument has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. AirMSPI typically acquires observations of a target area at 9 view angles between ±67° at 10 m resolution. AirMSPI spectral channels are centered at 355, 380, 445, 470, 555, 660, and 865 nm, with 470, 660, and 865 reporting linear polarization. We

  15. UAS as a Support for Atmospheric Aerosols Research: Case Study

    Science.gov (United States)

    Chiliński, Michał T.; Markowicz, Krzysztof M.; Kubicki, Marek

    2018-01-01

    Small drones (multi-copters) have the potential to deliver valuable data for atmospheric research. They are especially useful for collecting vertical profiles of optical and microphysical properties of atmospheric aerosols. Miniaturization of sensors, such as aethalometers and particle counters, allows for collecting profiles of black carbon concentration, absorption coefficient, and particle size distribution. Vertical variability of single-scattering properties has a significant impact on radiative transfer and Earth's climate, but the base of global measurements is very limited. This results in high uncertainties of climate/radiation models. Vertical range of modern multi-copters is up to 2000 m, which is usually enough to study aerosols up to the top of planetary boundary layer on middle latitudes. In this study, we present the benefits coming from usage of small drones in atmospheric research. The experiment, described as a case study, was conducted at two stations (Swider and Warsaw) in Poland, from October 2014 to March 2015. For over 6 months, photoacoustic extinctiometers collected data at both stations. This enabled us to compare the stations and to establish ground reference of black carbon concentrations for vertical profiles collected by ceilometer and drone. At Swider station, we used Vaisala CL-31 ceilometer. It delivered vertical profiles of range corrected signal, which were analysed together with profiles acquired by micro-aethalometer AE-51 and Vaisala RS92-SGP radiosonde carried by a hexacopter drone. Near to the surface, black carbon gradient of ≈ 400 (\\upmu g/m^3 )/100 m was detected, which was below the ceilometer minimal altitude of detection. This confirmed the usefulness of drones and potential of their support for remote sensing techniques.

  16. Atmospheric aerosols at the Pierre Auger Observatory: characterization and effect on the energy estimation for ultra-high energy cosmic rays

    International Nuclear Information System (INIS)

    Louedec, K.

    2011-01-01

    The Pierre Auger Observatory, located in the Province of Mendoza in Argentina, is making good progress in understanding the nature and origin of the ultra-high energy cosmic rays. Using a hybrid detection technique, based on surface detectors and fluorescence telescopes, it provides large statistics, good mass and energy resolution, and solid control of systematic uncertainties. One of the main challenges for the fluorescence detection technique is the understanding of the atmosphere, used as a giant calorimeter. To minimize as much as possible the systematic uncertainties in fluorescence measurements, the Auger Collaboration has developed an extensive atmospheric monitoring program. The purpose of this work is to improve our knowledge of the atmospheric aerosols, and their effect on fluorescence light propagation. Using a modelling program computing air mass displacements, it has been shown that nights with low aerosol concentrations have air masses coming much more directly from the Pacific Ocean. For the first time, the effect of the aerosol size on the light propagation has been estimated. Indeed, according to the Ramsauer approach, large aerosols have the largest effect on the light scattering. Thus, the dependence on the aerosol size has been added to the light scattering parameterizations used by the Auger Collaboration. A systematic overestimation of the energy and of the maximum air shower development X max is observed. Finally, a method based on the very inclined laser shots fired by the Auger central laser has been developed to estimate the aerosol size. Large aerosol sizes ever estimated at the Pierre Auger Observatory can now be probed. First preliminary results using laser-shot data collected in the past have identified a population of large aerosols. (author)

  17. Radiative response of biomass-burning aerosols over an urban atmosphere in northern peninsular Southeast Asia.

    Science.gov (United States)

    Pani, Shantanu Kumar; Lin, Neng-Huei; Chantara, Somporn; Wang, Sheng-Hsiang; Khamkaew, Chanakarn; Prapamontol, Tippawan; Janjai, Serm

    2018-08-15

    A large concentration of finer particulate matter (PM 2.5 ), the primary air-quality concern in northern peninsular Southeast Asia (PSEA), is believed to be closely related to large amounts of biomass burning (BB) particularly in the dry season. In order to quantitatively estimate the contributions of BB to aerosol radiative effects, we thoroughly investigated the physical, chemical, and optical properties of BB aerosols through the integration of ground-based measurements, satellite retrievals, and modelling tools during the Seven South East Asian Studies/Biomass-burning Aerosols & Stratocumulus Environment: Lifecycles & Interactions Experiment (7-SEAS/BASELInE) campaign in 2014. Clusters were made on the basis of measured BB tracers (Levoglucosan, nss-K + , and NO 3 - ) to classify the degree of influence from BB over an urban atmosphere, viz., Chiang Mai (18.795°N, 98.957°E, 354m.s.l.), Thailand in northern PSEA. Cluster-wise contributions of BB to PM 2.5 , organic carbon, and elemental carbon were found to be 54-79%, 42-79%, and 39-77%, respectively. Moreover, the cluster-wise aerosol optical index (aerosol optical depth at 500nm≈0.98-2.45), absorption (single scattering albedo ≈0.87-0.85; absorption aerosol optical depth ≈0.15-0.38 at 440nm; absorption Ångström exponent ≈1.43-1.57), and radiative impacts (atmospheric heating rate ≈1.4-3.6Kd -1 ) displayed consistency with the degree of BB. PM 2.5 during Extreme BB (EBB) was ≈4 times higher than during Low BB (LBB), whereas this factor was ≈2.5 for the magnitude of radiative effects. Severe haze (visibility≈4km) due to substantial BB loadings (BB to PM 2.5 ≈79%) with favorable meteorology can significantly impact the local-to-regional air quality and the, daily life of local inhabitants as well as become a respiratory health threat. Additionally, such enhancements in atmospheric heating could potentially influence the regional hydrological cycle and crop productivity over Chiang Mai in

  18. Atmospheric aerosol characterization by means of impactor samples analyzed by PIXE

    International Nuclear Information System (INIS)

    Orsini, C.M.Q.; Boueres, L.C.S.

    1979-01-01

    Continuous size-distribution functions are generally considered as the dominant physical properties of the atmospheric aerosol (AA). The complexity of this physico-chemical system is manifest in the large number of investigative methods, the results of which are often difficult to compare. The cascade impactor and PIXE method, among these supplies th mass concentrations m sub(K,Z) of elements, with Z>13, detected in the K-stage of the impactor. In this paper we examine the AA characteristics which can be directly inferred from the data set (m sub(K,Z)) and elaborate a scheme that, under approximate conditions, allows for the interrelation of (m sub(K,Z)) and the size-distributions more commonly used in the mathematical treatment of aerosols, e.g., n(D) and n sub(ν) (D) of Friedlander. (Author) [pt

  19. Correlations between atmospheric aerosol trace element concentrations and red tide at Port Aransas, Texas, on the Gulf of Mexico

    International Nuclear Information System (INIS)

    Biegalski, S.R.; Villareal, T.A.

    2005-01-01

    Neutron activation analysis (NAA) was employed as an analytical technique to measure atmospheric aerosol concentrations of trace metals in Port Aransas, TX on the Gulf of Mexico. The sources of atmospheric aerosols and the seasonal variation of the sources are explored. High atmospheric iron concentrations are then shown to have a possible correlation to the occurrences of red tide in this region. The data shows that this correlation is plausible, but due to the many factors that affect red tide growth a definitive conclusion may not be reached. The period of study for these measurements was September 12, 2000 to January 4, 2002. (author)

  20. Study of atmospheric aerosols by IBA techniques: The LABEC experience

    Science.gov (United States)

    Lucarelli, F.; Calzolai, G.; Chiari, M.; Nava, S.; Carraresi, L.

    2018-02-01

    At the 3 MV Tandetron accelerator of the LABEC laboratory of INFN (Florence, Italy) an external beam facility is fully dedicated to PIXE-PIGE measurements of the elemental composition of atmospheric aerosols. All the elements with Z > 10 are simultaneously detected by PIXE typically in one minute. This setup allows us an easy automatic positioning, changing and scanning of samples collected by different kinds of devices: long series of daily PM (Particulate Matter) samples can be analysed in short times, as well as size-segregated and high time-resolution aerosol samples. Thanks to the capability of detecting all the crustal elements, PIXE-PIGE analyses are unrivalled in the study of mineral dust: consequently, they are very effective in the study of natural aerosols, like, for example, Saharan dust intrusions. Among the detectable elements there are also important markers of anthropogenic sources, which allow effective source apportionment studies in polluted urban environments using a multivariate method like Positive Matrix Factorization (PMF). Examples regarding recent monitoring campaigns, performed in urban and remote areas, both daily and with high time resolution (hourly samples), as well as with size selection, are presented. The importance of the combined use of the Particle Induced Gamma Ray emission technique (PIGE) and of other complementary (non-nuclear) techniques is highlighted.

  1. Formation of high-molecular-weight compounds via the heterogeneous reactions of gaseous C8-C10 n-aldehydes in the presence of atmospheric aerosol components

    Science.gov (United States)

    Han, Yuemei; Kawamura, Kimitaka; Chen, Qingcai; Mochida, Michihiro

    2016-02-01

    A laboratory study on the heterogeneous reactions of straight-chain aldehydes was performed by exposing n-octanal, nonanal, and decanal vapors to ambient aerosol particles. The aerosol and blank filters were extracted using methanol. The extracts were nebulized and the resulting compositions were examined using a high-resolution time-of-flight aerosol mass spectrometer. The mass spectral analysis showed that the exposures of the aldehydes to aerosol samples increased the peak intensities in the high mass range. The peaks in the mass spectra of the aerosol samples after exposure to different aldehydes were characterized by a homologous series of peak shifts due to the addition of multiple CH2 units. This result is explained by the formation of high-molecular-weight (HMW) compounds that contain single or multiple aldehyde moieties. The HMW fragment peaks for the blank filters exposed to n-aldehydes were relatively weak, indicating an important contribution from the ambient aerosol components to the formation of the HMW compounds. Among the factors affecting the overall interaction of aldehydes with atmospheric aerosol components, gas phase diffusion possibly limited the reactions under the studied conditions; therefore, their occurrence to a similar degree in the atmosphere is not ruled out, at least for the reactions involving n-nonanal and decanal. The major formation pathways for the observed HMW products may be the self-reactions of n-aldehydes mediated by atmospheric aerosol components and the reactions of n-aldehydes with organic aerosol components. The observed formation of HMW compounds encourages further investigations into their effects on the aerosol properties as well as the organic aerosol mass in the atmosphere.

  2. NOAA's National Air Quality Prediction and Development of Aerosol and Atmospheric Composition Prediction Components for NGGPS

    Science.gov (United States)

    Stajner, I.; McQueen, J.; Lee, P.; Stein, A. F.; Wilczak, J. M.; Upadhayay, S.; daSilva, A.; Lu, C. H.; Grell, G. A.; Pierce, R. B.

    2017-12-01

    NOAA's operational air quality predictions of ozone, fine particulate matter (PM2.5) and wildfire smoke over the United States and airborne dust over the contiguous 48 states are distributed at http://airquality.weather.gov. The National Air Quality Forecast Capability (NAQFC) providing these predictions was updated in June 2017. Ozone and PM2.5 predictions are now produced using the system linking the Community Multiscale Air Quality model (CMAQ) version 5.0.2 with meteorological inputs from the North American Mesoscale Forecast System (NAM) version 4. Predictions of PM2.5 include intermittent dust emissions and wildfire emissions from an updated version of BlueSky system. For the latter, the CMAQ system is initialized by rerunning it over the previous 24 hours to include wildfire emissions at the time when they were observed from the satellites. Post processing to reduce the bias in PM2.5 prediction was updated using the Kalman filter analog (KFAN) technique. Dust related aerosol species at the CMAQ domain lateral boundaries now come from the NEMS Global Aerosol Component (NGAC) v2 predictions. Further development of NAQFC includes testing of CMAQ predictions to 72 hours, Canadian fire emissions data from Environment and Climate Change Canada (ECCC) and the KFAN technique to reduce bias in ozone predictions. NOAA is developing the Next Generation Global Predictions System (NGGPS) with an aerosol and gaseous atmospheric composition component to improve and integrate aerosol and ozone predictions and evaluate their impacts on physics, data assimilation and weather prediction. Efforts are underway to improve cloud microphysics, investigate aerosol effects and include representations of atmospheric composition of varying complexity into NGGPS: from the operational ozone parameterization, GOCART aerosols, with simplified ozone chemistry, to CMAQ chemistry with aerosol modules. We will present progress on community building, planning and development of NGGPS.

  3. Ubiquitous influence of wildfire emissions and secondary organic aerosol on summertime atmospheric aerosol in the forested Great Lakes region

    Science.gov (United States)

    Gunsch, Matthew J.; May, Nathaniel W.; Wen, Miao; Bottenus, Courtney L. H.; Gardner, Daniel J.; VanReken, Timothy M.; Bertman, Steven B.; Hopke, Philip K.; Ault, Andrew P.; Pratt, Kerri A.

    2018-03-01

    Long-range aerosol transport affects locations hundreds of kilometers from the point of emission, leading to distant particle sources influencing rural environments that have few major local sources. Source apportionment was conducted using real-time aerosol chemistry measurements made in July 2014 at the forested University of Michigan Biological Station near Pellston, Michigan, a site representative of the remote forested Great Lakes region. Size-resolved chemical composition of individual 0.5-2.0 µm particles was measured using an aerosol time-of-flight mass spectrometer (ATOFMS), and non-refractory aerosol mass less than 1 µm (PM1) was measured with a high-resolution aerosol mass spectrometer (HR-AMS). The field site was influenced by air masses transporting Canadian wildfire emissions and urban pollution from Milwaukee and Chicago. During wildfire-influenced periods, 0.5-2.0 µm particles were primarily aged biomass burning particles (88 % by number). These particles were heavily coated with secondary organic aerosol (SOA) formed during transport, with organics (average O/C ratio of 0.8) contributing 89 % of the PM1 mass. During urban-influenced periods, organic carbon, elemental carbon-organic carbon, and aged biomass burning particles were identified, with inorganic secondary species (ammonium, sulfate, and nitrate) contributing 41 % of the PM1 mass, indicative of atmospheric processing. With current models underpredicting organic carbon in this region and biomass burning being the largest combustion contributor to SOA by mass, these results highlight the importance for regional chemical transport models to accurately predict the impact of long-range transported particles on air quality in the upper Midwest, United States, particularly considering increasing intensity and frequency of Canadian wildfires.

  4. Radioactive aerosol detection station for near real-time atmospheric monitoring

    International Nuclear Information System (INIS)

    Mason, L.R.; Bohner, John D.

    1997-01-01

    A radionuclide aerosol detection station has been developed to measure radioactivity in the environment. The objective is to monitor the atmosphere for anthropogenic radioactivity that could be indicative of nuclear weapons tests to verify the Comprehensive Nuclear Test Ban Treaty. Eighty stations will form the backbone of the International Monitoring System in which stations are linked to a central analysis facility called the International Data Centre. Data are transmitted to this centre in near real-time to facilitate rapid detection. Principal process of the field measurement are collection, separation, and assay. Collection of airborne radioactivity is achieved through high-volume air sampling. Aerosols separation is accomplished by high-efficiency particulate filtration. Radionuclides assay is achieved by in-situ high resolution gamma spectrometry. These modules are integrated into a unit that provides power, control, and communication support subsystems. Station operation is semi-automatic requiring only minimal human interaction. (author). 6 refs., 3 figs., 3 tabs

  5. Towards PACE Atmospheric Correction, Aerosol and Cloud Products: Making Use of Expanded Spectral, Angular and Polarimetric Information.

    Science.gov (United States)

    Remer, L. A.; Boss, E.; Ahmad, Z.; Cairns, B.; Chowdhary, J.; Coddington, O.; Davis, A. B.; Dierssen, H. M.; Diner, D. J.; Franz, B. A.; Frouin, R.; Gao, B. C.; Garay, M. J.; Heidinger, A.; Ibrahim, A.; Kalashnikova, O. V.; Knobelspiesse, K. D.; Levy, R. C.; Omar, A. H.; Meyer, K.; Platnick, S. E.; Seidel, F. C.; van Diedenhoven, B.; Werdell, J.; Xu, F.; Zhai, P.; Zhang, Z.

    2017-12-01

    NASA's Science Team for the Plankton, Aerosol, Clouds, ocean Ecosystem (PACE) mission is concluding three years of study exploring the science potential of expanded spectral, angular and polarization capability for space-based retrievals of water leaving radiance, aerosols and clouds. The work anticipates future development of retrievals to be applied to the PACE Ocean Color Instrument (OCI) and/or possibly a PACE Multi-Angle Polarimeter (MAP). In this presentation we will report on the Science Team's accomplishments associated with the atmosphere (significant efforts are also directed by the ST towards the ocean). Included in the presentation will be sensitivity studies that explore new OCI capabilities for aerosol and cloud layer height, aerosol absorption characterization, cloud property retrievals, and how we intend to move from heritage atmospheric correction algorithms to make use of and adjust to OCI's hyperspectral and UV wavelengths. We will then address how capabilities will improve with the PACE MAP, how these capabilities from both OCI and MAP correspond to specific societal benefits from the PACE mission, and what is still needed to close the gaps in our understanding before the PACE mission can realize its full potential.

  6. Discharge current measurements on Venera 13 & 14 - Evidence for charged aerosols in the Venus lower atmosphere?

    Science.gov (United States)

    Lorenz, Ralph D.

    2018-06-01

    Measurements of discharge currents on the Venera 13 and 14 landers during their descent in the lowest 35 km of the Venus atmosphere are interpreted as driven either by an ambient electric field, or by deposition of charge from aerosols. The latter hypothesis is favored (`triboelectric charging' in aeronautical parlance), and would entail an aerosol opacity and charge density somewhat higher than that observed in Saharan dust transported over long distances on Earth.

  7. The impact of atmospheric mineral aerosol deposition on the albedo of snow & sea ice: are snow and sea ice optical properties more important than mineral aerosol optical properties?

    Directory of Open Access Journals (Sweden)

    M. L. Lamare

    2016-01-01

    Full Text Available Knowledge of the albedo of polar regions is crucial for understanding a range of climatic processes that have an impact on a global scale. Light-absorbing impurities in atmospheric aerosols deposited on snow and sea ice by aeolian transport absorb solar radiation, reducing albedo. Here, the effects of five mineral aerosol deposits reducing the albedo of polar snow and sea ice are considered. Calculations employing a coupled atmospheric and snow/sea ice radiative-transfer model (TUV-snow show that the effects of mineral aerosol deposits are strongly dependent on the snow or sea ice type rather than the differences between the aerosol optical characteristics. The change in albedo between five different mineral aerosol deposits with refractive indices varying by a factor of 2 reaches a maximum of 0.0788, whereas the difference between cold polar snow and melting sea ice is 0.8893 for the same mineral loading. Surprisingly, the thickness of a surface layer of snow or sea ice loaded with the same mass ratio of mineral dust has little effect on albedo. On the contrary, the surface albedo of two snowpacks of equal depth, containing the same mineral aerosol mass ratio, is similar, whether the loading is uniformly distributed or concentrated in multiple layers, regardless of their position or spacing. The impact of mineral aerosol deposits is much larger on melting sea ice than on other types of snow and sea ice. Therefore, the higher input of shortwave radiation during the summer melt cycle associated with melting sea ice accelerates the melt process.

  8. Assessment of capabilities of multiangle imaging photo-polarimetry for atmospheric correction in presence of absorbing aerosols

    Science.gov (United States)

    Kalashnikova, O. V.; Garay, M. J.; Xu, F.; Seidel, F. C.; Diner, D. J.

    2015-12-01

    Satellite remote sensing of ocean color is a critical tool for assessing the productivity of marine ecosystems and monitoring changes resulting from climatic or environmental influences. Yet water-leaving radiance comprises less than 10% of the signal measured from space, making correction for absorption and scattering by the intervening atmosphere imperative. Traditional ocean color retrieval algorithms utilize a standard set of aerosol models and the assumption of negligible water-leaving radiance in the near-infrared. Modern improvements have been developed to handle absorbing aerosols such as urban particulates in coastal areas and transported desert dust over the open ocean, where ocean fertilization can impact biological productivity at the base of the marine food chain. Even so, imperfect knowledge of the absorbing aerosol optical properties or their height distribution results in well-documented sources of error. In the UV, the problem of UV-enhanced absorption and nonsphericity of certain aerosol types are amplified due to the increased Rayleigh and aerosol optical depth, especially at off-nadir view angles. Multi-angle spectro-polarimetric measurements have been advocated as an additional tool to better understand and retrieve the aerosol properties needed for atmospheric correction for ocean color retrievals. The central concern of the work to be described is the assessment of the effects of absorbing aerosol properties on water leaving radiance measurement uncertainty by neglecting UV-enhanced absorption of carbonaceous particles and by not accounting for dust nonsphericity. In addition, we evaluate the polarimetric sensitivity of absorbing aerosol properties in light of measurement uncertainties achievable for the next generation of multi-angle polarimetric imaging instruments, and demonstrate advantages and disadvantages of wavelength selection in the UV/VNIR range. The phase matrices for the spherical smoke particles were calculated using a standard

  9. Characteristics and composition of atmospheric aerosols in Phimai, central Thailand during BASE-ASIA

    Science.gov (United States)

    Li, Can; Tsay, Si-Chee; Hsu, N. Christina; Kim, Jin Young; Howell, Steven G.; Huebert, Barry J.; Ji, Qiang; Jeong, Myeong-Jae; Wang, Sheng-Hsiang; Hansell, Richard A.; Bell, Shaun W.

    2013-10-01

    Comprehensive measurements of atmospheric aerosols were made in Phimai, central Thailand (15.183°N, 102.565°E, elevation: 206 m) during the BASE-ASIA field experiment from late February to early May in 2006. The observed aerosol loading was sizable for this rural site (mean aerosol scattering: 108 ± 64 Mm-1; absorption: 15 ± 8 Mm-1; PM10 concentration: 33 ± 17 μg m-3), and dominated by submicron particles. Major aerosol compounds included carbonaceous (OC: 9.5 ± 3.6 μg m-3; EC: 2.0 ± 2.3 μg m-3) and secondary species (SO42-: 6.4 ± 3.7 μg m-3, NH4+: 2.2 ± 1.3 μg m-3). While the site was seldom under the direct influence of large forest fires to its north, agricultural fires were ubiquitous during the experiment, as suggested by the substantial concentration of K+ (0.56 ± 0.33 μg m-3). Besides biomass burning, aerosols in Phimai during the experiment were also strongly influenced by industrial and vehicular emissions from the Bangkok metropolitan region and long-range transport from southern China. High humidity played an important role in determining the aerosol composition and properties in the region. Sulfate was primarily formed via aqueous phase reactions, and hygroscopic growth could enhance the aerosol light scattering by up to 60%, at the typical morning RH level of 85%. The aerosol single scattering albedo demonstrated distinct diurnal variation, ranging from 0.86 ± 0.04 in the evening to 0.92 ± 0.02 in the morning. This experiment marks the first time such comprehensive characterization of aerosols was made for rural central Thailand. Our results indicate that aerosol pollution has developed into a regional problem for northern Indochina, and may become more severe as the region's population and economy continue to grow.

  10. Interactions of liquid lithium with various atmospheres, concretes, and insulating materials; and filtration of lithium aerosols

    International Nuclear Information System (INIS)

    Jeppson, D.W.

    1979-06-01

    This report describes the facilities and experiments and presents test results of a program being conducted at the hanford Engineering Development Laboratory (HEDL) in support of the fusion reactor development effort. This experimental program is designed to characterize the interaction of liquid lithium with various atmospheres, concretes, and insulating materials. Lithium-atmosphere reaction tests were conducted in normal humidity air, pure nitrogen, and carbon dioxide. These tests are described and their results, such as maximum temperatures, aerosol generated, and reaction rates measured, are reported. Initial lithium temperatures for these tests ranged between 224 0 C and 843 0 C. A lithium-concrete reaction test, using 10 kg of lithium at 327 0 C, and lithium-insulating materials reaction tests, using a few grams of lithium at 350 0 C and 600 0 C, are also described and results are presented. In addition, a lithium-aerosol filter loading test was conducted to determine the mass loading capacity of a commercial high efficiency particulate air (HEPA) filter. The aerosol was characterized, and the loading-capacity-versus-pressure-buildup across the filter is reported

  11. Real-Time Characterization of Aerosol Particle Composition above the Urban Canopy in Beijing: Insights into the Interactions between the Atmospheric Boundary Layer and Aerosol Chemistry.

    Science.gov (United States)

    Sun, Yele; Du, Wei; Wang, Qingqing; Zhang, Qi; Chen, Chen; Chen, Yong; Chen, Zhenyi; Fu, Pingqing; Wang, Zifa; Gao, Zhiqiu; Worsnop, Douglas R

    2015-10-06

    Despite extensive efforts into the characterization of air pollution during the past decade, real-time characterization of aerosol particle composition above the urban canopy in the megacity Beijing has never been performed to date. Here we conducted the first simultaneous real-time measurements of aerosol composition at two different heights at the same location in urban Beijing from December 19, 2013 to January 2, 2014. The nonrefractory submicron aerosol (NR-PM1) species were measured in situ by a high-resolution aerosol mass spectrometer at near-ground level and an aerosol chemical speciation monitor at 260 m on a 325 m meteorological tower in Beijing. Secondary aerosol showed similar temporal variations between ground level and 260 m, whereas much weaker correlations were found for the primary aerosol. The diurnal evolution of the ratios and correlations of aerosol species between 260 m and the ground level further illustrated a complex interaction between vertical mixing processes and local source emissions on aerosol chemistry in the atmospheric boundary layer. As a result, the aerosol compositions at the two heights were substantially different. Organic aerosol (OA), mainly composed of primary OA (62%), at the ground level showed a higher contribution to NR-PM1 (65%) than at 260 m (54%), whereas a higher concentration and contribution (15%) of nitrate was observed at 260 m, probably due to the favorable gas-particle partitioning under lower temperature conditions. In addition, two different boundary layer structures were observed, each interacting differently with the evolution processes of aerosol chemistry.

  12. Inverse atmospheric radiative transfer problems - A nonlinear minimization search method of solution. [aerosol pollution monitoring

    Science.gov (United States)

    Fymat, A. L.

    1976-01-01

    The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.

  13. Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5

    Directory of Open Access Journals (Sweden)

    X. Liu

    2012-05-01

    Full Text Available A modal aerosol module (MAM has been developed for the Community Atmosphere Model version 5 (CAM5, the atmospheric component of the Community Earth System Model version 1 (CESM1. MAM is capable of simulating the aerosol size distribution and both internal and external mixing between aerosol components, treating numerous complicated aerosol processes and aerosol physical, chemical and optical properties in a physically-based manner. Two MAM versions were developed: a more complete version with seven lognormal modes (MAM7, and a version with three lognormal modes (MAM3 for the purpose of long-term (decades to centuries simulations. In this paper a description and evaluation of the aerosol module and its two representations are provided. Sensitivity of the aerosol lifecycle to simplifications in the representation of aerosol is discussed.

    Simulated sulfate and secondary organic aerosol (SOA mass concentrations are remarkably similar between MAM3 and MAM7. Differences in primary organic matter (POM and black carbon (BC concentrations between MAM3 and MAM7 are also small (mostly within 10%. The mineral dust global burden differs by 10% and sea salt burden by 30–40% between MAM3 and MAM7, mainly due to the different size ranges for dust and sea salt modes and different standard deviations of the log-normal size distribution for sea salt modes between MAM3 and MAM7. The model is able to qualitatively capture the observed geographical and temporal variations of aerosol mass and number concentrations, size distributions, and aerosol optical properties. However, there are noticeable biases; e.g., simulated BC concentrations are significantly lower than measurements in the Arctic. There is a low bias in modeled aerosol optical depth on the global scale, especially in the developing countries. These biases in aerosol simulations clearly indicate the need for improvements of aerosol processes (e.g., emission fluxes of anthropogenic aerosols and

  14. CalWater 2 - Precipitation, Aerosols, and Pacific Atmospheric Rivers Experiment

    Science.gov (United States)

    Spackman, Ryan; Ralph, Marty; Prather, Kim; Cayan, Dan; DeMott, Paul; Dettinger, Mike; Fairall, Chris; Leung, Ruby; Rosenfeld, Daniel; Rutledge, Steven; Waliser, Duane; White, Allen

    2014-05-01

    Emerging research has identified two phenomena that play key roles in the variability of the water supply and the incidence of extreme precipitation events along the West Coast of the United States. These phenomena include the role of (1) atmospheric rivers (ARs) in delivering much of the precipitation associated with major storms along the U.S. West Coast, and (2) aerosols—from local sources as well as those transported from remote continents—and their modulating effects on western U.S. precipitation. A better understanding of these processes is needed to reduce uncertainties in weather predictions and climate projections of extreme precipitation and its effects, including the provision of beneficial water supply. This presentation summarizes science gaps associated with (1) the evolution and structure of ARs including cloud and precipitation processes and air-sea interaction, and (2) aerosol interaction with ARs and the impact on precipitation, including locally-generated aerosol effects on orographic precipitation along the U.S. West Coast. Observations are proposed for multiple winter seasons as part of a 5-year broad interagency vision referred to as CalWater 2 to address these science gaps (http://esrl.noaa.gov/psd/calwater). In the near term, a science investigation is being planned including a targeted set of aircraft and ship-based measurements and associated evaluation of data in near-shore regions of California and in the eastern Pacific for an intensive observing period between January 2015 and March 2015. DOE's Atmospheric Radiation Measurement (ARM) program and NOAA are coordinating on deployment of airborne and ship-borne facilities for this period in a DOE-sponsored study called ACAPEX (ARM Cloud Aerosol and Precipitation Experiment) to complement CalWater 2. The motivation for this major study is based on findings that have emerged in the last few years from airborne and ground-based studies including CalWater and NOAA's HydroMeterology Testbed

  15. Atmospheric effects of nuclar war aerosols in general circulation model simulations: Influence of smoke optical properties

    International Nuclear Information System (INIS)

    Thompson, S.L.; Ramaswamy, V.; Covey, C.

    1987-01-01

    A global atmospheric general circulation model (GCM) is modified to include radiative transfer parameterizations for the absorption and scattering of solar radiation and the absorption of thermal infrared (IR) radiation by smoke aerosols. The solar scattering modifications include a parameterization for diagnosing smoke optical properties as a function of the time- and space-dependent smoke particle radii. The aerosol IR modifications allow for both the ''grey'' absorber approximation and a broadband approximation that resolves the aerosol absorption in four spectral intervals. We examine the sensitivity of some GCM-simulated atmospheric and climatic effects to the optical properties and radiative transfer parameterizations used in studies of massive injections of smoke. Specifically, we test the model response to solar scattering versus nonscattering smoke, variations in prescribed smoke single scattering albedo and IR specific absorption, and interactive versus fixed smoke optical properties. Hypothetical nuclear war created smoke scenarios assume the July injection of 60 or 180 Tg of smoke over portions of the mid-latitude land areas of the northern hemisphere. Atmospheric transport and scavenging of the smoke are included. Nonscattering smoke cases produce roughly 40 Wm/sup -2/ more Earth-atmosphere solar irradiance absorption over the northern hemisphere, when compared to scattering smoke cases having equivalent specific absorption efficiencies. Varying the elemental carbon content of smoke over a plausible range produces a 4 0 --6 0 C change in average mid-latitude land surface temperature, and a variation of about 0.1 in zonally averaged planetary albedo in the northern hemisphere

  16. Hygroscopic growth of atmospheric aerosol particles and its relation to nucleation scavenging in clouds

    Energy Technology Data Exchange (ETDEWEB)

    Svenningsson, B.

    1997-11-01

    Aerosol particles in the atmosphere are important in several aspects. Some major aerosol constituents that are deposited in ecosystems are acidic or fertilizers and some minor or trace constituents are toxic. Aerosol particles are also involved in the earth`s radiation balance, both directly by scattering the sunlight and indirectly by influencing the clouds. All these effects are influenced by the interaction between the aerosol particles and water vapour. A tandem differential mobility analyser (TDMA) has been designed to measure hygroscopic growth, i.e. the particle diameter change due to uptake of water at well defined relative humidities below 100%. Tests of the instrument performance have been made using aerosol particles of pure inorganic salts. Three field experiments have been performed as parts of large fog and cloud experiments. Bimodal hygroscopic growth spectra were found: less-hygroscopic particles containing a few percent and more-hygroscopic particles around 50% by volume of hygroscopically active material. In general the fraction of less-hygroscopic particles decreases with particle size and it is larger in polluted continental aerosols than in remote background aerosols. This external mixing cannot be fully understood using present views on the formation of aerosols. Evidence or the importance of the external mixing on the cloud nucleating properties of the particles are found in comparisons between hygroscopic growth spectra for the total aerosol, the interstitial aerosol in clouds, and cloud drop residuals. Cloud condensation nuclei spectra, calculated using aerosol particle size distributions and hygroscopic growth spectra, in combination with information on the major inorganic ions are presented. These CCN spectra reveal for instance that the influence of less-hygroscopic particles on the cloud droplets increases with increasing peak supersaturation. The fraction of the particles that were scavenged to cloud drops, as a function of particle

  17. Phase function, backscatter, extinction, and absorption for standard radiation atmosphere and El Chichon aerosol models at visible and near-infrared wavelengths

    Science.gov (United States)

    Whitlock, C. H.; Suttles, J. T.; Lecroy, S. R.

    1985-01-01

    Tabular values of phase function, Legendre polynominal coefficients, 180 deg backscatter, and extinction cross section are given for eight wavelengths in the atmospheric windows between 0.4 and 2.2 microns. Also included are single scattering albedo, asymmetry factor, and refractive indices. These values are based on Mie theory calculations for the standard rediation atmospheres (continental, maritime, urban, unperturbed stratospheric, volcanic, upper atmospheric, soot, oceanic, dust, and water-soluble) assest measured volcanic aerosols at several time intervals following the El Chichon eruption. Comparisons of extinction to 180 deg backscatter for different aerosol models are presented and related to lidar data.

  18. An automated baseline correction protocol for infrared spectra of atmospheric aerosols collected on polytetrafluoroethylene (Teflon) filters

    Science.gov (United States)

    Kuzmiakova, Adele; Dillner, Ann M.; Takahama, Satoshi

    2016-06-01

    A growing body of research on statistical applications for characterization of atmospheric aerosol Fourier transform infrared (FT-IR) samples collected on polytetrafluoroethylene (PTFE) filters (e.g., Russell et al., 2011; Ruthenburg et al., 2014) and a rising interest in analyzing FT-IR samples collected by air quality monitoring networks call for an automated PTFE baseline correction solution. The existing polynomial technique (Takahama et al., 2013) is not scalable to a project with a large number of aerosol samples because it contains many parameters and requires expert intervention. Therefore, the question of how to develop an automated method for baseline correcting hundreds to thousands of ambient aerosol spectra given the variability in both environmental mixture composition and PTFE baselines remains. This study approaches the question by detailing the statistical protocol, which allows for the precise definition of analyte and background subregions, applies nonparametric smoothing splines to reproduce sample-specific PTFE variations, and integrates performance metrics from atmospheric aerosol and blank samples alike in the smoothing parameter selection. Referencing 794 atmospheric aerosol samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011, we start by identifying key FT-IR signal characteristics, such as non-negative absorbance or analyte segment transformation, to capture sample-specific transitions between background and analyte. While referring to qualitative properties of PTFE background, the goal of smoothing splines interpolation is to learn the baseline structure in the background region to predict the baseline structure in the analyte region. We then validate the model by comparing smoothing splines baseline-corrected spectra with uncorrected and polynomial baseline (PB)-corrected equivalents via three statistical applications: (1) clustering analysis, (2) functional group quantification

  19. Application of PIXE analysis to atmospheric environmental studies

    International Nuclear Information System (INIS)

    Kasahara, Mikio

    1997-01-01

    Physical and chemical properties of the atmospheric aerosols is a fundamental to understand the behavior of aerosols in the atmosphere. The analysis of atmospheric aerosols is the most preferable fields of the PIXE. In this paper, the characteristics of atmospheric aerosols are reviewed at first, and the sampling method of atmospheric aerosols for the PIXE samples and the characterization of atmospheric aerosols using the PIXE analysis are discussed. (author)

  20. Characteristics of Volcanic Stratospheric Aerosol Layer Observed by CALIOP and Ground Based Lidar at Equatorial Atmosphere Radar Site

    Science.gov (United States)

    Abo, Makoto; Shibata, Yasukuni; Nagasawa, Chikao

    2018-04-01

    We investigated the relation between major tropical volcanic eruptions in the equatorial region and the stratospheric aerosol data, which have been collected by the ground based lidar observations at at Equatorial Atmosphere Radar site between 2004 and 2015 and the CALIOP observations in low latitude between 2006 and 2015. We found characteristic dynamic behavior of volcanic stratospheric aerosol layers over equatorial region.

  1. Investigation of the atmospheric behavior of dicarboxylic acids and other polar organic aerosol constituents

    International Nuclear Information System (INIS)

    Limbeck, A.

    2001-05-01

    The objective of the present work was to improve the present knowledge about the atmospheric behavior of polar organic aerosol constituents with special respect to dicarboxylic acids. To enable the simultaneous determination of polar organic compounds in atmospheric samples like aerosol or precipitation samples (atmospheric hydrometeors) a new GCMS method was developed. Almost all classes of oxygenated organic compounds like mono- and dicarboxylic acids, aldehydes, alcohols or polar aromatic compounds like phthalates could be determined with only one sample preparation scheme. The separation into two classes of organic compounds with different polarity was performed using solid phase extraction. After a sample pre-treatment of the derived fractions, including esterification of the acids and extraction with cyclohexane, the samples were analyzed with a GCMS system. The new method was applied for the analysis of simultaneously collected interstitial aerosol and cloud water samples from a continental background site in Central Europe (Sonnblick Observatory, located at 3106-m elevation in the Austrian Alps). In all samples a large variety of mono- and dicarboxylic acids were identified and quantified, together with some aldehydes, alcohols and aromatic compounds. Using the obtained data set, for the first time in-cloud scavenging efficiencies for dicarboxylic acids, monocarboxylic acids, and other polar organic compounds were calculated. The results were compared to sulfate, which exhibited an average scavenging efficiency of 0.94. In the last part of the present work the results from laboratory and field investigations conducted with the intention to yield an improved sampling technique for the correction of the positive sampling artifact (adsorption of gas phase organics onto the filter substrate) were presented. (author)

  2. Prediction of health effects of cross-border atmospheric pollutants using an aerosol forecast model.

    Science.gov (United States)

    Onishi, Kazunari; Sekiyama, Tsuyoshi Thomas; Nojima, Masanori; Kurosaki, Yasunori; Fujitani, Yusuke; Otani, Shinji; Maki, Takashi; Shinoda, Masato; Kurozawa, Youichi; Yamagata, Zentaro

    2018-08-01

    Health effects of cross-border air pollutants and Asian dust are of significant concern in Japan. Currently, models predicting the arrival of aerosols have not investigated the association between arrival predictions and health effects. We investigated the association between subjective health symptoms and unreleased aerosol data from the Model of Aerosol Species in the Global Atmosphere (MASINGAR) acquired from the Japan Meteorological Agency, with the objective of ascertaining if these data could be applied to predicting health effects. Subjective symptom scores were collected via self-administered questionnaires and, along with modeled surface aerosol concentration data, were used to conduct a risk evaluation using generalized estimating equations between October and November 2011. Altogether, 29 individuals provided 1670 responses. Spearman's correlation coefficients were determined for the relationship between the proportion of the participants reporting the maximum score of two or more for each symptom and the surface concentrations for each considered aerosol species calculated using MASINGAR; the coefficients showed significant intermediate correlations between surface sulfate aerosol concentration and respiratory, throat, and fever symptoms (R = 0.557, 0.454, and 0.470, respectively; p < 0.01). In the general estimation equation (logit link) analyses, a significant linear association of surface sulfate aerosol concentration, with an endpoint determined by reported respiratory symptom scores of two or more, was observed (P trend = 0.001, odds ratio [OR] of the highest quartile [Q4] vs. the lowest [Q1] = 5.31, 95% CI = 2.18 to 12.96), with adjustment for potential confounding. The surface sulfate aerosol concentration was also associated with throat and fever symptoms. In conclusion, our findings suggest that modeled data are potentially useful for predicting health risks of cross-border aerosol arrivals. Copyright © 2018 Elsevier Ltd

  3. Dry deposition of submicron atmospheric aerosol over water surfaces in motion

    International Nuclear Information System (INIS)

    Nevenick, Calec

    2013-01-01

    Whether by chronic or accidental releases, the impact of a nuclear installation on the environment mainly depends on atmospheric transfers; and as the accidents at Chernobyl and Fukushima show, affect the contamination of surfaces and impacts in the medium and long-term on the environment and the population. In this context, this work focuses on the characterization and modeling of dry deposition of submicron aerosols on liquid surfaces in motion such as rivers. Unlike wet deposition which is conditioned by washout and rainout (rain and clouds), dry deposition is a phenomenon that depends entirely on the characteristics of aerosols, receiving surfaces, and air flow. In practice, the evaluation of dry deposition is based on the estimation of flux modeling as the product of particle concentration and deposition velocity which can vary over several orders of magnitude depending on the receiving surfaces (forest, snow, urban, grassland...). This topic is motivated by the virtual non-existence of studies on the mechanisms of dry deposition on continental water systems such as rivers; and respect for submicron aerosols. They have the lowest deposition efficiencies and filtration and the longer residence time in the atmosphere. In addition, they are potentially the most dangerous to living beings because they can penetrate deeper into the airway. Due to the lack of data on the dry deposition of submicron aerosols on a liquid surface in motion, the approach was based on two axes: 1) the acquisition of experimental deposition velocities and 2) the analysis and interpretation of results through modeling. The experiments were performed with uranine aerosols released into the IOA wind tunnel (Interface Ocean Atmosphere) of the Institute for Research on Non Equilibrium Phenomena which is configured to study the coupling between the air flow and water. These experiments have given many dry deposition velocities for different configurations characterized according to wind

  4. Dry deposition of submicron atmospheric aerosol over water surfaces in motion

    International Nuclear Information System (INIS)

    Calec, Nevenick

    2013-01-01

    Whether by chronic or accidental releases, the impact of a nuclear installation on the environment mainly depends on atmospheric transfers; and as the accidents at Chernobyl and Fukushima show, affect the contamination of surfaces and impacts in the medium and long-term on the environment and the population. In this context, this work focuses on the characterization and modeling of dry deposition of submicron aerosols on liquid surfaces in motion such as rivers. Unlike wet deposition which is conditioned by washout and rainout (rain and clouds), dry deposition is a phenomenon that depends entirely on the characteristics of aerosols, receiving surfaces, and air flow. In practice, the evaluation of dry deposition is based on the estimation of flux modeling as the product of particle concentration and deposition velocity which can vary over several orders of magnitude depending on the receiving surfaces (forest, snow, urban, grassland..). This topic is motivated by the virtual non-existence of studies on the mechanisms of dry deposition on continental water systems such as rivers; and respect for submicron aerosols. They have the lowest deposition efficiencies and filtration and the longer residence time in the atmosphere. In addition, they are potentially the most dangerous to living beings because they can penetrate deeper into the airway. Due to the lack of data on the dry deposition of submicron aerosols on a liquid surface in motion, the approach was based on two axes: 1) the acquisition of experimental deposition velocities and 2) the analysis and interpretation of results through modeling. The experiments were performed with uranine aerosols released into the IOA wind tunnel (Interface Ocean Atmosphere) of the Institute for Research on Non Equilibrium Phenomena which is configured to study the coupling between the air flow and water. These experiments have given many dry deposition velocities for different configurations characterized according to wind

  5. Impact of absorbing aerosols on the simulation of climate over the Indian region in an atmospheric general circulation model

    Directory of Open Access Journals (Sweden)

    A. Chakraborty

    2004-04-01

    Full Text Available The impact of anthropogenic absorbing aerosols (such as soot on the climate over the Indian region has been studied using the NCMRWF general circulation model. The absorbing aerosols increase shortwave radiative heating of the lower troposphere and reduce the heating at the surface. These effects have been incorporated as heating of the lower troposphere (up to 700hPa and cooling over the continental surface based on INDOEX measurements. The heating effect is constant in the pre-monsoon season and reduces to zero during the monsoon season. It is shown that even in the monsoon season when the aerosol forcing is zero, there is an overall increase in rainfall and a reduction in surface temperature over the Indian region. The rainfall averaged over the Tropics shows a small reduction in most of the months during the January to September period. The impact of aerosol forcing, the model's sensitivity to this forcing and its interaction with model-physics has been studied by changing the cumulus parameterization from the Simplified Arakawa-Schubert (SAS scheme to the Kuo scheme. During the pre-monsoon season the major changes in precipitation occur in the oceanic Inter Tropical Convergence Zone (ITCZ, where both the schemes show an increase in precipitation. This result is similar to that reported in Chung2002. On the other hand, during the monsoon season the changes in precipitation in the continental region are different in the SAS and Kuo schemes. It is shown that the heating due to absorbing aerosols changes the vertical moist-static stability of the atmosphere. The difference in the precipitation changes in the two cumulus schemes is on account of the different responses in the two parameterization schemes to changes in vertical stability. Key words. Atmospheric composition and structure (aerosols and particles – Meteorology and atmospheric dynamics (tropical meteorology; precipitation

  6. Factors controlling the solubility of trace metals in atmospheric aerosols over the Eastern Mediterranean

    Science.gov (United States)

    Nikolaou, Panagiota; Mihalopoulos, Nikolaos; Kanakidou, Maria

    2015-04-01

    Atmospheric input of aerosols is recognized, as an important source of nutrients, for the oceans. The chemical interactions between aerosols and varying composition of air masses lead to different coating of their surfaces with sulfate, nitrate and organic compounds, increasing their solubility and their role as a carrier of nutrients and pollutants in ecosystems. Recent works have highlighted that atmospheric inputs of nutrients and trace metals can considerably influence the marine ecosystem functioning at semi-enclosed or enclosed water bodies such as the eastern Mediterranean. The current work aims to determine the sources and the factors controlling the variability of nutrients in the eastern Mediterranean. Special focus has been given on trace elements solubility, considered either as key nutrients for phytoplankton growth such as iron (Fe), phosphorus (P) or inhibitors such as copper (Cu). This has been accomplished by analyzing size segregated aerosol samples collected at the background site of Finokalia in Crete for an entire year. Phosphorus concentrations indicate important increases in air masses influenced both by anthropogenic activities in the northeast European countries and by dust outbreaks. The last is confirmed by the correlation observed between total P and dust concentrations and by the air mass backward trajectories computed by running the NOAA Hysplit Model (Hybrid Single - Particle Langrangian Integrated Trajectory (http://www.arl.noaa.gov/ready/hysplit4.html). Overall 73% of total P has been found to be associated with anthropogenic sources. The solubility of P and Fe has been found to be closely related to the acidity (pH) and dust amount in aerosols. The aerosol pH was predicted using thermodynamic modeling (ISORROPIA-II), meteorological observations (RH, T), and gas/particle observations. More specifically P and Fe solubility appears to be inversely related to the crustal elements levels, while it increases in acidic environment. The

  7. X-ray methods for the chemical characterization of atmospheric aerosols

    International Nuclear Information System (INIS)

    Jaklevic, J.M.; Thompson, A.C.

    1981-05-01

    The development and use of several x-ray methods for the chemical characterization of atmospherical aerosol particulate samples are described. These methods are based on the emission, absorption, and scattering of x-ray photons with emphasis on the optimization for the non-destructive analysis of dilute specimens. Techniques discussed include photon induced energy dispersive x-ray fluorescence, extended x-ray absorption fine structure spectroscopy using synchrotron radiation and high-rate x-ray powder diffractometry using a position-sensitive gas proportional counter. These x-ray analysis methods were applied to the measurement of the chemical compositions of size-segregated aerosol particulate samples obtained with dichotomous samplers. The advantages of the various methods for use in such measurements are described and results are presented. In many cases, the complementary nature of the analytical information obtained from the various measurements is an important factor in the characterization of the sample. For example, the multiple elemental analyses obtained from x-ray fluorescence can be used as a cross check on the major compounds observed by powder diffraction

  8. Method for estimating the atmospheric content of sub-micrometer aerosol using direct-sun photometric data

    Science.gov (United States)

    Stefan, S.; Filip, L.

    2009-04-01

    It is well known that the aerosol generated by human activity falls in the sub-micrometer rage [1]. The rapid increase of such emissions led to massive accumulations in the planetary boundary layer. Aerosol pollutants influence the quality of life on the Earth in at least two ways: by direct physiological effects following their penetration into living organisms and by the indirect implications on the overall energy balance of the Earth-atmosphere system. For these reasons monitoring the sub-micrometer aerosol on a global scale, become a stringent necessity in protecting the environment. The sun-photometry proved a very efficient way for such monitoring activities, mainly when vast networks of instruments (like AERONET [2]) are used. The size distribution of aerosols is currently a product of AERONET obtained through an inversion algorithm of sky-photometry data [3, 4]. Alternatively, various methods of investigating the aerosol size distribution have been developed through the use of direct-sun photometric data, with the advantages of simpler computation algorithms and a more convenient use [5, 6]. Our research aims to formulate a new simpler way to retrieve aerosol fine and coarse mode volume concentrations, as well as dimensional information, from direct-sun data. As in other works from the literature [3-6], the main hypothesis is that of a bi-modal shape of the size distribution of aerosols that can be reproduced rather satisfactorily by a linear combination of two lognormal functions. Essentially, the method followed in this paper relies on aerosol size information retrieval through fitting theoretical computations to measured aerosol optical depth (AOD) and related data. To this purpose, the experimental spectral dependence of AOD is interpolated and differentiated numerically to obtain the Ǻngström parameter. The reduced (i.e. normalized to the corresponding columnar volumetric content) contributions of the fine and coarse modes to the AOD have also been

  9. The global impact of the transport sectors on atmospheric aerosol in 2030 – Part 1: Land transport and shipping

    Directory of Open Access Journals (Sweden)

    M. Righi

    2015-01-01

    Full Text Available Using the EMAC (ECHAM/MESSy Atmospheric Chemistry global climate-chemistry model coupled to the aerosol module MADE (Modal Aerosol Dynamics model for Europe, adapted for global applications, we simulate the impact of land transport and shipping emissions on global atmospheric aerosol and climate in 2030. Future emissions of short-lived gas and aerosol species follow the four Representative Concentration Pathways (RCPs designed in support of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. We compare the resulting 2030 land-transport- and shipping-induced aerosol concentrations to the ones obtained for the year 2000 in a previous study with the same model configuration. The simulations suggest that black carbon and aerosol nitrate are the most relevant pollutants from land transport in 2000 and 2030 and their impacts are characterized by very strong regional variations during this time period. Europe and North America experience a decrease in the land-transport-induced particle pollution, although in these regions this sector remains a major source of surface-level pollution in 2030 under all RCPs. In Southeast Asia, however, a significant increase is simulated, but in this region the surface-level pollution is still controlled by other sources than land transport. Shipping-induced air pollution is mostly due to aerosol sulfate and nitrate, which show opposite trends towards 2030. Sulfate is strongly reduced as a consequence of sulfur reduction policies in ship fuels in force since 2010, while nitrate tends to increase due to the excess of ammonia following the reduction in ammonium sulfate. The aerosol-induced climate impact of both sectors is dominated by aerosol-cloud effects and is projected to decrease between 2000 and 2030, nevertheless still contributing a significant radiative forcing to Earth's radiation budget.

  10. The Two-Column Aerosol Project: Phase I - Overview and Impact of Elevated Aerosol Layers on Aerosol Optical Depth

    Science.gov (United States)

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon P.; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; hide

    2015-01-01

    The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere be tween and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2).These layer s contributed up to 60 of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. In addition, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.

  11. The Two-Column Aerosol Project: Phase I - Overview and Impact of Elevated Aerosol Layers on Aerosol Optical Depth

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; Hair, John; Hostetler, Chris A.; Hubbe, John M.; Jefferson, Anne; Johnson, Roy; Kassianov, Evgueni I.; Kluzek, Celine D.; Kollias, Pavlos; Lamer, Katia; Lantz, K.; Mei, Fan; Miller, Mark A.; Michalsky, Joseph; Ortega, Ivan; Pekour, Mikhail S.; Rogers, Ray; Russell, P.; Redemann, Jens; Sedlacek, Art; Segal Rozenhaimer, Michal; Schmid, Beat; Shilling, John E.; Shinozuka, Yohei; Springston, Stephen R.; Tomlinson, Jason M.; Tyrrell, Megan; Wilson, Jacqueline; Volkamer, Rainer M.; Zelenyuk, Alla; Berkowitz, Carl M.

    2016-01-08

    The Two-Column Aerosol Project (TCAP), which was conducted from June 2012 through June 2013, was a unique field study that was designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere at a number of altitudes, from near the surface to as high as 8 km, within two atmospheric columns; one located near the coast of North America (over Cape Cod, MA) and a second over the Atlantic Ocean several hundred kilometers from the coast. TCAP included the yearlong deployment of the U.S. Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) that was located at the base of the Cape Cod column, as well as summer and winter aircraft intensive observation periods of the ARM Aerial Facility. One important finding from TCAP is the relatively common occurrence (on four of six nearly cloud-free flights) of elevated aerosol layers in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). These layers contributed up to 60% of the total aerosol optical depth (AOD) observed in the column. Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning aerosol and nitrate compared to the aerosol found near the surface.

  12. The Two-Column Aerosol Project: Phase I—Overview and impact of elevated aerosol layers on aerosol optical depth

    Science.gov (United States)

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon P.; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; Hair, Johnathan W.; Hostetler, Chris A.; Hubbe, John; Jefferson, Anne; Johnson, Roy; Kassianov, Evgueni I.; Kluzek, Celine D.; Kollias, Pavlos; Lamer, Katia; Lantz, Kathleen; Mei, Fan; Miller, Mark A.; Michalsky, Joseph; Ortega, Ivan; Pekour, Mikhail; Rogers, Ray R.; Russell, Philip B.; Redemann, Jens; Sedlacek, Arthur J.; Segal-Rosenheimer, Michal; Schmid, Beat; Shilling, John E.; Shinozuka, Yohei; Springston, Stephen R.; Tomlinson, Jason M.; Tyrrell, Megan; Wilson, Jacqueline M.; Volkamer, Rainer; Zelenyuk, Alla; Berkowitz, Carl M.

    2016-01-01

    The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere between and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). These layers contributed up to 60% of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. In addition, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.

  13. Gas-particle partitioning of atmospheric aerosols: interplay of physical state, non-ideal mixing and morphology.

    Science.gov (United States)

    Shiraiwa, Manabu; Zuend, Andreas; Bertram, Allan K; Seinfeld, John H

    2013-07-21

    Atmospheric aerosols, comprising organic compounds and inorganic salts, play a key role in air quality and climate. Mounting evidence exists that these particles frequently exhibit phase separation into predominantly organic and aqueous electrolyte-rich phases. As well, the presence of amorphous semi-solid or glassy particle phases has been established. Using the canonical system of ammonium sulfate mixed with organics from the ozone oxidation of α-pinene, we illustrate theoretically the interplay of physical state, non-ideality, and particle morphology affecting aerosol mass concentration and the characteristic timescale of gas-particle mass transfer. Phase separation can significantly affect overall particle mass and chemical composition. Semi-solid or glassy phases can kinetically inhibit the partitioning of semivolatile components and hygroscopic growth, in contrast to the traditional assumption that organic compounds exist in quasi-instantaneous gas-particle equilibrium. These effects have significant implications for the interpretation of laboratory data and the development of improved atmospheric air quality and climate models.

  14. Investigating the Chemical Pathways to PAH- and PANH-Based Aerosols in Titan's Atmospheric chemistry

    Science.gov (United States)

    Sciamma-O'Brien, Ella Marion; Contreras, Cesar; Ricketts, Claire Louise; Salama, Farid

    2011-01-01

    A complex organic chemistry between Titan's two main constituents, N2 and CH4, leads to the production of more complex molecules and subsequently to solid organic aerosols. These aerosols are at the origin of the haze layers giving Titan its characteristic orange color. In situ measurements by the Ion Neutral Mass Spectrometer (INMS) and Cassini Plasma Spectrometer (CAPS) instruments onboard Cassini have revealed the presence of large amounts of neutral, positively and negatively charged heavy molecules in the ionosphere of Titan. In particular, benzene (C6H6) and toluene (C6H5CH3), which are critical precursors of polycyclic aromatic hydrocarbon (PAH) compounds, have been detected, suggesting that PAHs might play a role in the production of Titan s aerosols. Moreover, results from numerical models as well as laboratory simulations of Titan s atmospheric chemistry are also suggesting chemical pathways that link the simple precursor molecules resulting from the first steps of the N2-CH4 chemistry (C2H2, C2H4, HCN ...) to benzene, and to PAHs and nitrogen-containing PAHs (or PANHs) as precursors to the production of solid aerosols.

  15. Ice nucleation properties of atmospheric aerosol particles collected during a field campaign in Cyprus

    Science.gov (United States)

    Yordanova, Petya; Maier, Stefanie; Lang-Yona, Naama; Tamm, Alexandra; Meusel, Hannah; Pöschl, Ulrich; Weber, Bettina; Fröhlich-Nowoisky, Janine

    2017-04-01

    Atmospheric aerosol particles, including desert and soil dust as well as marine aerosols, are well known to act as ice nuclei (IN) and thus have been investigated in numerous ice nucleation studies. Based on their cloud condensation nuclei potential and their impacts on radiative properties of clouds (via scattering and absorption of solar radiation), aerosol particles may significantly affect the cloud and precipitation development. Atmospheric aerosols of the Eastern Mediterranean have been described to be dominated by desert dust, but only little is known on their composition and ice nucleating properties. In this study we investigated the ice nucleating ability of total suspended particles (TSP), collected at the remote site Agia Marina Xyliatou on Cyprus during a field campaign in April 2016. Airborne TSP samples containing air masses of various types such as African (Saharan) and Arabian dust and European and Middle Eastern pollution were collected on glass fiber filters at 24 h intervals. Sampling was performed ˜5 m above ground level and ˜521 m above sea level. During the sampling period, two major dust storms (PM 10max 118 μg/m3 and 66 μg/m3) and a rain event (rainfall amount: 3.4 mm) were documented. Chemical and physical characterizations of the particles were analyzed experimentally through filtration, thermal, chemical and enzyme treatments. Immersion freezing experiments were performed at relatively high subzero temperatures (-1 to -15˚ C) using the mono ice nucleation array. Preliminary results indicate that highest IN particle numbers (INPs) occurred during the second dust storm event with lower particle concentrations. Treatments at 60˚ C lead to a gradual IN deactivation, indicating the presence of biological INPs, which were observed to be larger than 300 kDa. Additional results originating from this study will be shown. Acknowledgement: This work was funded by the DFG Ice Nuclei Research Unit (INUIT).

  16. Isotopic evidence for enhanced fossil fuel sources of aerosol ammonium in the urban atmosphere.

    Science.gov (United States)

    Pan, Yuepeng; Tian, Shili; Liu, Dongwei; Fang, Yunting; Zhu, Xiaying; Gao, Meng; Gao, Jian; Michalski, Greg; Wang, Yuesi

    2018-04-20

    The sources of aerosol ammonium (NH 4 + ) are of interest because of the potential of NH 4 + to impact the Earth's radiative balance, as well as human health and biological diversity. Isotopic source apportionment of aerosol NH 4 + is challenging in the urban atmosphere, which has excess ammonia (NH 3 ) and where nitrogen isotopic fractionation commonly occurs. Based on year-round isotopic measurements in urban Beijing, we show the source dependence of the isotopic abundance of aerosol NH 4 + , with isotopically light (-33.8‰) and heavy (0 to +12.0‰) NH 4 + associated with strong northerly winds and sustained southerly winds, respectively. On an annual basis, 37-52% of the initial NH 3 concentrations in urban Beijing arises from fossil fuel emissions, which are episodically enhanced by air mass stagnation preceding the passage of cold fronts. These results provide strong evidence for the contribution of non-agricultural sources to NH 3 in urban regions and suggest that priority should be given to controlling these emissions for haze regulation. This study presents a carefully executed application of existing stable nitrogen isotope measurement and mass-balance techniques to a very important problem: understanding source contributions to atmospheric NH 3 in Beijing. This question is crucial to informing environmental policy on reducing particulate matter concentrations, which are some of the highest in the world. However, the isotopic source attribution results presented here still involve a number of uncertain assumptions and they are limited by the incomplete set of chemical and isotopic measurements of gas NH 3 and aerosol NH 4 + . Further field work and lab experiments are required to adequately characterize endmember isotopic signatures and the subsequent isotopic fractionation process under different air pollution and meteorological conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Stable hydrogen isotopic composition of n-alkanes in atmospheric aerosols as a tracer for the source region of terrestrial plant waxes

    Science.gov (United States)

    Yamamoto, S.; Kawamura, K.

    2009-12-01

    Studies on molecular composition and compound-specific carbon isotopic ratio (δ13C) of leaf wax n-alkanes in atmospheric aerosols have revealed a long-range atmospheric transport of terrestrial higher plant materials over the south Atlantic and western Pacific oceans. However, molecular and δ13C compositions of terrestrial plant waxes in the eastern part of the Asian continent are relatively constant reflecting C3-dominated vegetation, which makes it difficult to specify the source regions of plant materials in the atmospheric aerosols over the East Asia and northwest Pacific regions. Recent observation displays a large (>100‰) spatial variation in hydrogen isotopic composition (δD) of rainwater in East Asia. Because δD values of terrestrial higher plants sensitively reflect those of precipitation waters, δD of leaf waxes are expected to provide information on their source region. In this study, we measured the δD of n-alkanes in atmospheric aerosols from Tokyo to better understand the origin of leaf wax n-alkanes in atmospheric aerosols. The δD values of fossil fuel n-alkanes (C21 to C24) in Tokyo aerosols range from -65 to -94‰, which are in a range of those reported in marine crude oils. In contrast, the δD of higher molecular weight (C29 and C31) n-alkanes (δDHMW) show much larger values by ~70‰ than those of fossil fuel n-alkanes. Their values were found to exhibit concomitant variations with carbon preference index (CPI), suggesting that the δDHMW reflect the δD of leaf wax n-alkanes with a variable contribution from fossil fuel n-alkanes. Nevertheless, good positive correlation (r = 0.89, p < 0.01) between the δDHMW and CPI values enable us to remove the contribution of fossil fuels using a mass balance approach by assuming that CPI of fossil fuel is 1 and CPI of plant waxes is 5-15. Calculated n-alkane δD values averaged from -170 to -185‰ for C29 and from -155 to -168‰ for C31. These values are consistent with those reported from

  18. Surface aerosol and rehabilitation properties of ground-level atmosphere in the mountains of the North Caucasus

    Science.gov (United States)

    Reps, Valentina; Efimenko, Natalia; Povolotskaya, Nina; Abramtsova, Anna; Ischenko, Dmitriy; Senik, Irina; Slepikh, Victor

    2017-04-01

    The rehabilitative properties (RP) of ground-level atmosphere (GA) of Russian resorts are considered as natural healing resources and received state legal protection [1]. Due to global urbanization the chemical composition and particle size distribution of the surface aerosol are changing rapidly. However, the influence of surface aerosol on the RP of GA has been insufficiently studied. At the resort region of the North Caucasus complex monitoring (aerosol, trace gases NOx, CO, O3, CH4; periodically - heavy metals) is performed at two high levels (860 masl - a park zone of a large mountain resort, 2070 masl - alpine grassland, the net station). The results of the measurements are used in programs of bioclimatic, landscape and medical monitoring to specify the influence of aerosol on rehabilitation properties of the environment and human adaptative reserves. The aerosol particles of size range 500-1000 nm are used as a marker of the pathogenic effect of aerosol [2]. In the conditions of regional urbanization and complicated mountain atmospheric circulation the influence of aerosol on RP of GA and the variability of heart rhythm with the volunteers at different heights were investigated. At the height of 860 masl (urbanized resort) there have been noticed aerosol variations in the range of 0,04-0,35 particles/cm3 (slightly aerosol polluted), in mountain conditions - background pollution aerosol level. The difference of bioclimatic conditions at the specified high-rise levels has been referred to the category of contrasts. The natural aero ionization ∑(N+)+(N-) varied from 960 ion/cm3 to 1460 ion/cm3 in the resort park (860 m); from 1295 ion/cm3 to 4850 ion/cm3 on the Alpine meadow (2070 m); from 1128 ion/cm3 to 3420 ion/cm3 - on the tested site near the edge of the pinewood (1720 m). In the group of volunteers the trip from low-hill terrain zone (860 m) to the lower zone of highlands (2070 m) caused the activation of neuro and humoral regulation, vegetative and

  19. Aerosol Indices Derived from MODIS Data for Indicating Aerosol-Induced Air Pollution

    Directory of Open Access Journals (Sweden)

    Junliang He

    2014-02-01

    Full Text Available Aerosol optical depth (AOD is a critical variable in estimating aerosol concentration in the atmosphere, evaluating severity of atmospheric pollution, and studying their impact on climate. With the assistance of the 6S radiative transfer model, we simulated apparent reflectancein relation to AOD in each Moderate Resolution Imaging Spectroradiometer (MODIS waveband in this study. The closeness of the relationship was used to identify the most and least sensitive MODIS wavebands. These two bands were then used to construct three aerosol indices (difference, ratio, and normalized difference for estimating AOD quickly and effectively. The three indices were correlated, respectively, with in situ measured AOD at the Aerosol Robotic NETwork (AERONET Lake Taihu, Beijing, and Xianghe stations. It is found that apparent reflectance of the blue waveband (band 3 is the most sensitive to AOD while the mid-infrared wavelength (band 7 is the least sensitive. The difference aerosol index is the most accurate in indicating aerosol-induced atmospheric pollution with a correlation coefficient of 0.585, 0.860, 0.685, and 0.333 at the Lake Taihu station, 0.721, 0.839, 0.795, and 0.629 at the Beijing station, and 0.778, 0.782, 0.837, and 0.643 at the Xianghe station in spring, summer, autumn and winter, respectively. It is concluded that the newly proposed difference aerosol index can be used effectively to study the level of aerosol-induced air pollution from MODIS satellite imagery with relative ease.

  20. A Big Data Approach for Situation-Aware estimation, correction and prediction of aerosol effects, based on MODIS Joint Atmosphere product (collection 6) time series data

    Science.gov (United States)

    Singh, A. K.; Toshniwal, D.

    2017-12-01

    The MODIS Joint Atmosphere product, MODATML2 and MYDATML2 L2/3 provided by LAADS DAAC (Level-1 and Atmosphere Archive & Distribution System Distributed Active Archive Center) re-sampled from medium resolution MODIS Terra /Aqua Satellites data at 5km scale, contains Cloud Reflectance, Cloud Top Temperature, Water Vapor, Aerosol Optical Depth/Thickness, Humidity data. These re-sampled data, when used for deriving climatic effects of aerosols (particularly in case of cooling effect) still exposes limitations in presence of uncertainty measures in atmospheric artifacts such as aerosol, cloud, cirrus cloud etc. The effect of uncertainty measures in these artifacts imposes an important challenge for estimation of aerosol effects, adequately affecting precise regional weather modeling and predictions: Forecasting and recommendation applications developed largely depend on these short-term local conditions (e.g. City/Locality based recommendations to citizens/farmers based on local weather models). Our approach inculcates artificial intelligence technique for representing heterogeneous data(satellite data along with air quality data from local weather stations (i.e. in situ data)) to learn, correct and predict aerosol effects in the presence of cloud and other atmospheric artifacts, defusing Spatio-temporal correlations and regressions. The Big Data process pipeline consisting correlation and regression techniques developed on Apache Spark platform can easily scale for large data sets including many tiles (scenes) and over widened time-scale. Keywords: Climatic Effects of Aerosols, Situation-Aware, Big Data, Apache Spark, MODIS Terra /Aqua, Time Series

  1. Evaluation of trace elemental composition of aerosols in the atmosphere of Rawalpindi and Islamabad using radio analytical methods

    International Nuclear Information System (INIS)

    Qadir, Muhammad Abdul; Zaidi, Jamshaid Hussain; Ahmad, Shaikh Asrar; Gulzar, Asad; Yaseen, Muhammad; Atta, Sadia; Tufail, Asma

    2012-01-01

    Geological and anthropogenic contributions to air pollution were monitored by analyzing aerosol particulates present in the atmosphere of Rawalpindi and Islamabad, Pakistan, using instrumental neutron activation for trace elemental analysis. A scanning electron microscope was used to study particulate size distribution and morphology. Twenty two elements were analyzed and their likely sources were identified. It was found that 69% of the suspended particulate matter in the atmosphere of Islamabad, and 52% in Rawalpindi, were of a diameter less than 3 μm. The presence of Yb, Cs, Sc, Rb, Co, Eu, La, Ba, Zn and Hf indicates that a major portion of the trace elements in the aerosol particulates was due to the geological nature of the land, while Sc was considered to be arising from coal burning. The presence of Cr, Fe, Ce, Pb and Cd was attributed to anthropogenic activities at Rawalpindi and Islamabad. Unusually high concentrations of Mo and Nb were found in the atmosphere of Islamabad, based on soil derived aerosols. - Highlights: ► Discussion is made on Total suspended Particulate (TSP) matter in the atmosphere. ► Measurement of Radio active elements in the TSP by using SSNTD which was found non significant. ► 23 Trace element analysis of the TSPs in the atmosphere of twin cities i.e. Rawalpindi and Islamabad and their relation to their sources by using Neutron activation analysis. ► The mountain of Islamabad has some unique and important deposits of Nb and Gd , this paper will help the Geological survey of Pakistan to explore their deposits. ► There is high level of TSPs>10 um, which is a great threat to the peoples of Islamabad.

  2. Dissolution process of atmospheric aerosol particles into cloud droplets; Processus de dissolution des aerosols atmospheriques au sein des gouttes d'eau nuageuses

    Energy Technology Data Exchange (ETDEWEB)

    Desboeufs, K

    2001-01-15

    Clouds affect both climate via the role they play in the Earth's radiation balance and tropospheric chemistry since they are efficient reaction media for chemical transformation of soluble species. Cloud droplets are formed in the atmosphere by condensation of water vapour onto aerosol particles, the cloud condensation nuclei (CCN). The water soluble fraction of these CCN governs the cloud micro-physics, which is the paramount factor playing on the radiative properties of clouds. Moreover, this soluble fraction is the source of species imply in the oxidation/reduction reactions in the aqueous phase. Thus, it is of particular importance to understand the process controlling the solubilization of aerosols in the cloud droplets. The main purpose of this work is to investigate experimentally and theoretically the dissolution of particles incorporated in the aqueous phase. From the studies conducted up to now, we have identify several factors playing on the dissolution reaction of aerosols. However, the quantification of the effects of these factors is difficult since the current means of study are not adapted to the complexity of cloud systems. First, this work consisted to perform a experimental system, compound by an open flow reactor, enabling to follow the kinetic of dissolution in conditions representative of cloud. This experimental device is used to a systematic characterisation of the known factors playing on the dissolution, i.e. pH, aerosol nature, aerosol weathering... and also for the identification and the quantification of the effects of other factors: ionic strength, acid nature, clouds processes. These experiments gave quantitative results, which are used to elaborate a simple model of aerosol dissolution in the aqueous phase. This model considers the main factors playing on the dissolution and results in a general mechanism of aerosol dissolution extrapolated to the cloud droplets. (author)

  3. Unattached fraction and the aerosol size distribution of the radon progeny in a natural cave and mine atmospheres

    International Nuclear Information System (INIS)

    Butterweck, G.; Porstendoerfer, J.; Reineking, A.; Kesten, J.

    1992-01-01

    Measurements of the activity size distribution of aerosol-attached radon progeny and the amount of unattached radon daughters have been performed in mine atmospheres and a tourist cave. During working hours a large number (10 5 -10 6 cm -3 ) of aerosol particles is generated in mines, mainly by diesel engines. The activity size distribution of these aerosol particles has smaller median diameters (AMAD about 200 nm) than the aged aerosol existing in the mine during non-working hours (AMAD about 350 nm). Strictly correlated to the aerosol concentration, the unattached fraction of the radon progeny, f p , in the tourist cave (3000 particles per cm 3 ) is higher (f p = 0.1) than in mines (f p 0.01) during working hours. This yields 1.4-2.5 times higher radiation dose conversion factors in the natural cave than in mines under working conditions. (author)

  4. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    International Nuclear Information System (INIS)

    Gaffney, Jeffrey

    2012-01-01

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  5. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, Jeffrey [Univ. of Arkansas, Little Rock, AR (United States)

    2012-12-12

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  6. The influence of ions on atmospheric aerosol processes

    DEFF Research Database (Denmark)

    Enghoff, Martin

    2008-01-01

    Considering the big climate changes of the recent centuries and the predictions of future changes, it becomes increasingly important to understand what mechanisms drive climate. One such mechanism, that has been held responsible for changes in cloud cover during the last 25 years, for the Little...... Ice Age, the Medieval Warmth, and other climate phenomena going further back in time, is that of Ion Induced Nucleation { the ability of ions to enhance the formation of aerosol particles in the atmosphere. Several nucleation events that cannot be explained with the standard theory of homogeneous...... nucleation have been speculated to be caused by ions. Correlations between ionisation sources and climate parameters have been put forth, and experiments with extreme gas or ion concentrations have shown an eect of the ions. The relevance of Ion Induced Nucleation is, however, still undergoing debate [1, p...

  7. Variation of atmospheric aerosol components and sources during smog episodes in Debrecen, Hungary

    International Nuclear Information System (INIS)

    Angyal, A.; Kertész, Zs.; Szoboszlai, Z.; Szikszai, Z.; Ferenczi, Z.; Furu, E.; Tõrõk, Zs.

    2013-01-01

    Full text: Atmospheric particulate matter (APM) pollution is one of the leading environmental problems in densely populated urban environments. In most cities all around the world high aerosol pollution levels occurs regularly. Debrecen, an average middle-European city is no exception. Every year there are several days when the aerosol pollution level exceeds the alarm threshold value (100 μ-g/m 3 for PM10 in 24- hours average). When the PM10 pollution level remains over this limit value for days, it is called 'smog' by the authorities. In this work we studied the variation of the elemental components and sources of PM10, PM2.5 and PM coarse and their dependence on meteorological conditions in Debrecen during two smog episodes occurred in November 2011. Aerosol samples were collected with 2-hours time resolution with a PIXE International sequential streaker in an urban background site in the downtown of Debrecen. In order to get information about the size distribution of the aerosol elemental components 9-stage cascade impactors were also employed during the sampling campaigns. The elemental composition (Z ≥ 13) were determined by Particle Induced X-Ray Emission (PIXE) at the IBA Laboratory of Atomki. Concentrations of elemental carbon were measured with a smoke stain reflectometer. On this data base source apportionment was carried out by using the positive matrix factorisation (PMF) method. Four factors were identified for both size fractions, including soil dust, traffic, domestic heating, and oil combustion. The time pattern of the aerosol elemental components and PM sources exhibited strong dependence on the mixing layer thickness. We showed that domestic heating had a major contribution to the aerosol pollution. (This work was carried out in the frame of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and TÁMOP-4.2.2/B-10/1-2010-0024 project). (author)

  8. Simultaneous observation of seasonal variations of beryllium-7 and typical POPs in near-surface atmospheric aerosols in Guangzhou, China

    Science.gov (United States)

    Pan, Jing; Yang, Yong-Liang; Zhang, Gan; Shi, Jing-Lei; Zhu, Xiao-Hua; Li, Yong; Yu, Han-Qing

    2011-07-01

    Near-surface atmospheric aerosol samples were collected at the sampling frequency of 2-3 d per week for one year from August 2006 to August 2007 at a low latitude station in Tianhe District, Guangzhou, Guangdong Province of southern China. The samples were analyzed for cosmogenic nuclide 7Be and persistent organic pollutants, i.e. organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). The annual average 7Be concentration was 2.59 mBq m -3, with the maximum occurred in May (8.45 mBq m -3) and minimum in late August and early September (0.07 mBq m -3). Winter and spring were the seasons in which the 7Be concentrations were high while summer and autumn were the lower 7Be seasons. Spring peaks in 7Be in the near-surface atmospheric aerosols may have associated with the "spring leak maximum" episode. The annual average ∑OCPs concentration was 345.6 pg m -3, ∑ 33PCBs 317.6 pg m -3, and ∑ 31PBDEs 609.0 pg m -3. The variation trends in the time-series of 7Be, OCPs, PCBs, and PBDEs in near-surface atmospheric aerosol showed both common features and differences. Significant correlations ( R2 = 0.957 and 0.811. respectively, p = 0.01) were observed between the monthly average 7Be concentrations and those of ∑PCBs and ∑PBDEs in summer, autumn, and early winter. The difference between the seasonal variation features of OCPs and PCBs (and PBDEs) could be attributed to the different source functions and physical-chemical properties which could control the behaviors of these compounds in air-aerosol partitions as well as atmospheric transport.

  9. Determination of low-molecular-weight dicarboxylic acids in atmospheric aerosols by injection-port derivatization and gas chromatography-mass spectrometry

    Science.gov (United States)

    Ding, W.; Hsu, C.

    2008-12-01

    Currently, the investigations on aerosol water-soluble organic compounds (WSOCs) formed by burning biomass have become increasingly concerned with the role of these compounds in atmospheric chemistry and their effect on climate, because they have great potential to influence cloud formation, precipitation, and climate on both global and regional scales. Of these compounds, low-molecular weight (LMW) dicarboxylic acids (from C2 to C10) have attracted the most interest because of their properties as specific tracers for the burning of biomass. In this study, a modified injection-port derivatization and gas chromatography - mass spectrometry method was developed and evaluated for rapid determination of LMW dicarboxylic acids in atmospheric aerosol samples. The parameters related to the derivatization process (i.e., type of ion-pair reagent, injection-port temperature and concentration of ion-pair reagent) were optimized. Tetrabutylammonium hydroxide (TBA-OH) dissolved in methanol used as the ion-pair solution gave excellent yield for di-butyl ester low-molecular weight derivatives. Solid-phase extraction method instead of rotary evaporation was used to concentrate analytes from filter extracts. The recovery from filter extracts ranged from 67 to 86% with relative standard deviation (RSD) less than 13%. The concentrations of dicarboxylated C2, C3, C4, C5 and C6-C10 in atmospheric aerosols ranged from 91-240 ng/m3, 11-56 ng/m3, 12-49 ng/m3, 8-35 ng/m3 and n.d. to 17 ng/m3, respectively. Oxalic (C2) acid was the dominant dicarboxylic acids detected in aerosol samples. The total concentrations of the LMW dicarboxylic acids (from C2 to C10) correspond to 2.2 to 2.6% of the total aerosol mass.

  10. Qualitative aspects of biomonitoring: Sphagnum auriculatum response vs. aerosol metal concentrations (Pb, Ca, Cr, Cu, Fe, Mn, Ni and Zn) in the Porto urban atmosphere

    International Nuclear Information System (INIS)

    Teresa, M.; Vasconcelos, S.D.; Tavares Laquipai, H.M.F.

    2000-01-01

    Bags of S. auriculatum and a low-volume aerosol sampler provided with 0.8 μm pore size filters were exposed, in parallel, to the atmosphere of Porto, at different sampling points and in different periods of time, between 1991 and 1997. The levels of lead in the moss (weekly samples) and in the filters (daily samples) were determined by atomic absorption spectrophotometry and the results were compared. Living S. auriculatum exposed in bags to the Porto atmosphere died in several weeks (about a month), but continued to sorb metals from the atmosphere for about another month. In dry weather periods (relative humidity ≤ 76%) the rate of lead uptake by moss was approximately constant and proportional to the levels of the metal in atmospheric aerosols. A converting factor [CF=parallel-Pb-parallel moss (μg/g.day)/ parallel-Pb-parallel air (μg/m 3 )] allowed conversion of the lead levels in S. auriculatum to those in the atmospheric aerosols. Because the moss fixed lead from gas, aerosol and particulate matter, the rate of sorption depends markedly on the distance to the lead sources (mainly traffic) and on surrounding obstacles which retain particles. Therefore, specific calibration by mechanic monitoring, at each sampling point is required in a first stage of biomonitoring, when moss bag samplers are used to provide quantitative information about lead levels in the atmosphere. The mean Pb levels were ≤ 0.5 μg/m 3 and approximately constants at each sample point up to January 1996. After that date it decreased about 50%, in consequence of the reduction of the Pb concentration in leaded gasoline. In wet weather periods, higher but irregular rate of lead uptake was observed. In contrast, the lead levels in atmospheric aerosols decreased when the humidity increased due to wet deposition. Therefore, no proportionality between lead levels in the moss and in air were found. For about two months, in 1994, during a dry weather period, the levels of Ca, Cr, Cu, Fe, Mn, Ni

  11. Small molecules as tracers in atmospheric secondary organic aerosol

    Science.gov (United States)

    Yu, Ge

    Secondary organic aerosol (SOA), formed from in-air oxidation of volatile organic compounds, greatly affects human health and climate. Although substantial research has been devoted to SOA formation and evolution, the modeled and lab-generated SOA are still low in mass and degree of oxidation compared to ambient measurements. In order to compensate for these discrepancies, the aqueous processing pathway has been brought to attention. The atmospheric waters serve as aqueous reaction media for dissolved organics to undergo further oxidation, oligomerization, or other functionalization reactions, which decreases the vapor pressure while increasing the oxidation state of carbon atoms. Field evidence for aqueous processing requires the identification of tracer products such as organosulfates. We synthesized the standards for two organosulfates, glycolic acid sulfate and lactic acid sulfate, in order to measure their aerosol-state concentration from five distinct locations via filter samples. The water-extracted filter samples were analyzed by LC-MS. Lactic acid sulfate and glycolic acid sulfate were detected in urban locations in the United States, Mexico City, and Pakistan with varied concentrations, indicating their potential as tracers. We studied the aqueous processing reaction between glyoxal and nitrogen-containing species such as ammonium and amines exclusively by NMR spectrometry. The reaction products formic acid and several imidazoles along with the quantified kinetics were reported. The brown carbon generated from these reactions were quantified optically by UV-Vis spectroscopy. The organic-phase reaction between oxygen molecule and alkenes photosensitized by alpha-dicarbonyls were studied in the same manner. We observed the fast kinetics transferring alkenes to epoxides under simulated sunlight. Statistical estimations indicate a very effective conversion of aerosol-phase alkenes to epoxides, potentially forming organosulfates in a deliquescence event and

  12. Decomposition of Atmospheric Aerosol Phase Function by Particle Size and Morphology via Single Particle Scattering Measurements

    Science.gov (United States)

    Aptowicz, K. B.; Pan, Y.; Martin, S.; Fernandez, E.; Chang, R.; Pinnick, R. G.

    2013-12-01

    We report upon an experimental approach that provides insight into how particle size and shape affect the scattering phase function of atmospheric aerosol particles. Central to our approach is the design of an apparatus that measures the forward and backward scattering hemispheres (scattering patterns) of individual atmospheric aerosol particles in the coarse mode range. The size and shape of each particle is discerned from the corresponding scattering pattern. In particular, autocorrelation analysis is used to differentiate between spherical and non-spherical particles, the calculated asphericity factor is used to characterize the morphology of non-spherical particles, and the integrated irradiance is used for particle sizing. We found the fraction of spherical particles decays exponentially with particle size, decreasing from 11% for particles on the order of 1 micrometer to less than 1% for particles over 5 micrometer. The average phase functions of subpopulations of particles, grouped by size and morphology, are determined by averaging their corresponding scattering patterns. The phase functions of spherical and non-spherical atmospheric particles are shown to diverge with increasing size. In addition, the phase function of non-spherical particles is found to vary little as a function of the asphericity factor.

  13. Aqueous organic chemistry in the atmosphere: sources and chemical processing of organic aerosols.

    Science.gov (United States)

    McNeill, V Faye

    2015-02-03

    Over the past decade, it has become clear that aqueous chemical processes occurring in cloud droplets and wet atmospheric particles are an important source of organic atmospheric particulate matter. Reactions of water-soluble volatile (or semivolatile) organic gases (VOCs or SVOCs) in these aqueous media lead to the formation of highly oxidized organic particulate matter (secondary organic aerosol; SOA) and key tracer species, such as organosulfates. These processes are often driven by a combination of anthropogenic and biogenic emissions, and therefore their accurate representation in models is important for effective air quality management. Despite considerable progress, mechanistic understanding of some key aqueous processes is still lacking, and these pathways are incompletely represented in 3D atmospheric chemistry and air quality models. In this article, the concepts, historical context, and current state of the science of aqueous pathways of SOA formation are discussed.

  14. PIXE Analysis of Atmospheric Aerosol Samples Collected in the Adirondack Mountains

    Science.gov (United States)

    Yoskowitz, Josh; Ali, Salina; Nadareski, Benjamin; Safiq, Alexandrea; Smith, Jeremy; Labrake, Scott; Vineyard, Michael

    2013-10-01

    We have performed an elemental analysis of atmospheric aerosol samples collected at Piseco Lake in Upstate New York using proton induced x-ray emission spectroscopy (PIXE). This work is part of a systematic study of airborne pollution in the Adirondack Mountains. Of particular interest is the sulfur content that can contribute to acid rain, a well-documented problem in the Adirondacks. We used a nine-stage cascade impactor to collect the samples and distribute the particulate matter onto Kapton foils by particle size. The PIXE experiments were performed with 2.2-MeV proton beams from the 1.1-MV pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. X-Ray energy spectra were measured with a silicon drift detector and analyzed with GUPIX software to determine the elemental concentrations of the aerosols. A broad range of elements from silicon to zinc were detected with significant sulfur concentrations measured for particulate matter between 0.25 and 0.5 μm in size. The PIXE analysis will be described and preliminary results will be presented.

  15. Aqueous-Phase Reactions of Isoprene with Sulfoxy Radical Anions as a way of Wet Aerosol Formation in the Atmosphere

    Science.gov (United States)

    Kuznietsova, I.; Rudzinski, K. J.; Szmigielski, R.; Laboratory of the Environmental Chemistry

    2011-12-01

    Atmospheric aerosols exhibit an important role in the environment. They have implications on human health and life, and - in the larger scale - on climate, the Earth's radiative balance and the cloud's formation. Organic matter makes up a significant fraction of atmospheric aerosols (~35% to ~90%) and may originate from direct emissions (primary organic aerosol, POA) or result from complex physico-chemical processes of volatile organic compounds (secondary organic aerosol, SOA). Isoprene (2-methyl-buta-1,3-diene) is one of the relevant volatile precursor of ambient SOA in the atmosphere. It is the most abundant non-methane hydrocarbon emitted to the atmosphere as a result of living vegetation. According to the recent data, the isoprene emission rate is estimated to be at the level of 500 TgC per year. While heterogeneous transformations of isoprene have been well documented, aqueous-phase reactions of this hydrocarbon with radical species that lead to the production of new class of wet SOA components such as polyols and their sulfate esters (organosulfates), are still poorly recognized. The chain reactions of isoprene with sulfoxy radical-anions (SRA) are one of the recently researched route leading to the formation of organosulfates in the aqueous phase. The letter radical species originate from the auto-oxidation of sulfur dioxide in the aqueous phase and are behind the phenomenon of atmospheric acid rain formation. This is a complicated chain reaction that is catalyzed by transition metal ions, such as manganese(II), iron(III) and propagated by sulfoxy radical anions . The presented work addresses the chemical interaction of isoprene with sulfoxy radical-anions in the water solution in the presence of nitrite ions and nitrous acid, which are important trace components of the atmosphere. We showed that nitrite ions and nitrous acid significantly altered the kinetics of the auto-oxidation of SO2 in the presence of isoprene at different solution acidity from 2 to 8

  16. Characteristics of aerosol vertical profiles in Tsukuba, Japan, and their impacts on the evolution of the atmospheric boundary layer

    Science.gov (United States)

    Kudo, Rei; Aoyagi, Toshinori; Nishizawa, Tomoaki

    2018-05-01

    Vertical profiles of the aerosol physical and optical properties, with a focus on seasonal means and on transport events, were investigated in Tsukuba, Japan, by a synergistic remote sensing method that uses lidar and sky radiometer data. The retrieved aerosol vertical profiles of the springtime mean and five transport events were input to our developed one-dimensional atmospheric model, and the impacts of the aerosol vertical profiles on the evolution of the atmospheric boundary layer (ABL) were studied by numerical sensitivity experiments. The characteristics of the aerosol vertical profiles in Tsukuba are as follows: (1) the retrieval results in the spring showed that aerosol optical thickness at 532 nm in the free atmosphere (FA) was 0.13, greater than 0.08 in the ABL owing to the frequent occurrence of transported aerosols in the FA. In other seasons, optical thickness in the FA was almost the same as that in the ABL. (2) The aerosol optical and physical properties in the ABL showed a dependency on the extinction coefficient. With an increase in the extinction coefficient from 0.00 to 0.24 km-1, the Ångström exponent increased from 0.0 to 2.0, the single-scattering albedo increased from 0.87 to 0.99, and the asymmetry factor decreased from 0.75 to 0.50. (3) The large variability in the physical and optical properties of aerosols in the FA were attributed to transport events, during which the transported aerosols consisted of varying amounts of dust and smoke particles depending on where they originated (China, Mongolia, or Russia). The results of the numerical sensitivity experiments using the aerosol vertical profiles of the springtime mean and five transport events in the FA are as follows: (1) numerical sensitivity experiments based on simulations conducted with and without aerosols showed that aerosols caused the net downward radiation and the sensible and latent heat fluxes at the surface to decrease. The decrease in temperature in the ABL (-0.2 to -0

  17. Evaluation of trace elemental composition of aerosols in the atmosphere of Rawalpindi and Islamabad using radio analytical methods

    Energy Technology Data Exchange (ETDEWEB)

    Qadir, Muhammad Abdul, E-mail: mabdulqadir@gmail.com [Institute of Chemistry, University of the Punjab, Lahore-54590 (Pakistan); Zaidi, Jamshaid Hussain [Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad Capital Territory (Pakistan); Ahmad, Shaikh Asrar; Gulzar, Asad [Division of Science and Technology, University of Education, Township, Lahore (Pakistan); Yaseen, Muhammad [Department of Chemistry, Gugrat University, Gugrat (Pakistan); Atta, Sadia; Tufail, Asma [Institute of Chemistry, University of the Punjab, Lahore-54590 (Pakistan)

    2012-05-15

    Geological and anthropogenic contributions to air pollution were monitored by analyzing aerosol particulates present in the atmosphere of Rawalpindi and Islamabad, Pakistan, using instrumental neutron activation for trace elemental analysis. A scanning electron microscope was used to study particulate size distribution and morphology. Twenty two elements were analyzed and their likely sources were identified. It was found that 69% of the suspended particulate matter in the atmosphere of Islamabad, and 52% in Rawalpindi, were of a diameter less than 3 {mu}m. The presence of Yb, Cs, Sc, Rb, Co, Eu, La, Ba, Zn and Hf indicates that a major portion of the trace elements in the aerosol particulates was due to the geological nature of the land, while Sc was considered to be arising from coal burning. The presence of Cr, Fe, Ce, Pb and Cd was attributed to anthropogenic activities at Rawalpindi and Islamabad. Unusually high concentrations of Mo and Nb were found in the atmosphere of Islamabad, based on soil derived aerosols. - Highlights: Black-Right-Pointing-Pointer Discussion is made on Total suspended Particulate (TSP) matter in the atmosphere. Black-Right-Pointing-Pointer Measurement of Radio active elements in the TSP by using SSNTD which was found non significant. Black-Right-Pointing-Pointer 23 Trace element analysis of the TSPs in the atmosphere of twin cities i.e. Rawalpindi and Islamabad and their relation to their sources by using Neutron activation analysis. Black-Right-Pointing-Pointer The mountain of Islamabad has some unique and important deposits of Nb and Gd , this paper will help the Geological survey of Pakistan to explore their deposits. Black-Right-Pointing-Pointer There is high level of TSPs>10 um, which is a great threat to the peoples of Islamabad.

  18. Toward a Minimal Representation of Aerosols in Climate Models: Description and Evaluation in the Community Atmosphere Model CAM5

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaohong; Easter, Richard C.; Ghan, Steven J.; Zaveri, Rahul A.; Rasch, Philip J.; Shi, Xiangjun; Lamarque, J.-F.; Gettelman, A.; Morrison, H.; Vitt, Francis; Conley, Andrew; Park, S.; Neale, Richard; Hannay, Cecile; Ekman, A. M.; Hess, Peter; Mahowald, N.; Collins, William D.; Iacono, Michael J.; Bretherton, Christopher S.; Flanner, M. G.; Mitchell, David

    2012-05-21

    A modal aerosol module (MAM) has been developed for the Community Atmosphere Model version 5 (CAM5), the atmospheric component of the Community Earth System Model version 1 (CESM1). MAM is capable of simulating the aerosol size distribution and both internal and external mixing between aerosol components, treating numerous complicated aerosol processes and aerosol physical, chemical and optical properties in a physically based manner. Two MAM versions were developed: a more complete version with seven-lognormal modes (MAM7), and a three-lognormal mode version (MAM3) for the purpose of long-term (decades to centuries) simulations. Major approximations in MAM3 include assuming immediate mixing of primary organic matter (POM) and black carbon (BC) with other aerosol components, merging of the MAM7 fine dust and fine sea salt modes into the accumulation mode, merging of the MAM7 coarse dust and coarse sea salt modes into the single coarse mode, and neglecting the explicit treatment of ammonia and ammonium cycles. Simulated sulfate and secondary organic aerosol (SOA) mass concentrations are remarkably similar between MAM3 and MAM7 as most ({approx}90%) of these aerosol species are in the accumulation mode. Differences of POM and BC concentrations between MAM3 and MAM7 are also small (mostly within 10%) because of the assumed hygroscopic nature of POM, so that freshly emitted POM and BC are wet-removed before mixing internally with soluble aerosol species. Sensitivity tests with the POM assumed to be hydrophobic and with slower aging process increase the POM and BC concentrations, especially at high latitudes (by several times). The mineral dust global burden differs by 10% and sea salt burden by 30-40% between MAM3 and MAM7 mainly due to the different size ranges for dust and sea salt modes and different standard deviations of log-normal size distribution for sea salt modes between MAM3 and MAM7. The model is able to qualitatively capture the observed geographical and

  19. Biomonitoring of atmospheric pollution: a novel approach for the evaluation of natural and anthropogenic contribution to atmospheric aerosol particles.

    Science.gov (United States)

    Caggiano, Rosa; Calamita, Giuseppe; Sabia, Serena; Trippetta, Serena

    2017-03-01

    The investigation of the potential natural and anthropogenic contribution to atmospheric aerosol particles by using lichen-bag technique was performed in the Agri Valley (Basilicata region, southern Italy). This is an area of international concern since it houses one of the largest European on-shore reservoirs and the biggest oil/gas pre-treatment plant (i.e., Centro Olio Val d'Agri (COVA)) within an anthropized context. In particular, the concentrations of 17 trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Ti, and Zn) were measured in lichen bags exposed in 59 selected monitoring points over periods of 6 months (from October 2011 to April 2012) and 12 months (from October 2011 to October 2012). The general origin of the main air masses affecting the sampling site during the study period was assessed by the back trajectories clustering calculated using the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. The results allowed the identification and characterization of the crustal material, smoke, sea salt, sulfate, and anthropogenic trace element contributions to the atmospheric aerosol particles in the study area. Finally, the application of the trend surface analysis (TSA) allowed the study of the spatial distribution of the considered contributions highlighting the existence of a continuous broad variation of these contributions in the area of interest.

  20. Aerosols, clouds and their climatic impacts

    Energy Technology Data Exchange (ETDEWEB)

    Kulmala, M; Laaksonen, A; Korhonen, P [Helsinki Univ. (Finland). Dept. of Physics

    1996-12-31

    The increasing atmospheric concentrations of greenhouse gases such as carbon dioxide and methane may drive a significant warming of the earth`s climate. However, a topic of more recent attention is the possibility that increased atmospheric concentrations of aerosol particles might drive a cooling of the planet. There are two distinct cooling mechanisms related to the enhanced concentrations of aerosol particles: the increase in the direct reflection of solar radiation (the direct effect), and the increase in cloud reflectivity caused by greater numbers of cloud condensation nuclei available (the indirect effect). Aerosols and clouds play a major role in the scattering and absorption of radiation in the Earth`s atmosphere. Locally the net effect can vary because of different kinds of surfaces. But according to measurements, the global net effect of clouds (and aerosols) on the atmosphere is net cooling and thus in opposition to the effect of greenhouse gases. The prediction of the future evolution of the climate involves substantial uncertainties. Clouds have a major effect on the radiation balance of the Earth and the prediction of amount and radiative properties of clouds is very difficult. Also the formation mechanisms and residence times of aerosol particles in the atmosphere involve large uncertainties. Thus the most serious difficulties arise in the area of the physics of clouds and aerosols

  1. Aerosols, clouds and their climatic impacts

    Energy Technology Data Exchange (ETDEWEB)

    Kulmala, M.; Laaksonen, A.; Korhonen, P. [Helsinki Univ. (Finland). Dept. of Physics

    1995-12-31

    The increasing atmospheric concentrations of greenhouse gases such as carbon dioxide and methane may drive a significant warming of the earth`s climate. However, a topic of more recent attention is the possibility that increased atmospheric concentrations of aerosol particles might drive a cooling of the planet. There are two distinct cooling mechanisms related to the enhanced concentrations of aerosol particles: the increase in the direct reflection of solar radiation (the direct effect), and the increase in cloud reflectivity caused by greater numbers of cloud condensation nuclei available (the indirect effect). Aerosols and clouds play a major role in the scattering and absorption of radiation in the Earth`s atmosphere. Locally the net effect can vary because of different kinds of surfaces. But according to measurements, the global net effect of clouds (and aerosols) on the atmosphere is net cooling and thus in opposition to the effect of greenhouse gases. The prediction of the future evolution of the climate involves substantial uncertainties. Clouds have a major effect on the radiation balance of the Earth and the prediction of amount and radiative properties of clouds is very difficult. Also the formation mechanisms and residence times of aerosol particles in the atmosphere involve large uncertainties. Thus the most serious difficulties arise in the area of the physics of clouds and aerosols

  2. Dissolution process of atmospheric aerosol particles into cloud droplets; Processus de dissolution des aerosols atmospheriques au sein des gouttes d'eau nuageuses

    Energy Technology Data Exchange (ETDEWEB)

    Desboeufs, K.

    2001-01-15

    Clouds affect both climate via the role they play in the Earth's radiation balance and tropospheric chemistry since they are efficient reaction media for chemical transformation of soluble species. Cloud droplets are formed in the atmosphere by condensation of water vapour onto aerosol particles, the cloud condensation nuclei (CCN). The water soluble fraction of these CCN governs the cloud micro-physics, which is the paramount factor playing on the radiative properties of clouds. Moreover, this soluble fraction is the source of species imply in the oxidation/reduction reactions in the aqueous phase. Thus, it is of particular importance to understand the process controlling the solubilization of aerosols in the cloud droplets. The main purpose of this work is to investigate experimentally and theoretically the dissolution of particles incorporated in the aqueous phase. From the studies conducted up to now, we have identify several factors playing on the dissolution reaction of aerosols. However, the quantification of the effects of these factors is difficult since the current means of study are not adapted to the complexity of cloud systems. First, this work consisted to perform a experimental system, compound by an open flow reactor, enabling to follow the kinetic of dissolution in conditions representative of cloud. This experimental device is used to a systematic characterisation of the known factors playing on the dissolution, i.e. pH, aerosol nature, aerosol weathering... and also for the identification and the quantification of the effects of other factors: ionic strength, acid nature, clouds processes. These experiments gave quantitative results, which are used to elaborate a simple model of aerosol dissolution in the aqueous phase. This model considers the main factors playing on the dissolution and results in a general mechanism of aerosol dissolution extrapolated to the cloud droplets. (author)

  3. Aerosol sampler for analysis of fine and ultrafine aerosols

    Czech Academy of Sciences Publication Activity Database

    Mikuška, Pavel; Čapka, Lukáš; Večeřa, Zbyněk

    2018-01-01

    Roč. 1020 (2018), s. 123-133 ISSN 0003-2670 R&D Projects: GA ČR(CZ) GA14-25558S Institutional support: RVO:68081715 Keywords : atmospheric aerosols * aerosol collection * chemical composition Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 4.950, year: 2016

  4. Hygroscopic properties of smoke-generated organic aerosol particles emitted in the marine atmosphere

    Directory of Open Access Journals (Sweden)

    A. Wonaschütz

    2013-10-01

    Full Text Available During the Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE, a plume of organic aerosol was produced by a smoke generator and emitted into the marine atmosphere from aboard the R/V Point Sur. In this study, the hygroscopic properties and the chemical composition of the plume were studied at plume ages between 0 and 4 h in different meteorological conditions. In sunny conditions, the plume particles had very low hygroscopic growth factors (GFs: between 1.05 and 1.09 for 30 nm and between 1.02 and 1.1 for 150 nm dry size at a relative humidity (RH of 92%, contrasted by an average marine background GF of 1.6. New particles were produced in large quantities (several 10 000 cm−3, which lead to substantially increased cloud condensation nuclei (CCN concentrations at supersaturations between 0.07 and 0.88%. Ratios of oxygen to carbon (O : C and water-soluble organic mass (WSOM increased with plume age: from −3, respectively, while organic mass fractions decreased slightly (~ 0.97 to ~ 0.94. High-resolution aerosol mass spectrometer (AMS spectra show that the organic fragment m/z 43 was dominated by C2H3O+ in the small, new particle mode and by C3H7+ in the large particle mode. In the marine background aerosol, GFs for 150 nm particles at 40% RH were found to be enhanced at higher organic mass fractions: an average GF of 1.06 was observed for aerosols with an organic mass fraction of 0.53, and a GF of 1.04 for an organic mass fraction of 0.35.

  5. AEROSOL VARIABILITY OBSERVED WITH RPAS

    Directory of Open Access Journals (Sweden)

    B. Altstädter

    2013-08-01

    Full Text Available To observe the origin, vertical and horizontal distribution and variability of aerosol particles, and especially ultrafine particles recently formed, we plan to employ the remotely piloted aircraft system (RPAS Carolo-P360 "ALADINA" of TU Braunschweig. The goal of the presented project is to investigate the vertical and horizontal distribution, transport and small-scale variability of aerosol particles in the atmospheric boundary layer using RPAS. Two additional RPAS of type MASC of Tübingen University equipped with turbulence instrumentation add the opportunity to study the interaction of the aerosol concentration with turbulent transport and exchange processes of the surface and the atmosphere. The combination of different flight patterns of the three RPAS allows new insights in atmospheric boundary layer processes. Currently, the different aerosol sensors are miniaturized at the Leibniz Institute for Tropospheric Research, Leipzig and together with the TU Braunschweig adapted to fit into the RPAS. Moreover, an additional meteorological payload for measuring temperature, humidity and turbulence properties is constructed by Tübingen University. Two condensation particle counters determine the total aerosol number with a different lower detection threshold in order to investigate the horizontal and vertical aerosol variability and new particle formation (aerosol particles of some nm diameter. Further the aerosol size distribution in the range from about 0.300 to ~5 μm is given by an optical particle counter.

  6. Interactions Between Atmospheric Aerosols and Marine Boundary Layer Clouds on Regional and Global Scales

    Science.gov (United States)

    Wang, Zhen

    Airborne aerosols are crucial atmospheric constituents that are involved in global climate change and human life qualities. Understanding the nature and magnitude of aerosol-cloud-precipitation interactions is critical in model predictions for atmospheric radiation budget and the water cycle. The interactions depend on a variety of factors including aerosol physicochemical complexity, cloud types, meteorological and thermodynamic regimes and data processing techniques. This PhD work is an effort to quantify the relationships among aerosol, clouds, and precipitation on both global and regional scales by using satellite retrievals and aircraft measurements. The first study examines spatial distributions of conversion rate of cloud water to rainwater in warm maritime clouds over the globe by using NASA A-Train satellite data. This study compares the time scale of the onset of precipitation with different aerosol categories defined by values of aerosol optical depth, fine mode fraction, and Angstrom Exponent. The results indicate that conversion time scales are actually quite sensitive to lower tropospheric static stability (LTSS) and cloud liquid water path (LWP), in addition to aerosol type. Analysis shows that tropical Pacific Ocean is dominated by the highest average conversion rate while subtropical warm cloud regions (far northeastern Pacific Ocean, far southeastern Pacific Ocean, Western Africa coastal area) exhibit the opposite result. Conversion times are mostly shorter for lower LTSS regimes. When LTSS condition is fixed, higher conversion rates coincide with higher LWP and lower aerosol index categories. After a general global view of physical property quantifications, the rest of the presented PhD studies is focused on regional airborne observations, especially bulk cloud water chemistry and aerosol aqueous-phase reactions during the summertime off the California coast. Local air mass origins are categorized into three distinct types (ocean, ships, and land

  7. The effects of aerosols on climate

    International Nuclear Information System (INIS)

    Boucher, O.

    1997-01-01

    Atmospheric aerosols (fine particles suspended in the atmosphere) can play two roles in the Earth’s radiation budget. In cloud-free air, aerosols scatter sunlight, some of which is reflected back to space (direct effect). Aerosols also determine the microphysical and optical properties of clouds (indirect effect). Whereas changes in natural aerosols are probably small during the last 100 years, there has been a large increase in the concentration of anthropogenic aerosols. The magnitude of their radiative effects is still very uncertain but seems to be sufficient to mask part of the global warming expected to stem from anthropogenic greenhouse gases. This paper presents the physical mechanisms of aerosol influence on climate. We then estimate the anthropogenic aerosol radiative effects and assess the climate response to these perturbations. (author) [fr

  8. Design of a new multi-phase experimental simulation chamber for atmospheric photosmog, aerosol and cloud chemistry research

    Directory of Open Access Journals (Sweden)

    J. Wang

    2011-11-01

    Full Text Available A new simulation chamber has been built at the Interuniversitary Laboratory of Atmospheric Systems (LISA. The CESAM chamber (French acronym for Experimental Multiphasic Atmospheric Simulation Chamber is designed to allow research in multiphase atmospheric (photo- chemistry which involves both gas phase and condensed phase processes including aerosol and cloud chemistry. CESAM has the potential to carry out variable temperature and pressure experiments under a very realistic artificial solar irradiation. It consists of a 4.2 m3 stainless steel vessel equipped with three high pressure xenon arc lamps which provides a controlled and steady environment. Initial characterization results, all carried out at 290–297 K under dry conditions, concerning lighting homogeneity, mixing efficiency, ozone lifetime, radical sources, NOy wall reactivity, particle loss rates, background PM, aerosol formation and cloud generation are given. Photolysis frequencies of NO2 and O3 related to chamber radiation system were found equal to (4.2 × 10−3 s−1 for JNO2 and (1.4 × 10−5 s−1 for JO1D which is comparable to the solar radiation in the boundary layer. An auxiliary mechanism describing NOy wall reactions has been developed. Its inclusion in the Master Chemical Mechanism allowed us to adequately model the results of experiments on the photo-oxidation of propene-NOx-Air mixtures. Aerosol yields for the α-pinene + O3 system chosen as a reference were determined and found in good agreement with previous studies. Particle lifetime in the chamber ranges from 10 h to 4 days depending on particle size distribution which indicates that the chamber can provide high quality data on aerosol aging processes and their effects. Being evacuable, it is possible to generate in this new chamber

  9. Uncertainty evaluation in correlated quantities: application to elemental analysis of atmospheric aerosols;Evaluacion de la incertidumbre en cantidades correlacionadas: aplicacion al analisis elemental de aerosoles atmosfericos

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, A.; Miranda, J.; Pineda, J. C., E-mail: miranda@fisica.unam.m [UNAM, Instituto de Fisica, Circuito de la Investigacion Cientifica s/n, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2010-07-01

    One of the aspects that are frequently overlooked in the evaluation of uncertainty in experimental data is the possibility that the involved quantities are correlated among them, due to different causes. An example in the elemental analysis of atmospheric aerosols using techniques like X-ray Fluorescence (X RF) or Particle Induced X-ray Emission (PIXE). In these cases, the measured elemental concentrations are highly correlated, and then are used to obtain information about other variables, such as the contribution from emitting sources related to soil, sulfate, non-soil potassium or organic matter. This work describes, as an example, the method required to evaluate the uncertainty in variables determined from correlated quantities from a set of atmospheric aerosol samples collected in the Metropolitan Area of the Mexico Valley and analyzed with PIXE. The work is based on the recommendations of the Guide for the Evaluation of Uncertainty published by the International Organization for Standardization. (Author)

  10. Chemical and optical properties of atmospheric aerosols in Phimai, Thailand by intensive surface measurements and satellite data analysis

    Science.gov (United States)

    Tsuruta, H.; Thana, B.; Takamura, T.; Hashimoto, M.; Yabuki, M.; Oikawa, E.; Nakajima, T.

    2013-12-01

    Atmospheric aerosols were measured at the Observatory of Atmospheric Research, in Phimai, Thailand, a key station of SKYNET, during 2006-2008. In the surface measurement, mass concentrations and major chemical components in fine and coarse aerosols were analyzed, and the optical properties such as AOT and SSA were measured by skyradiometer. Analysis of MODIS and CALIPSO satellite data was made for wild fire activities and aerosol distribution, respectively. In this paper, the following topics are summarized. The surface wind pattern in dry season was divided into the three periods as follows; D1 (Oct.-Nov.) with northeasterly monsoon, D3 (middle March-April) with southerly wind, and D2 (Dec.-early March) with a transit stage between D1 and D3. Wet season in southwesterly monsoon was from May to September. The concentration ratio of BC/nss-SO4 showed that the dominant PM2.5 aerosols in D1 were due to long-range transport of air pollutants emitted from urban/industrial area of east Asia. In contrast, most of aerosols in D3 were derived from biomass burning in Indochina, because the activity of biomass burning was highest in the latter D2 and early D3 period, by the analysis of the fire database in MODIS and of BC/nss-SO4. The mass concentration in PM2.5 showed a clear seasonal variation with the maximum in D2. On the contrary, AOT showed the maximum in D3, and which could be attributed to an increase in the vertical thickness of high aerosol concentration in the boundary layer by the CALIOP data analysis. Dust particles in D1 were directly transported from east Asia, and re-suspension of soil dusts was dominant in D2 because the surface soil became dry. In D3, soil dusts were re-suspended with the thermal plume caused by biomass burning. In contrast, high dust particles measured in the wet season was due to long range transport of dust aerosols from western desert area by the CALIOP data analysis.

  11. Fractionation of Stable Isotopes in Atmospheric Aerosol Reactions

    DEFF Research Database (Denmark)

    Meusinger, Carl

    -independent) fractionation processes of stable isotopes of C, N, O and S in order to investigate three different systems related to aerosols: 1. Post-depositional processes of nitrate in snow that obscure nitrate ice core records 2. Formation and aging of secondary organic aerosol generated by ozonolysis of X...... reactions and undergo complex chemical and physical changes during their lifetimes. In order to assess processes that form and alter aerosols, information provided by stable isotopes can be used to help constrain estimates on the strength of aerosol sources and sinks. This thesis studies (mass...... as required. The kndings provide important results for the studies' respective felds, including a description of the isotopic fractionation and quantum yield of nitrate photolysis in snow, equilibrium fractionation in secondary organic aerosol and fractionation constants of different oxidation pathways of SO2....

  12. Aerosol volatility in a boreal forest environment

    Science.gov (United States)

    Häkkinen, S. A. K.; ńijälä, M.; Lehtipalo, K.; Junninen, H.; Virkkula, A.; Worsnop, D. R.; Kulmala, M.; Petäjä, T.; Riipinen, I.

    2012-04-01

    Climate and health effects of atmospheric aerosols are determined by their properties such as their chemical composition. Aerosol chemical composition can be studied indirectly by measuring volatility of aerosol particles. The volatility of submicron aerosol particles (20-500 nm) was studied in a boreal forest site at SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations II) station (Vesala et al., 1998) in Hyytiälä, Finland, during 01/2008-05/2010. The instrument used for the measurements was VDMPS (Volatility Differential Mobility Particle Sizer), which consists of two separate instruments: DMPS (Differential Mobility Particle Sizer, Aalto et al., 2001) and TD (Thermodenuder, Wehner et al., 2002). Aerosol evaporation was examined by heating the aerosol and comparing the total aerosol mass before and after heating. In the VDMPS system ambient aerosol sample was heated up to temperatures ranging from 80 °C to 280 °C. The higher the heating temperature was the more aerosol material was evaporated. There was a non-volatile residual present in aerosol particles when heated up to 280 °C. This residual explained (20±8)% of the total aerosol mass. Aerosol non-volatile mass fraction was highest during winter and smallest during summer months. The role of black carbon in the observed non-volatile residual was determined. Black carbon explained 40 to 90% of the non-volatile mass. Especially during colder seasons noticeable amount of non-volatile material, something else than black carbon, was observed. According to Kalberer et al. (2004) some atmospheric organic species can form polymers that have high evaporation temperatures. Also low-volatile organic salts may contribute to the non-volatile aerosol (Smith et al., 2010). Aerosol mass composition measured directly with AMS (Aerosol Mass Spectrometer, Jayne et al., 2000) was analyzed in order to examine the properties of the non-volatile material (other than black carbon). The AMS measurements were performed

  13. Anthropogenic Influence on Secondary Aerosol Formation and Total Water-Soluble Carbon on Atmospheric Particles

    Science.gov (United States)

    Gioda, Adriana; Mateus, Vinicius; Monteiro, Isabela; Taira, Fabio; Esteves, Veronica; Saint'Pierre, Tatiana

    2013-04-01

    On a global scale, the atmosphere is an important source of nutrients, as well as pollutants, because of its interfaces with soil and water. Important compounds in the gaseous phase are in both organic and inorganic forms, such as organic acids, nitrogen, sulfur and chloride. In spite of the species in gas form, a huge number of process, anthropogenic and natural, are able to form aerosols, which may be transported over long distances. Sulfates e nitrates are responsible for rain acidity; they may also increase the solubility of organic compounds and metals making them more bioavailable, and also can act as cloud condensation nuclei (CCN). Aerosol samples (PM2.5) were collected in a rural and industrial area in Rio de Janeiro, Brazil, in order to quantify chemical species and evaluate anthropogenic influences in secondary aerosol formation and organic compounds. Samples were collected during 24 h every six days using a high-volume sampler from August 2010 to July 2011. The aerosol mass was determined by Gravimetry. The water-soluble ionic composition (WSIC) was obtained by Ion Chromatography in order to determine the major anions (NO3-, SO4= and Cl-); total water-soluble carbon (TWSC) was determined by a TOC analyzer. The average aerosol (PM2.5) concentrations ranged from 1 to 43 ug/m3 in the industrial site and from 4 to 35 ug/m3 in the rural area. Regarding anions, the highest concentrations were measured for SO42- (10.6 μg/m3-12.6 μg/m3); where the lowest value was found in the rural site and the highest in the industrial. The concentrations for NO3- and Cl- ranged from 4.2 μg/m3 to 9.3 μg/m3 and 3.1 μg/m3 to 6.4 μg /m3, respectively. Sulfate was the major species and, like nitrate, it is related to photooxidation in the atmosphere. Interestingly sulfate concentrations were higher during the dry period and could be related to photochemistry activity. The correlations between nitrate and non-sea-salt sulfate were weak, suggesting different sources for these

  14. Characterization of atmospheric aerosol near motor way: Bassa Valle Susa (Italy); Caratterizzazione dell`aerosol atmosferico in prossimita` di un`autostrada: Bassa Valle Susa

    Energy Technology Data Exchange (ETDEWEB)

    Berico, M.; Castellani, C.M.; Formignani, M. [ENEA, Bologna (Italy). Dipt. Ambiente

    1995-10-01

    Results related to the experimental measurement campaign to characterize atmospheric aerosol carried out near Avigliana (Turin) from 18 to 22 October 1994 are presented in this paper. In the frame of the project aimed at evaluating the impact of the mountain motor way A-32 Rivoli-Bardonecchia-Frejus on the Susa Valley environment and on man the present measurement campaign is the second, and last, one envisaged in the project. The sampling place is in the initial part of the Susa Valley while previous measurements were carried out in the high part of it. Mass mean concentrations result greater in the low than in the high part of the valley approximately by a factor of 3. It is not possible to prove a difference between the 3 sampling positions transversely placed from 20 to 80 m. in comparison with the motor way axis. Whereas mass mean concentrations dropped substantially due to atmospheric precipitations during the last two measurement day. Aerosol granulometry in mass for the accumulation and the coarse mode do not differ from that evaluated in the high part of the valley and fitting granulometric parameters are consistent with those previously evaluated.

  15. Reactivity of liquid and semisolid secondary organic carbon with chloride and nitrate in atmospheric aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingbing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); O' Brien, Rachel E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of the Pacific, Stockton, CA (United States); Kelly, Stephen T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shilling, John E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moffet, Ryan C. [Univ. of the Pacific, Stockton, CA (United States); Gilles, Mary K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Laskin, Alexander [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-14

    Constituents of secondary organic carbon (SOC) in atmospheric aerosols are often mixed with inorganic components and compose a significant mass fraction of fine particulate matter in the atmosphere. Interactions between SOC and other condensed-phase species are not well understood. Here, we investigate the reactions of liquid-like and semi-solid SOC from ozonolysis of limonene (LSOC) and α-pinene (PSOC) with NaCl using a set of complementary micro-spectroscopic analyses. These reactions result in chloride depletion in the condensed phase, release of gaseous HCl, and formation of organic salts. The reactions attributed to acid displacement by SOC acidic components are driven by the high volatility of HCl. Similar reactions can take place in SOC/NaNO₃ particles. The results show that an increase in SOC mass fraction in the internally mixed SOC/NaCl particles leads to higher chloride depletion. Glass transition temperatures and viscosity of PSOC were estimated for atmospherically relevant conditions. Data show that the reaction extent depends on SOC composition, particle phase state and viscosity, mixing state, temperature, relative humidity (RH), and reaction time. LSOC shows slightly higher potential to deplete chloride than PSOC. Higher particle viscosity at low temperatures and RH can hinder these acid displacement reactions. Formation of organic salts from these overlooked reactions can alter particle physiochemical properties and may affect their reactivity and ability to act as cloud condensation and ice nuclei. The release and potential recycling of HCl and HNO₃ from reacted aerosol particles may have important implications for atmospheric chemistry.

  16. Modelling and numerical simulation of the General Dynamic Equation of aerosols; Modelisation et simulation des aerosols atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Debry, E.

    2005-01-15

    Chemical-transport models are now able to describe in a realistic way gaseous pollutants behavior in the atmosphere. Nevertheless atmospheric pollution also exists as fine suspended particles, called aerosols, which interact with gaseous phase, solar radiation, and have their own dynamic behavior. The goal of this thesis is the modelling and numerical simulation of the General Dynamic Equation of aerosols (GDE). Part I deals with some theoretical aspects of aerosol modelling. Part II is dedicated to the building of one size resolved aerosol model (SIREAM). In part III we perform the reduction of this model in order to use it in dispersion models as POLAIR3D. Several modelling issues are still opened: organic aerosol matter, externally mixed aerosols, coupling with turbulent mixing, and nano-particles. (author)

  17. Spatial distribution and temporal variation of chemical species in the bulk atmospheric aerosols collected at the Okinawa archipelago, Japan

    Science.gov (United States)

    Handa, D.; Somada, Y.; Ijyu, M.; Azechi, S.; Nakaema, F.; Arakaki, T.; Tanahara, A.

    2009-12-01

    The economic development and population growth in recent Asia have been increasing air pollution. A computer simulation study showed that air pollutants emitted from Asian continent could spread quickly within northern hemisphere. We initiated a study to elucidate the special distribution and chemical characterization of atmospheric aerosols around Okinawa archipelago, Japan. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location in Asia is well suited for studying long-range transport of air pollutants in East Asia because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air masses which have been affected by anthropogenic activities. We simultaneously collected bulk aerosol samples by using the same types of high volume air samplers at Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS, Okinawa Island), Kume Island (ca. 160 km south-west of CHAAMS) and Minami-daitou Island (ca. 320 km south-east of CHAAMS). We determined the concentrations of water-soluble anions, cations and dissolved organic carbon (DOC) using ion chromatography, atomic absorption spectrometry, and total organic carbon analyzer, respectively. We report and discuss spatial distribution and temporal variation of chemical species concentrations in bulk atmospheric aerosols collected during July, 2008 to July, 2009. We determine “background” concentration of chemical components in Okinawa archipelago. We then compare each chemical component among CHAAMS, Kume Island and Minami-daito Island to elucidate the influence of the long-range transport of chemical species from Asian continent.

  18. A Compact Mobile Ozone Lidar for Atmospheric Ozone and Aerosol Profiling

    Science.gov (United States)

    De Young, Russell; Carrion, William; Pliutau, Denis

    2014-01-01

    A compact mobile differential absorption lidar (DIAL) system has been developed at NASA Langley Research Center to provide ozone, aerosol and cloud atmospheric measurements in a mobile trailer for ground-based atmospheric ozone air quality campaigns. This lidar is integrated into the Tropospheric Ozone Lidar Network (TOLNet) currently made up of four other ozone lidars across the country. The lidar system consists of a UV and green laser transmitter, a telescope and an optical signal receiver with associated Licel photon counting and analog channels. The laser transmitter consist of a Q-switched Nd:YLF inter-cavity doubled laser pumping a Ce:LiCAF tunable UV laser with all the associated power and lidar control support units on a single system rack. The system has been configured to enable mobile operation from a trailer and was deployed to Denver, CO July 15-August 15, 2014 supporting the DISCOVER-AQ campaign. Ozone curtain plots and the resulting science are presented.

  19. Climate Implications of the Heterogeneity of Anthropogenic Aerosol Forcing

    Science.gov (United States)

    Persad, Geeta Gayatri

    Short-lived anthropogenic aerosols are concentrated in regions of high human activity, where they interact with radiation and clouds, causing horizontally heterogeneous radiative forcing between polluted and unpolluted regions. Aerosols can absorb shortwave energy in the atmosphere, but deplete it at the surface, producing opposite radiative perturbations between the surface and atmosphere. This thesis investigates climate and policy implications of this horizontal and vertical heterogeneity of anthropogenic aerosol forcing, employing the Geophysical Fluid Dynamics Laboratory's AM2.1 and AM3 models, both at a global scale and using East Asia as a regional case study. The degree of difference between spatial patterns of climate change due to heterogeneous aerosol forcing versus homogeneous greenhouse gas forcing deeply impacts the detection, attribution, and prediction of regional climate change. This dissertation addresses a gap in current understanding of these two forcings' response pattern development, using AM2.1 historical forcing simulations. The results indicate that fast atmospheric and land-surface processes alone substantially homogenize the global pattern of surface energy flux response to heterogeneous aerosol forcing. Aerosols' vertical redistribution of energy significantly impacts regional climate, but is incompletely understood. It is newly identified here, via observations and historical and idealized forcing simulations, that increased aerosol-driven atmospheric absorption may explain half of East Asia's recent surface insolation decline. Further, aerosols' surface and atmospheric effects counteract each other regionally---atmospheric heating enhances summer monsoon circulation, while surface dimming suppresses it---but absorbing aerosols' combined effects reduce summer monsoon rainfall. This thesis constitutes the first vertical decomposition of aerosols' impacts in this high-emissions region and elucidates the monsoonal response to aerosols

  20. Discontinuities in hygroscopic growth below and above water saturation for laboratory surrogates of oligomers in organic atmospheric aerosols

    Directory of Open Access Journals (Sweden)

    N. Hodas

    2016-10-01

    Full Text Available Discontinuities in apparent hygroscopicity below and above water saturation have been observed for organic and mixed organic–inorganic aerosol particles in both laboratory studies and in the ambient atmosphere. However, uncertainty remains regarding the factors that contribute to observations of low hygroscopic growth below water saturation but enhanced cloud condensation nuclei (CCN activity for a given aerosol population. Utilizing laboratory surrogates for oligomers in atmospheric aerosols, we explore the extent to which such discontinuities are influenced by organic component molecular mass and viscosity, non-ideal thermodynamic interactions between aerosol components, and the combination of these factors. Measurements of hygroscopic growth under subsaturated conditions and the CCN activity of aerosols comprised of polyethylene glycol (PEG with average molecular masses ranging from 200 to 10 000 g mol−1 and mixtures of PEG with ammonium sulfate (AS were conducted. Experimental results are compared to calculations of hygroscopic growth at thermodynamic equilibrium conducted with the Aerosol Inorganic Organic Mixtures Functional groups Activity Coefficients (AIOMFAC model, and the potential influence of kinetic limitations on observed water uptake was further explored through estimations of water diffusivity in the PEG oligomers. Particle-phase behavior, including the prevalence of liquid–liquid phase separation (LLPS, was also modeled with AIOMFAC. Under subsaturated relative humidity (RH conditions, we observed little variability in hygroscopic growth across PEG systems with different molecular masses; however, an increase in CCN activity with increasing PEG molecular mass was observed. This effect is most pronounced for PEG–AS mixtures, and, in fact, an enhancement in CCN activity was observed for the PEG10000–AS mixture as compared to pure AS, as evidenced by a 15 % reduction in critical activation diameter at a

  1. Sources and atmospheric processing of winter aerosols in Seoul, Korea: insights from real-time measurements using a high-resolution aerosol mass spectrometer

    Science.gov (United States)

    Kim, Hwajin; Zhang, Qi; Bae, Gwi-Nam; Kim, Jin Young; Bok Lee, Seung

    2017-02-01

    Highly time-resolved chemical characterization of nonrefractory submicrometer particulate matter (NR-PM1) was conducted in Seoul, the capital and largest metropolis of Korea, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The measurements were performed during winter, when elevated particulate matter (PM) pollution events are often observed. This is the first time that detailed real-time aerosol measurement results have been reported from Seoul, Korea, and they reveal valuable insights into the sources and atmospheric processes that contribute to PM pollution in this region. The average concentration of submicron aerosol (PM1 = NR-PM1+ black carbon (BC)) was 27.5 µg m-3, and the total mass was dominated by organics (44 %), followed by nitrate (24 %) and sulfate (10 %). The average atomic ratios of oxygen to carbon (O / C), hydrogen to carbon (H / C), and nitrogen to carbon (N / C) of organic aerosols (OA) were 0.37, 1.79, and 0.018, respectively, which result in an average organic mass-to-carbon (OM / OC) ratio of 1.67. The concentrations (2.6-90.7 µg m-3) and composition of PM1 varied dynamically during the measurement period due to the influences of different meteorological conditions, emission sources, and air mass origins. Five distinct sources of OA were identified via positive matrix factorization (PMF) analysis of the HR-ToF-AMS data: vehicle emissions represented by a hydrocarbon-like OA factor (HOA, O / C = 0.06), cooking activities represented by a cooking OA factor (COA, O / C = 0.14), wood combustion represented by a biomass burning OA factor (BBOA, O / C = 0.34), and secondary organic aerosol (SOA) represented by a semivolatile oxygenated OA factor (SV-OOA, O / C = 0.56) and a low-volatility oxygenated OA factor (LV-OOA, O / C = 0.68). On average, primary OA (POA = HOA + COA + BBOA) accounted for 59 % the OA mass, whereas SV-OOA and LV-OOA contributed 15 and 26 %, respectively. Our results indicate that air

  2. What is the impact of natural variability and aerosol-cloud interaction on the effective radiative forcing of anthropogenic aerosol?

    Science.gov (United States)

    Fiedler, S.; Stevens, B.; Mauritsen, T.

    2017-12-01

    State-of-the-art climate models have persistently shown a spread in estimates of the effective radiative forcing (ERF) associated with anthropogenic aerosol. Different reasons for the spread are known, but their relative importance is poorly understood. In this presentation we investigate the role of natural atmospheric variability, global patterns of aerosol radiative effects, and magnitudes of aerosol-cloud interaction in controlling the ERF of anthropogenic aerosol (Fiedler et al., 2017). We use the Earth system model MPI-ESM1.2 for conducting ensembles of atmosphere-only simulations and calculate the shortwave ERF of anthropogenic aerosol at the top of the atmosphere. The radiative effects are induced with the new parameterisation MACv2-SP (Stevens et al., 2017) that prescribes observationally constrained anthropogenic aerosol optical properties and an associated Twomey effect. Firstly, we compare the ERF of global patterns of anthropogenic aerosol from the mid-1970s and today. Our results suggest that such a substantial pattern difference has a negligible impact on the global mean ERF, when the natural variability of the atmosphere is considered. The clouds herein efficiently mask the clear-sky contributions to the forcing and reduce the detectability of significant anthropogenic aerosol radiative effects in all-sky conditions. Secondly, we strengthen the forcing magnitude through increasing the effect of aerosol-cloud interaction by prescribing an enhanced Twomey effect. In that case, the different spatial pattern of aerosol radiative effects from the mid-1970s and today causes a moderate change (15%) in the ERF of anthropogenic aerosol in our model. This finding lets us speculate that models with strong aerosol-cloud interactions would show a stronger ERF change with anthropogenic aerosol patterns. Testing whether the anthropogenic aerosol radiative forcing is model-dependent under prescribed aerosol conditions is currently ongoing work using MACv2-SP in

  3. Hygroscopic growth of water soluble organic carbon isolated from atmospheric aerosol collected at US national parks and Storm Peak Laboratory

    Science.gov (United States)

    Taylor, Nathan F.; Collins, Don R.; Lowenthal, Douglas H.; McCubbin, Ian B.; Gannet Hallar, A.; Samburova, Vera; Zielinska, Barbara; Kumar, Naresh; Mazzoleni, Lynn R.

    2017-02-01

    Due to the atmospheric abundance and chemical complexity of water soluble organic carbon (WSOC), its contribution to the hydration behavior of atmospheric aerosol is both significant and difficult to assess. For the present study, the hygroscopicity and CCN activity of isolated atmospheric WSOC particulate matter was measured without the compounding effects of common, soluble inorganic aerosol constituents. WSOC was extracted with high purity water from daily high-volume PM2.5 filter samples and separated from water soluble inorganic constituents using solid-phase extraction. The WSOC filter extracts were concentrated and combined to provide sufficient mass for continuous generation of the WSOC-only aerosol over the combined measurement time of the tandem differential mobility analyzer and coupled scanning mobility particle sizer-CCN counter used for the analysis. Aerosol samples were taken at Great Smoky Mountains National Park during the summer of 2006 and fall-winter of 2007-2008; Mount Rainier National Park during the summer of 2009; Storm Peak Laboratory (SPL) near Steamboat Springs, Colorado, during the summer of 2010; and Acadia National Park during the summer of 2011. Across all sampling locations and seasons, the hygroscopic growth of WSOC samples at 90 % RH, expressed in terms of the hygroscopicity parameter, κ, ranged from 0.05 to 0.15. Comparisons between the hygroscopicity of WSOC and that of samples containing all soluble materials extracted from the filters implied a significant modification of the hydration behavior of inorganic components, including decreased hysteresis separating efflorescence and deliquescence and enhanced water uptake between 30 and 70 % RH.

  4. Chemical characterisation of atmospheric aerosols during a 2007 summer field campaign at Brasschaat, Belgium: sources and source processes of biogenic secondary organic aerosol

    Directory of Open Access Journals (Sweden)

    Y. Gómez-González

    2012-01-01

    Full Text Available Measurements of organic marker compounds and inorganic species were performed on PM2.5 aerosols from a Belgian forest site that is severely impacted by urban pollution ("De Inslag", Brasschaat, Belgium during a 2007 summer period within the framework of the "Formation mechanisms, marker compounds, and source apportionment for biogenic atmospheric aerosols (BIOSOL" project. The measured organic species included (i low-molecular weight (MW dicarboxylic acids (LMW DCAs, (ii methanesulfonate (MSA, (iii terpenoic acids originating from the oxidation of α-pinene, β-pinene, d-limonene and Δ3-carene, and (iv organosulfates related to secondary organic aerosol from the oxidation of isoprene and α-pinene. The organic tracers explained, on average, 5.3 % of the organic carbon (OC, of which 0.7 % was due to MSA, 3.4 % to LMW DCAs, 0.6 % to organosulfates, and 0.6 % to terpenoic acids. The highest atmospheric concentrations of most species were observed during the first five days of the campaign, which were characterised by maximum day-time temperatures >22 °C. Most of the terpenoic acids and the organosulfates peaked during day-time, consistent with their local photochemical origin. High concentrations of 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA and low concentrations of cis-pinonic acid were noted during the first five days of the campaign, indicative of an aged biogenic aerosol. Several correlations between organic species were very high (r>0.85, high (0.7<r<0.85, or substantial (0.5<r<0.7, suggesting that they are generated through similar formation pathways. Substantial correlations with temperature were found for OC, water-soluble OC, MBTCA, and several other organic species. MBTCA and terebic acid were highly correlated with the temperature (r>0.7 and showed an Arrhenius-type relationship, consistent with their formation through OH radical chemistry.

  5. Is Distant Pollution Contaminating Local Air? Analyzing the Origins of Atmospheric Aerosols

    Directory of Open Access Journals (Sweden)

    David Geng

    2012-01-01

    Full Text Available Understanding the origin of aerosols in the atmosphere is important because of visual pollution, climate impacts, and deleterious health effects due to the inhalation of fine particles. This research analyzed aerosols characterized by their chloride, sulfate, and nitrate content as a function of size over a 3-month period. Due to wind patterns over coal-burning power plants, a higher concentration of local sulfate pollution was expected. Aerosols were harvested on the Purdue University campus using a high-volume air sampler with glass fiber filters and a five-stage impactor that separates the aerosols into five sizes. The filters were extracted in water to dissolve anions and the solution was analyzed using high-pressure liquid ion chromatography. Only trace amounts of chloride with no distinct patterns in size were detected. In total, nitrate content ranged from 0.12 to 2.10 μg/m3 and sulfate content ranged from 0.44 to 6.45 μg/m3 over a 3-month period. As for fine particles, a higher concentration of sulfate was observed. The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT model determines air mass origin, and in this study, higher total sulfate content was observed when the air mass moved out of the southwest, and higher total nitrate content was observed when the air mass originated from the southeast. The author concluded that small particles resulted in sulfate from sulfur dioxide, typically from gas to particle conversion. High sulfur dioxide levels are directly correlated with coal-burning power plant density. Small particulate sulfate found in West Lafayette, Indiana, was determined to originate primarily from power plants in southwest Indiana. Though the results do show a significant amount of potentially harmful aerosols in West Lafayette, there is still further research to be done concerning isotopic composition of those particles in attempts to better explain the chemical pathways.

  6. Aerosol effects in radiation transfer

    International Nuclear Information System (INIS)

    Binenko, V.I.; Harshvardhan, H.

    1993-01-01

    The radiative properties and effects of aerosols are assessed for the following aerosol sources: relatively clean background aerosol, dust storms and dust outbreaks, anthropogenic pollution, and polluted cloud layers. Studies show it is the submicron aerosol fraction that plays a dominant radiative role in the atmosphere. The radiative effect of the aerosol depends not only on its loading but also on the underlying surface albedo and on solar zenith angle. It is only with highly reflecting surfaces such as Arctic ice that aerosols have a warming effect. Radiometric, microphysical, mineral composition, and refractive index measurements are presented for dust and in particular for the Saharan aerosol layer (SAL). Short-wave radiative heating of the atmosphere is caused by the SAL and is due mainly to absorption. However, the SAL does not contribute significantly to the long-wave thermal radiation budget. Field program studies of the radiative effects of aerosols are described. Anthropogenic aerosols deplete the incoming solar radiation. A case field study for a regional Ukrainian center is discussed. The urban aerosol causes a cooling of metropolitan centers, compared with outlying areas, during the day, which is followed by a warming trend at night. In another study, an increase in turbidity by a factor of 3 due to increased industrialization for Mexico City is noted, together with a drop in atmospheric transmission by 10% over a 50-year period. Numerous studies are cited that demonstrate that anthropogenic aerosols affect both the microphysical and radiative properties of clouds, which in turn affect regional climate. Particles acting as cloud nuclei are considered to have the greatest indirect effect on cloud absorptivity of short-wave radiation. Satellite observations show that low-level stratus clouds contaminated by ship exhaust at sea lead to an increase in cloud albedo

  7. Dispersion of aerosol particles in the free atmosphere using ensemble forecasts

    Directory of Open Access Journals (Sweden)

    T. Haszpra

    2013-10-01

    Full Text Available The dispersion of aerosol particle pollutants is studied using 50 members of an ensemble forecast in the example of a hypothetical free atmospheric emission above Fukushima over a period of 2.5 days. Considerable differences are found among the dispersion predictions of the different ensemble members, as well as between the ensemble mean and the deterministic result at the end of the observation period. The variance is found to decrease with the particle size. The geographical area where a threshold concentration is exceeded in at least one ensemble member expands to a 5–10 times larger region than the area from the deterministic forecast, both for air column "concentration" and in the "deposition" field. We demonstrate that the root-mean-square distance of any particle from its own clones in the ensemble members can reach values on the order of one thousand kilometers. Even the centers of mass of the particle cloud of the ensemble members deviate considerably from that obtained by the deterministic forecast. All these indicate that an investigation of the dispersion of aerosol particles in the spirit of ensemble forecast contains useful hints for the improvement of risk assessment.

  8. Direct radiative forcing due to aerosols in Asia during March 2002.

    Science.gov (United States)

    Park, Soon-Ung; Jeong, Jaein I

    2008-12-15

    The Asian dust aerosol model (ADAM) and the aerosol dynamic model including the gas-aerosol interaction processes together with the Column Radiation Model (CRM) of Community Climate Model 3 and the output of the fifth generation of meso-scale model (MM5) in a grid 60 x 60 km2 in the Asian domain (70-150E, Equator-50N) have been employed to estimate direct radiative forcing of the Asian dust and the anthropogenic aerosols including the BC, OC, secondary inorganic aerosol (SIA), mixed type aerosol (dust+BC+OC+SIA) and sea salt aerosols at the surface, the top of atmosphere (TOA) and in the atmosphere for the period of 1-31 March 2002 during which a severe Asian dust event has been occurred in the model domain. The results indicate that the ADAM model and the aerosol dynamic model simulate quite well the spatial and temporal distributions of the mass concentration of aerosols with the R2 value of more than 0.7. The estimated mean total column aerosol mass in the analysis domain for the whole period is found to be about 78 mg m(-2), of which 66% and 34% are, respectively, contributed by the Asian dust aerosol and all the other anthropogenic aerosols. However, the direct radiative forcing contributed by the Asian dust aerosol is about 22% of the mean radiative forcing at the surface (-6.8 W m(-2)), about 31% at the top of atmosphere (-2.9 W m(-2)) and about 13% in the atmosphere (3.8 W m(-2)), suggesting relatively inefficient contribution of the Asian dust aerosol on the direct radiative forcing compared to the anthropogenic aerosols. The aerosol direct radiative forcing at the surface is mainly contributed by the mixed type aerosol (30%) and the SIA aerosol (25%) while at the top of atmosphere it is mainly contributed by the SIA aerosol (43%) and the Asian dust aerosol (31%) with positively (warming) contributed by BC and mixed type aerosols. The atmosphere is warmed mainly by the mixed type aerosol (55%) and the BC aerosol (26%). However, the largest radiative

  9. Direct radiative forcing due to aerosols in Asia during March 2002

    International Nuclear Information System (INIS)

    Park, Soon-Ung; Jeong, Jaein I.

    2008-01-01

    The Asian dust aerosol model (ADAM) and the aerosol dynamic model including the gas-aerosol interaction processes together with the Column Radiation Model (CRM) of Community Climate Model 3 and the output of the fifth generation of meso-scale model (MM5) in a grid 60 x 60 km 2 in the Asian domain (70-150E, Equator-50N) have been employed to estimate direct radiative forcing of the Asian dust and the anthropogenic aerosols including the BC, OC, secondary inorganic aerosol (SIA), mixed type aerosol (dust + BC + OC + SIA) and sea salt aerosols at the surface, the top of atmosphere (TOA) and in the atmosphere for the period of 1-31 March 2002 during which a severe Asian dust event has been occurred in the model domain. The results indicate that the ADAM model and the aerosol dynamic model simulate quite well the spatial and temporal distributions of the mass concentration of aerosols with the R 2 value of more than 0.7. The estimated mean total column aerosol mass in the analysis domain for the whole period is found to be about 78 mg m -2 , of which 66% and 34% are, respectively, contributed by the Asian dust aerosol and all the other anthropogenic aerosols. However, the direct radiative forcing contributed by the Asian dust aerosol is about 22% of the mean radiative forcing at the surface (- 6.8 W m -2 ), about 31% at the top of atmosphere (- 2.9 W m -2 ) and about 13% in the atmosphere (3.8 W m -2 ), suggesting relatively inefficient contribution of the Asian dust aerosol on the direct radiative forcing compared to the anthropogenic aerosols. The aerosol direct radiative forcing at the surface is mainly contributed by the mixed type aerosol (30%) and the SIA aerosol (25%) while at the top of atmosphere it is mainly contributed by the SIA aerosol (43%) and the Asian dust aerosol (31%) with positively (warming) contributed by BC and mixed type aerosols. The atmosphere is warmed mainly by the mixed type aerosol (55%) and the BC aerosol (26%). However, the largest

  10. The Atmospheric Radiation Measurement Program May 2003 Intensive Operations Period Examining Aerosol Properties and Radiative Influences: Preface to Special Section

    Science.gov (United States)

    Ferrare, Richard; Feingold, Graham; Ghan, Steven; Ogren, John; Schmid, Beat; Schwartz, Stephen E.; Sheridan, Pat

    2006-01-01

    Atmospheric aerosols influence climate by scattering and absorbing radiation in clear air (direct effects) and by serving as cloud condensation nuclei, modifying the microphysical properties of clouds, influencing radiation and precipitation development (indirect effects). Much of present uncertainty in forcing of climate change is due to uncertainty in the relations between aerosol microphysical and optical properties and their radiative influences (direct effects) and between microphysical properties and their ability to serve as cloud condensation nuclei at given supersaturations (indirect effects). This paper introduces a special section that reports on a field campaign conducted at the Department of Energy Atmospheric Radiation Measurement site in North Central Oklahoma in May, 2003, examining these relations using in situ airborne measurements and surface-, airborne-, and space-based remote sensing.

  11. An estimation of impact of anthropogenic aerosols in atmosphere of Tirana on solar insolation. Part II: Modification of solar energy potential

    Energy Technology Data Exchange (ETDEWEB)

    Buzra, Urim, E-mail: rimibuzra@yahoo.com; Berberi, Pellumb; Mitrushi, Driada; Muda, Valbona [Department of Engineering Physics, FIMIF, PUT, Tirana (Albania); Halili, Daniela [Department of physics, FNS, AXHU, Elbasan (Albania); Berdufi, Irma [Institute of Nuclear Physics, INP, TU, Tirana (Albania)

    2016-03-25

    Change of irradiative properties of the atmosphere during clear days is an indicator, among others, of existence of atmospheric aerosols and can be used as an indicator for assessment both air pollution and local modifications of solar energy potentials. The main objective of this study is estimation of influence of anthropogenic aerosols on solar energy falling in a horizontal surface during a cloudless day. We have analyzed and quantified the effect of aerosols on reducing the amount of solar energy that falls on the horizontal ground surface in cloudless sky conditions, estimating temporal evolution, both in daily and hour scale, considering also, side effects caused by relative humidity of the air wind speed and geometric factor. As an indicator of concentration of aerosols in atmosphere, we agreed to use the attenuation of solar radiation after the last rainy day. All data were corrected by factors such as, variations of relative humidity, wind speed and daily change of incident angle of solar radiation. We studied the change of solar insolation in three sites with different traffic intensity, one in city of Shkodra and two in city of Tirana. Fifteen days after last rainy day, approximate time needed to achieve saturation, the insolation drops only 3.1% in the city of Shkodra, while in two sites in city of Tirana are 8.5 % and 18.4%. These data show that reduction of solar insolation is closely related with anthropogenic activity, mainly traffic around the site of the meteorological station. The day to day difference tends to decrease with increasing of number of days passed from the last rainy day, which is an evidence of a trend toward a dynamic equilibrium between decantation process of aerosols during the night and their generation during the day.

  12. Atmospheric dispersion of sodium aerosol due to a sodium leak in a fast breeder reactor complex

    International Nuclear Information System (INIS)

    Punitha, G.; Sudha, A. Jasmin; Kasinathan, N.; Rajan, M.

    2008-01-01

    Liquid sodium at high temperatures (470 K to 825 K) is used as the primary and secondary coolant in Liquid Metal cooled Fast Breeder Reactors (LMFBR). In the event of a postulated sodium leak in the Steam Generator Building (SGB) of a LMFBR, sodium readily combusts in the ambient air, especially at temperatures above 523 K. Intense sodium fire results and sodium oxide fumes are released as sodium aerosols. Sodium oxides are readily converted to sodium hydroxide in air due to the presence of moisture in it. Hence, sodium aerosols are invariably in the form of particulate sodium hydroxide. These aerosols damage not only the equipment and instruments due to their corrosive nature but also pose health hazard to humans. Hence, it is essential to estimate the concentration of sodium aerosols within the plant boundary for a sodium leak event. The Gaussian Plume Dispersion Model can obtain the atmospheric dispersion of sodium aerosols in an open terrain. However, this model dose not give accurate results for dispersion in spaces close to the point of release and with buildings in between. The velocity field due to the wind is altered to a large extent by the intervening buildings and structures. Therefore, a detailed 3-D estimation of the velocity field and concentration has to be obtained through rigorous computational fluid dynamics (CFD) approach. PHOENICS code has been employed to determine concentration of sodium aerosols at various distances from the point of release. The dispersion studies have been carried out for the release of sodium aerosols at different elevations from the ground and for different wind directions. (author)

  13. Urban light pollution - The effect of atmospheric aerosols on astronomical observations at night

    Science.gov (United States)

    Joseph, Joachim H.; Mekler, Yuri; Kaufman, Yoram J.

    1991-01-01

    The transfer of diffuse city light from a localized source through a dust-laden atmosphere with optical depth less than 0.5 has been analyzed in the source-observer plane on the basis of an approximate treatment. The effect on several types of astronomical observation at night has been studied, considering different size distributions and amounts as well as particle shapes of the aerosols. The analysis is made in terms of the signal-to-noise ratios for a given amount of aerosol. The model is applied to conditions at the Wise Astronomical Observatory in the Negev desert, and limiting backgrounds for spectroscopy, photometry, and photography of stars and extended objects have been calculated for a variety of signal-to-noise ratios. Applications to observations with different equipment at various distances from an urban area of any size are possible. Due to the use of signal-to-noise ratios, the conclusions are different for the different experimental techniques used in astronomy.

  14. Atmosphere aerosol/dust composition over central Asia and western Siberia derived from snow/ice core records and calibrated with NASA remote sensing data

    Science.gov (United States)

    Aizen, V. B.; Aizen, E. M.; Joswiak, D. R.; Surazakov, A. B.; Takeuchi, N.

    2007-12-01

    The vast arid and semi-arid regions of central Asia, Mongolia, and Northern China are the world's second largest source of atmospheric mineral dust. In recent years, severe dust storms in Asia have intensified in frequency, duration, and areal coverage. However, limited spatial and temporal extent of aerosol measurements precludes definitive statements to be made regarding relationship between the Asian aerosol generation and climate. It has been well known that glaciers are the natural archives of environmental records related to past climate and aerosol generation. In our research, we utilized central Asian and western Siberia shallow ice-core records recovered from Altai, Tien Shan and Pamir mountain glaciers. Despite the fact that ice-core data may extend climate/aerosol records back in time, their sparse coverage is inadequate to document aerosol spatial distribution. The NASA products from Aura, Terra and Aqua satellite missions address this gap identifying aerosol sources, transport pathways, and area of deposition. The main objective of our research is to evaluate an affect of climate variability on dynamics of Asian aerosol loading to atmosphere and changes in aerosol transport pathways. Dust particle, major and rare earth element analysis from dust aerosols deposited and accumulated in Altai, Tien Shan and Pamir glaciers suggests that loess from Tajikistan, Afghanistan and north-western China are main sources of aerosol loading into the upper troposphere over the central Asia and western Siberia. At the same time, the soluble ionic component of the ice-cores, related to aerosol generated from evaporate deposits, demonstrated both anthropogenic and natural impacts on atmospheric chemistry over these regions. Large perturbations of Ca2+ derived from CaCO3- rich dust transported from Goby Desert to Altai and Tien Shan. Origin and pathway of the ice-core aerosol depositions for the last 10-years were identified through calibrating ice-core records with dust

  15. Ground-based Polarization Remote Sensing of Atmospheric Aerosols and the Correlation between Polarization Degree and PM2.5

    International Nuclear Information System (INIS)

    Cheng, Chen; Zhengqiang, Li; Weizhen, Hou; Yisong, Xie; Donghui, Li; Kaitao, Li; Ying, Zhang

    2014-01-01

    The ground-based polarization remote sensing adds the polarization dimension information to traditional intensity detection, which provides a new method to detect atmospheric aerosols properties. In this paper, the polarization measurements achieved by a new multi-wavelength sun photometer, CE318-DP, are used for the ground-based remote sensing of atmospheric aerosols. In addition, a polarized vector radiative transfer model is introduced to simulate the DOLP (Degree Of Linear Polarization) under different sky conditions. At last, the correlative analysis between mass density of PM 2.5 and multi-wavelength and multi-angular DOLP is carried out. The result shows that DOLP has a high correlation with mass density of PM 2.5 , R 2 >0.85. As a consequence, this work provides a new method to estimate the mass density of PM 2.5 by using the comprehensive network of ground-based sun photometer

  16. Long term change in atmospheric dust absorption, dust scattering and black carbon aerosols scattering coefficient parameters over western Indian locations

    Science.gov (United States)

    Satoliya, Anil Kumar; Vyas, B. M.; Shekhawat, M. S.

    2018-05-01

    The first time satellite space based measurement of atmospheric black carbon (BC) aerosols scattering coefficient at 550nm (BC SC at 550nm), dust aerosols scattering and dust aerosols extinction coefficient (DSC at 550nm and DEC at 550nm) parameters have been used to understand their long term trend of natural and anthropogenic aerosols behavior with its close association with ground based measured precipitation parameters such as Total Rain Fall (TRF), and Total Number of Rainy Days (TNRD) for the same period over western Indian regions concerned to the primary aerosols sources of natural activities. The basic objective of this study is an attempt to investigate the inter-correlation between dust and black carbon aerosols loading characteristics with a variation of rainfall pattern parameters as indirect aerosols induced effect i.e., aerosols-cloud interaction. The black carbon aerosols generated by diverse anthropogenic or human made activities are studied by choosing of measured atmospheric BC SC at 550nm parameter, whereas desert dust mineral aerosols primarily produced by varieties of natural activities pre-dominated of dust mineral desert aerosols mainly over Thar desert influenced area of hot climate and rural tropical site are investigated by selecting DSC at 550nm and DEC at 550nm of first semi-urban site i.e., Udaipur (UDP, 24.6°N, 73.35°E, 580m above surface level (asl)) situated in southern Rajasthan part as well as over other two Great Indian Thar desert locations i.e., Jaisalmer (JSM, 26.90°N, 69.90°E, 220m asl)) and Bikaner (BKN, 28.03°N, 73.30°E, 224m asl) located in the vicinity of the Thar desert region situated in Rajasthan state of the western Indian region. The source of the present study would be collection of longer period of monthly values of the above parameters of spanning 35 years i.e., 1980 to 2015. Such types of atmospheric aerosols-cloud monsoon interaction investigation is helpful in view of understanding their direct and

  17. Characterization of free amino acids, bacteria and fungi in size-segregated atmospheric aerosols in boreal forest: seasonal patterns, abundances and size distributions

    Science.gov (United States)

    Helin, Aku; Sietiö, Outi-Maaria; Heinonsalo, Jussi; Bäck, Jaana; Riekkola, Marja-Liisa; Parshintsev, Jevgeni

    2017-11-01

    Primary biological aerosol particles (PBAPs) are ubiquitous in the atmosphere and constitute ˜ 30 % of atmospheric aerosol particle mass in sizes > 1 µm. PBAP components, such as bacteria, fungi and pollen, may affect the climate by acting as cloud-active particles, thus having an effect on cloud and precipitation formation processes. In this study, size-segregated aerosol samples ( 10 µm) were collected in boreal forest (Hyytiälä, Finland) during a 9-month period covering all seasons and analysed for free amino acids (FAAs), DNA concentration and microorganism (bacteria, Pseudomonas and fungi). Measurements were performed using tandem mass spectrometry, spectrophotometry and qPCR, respectively. Meteorological parameters and statistical analysis were used to study their atmospheric implication for results. Distinct annual patterns of PBAP components were observed, late spring and autumn being seasons of dominant occurrence. Elevated abundances of FAAs and bacteria were observed during the local pollen season, whereas fungi were observed at the highest level during autumn. Meteorological parameters such as air and soil temperature, radiation and rainfall were observed to possess a close relationship with PBAP abundances on an annual scale.

  18. Seasonal variation of water-soluble chemical components in the bulk atmospheric aerosols collected at Okinawa Island, Japan

    Science.gov (United States)

    Handa, D.; Nakajima, H.; Nakaema, F.; Arakaki, T.; Tanahara, A.

    2008-12-01

    The economic development and population growth in recent Asia spread air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. The study of the air pollution transported from Asian continent has gained a special attention in Japan. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location is ideal in observing East Asian atmospheric aerosols because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air masses which have been affected by anthropogenic activities. In 2005, Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) was established by the National Institute for Environmental Studies (NIES) at the northern tip of Okinawa Island, Japan to monitor the air quality of Asia. Bulk aerosol samples were collected on quartz filters by using a high volume air sampler. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations and dissolved organic carbon in the bulk aerosols collected at the CHAAMS, using ion chromatography, atomic absorption spectrometry, and total organic carbon analyzer, respectively. Seasonal variation of water-soluble chemical components showed that the concentrations were relatively low in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian Continent, the concentrations of water-soluble chemical components were much higher compared to the other directions.

  19. A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations.

    Science.gov (United States)

    Csavina, Janae; Field, Jason; Taylor, Mark P; Gao, Song; Landázuri, Andrea; Betterton, Eric A; Sáez, A Eduardo

    2012-09-01

    Contaminants can be transported rapidly and over relatively long distances by atmospheric dust and aerosol relative to other media such as water, soil and biota; yet few studies have explicitly evaluated the environmental implications of this pathway, making it a fundamental but understudied transport mechanism. Although there are numerous natural and anthropogenic activities that can increase dust and aerosol emissions and contaminant levels in the environment, mining operations are notable with respect to the quantity of particulates generated, the global extent of area impacted, and the toxicity of contaminants associated with the emissions. Here we review (i) the environmental fate and transport of metals and metalloids in dust and aerosol from mining operations, (ii) current methodologies used to assess contaminant concentrations and particulate emissions, and (iii) the potential health and environmental risks associated with airborne contaminants from mining operations. The review evaluates future research priorities based on the available literature and suggest that there is a particular need to measure and understand the generation, fate and transport of airborne particulates from mining operations, specifically the finer particle fraction. More generally, our findings suggest that mining operations play an important but underappreciated role in the generation of contaminated atmospheric dust and aerosol and the transport of metal and metalloid contaminants, and highlight the need for further research in this area. The role of mining activities in the fate and transport of environmental contaminants may become increasingly important in the coming decades, as climate change and land use are projected to intensify, both of which can substantially increase the potential for dust emissions and transport. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. A Review on the Importance of Metals and Metalloids in Atmospheric Dust and Aerosol from Mining Operations

    Science.gov (United States)

    Csavina, Janae; Field, Jason; Taylor, Mark P.; Gao, Song; Landázuri, Andrea; Betterton, Eric A.; Sáez, A. Eduardo

    2012-01-01

    Contaminants can be transported rapidly and over relatively long distances by atmospheric dust and aerosol relative to other media such as water, soil and biota; yet few studies have explicitly evaluated the environmental implications of this pathway, making it a fundamental but understudied transport mechanism. Although there are numerous natural and anthropogenic activities that can increase dust and aerosol emissions and contaminant levels in the environment, mining operations are notable with respect to the quantity of particulates generated, the global extent of area impacted, and the toxicity of contaminants associated with the emissions. Here we review (i) the environmental fate and transport of metals and metalloids in dust and aerosol from mining operations, (ii) current methodologies used to assess contaminant concentrations and particulate emissions, and (iii) the potential health and environmental risks associated with airborne contaminants from mining operations. The review evaluates future research priorities based on the available literature and suggest that there is a particular need to measure and understand the generation, fate and transport of airborne particulates from mining operations, specifically the finer particle fraction. More generally, our findings suggest that mining operations play an important but underappreciated role in the generation of contaminated atmospheric dust and aerosol and the transport of metal and metalloid contaminants, and highlight the need for further research in this area. The role of mining activities in the fate and transport of environmental contaminants may become increasingly important in the coming decades, as climate change and land use are projected to intensify, both of which can substantially increase the potential for dust emissions and transport. PMID:22766428

  1. Secondary organic aerosol formation from in-use motor vehicle emissions using a potential aerosol mass reactor.

    Science.gov (United States)

    Tkacik, Daniel S; Lambe, Andrew T; Jathar, Shantanu; Li, Xiang; Presto, Albert A; Zhao, Yunliang; Blake, Donald; Meinardi, Simone; Jayne, John T; Croteau, Philip L; Robinson, Allen L

    2014-10-07

    Secondary organic aerosol (SOA) formation from in-use vehicle emissions was investigated using a potential aerosol mass (PAM) flow reactor deployed in a highway tunnel in Pittsburgh, Pennsylvania. Experiments consisted of passing exhaust-dominated tunnel air through a PAM reactor over integrated hydroxyl radical (OH) exposures ranging from ∼ 0.3 to 9.3 days of equivalent atmospheric oxidation. Experiments were performed during heavy traffic periods when the fleet was at least 80% light-duty gasoline vehicles on a fuel-consumption basis. The peak SOA production occurred after 2-3 days of equivalent atmospheric oxidation. Additional OH exposure decreased the SOA production presumably due to a shift from functionalization to fragmentation dominated reaction mechanisms. Photo-oxidation also produced substantial ammonium nitrate, often exceeding the mass of SOA. Analysis with an SOA model highlight that unspeciated organics (i.e., unresolved complex mixture) are a very important class of precursors and that multigenerational processing of both gases and particles is important at longer time scales. The chemical evolution of the organic aerosol inside the PAM reactor appears to be similar to that observed in the atmosphere. The mass spectrum of the unoxidized primary organic aerosol closely resembles ambient hydrocarbon-like organic aerosol (HOA). After aging the exhaust equivalent to a few hours of atmospheric oxidation, the organic aerosol most closely resembles semivolatile oxygenated organic aerosol (SV-OOA) and then low-volatility organic aerosol (LV-OOA) at higher OH exposures. Scaling the data suggests that mobile sources contribute ∼ 2.9 ± 1.6 Tg SOA yr(-1) in the United States, which is a factor of 6 greater than all mobile source particulate matter emissions reported by the National Emissions Inventory. This highlights the important contribution of SOA formation from vehicle exhaust to ambient particulate matter concentrations in urban areas.

  2. The size distribution of marine atmospheric aerosol with regard to primary biological aerosol particles over the South Atlantic Ocean

    Science.gov (United States)

    Matthias-Maser, Sabine; Brinkmann, Jutta; Schneider, Wilhelm

    The marine atmosphere is characterized by particles which originate from the ocean and by those which reached the air by advection from the continent. The bubble-burst mechanism produces both sea salt as well as biological particles. The following article describes the determination of the size distribution of marine aerosol particles with special emphasis on the biological particles. Th data were obtained on three cruises with the German Research Vessel "METEOR" crossing the South Atlantic Ocean. The measurements showed that biological particles amount to 17% in number and 10% in volume concentration. Another type of particle became obvious in the marine atmosphere, the biologically contaminated particle, i.e. particles which consist partly (approximately up to one-third) of biological matter. Their concentration in the evaluated size class ( r>2 μm) is higher than the concentration of the pure biological particles. The concentrations vary over about one to two orders of magnitude during all cruises.

  3. Water content of aged aerosol

    OpenAIRE

    G. J. Engelhart; L. Hildebrandt; E. Kostenidou; N. Mihalopoulos; N. M. Donahue; S. N. Pandis

    2010-01-01

    The composition and physical properties of aged atmospheric aerosol were characterized at a remote sampling site on the northern coast of Crete, Greece during the Finokalia Aerosol Measurement Experiment in May 2008 (FAME-2008). A reduced Dry-Ambient Aerosol Size Spectrometer (DAASS) was deployed to measure the aerosol water content and volumetric growth factor of fine particulate matter. The particles remained wet even at relative humidity (RH) as low as 20%. The aerosol was acidic during mo...

  4. Response of northern hemisphere environmental and atmospheric conditions to climate changes using Greenland aerosol records from the Eemian to the Holocene

    Science.gov (United States)

    Fischer, H.

    2017-12-01

    The Northern Hemisphere experienced dramatic climate changes over the last glacial cycle, including vast ice sheet expansion and frequent abrupt climate events. Moreover, high northern latitudes during the last interglacial (Eemian) were warmer than today and may provide guidance for future climate change scenarios. However, little evidence exists regarding the environmental alterations connected to these climate changes. Using aerosol concentration records in decadal resolution from the North Greenland Eemian Ice Drilling (NEEM) over the last 128,000 years we extract quantitative information on environmental changes, including the first comparison of northern hemisphere environmental conditions between the warmer than present Eemian and the early Holocene. Separating source changes from transport effects, we find that changes in the ice concentration greatly overestimate the changes in atmospheric concentrations in the aerosol source region, the latter mirroring changes in aerosol emissions. Glacial times were characterized by a strong reduction in terrestrial biogenic emissions (only 10-20% of the early Holocene value) reflecting the net loss of vegetated area in mid to high latitudes, while rapid climate changes during the glacial had essentially no effect on terrestrial biogenic aerosol emissions. An increase in terrestrial dust emissions of approximately a factor of eight during peak glacial and cold stadial intervals indicates higher aridity and dust storm activity in Asian deserts. Glacial sea salt aerosol emissions increased only moderately (by approximately 50%), likely due to sea ice expansion, while marked stadial/interstadial variations in sea salt concentrations in the ice reflect mainly changes in wet deposition en route. Eemian ice contains lower aerosol concentrations than ice from the early Holocene, due to shortened atmospheric residence time during the warmer Eemian, suggesting that generally 2°C warmer climate in high northern latitudes did not

  5. Aerosols CFA 97

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    During the thirteen congress on aerosols several papers were presented about the behaviour of radioactive aerosols and their impact on environment, or the exposure to radon and to its daughters, the measurement of the size of the particulates of the short-lived radon daughters and two papers about the behaviour of aerosols in containment during a fission products release in the primary circuit and susceptible to be released in atmosphere in the case of containment failure. (N.C.)

  6. Method for characterization of low molecular weight organic acids in atmospheric aerosols using ion chromatography mass spectrometry.

    Science.gov (United States)

    Brent, Lacey C; Reiner, Jessica L; Dickerson, Russell R; Sander, Lane C

    2014-08-05

    The structural composition of PM2.5 monitored in the atmosphere is usually divided by the analysis of organic carbon, black (also called elemental) carbon, and inorganic salts. The characterization of the chemical composition of aerosols represents a significant challenge to analysts, and studies are frequently limited to determination of aerosol bulk properties. To better understand the potential health effects and combined interactions of components in aerosols, a variety of measurement techniques for individual analytes in PM2.5 need to be implemented. The method developed here for the measurement of organic acids achieves class separation of aliphatic monoacids, aliphatic diacids, aromatic acids, and polyacids. The selective ion monitoring capability of a triple quadropole mass analyzer was frequently capable of overcoming instances of incomplete separations. Standard Reference Material (SRM) 1649b Urban Dust was characterized; 34 organic acids were qualitatively identified, and 6 organic acids were quantified.

  7. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the UK

    Science.gov (United States)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-05-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the UK. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in

  8. Atmospheric aerosols in Rome, Italy: sources, dynamics and spatial variations during two seasons

    Directory of Open Access Journals (Sweden)

    C. Struckmeier

    2016-12-01

    Full Text Available Investigations on atmospheric aerosols and their sources were carried out in October/November 2013 and May/June 2014 consecutively in a suburban area of Rome (Tor Vergata and in central Rome (near St Peter's Basilica. During both years a Saharan dust advection event temporarily increased PM10 concentrations at ground level by about 12–17 µg m−3. Generally, in October/November the ambient aerosol was more strongly influenced by primary emissions, whereas higher relative contributions of secondary particles (sulfate, aged organic aerosol were found in May/June. Absolute concentrations of anthropogenic emission tracers (e.g. NOx, CO2, particulate polycyclic aromatic hydrocarbons, traffic-related organic aerosol were generally higher at the urban location. Positive matrix factorization was applied to the PM1 organic aerosol (OA fraction of aerosol mass spectrometer (HR-ToF-AMS data to identify different sources of primary OA (POA: traffic, cooking, biomass burning and (local cigarette smoking. While biomass burning OA was only found at the suburban site, where it accounted for the major fraction of POA (18–24 % of total OA, traffic and cooking were more dominant sources at the urban site. A particle type associated with cigarette smoke emissions, which is associated with a potential characteristic marker peak (m∕z 84, C5H10N+, a nicotine fragment in the mass spectrum, was only found in central Rome, where it was emitted in close vicinity to the measurement location. Regarding secondary OA, in October/November, only a very aged, regionally advected oxygenated OA was found, which contributed 42–53 % to the total OA. In May/June total oxygenated OA accounted for 56–76 % of the OA. Here a fraction (18–26 % of total OA of a fresher, less oxygenated OA of more local origin was also observed. New particle formation events were identified from measured particle number concentrations and size distributions in May/June 2014 at

  9. Aerosol processes relevant for the Netherlands

    NARCIS (Netherlands)

    Brugh, Aan de J.M.J.

    2013-01-01

    Particulate matter (or aerosols) are particles suspended in the atmosphere. Aerosols are believed to be the most important pollutant associated with increased human mortality and morbidity. Therefore, it is important to investigate the relationship between sources of aerosols (such as industry)

  10. Atmospheric aerosols size distribution properties in winter and pre-monsoon over western Indian Thar Desert location

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, Chhagan, E-mail: chhaganpanwar@gmail.com; Vyas, B. M. [Department of Physics, M.L. Sukhadia University, Udaipur-313001 (India)

    2016-05-06

    The first ever experimental results over Indian Thar Desert region concerning to height integrated aerosols size distribution function in particles size ranging between 0.09 to 2 µm such as, aerosols columnar size distribution (CSD), effective radius (R{sub eff}), integrated content of total aerosols (N{sub t}), columnar content of accumulation and coarse size aerosols particles concentration (N{sub a}) (size < 0.5 µm) and (N{sub c}) (size between 0.5 to 2 µm) have been described specifically during winter (a stable weather condition and intense anthropogenic pollution activity period) and pre-monsoon (intense dust storms of natural mineral aerosols as well as unstable atmospheric weather condition period) at Jaisalmer (26.90°N, 69.90°E, 220 m above surface level (asl)) located in central Thar desert vicinity of western Indian site. The CSD and various derived other aerosols size parameters are retrieved from their average spectral characteristics of Aerosol Optical Thickness (AOT) from UV to Infrared wavelength spectrum measured from Multi-Wavelength solar Radiometer (MWR). The natures of CSD are, in general, bio-modal character, instead of uniformly distributed character and power law distributions. The observed primary peaks in CSD plots are seen around about 10{sup 13} m{sup 2} μm{sup −1} at radius range 0.09-0.20 µm during both the seasons. But, in winter months, secondary peaks of relatively lower CSD values of 10{sup 10} to 10{sup 11} m{sup 2}/μm{sup −1} occur within a lower radius size range 0.4 to 0.6 µm. In contrast to this, while in dust dominated and hot season, the dominated secondary maxima of the higher CSD of about 10{sup 12} m{sup 2}μm{sup −3} is found of bigger aerosols size particles in a rage of 0.6 to 1.0 µm which is clearly demonstrating the characteristics of higher aerosols laden of bigger size aerosols in summer months relative to their prevailed lower aerosols loading of smaller size aerosols particles (0

  11. Radioactive aerosols. [In Russian

    Energy Technology Data Exchange (ETDEWEB)

    Natanson, G L

    1956-01-01

    Tabulations are given presenting various published data on safe atmospheric concentrations of various radioactive and non-radioactive aerosols. Methods of determination of active aerosol concentrations and dispersion as well as the technical applications of labeled aerosols are discussed. The effect of atomic explosions are analyzed considering the nominal atomic bomb based on /sup 235/U and /sup 232/Pu equivalent to 20,000 tons of TNT.

  12. Atmospheric pollution. From processes to modelling

    International Nuclear Information System (INIS)

    Sportisse, B.

    2008-01-01

    Air quality, greenhouse effect, ozone hole, chemical or nuclear accidents.. All these phenomena are tightly linked to the chemical composition of atmosphere and to the atmospheric dispersion of pollutants. This book aims at supplying the main elements of understanding of 'atmospheric pollutions': stakes, physical processes involved, role of scientific expertise in decision making. Content: 1 - classifications and scales: chemical composition of the atmosphere, vertical structure, time scales (transport, residence); 2 - matter/light interaction: notions of radiative transfer, application to the Earth's atmosphere; 3 - some elements about the atmospheric boundary layer: notion of scales in meteorology, atmospheric boundary layer (ABL), thermal stratification and stability, description of ABL turbulence, elements of atmospheric dynamics, some elements about the urban climate; 4 - notions of atmospheric chemistry: characteristics, ozone stratospheric chemistry, ozone tropospheric chemistry, brief introduction to indoor air quality; 5 - aerosols, clouds and rains: aerosols and particulates, aerosols and clouds, acid rains and leaching; 6 - towards numerical simulation: equation of reactive dispersion, numerical methods for chemistry-transport models, numerical resolution of the general equation of aerosols dynamics (GDE), modern simulation chains, perspectives. (J.S.)

  13. Granulometric determinations and inhalation dose assessment for atmospheric aerosol contaminated by 137Cs

    International Nuclear Information System (INIS)

    Castellani, C.M.; Luciani, A.; Oliviero, L.; Donato, R.

    1996-07-01

    During the redevelopment of Brescia freight-yard a measurement campaign of atmospheric aerosol was carried out: in fact a 137 Cs ground contamination, caused by the permanence of wagons carrying iron materials contaminated by this radionuclide, had been found out. During the redevelopment phases of excavation and can filling the workers were exposed to the danger of radioactive aerosol inhalation. The aim of the measurement campaign was to test the aerosol sampling and granulometric analysis methodologies with their sensitivity related to the inhalation dose assessments. The results of both aerosuspended mass and activity, evaluated by means of a portable cascade impactor, are presented. The granulometries have been interpolated with a log normal distribution using an iterative routine minimizing the square deviation between the calculated and experimental data. The results related to the dose assessments are also presented. These evaluations have been carried out using both the granulometric information obtained and the more recent models (ICRP 66) both the total concentration data and the dose coefficients referring to the standard conditions of ICRP 68 and of the Italian law (D.Lgs. 230/95). Furthermore the significance and the reliability of the dose assessments referring to the different methodologies are discussed, also in relation to the possibility of using this sampling methodologies for other radionuclides and different exposure conditions

  14. Size distribution of natural aerosols and radioactive particles issued from radon, in marine and hardly polluted urban atmospheres

    International Nuclear Information System (INIS)

    Tymen, Georges.

    1979-03-01

    With a view to studying the natural radioactive particles produced by atttachment of 222 Rn daughters on environmental aerosol particles, the behaviours of CASELLA MK2 and ANDERSEN cascade impactors were first investigated. Their characteristic stage diameters were determined and size distributions of airborne particles were obtained in various situations. Moreover, an experimental and automatic equipment for measuring radon was devised and a method was developed in order to evaluate RaA, RaB, RaC concentrations in the free atmosphere. A degree of radioactive desequilibrium between 222 Rn and its daughters, more important than that in other locations was thus demonstrated. Furthermore, by means of various aerosol collection systems (ion tubes, diffusion batteries, cascade impactors, filters), the cumulative size distribution of natural radioactivity was established in the air, at ground level. Finally, from a theory of attachment of small radioactive ions on atmospheric particles, a tentative explanation of experimental results was made [fr

  15. Characterization of atmospheric aerosols in Chichi of the Ogasawara (Bonin) Islands

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizumi, K.; Asakuno, K.

    1986-01-01

    Atmospheric aerosols in Chichi of the Ogasawara (Bonin) Islands, which is isolated by approximately 1000 km from the main island of Japan in the Pacific Ocean, were investigated by using an Andersen sampler. The ratio of Na to Cl in the aerosol was almost consistent with that is seawater. The Cl discrepancy of 3.1% to total Cl amount on the mole basis was explained by the Cl loss from a sea salt particle through the formation of NaNO/sub 3/. Al and V were considered to be derived from soil and fuel oil burning fly ash which were distributed dominatively in the coarse and fine particle ranges, respectively. It was shown that most of the nitrate consisted of NaNO/sub 3/ which was distributed in the coarse particle range. In addition, a very small amount of NH/sub 4/NO/sub 3/ was observed with a peak in the fine particle range. The sulfate was found to be distributed in a bimodal form with a peak in the coarse particle range which was derived from seawater, and a peak in the fine particle range which would be ascribed to sulfate converted from oceanic DMS. Finally, the inventory of total suspended particulate matter was presented.

  16. Preface to the Special Issue on Climate-Chemistry Interactions: Atmospheric Ozone, Aerosols, and Clouds over East Asia

    Directory of Open Access Journals (Sweden)

    Wei-Chyung Wang and Jen-Ping Chen

    2007-01-01

    Full Text Available Atmospheric radiatively-important chemical constituents (e.g., O3 and aerosols are important to maintain the radiation balance of the Earth-atmosphere climate system, and changes in their concentration due to both natural causes and anthropogenic activities will induce climate changes. The distribution of these constituents is sensitive to the state of the climate (e.g., temperature, moisture, wind, and clouds. Therefore, rises in atmospheric temperature and water vapor, and changes in circulation and clouds in global warming can directly affect atmospheric chemistry with subsequent implications for these constituents. Although many coupling mechanisms are identified, the net effect of all these impacts on climate change is not well understood. In particular, changes in water vapor and clouds associated with the hydrologic cycle contain significant uncertainties.

  17. Preparation of an ultra-fine, slightly dispersed silver iodide aerosol

    International Nuclear Information System (INIS)

    Poc, Marie-Martine

    1973-01-01

    A silver iodide aerosol was prepared under clean conditions. The method was to react iodine vapor with a silver aerosol in an inert dry atmosphere and in darkness. Great care was taken to avoid contamination from atmosphere air. The ice nucleating properties of the ultrafine AgI aerosol obtained were studied in a cloud mixing chamber: the aerosol was found to be strangely inactive. (author) [fr

  18. Vertical Structure and Optical Properties of Titans Aerosols from Radiance Measurements Made Inside and Outside the Atmosphere

    Science.gov (United States)

    Doose, Lyn R.; Karkoschka, Erich; Tomasko, Martin G.; Anderson, Carrie M.

    2017-01-01

    Prompted by the detection of stratospheric cloud layers by Cassini's Composite Infrared Spectrometer (CIRS; see Anderson, C.M., Samuelson, R.E. [2011]. Icarus 212, 762-778), we have re-examined the observations made by the Descent Imager/Spectral Radiometer (DISR) in the atmosphere of Titan together with two constraints from measurements made outside the atmosphere. No evidence of thin layers (measured from outside the atmosphere the decrease in the single scattering albedo of Titan's aerosols at high altitudes, noted in earlier studies of DISR data, must continue to much higher altitudes. The altitude of Titan's limb as a function of wavelength requires that the scale height of the aerosols decrease with altitude from the 65 km value seen in the DISR observations below 140 km to the 45 km value at higher altitudes. We compared the variation of radiance with nadir angle observed in the DISR images to improve our aerosol model. Our new aerosol model fits the altitude and wavelength variations of the observations at small and intermediate nadir angles but not for large nadir angles, indicating an effect that is not reproduced by our radiative transfer model. The volume extinction profiles are modeled by continuous functions except near the enhancement level near 55 km altitude. The wavelength dependence of the extinction optical depth is similar to earlier results at wavelengths from 500 to 700 nm, but is smaller at shorter wavelengths and larger toward longer wavelengths. A Hapke-like model is used for the ground reflectivity, and the variation of the Hapke single scattering albedo with wavelength is given. Fits to the visible spectrometers looking upward and downward are achieved except in the methane bands longward of 720 nm. This is possibly due to uncertainties in extrapolation of laboratory measurements from 1 km-am paths to much longer paths at lower pressures. It could also be due to changes in the single scattering phase functions at low altitudes, which

  19. Neutron activation analysis of atmospheric aerosols

    International Nuclear Information System (INIS)

    Riekstinya, D.V.; Mednis, I.V.; Veveris, O.Eh.

    1987-01-01

    A review of studies by Soviet and foreign authors on radioactivation analysis is presented. Instrumental neutron activation analysis (INAA) techniques have been developed providing the possibility to determine a number of elements in very small portions of aerosols for pollutanless areas of the Earth. Two ways of INAA are presented: with long- and short-living radionuclides. The Antarctic and the Indian Ocean aerosol samples have been analysed for 26 microelements. It has been stated that restrictions of the detection limits attained relate to high proportions of certain elements and their nonhomogeneous distribution in filters. The detection limits can be lowered by the filtered air volume growth per unit of the filter area

  20. Modelisation of soluble aerosols behaviour in the atmosphere of a PWR nuclear reactor in case of accident

    International Nuclear Information System (INIS)

    Abbas, A.F.

    1984-07-01

    After a short description of soluble aerosols accidental production in a PWR, a calculation model is given for physical properties of a gaz and steam mixture in a given atmosphere. Then the equilibrium of a saline drop with steam is studied. From the MASON equation, a calculation model is given for kinetic of volume variation of a saline drop and also a sensitivity study showing the little influence of the boundary layer on the drop surface, of the drop settling and of the thermodynamic conditions of the containment. As a numerical application, this condensation/evaporation model, and a simplified one with faster numerical resolution, is introduced in the AEROSOLS codes of the CEA-DEMT. The AEROSOLS/A2 suppose a log-normal distribution of the suspended particles in the containment. This application shows the very large sensitivity of the condensation depending on the moisture ratio inside the reactor building, and its primary importance on the behaviour of the aerosols. It is also shown that the simplified model gives a very little difference compared with the detailed model, and that the computation time is much more lower [fr

  1. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    Science.gov (United States)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-09-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA

  2. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    Directory of Open Access Journals (Sweden)

    G. R. McMeeking

    2011-09-01

    Full Text Available Black carbon (BC aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2 measurements of refractory BC (rBC mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA operated by the Facility for Airborne Atmospheric Measurements (FAAM. We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS and used positive matrix factorization to separate hydrocarbon-like (HOA and oxygenated organic aerosols (OOA. We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA did change for

  3. Long-term observation of water-soluble chemical components in the bulk atmospheric aerosols collected at Okinawa, Japan

    Science.gov (United States)

    Handa, Daishi; Somada, Yuka; Ijyu, Moriaki; Azechi, Sotaro; Nakaema, Fumiya; Arakaki, Takemitsu; Tanahara, Akira

    2010-05-01

    The economic development and population growth in recent Asia spread air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. The study of the long-range transported air pollution from Asian continent has gained a special attention in Japan because of increase in photochemical oxidants in relatively remote islands. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location in Asia is well suited for studying long-range transport of air pollutants in East Asia because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air masses which have been affected by anthropogenic activities. Bulk aerosol samples were collected on quartz filters by using a high volume air sampler. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations and dissolved organic carbon (DOC) in the bulk aerosols collected at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) using ion chromatography, atomic absorption spectrometry, and total organic carbon analyzer, respectively. We will report water-soluble chemical components data of anions, cations and DOC in bulk atmospheric aerosols collected at CHAAMS during August, 2005 to April, 2010. Seasonal variation of water-soluble chemical components showed that the concentrations were relatively low in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian Continent, the concentrations of water-soluble chemical components were much higher compared to the other directions. In addition, we calculated background concentration of water-soluble chemical components at Okinawa

  4. Sensitive detection of aerosol effect on simulated IASI spectral radiance

    International Nuclear Information System (INIS)

    Quan, X.; Huang, H.-L.; Zhang, L.; Weisz, E.; Cao, X.

    2013-01-01

    Guided by radiative transfer modeling of the effects of dust (aerosol) on satellite thermal infrared radiance by many different imaging radiometers, in this article, we present the aerosol-effected satellite radiative signal changes in the top of atmosphere (TOA). The simulation of TOA radiance for Infrared Atmospheric Sounding Interferometer (IASI) is performed by using the RTTOV fast radiative transfer model. The model computation is carried out with setting representative geographical atmospheric models and typical default aerosol climatological models under clear sky condition. The radiative differences (in units of equivalent black body brightness temperature differences (BTDs)) between simulated radiances without consideration of the impact of aerosol (Aerosol-free) and with various aerosol models (Aerosol-modified) are calculated for the whole IASI spectrum between 3.62 and 15.5 μm. The comparisons of BTDs are performed through 11 aerosol models in 5 classified atmospheric models. The results show that the Desert aerosol model has the most significant impact on IASI spectral simulated radiances than the other aerosol models (Continental, Urban, Maritime types and so on) in Mid-latitude Summer, contributing to the mineral aerosol components contained. The value of BTDs could reach up to 1 K at peak points. The atmospheric window spectral region between 900 and 1100 cm −1 (9.09–11.11 μm) is concentrated after the investigation for the largest values of aerosol-affected radiance differences. BTDs in IASI spectral region between 645 and 1200 cm −1 occupies the largest oscillation and the major part of the whole spectrum. The IASI highest window peak-points channels (such as 9.4 and 10.2 μm) are obtained finally, which are the most sensitive ones to the simulated IASI radiance. -- Highlights: ► Sensitive study of aerosol effect on simulated IASI spectral radiance is performed. ► The aerosol components have influenced IASI spectral regions

  5. Multi-sensor cloud and aerosol retrieval simulator and remote sensing from model parameters - Part 2: Aerosols

    Science.gov (United States)

    Wind, Galina; da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-07-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a "simulated radiance" product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land-ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers.This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled.In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model subgrid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to

  6. Multi-Sensor Cloud and Aerosol Retrieval Simulator and Remote Sensing from Model Parameters . Part 2; Aerosols

    Science.gov (United States)

    Wind, Galina; Da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-01-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a simulated radiance product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers. This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled. In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model sub grid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to

  7. Estimation of the aerosol radiative forcing at ground level, over land, and in cloudless atmosphere, from METEOSAT-7 observation: method and case study

    Directory of Open Access Journals (Sweden)

    T. Elias

    2008-02-01

    Full Text Available A new method is proposed to estimate the spatial and temporal variability of the solar radiative flux reaching the surface over land (DSSF, as well as the Aerosol Radiative Forcing (ARF, in cloud-free atmosphere. The objective of regional applications of the method is attainable by using the visible broadband of METEOSAT-7 satellite instrument which scans Europe and Africa on a half-hourly basis. The method relies on a selection of best correspondence between METEOSAT-7 radiance and radiative transfer computations.

    The validation of DSSF is performed comparing retrievals with ground-based measurements acquired in two contrasted environments: an urban site near Paris and a continental background site located South East of France. The study is concentrated on aerosol episodes occurring around the 2003 summer heat wave, providing 42 cases of comparison for variable solar zenith angle (from 59° to 69°, variable aerosol type (biomass burning emissions and urban pollution, and variable aerosol optical thickness (a factor 6 in magnitude. The method reproduces measurements of DSSF within an accuracy assessment of 20 W m−2 (5% in relative in 70% of the situations, and within 40 W m−2 in 90% of the situations, for the two case studies considered here.

    Considering aerosol is the main contributor in changing the measured radiance at the top of the atmosphere, DSSF temporal variability is assumed to be caused only by aerosols, and consequently ARF at ground level and over land is also retrieved: ARF is computed as the difference between DSSF and a parameterised aerosol-free reference level. Retrievals are linearly correlated with the ground-based measurements of the aerosol optical thickness (AOT: sensitivity is included between 120 and 160 W m−2 per unity of AOT at 440 nm. AOT being an instantaneous measure indicative of the aerosol columnar amount, we prove the feasibility to infer instantaneous

  8. 210Pb and 7Be in aerosol component of atmosphere in Bratislava

    International Nuclear Information System (INIS)

    Meresova, J.; Sykora, I.; Holy, K.; Chudy, M.

    2004-01-01

    We were observing radioactivity of aerosol component of atmosphere since 2001 to 2004. The research was aimed on radionuclides Pb-210 and Be-7. Their concentrations ranged from 0.27 to 3.07 mBq · m -3 , or from 0.46 to 4.37 mBq · m -3 with average values 0.81 mBq · m -3 or 2.01 mBq · m -3 . Concentrations of both radionuclides showed anticipated seasonal variations. In the case of Be-7 the local minimum appears in lately years in summer period, which can be consequence of climate changes. Though this problem needs next measurements and research. (author)

  9. Determination of low-molecular-weight dicarboxylic acids in atmospheric aerosols by injection-port derivatization and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Hsu, Ching-Lin; Ding, Wang-Hsien

    2009-12-15

    A rapid and environmental-friendly injection-port derivatization with gas chromatography-mass spectrometry (GC-MS) method was developed to determine selected low-molecular weight (LMW) dicarboxylic acids (from C2 to C10) in atmospheric aerosol samples. The parameters related to the derivatization process (i.e., type of ion-pair reagent, injection-port temperature and concentration of ion-pair reagent) were optimized. Tetrabutylammonium hydroxide (TBA-OH) 20 mM in methanol gave excellent yield for di-butyl ester dicarboxylate derivatives at injection-port temperature at 300 degrees C. Solid-phase extraction (SPE) method instead of rotary evaporation was used to concentrate analytes from filter extracts. The recovery from filter extracts ranged from 78 to 95% with relative standard deviation (RSD) less than 12%. Limits of quantitation (LOQs) ranged from 25 to 250 pg/m(3). The concentrations of di-carboxylated C2-C5 and total C6-C10 in particles of atmospheric aerosols ranged from 91.9 to 240, 11.3 to 56.7, 9.2 to 49.2, 8.7 to 35.3 and n.d. to 37.8 ng/m(3), respectively. Oxalic acid (C2) was the dominant LMW-dicarboxylic acids detected in aerosol samples. The quantitative results were comparable to the results obtained by the off-line derivatization.

  10. Analysis of aerosol agglomeration and removal mechanisms relevant to a reactor containment

    International Nuclear Information System (INIS)

    Chiang, H.W.; Mulpuru, S.R.; Lindquist, E.D.

    1995-01-01

    During some Postulated accidents in a nuclear reactor, radioactive aerosols may be formed and could be released from a rupture of the primary heat transport system into the containment. The released aerosols can agglomerate and form larger aerosol particles. The airborne aerosols can be removed from containment atmosphere by deposition onto the walls and other surfaces in contact with the gas-aerosol mixture. The rate of removal of aerosols depends on the aerosol size, which, in turn, is related to the amount of agglomeration of the aerosol particles. The extent of the removal of the aerosol mass from the containment atmosphere is important in determining the potential radioactive releases to the outside atmosphere. In this paper, selected conditions have been assessed to illustrate the significance of agglomeration for situations potentially of interest in containment safety studies

  11. Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry.

    Science.gov (United States)

    Farmer, D K; Matsunaga, A; Docherty, K S; Surratt, J D; Seinfeld, J H; Ziemann, P J; Jimenez, J L

    2010-04-13

    Organonitrates (ON) are important products of gas-phase oxidation of volatile organic compounds in the troposphere; some models predict, and laboratory studies show, the formation of large, multifunctional ON with vapor pressures low enough to partition to the particle phase. Organosulfates (OS) have also been recently detected in secondary organic aerosol. Despite their potential importance, ON and OS remain a nearly unexplored aspect of atmospheric chemistry because few studies have quantified particulate ON or OS in ambient air. We report the response of a high-resolution time-of-flight aerosol mass spectrometer (AMS) to aerosol ON and OS standards and mixtures. We quantify the potentially substantial underestimation of organic aerosol O/C, commonly used as a metric for aging, and N/C. Most of the ON-nitrogen appears as NO(x)+ ions in the AMS, which are typically dominated by inorganic nitrate. Minor organonitrogen ions are observed although their identity and intensity vary between standards. We evaluate the potential for using NO(x)+ fragment ratios, organonitrogen ions, HNO(3)+ ions, the ammonium balance of the nominally inorganic ions, and comparison to ion-chromatography instruments to constrain the concentrations of ON for ambient datasets, and apply these techniques to a field study in Riverside, CA. OS manifests as separate organic and sulfate components in the AMS with minimal organosulfur fragments and little difference in fragmentation from inorganic sulfate. The low thermal stability of ON and OS likely causes similar detection difficulties for other aerosol mass spectrometers using vaporization and/or ionization techniques with similar or larger energy, which has likely led to an underappreciation of these species.

  12. Chemical characteristics of size-resolved atmospheric aerosols in Iasi, north-eastern Romania: nitrogen-containing inorganic compounds control aerosol chemistry in the area

    Science.gov (United States)

    Giorgiana Galon-Negru, Alina; Iulian Olariu, Romeo; Arsene, Cecilia

    2018-04-01

    This study assesses the effects of particle size and season on the content of the major inorganic and organic aerosol ionic components in the Iasi urban area, north-eastern Romania. Continuous measurements were carried out over 2016 using a cascade Dekati low-pressure impactor (DLPI) performing aerosol size classification in 13 specific fractions over the 0.0276-9.94 µm size range. Fine-particulate Cl-, NO3-, NH4+, and K+ exhibited clear minima during the warm season and clear maxima over the cold season, mainly due to trends in emission sources, changes in the mixing layer depth and specific meteorological conditions. Fine-particulate SO42- did not show much variation with respect to seasons. Particulate NH4+ and NO3- ions were identified as critical parameters controlling aerosol chemistry in the area, and their measured concentrations in fine-mode (PM2.5) aerosols were found to be in reasonable good agreement with modelled values for winter but not for summer. The likely reason is that NH4NO3 aerosols are lost due to volatility over the warm season. We found that NH4+ in PM2.5 is primarily associated with SO42- and NO3- but not with Cl-. Actually, indirect ISORROPIA-II estimations showed that the atmosphere in the Iasi area might be ammonia rich during both the cold and warm seasons, enabling enough NH3 to be present to neutralize H2SO4, HNO3, and HCl acidic components and to generate fine-particulate ammonium salts, in the form of (NH4)2SO4, NH4NO3, and NH4Cl. ISORROPIA-II runs allowed us to estimate that over the warm season ˜ 35 % of the total analysed samples had very strongly acidic pH (0-3), a fraction that rose to ˜ 43 % over the cold season. Moreover, while in the cold season the acidity is mainly accounted for by inorganic acids, in the warm ones there is an important contribution by other compounds, possibly organic. Indeed, changes in aerosol acidity would most likely impact the gas-particle partitioning of semi-volatile organic acids. Overall, we

  13. Recent activities in the Aerosol Generation and Transport Program

    International Nuclear Information System (INIS)

    Adams, R.E.

    1984-01-01

    General statements may be made on the behavior of single-component and multi-component aerosols in the Nuclear Safety Pilot Plant vessel. The removal processes for U 3 O 8 , Fe 2 O 3 , and U 3 O 8 + Fe 2 O 3 aerosols are enhanced in a steam-air atmosphere. Steam-air seems to have little effect on removal of concrete aerosol from the vessel atmosphere. A steam-air environment causes a change in aerosol shape from chain-agglomerate to basically spherical for U 3 O 8 , Fe 2 O 3 , and U 3 O 8 + Fe 2 O 3 aerosol; for concrete the change in aerosol shape is from chain-agglomerate to partially spherical. The mass ratio of the individual components of a multi-component aerosol seems to have an observable influence on the resultant behavior of these aerosols in steam. The enhanced rate of removal of the U 3 O 8 , the Fe 2 O 3 , and the mixed U 3 O 8 + Fe 2 O 3 aerosols from the atmosphere of the NSPP vessel by steam-air is probably caused by the change in aerosol shape and the condensation of steam on the aerosol surfaces combining to increase the effect of gravitational settling. The apparent lack of an effect by steam-air on the removal rate of concrete aerosol could result from a differing physical/chemical response of the surfaces of this aerosol to condensing steam

  14. How important is organic aerosol hygroscopicity to aerosol indirect forcing?

    International Nuclear Information System (INIS)

    Liu Xiaohong; Wang Jian

    2010-01-01

    Organics are among the most abundant aerosol components in the atmosphere. However, there are still large uncertainties with emissions of primary organic aerosol (POA) and volatile organic compounds (VOCs) (precursor gases of secondary organic aerosol, SOA), formation of SOA, and chemical and physical properties (e.g., hygroscopicity) of POA and SOA. All these may have significant impacts on aerosol direct and indirect forcing estimated from global models. In this study a modal aerosol module (MAM) in the NCAR community atmospheric model (CAM) is used to examine sensitivities of aerosol indirect forcing to hygroscopicity (represented by a single parameter 'κ' ) of POA and SOA. Our model simulation indicates that in the present-day (PD) condition changing the 'κ' value of POA from 0 to 0.1 increases the number concentration of cloud condensational nuclei (CCN) at supersaturation S = 0.1% by 40-80% over the POA source regions, while changing the 'κ' value of SOA by ± 50% (from 0.14 to 0.07 and 0.21) changes the CCN concentration within 40%. There are disproportionally larger changes in CCN concentration in the pre-industrial (PI) condition. Due to the stronger impact of organics hygroscopicity on CCN and cloud droplet number concentration at PI condition, global annual mean anthropogenic aerosol indirect forcing (AIF) between PD and PI conditions reduces with the increase of the hygroscopicity of organics. Global annual mean AIF varies by 0.4 W m -2 in the sensitivity runs with the control run of - 1.3 W m -2 , highlighting the need for improved understanding of organics hygroscopicity and its representation in global models.

  15. Daily and seasonal variation of aerosol concentration in the atmosphere near the surface in continental climate of Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Koutsenogii, P [Inst. of Chemical Kinetics and Combustion, Novosibirsk (Russian Federation)

    1996-12-31

    Novosibirsk region is the area in southern part of West-Siberian lowland, covering about 200,000 km{sup 2}. The properties of atmospheric aerosol in Novosibirsk region were studied during few campaigns in the years 1992 and 1993, one complex expedition in Summer of 1994 and durable observations in Akademgorodok in the years 1993, 1994. Akademgorodok is situated 25 km S from the city Novosibirsk, has population of about 100,000 and no industry. Three different locations in remote areas of Novosibirsk region were used for the measurements. The first was situated 12 km E from Akademgorodok, and 30 km from Novosibirsk near the village Kljutchi. The second location was situated close to Lake Tchany in western part of Novosibirsk region. The third location was situated in south-western part of Novosibirsk region, 12 km from the town Karasuk. The total aerosol light scattering by aerosol particles was measured by commercially available nephelometer FAN-A in terms of units, related to the molecular scattering of clean air, measured by the same nephelometer. Aerosol samples in which the content of sulfate-, nitrate-, and cloride-anions was determined, using ion liquid chromatography, were collected with Whatman 41 or AFA-HA filters. Aerosol mass concentration was measured by weighting of AFA-HA filters. Aerosol particles were sampled on the filters with the volume velocity of about 500 l/min for Whatman 41 and 120 l/min for AFA-HA and mean sampling duration of 24 hours. The total aerosol number concentration was measured with a condensation nuclei counter TSI 3020

  16. Daily and seasonal variation of aerosol concentration in the atmosphere near the surface in continental climate of Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Koutsenogii, P. [Inst. of Chemical Kinetics and Combustion, Novosibirsk (Russian Federation)

    1995-12-31

    Novosibirsk region is the area in southern part of West-Siberian lowland, covering about 200,000 km{sup 2}. The properties of atmospheric aerosol in Novosibirsk region were studied during few campaigns in the years 1992 and 1993, one complex expedition in Summer of 1994 and durable observations in Akademgorodok in the years 1993, 1994. Akademgorodok is situated 25 km S from the city Novosibirsk, has population of about 100,000 and no industry. Three different locations in remote areas of Novosibirsk region were used for the measurements. The first was situated 12 km E from Akademgorodok, and 30 km from Novosibirsk near the village Kljutchi. The second location was situated close to Lake Tchany in western part of Novosibirsk region. The third location was situated in south-western part of Novosibirsk region, 12 km from the town Karasuk. The total aerosol light scattering by aerosol particles was measured by commercially available nephelometer FAN-A in terms of units, related to the molecular scattering of clean air, measured by the same nephelometer. Aerosol samples in which the content of sulfate-, nitrate-, and cloride-anions was determined, using ion liquid chromatography, were collected with Whatman 41 or AFA-HA filters. Aerosol mass concentration was measured by weighting of AFA-HA filters. Aerosol particles were sampled on the filters with the volume velocity of about 500 l/min for Whatman 41 and 120 l/min for AFA-HA and mean sampling duration of 24 hours. The total aerosol number concentration was measured with a condensation nuclei counter TSI 3020

  17. ACTRIS Aerosol, Clouds and Trace Gases Research Infrastructure

    Science.gov (United States)

    Pappalardo, Gelsomina

    2018-04-01

    The Aerosols, Clouds and Trace gases Research Infrastructure (ACTRIS) is a distributed infrastructure dedicated to high-quality observation of aerosols, clouds, trace gases and exploration of their interactions. It will deliver precision data, services and procedures regarding the 4D variability of clouds, short-lived atmospheric species and the physical, optical and chemical properties of aerosols to improve the current capacity to analyse, understand and predict past, current and future evolution of the atmospheric environment.

  18. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Richard A. Ferrare; David D. Turner

    2011-09-01

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  19. Cloud-Driven Changes in Aerosol Optical Properties - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2007-09-30

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  20. The physico-chemical evolution of atmospheric aerosols and the gas-particle partitioning of inorganic aerosol during KORUS-AQ

    Science.gov (United States)

    Lee, T.; Park, T.; Lee, J. B.; Lim, Y. J.; Ahn, J.; Park, J. S.; Soo, C. J.; Desyaterik, Y.; Collett, J. L., Jr.

    2017-12-01

    Aerosols influence climate change directly by scattering and absorption and indirectly by acting as cloud condensation nuclei and some of the effects of aerosols are reduction in visibility, deterioration of human health, and deposition of pollutants to ecosystems. Urban area is large source of aerosols and aerosol precursors. Aerosol sources are both local and from long-range transport. Long-range transport processed aerosol are often dominant sources of aerosol pollution in Korea. To improve our knowledge of aerosol chemistry, Korea and U.S-Air Quality (KORUS-AQ) of Aircraft-based aerosol measurement took place in and around Seoul, Korea during May and June 2016. KORUS-AQ campaigns were conducted to study the chemical characterization and processes of pollutants in the Seoul Metropolitan area to regional scales of Korean peninsula. Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed on aircraft platforms on-board DC-8 (NASA) aircraft. We characterized aerosol chemical properties and mass concentrations of sulfate, nitrate, ammonium and organics in polluted air plumes and investigate the spatial and vertical distribution of the species. The results of studies show that organics is predominant in Aerosol and a significant fraction of the organics is oxygenated organic aerosol (OOA) at the high altitude. Both Nitrate and sulfate can partition between the gas and particle phases. The ratios for HNO3/(N(V) (=gaseous HNO3 + particulate Nitrate) and SO2/(SO2+Sulfate) were found to exhibit quite different distributions between the particles and gas phase for the locations during KORUS-AQ campaign, representing potential for formation of additional particulate nitrate and sulfate. The results of those studies can provide highly resolved temporal and spatial air pollutant, which are valuable for air quality model input parameters for aerosol behaviour.

  1. Measurements of organic gases during aerosol formation events in the boreal forest atmosphere during QUEST

    Directory of Open Access Journals (Sweden)

    K. Sellegri

    2005-01-01

    Full Text Available Biogenic VOCs are important in the growth and possibly also in the early stages of formation of atmospheric aerosol particles. In this work, we present 10 min-time resolution measurements of organic trace gases at Hyytiälä, Finland during March 2002. The measurements were part of the project QUEST (Quantification of Aerosol Nucleation in the European Boundary Layer and took place during a two-week period when nucleation events occurred with various intensities nearly every day. Using a ground-based Chemical Ionization Mass Spectrometer (CIMS instrument, the following trace gases were detected: acetone, TMA, DMA, mass 68amu (candidate=isoprene, monoterpenes, methyl vinyl ketone (MVK and methacrolein (MaCR and monoterpene oxidation products (MTOP. For all of them except for the amines, we present daily variations during different classes of nucleation events, and non-event days. BVOC oxidation products (MVK, MaCR and MTOP show a higher ratio to the CS on event days compared to non-event days, indicating that their abundance relative to the surface of aerosol available is higher on nucleation days. Moreover, BVOC oxidation products are found to show significant correlations with the condensational sink (CS on nucleation event days, which indicates that they are representative of less volatile organic compounds that contribute to the growth of the nucleated particles and generally secondary organic aerosol formation. Behaviors of BVOC on event and non event days are compared to the behavior of CO.

  2. A characterization of Arctic aerosols on the basis of aerosol optical depth and black carbon measurements

    Directory of Open Access Journals (Sweden)

    R. S. Stone

    2014-06-01

    Full Text Available Abstract Aerosols, transported from distant source regions, influence the Arctic surface radiation budget. When deposited on snow and ice, carbonaceous particles can reduce the surface albedo, which accelerates melting, leading to a temperature-albedo feedback that amplifies Arctic warming. Black carbon (BC, in particular, has been implicated as a major warming agent at high latitudes. BC and co-emitted aerosols in the atmosphere, however, attenuate sunlight and radiatively cool the surface. Warming by soot deposition and cooling by atmospheric aerosols are referred to as “darkening” and “dimming” effects, respectively. In this study, climatologies of spectral aerosol optical depth AOD (2001–2011 and Equivalent BC (EBC (1989–2011 from three Arctic observatories and from a number of aircraft campaigns are used to characterize Arctic aerosols. Since the 1980s, concentrations of BC in the Arctic have decreased by more than 50% at ground stations where in situ observations are made. AOD has increased slightly during the past decade, with variations attributed to changing emission inventories and source strengths of natural aerosols, including biomass smoke and volcanic aerosol, further influenced by deposition rates and airflow patterns.

  3. Aerosols and their Impact on Radiation, Clouds, Precipitation & Severe Weather Events

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhanqing; Rosenfeld, Daniel; Fan, Jiwen

    2017-09-22

    Aerosols, the tiny particles suspended in the atmosphere, have been in the forefront of environmental and climate change sciences as the primary atmospheric pollutant and external force affecting Earth’s weather and climate. There are two dominant mechanisms by which aerosols affect weather and climate: aerosol-radiation interactions (ARI) and aerosol-cloud interactions (ACI). ARI arises from aerosol scattering and absorption, which alters the radiation budgets of the atmosphere and surface, while ACI is rooted to the fact that aerosols serve as cloud condensation nuclei and ice nuclei. Both ARI and ACI are coupled with atmospheric dynamics to produce a chain of complex interactions with a large range of meteorological variables that influence both weather and climate. Elaborated here are the impacts of aerosols on the radiation budget, clouds (microphysics, structure, and lifetime), precipitation, and severe weather events (lightning, thunderstorms, hail, and tornados). Depending on environmental variables and aerosol properties, the effects can be both positive and negative, posing the largest uncertainties in the external forcing of the climate system. This has considerably hindered our ability in projecting future climate changes and in doing accurate numerical weather predictions.

  4. Determination of the refractive index of insoluble organic extracts from atmospheric aerosol over the visible wavelength range using optical tweezers

    Directory of Open Access Journals (Sweden)

    R. H. Shepherd

    2018-04-01

    Full Text Available Optical trapping combined with Mie spectroscopy is a new technique used to record the refractive index of insoluble organic material extracted from atmospheric aerosol samples over a wide wavelength range. The refractive index of the insoluble organic extracts was shown to follow a Cauchy equation between 460 and 700 nm for organic aerosol extracts collected from urban (London and remote (Antarctica locations. Cauchy coefficients for the remote sample were for the Austral summer and gave the Cauchy coefficients of A  =  1.467 and B  =  1000 nm2 with a real refractive index of 1.489 at a wavelength of 589 nm. Cauchy coefficients for the urban samples varied with season, with extracts collected during summer having Cauchy coefficients of A  =  1.465  ±  0.005 and B  =  4625  ±  1200 nm2 with a representative real refractive index of 1.478 at a wavelength of 589 nm, whilst samples extracted during autumn had larger Cauchy coefficients of A  =  1.505 and B  =  600 nm2 with a representative real refractive index of 1.522 at a wavelength of 589 nm. The refractive index of absorbing aerosol was also recorded. The absorption Ångström exponent was determined for woodsmoke and humic acid aerosol extract. Typical values of the Cauchy coefficient for the woodsmoke aerosol extract were A  =  1.541  ±  0.03 and B  =  14 800  ±  2900 nm2, resulting in a real refractive index of 1.584  ±  0.007 at a wavelength of 589 nm and an absorption Ångström exponent of 8.0. The measured values of refractive index compare well with previous monochromatic or very small wavelength range measurements of refractive index. In general, the real component of the refractive index increases from remote to urban to woodsmoke. A one-dimensional radiative-transfer calculation of the top-of-the-atmosphere albedo was applied to model an atmosphere

  5. Atmospheric Aerosol Analysis using Lightweight Mini GC, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The major components of manmade aerosols are created by the burning of coal and oil. Aerosols are recognized to significantly impact the climate through their...

  6. Procedure Development to Determine Organic Compounds in the PM{sub 1}-2.5 and PM{sub 2}.5-10 Fractions of Atmospheric Aerosols; Desarrollo de la Metodologia para la Determinacion de los Compuestos Organicos en las Fracciones PM{sub 1}-2.5 y PM{sub 2}.5-10 del Aerosol Atmosferico

    Energy Technology Data Exchange (ETDEWEB)

    Pindado, O; Perez, R M

    2011-07-28

    An analytical procedure development to measure organic compounds such as aliphatic hydrocarbons, polycyclic aromatic compounds, n-alcohols and fatty acids in PM{sub 1}-2.5 and PM{sub 2}.5-10 of atmospheric aerosol is accomplished. The development encompasses an optimization of extraction step, derivatization step and chromatographic analysis. The method developed consists in a microwave extraction, followed by a stage of fractionation and analysis by GC/MS. (Author) 20 refs.

  7. Climatic impacts of anthropogenic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Iversen, T. [Oslo Univ. (Norway)

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. Anthropogenic production of aerosols is mainly connected with combustion of fossil fuel. Measured by particulate mass, the anthropogenic sulphate production is the dominating source of aerosols in the Northern Hemisphere. Particles emitted in mechanical processes, fly ash etc. are less important because of their shorter atmospheric residence time. Possible climatological effects of anthropogenic aerosols are usually classified in two groups: direct and indirect. Direct effects are alterations of the radiative heating budget due to the aerosol particles in clear air. Indirect effects involve the interaction between particles and cloud processes. A simplified one-layer radiation model gave cooling in the most polluted mid-latitude areas and heating due to soot absorption in the Arctic. This differential trend in heating rates may have significant effects on atmospheric meridional circulations, which is important for the atmosphere as a thermodynamic system. Recently the description of sulphur chemistry in the hemispheric scale dispersion model has been improved and will be used in a model for Mie scattering and absorption

  8. ACTRIS Aerosol, Clouds and Trace Gases Research Infrastructure

    Directory of Open Access Journals (Sweden)

    Pappalardo Gelsomina

    2018-01-01

    Full Text Available The Aerosols, Clouds and Trace gases Research Infrastructure (ACTRIS is a distributed infrastructure dedicated to high-quality observation of aerosols, clouds, trace gases and exploration of their interactions. It will deliver precision data, services and procedures regarding the 4D variability of clouds, short-lived atmospheric species and the physical, optical and chemical properties of aerosols to improve the current capacity to analyse, understand and predict past, current and future evolution of the atmospheric environment.

  9. American Association for Aerosol Research (AAAR) `95

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Fourteenth annual meeting of the American Association for Aerosol Research was held October 9-13, 1995 at Westin William Penn Hotel in Pittsburgh, PA. This volume contains the abstracts of the papers and poster sessions presented at this meeting, grouped by the session in which they were presented as follows: Radiation Effects; Aerosol Deposition; Collision Simulations and Microphysical Behavior; Filtration Theory and Measurements; Materials Synthesis; Radioactive and Nuclear Aerosols; Aerosol Formation, Thermodynamic Properties, and Behavior; Particle Contamination Issues in the Computer Industry; Pharmaceutical Aerosol Technology; Modeling Global/Regional Aerosols; Visibility; Respiratory Deposition; Biomass and Biogenic Aerosols; Aerosol Dynamics; Atmospheric Aerosols.

  10. Large-scale experiments on aerosol behavior in light water reactor containments

    International Nuclear Information System (INIS)

    Schock, W.; Bunz, H.; Adams, R.E.; Tobias, M.L.; Rahn, F.J.

    1988-01-01

    Recently, three large-scale experimental programs were carried out dealing with the behavior of aerosols during core-melt accidents in light water reactors (LWRs). In the Nuclear Safety Pilot Plant (NSPP) program, the principal behaviors of different insoluble aerosols and of mixed aerosols were measured in dry air atmospheres and in condensing steam-air atmospheres contained in a 38-m/sup 3/ steel vessel. The Demonstration of Nuclear Aerosol Behavior (DEMONA) program used a 640-m/sup 3/ concrete containment model to simulate typical accident sequence conditions, and measured the behavior of different insoluble aerosols and mixed aerosols in condensing and transient atmospheric conditions. Part of the LWR Aerosol Containment Experiments (LACE) program was also devoted to aerosol behavior in containment; and 852-m/sup 3/ steel vessel was used, and the aerosols were composed of mixtures of insoluble and soluble species. The results of these experiments provide a suitable data base for validation of aerosol behavior codes. Fundamental insight into details of aerosol behavior in condensing environments has been gained through the results of the NSPP tests. Code comparisons have been and are being performed in the DEMONA and LACE experiments

  11. The global impact of the transport sectors on atmospheric aerosol: simulations for year 2000 emissions

    Directory of Open Access Journals (Sweden)

    M. Righi

    2013-10-01

    Full Text Available We use the EMAC (ECHAM/MESSy Atmospheric Chemistry global model with the aerosol module MADE (Modal Aerosol Dynamics model for Europe, adapted for global applications to quantify the impact of transport emissions (land transport, shipping and aviation on the global aerosol. We consider a present-day (2000 scenario according to the CMIP5 (Climate Model Intercomparison Project Phase 5 emission data set developed in support of the IPCC (Intergovernmental Panel on Climate Change Fifth Assessment Report. The model takes into account particle mass and number emissions: The latter are derived from mass emissions under different assumptions on the size distribution of particles emitted by the three transport sectors. Additional sensitivity experiments are performed to quantify the effects of the uncertainties behind such assumptions. The model simulations show that the impact of the transport sectors closely matches the emission patterns. Land transport is the most important source of black carbon (BC pollution in the USA, Europe and the Arabian Peninsula, contributing up to 60–70% of the total surface-level BC concentration in these regions. Shipping contributes about 40–60% of the total aerosol sulfate surface-level concentration along the most-traveled routes of the northern Atlantic and northern Pacific oceans, with a significant impact (~ 10–20% along the coastlines. Aviation mostly affects aerosol number, contributing about 30–40% of the particle number concentration in the northern midlatitudes' upper troposphere (7–12 km, although significant effects are also simulated at the ground, due to the emissions from landing and take-off cycles. The transport-induced perturbations to the particle number concentrations are very sensitive to the assumptions on the size distribution of emitted particles, with the largest uncertainties (about one order of magnitude obtained for the land transport sector. The simulated climate impacts, due to

  12. An algorithm for hyperspectral remote sensing of aerosols: 2. Information content analysis for aerosol parameters and principal components of surface spectra

    Science.gov (United States)

    Hou, Weizhen; Wang, Jun; Xu, Xiaoguang; Reid, Jeffrey S.

    2017-05-01

    This paper describes the second part of a series of investigation to develop algorithms for simultaneous retrieval of aerosol parameters and surface reflectance from the future hyperspectral and geostationary satellite sensors such as Tropospheric Emissions: Monitoring of POllution (TEMPO). The information content in these hyperspectral measurements is analyzed for 6 principal components (PCs) of surface spectra and a total of 14 aerosol parameters that describe the columnar aerosol volume Vtotal, fine-mode aerosol volume fraction, and the size distribution and wavelength-dependent index of refraction in both coarse and fine mode aerosols. Forward simulations of atmospheric radiative transfer are conducted for 5 surface types (green vegetation, bare soil, rangeland, concrete and mixed surface case) and a wide range of aerosol mixtures. It is shown that the PCs of surface spectra in the atmospheric window channel could be derived from the top-of-the-atmosphere reflectance in the conditions of low aerosol optical depth (AOD ≤ 0.2 at 550 nm), with a relative error of 1%. With degree freedom for signal analysis and the sequential forward selection method, the common bands for different aerosol mixture types and surface types can be selected for aerosol retrieval. The first 20% of our selected bands accounts for more than 90% of information content for aerosols, and only 4 PCs are needed to reconstruct surface reflectance. However, the information content in these common bands from each TEMPO individual observation is insufficient for the simultaneous retrieval of surface's PC weight coefficients and multiple aerosol parameters (other than Vtotal). In contrast, with multiple observations for the same location from TEMPO in multiple consecutive days, 1-3 additional aerosol parameters could be retrieved. Consequently, a self-adjustable aerosol retrieval algorithm to account for surface types, AOD conditions, and multiple-consecutive observations is recommended to derive

  13. Absorbing Aerosols: Field and Laboratory Studies of Black Carbon and Dust

    Science.gov (United States)

    Aiken, A. C.; Flowers, B. A.; Dubey, M. K.

    2011-12-01

    Currently, absorbing aerosols are thought to be the most uncertain factor in atmospheric climate models (~0.4-1.2 W/m2), and the 2nd most important factor after CO2 in global warming (1.6 W/m2; Ramanathan and Carmichael, Nature Geoscience, 2008; Myhre, Science, 2009). While most well-recognized atmospheric aerosols, e.g., sulfate from power-plants, have a cooling effect on the atmosphere by scattering solar radiation, black carbon (BC or soot) absorbs sunlight strongly which results in a warming of the atmosphere. Dust particles are also present globally and can absorb radiation, contributing to a warmer and drier atmosphere. Direct on-line measurements of BC and hematite, an absorbing dust aerosol, can be made with the Single Particle Soot Photometer (SP2), which measures the mass of the particles by incandescence on an individual particle basis. Measurements from the SP2 are combined with absorption measurements from the three-wavelength photoacoustic soot spectrometer (PASS-3) at 405, 532, and 781 nm and the ultraviolet photoacoustic soot spectrometer (PASS-UV) at 375 nm to determine wavelength-dependent mass absorption coefficients (MACs). Laboratory aerosol samples include flame-generated soot, fullerene soot, Aquadag, hematite, and hematite-containing dusts. Measured BC MAC's compare well with published values, and hematite MAC's are an order of magnitude less than BC. Absorbing aerosols measured in the laboratory are compared with those from ambient aerosols measured during the Las Conchas fire and BEACHON-RoMBAS. The Las Conchas fire was a wildfire in the Jemez Mountains of New Mexico that burned over 100,000 acres during the Summer of 2011, and BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study) is a field campaign focusing on biogenic aerosols at the Manitou Forest Observatory near Colorado Springs, CO in Summer 2011. Optical properties and size

  14. Warming-induced increase in aerosol number concentration likely to moderate climate change

    NARCIS (Netherlands)

    Paasonen, P.; Asmi, A.; Petäjä, T.; Kajos, M.K.; Äijälä, M.; Junninen, H.; Holst, T.; Abbatt, J.P.D.; Arneth, A.; Birmili, W.; Denier van der Gon, H.A.C.; Hamed, A.; Hoffer, A.; Laakso, L.; Laaksonen, A.; Richard Leaitch, W.; Plass-Dülmer, C.; Pryor, S.C.; Räisänen, P.; Swietlicki, E.; Wiedensohler, A.; Worsnop, D.R.; Kerminen, V.-M.; Kulmala, M.

    2013-01-01

    Atmospheric aerosol particles influence the climate system directly by scattering and absorbing solar radiation, and indirectly by acting as cloud condensation nuclei. Apart from black carbon aerosol, aerosols cause a negative radiative forcing at the top of the atmosphere and substantially mitigate

  15. What's Up in the Atmosphere? Exploring How Aerosols Impact Sky Color Through Hands-on Activities with Elementary GLOBE

    Science.gov (United States)

    Damadeo, K.; Taylor, J.

    2015-12-01

    What color is the sky today? The GLOBE Kids - Anita, Simon, and Dennis want to know why the sky isn't always the same shade of blue and sometimes isn't even blue. Through the new Elementary GLOBE Aerosols Storybook and Learning Activities, the GLOBE Kids learn that there's a lot more than air in the atmosphere, which can affect the colors we see in the sky. There are four hands-on activities in this unit: 1) Sky Observers - Students make observations of the sky, record their findings and share their observation reports with their peers. The activity promotes active observation and recording skills to help students observe sky color, and recognize that sky color changes; 2) Why (Not) So Blue? - Students make predictions about how drops of milk will affect color and visibility in cups of water representing the atmosphere to help them understand that aerosols in the atmosphere have an effect on sky conditions, including sky color and visibility. The activity also introduces the classification categories for daytime sky color and visibility; 3) See the Light - Students use prisms and glue sticks to explore the properties of light. The activity demonstrates that white light is made up of seven colors that represent different wavelengths, and illustrates why the sky is blue during the day and red at sunset; 4) Up in the Air - Students work in groups to make an aerosol sampler, a simple adhesive tool that allows students to collect data and estimate the extent of aerosols present at their school, understanding that, in fact, there are particles in the air we breathe. NGSS Alignment includes: Disciplinary Core Ideas- ESS2.D: Weather and Climate, ESS3.C: Human Impacts on Earth Systems, PS4.B: Electromagnetic Radiation, ESS3.A: Natural Resources; Science and Engineering Practices- Asking Questions and Defining Problems, Planning and Carrying Out an Investigation, Analyzing and Interpreting Data, Engaging in Argument from Evidence, Obtaining, Evaluating, and Communicating

  16. Simulation of the Ozone Monitoring Instrument aerosol index using the NASA Goddard Earth Observing System aerosol reanalysis products

    Science.gov (United States)

    Colarco, Peter R.; Gassó, Santiago; Ahn, Changwoo; Buchard, Virginie; da Silva, Arlindo M.; Torres, Omar

    2017-11-01

    We provide an analysis of the commonly used Ozone Monitoring Instrument (OMI) aerosol index (AI) product for qualitative detection of the presence and loading of absorbing aerosols. In our analysis, simulated top-of-atmosphere (TOA) radiances are produced at the OMI footprints from a model atmosphere and aerosol profile provided by the NASA Goddard Earth Observing System (GEOS-5) Modern-Era Retrospective Analysis for Research and Applications aerosol reanalysis (MERRAero). Having established the credibility of the MERRAero simulation of the OMI AI in a previous paper we describe updates in the approach and aerosol optical property assumptions. The OMI TOA radiances are computed in cloud-free conditions from the MERRAero atmospheric state, and the AI is calculated. The simulated TOA radiances are fed to the OMI near-UV aerosol retrieval algorithms (known as OMAERUV) is compared to the MERRAero calculated AI. Two main sources of discrepancy are discussed: one pertaining to the OMI algorithm assumptions of the surface pressure, which are generally different from what the actual surface pressure of an observation is, and the other related to simplifying assumptions in the molecular atmosphere radiative transfer used in the OMI algorithms. Surface pressure assumptions lead to systematic biases in the OMAERUV AI, particularly over the oceans. Simplifications in the molecular radiative transfer lead to biases particularly in regions of topography intermediate to surface pressures of 600 and 1013.25 hPa. Generally, the errors in the OMI AI due to these considerations are less than 0.2 in magnitude, though larger errors are possible, particularly over land. We recommend that future versions of the OMI algorithms use surface pressures from readily available atmospheric analyses combined with high-spatial-resolution topographic maps and include more surface pressure nodal points in their radiative transfer lookup tables.

  17. Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions

    Directory of Open Access Journals (Sweden)

    W. Elbert

    2007-09-01

    Full Text Available Biogenic aerosols play important roles in atmospheric chemistry physics, the biosphere, climate, and public health. Here, we show that fungi which actively discharge their spores with liquids into the air, in particular actively wet spore discharging Ascomycota (AAM and actively wet spore discharging Basidiomycota (ABM, are a major source of primary biogenic aerosol particles and components. We present the first estimates for the global average emission rates of fungal spores.

    Measurement results and budget calculations based on investigations in Amazonia (Balbina, Brazil, July 2001 indicate that the spores of AAM and ABM may account for a large proportion of coarse particulate matter in tropical rainforest regions during the wet season (0.7–2.3 μg m−3. For the particle diameter range of 1–10 μm, the estimated proportions are ~25% during day-time, ~45% at night, and ~35% on average. For the sugar alcohol mannitol, the budget calculations indicate that it is suitable for use as a molecular tracer for actively wet discharged basidiospores (ABS. ABM emissions seem to account for most of the atmospheric abundance of mannitol (10–68 ng m−3, and can explain the observed diurnal cycle (higher abundance at night. ABM emissions of hexose carbohydrates might also account for a significant proportion of glucose and fructose in air particulate matter (7–49 ng m−3, but the literature-derived ratios are not consistent with the observed diurnal cycle (lower abundance at night. AAM emissions appear to account for a large proportion of potassium in air particulate matter over tropical rainforest regions during the wet season (17–43 ng m−3, and they can also explain the observed diurnal cycle (higher abundance at night. The results of our investigations and budget calculations for tropical rainforest aerosols are consistent with measurements performed at other locations.

    Based on

  18. Background aerosol over the Himalayas and Tibetan Plateau: observed characteristics of aerosol mass loading

    Science.gov (United States)

    Liu, Bin; Cong, Zhiyuan; Wang, Yuesi; Xin, Jinyuan; Wan, Xin; Pan, Yuepeng; Liu, Zirui; Wang, Yonghong; Zhang, Guoshuai; Wang, Zhongyan; Wang, Yongjie; Kang, Shichang

    2017-01-01

    To investigate the atmospheric aerosols of the Himalayas and Tibetan Plateau (HTP), an observation network was established within the region's various ecosystems, including at the Ngari, Qomolangma (QOMS), Nam Co, and Southeastern Tibetan (SET) stations. In this paper we illustrate aerosol mass loadings by integrating in situ measurements with satellite and ground-based remote sensing datasets for the 2011-2013 period, on both local and large scales. Mass concentrations of these surface atmospheric aerosols were relatively low and varied with land cover, showing a general tendency of Ngari and QOMS (barren sites) > Nam Co (grassland site) > SET (forest site). Daily averages of online PM2.5 (particulates with aerodynamic diameters below 2.5 µm) at these sites were sequentially 18.2 ± 8.9, 14.5 ± 7.4, 11.9 ± 4.9 and 11.7 ± 4.7 µg m-3. Correspondingly, the ratios of PM2.5 to total suspended particles (TSP) were 27.4 ± 6.65, 22.3 ± 10.9, 37.3 ± 11.1 and 54.4 ± 6.72 %. Bimodal mass distributions of size-segregated particles were found at all sites, with a relatively small peak in accumulation mode and a more notable peak in coarse mode. Diurnal variations in fine-aerosol masses generally displayed a bi-peak pattern at the QOMS, Nam Co and SET stations and a single-peak pattern at the Ngari station, controlled by the effects of local geomorphology, mountain-valley breeze circulation and aerosol emissions. Dust aerosol content in PM2.1 samples gave fractions of 26 % at the Ngari station and 29 % at the QOMS station, or ˜ 2-3 times that of reported results at human-influenced sites. Furthermore, observed evidence confirmed the existence of the aerodynamic conditions necessary for the uplift of fine particles from a barren land surface. Combining surface aerosol data and atmospheric-column aerosol optical properties, the TSP mass and aerosol optical depth (AOD) of the Multi-angle Imaging Spectroradiometer (MISR) generally decreased as land cover changed from

  19. X-ray fluorimetry in tests of the aerosol substances. [In the atmosphere]. Rentgenowska analiza fluorescencyjna w badaniach skladu pierwiastkowego aerozoli w atmosferze

    Energy Technology Data Exchange (ETDEWEB)

    Walentek, A.; Cudny, W.; Marzec, J.; Pawlowski, Z.; Zaremba, K. (Politechnika Warszawska, Warsaw (Poland). Inst. Radioelektroniki)

    1992-01-01

    Test results of aerosol samples from atmospheric air collected from membrane drains were presented. The ANFLU-2 analyzer constructed at the Warsaw Technical University were used for testing. (author). 3 figs, 1 tab.

  20. Effects of anthropogenic aerosol particles on the radiation balance of the atmosphere. Einfluss anthropogener Aerosolteilchen auf den Strahlungshaushalt der Atmosphaere

    Energy Technology Data Exchange (ETDEWEB)

    Newiger, M

    1985-01-01

    The influence of aerosol particles is assessed on the basis of the changes in the climate parameters ''albedo'' and ''neutron flux''. Apart from the directly emitted particles, particles formed in the atmosphere as a result of SO/sub 2/ emissions are investigated. The model of aerosol effects on the radiation field takes account of the feedback with the microphysical parameters of the clouds. In the investigation, given particle concentrations were recalculated for three size classes using a two-dimensional transport model. The particle size distribution is described by a modified power function. Extreme-value estimates are made because the absorption capacity of anthropogenic particles is little known. A comparison of the climatic effects of anthropogenic activities shows that aerosol particles and SO/sub 2/ emissions have opposite effects on the radiation balance. (orig./PW).

  1. Antarctic aerosols - A review

    Science.gov (United States)

    Shaw, Glenn E.

    1988-02-01

    Tropospheric aerosols with the diameter range of half a micron reside in the atmosphere for tens of days and teleconnect Antarctica with other regions by transport that reaches planetary scales of distances; thus, the aerosol on the Antarctic ice represents 'memory modules' of events that took place at regions separated from Antarctica by tens of thousands of kilometers. In terms of aerosol mass, the aerosol species include insoluble crustal products (less than 5 percent), transported sea-salt residues (highly variable but averaging about 10 percent), Ni-rich meteoric material, and anomalously enriched material with an unknown origin. Most (70-90 percent by mass) of the aerosol over the Antarctic ice shield, however, is the 'natural acid sulfate aerosol', apparently deriving from biological processes taking place in the surrounding oceans.

  2. The impact of residential combustion emissions on atmospheric aerosol, human health, and climate

    Directory of Open Access Journals (Sweden)

    E. W. Butt

    2016-01-01

    Full Text Available Combustion of fuels in the residential sector for cooking and heating results in the emission of aerosol and aerosol precursors impacting air quality, human health, and climate. Residential emissions are dominated by the combustion of solid fuels. We use a global aerosol microphysics model to simulate the impact of residential fuel combustion on atmospheric aerosol for the year 2000. The model underestimates black carbon (BC and organic carbon (OC mass concentrations observed over Asia, Eastern Europe, and Africa, with better prediction when carbonaceous emissions from the residential sector are doubled. Observed seasonal variability of BC and OC concentrations are better simulated when residential emissions include a seasonal cycle. The largest contributions of residential emissions to annual surface mean particulate matter (PM2.5 concentrations are simulated for East Asia, South Asia, and Eastern Europe. We use a concentration response function to estimate the human health impact due to long-term exposure to ambient PM2.5 from residential emissions. We estimate global annual excess adult (>  30 years of age premature mortality (due to both cardiopulmonary disease and lung cancer to be 308 000 (113 300–497 000, 5th to 95th percentile uncertainty range for monthly varying residential emissions and 517 000 (192 000–827 000 when residential carbonaceous emissions are doubled. Mortality due to residential emissions is greatest in Asia, with China and India accounting for 50 % of simulated global excess mortality. Using an offline radiative transfer model we estimate that residential emissions exert a global annual mean direct radiative effect between −66 and +21 mW m−2, with sensitivity to the residential emission flux and the assumed ratio of BC, OC, and SO2 emissions. Residential emissions exert a global annual mean first aerosol indirect effect of between −52 and −16 mW m−2, which is sensitive to the

  3. The size distribution of chemical elements of atmospheric aerosol at a semi-rural coastal site in Venice (Italy). The role of atmospheric circulation.

    Science.gov (United States)

    Masiol, Mauro; Squizzato, Stefania; Ceccato, Daniele; Pavoni, Bruno

    2015-01-01

    The concentrations of selected elemental tracers were determined in the aerosol of a semi-rural coastal site near Venice (Italy). Size-segregated aerosol samples were collected using an 8-stage cascade impactor set at 15m above ground, during the cold season (late autumn and winter), when high levels of many pollutants are known to cause risks for human health. From the experimental data, information was extracted on potential pollutant sources by investigating the relationships between elements in the different size fractions. Moreover, an approach to highlight the importance of local atmospheric circulation and air mass origin in influencing the PM composition and fractional distribution is proposed. Anthropogenic elements are strongly inter-correlated in the submicrometric (4 μm) Fe and Zn are well correlated and are probably linked to tire and brake wear emissions. Regarding atmospheric circulation, results show increasing levels of elements related to pollution sources (S, K, Mn, Ni, Cu, Zn) when air masses come from Central and Eastern Europe direction and on the ground wind blows from NWN-N-NE (from mainland Venice). Low wind speed and high percentage of wind calm hours favor element accumulation in the submicrometric and intermediate modes. Furthermore, strong winds favor the formation of sea-spray and the increase of Si in the coarse mode due to the resuspension of sand fine particles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Novel Measurements of Aerosol Particle Interfaces Using Biphasic Microfluidics

    Science.gov (United States)

    Metcalf, A. R.; Dutcher, C. S.

    2014-12-01

    Secondary organic aerosol (SOA) particles are nearly ubiquitous in the atmosphere and yet there remains large uncertainties in their formation processes and ambient properties. These particles are complex microenvironments, which can contain multiple interfaces due to internal aqueous-organic phase partitioning and to the external liquid-vapor surface. These aerosol interfaces can profoundly affect the fate of condensable organic compounds emitted into the atmosphere by altering the way in which organic vapors interact with the ambient aerosol. Aerosol interfaces affect particle internal structure, species uptake, equilibrium partitioning, activation to cloud condensation or ice nuclei, and optical properties. For example, organic thin films can shield the core of the aerosol from the ambient environment, which may disrupt equilibrium partitioning and mass transfer. To improve our ability to accurately predict the fate of SOA in the atmosphere, we must improve our knowledge of aerosol interfaces and their interactions with the ambient environment. Few technologies exist to accurately probe aerosol interfaces at atmospherically-relevant conditions. In this talk, a novel method using biphasic microscale flows will be introduced for generating, trapping, and perturbing complex interfaces at atmospherically relevant conditions. These microfluidic experiments utilize high-speed imaging to monitor interfacial phenomena at the microscale and are performed with phase contrast and fluorescence microscopy on a temperature-controlled inverted microscope stage. From these experiments, interfacial thermodynamic properties such as surface tension, rheological properties such as interfacial moduli, and kinetic properties such as mass transfer coefficients can be measured or inferred. Chemical compositions of the liquid phases studied here span a range of viscosities and include electrolyte and water soluble organic acid species often observed in the atmosphere, such as mixtures

  5. ATLID: atmospheric lidar for clouds and aerosol observation combined with radar sounding

    Science.gov (United States)

    Pain, Th.; Martimort, Ph.; Tanguy, Ph.; Leibrandt, W.; Heliere, A.

    2017-11-01

    The atmospheric lidar ATLID is part of the payload of the joint collaborative satellite mission Earth Cloud and Aerosol Explorer (EarthCARE) conducted by the European Space Agency (ESA) and the National Space Development Agency of Japan (JAXA). In December 2002, ESA granted Alcatel Space with a phase A study of the EarthCARE mission in which Alcatel Space is also in charge to define ATLID. The primary objective of ATLID at the horizon 2011 is to provide global observation of clouds in synergy with a cloud profiling radar (CPR) mounted on the same platform. The planned spaceborne mission also embarks an imager and a radiometer and shall fly for 3 years. The lidar design is based on a novel concept that maximises the scientific return and fosters a cost-effective approach. This improved capability results from a better understanding of the way optical characteristics of aerosol and clouds affect the performance budget. For that purpose, an end to end performance model has been developed utilising a versatile data retrieval method suitable for new and more conventional approaches. A synthesis of the achievable performance will be presented to illustrate the potential of the system together with a description of the design.

  6. Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site

    Energy Technology Data Exchange (ETDEWEB)

    Pal, S., E-mail: sp5hd@Virginia.EDU; Lee, T.R.; Phelps, S.; De Wekker, S.F.J.

    2014-10-15

    The development of the atmospheric boundary layer (ABL) plays a key role in affecting the variability of atmospheric constituents such as aerosols, greenhouse gases, water vapor, and ozone. In general, the concentration of any tracers within the ABL varies due to the changes in the mixing volume (i.e. ABL depth). In this study, we investigate the impact on the near-surface aerosol concentration in a valley site of 1) the boundary layer dilution due to vertical mixing and 2) changes in the wind patterns. We use a data set obtained during a 10-day field campaign in which a number of remote sensing and in-situ instruments were deployed, including a ground-based aerosol lidar system for monitoring of the ABL top height (z{sub i}), a particle counter to determine the number concentration of aerosol particles at eight different size ranges, and tower-based standard meteorological instruments. Results show a clearly visible decreasing trend of the mean daytime z{sub i} from 2900 m AGL (above ground level) to 2200 m AGL during a three-day period which resulted in increased near-surface pollutant concentrations. An inverse relationship exists between the z{sub i} and the fine fraction (0.3–0.7 μm) accumulation mode particles (AMP) on some days due to the dilution effect in a well-mixed ABL. These days are characterized by the absence of daytime upvalley winds and the presence of northwesterly synoptic-driven winds. In contrast, on the days with an onset of an upvalley wind circulation after the morning transition, the wind-driven local transport mechanism outweighs the ABL-dilution effect in determining the variability of AMP concentration. The interplay between the ABL depth evolution and the onset of the upvalley wind during the morning transition period significantly governs the air quality in a valley and could be an important component in the studies of mountain meteorology and air quality. - Highlights: • Role of atmospheric boundary layer depth on particle

  7. Radiative and temperature effects of aerosol simulated by the COSMO-Ru model for different atmospheric conditions and their testing against ground-based measurements and accurate RT simulations

    Science.gov (United States)

    Chubarova, Nataly; Poliukhov, Alexei; Shatunova, Marina; Rivin, Gdali; Becker, Ralf; Muskatel, Harel; Blahak, Ulrich; Kinne, Stefan; Tarasova, Tatiana

    2017-04-01

    We use the operational Russian COSMO-Ru weather forecast model (Ritter and and Geleyn, 1991) with different aerosol input data for the evaluation of radiative and temperature effects of aerosol in different atmospheric conditions. Various aerosol datasets were utilized including Tegen climatology (Tegen et al., 1997), updated Macv2 climatology (Kinne et al., 2013), Tanre climatology (Tanre et al., 1984) as well as the MACC data (Morcrette et al., 2009). For clear sky conditions we compare the radiative effects from the COSMO-Ru model over Moscow (55.7N, 37.5E) and Lindenberg/Falkenberg sites (52.2N, 14.1E) with the results obtained using long-term aerosol measurements. Additional tests of the COSMO RT code were performed against (FC05)-SW model (Tarasova T.A. and Fomin B.A., 2007). The overestimation of about 5-8% of COSMO RT code was obtained. The study of aerosol effect on temperature at 2 meters has revealed the sensitivity of about 0.7-1.1 degree C per 100 W/m2 change in shortwave net radiation due to aerosol variations. We also discuss the radiative impact of urban aerosol properties according to the long-term AERONET measurements in Moscow and Moscow suburb as well as long-term aerosol trends over Moscow from the measurements and Macv2 dataset. References: Kinne, S., O'Donnel D., Stier P., et al., J. Adv. Model. Earth Syst., 5, 704-740, 2013. Morcrette J.-J.,O. Boucher, L. Jones, eet al, J.GEOPHYS. RES.,VOL. 114, D06206, doi:10.1029/2008JD011235, 2009. Ritter, B. and Geleyn, J., Monthly Weather Review, 120, 303-325, 1992. Tanre, D., Geleyn, J., and Slingo, J., A. Deepak Publ., Hampton, Virginia, 133-177, 1984. Tarasova, T., and Fomin, B., Journal of Atmospheric and Oceanic Technology, 24, 1157-1162, 2007. Tegen, I., Hollrig, P., Chin, M., et al., Journal of Geophysical Research- Atmospheres, 102, 23895-23915, 1997.

  8. Atmospheric sciences annual progress report, 1974

    International Nuclear Information System (INIS)

    Tucker, W.D.

    1975-11-01

    Activities in atmospheric sciences in the Department of Applied Science at Brookhaven National Laboratory carried out during 1974 are described. Included are contributions from the Meteorology, Atmospheric Diagnostics, Atmospheric Chemistry Research, and Atmospheric Instrumentation Groups. Programs in Meteorology reported on include diffusion from an off-shore source, plume dynamics studies, modeling of coastal effects on wind and temperature fields and pollutant distributions, effects of indoor shelter on inhalation of airborne radionuclides, chemical-dynamical interactions, techniques for determining acid-rain impact upon the ecology of the eastern U.S., and climatology. Work under Atmospheric Chemistry Research was concentrated on atmospheric aerosol studies, including formation by free radical and neutral association reactions, identification of reactive systems leading to aerosol formation, growth of sodium aerosols under atmospheric conditions and clustering reactions. Atmospheric Diagnostics presents work on field sampling and analytical technology for atmospheric pollutants, airborne sampling systems, atmospheric sulfate particulates methodology, and on a pyroturbidometric method for particulate sulfate discrimination and determination. Methodology for the use of sulfur hexafluoride in field tracer studies is discussed under Atmospheric Instrumentation. A list of publications is included

  9. Application of PIXE analysis to study urban atmospheric aerosols from downtown Havana City

    International Nuclear Information System (INIS)

    Perez Zayas, Grizel; Pinnera Hernandez, Ibrahin; Ramos Aruca, Maridelin; Guibert Gala, Rolando; Molina Esquivel, Enrique; Martinez Varona, Miriam; Fernandez Arocha, Ariadna; Aldape Ugalde, Francisca; Flores Maldonado, Javier

    2010-01-01

    The present work reports, the results of a first study of elemental composition in airborne particulate matter (in fine and coarse particle size fractions) collected at the Atmospheric Monitoring Station in the Municipality of Centro Habana, using the Particle-Induced X-ray Emission (PIXE) technique. At present, there is not information available about elements contents in airborne particulate matter from this region. For this study, we carried out a sampling campaign during five months (November 14, 2006 to April 19, 2007). The samples were collected every second day during 24 h under an air flux of 20 l/min. The air sampler used was a Gent Sampler equipped with a Stacked Filter Unit (SFU) system which allows the aerosol collection in both size fractions simultaneously. A total of 144 aerosol samples were collected (72 correspond to the fine mass particle and 72 to the coarse mass particle). For PIXE analysis, the samples were irradiated by 2.5 MeV energy protons from the 2MV Van de Graff Tandetron Accelerator from the Laboratory of PIXE analysis at ININ, Mexico. A total of 14 elements (S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br and Pb) were consistently detected in both particle size fractions with minimum detection limits in the range of 1-10 ng/m3. The quantitative results obtained from PIXE elemental analysis for mass of particles in both fractions have revealed important information that has been used in a first attempt to understand and to characterize the atmospheric pollution of this area. A general discussion about these results is presented in this paper. (author)

  10. Application of PIXE analysis to study urban atmospheric aerosols from downtown Havana City

    International Nuclear Information System (INIS)

    Perez Zayas, Grizel; Pinnera Hernandez, Ibrahin; Ramos Aruca, Maridelin; Guibert Gala, Rolando; Molina Esquivel, Enrique; Martinez Varona, Miriam; Fernandez Arocha, Ariadna; Aldape Ugalde, Francisca; Flores Maldonado, Javier

    2009-01-01

    The present work reports, the results of a first study of elemental composition in airborne particulate matter (in fine and coarse particle size fractions) collected at the Atmospheric Monitoring Station in the Municipality of Centro Habana, using the Particle-Induced X-ray Emission (PIXE) technique. At present, there is not information available about elements contents in airborne particulate matter from this region. For this study, we carried out a sampling campaign during five months (November 14, 2006 to April 19, 2007). The samples were collected every second day during 24 h under an air flux of 20 l/min. The air sampler used was a Gent Sampler equipped with a Stacked Filter Unit (SFU) system which allows the aerosol collection in both size fractions simultaneously. A total of 144 aerosol samples were collected (72 correspond to the fine mass particle and 72 to the coarse mass particle). For PIXE analysis, the samples were irradiated by 2.5 MeV energy protons from the 2MV Van de Graff Tandetron Accelerator from the Laboratory of PIXE analysis at ININ, Mexico. A total of 14 elements (S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br and Pb) were consistently detected in both particle size fractions with minimum detection limits in the range of 1-10 ng/m3. The quantitative results obtained from PIXE elemental analysis for mass of particles in both fractions have revealed important information that has been used in a first attempt to understand and to characterize the atmospheric pollution of this area. A general discussion about these results is presented in this paper. (author)

  11. Two-year study of atmospheric aerosols in Alta Floresta, Brazil: Multielemental composition and source apportionment

    International Nuclear Information System (INIS)

    Maenhaut, Willy; Fernandez-Jimenez, Maria-Teresa; Rajta, Istvan; Artaxo, Paulo

    2002-01-01

    Atmospheric aerosol samples were collected nearly continuously from August 1996 until September 1998 at Alta Floresta in a primary forest region of the Amazon basin, Brazil. The sampling device consisted of a stacked filter unit (SFU), which separates the aerosol into a coarse (2-10 μm equivalent aerodynamic diameter (EAD)) and a fine (<2 μm EAD) size fraction. The coarse and fine filters of all SFU samples (205 in total) were analysed for the particulate mass (PM), black carbon (BC), and up to 47 elements (from Na upward). The multielemental analyses were done by a combination of PIXE and instrumental neutron activation analysis. Absolute principal component analysis was used for source (source type) identification and apportionment. Five components were identified in the fine size fraction, i.e. mineral dust, a biomass burning (pyrogenic) component (with PM, BC, S, K, Zn, Br, Rb and I, having loadings in the range 0.7-0.9), a Na/Ca component, a biogenic component (with P), and an almost pure Pb component. On average 67% of the fine PM was attributed to the pyrogenic component, 14% to the mineral dust, 7% each to the biogenic and Na/Ca components, and 4% to the Pb component. The relative contribution from the pyrogenic aerosol varied substantially with season, however. It was generally between 60% and 100% during the dry season. During the wet season, on the other hand, it often became insignificant. During that season, most of the fine aerosol was attributed to the biogenic component

  12. Aerosol optical properties and direct radiative forcing at Taihu.

    Science.gov (United States)

    Lü, Rui; Yu, Xingna; Jia, Hailing; Xiao, Sihan

    2017-09-01

    Ground-based characteristics (optical, type, size, and radiative properties) of aerosols measured between 2005 and 2012 were investigated over the Taihu rim region, which encompasses the cities of Shanghai, Suzhou, Wuxi, and Changzhou. The aerosol optical depth (AOD) showed a distinct seasonal variation with the highest value in summer and the lowest AOD in winter. There was broadest frequency distribution with a multimodal structure in summer. The Ångström exponent (AE) showed high values during spring; the relative frequency of AE in the range of 0-0.8 was 5-10 times greater than that of other seasons. The samples with high AOD 440 and low AE 440-870 were mainly observed in spring, which is attributed to the relative abundance of coarse particles. The monthly aerosol volume size distributions presented a bimodal structure (fine and coarse modes). The coarse mode was dominant during spring, while the fine mode was predominant in other seasons. The main aerosol type over Taihu during all the seasons was the mixed small-particle category, followed by the urban/industrial category. The minimum single scattering albedo (SSA) occurred in winter, suggesting that atmosphere aerosol had a higher absorption. All monthly averaged asymmetry factors (ASY) had positive values and no distinct seasonal variation. Both high real (Re) and imaginary (Im) parts of the refractive index occurred in winter. The atmospheric warming effect of aerosol was more significant in winter compared with other seasons, with the averaged atmosphere aerosol radiative forcing (ARF) and the corresponding atmospheric heating rate up to +69.46  W·m -2 and 1.95  K·day -1 , respectively. There existed a significant positive correlation between AOD and ARF (absolute value), and the correlation coefficients (r) exceeded 0.86 in each season with maximum r in summer. Along with the increasing of the SSA, the aerosol radiative forcing efficiency (absolute value) showed a decreasing trend at the

  13. Mechanisms of Formation of Secondary Organic Aerosols and Implications for Global Radiative Forcing

    Energy Technology Data Exchange (ETDEWEB)

    Seinfeld, John H. [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2011-12-02

    Organic material constitutes about 50% of global atmospheric aerosol mass, and the dominant source of organic aerosol is the oxidation of volatile hydrocarbons, to produce secondary organic aerosol (SOA). Understanding the formation of SOA is crucial to predicting present and future climate effects of atmospheric aerosols. The goal of this program is to significantly increase our understanding of secondary organic aerosol (SOA) formation in the atmosphere. Ambient measurements indicate that the amount of SOA in the atmosphere exceeds that predicted in current models based on existing laboratory chamber data. This would suggest that either the SOA yields measured in laboratory chambers are understated or that all major organic precursors have not been identified. In this research program we are systematically exploring these possibilities.

  14. Experimental study of heterogeneous organic chemistry induced by far ultraviolet light: Implications for growth of organic aerosols by CH3 addition in the atmospheres of Titan and early Earth

    Science.gov (United States)

    Hong, Peng; Sekine, Yasuhito; Sasamori, Tsutoni; Sugita, Seiji

    2018-06-01

    Formation of organic aerosols driven by photochemical reactions has been observed and suggested in CH4-containing atmospheres, including Titan and early Earth. However, the detailed production and growth mechanisms of organic aerosols driven by solar far ultraviolet (FUV) light remain poorly constrained. We conducted laboratory experiments simulating photochemical reactions in a CH4sbnd CO2 atmosphere driven by the FUV radiations dominated by the Lyman-α line. In the experiments, we analyzed time variations in thickness and infrared spectra of solid organic film formed on an optical window in a reaction cell. Gas species formed by FUV irradiation were also analyzed and compared with photochemical model calculations. Our experimental results show that the growth rate of the organic film decreases as the CH4/CO2 ratio of reactant gas mixture decreases, and that the decrease becomes very steep for CH4/CO2 organic film but that the addition reaction of CH3 radicals onto the organic film with the reaction probability around 10-2 can explain the growth rate. At CH4/CO2 organic film. Our results suggest that organic aerosols would grow through CH3 addition onto the surface during the precipitation of aerosol particles in the middle atmosphere of Titan and early Earth. On Titan, effective CH3 addition would reduce C2H6 production in the atmosphere. On early Earth, growth of aerosol particles would be less efficient than those on Titan, possibly resulting in small-sized monomers and influencing UV shielding.

  15. MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models

    OpenAIRE

    Bauer , S. E.; Wright , D.; Koch , D.; Lewis , E. R.; Mcgraw , R.; Chang , L.-S.; Schwartz , S. E.; Ruedy , R.

    2008-01-01

    A new aerosol microphysical module MATRIX, the Multiconfiguration Aerosol TRacker of mIXing state, and its application in the Goddard Institute for Space Studies (GISS) climate model (ModelE) are described. This module, which is based on the quadrature method of moments (QMOM), represents nucleation, condensation, coagulation, internal and external mixing, and cloud-drop activation and provides aerosol particle mass and number concentration and particle size information for up to 16 mixed-mod...

  16. Design Of A Novel Open-Path Aerosol Extinction Cavity Ringdown Spectrometer And Initial Data From Deployment At NOAA's Atmospheric Observatory

    Science.gov (United States)

    Gordon, T. D.; Wagner, N. L.; Richardson, M.; Law, D. C.; Wolfe, D. E.; Brock, C. A.; Erdesz, F.; Murphy, D. M.

    2014-12-01

    The ability to frame effective climate change policy depends strongly on reducing the uncertainty in aerosol radiative forcing, which is currently nearly as great as best estimates of its magnitude. Achieving this goal will require significant progress in measuring aerosol properties, including aerosol optical depth, single scattering albedo and the effect of relative humidity on these properties for both fine and coarse particles. However both ground- and space-based instruments fail or are highly biased in the presence of clouds, severely limiting quantitative estimates of the radiative effects of aerosols where they are advected over low-level clouds. Moreover, many in situ aerosol measurements exclude the coarse fraction, which can be very important in and downwind of desert regions. By measuring the decay rate of a pulsed laser in an optically resonant cavity, cavity ringdown spectrometers (CRDSs) have been employed successfully in measuring aerosol extinction for particles in relative humidities below 90%. At very high humidities (as found in and near clouds), however, existing CRDSs perform poorly, diverging significantly from theoretical extinction values as humidities approach 100%. The new open-path aerosol extinction CRDS described in this poster measures extinction as aerosol is drawn through the sample cavity directly without inlets or tubing for channeling the flow, which cause particle losses, condensation at high RH and other artifacts. This poster presents the key elements of the new open-path CRDS design as well as comparisons with an earlier generation closed-path CRDS and preliminary data obtained during a field study at the 300 meter tower at NOAA's Boulder Atmospheric Observatory (BAO) in Colorado.

  17. Characterization of Atmospheric Aerosol Behavior and Climatic Effects by Analysis of SAGE 2 and Other Space, Air, and Ground Measurements

    Science.gov (United States)

    Livingston, John M.

    1999-01-01

    This report documents the research performed under NASA Ames Cooperative Agreement NCC 2-991, which covered the period 1 April 1997 through 31 March 1999. Previously, an interim technical report (Technical Report No. 1, 20 March 1998) summarized the work completed during the period 1 April 1997 through 31 March 1998. The objective of the proposed research was to advance our understanding of atmospheric aerosol behavior, aerosol-induced climatic effects, and the remote measurement and retrieval capabilities of spaceborne sensors such as SAGE II by combining and comparing data from these instruments and from airborne and ground-based instruments.

  18. Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project

    Energy Technology Data Exchange (ETDEWEB)

    Fast, Jerome D.; Berg, Larry K.; Zhang, Kai; Easter, Richard C.; Ferrare, Richard A.; Hair, John; Hostetler, Chris A.; Liu, Ying; Ortega, Ivan; Sedlacek, Art; Shilling, John E.; Shrivastava, ManishKumar B.; Springston, Stephen R.; Tomlinson, Jason M.; Volkamer, Rainer M.; Wilson, Jacqueline M.; Zaveri, Rahul A.; Zelenyuk-Imre, Alla

    2016-08-22

    The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy’s Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surface measurements during July, and two days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. While a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.

  19. Radiative and Thermal Impacts of Smoke Aerosol Longwave Absorption during Fires in the Moscow Region in Summer 2010

    Science.gov (United States)

    Gorchakova, I. A.; Mokhov, I. I.; Anikin, P. P.; Emilenko, A. S.

    2018-03-01

    The aerosol longwave radiative forcing of the atmosphere and heating rate of the near-surface aerosol layer are estimated for the extreme smoke conditions in the Moscow region in summer 2010. Thermal radiation fluxes in the atmosphere are determined using the integral transmission function and semiempirical aerosol model developed on the basis of standard aerosol models and measurements at the Zvenigorod Scientific Station, Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences. The aerosol radiative forcing reached 33 W/m2 at the lower atmospheric boundary and ranged between-1.0 and 1.0 W/m2 at the upper atmospheric boundary. The heating rate of the 10-m atmospheric layer near surface was up to 0.2 K/h during the maximum smoke conditions on August 7-9. The sensitivity of the aerosol longwave radiative forcing to the changes in the aerosol absorption coefficient and aerosol optical thickness are estimated.

  20. Atmospheric Sampling of Microorganisms with UAS

    Science.gov (United States)

    Schmale, D. G., III

    2017-12-01

    Many microorganisms relevant to crops, domestic animals, and humans are transported over long distances through the atmosphere. Some of these atmospheric microbes catalyze the freezing of water at higher temperatures and facilitate the onset of precipitation. A few have crossed continents. New technologies are needed to study the movement of microorganisms in the atmosphere. We have used unmanned aircraft systems (UAS) to study the transport of microorganisms tens to hundreds of meters above the ground. These UAS are equipped with unique devices for collecting microbes in the atmosphere during flight. Autonomous systems enable teams of UAS to perform complex atmospheric sampling tasks, and coordinate flight missions with one another. Data collected with UAS can be used to validate and improve disease forecasting models along highways in the sky, connecting transport scales across farms, states, and continents. Though terrestrial environments are often considered a major contributor to atmospheric microbial aerosols, little is known about aquatic sources of microbial aerosols. Droplets containing microorganisms can aerosolize from the water surface, liberating them into the atmosphere. We are using teams of unmanned surface vehicles (USVs) and UAS to study the aerosolization of microbes from aquatic environments. Controlled flume studies using highspeed video have allowed us to observe unique aerosolization phenomena that can launch microbes out of the water and into the air. Unmanned systems may be used to excite the next generation of biologists and engineers, and raise important ethical considerations about the future of human-robot interactions.

  1. ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Leung, L Ruby [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility’s ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) field campaign contributes to CalWater 2015, a multi-agency field campaign that aims to improve understanding of atmospheric rivers and aerosol sources and transport that influence cloud and precipitation processes. The ultimate goal is to reduce uncertainties in weather predictions and climate projections of droughts and floods in California. With the DOE G-1 aircraft and ARM Mobile Facility 2 (AMF2) well equipped for making aerosol and cloud measurements, ACAPEX focuses specifically on understanding how aerosols from local pollution and long-range transport affect the amount and phase of precipitation associated with atmospheric rivers. ACAPEX took place between January 12, 2015 and March 8, 2015 as part of CalWater 2015, which included four aircraft (DOE G-1, National Oceanic and Atmospheric Administration [NOAA] G-IV and P-3, and National Aeronautics and Space Administration [NASA] ER-2), the NOAA research ship Ron Brown, carrying onboard the AMF2, National Science Foundation (NSF)-sponsored aerosol and precipitation measurements at Bodega Bay, and the California Department of Water Resources extreme precipitation network.

  2. Estimation of aerosol water and chemical composition from AERONET Sun-sky radiometer measurements at Cabauw, the Netherlands

    NARCIS (Netherlands)

    Van Beelen, A. J.; Roelofs, G. J H; Hasekamp, O. P.; Henzing, J. S.; Röckmann, T.

    2014-01-01

    Remote sensing of aerosols provides important information on atmospheric aerosol abundance. However, due to the hygroscopic nature of aerosol particles observed aerosol optical properties are influenced by atmospheric humidity, and the measurements do not unambiguously characterize the aerosol dry

  3. Origins and composition of fine atmospheric carbonaceous aerosol in the Sierra Nevada Mountains, California

    Directory of Open Access Journals (Sweden)

    D. R. Worton

    2011-10-01

    Full Text Available In this paper we report chemically resolved measurements of organic aerosol (OA and related tracers during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX at the Blodgett Forest Research Station, California from 15 August–10 October 2007. OA contributed the majority of the mass to the fine atmospheric particles and was predominately oxygenated (OOA. The highest concentrations of OA were during sporadic wildfire influence when aged plumes were impacting the site. In situ measurements of particle phase molecular markers were dominated by secondary compounds and along with gas phase compounds could be categorized into six factors or sources: (1 aged biomass burning emissions and oxidized urban emissions, (2 oxidized urban emissions (3 oxidation products of monoterpene emissions, (4 monoterpene emissions, (5 anthropogenic emissions and (6 local methyl chavicol emissions and oxidation products. There were multiple biogenic components that contributed to OA at this site whose contributions varied diurnally, seasonally and in response to changing meteorological conditions, e.g. temperature and precipitation events. Concentrations of isoprene oxidation products were larger when temperatures were higher during the first half of the campaign (15 August–12 September due to more substantial emissions of isoprene and enhanced photochemistry. The oxidation of methyl chavicol, an oxygenated terpene emitted by ponderosa pine trees, contributed similarly to OA throughout the campaign. In contrast, the abundances of monoterpene oxidation products in the particle phase were greater during the cooler conditions in the latter half of the campaign (13 September–10 October, even though emissions of the precursors were lower, although the mechanism is not known. OA was correlated with the anthropogenic tracers 2-propyl nitrate and carbon monoxide (CO, consistent with previous observations, while being comprised of mostly non-fossil carbon

  4. Evaluation of simulated aerosol properties with the aerosol-climate model ECHAM5-HAM using observations from the IMPACT field campaign

    NARCIS (Netherlands)

    Roelofs, G.-J.; Brink, H. ten; Kiendler-Scharr, A.; Leeuw, G. de; Mensah, A.; Minikin, A.; Otjes, R.

    2010-01-01

    In May 2008, the measurement campaign IMPACT for observation of atmospheric aerosol and cloud properties was conducted in Cabauw, The Netherlands. With a nudged version of the coupled aerosol-climate model ECHAM5-HAM we simulate the size distribution and chemical composition of the aerosol and the

  5. Evaluation of the impact of atmospheric ozone and aerosols on the horizontal global/diffuse UV Index at Livorno (Italy)

    Science.gov (United States)

    Scaglione, Daniele; Giulietti, Danilo; Morelli, Marco

    2016-08-01

    A study was conducted at Livorno (Italy) to evaluate the impact of atmospheric aerosols and ozone on the solar UV radiation and its diffuse component at ground in clear sky conditions. Solar UV radiation has been quantified in terms of UV Index (UVI), following the ISO 17166:1999/CIE S007/E-1998 international standard. UVI has been calculated by exploiting the libRadtran radiative transfer modelling software as a function of both the Aerosols Optical Depth (AOD) and the Total Ozone Column (TOC). In particular AOD and TOC values have been remotely sensed by the Ozone Monitoring Instrument (OMI) on board the NASA's EOS (Earth Observing System) satellites constellation. An experimental confirmation was also obtained by exploiting global UVI ground-based measurements from the 26/9/14 to 12/8/15 and diffuse UVI ground-based measurements from the 17/5/15 to 12/8/15. For every considered value of Solar Zenith Angle (SZA) and atmospheric condition, estimates and measurements confirm that the diffuse component contributes for more than 50% on the global UV radiation. Therefore an exposure of human skin also to diffuse solar UV radiation can be potentially harmful for health and need to be accurately monitored, e.g. by exploiting innovative applications such as a mobile app with a satellite-based UV dosimeter that has been developed. Global and diffuse UVI variations due to the atmosphere are primarily caused by the TOC variations (typically cyclic): the maximum TOC variation detected by OMI in the area under study leads to a corresponding variation in global and diffuse UVI of about 50%. Aerosols in the area concerned, mainly of maritime nature, have instead weaker effects causing a maximum variation of the global and diffuse UVI respectively of 9% and 35% with an SZA of 20° and respectively of 13% and 10% with an SZA of 60°.

  6. Ground-Based Remote Sensing of Aerosol Properties over a Coastal Megacity of Pakistan

    OpenAIRE

    Tariq, Salman; Ul-Haq, Zia

    2018-01-01

    Atmospheric aerosols are considered to be an important constituent of Earth’s atmosphere because of their climatic, environmental, and health effects. Therefore, while studying the global climate change, investigation of aerosol concentrations and properties is essential both at local and regional levels. In this paper, we have used relatively long-term Aerosol Robotic Network (AERONET) data during September 2006–August 2014 to analyze aerosol properties such as aerosol optical depth at 500 n...

  7. Optical and radiative properties of aerosols over Abu Dhabi in the ...

    Indian Academy of Sciences (India)

    Introduction. Atmospheric aerosols strongly influence the radiation budget of ... the radiative balance of the earth–atmosphere sys- tem due to ... resources modelling for photo voltaic (PV) and .... scene information (e.g., cloud and aerosol prop-.

  8. Science Plan Biogenic Aerosols – Effects on Clouds and Climate (BAECC)

    Energy Technology Data Exchange (ETDEWEB)

    Petäjä, T

    2013-12-01

    Atmospheric aerosol particles impact human health in urban environments, while on regional and global scales they can affect climate patterns, the hydrological cycle, and the intensity of radiation that reaches the Earth’s surface. In spite of recent advances in the understanding of aerosol formation processes and the links between aerosol dynamics and biosphere-atmosphere-climate interactions, great challenges remain in the analysis of related processes on a global scale. Boreal forests, situated in a circumpolar belt in the northern latitudes throughout the United States, Canada, Russia and Scandinavia, are among the most active areas of atmospheric aerosol formation among all biomes. The formation of aerosol particles and their growth to the sizes of cloud condensation nuclei in these areas are associated with biogenic volatile organic emissions from vegetation and soil.

  9. Interpreting the Ultraviolet Aerosol Index Observed with the OMI Satellite Instrument to Understand Absorption by Organic Aerosols: Implications for Atmospheric Oxidation and Direct Radiative Effects

    Science.gov (United States)

    Hammer, Melanie S.; Martin, Randall V.; Donkelaar, Aaron van; Buchard, Virginie; Torres, Omar; Ridley, David A.; Spurr, Robert J. D.

    2016-01-01

    Satellite observations of the ultraviolet aerosol index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOSChem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.32 to -0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The inclusion of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.57 to -0.09 over West Africa in January, from -0.32 to +0.0002 over South Asia in April, from -0.97 to -0.22 over southern Africa in July, and from -0.50 to +0.33 over South America in September. The spectral dependence of absorption after including BrC in the model is broadly consistent with reported observations for biomass burning aerosol, with absorbing Angstrom exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 30% over South America in September, up to 20% over southern Africa in July, and up to 15% over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68 years, thus

  10. Equidad, desarrollo y paz

    Directory of Open Access Journals (Sweden)

    Jorge Iván GONZÁLEZ

    2009-11-01

    Full Text Available RESUMEN: El eje del artículo es la relación que establece el autor entre desarrollo económico y violencia. En Colombia la situación económica se ha deteriorado en gran medida como consecuencia de la política económica y del modelo de desarrollo y éstos son responsables de la agudización de la violencia. La desigual distribución de la riqueza y la ortodoxia monetaria han estimulado la concentración y han propiciado la exclusión. Aunque la relación no es mecánica, esta situación es un elemento para la rebelión. El costo social de la política económica neoliberal ha sido elevado, a pesar de que los programas sociales han puesto énfasis en la lucha contra la pobreza. Este enfoque debe modificarse, puesto que privilegiando la equidad y aminorando la concentración del ingreso, se estimula el desarrollo, se reduce la pobreza y en consecuencia, se crea un clima propicio para el diálogo y la paz.ABSTRACT: The core of the article is the relationship between economic development and violence that the author establishes. The economic situation in Colombia has been deterioring as consequence of the economic policy and the way of development. Both of them are responsibles of the violence intensification. The unequal wealth distribution and monetary orthodoxy have stimulated the concentration and have created a favorable atmosphere for exclusion. The social cost of neoliberal economic policies has been high despite the fact that social programs have focused on fighting poverty. This approach must be modified. Development is stimulated by granting privilege to equality and reducing the income concentration . In doing so, the rigth atmosphere for dialogue and peace is created.

  11. Aerosol Activation Properties within and above Mixing Layer in the North China Plain

    Science.gov (United States)

    Deng, Z.; Ran, L.

    2013-12-01

    Aerosol particles, serving as cloud condensation nuclei (CCN), may modify the properties of clouds and have an impact on climate. The vertical distribution of aerosols and their activation properties is critical to quantify the effect of aerosols on clouds. An intensive field campaign, Vertical Observations of trace Gases and Aerosols in the North China Plain (VOGA-NCP 2013), was conducted in the North China Plain during the late July and early August 2013 to measure the vertical profiles of atmospheric components in this polluted region and estimate their effects on atmospheric environment and climate. Aerosols were measured with in-situ instruments and Lidar. Particularly, the aerosols were collected at 1000 m height with a 1 m3 bag sampler attached to a tethered balloon, and subsequently measured with combined scanning mobility particle sizer (SMPS) and CCN counter. Comparisons of size-resolved activation ratios at ground level and 1000 m height showed that aerosols in upper atmosphere were not only less concentrated, but also less CCN-active than those at the surface. The difference in aerosol properties between upper atmosphere and the ground indicates that the analysis of impacts of aerosols on cloud might be misleading in heavily polluted region based on the relationship of cloud properties and surface aerosols or column without considering the vertical distribution of aerosol activation abilities.

  12. Nitrous Oxide Emissions from Biofuel Crops and Atmospheric Aerosols: Associations with Air Quality and Regional Climate

    Science.gov (United States)

    Pillai, Priya Ramachandran

    Emissions of greenhouse gases (GHG) and primary release and secondary formation of aerosols alter the earth's radiative balance and therefore have important climatic implications. Savings in carbon dioxide (CO2) emissions accomplished by replacing fossil fuels with biofuels may increase the nitrous oxide (N2O) emissions. Among various atmospheric trace gases, N2O, irrespective of its low atmospheric concentration, is the fourth most important gas in causing the global greenhouse effect. Major processes, those affect the concentration of atmospheric N2O, are soil microbial activities leading to nitrification and denitrification. Therefore, anthropogenic activities such as industrial emissions, and agricultural practices including application of nitrogenous fertilizers, land use changes, biomass combustion all contribute to the atmospheric N2O concentration. The emission rates of N2O related to biofuel production depend on the nitrogen (N) fertilizer uptake efficiency of biofuel crops. However, crops with less N demand, such as switchgrass may have more favorable climate impacts when compared to crops with high N demands, such as corn. Despite its wide environmental tolerance, the regional adaptability of the potential biofuel crop switch grass varies considerably. Therefore, it is important to regionally quantify the GHG emissions and crop yield in response to N-fertilization. A major objective of this study is to quantify soil emissions of N2O from switchgrass and corn fields as a function of N-fertilization. The roles of soil moisture and soil temperature on N2O fluxes were analyzed. These N2O observations may be used to parameterize the biogeochemical models to better understand the impact of different N2O emission scenarios. This study allows for improvements in climate models that focus on understanding the environmental impacts of the climate change mitigation strategy of replacing fossil fuels with biofuels. As a second major objective, the top of the

  13. Aerosol-induced thermal effects increase modelled terrestrial photosynthesis and transpiration

    International Nuclear Information System (INIS)

    Steiner, Allison L.; Chameides, W.L.

    2005-01-01

    Previous studies suggest that the radiative effects of atmospheric aerosols (reducing total radiation while increasing the diffuse fraction) can enhance terrestrial productivity. Here, simulations using a regional climate/terrestrial biosphere model suggest that atmospheric aerosols could also enhance terrestrial photosynthesis and transpiration through an interaction between solar radiation, leaf temperature and stomatal conductance. During midday, clear-sky conditions, sunlit-leaf temperatures can exceed the optimum for photosynthesis, depressing both photosynthesis and transpiration. Aerosols decrease surface solar radiation, thereby reducing leaf temperatures and enhancing sunlit-leaf photosynthesis and transpiration. This modelling study finds that, under certain conditions, this thermal response of aerosols can have a greater impact on photosynthesis and transpiration than the radiative response. This implies that a full understanding of the impact of aerosols on climate and the global carbon cycle requires consideration of the biophysical responses of terrestrial vegetation as well as atmospheric radiative and thermodynamic effects

  14. Trace elemental analysis of the aerosol particulates in northern Punjab

    International Nuclear Information System (INIS)

    Iqbal, M.Z.

    2002-01-01

    Trace elemental analysis of the aerosol particulates was studied in the atmosphere of Lahore, Faisalabad, Islamabad, Sheikhupura, Wah Cantt. And Khanispur. The amount of the aerosol particulates in the above mentioned areas was compared to the U.S. EPA maximum permissible limits. Scavenging mechanism of the aerosol particulates through precipitation was studied in the atmosphere of Lahore and Sheikhupura by using HPLC and ICP-AES techniques. The site distribution and morphological structure of the aerosol particulates was studied by using Scanning Electron Microscope model JSM-35CF. Trace elemental composition of the aerosol particulates in the atmosphere of the selected areas of Pakistan was carried out by using NAA. The elements thus studied were Ce, Yb, Se, Cr, Hf, Cs, Sc, Fe, Co, Eu, Sb, Mo, Ba, Zn, Hg, Br, Na, Gd, Sm, Nd and In while Pb and Cd were estimated by using ASS technique. (author)

  15. Temporal variations in elemental concentrations of atmospheric aerosols in Mexico City

    International Nuclear Information System (INIS)

    Aldape U, F.

    1992-05-01

    Measurements are reported of elemental concentrations of airborne particulates in Mexico City and their time variation over a one-week period in the spring of 1988. Proton-induced X-ray emission analysis, PIXE, was used to analyse the atmospheric aerosols which were bombarded with 2.5 MeV protons from the 12 MV Tandem Van de Graaff accelerator at the National Institute of Nuclear Research, ININ. Variations in the elemental concentrations were observed over the time period studied. An intercomparison was made in the case of the element lead with PIXE results obtained at the Crocker Nuclear Laboratory, CNL, University of California for the same set of samples. Excellent agreement was obtained both for the time variation of the relative concentration and the absolute lead concentrations. These results give added confidence to the protocol adopted at ININ. (Author)

  16. Determination of water vapor and aerosol densities in the tropospheric atmosphere from nitrogen and water vapor raman signals

    CERN Document Server

    Kim, D H; Lee, J M; Yeon, K H; Choi, S C

    1998-01-01

    A Raman lidar system has been developed for the measurement of the water-vapor mixing ratio and the aerosol backscatter and extinction coefficients. To suppress the elastic scattering from the XeCl excimer laser, an acetone edge filter and narrow-band interference filters are used. By using independently calculated backscatter and extinction coefficients, we calculate the lidar ratios (extinction coefficient divided by the backscatter coefficient). The obtained ratios between 30 and 50 sr explain the special characteristics of the aerosol existing in the atmosphere. These ratios are also used as important parameters in the lidar inversion program. We have also obtained the water-vapor mixing ratio and find that big differences exist between the ratios inside the boundary layer and those of other regions.

  17. Preliminary Evaluation of Influence of Aerosols on the Simulation of Brightness Temperature in the NASA's Goddard Earth Observing System Atmospheric Data Assimilation System

    Science.gov (United States)

    Kim, Jong; Akella, Santha; da Silva, Arlindo M.; Todling, Ricardo; McCarty, William

    2018-01-01

    This document reports on preliminary results obtained when studying the impact of aerosols on the calculation of brightness temperature (BT) for satellite infrared (IR) instruments that are currently assimilated in a 3DVAR configuration of Goddard Earth Observing System (GEOS)-atmospheric data assimilation system (ADAS). A set of fifteen aerosol species simulated by the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model is used to evaluate the influence of the aerosol fields on the Community Radiative Transfer Model (CRTM) calculations taking place in the observation operators of the Gridpoint Statistical Interpolation (GSI) analysis system of GEOSADAS. Results indicate that taking aerosols into account in the BT calculation improves the fit to observations over regions with significant amounts of dust. The cooling effect obtained with the aerosol-affected BT leads to a slight warming of the analyzed surface temperature (by about 0:5oK) in the tropical Atlantic ocean (off northwest Africa), whereas the effect on the air temperature aloft is negligible. In addition, this study identifies a few technical issues to be addressed in future work if aerosol-affected BT are to be implemented in reanalysis and operational settings. The computational cost of applying CRTM aerosol absorption and scattering options is too high to justify their use, given the size of the benefits obtained. Furthermore, the differentiation between clouds and aerosols in GSI cloud detection procedures needs satisfactory revision.

  18. Aerosols produced by evaporation of a uranium wire; Aerosols produits par evaporation d'un fil d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Morel, C [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-03-01

    This work is devoted to the study of the aerosols formed when an uranium wire is evaporated in a normal or rarefied atmosphere, either with or without a drying agent. The heating of the wire can be either fast or slow. The first part is a study of aerosol production apparatus and of methods of measuring the aerosol. The second part presents the results obtained with various aerosols: the particles produced by the wire are less than one micron; during rapid heating, the granulometric distribution of the aerosol obeys a log-normal law; during slow heating, the distribution has two modes: one near 0.05 micron, the other close to 0.01 micron. (author) [French] Ce travail est consacre a l'etude des aerosols formes lors de l'evaporation d un fil d'uranium en atmosphere normale ou rarefiee en presence ou non de dessechant. Le chauffage du fil peut etre rapide ou lent. La premiere partie est une etude des appareils de production et des methodes de mesures de l'aerosol. La seconde partie consigne les resultats obtenus sur les differents aerosols: les particules emises par le fil sont inferieures au micron; lors d'un chauffage rapide, la repartition granulometrique de l'aerosol suit une loi log-normale; lors d un chauffage lent, la repartition presente deux modes: l'un voisin de 0.05 micron, l'autre voisin de 0.01 micron. (auteur)

  19. Insight into Chemistry on Cloud/Aerosol Water Surfaces.

    Science.gov (United States)

    Zhong, Jie; Kumar, Manoj; Francisco, Joseph S; Zeng, Xiao Cheng

    2018-05-15

    Cloud/aerosol water surfaces exert significant influence over atmospheric chemical processes. Atmospheric processes at the water surface are observed to follow mechanisms that are quite different from those in the gas phase. This Account summarizes our recent findings of new reaction pathways on the water surface. We have studied these surface reactions using Born-Oppenheimer molecular dynamics simulations. These studies provide useful information on the reaction time scale, the underlying mechanism of surface reactions, and the dynamic behavior of the product formed on the aqueous surface. According to these studies, the aerosol water surfaces confine the atmospheric species into a specific orientation depending on the hydrophilicity of atmospheric species or the hydrogen-bonding interactions between atmospheric species and interfacial water. As a result, atmospheric species are activated toward a particular reaction on the aerosol water surface. For example, the simplest Criegee intermediate (CH 2 OO) exhibits high reactivity toward the interfacial water and hydrogen sulfide, with the reaction times being a few picoseconds, 2-3 orders of magnitude faster than that in the gas phase. The presence of interfacial water molecules induces proton-transfer-based stepwise pathways for these reactions, which are not possible in the gas phase. The strong hydrophobicity of methyl substituents in larger Criegee intermediates (>C1), such as CH 3 CHOO and (CH 3 ) 2 COO, blocks the formation of the necessary prereaction complexes for the Criegee-water reaction to occur at the water droplet surface, which lowers their proton-transfer ability and hampers the reaction. The aerosol water surface provides a solvent medium for acids (e.g., HNO 3 and HCOOH) to participate in reactions via mechanisms that are different from those in the gas and bulk aqueous phases. For example, the anti-CH 3 CHOO-HNO 3 reaction in the gas phase follows a direct reaction between anti-CH 3 CHOO and HNO 3

  20. Atmospheric aerosol sampling campaign in Budapest and K-puszta. Part 2. Application of Stochastic Lung Model

    International Nuclear Information System (INIS)

    Dobos, E.; Borbely-Kiss, I.; Kertesz, Zs.; Balashazy, I.

    2004-01-01

    Complete text of publication follows. The Stochastic Lung Model [1] is a new important tool for the investigation of the health impact of atmospheric aerosols. The obtained concentrations of urban and rural aerosols (see part 1) were applied for lung deposition calculations with this model. The health effects of the inhaled particles may strongly depend on the location of deposition within the lung. This model was applied in order to calculate the deposition efficiencies of the measured aerosols in the tracheobronchial and the acinar regions of human respiratory system. In the acinar regions takes place the gas-exchange. In this model a lot of parameters can be adjusted and changed. For example: tidal volume, aerosol diameter and density, time of breathing cycle, etc. So can be calculation some cases among others males, females or children, sleep, sitting, light or heavy exercise, etc. As example the Figure 1. demonstrates that the acinar deposition has a maximum at 1-3 μm aerosol size and above 10 μm the practically do not reach the acinar region at sitting breathing conditions for male person. In the part I. the elements have been grouped. The first group was composed of Fe, Si and Ca. These elements can be found in 2-8 m size range with the largest rate. The deposition of Fe, Si and Ca elements has the largest probability in acinar region. The elemental concentrations in Budapest are much larger than in K-puszta. Thus, the acinar deposition of aerosol containing Fe, Si and Ca is relatively more significant in Budapest than in K-puszta. The second group was composed of S, Pb and W. The majority of these elements was in the 0,25-1 μm size range. These elements also deposit in acinar region but with less probability. Because their particles have large concentration they can also deposit in large amount. This work was supported by the National Research and Development Program (NRDP 3/005/2001). (author)

  1. Results and code prediction comparisons of lithium-air reaction and aerosol behavior tests

    International Nuclear Information System (INIS)

    Jeppson, D.W.

    1986-03-01

    The Hanford Engineering Development Laboratory (HEDL) Fusion Safety Support Studies include evaluation of potential safety and environmental concerns associated with the use of liquid lithium as a breeder and coolant for fusion reactors. Potential mechanisms for volatilization and transport of radioactive metallic species associated with breeder materials are of particular interest. Liquid lithium pool-air reaction and aerosol behavior tests were conducted with lithium masses up to 100 kg within the 850-m 3 containment vessel in the Containment Systems Test Facility. Lithium-air reaction rates, aerosol generation rates, aerosol behavior and characterization, as well as containment atmosphere temperature and pressure responses were determined. Pool-air reaction and aerosol behavior test results were compared with computer code calculations for reaction rates, containment atmosphere response, and aerosol behavior. The volatility of potentially radioactive metallic species from a lithium pool-air reaction was measured. The response of various aerosol detectors to the aerosol generated was determined. Liquid lithium spray tests in air and in nitrogen atmospheres were conducted with lithium temperatures of about 427 0 and 650 0 C. Lithium reaction rates, containment atmosphere response, and aerosol generation and characterization were determined for these spray tests

  2. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing: Advances in Secondary Organic Aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, Manish [Pacific Northwest National Laboratory, Richland Washington USA; Cappa, Christopher D. [Department of Civil and Environmental Engineering, University of California, Davis California USA; Fan, Jiwen [Pacific Northwest National Laboratory, Richland Washington USA; Goldstein, Allen H. [Department of Environmental Science, Policy and Management and Department of Civil and Environmental Engineering, University of California, Berkeley California USA; Guenther, Alex B. [Department of Earth System Science, University of California, Irvine California USA; Jimenez, Jose L. [Cooperative Institute for Research in Environmental Sciences and Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder Colorado USA; Kuang, Chongai [Brookhaven National Laboratory, Upton New York USA; Laskin, Alexander [Pacific Northwest National Laboratory, Richland Washington USA; Martin, Scot T. [School of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, Cambridge Massachusetts USA; Ng, Nga Lee [School of Chemical and Biomolecular Engineering and School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta Georgia USA; Petaja, Tuukka [Department of Physics, University of Helsinki, Helsinki Finland; Pierce, Jeffrey R. [Department of Atmospheric Science, Colorado State University, Fort Collins Colorado USA; Rasch, Philip J. [Pacific Northwest National Laboratory, Richland Washington USA; Roldin, Pontus [Department of Physics, Lund University, Lund Sweden; Seinfeld, John H. [Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena California USA; Shilling, John [Pacific Northwest National Laboratory, Richland Washington USA; Smith, James N. [Department of Earth System Science, University of California, Irvine California USA; Thornton, Joel A. [Department of Atmospheric Sciences, University of Washington, Seattle Washington USA; Volkamer, Rainer [Cooperative Institute for Research in Environmental Sciences and Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder Colorado USA; Wang, Jian [Brookhaven National Laboratory, Upton New York USA; Worsnop, Douglas R. [Aerodyne Research, Inc., Billerica Massachusetts USA; Zaveri, Rahul A. [Pacific Northwest National Laboratory, Richland Washington USA; Zelenyuk, Alla [Pacific Northwest National Laboratory, Richland Washington USA; Zhang, Qi [Department of Environmental Toxicology, University of California, Davis California USA

    2017-06-01

    Anthropogenic emissions and land-use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding pre-industrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features 1) influence estimates of aerosol radiative forcing and 2) can confound estimates of the historical response of climate to increases in greenhouse gases (e.g. the ‘climate sensitivity’). Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through a combination of laboratory and field measurements, yet current climate models typically do not comprehensively include all important SOA-relevant processes. Therefore, major gaps exist at present between current measurement-based knowledge on the one hand and model implementation of organic aerosols on the other. The critical review herein summarizes some of the important developments in understanding SOA formation that could potentially have large impacts on our understanding of aerosol radiative forcing and climate. We highlight the importance of some recently discovered processes and properties that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including: formation of extremely low-volatility organics in the gas-phase; isoprene epoxydiols (IEPOX) multi-phase chemistry; particle-phase oligomerization; and physical properties such as viscosity. In addition, this review also highlights some of the important processes that involve interactions between natural biogenic emissions and anthropogenic emissions, such as the role of sulfate and oxides of nitrogen (NOx) on SOA formation from biogenic volatile organic compounds. Studies that relate the observed evolution of organic aerosol

  3. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall.

    Science.gov (United States)

    Wang, Jian; Krejci, Radovan; Giangrande, Scott; Kuang, Chongai; Barbosa, Henrique M J; Brito, Joel; Carbone, Samara; Chi, Xuguang; Comstock, Jennifer; Ditas, Florian; Lavric, Jost; Manninen, Hanna E; Mei, Fan; Moran-Zuloaga, Daniel; Pöhlker, Christopher; Pöhlker, Mira L; Saturno, Jorge; Schmid, Beat; Souza, Rodrigo A F; Springston, Stephen R; Tomlinson, Jason M; Toto, Tami; Walter, David; Wimmer, Daniela; Smith, James N; Kulmala, Markku; Machado, Luiz A T; Artaxo, Paulo; Andreae, Meinrat O; Petäjä, Tuukka; Martin, Scot T

    2016-11-17

    The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.

  4. Potential climatic effects of anthropogenic aerosols

    International Nuclear Information System (INIS)

    Pueschel, R.F.

    1993-01-01

    Aerosols act as part of the climate system through their influence on solar and terrestrial radiation. The effect of anthropogenic aerosols on the reduction of visibility is explored in this chapter. Elemental carbon has been identified as the most effective visibility-reducing species. Most of the visibility reduction is due to particles with diameter smaller than 2.5 μm. Studies indicate that sulfate is also a very important aerosol species that results in low visibility and high turbidity. Radiative properties such as aerosol single-scattering albedo values and absorption-to-backscatter ratios purported to produce warming or cooling effects of aerosols are discussed. It is concluded that aerosol clouds have a tendency to cool when they are over a low-albedo surface and have a tendency to warm when they are over high-albedo surfaces such as snow. Anthropogenic aerosols have a tendency to warm the earth's atmospheric system, based on calculations and assumed aerosol optical properties. However, this effect is somewhat offset by the absorption and re-emission into space of infrared terrestrial radiation. The net effect depends on the ratio of the absorption coefficients in the visible and infrared and also on the surface albedo. The effects on infrared radiation are documented for two anthropogenic aerosol sources in the United States, the Denver metropolitan area and power plant plumes in New Mexico, through calculations and measurements. Measured cooling rates within an aerosol plume are not sufficient to offset the warming rate due to absorption of short-wave radiation. Research indicates that anthropogenic aerosols can possibly cause local-scale warming of the atmosphere, but global-scale climatic effects remain an open question

  5. Measurement-based J(NO2) sensitivity in a cloudless atmosphere under low aerosol loading and high solar zenith angle conditions

    International Nuclear Information System (INIS)

    Frueh, B.; Trautmann, T.

    2000-01-01

    The comparison between measured and simulated photodissociation frequencies of NO 2 , J(NO 2 ), in a cloudless atmosphere in a recent paper by Frueh et al., 2000 (Journal of Geophysical Research 105, 9843-9857) revealed an overestimation of J(NO 2 ) near ground level by model calculations compared with measurements and an underestimation in the upper part of the aerosol layer. A possible reason for the disagreement is the changing sun position during the vertical ascent. To resolve this problem we carried out a sensitivity study varying the solar zenith angle of 74 o by 1.4 o (which corresponds to the change of sun position during the vertical flight patterns). This results in a considerable deviation of J(NO 2 ) of about 10%. Further sensitivity studies on J(NO 2 ) have been done. These include realistic variations in ground albedo, humidity and aerosol properties. A variation in ground albedo from the measured value of A G = 0.023 (292-420 nm wavelength) to A G = 0 and A G = 0.05, respectively, resulted in an average J(NO 2 ) reduction and enhancement of only 2% near ground level with a slight decrease with increasing altitude. Furthermore, we compared simulations based on different relative humidity profiles with results from a dry atmosphere. Compared to the dry case the deviations of J(NO 2 ) were considerable (5-16%) although the measured aerosol concentration was very low. Moreover, we doubled the aerosol particle concentration. The maximum J(NO 2 ) deviations were in the same order of magnitude as for the relative humidity (5-16%). These changes are in the range of measurement uncertainty of J(NO 2 ) (author)

  6. Exchanges in boundary layer and low troposphere and consequences on pollution of Fos-Berre-Marseille area (ESCOMPTE experiment); Les aerosols: emissions, formation d'aerosols organiques secondaires, transport longue distance. Zoom sur les aerosols carbones en Europe

    Energy Technology Data Exchange (ETDEWEB)

    Guillaume, B

    2006-01-15

    There are two types of 'carbonaceous aerosols': 'black carbon' (BC) and 'organic carbon'(OC). BC is directly emitted in the atmosphere while OC is either directly emitted (primary OC, OCp) or secondarily formed through oxidation processes in the atmosphere (secondary organic aerosols, SOA). Complexity of carbonaceous aerosols is still poorly represented in existing aerosol models and uncertainties appear mainly both in their emission inventories and in their complex atmospheric evolution (transport, gas-particle interactions, dry/wet deposition), making difficult the estimation of their radiative impact. In this framework, I developed during my PhD at Laboratoire d'Aerologie, a new approach to deal with this complexity, with implementation of both a new carbonaceous aerosol emission inventory and a new aerosol modelling tool at global scale. My work is divided in 5 different tasks: - better characterisation of BC and OCp emissions, achieved through the development of a new emission inventory from fossil fuel and biofuel combustion sources (industrial, domestic and mobile sources). This inventory provides BC and OCp emissions for Europe at 25 km * 25 km resolution for the years 1990, 1995, 2000, 2005 and 2010, with two additional regional zooms: on France, at 10 km * 10 km resolution for the years 2000 and 2010 with improved road traffic, and in Marseille region (Escompte campaign, 1999,-2001) at 1 km * 1 km resolution for the year 1999; - better modelling of carbonaceous aerosol complex atmospheric evolution, through coupling of a global scale gas transport/chemistry model (TM4) with an aerosol module (ORISAM) featuring size-distributed aerosols (on 8 diameter sections from 40 nm to 10 {mu}m) organic/inorganic chemical composition and explicit treatment of SOA formation; - simulations with this new aerosol model ORISAM-TM4 and model/measurements comparisons to study BC and OC long-range transport; - sensitivity tests on SOA

  7. Chemical composition of aerosol in the atmospheric surface layer of the East Antarctica coastal zone

    Directory of Open Access Journals (Sweden)

    L. P. Golobokova

    2016-01-01

    Full Text Available Chemical composition of aerosol in the ground layer of the coastal zone in East Antarctica is analyzed in the article. The aerosol samples were taken in 2006–2015 during seasonal works of the Russian Antarctic Expeditions (RAE, namely, these were 52nd–53rd, 55th, and 58th–60th expeditions. Samples were taken in the 200‑km band of the sea-shore zone along routes of the research vessels (REV «Akademik Fedorov» and «Akademik Treshnikov» as well as on territories of the Russian stations Molodezhnaya and Mirny. Although the results obtained did show the wide range of the aerosol concentrations and a certain variability of their chemical composition, some common features of the variability were revealed. Thus, during the period from 2006 to 2014 a decrease of average values of the sums were noted. Spatially, a tendency of decreasing of the ion concentrations was found in the direction from the station Novolazarevskaya to the Molodezhnaya one, but the concentrations increased from the Molodezhnaya to the station Mirny. The sum of ions of the aerosol in the above mentioned coastal zone was, on the average, equal to 2.44 μg/m3, and it was larger than that on the territory of the Antarctic stations Molodezhnaya (0,29 μg/m3 and Mirny (0,50 ág / m3. The main part to the sum of the aerosol ions on the Antarctic stations was contributed by Na+, Ca2+, Cl−, SO4 2−. The main ions in aerosol composition in the coastal zone are ions Na+ and Cl−. The dominant contribution of the sea salt and SO4 2− can be traced in not only the composition of atmospheric aerosols, but also in the chemical composition of the fresh snow in the coastal areas of East Antarctica: at the Indian station Maitri, on the Larsemann Hills, and in a boring located in 55.3 km from the station Progress (K = 1.4÷6.1. It was noted that values of the coefficient of enrichment K of these ions decreases as someone moves from a shore to inland. Estimation of

  8. Development and first application of an Aerosol Collection Module (ACM) for quasi online compound specific aerosol measurements

    Science.gov (United States)

    Hohaus, Thorsten; Kiendler-Scharr, Astrid; Trimborn, Dagmar; Jayne, John; Wahner, Andreas; Worsnop, Doug

    2010-05-01

    Atmospheric aerosols influence climate and human health on regional and global scales (IPCC, 2007). In many environments organics are a major fraction of the aerosol influencing its properties. Due to the huge variety of organic compounds present in atmospheric aerosol current measurement techniques are far from providing a full speciation of organic aerosol (Hallquist et al., 2009). The development of new techniques for compound specific measurements with high time resolution is a timely issue in organic aerosol research. Here we present first laboratory characterisations of an aerosol collection module (ACM) which was developed to allow for the sampling and transfer of atmospheric PM1 aerosol. The system consists of an aerodynamic lens system focussing particles on a beam. This beam is directed to a 3.4 mm in diameter surface which is cooled to -30 °C with liquid nitrogen. After collection the aerosol sample can be evaporated from the surface by heating it to up to 270 °C. The sample is transferred through a 60cm long line with a carrier gas. In order to test the ACM for linearity and sensitivity we combined it with a GC-MS system. The tests were performed with octadecane aerosol. The octadecane mass as measured with the ACM-GC-MS was compared versus the mass as calculated from SMPS derived total volume. The data correlate well (R2 0.99, slope of linear fit 1.1) indicating 100 % collection efficiency. From 150 °C to 270 °C no effect of desorption temperature on transfer efficiency could be observed. The ACM-GC-MS system was proven to be linear over the mass range 2-100 ng and has a detection limit of ~ 2 ng. First experiments applying the ACM-GC-MS system were conducted at the Jülich Aerosol Chamber. Secondary organic aerosol (SOA) was formed from ozonolysis of 600 ppbv of b-pinene. The major oxidation product nopinone was detected in the aerosol and could be shown to decrease from 2 % of the total aerosol to 0.5 % of the aerosol over the 48 hours of

  9. The role of catchment vegetation in reducing atmospheric inputs of pollutant aerosols in Ganga river.

    Science.gov (United States)

    Shubhashish, Kumar; Pandey, Richa; Pandey, Jitendra

    2012-08-01

    The role of woody perennials in the Ganga river basin in modifying the run-off quality as influenced by atmospheric deposition of pollutant aerosols was investigated. The concentration of seven nutrients and eight metals were measured in atmospheric deposits as well as in run-off water under the influence of five woody perennials. Nutrient retention was recorded maximum for Bougainvillea spectabilis ranged from 4.30 % to 33.70 %. Metal retention was recorded highest for Ficus benghalensis ranged from 5.15 % to 36.98 %. Although some species showed nutrient enrichment, all the species considered in the study invariably contribute to reduce nutrients and metal concentration in run-off water. Reduction in run off was recorded maximum for B. spectabilis (nutrient 6.48 %-40.66 %; metal 7.86 %-22.85 %) and minimum for Ficus religiosa (nutrient 1.68 %-27.19 %; metal 6.55 %-31.55 %). The study forms the first report on the use of woody perennials in reducing input of atmospheric pollutants to Ganga river and has relevance in formulating strategies for river basin management.

  10. The signal of aerosol-induced changes in sunshine duration records: A review of the evidence

    Science.gov (United States)

    Sanchez-Romero, A.; Sanchez-Lorenzo, A.; Calbó, J.; González, J. A.; Azorin-Molina, C.

    2014-04-01

    Aerosols play a significant yet complex and central role in the Earth's radiation budget, and knowledge of long-term changes in the atmospheric turbidity induced by aerosols is therefore fundamental for a better understanding of climate change. However, there is little available information on changes in aerosol concentration in the atmosphere, especially prior to the 1980s. The present paper reviews publications reporting the suitability of sunshine duration records with regard to detecting changes in atmospheric aerosols. Some of the studies reviewed propose methods for estimating aerosol-related magnitudes, such as turbidity, from sunshine deficit at approximately sunrise and sunset, when the impact of aerosols on the solar beam is more easily observed. In addition, there is abundant evidence that one cause of the decadal changes observed in sunshine duration records involves variations in atmospheric aerosol loading. Possible directions for future research are also suggested: in particular, detailed studies of the burn (not only its length but also its width) registered by means of Campbell-Stokes sunshine recorders may provide a way of creating time series of atmospheric aerosol loading metrics dating back to over 120 years from the present.

  11. Regional and global atmospheric aerosol studies using the ''Gent'' stacked filter unit sampler and other aerosol collectors, with multi-elemental analysis of the samples by nuclear-related analytical techniques

    International Nuclear Information System (INIS)

    Maenhaut, W.; Francois, F.; Salma, I.; Cafmeyer, J.; Gilot, C.

    1994-01-01

    The ''Gent'' staked filter unit sampler and other collection devices are used in regional and global scale studies on the tropospheric atmospheric aerosols, its composition, sources and fate. The aerosol samples are analyzed by particle-induced X-ray emission analysis, instrumental neutron activation analysis, ion chromatography, a light reflectance technique (for determining black carbon), and gravimetry (for measuring the particular mass). In evaluating the data, use is made of receptor modelling techniques, transport models and wind sector analysis, and also of air mass trajectories and other meteorological information. Preliminary results from a long-term study in southern Norway are presented. It is suggested that the anthropogenic and soil dust aerosol components are mainly adverted to southern Norway by long-range transport and that the major fraction of the submicrometer particle mass is from anthropogenic origin. Preliminary results are also presented for an intensive study in southern Africa. On the basis of the data for two sites (about 40 km apart) in the Kruger National Park it was concluded that regionally representative aerosol samples were collected and that the biomass burning products account for more than 50% of the fine particle mass. Finally, our plans for future work are given. (author). 70 refs, 4 figs, 1 tab

  12. Organic condensation: A vital link connecting aerosol formation to climate forcing (Invited)

    Science.gov (United States)

    Riipinen, I.; Pierce, J. R.; Yli-Juuti, T.; Nieminen, T.; Häkkinen, S.; Ehn, M.; Junninen, H.; Lehtipalo, K.; Petdjd, T. T.; Slowik, J. G.; Chang, R. Y.; Shantz, N. C.; Abbatt, J.; Leaitch, W. R.; Kerminen, V.; Worsnop, D. R.; Pandis, S. N.; Donahue, N. M.; Kulmala, M. T.

    2010-12-01

    Aerosol-cloud interactions represent the largest uncertainty in calculations of Earth’s radiative forcing. Number concentrations of atmospheric aerosol particles are in the core of this uncertainty, as they govern the numbers of cloud condensation nuclei (CCN) and influence the albedo and lifetime of clouds. Aerosols also impair air quality through their adverse effects on atmospheric visibility and human health. The ultrafine fraction ( 100 nm) and enhance the loss of ultrafine particles. Primary organic aerosol (POA) contributes to the large end of the aerosol size distribution, enhancing the scavenging of the ultrafine particles.

  13. Bounding the heterogeneous gas uptake on aerosols and ground using resistance model

    Science.gov (United States)

    Su, H.; Li, M.; Cheng, Y.

    2017-12-01

    Heterogeneous uptake on aerosols and ground are potential important atmospheric sinks for gases. Different schemes have been used to characterize the dry deposition and heterogeneous aerosol gas uptake, although they share similar characteristics. In this work, we propose a unified resistance model to compare the uptake flux on both ground and aerosols, to identify the dominate heterogeneous process within the planetary boundary layer (PBL). The Gamma(eq) is introduced to represent the reactive uptake coefficient on aerosols when these two processes are equally important. It's shown that Gamma(eq) is proportional to the dry deposition velocity, inversely proportional to aerosol surface area concentration. Under typical regional background condition, Gamma(eq) vary from 1x10-5 to 4x10-4 with gas species, land-use type and season, which indicates that aerosol gas uptake should be included in atmospheric models when uptake coefficient higher than 10-5. We address the importance of heterogeneous gas uptake on aerosols over ground especially for ozone uptake on liquid organic aerosols and for marine PBL atmosphere.

  14. Influence of stratospheric aerosol on albedo

    Energy Technology Data Exchange (ETDEWEB)

    Gormatyuk, Yu K; Kaufman, Yu G; Kolomeev, M P

    1985-06-01

    The influence of stratospheric aerosol (SA) on the transfer of solar radiation in the atmosphere is the principal factor determining the effect of SA on climate. The change in the radiation balance under the influence of SA is computed most precisely in radiative-convective models. However, the complex method used in these models cannot be used for other types of climate models. The objective of the study was to obtain a quantitative evaluation of the influence of SA on albedo without the use of simplifying assumptions. In the approximation of single scattering an expression is derived for change in albedo under the influence of stratospheric aerosol taking into account the dependence of albedo of the atmosphere-earth's surface system on solar zenith distance. The authors give the results of computations of the response of mean annual albedo to sulfuric acid aerosol for 10/sup 0/ latitude zones in the Northern Hemisphere. Specifically, computations of the optical characteristics of aerosol were made using the Mie theory for 10 spectral intervals taking in the range of wavelengths of solar radiation from 0.29 to 4.0 ..mu.. m. The refractive index of aerosol was stipulated in accordance with Palmer and Williams. The angular dependence of albedo for cloudless and cloudy atmospheres given by Harshvardhan was used. The values of undisturbed albedo were assumed to be identical for all wavelengths due to lack of climatological data on the spectral dependence of albedo of the atmosphere-earth's surface system. The angular distribution of the intensity of solar radiation for each of the latitude zones was computed by the method described by I.M. Alekseyev, et al.

  15. Mixing state of particles with secondary species by single particle aerosol mass spectrometer in an atmospheric pollution event

    Science.gov (United States)

    Xu, Lingling; Chen, Jinsheng

    2016-04-01

    Single particle aerosol mass spectrometer (SPAMS) was used to characterize size distribution, chemical composition, and mixing state of particles in an atmospheric pollution event during 20 Oct. - 5 Nov., 2015 in Xiamen, Southeast China. A total of 533,012 particle mass spectra were obtained and clustered into six groups, comprising of industry metal (4.5%), dust particles (2.6%), carbonaceous species (70.7%), K-Rich particles (20.7%), seasalt (0.6%) and other particles (0.9%). Carbonaceous species were further divided into EC (70.6%), OC (28.5%), and mixed ECOC (0.9%). There were 61.7%, 58.3%, 4.0%, and 14.6% of particles internally mixed with sulfate, nitrate, ammonium and C2H3O, respectively, indicating that these particles had undergone significant aging processing. Sulfate was preferentially mixed with carbonaceous particles, while nitrate tended to mix with metal-containing and dust particles. Compared to clear days, the fractions of EC-, metal- and dust particles remarkably increased, while the fraction of OC-containing particles decreased in pollution days. The mixing state of particles, excepted for OC-containing particles with secondary species was much stronger in pollution days than that in clear days, which revealed the significant influence of secondary particles in atmospheric pollution. The different activity of OC-containing particles might be related to their much smaller aerodynamic diameter. These results could improve our understanding of aerosol characteristics and could be helpful to further investigate the atmospheric process of particles.

  16. The continuous field measurements of soluble aerosol compositions at the Taipei Aerosol Supersite, Taiwan

    Science.gov (United States)

    Chang, Shih-Yu; Lee, Chung-Te; Chou, Charles C.-K.; Liu, Shaw-Chen; Wen, Tian-Xue

    The characteristics of ambient aerosols, affected by solar radiation, relative humidity, wind speed, wind direction, and gas-aerosol interaction, changed rapidly at different spatial and temporal scales. In Taipei Basin, dense traffic emissions and sufficient solar radiation for typical summer days favored the formation of secondary aerosols. In winter, the air quality in Taipei Basin was usually affected by the Asian continental outflows due to the long-range transport of pollutants carried by the winter monsoon. The conventional filter-based method needs a long time for collecting aerosols and analyzing compositions, which cannot provide high time-resolution data to investigate aerosol sources, atmospheric transformation processes, and health effects. In this work, the in situ ion chromatograph (IC) system was developed to provide 15-min time-resolution data of nine soluble inorganic species (Cl -, NO 2-, NO 3-, SO 42-, Na +, NH 4+, K +, Mg 2+ and Ca 2+). Over 89% of all particles larger than approximately 0.056 μm were collected by the in situ IC system. The in situ IC system is estimated to have a limit of detection lower than 0.3 μg m -3 for the various ambient ionic components. Depending on the hourly measurements, the pollutant events with high aerosol concentrations in Taipei Basin were associated with the local traffic emission in rush hour, the accumulation of pollutants in the stagnant atmosphere, the emission of industrial pollutants from the nearby factories, the photochemical secondary aerosol formation, and the long-range transport of pollutants from Asian outflows.

  17. Measuring and modeling the hygroscopic growth of two humic substances in mixed aerosol particles of atmospheric relevance

    Directory of Open Access Journals (Sweden)

    I. R. Zamora

    2013-09-01

    Full Text Available The hygroscopic growth of atmospheric particles affects atmospheric chemistry and Earth's climate. Water-soluble organic carbon (WSOC constitutes a significant fraction of the dry submicron mass of atmospheric aerosols, thus affecting their water uptake properties. Although the WSOC fraction is comprised of many compounds, a set of model substances can be used to describe its behavior. For this study, mixtures of Nordic aquatic fulvic acid reference (NAFA and Fluka humic acid (HA, with various combinations of inorganic salts (sodium chloride and ammonium sulfate and other representative organic compounds (levoglucosan and succinic acid, were studied. We measured the equilibrium water vapor pressure over bulk solutions of these mixtures as a function of temperature and solute concentration. New water activity (aw parameterizations and hygroscopic growth curves at 25 °C were calculated from these data for particles of equivalent composition. We examined the effect of temperature on the water activity and found a maximum variation of 9% in the 0–30 °C range, and 2% in the 20–30 °C range. Five two-component mixtures were studied to understand the effect of adding a humic substance (HS, such as NAFA and HA, to an inorganic salt or a saccharide. The deliquescence point at 25 °C for HS-inorganic mixtures did not change significantly from that of the pure inorganic species. However, the hygroscopic growth of HA / inorganic mixtures was lower than that exhibited by the pure salt, in proportion to the added mass of HA. The addition of NAFA to a highly soluble solute (ammonium sulfate, sodium chloride or levoglucosan in water had the same effect as the addition of HA to the inorganic species for most of the water activity range studied. Yet, the water uptake of these NAFA mixtures transitioned to match the growth of the pure salt or saccharide at high aw values. The remaining four mixtures were based on chemical composition data for different

  18. Air ions and aerosol science

    International Nuclear Information System (INIS)

    Tammet, H.

    1996-01-01

    Collaboration between Gas Discharge and Plasma Physics, Atmospheric Electricity, and Aerosol Science is a factor of success in the research of air ions. The concept of air ion as of any carrier of electrical current through the air is inherent to Atmospheric Electricity under which a considerable statistical information about the air ion mobility spectrum is collected. A new model of air ion size-mobility correlation has been developed proceeding from Aerosol Science and joining the methods of neighboring research fields. The predicted temperature variation of the mobility disagrees with the commonly used Langevin rule for the reduction of air ion mobilities to the standard conditions. Concurrent errors are too big to be neglected in applications. The critical diameter distinguishing cluster ions and charged aerosol particles has been estimated to be 1.4 endash 1.8 nm. copyright 1996 American Institute of Physics

  19. Light extinction in the atmosphere

    International Nuclear Information System (INIS)

    Laulainen, N.

    1992-06-01

    Atmospheric aerosol particles originating from natural sources, such as volcanos and sulfur-bearing gas emissions from the oceans, and from human sources, such as sulfur emissions from fossil fuel combustion and biomass burning, strongly affect visual air quality and are suspected to significantly affect radiative climate forcing of the planet. During the daytime, aerosols obscure scenic vistas, while at night they diminish our ability to observe stellar objects. Scattering of light is the main means by which aerosols attenuate and redistribute light in the atmosphere and by which aerosols can alter and reduce visibility and potentially modify the energy balance of the planet. Trends and seasonal variability of atmospheric aerosol loading, such as column-integrated light extinction or optical depth, and how they may affect potential climate change have been difficult to quantify because there have been few observations made of important aerosol optical parameters, such as optical depth, over the globe and over time and often these are of uneven quality. To address questions related to possible climate change, there is a pressing need to acquire more high-quality aerosol optical depth data. Extensive deployment of improved solar radiometers over the next few years will provide higher-quality extinction data over a wider variety of locations worldwide. An often overlooked source of turbidity data, however, is available from astronomical observations, particularly stellar photoelectric photometry observations. With the exception of the Project ASTRA articles published almost 20 years ago, few of these data ever appear in the published literature. This paper will review the current status of atmospheric extinction observations, as highlighted by the ASTRA work and augmented by more recent solar radiometry measurements

  20. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Turner, David, D.; Ferrare, Richard, A.

    2011-07-06

    The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

  1. Seasonal atmospheric extinction

    International Nuclear Information System (INIS)

    Mikhail, J.S.

    1979-01-01

    Mean monochromatic extinction coefficients at various wavelengths at the Kottamia Observatory site have shown the existence of a seasonal variation of atmospheric extinction. The extinction of aerosol compontnts with wavelengths at winter represent exceedingly good conditions. Spring gives the highest extinction due to aerosol. (orig.)

  2. Operational remote sensing of aerosols over land to account for directional effects

    International Nuclear Information System (INIS)

    Ramon, Didier; Santer, Richard

    2001-01-01

    The assumption that the ground is a Lambertian reflector is commonly adopted in operational atmospheric corrections of spaceborne sensors. Through a simple modeling of directional effects in radiative transfer following the second simulation of the satellite signal in the solar spectrum (6S) approach, we propose an operational method to account for the departure from Lambertian behavior of a reflector covered by a scattering medium. This method relies on the computation of coupling terms between the reflecting and the scattering media and is able to deal with a two-layer atmosphere. We focus on the difficult problem of aerosol remote sensing over land. One popular sensing method relies on observations over dense dark vegetation, for which the surface reflectance is low and quite well defined in the blue and in the red. Therefore a study was made for three cases: (1) dark vegetation covered by atmospheric aerosols, (2) atmospheric aerosols covered by molecules, and finally (3) dark vegetation covered by atmospheric aerosols covered by molecules. Comparisons of top-of-the-atmosphere reflectances computed with our modeling and reference computations made with the successive-order-of-scattering code show the robustness of the modeling in the blue and in the red for aerosol optical thicknesses as great as 0.6 and solar zenith angles as large as 60 deg. . The model begins to fail only in the blue for large solar zenith angles. The benefits expected for aerosol remote sensing over land are evaluated with an aerosol retrieval scheme developed for the Medium-Resolution Imaging Spectrometer. The main result is a better constraint on the aerosol model with inclusion of directional effects and a weaker effect on the optical thickness of the retrieval aerosol. The directional scheme is then applied to the aerosol remote-sensing problem in actual Indian Remote Sensing Satellite P3/Modular Optoelectronic Scanner images over land and shows significant improvement compared with a

  3. Atmospheric correction of SeaWiFS ocean color imagery in the presence of absorbing aerosols off the Indian coast using a neuro-variational method

    Science.gov (United States)

    Brajard, J.; Moulin, C.; Thiria, S.

    2008-10-01

    This paper presents a comparison of the atmospheric correction accuracy between the standard sea-viewing wide field-of-view sensor (SeaWiFS) algorithm and the NeuroVaria algorithm for the ocean off the Indian coast in March 1999. NeuroVaria is a general method developed to retrieve aerosol optical properties and water-leaving reflectances for all types of aerosols, including absorbing ones. It has been applied to SeaWiFS images of March 1999, during an episode of transport of absorbing aerosols coming from pollutant sources in India. Water-leaving reflectances and aerosol optical thickness estimated by the two methods were extracted along a transect across the aerosol plume for three days. The comparison showed that NeuroVaria allows the retrieval of oceanic properties in the presence of absorbing aerosols with a better spatial and temporal stability than the standard SeaWiFS algorithm. NeuroVaria was then applied to the available SeaWiFS images over a two-week period. NeuroVaria algorithm retrieves ocean products for a larger number of pixels than the standard one and eliminates most of the discontinuities and artifacts associated with the standard algorithm in presence of absorbing aerosols.

  4. Satellite methods underestimate indirect climate forcing by aerosols

    Science.gov (United States)

    Penner, Joyce E.; Xu, Li; Wang, Minghuai

    2011-01-01

    Satellite-based estimates of the aerosol indirect effect (AIE) are consistently smaller than the estimates from global aerosol models, and, partly as a result of these differences, the assessment of this climate forcing includes large uncertainties. Satellite estimates typically use the present-day (PD) relationship between observed cloud drop number concentrations (Nc) and aerosol optical depths (AODs) to determine the preindustrial (PI) values of Nc. These values are then used to determine the PD and PI cloud albedos and, thus, the effect of anthropogenic aerosols on top of the atmosphere radiative fluxes. Here, we use a model with realistic aerosol and cloud processes to show that empirical relationships for ln(Nc) versus ln(AOD) derived from PD results do not represent the atmospheric perturbation caused by the addition of anthropogenic aerosols to the preindustrial atmosphere. As a result, the model estimates based on satellite methods of the AIE are between a factor of 3 to more than a factor of 6 smaller than model estimates based on actual PD and PI values for Nc. Using ln(Nc) versus ln(AI) (Aerosol Index, or the optical depth times angstrom exponent) to estimate preindustrial values for Nc provides estimates for Nc and forcing that are closer to the values predicted by the model. Nevertheless, the AIE using ln(Nc) versus ln(AI) may be substantially incorrect on a regional basis and may underestimate or overestimate the global average forcing by 25 to 35%. PMID:21808047

  5. Sulfur mass loading of the atmosphere from volcanic eruptions: Calibration of the ice core record on basis of sulfate aerosol deposition in polar regions from the 1982 El Chichon eruption

    Science.gov (United States)

    Sigurdsson, Haraldur; Laj, Paolo

    1990-01-01

    Major volcanic eruptions disperse large quantities of sulfur compound throughout the Earth's atmosphere. The sulfuric acid aerosols resulting from such eruptions are scavenged by snow within the polar regions and appear in polar ice cores as elevated acidity layers. Glacio-chemical studies of ice cores can, thus, provide a record of past volcanism, as well as the means for understanding the fate of volcanic sulfur in the atmosphere. The primary objectives of this project are to study the chemistry and physical properties of volcanic fallout in a Greenland Ice Core in order to evaluate the impact of the volcanic gases on the atmospheric chemistry and the total atmospheric mass of volcanic aerosols emitted by major volcanic eruptions. We propose to compare the ice core record to other atmospheric records performed during the last 10 years to investigate transport and deposition of volcanic materials.

  6. Pulmonary deposition of urban atmospheric aerosol. Assessments of the mass, number and surface of the deposited particles; Deposizione polmonare dell'aerosol atmosferico urbano in termini di massa, numero e superficie delle particelle

    Energy Technology Data Exchange (ETDEWEB)

    Luciani, A.; Berico, M.; Castellani, C.M. [ENEA, Centro Ricerche Ezio Clementel, Bologna (Italy). Dipt. Ambiente

    1998-07-01

    Pulmonary deposition of urban atmospheric aerosol has been calculated by means of the data derived from March 1995 measurement campaign of urban aerosol. The human respiratory tract model of the International Commission on Radiological Protection (n. 66) developed for radiation protection purposes has been used. The number and surface of the deposited particles, as well as the mass, have been also evaluated. [Italian] I dati relativi alla campagna di misure effettuata nel marzo 1995 sono stati rielaborati al fine di valutare la deposizione polmonare dell'aerosol atmosferico in area urbana. Le valutazioni di deposizione nel tratto respiratorio umano sono state condotte mediante l'utilizzo del modello del tratto respiratorio umano presentato per fini radioprotezionistici dalla International Commission on Radiological Protection (n. 66). Sono state effettuate valutazioni di deposizione in massa e in termini di numero e superficie delle particelle.

  7. Chemical, optical and radiative characteristics of aerosols during haze episodes of winter in the North China Plain

    Science.gov (United States)

    Ding, Jing; Zhang, Yufen; Han, Suqin; Xiao, Zhimei; Wang, Jiao; Feng, Yinchang

    2018-05-01

    Aerosol and water vapor radiative forcings, shortwave atmospheric heating rates and longwave atmospheric cooling rates were determined based on in situ physical and chemical measurements of aerosol, associated with the Mie theory and a radiative transfer model, LOWTRAN7, during the two haze episodes in the winter of 2013 in Tianjin, China. The aerosol types considered in LOWTRAN7 included rural, urban, marine, desert and custom aerosols. The default ratio of the absorption coefficient to the extinction coefficient for urban aerosol in LOWTRAN7 was approximately double of those found in this work, implying the weaker absorption ability of aerosols in the North China Plain (NCP). Moreover, the aerosol is assumed to be evenly distributed below 1 km of planetary boundary layer (PBL) on hazy days in LOWTRAN7. If the default urban aerosol optical properties and extinction profile in LOWTRAN7 is employed directly, a larger energy imbalance between the atmosphere and surface is generated and the warming effect of the aerosol is magnified. Hence, modified urban aerosol optical properties were established to replace the corresponding parameters' database in LOWTRAN7. The aerosol extinction profiles were obtained based on a 255-m meteorological tower and observed results from the studies about Tianjin. In the NCP, the aerosol had little impact on atmospheric counter radiation. The water vapor is the crucial factor that affects atmospheric counter radiation. Both modified high shortwave heating rates and longwave cooling rates occur near the surface due to the abundance of aerosol and water vapor. The modified net atmospheric heating rate near the surface is 1.2 K d-1 on hazy days and 0.3 K d-1 on non-hazy days. Compared with the default urban aerosol optical properties and its vertical distribution in LOWTRAN7, the feedback effect of the modified urban aerosol on the boundary layer may not necessarily result in a stable lower atmosphere, but depends on the aerosol light

  8. Aerosol modelling and validation during ESCOMPTE 2001

    Science.gov (United States)

    Cousin, F.; Liousse, C.; Cachier, H.; Bessagnet, B.; Guillaume, B.; Rosset, R.

    The ESCOMPTE 2001 programme (Atmospheric Research. 69(3-4) (2004) 241) has resulted in an exhaustive set of dynamical, radiative, gas and aerosol observations (surface and aircraft measurements). A previous paper (Atmospheric Research. (2004) in press) has dealt with dynamics and gas-phase chemistry. The present paper is an extension to aerosol formation, transport and evolution. To account for important loadings of primary and secondary aerosols and their transformation processes in the ESCOMPTE domain, the ORISAM aerosol module (Atmospheric Environment. 35 (2001) 4751) was implemented on-line in the air-quality Meso-NH-C model. Additional developments have been introduced in ORganic and Inorganic Spectral Aerosol Module (ORISAM) to improve the comparison between simulations and experimental surface and aircraft field data. This paper discusses this comparison for a simulation performed during one selected day, 24 June 2001, during the Intensive Observation Period IOP2b. Our work relies on BC and OCp emission inventories specifically developed for ESCOMPTE. This study confirms the need for a fine resolution aerosol inventory with spectral chemical speciation. BC levels are satisfactorily reproduced, thus validating our emission inventory and its processing through Meso-NH-C. However, comparisons for reactive species generally denote an underestimation of concentrations. Organic aerosol levels are rather well simulated though with a trend to underestimation in the afternoon. Inorganic aerosol species are underestimated for several reasons, some of them have been identified. For sulphates, primary emissions were introduced. Improvement was obtained too for modelled nitrate and ammonium levels after introducing heterogeneous chemistry. However, no modelling of terrigeneous particles is probably a major cause for nitrates and ammonium underestimations. Particle numbers and size distributions are well reproduced, but only in the submicrometer range. Our work points out

  9. Is the aerosol emission detectable in the thermal infrared?

    Science.gov (United States)

    Hollweg, H.-D.; Bakan, S.; Taylor, J. P.

    2006-08-01

    The impact of aerosols on the thermal infrared radiation can be assessed by combining observations and radiative transfer calculations. Both have uncertainties, which are discussed in this paper. Observational uncertainties are obtained for two FTIR instruments operated side by side on the ground during the LACE 1998 field campaign. Radiative transfer uncertainties are assessed using a line-by-line model taking into account the uncertainties of the HITRAN 2004 spectroscopic database, uncertainties in the determination of the atmospheric profiles of water vapor and ozone, and differences in the treatment of the water vapor continuum absorption by the CKD 2.4.1 and MT_CKD 1.0 algorithms. The software package OPAC was used to describe the optical properties of aerosols for climate modeling. The corresponding radiative signature is a guideline to the assessment of the uncertainty ranges of observations and models. We found that the detection of aerosols depends strongly on the measurement accuracy of atmospheric profiles of water vapor and ozone and is easier for drier conditions. Within the atmospheric window, only the forcing of downward radiation at the surface by desert aerosol emerges clearly from the uncertainties of modeling and FTIR measurement. Urban and polluted continental aerosols are only partially detectable depending on the wave number and on the atmospheric water vapor amount. Simulations for the space-borne interferometer IASI show that only upward radiation above transported mineral dust aloft emerges out of the uncertainties. The detection of aerosols with weak radiative impact by FTIR instruments like ARIES and OASIS is made difficult by noise as demonstrated by the signal to noise ratio for clean continental aerosols. Altogether, the uncertainties found suggest that it is difficult to detect the optical depths of nonmineral and unpolluted aerosols.

  10. The trace-elements of the atmospheric aerosol of the Amazon basin

    International Nuclear Information System (INIS)

    Orsini, C.M.Q.; Artaxo Netto, P.E.; Tabacniks, M.H.

    1981-05-01

    The distribution of the trace-elements AL, Si, P, S, CL, K, Ca, Ti, Fe and V in the atmospheric aerosol of the Amazon Basin was determined by means of samples collected between August 23 and September 2 of 1980, at a remote place located in the Amazon Forest, about 30 Km NE of the city of Manaus, Brazil. 33 samples were succesfully analyzed by the PIXE method (Particle Induced X-Ray Emission) by using α-particle beam of the Pelletron Accelerator of the University of Sao Paulo, and the results revealed that the trace-elements S and K have a large predominance, mainly as fine particle size relative to the others; this fact is consistent with the statement that the natural cycles of these two elements are critically involved in the biophysical processes responsible for the life of the tropical rain forest of the Amazon. (Author) [pt

  11. Geo-Engineering Climate Change with Sulfate Aerosol

    Science.gov (United States)

    Rasch, P. J.; Crutzen, P. J.

    2006-12-01

    We explore the impact of injecting a precursor of sulfate aerosols into the middle atmosphere where they would act to increase the planetary albedo and thus counter some of the effects of greenhouse gase forcing. We use an atmospheric general circulation model (CAM, the Community Atmosphere Model) coupled to a slab ocean model for this study. Only physical effects are examined, that is we ignore the biogeochemical and chemical implications of changes to greenhouse gases and aerosols, and do not explore the important ethical, legal, and moral issues that are associated with deliberate geo-engineering efforts. The simulations suggest that the sulfate aerosol produced from the SO2 source in the stratosphere is sufficient to counterbalance most of the warming associated with the greenhouse gas forcing. Surface temperatures return to within a few tenths of a degree(K) of present day levels. Sea ice and precipitation distributions are also much closer to their present day values. The polar region surface temperatures remain 1-3 degrees warm in the winter hemisphere than present day values. This study is very preliminary. Only a subset of the relevant effects have been explored. The effect of such an injection of aerosols on middle atmospheric chemistry, and the effect on cirrus clouds are obvious missing components that merit scrutiny. There are probably others that should be considered. The injection of such aerosols cannot help in ameliorating the effects of CO2 changes on ocean PH, or other effects on the biogeochemistry of the earth system.

  12. Variability of Atmospheric Radon-222 and Secondary Aerosol Components in Accordance with Air Mass Transport Pathways at Jeju Island, Korea, during 2011-2014

    International Nuclear Information System (INIS)

    Bu, Jun-Oh; Song, Jung-Min; Kim, Won-Hyung; Kang, Chang-Hee; Chambers, Scott D.; Williams, Alastair G.; Lee, Chulkyu

    2016-01-01

    Real-time monitoring of hourly atmospheric Radon-222 concentration and three daily monitoring of the secondary aerosol components of PM_1_0 were performed throughout 2011-2014 at Gosan station, Jeju Island, in order to characterize their background levels and temporal variation. The annual mean radon and PM_1_0 mass concentrations were 2326 ± 1198 mBq/m"3 and 37.1 ± 19.5 μg/m"3, respectively. Based on cluster analyses of air mass back trajectories, the frequencies of air masses originating from continental China, the Korean Peninsula, and North Pacific Ocean routes were 53, 28, and 19%, respectively. When the air masses were transported to Jeju Island from continental China, the concentrations of radon and secondary aerosol components (nss-SO_4"2"-, NO_3"-, NH_4"+) were relatively high: 2577 mBq/m"3 and 14.4 μg/m"3, respectively. In cases when the air masses have moved from the Korean Peninsula, the corresponding concentrations were 2247 mBq/m"3 and 11.4 μg/m"3, respectively. On the other hand, when the air masses came from the North Pacific Ocean, their radon and secondary aerosol concentrations decreased much further, 1372 mBq/m"3 and 10.5 μg/m"3, respectively. Consequently, the variability of atmospheric radon concentrations at Gosan station might be characterized by synoptic changes in air mass fetch as well as diurnal changes in atmospheric mixing depth.

  13. Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2009-03-05

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  14. Aerosol Inlet Characterization Experiment Report

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, Robert L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kuang, Chongai [Brookhaven National Lab. (BNL), Upton, NY (United States); Uin, Janek [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, Scott [Brookhaven National Lab. (BNL), Upton, NY (United States); Springston, Stephen R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-05-01

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerosol Observation System inlet stack was characterized for particle penetration efficiency from 10 nm to 20 μm in diameter using duplicate scanning mobility particle sizers (10 nm-450 nm), ultra-high-sensitivity aerosol spectrometers (60 nm-μm), and aerodynamic particle sizers (0.5 μm-20 μm). Results show good model-measurement agreement and unit transmission efficiency of aerosols from 10 nm to 4 μm in diameter. Large uncertainties in the measured transmission efficiency exist above 4 μm due to low ambient aerosol signal in that size range.

  15. Aerosol optical properties and radiative effects over Manora Peak in the Himalayan foothills: seasonal variability and role of transported aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, A.K. [Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi (India); Ram, K. [Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi (India); Singh, Sachchidanand, E-mail: ssingh@nplindia.org [Radio and Atmospheric Sciences Division, CSIR-National Physical Laboratory, New Delhi (India); Kumar, Sanjeev [Radio and Atmospheric Sciences Division, CSIR-National Physical Laboratory, New Delhi (India); Tiwari, S. [Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi (India)

    2015-01-01

    The higher altitude regions of Himalayas and Tibetan Plateau are influenced by the dust and black carbon (BC) aerosols from the emissions and long-range transport from the adjoining areas. In this study, we present impacts of advection of polluted air masses of natural and anthropogenic emissions, on aerosol optical and radiative properties at Manora Peak (∼ 2000 m amsl) in central Himalaya over a period of more than two years (February 2006–May 2008). We used the most updated and comprehensive data of chemical and optical properties available in one of the most climatically sensitive region, the Himalaya, to estimate atmospheric radiative forcing and heating rate. Aerosol optical depth (AOD) was found to vary from 0.04 to 0.45 with significantly higher values in summer mainly due to an increase in mineral dust and biomass burning aerosols due to transport. In contrast, single scattering albedo (SSA) varied from 0.74 to 0.88 with relatively lower values during summer, suggesting an increase in absorbing BC and mineral dust aerosols. As a result, a large positive atmospheric radiative forcing (about 28 ± 5 Wm{sup −2}) and high values of corresponding heating rate (0.80 ± 0.14 Kday{sup −1}) has been found during summer. During the entire observation period, radiative forcing at the top of the atmosphere varied from − 2 to + 14 Wm{sup −2} and from − 3 to − 50 Wm{sup −2} at the surface whereas atmospheric forcing was in the range of 3 to 65 Wm{sup −2} resulting in a heating rate of 0.1–1.8 Kday{sup −1}. - Highlights: • Aerosol chemical and optical properties at Manora Peak, in central Himalaya, were significantly affected by dust and black carbon (BC) aerosols from the emissions and long-range transport from the adjoining areas. • Elevated AOD and lower SSA values were observed at Manora Peak during summer. • Enhancement in absorbing aerosols was observed during summer. • Large aerosol radiative forcing and heating rate was observed

  16. Aerosol optical properties and radiative effects over Manora Peak in the Himalayan foothills: seasonal variability and role of transported aerosols

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Ram, K.; Singh, Sachchidanand; Kumar, Sanjeev; Tiwari, S.

    2015-01-01

    The higher altitude regions of Himalayas and Tibetan Plateau are influenced by the dust and black carbon (BC) aerosols from the emissions and long-range transport from the adjoining areas. In this study, we present impacts of advection of polluted air masses of natural and anthropogenic emissions, on aerosol optical and radiative properties at Manora Peak (∼ 2000 m amsl) in central Himalaya over a period of more than two years (February 2006–May 2008). We used the most updated and comprehensive data of chemical and optical properties available in one of the most climatically sensitive region, the Himalaya, to estimate atmospheric radiative forcing and heating rate. Aerosol optical depth (AOD) was found to vary from 0.04 to 0.45 with significantly higher values in summer mainly due to an increase in mineral dust and biomass burning aerosols due to transport. In contrast, single scattering albedo (SSA) varied from 0.74 to 0.88 with relatively lower values during summer, suggesting an increase in absorbing BC and mineral dust aerosols. As a result, a large positive atmospheric radiative forcing (about 28 ± 5 Wm −2 ) and high values of corresponding heating rate (0.80 ± 0.14 Kday −1 ) has been found during summer. During the entire observation period, radiative forcing at the top of the atmosphere varied from − 2 to + 14 Wm −2 and from − 3 to − 50 Wm −2 at the surface whereas atmospheric forcing was in the range of 3 to 65 Wm −2 resulting in a heating rate of 0.1–1.8 Kday −1 . - Highlights: • Aerosol chemical and optical properties at Manora Peak, in central Himalaya, were significantly affected by dust and black carbon (BC) aerosols from the emissions and long-range transport from the adjoining areas. • Elevated AOD and lower SSA values were observed at Manora Peak during summer. • Enhancement in absorbing aerosols was observed during summer. • Large aerosol radiative forcing and heating rate was observed over the station in the

  17. The composition and variability of atmospheric aerosol over Southeast Asia during 2008

    Directory of Open Access Journals (Sweden)

    W. Trivitayanurak

    2012-01-01

    Full Text Available We use a nested version of the GEOS-Chem global 3-D chemistry transport model to better understand the composition and variation of aerosol over Borneo and the broader Southeast Asian region in conjunction with aircraft and satellite observations. Our focus on Southeast Asia reflects the importance of this region as a source of reactive organic gases and aerosols from natural forests, biomass burning, and food and fuel crops. We particularly focus on July 2008 when the UK BAe-146 research aircraft was deployed over northern Malaysian Borneo as part of the ACES/OP3 measurement campaign. During July 2008 we find using the model that Borneo (defined as Borneo Island and the surrounding Indonesian islands was a net exporter of primary organic aerosol (42 kT and black carbon aerosol (11 kT. We find only 13% of volatile organic compound oxidation products partition to secondary organic aerosol (SOA, with Borneo being a net exporter of SOA (15 kT. SOA represents approximately 19% of the total organic aerosol over the region. Sulphate is mainly from aqueous-phase oxidation (68%, with smaller contributions from gas-phase oxidation (15% and advection into the regions (14%. We find that there is a large source of sea salt, as expected, but this largely deposits within the region; we find that dust aerosol plays only a relatively small role in the aerosol burden. In contrast to coincident surface measurements over Northern Borneo that find a pristine environment with evidence for substantial biogenic SOA formation we find that the free troposphere is influenced by biomass burning aerosol transported from the northwest of the Island and further afield. We find several transport events during July 2008 over Borneo associated with elevated aerosol concentrations, none of which coincide with the aircraft flights. We use MODIS aerosol optical depths (AOD data and the model to put the July campaign into a longer temporal perspective. We find that Borneo is where

  18. The composition and variability of atmospheric aerosol over Southeast Asia during 2008

    Science.gov (United States)

    Trivitayanurak, W.; Palmer, P. I.; Barkley, M. P.; Robinson, N. H.; Coe, H.; Oram, D. E.

    2012-01-01

    We use a nested version of the GEOS-Chem global 3-D chemistry transport model to better understand the composition and variation of aerosol over Borneo and the broader Southeast Asian region in conjunction with aircraft and satellite observations. Our focus on Southeast Asia reflects the importance of this region as a source of reactive organic gases and aerosols from natural forests, biomass burning, and food and fuel crops. We particularly focus on July 2008 when the UK BAe-146 research aircraft was deployed over northern Malaysian Borneo as part of the ACES/OP3 measurement campaign. During July 2008 we find using the model that Borneo (defined as Borneo Island and the surrounding Indonesian islands) was a net exporter of primary organic aerosol (42 kT) and black carbon aerosol (11 kT). We find only 13% of volatile organic compound oxidation products partition to secondary organic aerosol (SOA), with Borneo being a net exporter of SOA (15 kT). SOA represents approximately 19% of the total organic aerosol over the region. Sulphate is mainly from aqueous-phase oxidation (68%), with smaller contributions from gas-phase oxidation (15%) and advection into the regions (14%). We find that there is a large source of sea salt, as expected, but this largely deposits within the region; we find that dust aerosol plays only a relatively small role in the aerosol burden. In contrast to coincident surface measurements over Northern Borneo that find a pristine environment with evidence for substantial biogenic SOA formation we find that the free troposphere is influenced by biomass burning aerosol transported from the northwest of the Island and further afield. We find several transport events during July 2008 over Borneo associated with elevated aerosol concentrations, none of which coincide with the aircraft flights. We use MODIS aerosol optical depths (AOD) data and the model to put the July campaign into a longer temporal perspective. We find that Borneo is where the model

  19. Secondary organic aerosols: Formation potential and ambient data

    DEFF Research Database (Denmark)

    Barthelmie, R.J.; Pryor, S.C.

    1997-01-01

    Organic aerosols comprise a significant fraction of the total atmospheric particle loading and are associated with radiative forcing and health impacts. Ambient organic aerosol concentrations contain both a primary and secondary component. Herein, fractional aerosol coefficients (FAC) are used...... in conjunction with measurements of volatile organic compounds (VOC) to predict the formation potential of secondary organic aerosols (SOA) in the Lower Fraser Valley (LEV) of British Columbia. The predicted concentrations of SOA show reasonable accord with ambient aerosol measurements and indicate considerable...

  20. The background aerosol in the lower stratosphere and the tropospheric aerosol in the Alps. Final report; Das Hintergrundaerosol der unteren Stratosphaere und das troposphaerische Aerosol der Alpen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, H.; Trickl, T.

    2001-06-04

    As a contribution to the German Aerosol-Lidar Network lidar backscatter measurements have been carried out at Garmisch-Partenkirchen in a wide range of the atmosphere from next to the ground to altitudes beyond 30 km. The investigations, on one hand, were devoted to establishing a climatology of the aerosol extinction coefficient for the northern Alps and to prolonging the long-term measurement series of the stratospheric aerosol. On the other hand, aerosol was used as a tracer of polluted air masses in atmospheric transport studies (orographically induced vertical transport, advection of Saharan dust, as well as aerosol advection from the North american boundary layer and from large-scale wild fire in the United States and Canada). These transport processes given the seasonal cycle of the aerosol throughout the troposphere. In the free troposphere a pronounced spring-time aerosol maximum was found. The stratospheric aerosol concentration had decayed to a background-type level during the reporting period. As a consequence, the influence of smaller aerosol contributions could be distinguished such as the eruption of the volcano Shishaldin (Alaska) and aircraft emissions. (orig.) [German] Im Rahmen des deutschen Aerosollidarnetzes wurden in Garmisch-Partenkirchen Lidar-Rueckstreumessungen in einem weiten Bereich der Atmosphaere von Bodennaehe bis in ueber 30 km Hoehe durchgefuehrt. Die Arbeiten dienten zum einen der Erstellung einer Klimatologie des Aerosol-Extinktionskoeffizienten fuer die Nordalpen sowie der Verlaengerung der seit 1976 erstellten Langzeitmessreihe des stratosphaerischen Aerosols. Zum anderen fanden atmosphaerische Transportstudien statt, bei denen das Aerosol als 'Tracer' fuer Luftverschmutzung verwendet wurde (orographisch induzierter Vertikaltransport, Advektion von Saharastaub und Aerosoladvektion aus der nordamerikanischen Genzschicht und von grossflaechigen Waldbraenden in den U.S.A. und Kanada). Diese Transportprozesse bestimmen den

  1. Atmospheric aerosol characteristics retrieved using ground based ...

    Indian Academy of Sciences (India)

    negative in summer due to enhanced tourists' arrival and also in autumn months due to the month- long International .... ces due to socio-economic activities, population growth ...... in aerosol optical properties over China; Atmos. Chem. Phys.

  2. Non-ammonium reduced nitrogen species in atmospheric aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Dod, R.L.; Gundel, L.A.; Benner, W.H.; Novakov, T.

    1983-08-01

    The traditional belief that ambient aerosol particles contain nitrogen predominantly in the form of inorganic ionic species such as NH/sub 4//sup +/ and NO/sub 3//sup -/ was challenged about 10 years ago by results from x-ray photoelectron spectroscopic analysis (ESCA) of California aerosol particles. A significant fraction (approx. 50%) of the reduced nitrogen was observed to have an oxidation state more reduced than ammonium, characteristic of organic nitrogen species. We have used a recently developed thermal evolved gas analysis method (NO/sub x/) in conjunction with ESCA to confirm the existence of these species in aerosol particles collected in both the United States and Europe. The agreement of EGA and ESCA analyses indicates that these species are found not only on the surface but also throughout the particles. 9 references, 6 figures.

  3. Latitudinal and longitudinal variation in aerosol characteristics from ...

    Indian Academy of Sciences (India)

    The physical and chemical properties of aerosols are strong ... Keywords. Aerosol optical characteristics; latitudinal and longitudinal variations; Bay of Bengal; Arabian Sea; pre- ...... of global sources of atmospheric soil dust identified with the ...

  4. Interpreting the ultraviolet aerosol index observed with the OMI satellite instrument to understand absorption by organic aerosols: implications for atmospheric oxidation and direct radiative effects

    Directory of Open Access Journals (Sweden)

    M. S. Hammer

    2016-03-01

    Full Text Available Satellite observations of the ultraviolet aerosol index (UVAI are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOS-Chem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT. The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (−0.32 to −0.97 exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC, and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The inclusion of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from −0.57 to −0.09 over West Africa in January, from −0.32 to +0.0002 over South Asia in April, from −0.97 to −0.22 over southern Africa in July, and from −0.50 to +0.33 over South America in September. The spectral dependence of absorption after including BrC in the model is broadly consistent with reported observations for biomass burning aerosol, with absorbing Ångström exponent (AAE values ranging from 2.9 in the ultraviolet (UV to 1.3 across the UV–Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 30 % over South America in September, up to 20 % over southern Africa in July, and up to 15 % over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform

  5. BAECC Biogenic Aerosols - Effects on Clouds and Climate

    Energy Technology Data Exchange (ETDEWEB)

    Petäjä, Tuukka [Univ. of Helsinki (Finland); Moisseev, Dmitri [Univ. of Helsinki (Finland); Sinclair, Victoria [Univ. of Helsinki (Finland); O' Connor, Ewan J. [Finnish Meteorological Institute, Helsinki (Finland); Manninen, Antti J. [Univ. of Helsinki (Finland); Levula, Janne [Univ. of Helsinki (Finland); Väänänen, Riikka [Univ. of Helsinki (Finland); Heikkinen, Liine [Univ. of Helsinki (Finland); Äijälä, Mikko [Univ. of Helsinki (Finland); Aalto, Juho [Univ. of Helsinki (Finland); Bäck, Jaana [University of Helsinki, Finland

    2015-11-01

    “Biogenic Aerosols - Effects on Clouds and Climate (BAECC)”, featured the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Program’s 2nd Mobile Facility (AMF2) in Hyytiälä, Finland. It operated for an 8-month intensive measurement campaign from February to September 2014. The main research goal was to understand the role of biogenic aerosols in cloud formation. One of the reasons to perform BAECC study in Hyytiälä was the fact that it hosts SMEAR-II (Station for Measuring Forest Ecosystem-Atmosphere Relations), which is one of the world’s most comprehensive surface in-situ observation sites in a boreal forest environment. The station has been measuring atmospheric aerosols, biogenic emissions and an extensive suite of parameters relevant to atmosphere-biosphere interactions continuously since 1996. The BAECC enables combining vertical profiles from AMF2 with surface-based in-situ SMEAR-II observations and allows the processes at the surface to be directly related to processes occurring throughout the entire tropospheric column. With the inclusion of extensive surface precipitation measurements, and intensive observation periods involving aircraft flights and novel radiosonde launches, the complementary observations of AMF2 and SMEAR-II provide a unique opportunity for investigating aerosol-cloud interactions, and cloud-to-precipitation processes. The BAECC dataset will initiate new opportunities for evaluating and improving models of aerosol sources and transport, cloud microphysical processes, and boundary-layer structures.

  6. Atmospheric aerosol compositions and sources at two national background sites in northern and southern China

    Science.gov (United States)

    Zhu, Qiao; He, Ling-Yan; Huang, Xiao-Feng; Cao, Li-Ming; Gong, Zhao-Heng; Wang, Chuan; Zhuang, Xin; Hu, Min

    2016-08-01

    Although China's severe air pollution has become a focus in the field of atmospheric chemistry and the mechanisms of urban air pollution there have been researched extensively, few field sampling campaigns have been conducted at remote background sites in China, where air pollution characteristics on a larger scale are highlighted. In this study, an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), together with an Aethalometer, was deployed at two of China's national background sites in northern (Lake Hongze site; 33.23° N, 118.33° E; altitude 21 m) and southern (Mount Wuzhi site; 18.84° N, 109.49° E; altitude 958 m) China in the spring seasons in 2011 and 2015, respectively, in order to characterize submicron aerosol composition and sources. The campaign-average PM1 concentration was 36.8 ± 19.8 µg m-3 at the northern China background (NCB) site, which was far higher than that at the southern China background (SCB) site (10.9 ± 7.8 µg m-3). Organic aerosol (OA) (27.2 %), nitrate (26.7 %), and sulfate (22.0 %) contributed the most to the PM1 mass at NCB, while OA (43.5 %) and sulfate (30.5 %) were the most abundant components of the PM1 mass at SCB, where nitrate only constituted a small fraction (4.7 %) and might have contained a significant amount of organic nitrates (5-11 %). The aerosol size distributions and organic aerosol elemental compositions all indicated very aged aerosol particles at both sites. The OA at SCB was more oxidized with a higher average oxygen to carbon (O / C) ratio (0.98) than that at NCB (0.67). Positive matrix factorization (PMF) analysis was used to classify OA into three components, including a hydrocarbon-like component (HOA, attributed to fossil fuel combustion) and two oxygenated components (OOA1 and OOA2, attributed to secondary organic aerosols from different source areas) at NCB. PMF analysis at SCB identified a semi-volatile oxygenated component (SV-OOA) and a low-volatility oxygenated

  7. The Aerosol-Monsoon Climate System of Asia

    Science.gov (United States)

    Lau, William K. M.; Kyu-Myong, Kim

    2012-01-01

    In Asian monsoon countries such as China and India, human health and safety problems caused by air-pollution are worsening due to the increased loading of atmospheric pollutants stemming from rising energy demand associated with the rapid pace of industrialization and modernization. Meanwhile, uneven distribution of monsoon rain associated with flash flood or prolonged drought, has caused major loss of human lives, and damages in crop and properties with devastating societal impacts on Asian countries. Historically, air-pollution and monsoon research are treated as separate problems. However a growing number of recent studies have suggested that the two problems may be intrinsically intertwined and need to be studied jointly. Because of complexity of the dynamics of the monsoon systems, aerosol impacts on monsoons and vice versa must be studied and understood in the context of aerosol forcing in relationship to changes in fundamental driving forces of the monsoon climate system (e.g. sea surface temperature, land-sea contrast etc.) on time scales from intraseasonal variability (weeks) to climate change ( multi-decades). Indeed, because of the large contributions of aerosols to the global and regional energy balance of the atmosphere and earth surface, and possible effects of the microphysics of clouds and precipitation, a better understanding of the response to climate change in Asian monsoon regions requires that aerosols be considered as an integral component of a fully coupled aerosol-monsoon system on all time scales. In this paper, using observations and results from climate modeling, we will discuss the coherent variability of the coupled aerosol-monsoon climate system in South Asia and East Asia, including aerosol distribution and types, with respect to rainfall, moisture, winds, land-sea thermal contrast, heat sources and sink distributions in the atmosphere in seasonal, interannual to climate change time scales. We will show examples of how elevated

  8. Seawater mesocosm experiments in the Arctic uncover differential transfer of marine bacteria to aerosols.

    Science.gov (United States)

    Fahlgren, Camilla; Gómez-Consarnau, Laura; Zábori, Julia; Lindh, Markus V; Krejci, Radovan; Mårtensson, E Monica; Nilsson, Douglas; Pinhassi, Jarone

    2015-06-01

    Biogenic aerosols critically control atmospheric processes. However, although bacteria constitute major portions of living matter in seawater, bacterial aerosolization from oceanic surface layers remains poorly understood. We analysed bacterial diversity in seawater and experimentally generated aerosols from three Kongsfjorden sites, Svalbard. Construction of 16S rRNA gene clone libraries from paired seawater and aerosol samples resulted in 1294 sequences clustering into 149 bacterial and 34 phytoplankton operational taxonomic units (OTUs). Bacterial communities in aerosols differed greatly from corresponding seawater communities in three out of four experiments. Dominant populations of both seawater and aerosols were Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria. Across the entire dataset, most OTUs from seawater could also be found in aerosols; in each experiment, however, several OTUs were either selectively enriched in aerosols or little aerosolized. Notably, a SAR11 clade OTU was consistently abundant in the seawater, but was recorded in significantly lower proportions in aerosols. A strikingly high proportion of colony-forming bacteria were pigmented in aerosols compared with seawater, suggesting that selection during aerosolization contributes to explaining elevated proportions of pigmented bacteria frequently observed in atmospheric samples. Our findings imply that atmospheric processes could be considerably influenced by spatiotemporal variations in the aerosolization efficiency of different marine bacteria. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Influence of continental organic aerosols to the marine atmosphere over the East China Sea: Insights from lipids, PAHs and phthalates.

    Science.gov (United States)

    Kang, Mingjie; Yang, Fan; Ren, Hong; Zhao, Wanyu; Zhao, Ye; Li, Linjie; Yan, Yu; Zhang, Yingjie; Lai, Senchao; Zhang, Yingyi; Yang, Yang; Wang, Zifa; Sun, Yele; Fu, Pingqing

    2017-12-31

    Total suspended particle (TSP) samples were collected during a marine cruise in the East China Sea from May 18 to June 12, 2014. They were analyzed for solvent extractable organic compounds (lipid compounds, PAHs and phthalates) using gas chromatography/mass spectrometry (GC/MS) to better understand the sources and source apportionment of aerosol pollution in the western North Pacific. Higher concentrations were observed in the terrestrially influenced aerosol samples on the basis of five-day backward air mass trajectories, especially for aerosols collected near coastal areas. Phthalates were found to be the dominant species among these measured compound classes (707±401ngm -3 for daytime and 313±155ngm -3 for nighttime), followed by fatty acids, fatty alcohols, n-alkanes and PAHs. In general, the daytime abundances for these compounds are higher than nighttime, possibly attributable to more intensive anthropogenic activities during the daytime. The factor analysis indicates that biomass burning, fungal activities and fossil fuel combustion maybe the main emission sources for organic aerosols over the East China Sea. This study demonstrates that the East Asian continent can be a natural emitter of biogenic and anthropogenic organics to the marine atmosphere through long-range transport, which controls the chemical composition and concentration of organic aerosols over the East China Sea. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Methods of analysis for complex organic aerosol mixtures from urban emission sources of particulate carbon

    International Nuclear Information System (INIS)

    Mazurek, M.A.; Hildemann, L.M.; Simoneit, B.R.T.

    1990-10-01

    Organic aerosols comprise approximately 30% by mass of the total fine particulate matter present in urban atmospheres. The chemical composition of such aerosols is complex and reflects input from multiple sources of primary emissions to the atmosphere, as well as from secondary production of carbonaceous aerosol species via photochemical reactions. To identify discrete sources of fine carbonaceous particles in urban atmospheres, analytical methods must reconcile both bulk chemical and molecular properties of the total carbonaceous aerosol fraction. This paper presents an overview of the analytical protocol developed and used in a study of the major sources of fine carbon particles emitted to an urban atmosphere. 23 refs., 1 fig., 2 tabs

  11. Dynamic terahertz spectroscopy of gas molecules mixed with unwanted aerosol under atmospheric pressure using fibre-based asynchronous-optical-sampling terahertz time-domain spectroscopy

    Science.gov (United States)

    Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi

    2016-06-01

    Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident.

  12. Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change

    Directory of Open Access Journals (Sweden)

    S. Fuzzi

    2006-01-01

    Full Text Available In spite of impressive advances in recent years, our present understanding of organic aerosol (OA composition, physical and chemical properties, sources and transformation characteristics is still rather limited, and their environmental effects remain highly uncertain. This paper discusses and prioritizes issues related to organic aerosols and their effects on atmospheric processes and climate, providing a basis for future activities in the field. Four main topical areas are addressed: i sources of OA; ii formation transformation and removal of OA; iii physical, chemical and mixing state of OA; iv atmospheric modelling of OA. Key questions and research priorities regarding these four areas are synthesized in this paper, and outstanding issues for future research are presented for each topical area. In addition, an effort is made to formulate a basic set of consistent and universally applicable terms and definitions for coherent description of atmospheric OA across different scales and disciplines.

  13. Importance of relative humidity in the oxidative ageing of organic aerosols: case study of the ozonolysis of maleic acid aerosol

    Directory of Open Access Journals (Sweden)

    P. J. Gallimore

    2011-12-01

    Full Text Available Many important atmospheric aerosol processes depend on the chemical composition of the aerosol, e.g. water uptake and particle cloud interactions. Atmospheric ageing processes, such as oxidation reactions, significantly and continuously change the chemical composition of aerosol particles throughout their lifetime. These ageing processes are often poorly understood. In this study we utilize an aerosol flow tube set up and an ultra-high resolution mass spectrometer to explore the effect of relative humidity (RH in the range of <5–90% on the ozonolysis of maleic acid aerosol which is employed as model organic aerosol system. Due to the slow reaction kinetics relatively high ozone concentrations of 160–200 ppm were used to achieve an appreciable degree of oxidation of maleic acid. The effect of oxidative ageing on the hygroscopicity of maleic acid particles is also investigated using an electrodynamic balance and thermodynamic modelling. RH has a profound effect on the oxidation of maleic acid particles. Very little oxidation is observed at RH < 50% and the only observed reaction products are glyoxylic acid and formic acid. In comparison, when RH > 50% there are about 15 oxidation products identified. This increased oxidation was observed even when the particles were exposed to high humidities long after a low RH ozonolysis reaction. This result might have negative implications for the use of water as an extraction solvent for the analysis of oxidized organic aerosols. These humidity-dependent differences in the composition of the ozonolyzed aerosol demonstrate that water is both a key reactant in the oxidation scheme and a determinant of particle phase and hence diffusivity. The measured chemical composition of the processed aerosol is used to model the hygroscopic growth, which compares favourably with water uptake results from the electrodynamic balance measurements. A reaction mechanism is presented which takes into account the RH dependent

  14. Atmospheric oxidation of isoprene and 1,3-Butadiene: influence of aerosol acidity and Relative humidity on secondary organic aerosol

    Science.gov (United States)

    The effects of acidic seed aerosols on the formation of secondary organic aerosol (SOA)have been examined in a number of previous studies, several of which have observed strong linear correlations between the aerosol acidity (measured as nmol H+ per m3 air s...

  15. Speciation of radiocesium in atmospheric aerosol after the Chernobyl accident

    International Nuclear Information System (INIS)

    Tomasek, M.; Rybacek, K.; Wilhemova, L.

    1995-01-01

    The aim of this analysis was to verify the hypothesis that physico-chemical forms of radiocesium in the fallout after the accident could depend on the transport conditions, including the distance of a sampling location from Chernobyl. From the results it is obvious that the prevailing form in all samples taken in the period of direct contamination was water-soluble radiocesium. It can be concluded from the presented results that physico-chemical forms of radiocesium in atmospheric aerosol and fallout after the nuclear power plant accident at Chernobyl as well as particulate size distribution can depend on the distance or the conditions of transport from a contamination source to a sampling location. The influence of the conditions of radiocesium transport could result in observed differences in the 137 Cs penetration into soil profile in different locations and also in the found dependence on the resuspension factor for 137 Cs on the level of its fallout in the period of NPP accident for different locations in Europe. (J.K.) 1 tab

  16. Speciation of radiocesium in atmospheric aerosol after the Chernobyl accident

    Energy Technology Data Exchange (ETDEWEB)

    Tomasek, M; Rybacek, K; Wilhemova, L [Academy Science of the Czech Republic, 18086 Prague (Czech Republic). Nuclear Physics Inst., Dept. of Radiation Dosimetry

    1996-12-31

    The aim of this analysis was to verify the hypothesis that physico-chemical forms of radiocesium in the fallout after the accident could depend on the transport conditions, including the distance of a sampling location from Chernobyl. From the results it is obvious that the prevailing form in all samples taken in the period of direct contamination was water-soluble radiocesium. It can be concluded from the presented results that physico-chemical forms of radiocesium in atmospheric aerosol and fallout after the nuclear power plant accident at Chernobyl as well as particulate size distribution can depend on the distance or the conditions of transport from a contamination source to a sampling location. The influence of the conditions of radiocesium transport could result in observed differences in the {sup 137}Cs penetration into soil profile in different locations and also in the found dependence on the resuspension factor for {sup 137}Cs on the level of its fallout in the period of NPP accident for different locations in Europe. (J.K.) 1 tab.

  17. Hygroscopic properties of atmospheric aerosol particles over the Eastern Mediterranean: implications for regional direct radiative forcing under clean and polluted conditions

    Directory of Open Access Journals (Sweden)

    M. Stock

    2011-05-01

    Full Text Available This work examines the effect of direct radiative forcing of aerosols in the eastern Mediterranean troposphere as a function of air mass composition, particle size distribution and hygroscopicity, and relative humidity (RH. During intensive field measurements on the island of Crete, Greece, the hygroscopic properties of atmospheric particles were determined using a Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA and a Hygroscopicity Differential Mobility Analyzer-Aerodynamic Particle Sizer (H-DMA-APS. Similar to former studies, the H-TDMA identified three hygroscopic sub-fractions of particles in the sub-μm range: a more hygroscopic group, a less hygroscopic group and a nearly hydrophobic particle group. The average hygroscopic particle growth factors at 90 % RH were a significant function of particle mobility diameter (Dp: 1.42 (± 0.05 at 30 nm compared to 1.63 (± 0.07 at 250 nm. The H-DMA-APS identified up to three hygroscopic sub-fractions at mobility diameters of 1.0 and 1.2 μm. The data recorded between 12 August and 20 October 2005 were classified into four distinct synoptic-scale air mass types distinguishing between different regions of origin (western Mediterranean vs. the Aegean Sea as well as the degree of continental pollution (marine vs. continentally influenced. The hygroscopic properties of particles with diameter Dp≥150 nm showed the most pronounced dependency on air mass origin, with growth factors in marine air masses exceeding those in continentally influenced air masses. Particle size distributions and hygroscopic growth factors were used to calculate aerosol light scattering coefficients at ambient RH using a Mie model. A main result was the pronounced enhancement of particle scattering over the eastern Mediterranean due to hygroscopic growth, both in the marine and continentally influenced air masses. When RH reached its summer daytime values around 70

  18. Estimation of Downwelling Surface Longwave Radiation under Heavy Dust Aerosol Sky

    Directory of Open Access Journals (Sweden)

    Chunlei Wang

    2017-02-01

    Full Text Available The variation of aerosols, especially dust aerosol, in time and space plays an important role in climate forcing studies. Aerosols can effectively reduce land surface longwave emission and re-emit energy at a colder temperature, which makes it difficult to estimate downwelling surface longwave radiation (DSLR with satellite data. Using the latest atmospheric radiative transfer code (MODTRAN 5.0, we have simulated the outgoing longwave radiation (OLR and DSLR under different land surface types and atmospheric profile conditions. The results show that dust aerosol has an obvious “warming” effect to longwave radiation compared with other aerosols; that aerosol longwave radiative forcing (ALRF increased with the increasing of aerosol optical depth (AOD; and that the atmospheric water vapor content (WVC is critical to the understanding of ALRF. A method is proposed to improve the accuracy of DSLR estimation from satellite data for the skies under heavy dust aerosols. The AOD and atmospheric WVC under cloud-free conditions with a relatively simple satellite-based radiation model yielding the high accurate DSLR under heavy dust aerosol are used explicitly as model input to reduce the effects of dust aerosol on the estimation of DSLR. Validations of the proposed model with satellites data and field measurements show that it can estimate the DSLR accurately under heavy dust aerosol skies. The root mean square errors (RMSEs are 20.4 W/m2 and 24.2 W/m2 for Terra and Aqua satellites, respectively, at the Yingke site, and the biases are 2.7 W/m2 and 9.6 W/m2, respectively. For the Arvaikheer site, the RMSEs are 23.2 W/m2 and 19.8 W/m2 for Terra and Aqua, respectively, and the biases are 7.8 W/m2 and 10.5 W/m2, respectively. The proposed method is especially applicable to acquire relatively high accurate DSLR under heavy dust aerosol using MODIS data with available WVC and AOD data.

  19. CATS Aerosol Typing and Future Directions

    Science.gov (United States)

    McGill, Matt; Yorks, John; Scott, Stan; Palm, Stephen; Hlavka, Dennis; Hart, William; Nowottnick, Ed; Selmer, Patrick; Kupchock, Andrew; Midzak, Natalie; hide

    2016-01-01

    The Cloud Aerosol Transport System (CATS), launched in January of 2015, is a lidar remote sensing instrument that will provide range-resolved profile measurements of atmospheric aerosols and clouds from the International Space Station (ISS). CATS is intended to operate on-orbit for at least six months, and up to three years. Status of CATS Level 2 and Plans for the Future:Version. 1. Aerosol Typing (ongoing): Mode 1: L1B data released later this summer; L2 data released shortly after; Identify algorithm biases (ex. striping, FOV (field of view) biases). Mode 2: Processed Released Currently working on correcting algorithm issues. Version 2 Aerosol Typing (Fall, 2016): Implementation of version 1 modifications Integrate GEOS-5 aerosols for typing guidance for non spherical aerosols. Version 3 Aerosol Typing (2017): Implementation of 1-D Var Assimilation into GEOS-5 Dynamic lidar ratio that will evolve in conjunction with simulated aerosol mixtures.

  20. Impact of Aerosol Processing on Orographic Clouds

    Science.gov (United States)

    Pousse-Nottelmann, Sara; Zubler, Elias M.; Lohmann, Ulrike

    2010-05-01

    Aerosol particles undergo significant modifications during their residence time in the atmosphere. Physical processes like coagulation, coating and water uptake, and aqueous surface chemistry alter the aerosol size distribution and composition. At this, clouds play a primary role as physical and chemical processing inside cloud droplets contributes considerably to the changes in aerosol particles. A previous study estimates that on global average atmospheric particles are cycled three times through a cloud before being removed from the atmosphere [1]. An explicit and detailed treatment of cloud-borne particles has been implemented in the regional weather forecast and climate model COSMO-CLM. The employed model version includes a two-moment cloud microphysical scheme [2] that has been coupled to the aerosol microphysical scheme M7 [3] as described by Muhlbauer and Lohmann, 2008 [4]. So far, the formation, transfer and removal of cloud-borne aerosol number and mass were not considered in the model. Following the parameterization for cloud-borne particles developed by Hoose et al., 2008 [5], distinction between in-droplet and in-crystal particles is made to more physically account for processes in mixed-phase clouds, such as the Wegener-Bergeron-Findeisen process and contact and immersion freezing. In our model, this approach has been extended to allow for aerosol particles in five different hydrometeors: cloud droplets, rain drops, ice crystals, snow flakes and graupel. We account for nucleation scavenging, freezing and melting processes, autoconversion, accretion, aggregation, riming and selfcollection, collisions between interstitial aerosol particles and hydrometeors, ice multiplication, sedimentation, evaporation and sublimation. The new scheme allows an evaluation of the cloud cycling of aerosol particles by tracking the particles even when scavenged into hydrometeors. Global simulations of aerosol processing in clouds have recently been conducted by Hoose et al

  1. Comprehensive two-dimensional liquid chromatography–time-of-flight mass spectrometry in the analysis of acidic compounds in atmospheric aerosols

    Czech Academy of Sciences Publication Activity Database

    Pól, Jaroslav; Hohnová, B.; Jussila, M.; Hyötyläinen, T.

    2006-01-01

    Roč. 1130, č. 1 (2006), s. 64-71 ISSN 0021-9673. [International Symposium on Hyphenated Techniques in Chromatography and Hyphenated Chromatographic Analyzers /9./. York, 08.02.2006-10.02.2006] Institutional research plan: CEZ:AV0Z40310501 Keywords : comprehensive two-dimensional liquid chromatography * time-of-flight mass spectrometry * atmospheric aerosol analysis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.554, year: 2006

  2. Characterizing dust aerosols in the atmospheric boundary layer over the deserts in Northwest China: monitoring network and field observation

    Science.gov (United States)

    He, Q.; Matimin, A.; Yang, X.

    2016-12-01

    TheTaklimakan, Gurbantunggut and BadainJaran Deserts with the total area of 43.8×104 km2 in Northwest China are the major dust emission sources in Central Asia. Understanding Central Asian dust emissions and the interaction with the atmospheric boundary layer has an important implication for regional and global climate and environment changes. In order to explore these scientific issues, a monitoring network of 63 sites was established over the vast deserts (Taklimakan Desert, Gurbantunggut Desert and Badain Jaran Desert) in Northwest China for the comprehensive measurements of dust aerosol emission, transport and deposition as well as the atmospheric boundary layer including the meteorological parameters of boundary layer, surface radiation, surface heat fluxes, soil parameters, dust aerosol properties, water vapor profiles, and dust emission. Based on the monitoring network, the field experiments have been conducted to characterize dust aerosols and the atmospheric boundary layer over the deserts. The experiment observation indicated that depth of the convective boundary layer can reach 5000m on summer afternoons. In desert regions, the diurnal mean net radiation was effected significantly by dust weather, and sensible heat was much greater than latent heat accounting about 40-50% in the heat balance of desert. The surface soil and dust size distributions of Northwest China Deserts were obtained through widely collecting samples, results showed that the dominant dust particle size was PM100within 80m height, on average accounting for 60-80% of the samples, with 0.9-2.5% for PM0-2.5, 3.5-7.0% for PM0-10 and 5.0-14.0% for PM0-20. The time dust emission of Taklimakan Desert, Gurbantunggut Desert and Badain Jaran Desert accounted for 0.48%, 7.3%×10-5and 1.9% of the total time within a year, and the threshold friction velocity for dust emission were 0.22-1.06m/s, 0.29-1.5m/s and 0.21-0.59m/s, respectively.

  3. Visibility degradation and light scattering/absorption due to aerosol particles in urban/suburban atmosphere of Irbid, Jordan

    International Nuclear Information System (INIS)

    Hamasha, K. M.; University of Tabuk, Tabuk

    2010-01-01

    Visible light scattering and absorption patterns were measured using a photoacoustic instrument at different locations in Irbid city. Measurments were perfoemed during the intervals 1-9 August 2007 and 7-13 October 2007 at the city center site (Palestine street) and the southern site (University Circle), respectively. The city center site is impacted by local urban and regional aerosols. The southern site is dominated by regional aerosols. Data from both sampling sites showed variety of diurnal light absorption and scattering patterns. During most of the measurement days, the highest light absorption peaks appeared in the morning, 7:00 - 9:30 AM, whereas the highest light scattering peaks appeared later, 9:30 - 11:00 AM. The earlier light absorption peaks are likely attributed to the elevated black carbon vehicular emission during the heavy traffic hours (rush hours) whereas, the later light scattering peaks are attributed to secondary aerosols generted in the atmosphere through photochmical reactions. The southern site (University Circle) exhibited a higher light scattering and a lower light absorption contribution to the light extinction, leading to a better visibility compared to the City Center site. The visibility is averaged at 44 km and 115 km at the city center site and southern site, respectively. (author).

  4. Smartphone Air Quality and Atmospheric Aerosol Characterization for Public Health Applications

    Science.gov (United States)

    Strong, S. B.; Brown, D. M.; Brown, A.

    2014-12-01

    Air quality is a major global concern. Tracking and monitoring air quality provides individuals with the knowledge to make personal decisions about their health and investigate the environment in which they live. Satellite remote sensing and ground-based observations (e.g. Environmental Protection Agency, NASA Aerosol Robotic Network) of air quality is spatially and temporarlly limited and often neglects to provide individuals with the freedom to understand their own personal environment using their personal observations. Given the ubiquitous nature of smartphones, individuals have access to powerful processing and sensing capabilities. When coupled with the appropriate sensor parameters, filters, and algorithms, smartphones can be used both for 'citizen science' air quality applications and 'professional' scientific atmospheric investigations, alike, simplifying data analysis, processing, and improving deployment efficiency. We evaluate the validity of smartphone technology for air quality investigations using standard Cimel CE 318 sun photometry and Fourier Transform Infrared Spectroradiometer (FTIR) observations at specific locations.

  5. MODIS Observation of Aerosols over Southern Africa During SAFARI 2000: Data, Validation, and Estimation of Aerosol Radiative Forcing

    Science.gov (United States)

    Ichoku, Charles; Kaufman, Yoram; Remer, Lorraine; Chu, D. Allen; Mattoo, Shana; Tanre, Didier; Levy, Robert; Li, Rong-Rong; Kleidman, Richard; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Aerosol properties, including optical thickness and size parameters, are retrieved operationally from the MODIS sensor onboard the Terra satellite launched on 18 December 1999. The predominant aerosol type over the Southern African region is smoke, which is generated from biomass burning on land and transported over the southern Atlantic Ocean. The SAFARI-2000 period experienced smoke aerosol emissions from the regular biomass burning activities as well as from the prescribed burns administered on the auspices of the experiment. The MODIS Aerosol Science Team (MAST) formulates and implements strategies for the retrieval of aerosol products from MODIS, as well as for validating and analyzing them in order to estimate aerosol effects in the radiative forcing of climate as accurately as possible. These activities are carried out not only from a global perspective, but also with a focus on specific regions identified as having interesting characteristics, such as the biomass burning phenomenon in southern Africa and the associated smoke aerosol, particulate, and trace gas emissions. Indeed, the SAFARI-2000 aerosol measurements from the ground and from aircraft, along with MODIS, provide excellent data sources for a more intensive validation and a closer study of the aerosol characteristics over Southern Africa. The SAFARI-2000 ground-based measurements of aerosol optical thickness (AOT) from both the automatic Aerosol Robotic Network (AERONET) and handheld Sun photometers have been used to validate MODIS retrievals, based on a sophisticated spatio-temporal technique. The average global monthly distribution of aerosol from MODIS has been combined with other data to calculate the southern African aerosol daily averaged (24 hr) radiative forcing over the ocean for September 2000. It is estimated that on the average, for cloud free conditions over an area of 9 million square kin, this predominantly smoke aerosol exerts a forcing of -30 W/square m C lose to the terrestrial

  6. Aerosol-type retrieval and uncertainty quantification from OMI data

    Science.gov (United States)

    Kauppi, Anu; Kolmonen, Pekka; Laine, Marko; Tamminen, Johanna

    2017-11-01

    We discuss uncertainty quantification for aerosol-type selection in satellite-based atmospheric aerosol retrieval. The retrieval procedure uses precalculated aerosol microphysical models stored in look-up tables (LUTs) and top-of-atmosphere (TOA) spectral reflectance measurements to solve the aerosol characteristics. The forward model approximations cause systematic differences between the modelled and observed reflectance. Acknowledging this model discrepancy as a source of uncertainty allows us to produce more realistic uncertainty estimates and assists the selection of the most appropriate LUTs for each individual retrieval.This paper focuses on the aerosol microphysical model selection and characterisation of uncertainty in the retrieved aerosol type and aerosol optical depth (AOD). The concept of model evidence is used as a tool for model comparison. The method is based on Bayesian inference approach, in which all uncertainties are described as a posterior probability distribution. When there is no single best-matching aerosol microphysical model, we use a statistical technique based on Bayesian model averaging to combine AOD posterior probability densities of the best-fitting models to obtain an averaged AOD estimate. We also determine the shared evidence of the best-matching models of a certain main aerosol type in order to quantify how plausible it is that it represents the underlying atmospheric aerosol conditions.The developed method is applied to Ozone Monitoring Instrument (OMI) measurements using a multiwavelength approach for retrieving the aerosol type and AOD estimate with uncertainty quantification for cloud-free over-land pixels. Several larger pixel set areas were studied in order to investigate the robustness of the developed method. We evaluated the retrieved AOD by comparison with ground-based measurements at example sites. We found that the uncertainty of AOD expressed by posterior probability distribution reflects the difficulty in model

  7. Aerosol-type retrieval and uncertainty quantification from OMI data

    Directory of Open Access Journals (Sweden)

    A. Kauppi

    2017-11-01

    Full Text Available We discuss uncertainty quantification for aerosol-type selection in satellite-based atmospheric aerosol retrieval. The retrieval procedure uses precalculated aerosol microphysical models stored in look-up tables (LUTs and top-of-atmosphere (TOA spectral reflectance measurements to solve the aerosol characteristics. The forward model approximations cause systematic differences between the modelled and observed reflectance. Acknowledging this model discrepancy as a source of uncertainty allows us to produce more realistic uncertainty estimates and assists the selection of the most appropriate LUTs for each individual retrieval.This paper focuses on the aerosol microphysical model selection and characterisation of uncertainty in the retrieved aerosol type and aerosol optical depth (AOD. The concept of model evidence is used as a tool for model comparison. The method is based on Bayesian inference approach, in which all uncertainties are described as a posterior probability distribution. When there is no single best-matching aerosol microphysical model, we use a statistical technique based on Bayesian model averaging to combine AOD posterior probability densities of the best-fitting models to obtain an averaged AOD estimate. We also determine the shared evidence of the best-matching models of a certain main aerosol type in order to quantify how plausible it is that it represents the underlying atmospheric aerosol conditions.The developed method is applied to Ozone Monitoring Instrument (OMI measurements using a multiwavelength approach for retrieving the aerosol type and AOD estimate with uncertainty quantification for cloud-free over-land pixels. Several larger pixel set areas were studied in order to investigate the robustness of the developed method. We evaluated the retrieved AOD by comparison with ground-based measurements at example sites. We found that the uncertainty of AOD expressed by posterior probability distribution reflects the

  8. Seasonal variations of aerosol residence time in the lower atmospheric boundary layer

    International Nuclear Information System (INIS)

    Ahmed, A.A.; Mohamed, A.; Ali, A.E.; Barakat, A.; Abd El-Hady, M.; El-Hussein, A.

    2004-01-01

    During a one year period, from Jan. 2002 up to Dec. 2002, approximately 130 air samples were analyzed to determine the atmospheric air activity concentrations of short- and long-lived ( 222 Rn) decay products 214 Pb and 210 Pb. The samples were taken by using a single-filter technique and γ-spectrometry was applied to determine the activity concentrations. A seasonal fluctuation in the concentration of 214 Pb and 210 Pb in surface air was observed. The activity concentrations of both radionuclides were observed to be relatively higher during the winter/autumn season than in spring/summer season. The mean activity concentration of 214 Pb and 210 Pb within the whole year was found to be 1.4±0.27 Bq m -3 and 1.2±0.15 mBq m -3 , respectively. Different 210 Pb: 214 Pb activity ratios during the year varied between 1.78x10 -4 and 1.6x10 -3 with a mean value of 8.9x10 -4 ±7.6x10 -5 . From the ratio between the activity concentrations of the radon decay products 214 Pb and 210 Pb a mean residence time (MRT) of aerosol particles in the atmosphere of about 10.5±0.91 d could be estimated. The seasonal variation pattern shows relatively higher values of MRT in spring/summer season than in winter/autumn season. The MRT data together with relative humidity (RH), air temperature (T) and wind speed (WS), were used for a comprehensive regression analysis of its seasonal variation in the atmospheric air

  9. Aerosol Chemical Mass Closure during the EUROTRAC-2 AEROSOL Intercomparison 2000

    Czech Academy of Sciences Publication Activity Database

    Maenhaut, W.; Schwarz, Jaroslav; Cafmeyer, J.; Chi, X.

    2002-01-01

    Roč. 186, - (2002), s. 233-237 ISSN 0168-583X Institutional research plan: CEZ:AV0Z4072921 Keywords : ion chromatography * chemical composition * atmospheric aerosols Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.158, year: 2002

  10. Atmospheric Chemistry and Air Pollution

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Gaffney

    2003-01-01

    Full Text Available Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozone and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.

  11. The influence of background aerosol on spectral transparency of urban air

    International Nuclear Information System (INIS)

    Ismayilov, F.I.

    2009-01-01

    The relations between distribution of city aerosol particles on dimensions and spectral transparency of aerosol layer of atmospheric air pollution in Baku city conditions. The power and logarithmically normal functions are used for city aerosol modeling

  12. Laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF): performance, reference spectra and classification of atmospheric samples

    Science.gov (United States)

    Shen, Xiaoli; Ramisetty, Ramakrishna; Mohr, Claudia; Huang, Wei; Leisner, Thomas; Saathoff, Harald

    2018-04-01

    The laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF, AeroMegt GmbH) is able to identify the chemical composition and mixing state of individual aerosol particles, and thus is a tool for elucidating their impacts on human health, visibility, ecosystem, and climate. The overall detection efficiency (ODE) of the instrument we use was determined to range from ˜ (0.01 ± 0.01) to ˜ (4.23 ± 2.36) % for polystyrene latex (PSL) in the size range of 200 to 2000 nm, ˜ (0.44 ± 0.19) to ˜ (6.57 ± 2.38) % for ammonium nitrate (NH4NO3), and ˜ (0.14 ± 0.02) to ˜ (1.46 ± 0.08) % for sodium chloride (NaCl) particles in the size range of 300 to 1000 nm. Reference mass spectra of 32 different particle types relevant for atmospheric aerosol (e.g. pure compounds NH4NO3, K2SO4, NaCl, oxalic acid, pinic acid, and pinonic acid; internal mixtures of e.g. salts, secondary organic aerosol, and metallic core-organic shell particles; more complex particles such as soot and dust particles) were determined. Our results show that internally mixed aerosol particles can result in spectra with new clusters of ions, rather than simply a combination of the spectra from the single components. An exemplary 1-day ambient data set was analysed by both classical fuzzy clustering and a reference-spectra-based classification method. Resulting identified particle types were generally well correlated. We show how a combination of both methods can greatly improve the interpretation of single-particle data in field measurements.

  13. Organic condensation - a vital link connecting aerosol formation to climate forcing

    Science.gov (United States)

    Riipinen, I.; Pierce, J. R.; Yli-Juuti, T.; Nieminen, T.; Häkkinen, S.; Ehn, M.; Junninen, H.; Lehtipalo, K.; Petäjä, T.; Slowik, J.; Chang, R.; Shantz, N. C.; Abbatt, J.; Leaitch, W. R.; Kerminen, V.-M.; Worsnop, D. R.; Pandis, S. N.; Donahue, N. M.; Kulmala, M.

    2011-01-01

    Atmospheric aerosol particles influence global climate as well as impair air quality through their effects on atmospheric visibility and human health. Ultrafine (<100 nm) particles often dominate aerosol numbers, and nucleation of atmospheric vapors is an important source of these particles. To have climatic relevance, however, the freshly-nucleated particles need to grow in size. We combine observations from two continental sites (Egbert, Canada and Hyytiälä, Finland) to show that condensation of organic vapors is a crucial factor governing the lifetimes and climatic importance of the smallest atmospheric particles. We demonstrate that state-of-the-science organic gas-particle partitioning models fail to reproduce the observations, and propose a modeling approach that is consistent with the measurements. We demonstrate the large sensitivity of climatic forcing of atmospheric aerosols to these interactions between organic vapors and the smallest atmospheric nanoparticles - highlighting the need for representing this process in global climate models.

  14. INDOOR-OUTDOOR AEROSOL CONCENTRATIONS IN TWO PORTUGUESE CITIES AND THE GLOBAL WARMING SCENARIO

    Energy Technology Data Exchange (ETDEWEB)

    Antonio F. Miguel; A. Heitor Reis [Department of Physics, University of Evora (Portugal); Marta Melgao [Geophysics Centre of Evora (Portugal)

    2008-09-30

    Aerosols play a major role both in climate change and in air quality. They affect climate through interfering with radiative transfer and hence the atmospheric temperature, and also the air quality. Many epidemiological studies have confirmed that a relation exists between elevated aerosol particle concentration and adverse human health effects. Aerosol particle number and size distributions were measured both indoors and outdoors in the urban areas of Evora and Lisbon. We investigated the indoor-to-outdoor relationship of aerosol particles and the aerosol size distributions. The impact of the occurrence of a residential fire in the aerosol size distribution is also analyzed. Finally, we speculate of how global increase in temperature can affect concentration of aerosols in the atmosphere, via increased boundary layer convection.

  15. Variability of Atmospheric Radon-222 and Secondary Aerosol Components in Accordance with Air Mass Transport Pathways at Jeju Island, Korea, during 2011-2014

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Jun-Oh; Song, Jung-Min; Kim, Won-Hyung; Kang, Chang-Hee [Jeju National University, Jeju (Korea, Republic of); Chambers, Scott D.; Williams, Alastair G. [Australian Nuclear Science and Technology Organisation, Kirrawee DC (Australia); Lee, Chulkyu [Korea Meteorological Administration, Seoul (Korea, Republic of)

    2016-06-15

    Real-time monitoring of hourly atmospheric Radon-222 concentration and three daily monitoring of the secondary aerosol components of PM{sub 10} were performed throughout 2011-2014 at Gosan station, Jeju Island, in order to characterize their background levels and temporal variation. The annual mean radon and PM{sub 10} mass concentrations were 2326 ± 1198 mBq/m{sup 3} and 37.1 ± 19.5 μg/m{sup 3}, respectively. Based on cluster analyses of air mass back trajectories, the frequencies of air masses originating from continental China, the Korean Peninsula, and North Pacific Ocean routes were 53, 28, and 19%, respectively. When the air masses were transported to Jeju Island from continental China, the concentrations of radon and secondary aerosol components (nss-SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, NH{sub 4}{sup +}) were relatively high: 2577 mBq/m{sup 3} and 14.4 μg/m{sup 3}, respectively. In cases when the air masses have moved from the Korean Peninsula, the corresponding concentrations were 2247 mBq/m{sup 3} and 11.4 μg/m{sup 3}, respectively. On the other hand, when the air masses came from the North Pacific Ocean, their radon and secondary aerosol concentrations decreased much further, 1372 mBq/m{sup 3} and 10.5 μg/m{sup 3}, respectively. Consequently, the variability of atmospheric radon concentrations at Gosan station might be characterized by synoptic changes in air mass fetch as well as diurnal changes in atmospheric mixing depth.

  16. Increased ionization supports growth of aerosols into cloud condensation nuclei

    DEFF Research Database (Denmark)

    Svensmark, H.; Enghoff, M. B.; Shaviv, N. J.

    2017-01-01

    Ions produced by cosmic rays have been thought to influence aerosols and clouds. In this study, the effect of ionization on the growth of aerosols into cloud condensation nuclei is investigated theoretically and experimentally. We show that the mass-flux of small ions can constitute an important...... and find good agreement with theory. Ion-induced condensation should be of importance not just in Earth’s present day atmosphere for the growth of aerosols into cloud condensation nuclei under pristine marine conditions, but also under elevated atmospheric ionization caused by increased supernova activity....

  17. Studying Diurnal Variations of Aerosols with NASA MERRA-2 Reanalysis Data

    Science.gov (United States)

    Shen, Suhung; Ostrenga, Dana M.; Zeng, Jian; Vollmer, Bruce E.

    2018-01-01

    Aerosols play an important role in atmospheric dynamics, climate variations, and Earth's energy cycle by altering the radiation balance in the atmosphere through interaction with clouds, providing fertilizer for forests and canopy, and as a supply of iron to the ocean over long time periods. Studies suggest that much of the feedback between dust aerosols and dynamics is associated with diurnal and synoptic scale variability. However, the lack of sub-daily resolution of aerosols from satellite observations makes it difficult to study the diurnal characteristics, especially over tropical and subtropical regions. Investigation of this topic utilizes over 37 years of simulated global aerosol products from NASA atmospheric reanalysis, in the second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) data set, available from NASA Goddard Earth Science Data and Information Services Center (GES DISC). MERRA-2 covers the period 1980-present, and is continuing as an ongoing climate analysis. Aerosol assimilation is included throughout the period, using data from MODIS, MISR, AERONET, and AVHRR (in the pre-EOS period). The aerosols are assimilated using the MERRA-2 aerosol model, which interacts directly with radiation parameterization, and is radiatively coupled with atmospheric model dynamics in the Goddard Earth Observing System Model, Version 5 (GEOS-5). Hourly, monthly, and monthly diurnal data are available at spatial resolution of 0.5o x 0.625o (latitude x longitude). By using MERRA-2 hourly and monthly diurnal products, different aerosol diurnal variabilities are observed over North America, Africa, Asia, and Australia, that may be due to different meteorological conditions and aerosol sources. The presentation will also provide an overview of MERRA-2 data services at GES DISC, such as how to find and download data, and how to quickly visualize and analyze data online with Giovanni.

  18. Study of total column atmospheric aerosol optical depth, ozone and ...

    Indian Academy of Sciences (India)

    Extensive observations of the columnar aerosol optical depth (AOD), total column ozone (TCO) and precipitable water content (PWC) have been carried out using the on-line, multi-band solar radiometers onboard ORV Sagar Kanya (Cruise#SK 147B) over Bay of Bengal during 11th-28th August 1999. Aerosol optical and ...

  19. Aspects of airborne particles and radiation in the atmosphere

    International Nuclear Information System (INIS)

    Hidy, G.M.

    1975-01-01

    There are two major ways that thermal radiation may interact with airborne particles in the Earth's atmosphere. The first is a classical problem in which the radiation balance is influenced by scattering and absorption from haze or aerosol layers in the atmosphere. Absorption is generally believed to have a minor effect on attenuation of radiation compared with scattering. In the visible and infrared, scattering by submicron sized particles can have a substantial influence on the balance of radiation in the atmosphere. Considerable interest in this question has developed recently with the assessment of the global impact of air pollution in the lower atmosphere and of exhaust emissions from aircraft flying in the stratosphere. In the first part of this review, the physics of atmospheric aerosol scattering is summarized, and the current status of observational knowledge is examined to identify areas of greatest uncertainty. The second way the radiation is involved in aerosols lies in the production in the atmosphere. Until recently, evidence for airborne particle production by atmospheric photochemistry was quite ambiguous. However, with the advent of results from several new field experiments the role of photochemistry in the generation of aerosol precursors from traces of such gases as sulfur dioxide, nitrogen oxides, and olefinic hydrocarbons is much better understood. The remaining part of this paper is devoted to the discussion of several new observations that indicate the complicated nature of photochemical aerosol formation in the polluted and non-polluted atmosphere

  20. A contribution to the study of the physical properties of natural and radioactive aerosols in controlled atmospheres

    International Nuclear Information System (INIS)

    Mouden, A.

    1986-01-01

    The major objective of this work was to study the properties of normal and radioactive particles produced by attachment of radon 222 daughters on environmental aerosol particles, in various and controlled atmospheres. In the first part, devoted to the radioactivity of radon 222, the influence of the number of nuclei on the radioactive equilibrium state and the size distribution of alpha radioactivity was demonstrated. In the second part, an experimental study of the C.E.A. α dosimeter was developed. We investigated the counting and the collection efficiency of the dosimeter for inlet particles in the 0.001-0.1 μm size range. The last part concerns aerosol-filtration behaviour. The comparison between experimental and theoretical procedures revealed a good agreement only in some circumstances for membrane filters. In the case of fibrous filters the agreement is quite satisfactory. Particularly, if the fiber size distribution is taken into account in the theoretical model, it results in an improved estimation of the collection efficiency [fr