WorldWideScience

Sample records for atmospheres ii predictions

  1. National Centers for Environmental Prediction-Department of Energy (NCEP-DOE) Atmospheric Model Intercomparison Project (AMIP)-II Reanalysis (Reanalysis-2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NCEP-DOE Atmospheric Model Intercomparison Project (AMIP-II) reanalysis is a follow-on project to the "50-year" (1948-present) NCEP-NCAR Reanalysis Project....

  2. MHC Class II epitope predictive algorithms

    DEFF Research Database (Denmark)

    Nielsen, Morten; Lund, Ole; Buus, S

    2010-01-01

    Major histocompatibility complex class II (MHC-II) molecules sample peptides from the extracellular space, allowing the immune system to detect the presence of foreign microbes from this compartment. To be able to predict the immune response to given pathogens, a number of methods have been...... developed to predict peptide-MHC binding. However, few methods other than the pioneering TEPITOPE/ProPred method have been developed for MHC-II. Despite recent progress in method development, the predictive performance for MHC-II remains significantly lower than what can be obtained for MHC-I. One reason...

  3. The Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS)

    National Research Council Canada - National Science Library

    Hodur, Richard M; Hong, Xiaodong; Doyle, James D; Pullen, Julie; Cummings, James; Martin, Paul; Rennick, Mary Alice

    2002-01-01

    ... of the Couple Ocean/Atmosphere Mesoscale Prediction System (COAMPS). The goal of this modeling project is to gain predictive skill in simulating the ocean and atmosphere at high resolution on time-scales of hours to several days...

  4. Fourier transform wavefront control with adaptive prediction of the atmosphere.

    Science.gov (United States)

    Poyneer, Lisa A; Macintosh, Bruce A; Véran, Jean-Pierre

    2007-09-01

    Predictive Fourier control is a temporal power spectral density-based adaptive method for adaptive optics that predicts the atmosphere under the assumption of frozen flow. The predictive controller is based on Kalman filtering and a Fourier decomposition of atmospheric turbulence using the Fourier transform reconstructor. It provides a stable way to compensate for arbitrary numbers of atmospheric layers. For each Fourier mode, efficient and accurate algorithms estimate the necessary atmospheric parameters from closed-loop telemetry and determine the predictive filter, adjusting as conditions change. This prediction improves atmospheric rejection, leading to significant improvements in system performance. For a 48x48 actuator system operating at 2 kHz, five-layer prediction for all modes is achievable in under 2x10(9) floating-point operations/s.

  5. Wind Power Prediction Considering Nonlinear Atmospheric Disturbances

    Directory of Open Access Journals (Sweden)

    Yagang Zhang

    2015-01-01

    Full Text Available This paper considers the effect of nonlinear atmospheric disturbances on wind power prediction. A Lorenz system is introduced as an atmospheric disturbance model. Three new improved wind forecasting models combined with a Lorenz comprehensive disturbance are put forward in this study. Firstly, we define the form of the Lorenz disturbance variable and the wind speed perturbation formula. Then, different artificial neural network models are used to verify the new idea and obtain better wind speed predictions. Finally we separately use the original and improved wind speed series to predict the related wind power. This proves that the corrected wind speed provides higher precision wind power predictions. This research presents a totally new direction in the wind prediction field and has profound theoretical research value and practical guiding significance.

  6. Predicting the Atmospheric Composition of Extrasolar Giant Planets

    Science.gov (United States)

    Sharp, A. G.; Moses, J. I.; Friedson, A. J.; Fegley, B., Jr.; Marley, M. S.; Lodders, K.

    2004-01-01

    To date, approximately 120 planet-sized objects have been discovered around other stars, mostly through the radial-velocity technique. This technique can provide information about a planet s minimum mass and its orbital period and distance; however, few other planetary data can be obtained at this point in time unless we are fortunate enough to find an extrasolar giant planet that transits its parent star (i.e., the orbit is edge-on as seen from Earth). In that situation, many physical properties of the planet and its parent star can be determined, including some compositional information. Our prospects of directly obtaining spectra from extrasolar planets may improve in the near future, through missions like NASA's Terrestrial Planet Finder. Most of the extrasolar giant planets (EGPs) discovered so far have masses equal to or greater than Jupiter's mass, and roughly 16% have orbital radii less than 0.1 AU - extremely close to the parent star by our own Solar-System standards (note that Mercury is located at a mean distance of 0.39 AU and Jupiter at 5.2 AU from the Sun). Although all EGPs are expected to have hydrogen-dominated atmospheres similar to Jupiter, the orbital distance can strongly affect the planet's temperature, physical, chemical, and spectral properties, and the abundance of minor, detectable atmospheric constituents. Thermochemical equilibrium models can provide good zero-order predictions for the atmospheric composition of EGPs. However, both the composition and spectral properties will depend in large part on disequilibrium processes like photochemistry, chemical kinetics, atmospheric transport, and haze formation. We have developed a photochemical kinetics, radiative transfer, and 1-D vertical transport model to study the atmospheric composition of EGPs. The chemical reaction list contains H-, C-, O-, and N-bearing species and is designed to be valid for atmospheric temperatures ranging from 100-3000 K and pressures up to 50 bar. Here we examine

  7. NKS-B NordRisk II: Nuclear risk from atmospheric dispersion in Northern Europe - Summary report

    International Nuclear Information System (INIS)

    Lauritzen, B.

    2011-05-01

    The objective of the NordRisk II project has been to derive practical means for assessing the risks from long-range atmospheric dispersion of radioactive materials. An atlas over different atmospheric dispersion and deposition scenarios has been developed using historical numerical weather prediction (NWP) model data. The NWP model data covers three years spanning the climate variability associated with the North Atlantic Oscillation, and the atlas considers radioactive releases from 16 release sites in and near the Nordic countries. A statistical analysis of the long-range dispersion and deposition patterns is undertaken to quantify the mean dispersion and deposition as well as the variability. Preliminary analyses show that the large-scale atmospheric dispersion and deposition is near-isotropic, irrespective of the release site and detailed climatology, and allows for a simple parameterization of the global dispersion and deposition patterns. The atlas and the underlying data are made available in a format compatible with the ARGOS decision support system, and have been implemented in ARGOS. (Author)

  8. NKS-B NordRisk II: Nuclear risk from atmospheric dispersion in Northern Europe - Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, B. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy. Radiation Research Div., Roskilde (Denmark))

    2011-05-15

    The objective of the NordRisk II project has been to derive practical means for assessing the risks from long-range atmospheric dispersion of radioactive materials. An atlas over different atmospheric dispersion and deposition scenarios has been developed using historical numerical weather prediction (NWP) model data. The NWP model data covers three years spanning the climate variability associated with the North Atlantic Oscillation, and the atlas considers radioactive releases from 16 release sites in and near the Nordic countries. A statistical analysis of the long-range dispersion and deposition patterns is undertaken to quantify the mean dispersion and deposition as well as the variability. Preliminary analyses show that the large-scale atmospheric dispersion and deposition is near-isotropic, irrespective of the release site and detailed climatology, and allows for a simple parameterization of the global dispersion and deposition patterns. The atlas and the underlying data are made available in a format compatible with the ARGOS decision support system, and have been implemented in ARGOS. (Author)

  9. Nonlinear dynamics and predictability in the atmospheric sciences

    Science.gov (United States)

    Ghil, M.; Kimoto, M.; Neelin, J. D.

    1991-01-01

    Systematic applications of nonlinear dynamics to studies of the atmosphere and climate are reviewed for the period 1987-1990. Problems discussed include paleoclimatic applications, low-frequency atmospheric variability, and interannual variability of the ocean-atmosphere system. Emphasis is placed on applications of the successive bifurcation approach and the ergodic theory of dynamical systems to understanding and prediction of intraseasonal, interannual, and Quaternary climate changes.

  10. Analysis on the atmospheric dispersion of radioactive materials

    International Nuclear Information System (INIS)

    Nagai, Haruyasu

    2012-01-01

    JAEA has been developing a new prediction system of comprehensive movement, SPEEDI-MP (SPEEDI Multi-model Package), which can treat continuously and strictly with the migration behavior of radioactive materials at atmosphere, sea, and land region. JAEA has been further promoting the detail analysis of atmospheric migration of radioactive materials dispersed by an accident. Then, using a part of this system, the atmospheric-diversion prediction system, WSPEEDI-II, the atmospheric diversion mass and the atmospheric diffusion analysis were carried out. This issue reports the summary. (M.H.)

  11. Structural properties of MHC class II ligands, implications for the prediction of MHC class II epitopes.

    Directory of Open Access Journals (Sweden)

    Kasper Winther Jørgensen

    2010-12-01

    Full Text Available Major Histocompatibility class II (MHC-II molecules sample peptides from the extracellular space allowing the immune system to detect the presence of foreign microbes from this compartment. Prediction of MHC class II ligands is complicated by the open binding cleft of the MHC class II molecule, allowing binding of peptides extending out of the binding groove. Furthermore, only a few HLA-DR alleles have been characterized with a sufficient number of peptides (100-200 peptides per allele to derive accurate description of their binding motif. Little work has been performed characterizing structural properties of MHC class II ligands. Here, we perform one such large-scale analysis. A large set of SYFPEITHI MHC class II ligands covering more than 20 different HLA-DR molecules was analyzed in terms of their secondary structure and surface exposure characteristics in the context of the native structure of the corresponding source protein. We demonstrated that MHC class II ligands are significantly more exposed and have significantly more coil content than other peptides in the same protein with similar predicted binding affinity. We next exploited this observation to derive an improved prediction method for MHC class II ligands by integrating prediction of MHC- peptide binding with prediction of surface exposure and protein secondary structure. This combined prediction method was shown to significantly outperform the state-of-the-art MHC class II peptide binding prediction method when used to identify MHC class II ligands. We also tried to integrate N- and O-glycosylation in our prediction methods but this additional information was found not to improve prediction performance. In summary, these findings strongly suggest that local structural properties influence antigen processing and/or the accessibility of peptides to the MHC class II molecule.

  12. Use of APACHE II and SAPS II to predict mortality for hemorrhagic and ischemic stroke patients.

    Science.gov (United States)

    Moon, Byeong Hoo; Park, Sang Kyu; Jang, Dong Kyu; Jang, Kyoung Sool; Kim, Jong Tae; Han, Yong Min

    2015-01-01

    We studied the applicability of the Acute Physiology and Chronic Health Evaluation II (APACHE II) and Simplified Acute Physiology Score II (SAPS II) in patients admitted to the intensive care unit (ICU) with acute stroke and compared the results with the Glasgow Coma Scale (GCS) and National Institutes of Health Stroke Scale (NIHSS). We also conducted a comparative study of accuracy for predicting hemorrhagic and ischemic stroke mortality. Between January 2011 and December 2012, ischemic or hemorrhagic stroke patients admitted to the ICU were included in the study. APACHE II and SAPS II-predicted mortalities were compared using a calibration curve, the Hosmer-Lemeshow goodness-of-fit test, and the receiver operating characteristic (ROC) curve, and the results were compared with the GCS and NIHSS. Overall 498 patients were included in this study. The observed mortality was 26.3%, whereas APACHE II and SAPS II-predicted mortalities were 35.12% and 35.34%, respectively. The mean GCS and NIHSS scores were 9.43 and 21.63, respectively. The calibration curve was close to the line of perfect prediction. The ROC curve showed a slightly better prediction of mortality for APACHE II in hemorrhagic stroke patients and SAPS II in ischemic stroke patients. The GCS and NIHSS were inferior in predicting mortality in both patient groups. Although both the APACHE II and SAPS II systems can be used to measure performance in the neurosurgical ICU setting, the accuracy of APACHE II in hemorrhagic stroke patients and SAPS II in ischemic stroke patients was superior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Predicting Top-of-Atmosphere Thermal Radiance Using MERRA-2 Atmospheric Data with Deep Learning

    Directory of Open Access Journals (Sweden)

    Tania Kleynhans

    2017-11-01

    Full Text Available Image data from space-borne thermal infrared (IR sensors are used for a variety of applications, however they are often limited by their temporal resolution (i.e., repeat coverage. To potentially increase the temporal availability of thermal image data, a study was performed to determine the extent to which thermal image data can be simulated from available atmospheric and surface data. The work conducted here explored the use of Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2 developed by The National Aeronautics and Space Administration (NASA to predict top-of-atmosphere (TOA thermal IR radiance globally at time scales finer than available satellite data. For this case study, TOA radiance data was derived for band 31 (10.97 μ m of the Moderate-Resolution Imaging Spectroradiometer (MODIS sensor. Two approaches have been followed, namely an atmospheric radiative transfer forward modeling approach and a supervised learning approach. The first approach uses forward modeling to predict TOA radiance from the available surface and atmospheric data. The second approach applied four different supervised learning algorithms to the atmospheric data. The algorithms included a linear least squares regression model, a non-linear support vector regression (SVR model, a multi-layer perceptron (MLP, and a convolutional neural network (CNN. This research found that the multi-layer perceptron model produced the lowest overall error rates with an root mean square error (RMSE of 1.36 W/m 2 ·sr· μ m when compared to actual Terra/MODIS band 31 image data. These studies found that for radiances above 6 W/m 2 ·sr· μ m, the forward modeling approach could predict TOA radiance to within 12 percent, and the best supervised learning approach can predict TOA to within 11 percent.

  14. Development of scheme for predicting atmospheric dispersion of radionuclides during nuclear emergency by using atmospheric dynamic model

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Haruyasu; Chino, Masamichi; Yamazawa, Hiromi (Japan Atomic Energy Research Inst., Tokyo (Japan))

    1999-07-01

    The meteorological forecast models are critically important for the accuracy of predicting the atmospheric dispersion of radionuclides discharged into atmosphere during nuclear emergencies. Thus, this paper describes a new scheme for predicting environmental impacts due to accidental release of radionuclides by using an atmospheric dynamic model PHYSIC. The advantages of introducing PHYSIC are, (1) three-dimensional local meteorological forecasts can be conducted, (2) synoptic meteorological changes can be considered by inputting grid data of synoptic forecasts from Japan Meteorological Agency to PHYSIC as initial and boundary conditions, (3) forecasts can be improved by nudging method using local meteorological observations, and (4) atmospheric dispersion model can consider the variation of the mixed layer. (author)

  15. Development of scheme for predicting atmospheric dispersion of radionuclides during nuclear emergency by using atmospheric dynamic model

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Chino, Masamichi; Yamazawa, Hiromi

    1999-01-01

    The meteorological forecast models are critically important for the accuracy of predicting the atmospheric dispersion of radionuclides discharged into atmosphere during nuclear emergencies. Thus, this paper describes a new scheme for predicting environmental impacts due to accidental release of radionuclides by using an atmospheric dynamic model PHYSIC. The advantages of introducing PHYSIC are, (1) three-dimensional local meteorological forecasts can be conducted, (2) synoptic meteorological changes can be considered by inputting grid data of synoptic forecasts from Japan Meteorological Agency to PHYSIC as initial and boundary conditions, (3) forecasts can be improved by nudging method using local meteorological observations, and (4) atmospheric dispersion model can consider the variation of the mixed layer. (author)

  16. NOAA's National Air Quality Predictions and Development of Aerosol and Atmospheric Composition Prediction Components for the Next Generation Global Prediction System

    Science.gov (United States)

    Stajner, I.; Hou, Y. T.; McQueen, J.; Lee, P.; Stein, A. F.; Tong, D.; Pan, L.; Huang, J.; Huang, H. C.; Upadhayay, S.

    2016-12-01

    NOAA provides operational air quality predictions using the National Air Quality Forecast Capability (NAQFC): ozone and wildfire smoke for the United States and airborne dust for the contiguous 48 states at http://airquality.weather.gov. NOAA's predictions of fine particulate matter (PM2.5) became publicly available in February 2016. Ozone and PM2.5 predictions are produced using a system that operationally links the Community Multiscale Air Quality (CMAQ) model with meteorological inputs from the North American mesoscale forecast Model (NAM). Smoke and dust predictions are provided using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Current NAQFC focus is on updating CMAQ to version 5.0.2, improving PM2.5 predictions, and updating emissions estimates, especially for NOx using recently observed trends. Wildfire smoke emissions from a newer version of the USFS BlueSky system are being included in a new configuration of the NAQFC NAM-CMAQ system, which is re-run for the previous 24 hours when the wildfires were observed from satellites, to better represent wildfire emissions prior to initiating predictions for the next 48 hours. In addition, NOAA is developing the Next Generation Global Prediction System (NGGPS) to represent the earth system for extended weather prediction. NGGPS will include a representation of atmospheric dynamics, physics, aerosols and atmospheric composition as well as coupling with ocean, wave, ice and land components. NGGPS is being developed with a broad community involvement, including community developed components and academic research to develop and test potential improvements for potentially inclusion in NGGPS. Several investigators at NOAA's research laboratories and in academia are working to improve the aerosol and gaseous chemistry representation for NGGPS, to develop and evaluate the representation of atmospheric composition, and to establish and improve the coupling with radiation and microphysics

  17. Nudging atmosphere and ocean reanalyses for seasonal climate predictions

    Science.gov (United States)

    Piontek, Robert; Baehr, Johanna; Kornblueh, Luis; Müller, Wolfgang Alexander; Haak, Helmuth; Botzet, Michael; Matei, Daniela

    2010-05-01

    Seasonal climate forecasts based on state-of-the-art climate models have been developed recently. Here, we critically discuss the obstacles encountered in the setup of the ECHAM6/MPIOM global coupled climate model to perform climate predictions on seasonal to decadal time scales. We particularly focus on the initialization procedure, especially on the implementation of the nudging scheme, in which different reanalysis products are used in the atmosphere (e.g.ERA40), and the ocean (e.g., GECCO). Nudging in the atmosphere appears to be sensitive to the following choices: limiting the spectral range of nudging, whether or not temperature is nudged, the strength of the nudging coefficient for surface pressure, and the height at which the planetary boundary layer is excluded from nudging. We find that including nudging in both the atmosphere and the ocean gives improved results over nudging only the ocean or the atmosphere. For the implementation of the nudging in the atmosphere, we find the most significant improvements in the solution when either the planetary boundary layer is excluded, or if nudging of temperature is omitted. There are significant improvements in the solution when resolution is increased in both the atmosphere and in the ocean. Our tests form the basis for the prediction system introduced in the abstract of Müller et al., where hindcasts are analysed as well.

  18. Ocean-Atmosphere Coupling Processes Affecting Predictability in the Climate System

    Science.gov (United States)

    Miller, A. J.; Subramanian, A. C.; Seo, H.; Eliashiv, J. D.

    2017-12-01

    Predictions of the ocean and atmosphere are often sensitive to coupling at the air-sea interface in ways that depend on the temporal and spatial scales of the target fields. We will discuss several aspects of these types of coupled interactions including oceanic and atmospheric forecast applications. For oceanic mesoscale eddies, the coupling can influence the energetics of the oceanic flow itself. For Madden-Julian Oscillation onset, the coupling timestep should resolve the diurnal cycle to properly raise time-mean SST and latent heat flux prior to deep convection. For Atmospheric River events, the evolving SST field can alter the trajectory and intensity of precipitation anomalies along the California coast. Improvements in predictions will also rely on identifying and alleviating sources of biases in the climate states of the coupled system. Surprisingly, forecast skill can also be improved by enhancing stochastic variability in the atmospheric component of coupled models as found in a multiscale ensemble modeling approach.

  19. South African seasonal rainfall prediction performance by a coupled ocean-atmosphere model

    CSIR Research Space (South Africa)

    Landman, WA

    2010-12-01

    Full Text Available Evidence is presented that coupled ocean-atmosphere models can already outscore computationally less expensive atmospheric models. However, if the atmospheric models are forced with highly skillful SST predictions, they may still be a very strong...

  20. For how long can we predict the weather? - Insights into atmospheric predictability from global convection-allowing simulations

    Science.gov (United States)

    Judt, Falko

    2017-04-01

    A tremendous increase in computing power has facilitated the advent of global convection-resolving numerical weather prediction (NWP) models. Although this technological breakthrough allows for the seamless prediction of weather from local to global scales, the predictability of multiscale weather phenomena in these models is not very well known. To address this issue, we conducted a global high-resolution (4-km) predictability experiment using the Model for Prediction Across Scales (MPAS), a state-of-the-art global NWP model developed at the National Center for Atmospheric Research. The goals of this experiment are to investigate error growth from convective to planetary scales and to quantify the intrinsic, scale-dependent predictability limits of atmospheric motions. The globally uniform resolution of 4 km allows for the explicit treatment of organized deep moist convection, alleviating grave limitations of previous predictability studies that either used high-resolution limited-area models or global simulations with coarser grids and cumulus parameterization. Error growth is analyzed within the context of an "identical twin" experiment setup: the error is defined as the difference between a 20-day long "nature run" and a simulation that was perturbed with small-amplitude noise, but is otherwise identical. It is found that in convectively active regions, errors grow by several orders of magnitude within the first 24 h ("super-exponential growth"). The errors then spread to larger scales and begin a phase of exponential growth after 2-3 days when contaminating the baroclinic zones. After 16 days, the globally averaged error saturates—suggesting that the intrinsic limit of atmospheric predictability (in a general sense) is about two weeks, which is in line with earlier estimates. However, error growth rates differ between the tropics and mid-latitudes as well as between the troposphere and stratosphere, highlighting that atmospheric predictability is a complex

  1. Long-term orbit prediction for Tiangong-1 spacecraft using the mean atmosphere model

    Science.gov (United States)

    Tang, Jingshi; Liu, Lin; Cheng, Haowen; Hu, Songjie; Duan, Jianfeng

    2015-03-01

    China is planning to complete its first space station by 2020. For the long-term management and maintenance, the orbit of the space station needs to be predicted for a long period of time. Since the space station is expected to work in a low-Earth orbit, the error in the a priori atmosphere model contributes significantly to the rapid increase of the predicted orbit error. When the orbit is predicted for 20 days, the error in the a priori atmosphere model, if not properly corrected, could induce a semi-major axis error of up to a few kilometers and an overall position error of several thousand kilometers respectively. In this work, we use a mean atmosphere model averaged from NRLMSISE00. The a priori reference mean density can be corrected during the orbit determination. For the long-term orbit prediction, we use sufficiently long period of observations and obtain a series of the diurnal mean densities. This series contains the recent variation of the atmosphere density and can be analyzed for various periodic components. After being properly fitted, the mean density can be predicted and then applied in the orbit prediction. Here we carry out the test with China's Tiangong-1 spacecraft at the altitude of about 340 km and we show that this method is simple and flexible. The densities predicted with this approach can serve in the long-term orbit prediction. In several 20-day prediction tests, most predicted orbits show semi-major axis errors better than 700 m and overall position errors better than 400 km.

  2. Thermodynamic ocean-atmosphere Coupling and the Predictability of Nordeste rainfall

    Science.gov (United States)

    Chang, P.; Saravanan, R.; Giannini, A.

    2003-04-01

    The interannual variability of rainfall in the northeastern region of Brazil, or Nordeste, is known to be very strongly correlated with sea surface temperature (SST) variability, of Atlantic and Pacific origin. For this reason the potential predictability of Nordeste rainfall is high. The current generation of state-of-the-art atmospheric models can replicate the observed rainfall variability with high skill when forced with the observed record of SST variability. The correlation between observed and modeled indices of Nordeste rainfall, in the AMIP-style integrations with two such models (NSIPP and CCM3) analyzed here, is of the order of 0.8, i.e. the models explain about 2/3 of the observed variability. Assuming that thermodynamic, ocean-atmosphere heat exchange plays the dominant role in tropical Atlantic SST variability on the seasonal to interannual time scale, we analyze its role in Nordeste rainfall predictability using an atmospheric general circulation model coupled to a slab ocean model. Predictability experiments initialized with observed December SST show that thermodynamic coupling plays a significant role in enhancing the persistence of SST anomalies, both in the tropical Pacific and in the tropical Atlantic. We show that thermodynamic coupling is sufficient to provide fairly accurate forecasts of tropical Atlantic SST in the boreal spring that are significantly better than the persistence forecasts. The consequences for the prediction of Nordeste rainfall are analyzed.

  3. Annual and long-term prediction of the atmospheric corrosion of metals

    International Nuclear Information System (INIS)

    Morcillo, M.

    1998-01-01

    The atmospheric corrosion of metals is known to be a discontinuous electrochemical process which takes place only when the metallic surface is wet or moistened by different meteorological phenomena (rain, humidity condensation, fog, etc.) The magnitude of atmospheric corrosion would be relatively low if it were not for the presence of certain pollutants in the atmosphere, mainly sulphur dioxide (anthropogenic pollutant) and marine chlorides (natural pollutant). The literature contains different models for predicting the atmospheric metals over short periods (generally one year) and long periods (15, 20 or more years) of atmospheric exposure. In addition to the different meteorological factors (volume of precipitation, days of rain, relative humidity (RH), T, etc.), atmospheric SO 2 deposition rate and atmospheric salinity (Cl - ) appear as independent variables in all of these models. (Author)

  4. Predicted net efflux of radiocarbon from the ocean and increase in atmospheric radiocarbon content

    Science.gov (United States)

    Caldeira, Ken; Rau, Greg H.; Duffy, Philip B.

    Prior to changes introduced by man, production of radiocarbon (14C) in the stratosphere nearly balanced the flux of 14C from the atmosphere to the ocean and land biosphere, which in turn nearly balanced radioactive decay in these 14C reservoirs. This balance has been altered by land-use changes, fossil-fuel burning, and atmospheric nuclear detonations. Here, we use a model of the global carbon cycle to quantify these radiocarbon fluxes and make predictions about their magnitude in the future. Atmospheric nuclear detonations increased atmospheric 14C content by about 80% by the mid-1960's. Since that time, the 14C content of the atmosphere has been diminishing as this bomb radiocarbon has been entering the oceans and terrestrial biosphere. However, we predict that atmospheric 14C content will reach a minimum and start to increase within the next few years if fossil-fuel burning continues according to a “business-as-usual” scenario, even though fossil fuels are devoid of 14C. This will happen because fossil-fuel carbon diminishes the net flux of 14C from the atmosphere to the oceans and land biosphere, forcing 14C to accumulate in the atmosphere. Furthermore, the net flux of both bomb and natural 14C into the ocean are predicted to continue to slow and then, in the middle of the next century, to reverse, so that there will be a net flux of 14C from the ocean to the atmosphere. The predicted reversal of net 14C fluxes into the ocean is a further example of human impacts on the global carbon cycle.

  5. Linear zonal atmospheric prediction for adaptive optics

    Science.gov (United States)

    McGuire, Patrick C.; Rhoadarmer, Troy A.; Coy, Hanna A.; Angel, J. Roger P.; Lloyd-Hart, Michael

    2000-07-01

    We compare linear zonal predictors of atmospheric turbulence for adaptive optics. Zonal prediction has the possible advantage of being able to interpret and utilize wind-velocity information from the wavefront sensor better than modal prediction. For simulated open-loop atmospheric data for a 2- meter 16-subaperture AO telescope with 5 millisecond prediction and a lookback of 4 slope-vectors, we find that Widrow-Hoff Delta-Rule training of linear nets and Back- Propagation training of non-linear multilayer neural networks is quite slow, getting stuck on plateaus or in local minima. Recursive Least Squares training of linear predictors is two orders of magnitude faster and it also converges to the solution with global minimum error. We have successfully implemented Amari's Adaptive Natural Gradient Learning (ANGL) technique for a linear zonal predictor, which premultiplies the Delta-Rule gradients with a matrix that orthogonalizes the parameter space and speeds up the training by two orders of magnitude, like the Recursive Least Squares predictor. This shows that the simple Widrow-Hoff Delta-Rule's slow convergence is not a fluke. In the case of bright guidestars, the ANGL, RLS, and standard matrix-inversion least-squares (MILS) algorithms all converge to the same global minimum linear total phase error (approximately 0.18 rad2), which is only approximately 5% higher than the spatial phase error (approximately 0.17 rad2), and is approximately 33% lower than the total 'naive' phase error without prediction (approximately 0.27 rad2). ANGL can, in principle, also be extended to make non-linear neural network training feasible for these large networks, with the potential to lower the predictor error below the linear predictor error. We will soon scale our linear work to the approximately 108-subaperture MMT AO system, both with simulations and real wavefront sensor data from prime focus.

  6. He II lines in the spectrum of zeta Puppis

    International Nuclear Information System (INIS)

    Snijders, M.A.J.; Underhill, A.B.

    1975-01-01

    Equivalents widths of He II lines in the series n=2,3,4 and 5 are compiled and compared with predictions from plane-parallel, static model atmospheres using a non-LTE theory of line formation. The agreement between observation and prediction for a (50,000,4.0) model atmosphere is good for the upper members of the n=3 and the n=5 series, but the two lines of the n=2 series which are observed and the upper members of the n=4 series (4→15,4→17, etc.) are stronger than predicted. Well-determined profiles of lines from the n=3 series indicate v sin i=200 km s -1 . Profiles of the higher members of the n=4 series, however, do not match the predictions, the observed line cores being deeper than predicted. The n=4 level appears to be more overpopulated at moderate depths in the atmosphere than the non-LTE calculations with plane-parallel layers indicate. This may be due to an overlap of the H and He II lines in the even-even series caused by macroturbulent velocities of the hydrogen atoms and helium atoms

  7. Long-term orbit prediction for China's Tiangong-1 spacecraft based on mean atmosphere model

    Science.gov (United States)

    Tang, Jingshi; Liu, Lin; Miao, Manqian

    Tiangong-1 is China's test module for future space station. It has gone through three successful rendezvous and dockings with Shenzhou spacecrafts from 2011 to 2013. For the long-term management and maintenance, the orbit sometimes needs to be predicted for a long period of time. As Tiangong-1 works in a low-Earth orbit with an altitude of about 300-400 km, the error in the a priori atmosphere model contributes significantly to the rapid increase of the predicted orbit error. When the orbit is predicted for 10-20 days, the error in the a priori atmosphere model, if not properly corrected, could induce the semi-major axis error and the overall position error up to a few kilometers and several thousand kilometers respectively. In this work, we use a mean atmosphere model averaged from NRLMSIS00. The a priori reference mean density can be corrected during precise orbit determination (POD). For applications in the long-term orbit prediction, the observations are first accumulated. With sufficiently long period of observations, we are able to obtain a series of the diurnal mean densities. This series bears the recent variation of the atmosphere density and can be analyzed for various periods. After being properly fitted, the mean density can be predicted and then applied in the orbit prediction. We show that the densities predicted with this approach can serve to increase the accuracy of the predicted orbit. In several 20-day prediction tests, most predicted orbits show semi-major axis errors better than 700m and overall position errors better than 600km.

  8. Validation of CRIB II for prediction of mortality in premature babies.

    Science.gov (United States)

    Rastogi, Pallav Kumar; Sreenivas, V; Kumar, Nirmal

    2010-02-01

    Validation of Clinical Risk Index for Babies (CRIB II) score in predicting the neonatal mortality in preterm neonates < or = 32 weeks gestational age. Prospective cohort study. Tertiary care neonatal unit. 86 consecutively born preterm neonates with gestational age < or = 32 weeks. The five variables related to CRIB II were recorded within the first hour of admission for data analysis. The receiver operating characteristics (ROC) curve was used to check the accuracy of the mortality prediction. HL Goodness of fit test was used to see the discrepancy between observed and expected outcomes. A total of 86 neonates (males 59.6% mean birthweight: 1228 +/- 398 grams; mean gestational age: 28.3 +/- 2.4 weeks) were enrolled in the study, of which 17 (19.8%) left hospital against medical advice (LAMA) before reaching the study end point. Among 69 neonates completing the study, 24 (34.8%) had adverse outcome during hospital stay and 45 (65.2%) had favorable outcome. CRIB II correctly predicted adverse outcome in 90.3% (Hosmer Lemeshow goodness of fit test P=0.6). Area under curve (AUC) for CRIB II was 0.9032. In intention to treat analysis with LAMA cases included as survivors, the mortality prediction was 87%. If these were included as having died then mortality prediction was 83.1%. The CRIB II score was found to be a good predictive instrument for mortality in preterm infants < or = 32 weeks gestation.

  9. Advances in criticality predictions for EBR-II

    International Nuclear Information System (INIS)

    Schaefer, R.W.; Imel, G.R.

    1994-01-01

    Improvements to startup criticality predictions for the EBR-II reactor have been made. More exact calculational models, methods and data are now used, and better procedures for obtaining experimental data that enter into the prediction are in place. Accuracy improved by more than a factor of two and the largest ECP error observed since the changes is only 18 cents. An experimental method using subcritical counts is also being implemented

  10. Predictive value of SAPS II and APACHE II scoring systems for patient outcome in a medical intensive care unit

    Directory of Open Access Journals (Sweden)

    Amina Godinjak

    2016-11-01

    Full Text Available Objective. The aim is to determine SAPS II and APACHE II scores in medical intensive care unit (MICU patients, to compare them for prediction of patient outcome, and to compare with actual hospital mortality rates for different subgroups of patients. Methods. One hundred and seventy-four patients were included in this analysis over a oneyear period in the MICU, Clinical Center, University of Sarajevo. The following patient data were obtained: demographics, admission diagnosis, SAPS II, APACHE II scores and final outcome. Results. Out of 174 patients, 70 patients (40.2% died. Mean SAPS II and APACHE II scores in all patients were 48.4±17.0 and 21.6±10.3 respectively, and they were significantly different between survivors and non-survivors. SAPS II >50.5 and APACHE II >27.5 can predict the risk of mortality in these patients. There was no statistically significant difference in the clinical values of SAPS II vs APACHE II (p=0.501. A statistically significant positive correlation was established between the values of SAPS II and APACHE II (r=0.708; p=0.001. Patients with an admission diagnosis of sepsis/septic shock had the highest values of both SAPS II and APACHE II scores, and also the highest hospital mortality rate of 55.1%. Conclusion. Both APACHE II and SAPS II had an excellent ability to discriminate between survivors and non-survivors. There was no significant difference in the clinical values of SAPS II and APACHE II. A positive correlation was established between them. Sepsis/septic shock patients had the highest predicted and observed hospital mortality rate.

  11. THE FORMATION OF IRIS DIAGNOSTICS. II. THE FORMATION OF THE Mg II h and k LINES IN THE SOLAR ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Leenaarts, J.; Pereira, T. M. D.; Carlsson, M.; De Pontieu, B. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Uitenbroek, H., E-mail: jorritl@astro.uio.no, E-mail: tiago.pereira@astro.uio.no, E-mail: mats.carlsson@astro.uio.no, E-mail: bdp@lmsal.com, E-mail: huitenbroek@nso.edu [NSO/Sacramento Peak P.O. Box 62 Sunspot, NM 88349-0062 (United States)

    2013-08-01

    NASA's Interface Region Imaging Spectrograph (IRIS) small explorer mission will study how the solar atmosphere is energized. IRIS contains an imaging spectrograph that covers the Mg II h and k lines as well as a slit-jaw imager centered at Mg II k. Understanding the observations requires forward modeling of Mg II h and k line formation from three-dimensional (3D) radiation-magnetohydrodynamic (RMHD) models. This paper is the second in a series where we undertake this modeling. We compute the vertically emergent h and k intensity from a snapshot of a dynamic 3D RMHD model of the solar atmosphere, and investigate which diagnostic information about the atmosphere is contained in the synthetic line profiles. We find that the Doppler shift of the central line depression correlates strongly with the vertical velocity at optical depth unity, which is typically located less than 200 km below the transition region (TR). By combining the Doppler shifts of the h and k lines we can retrieve the sign of the velocity gradient just below the TR. The intensity in the central line depression is anti-correlated with the formation height, especially in subfields of a few square Mm. This intensity could thus be used to measure the spatial variation of the height of the TR. The intensity in the line-core emission peaks correlates with the temperature at its formation height, especially for strong emission peaks. The peaks can thus be exploited as a temperature diagnostic. The wavelength difference between the blue and red peaks provides a diagnostic of the velocity gradients in the upper chromosphere. The intensity ratio of the blue and red peaks correlates strongly with the average velocity in the upper chromosphere. We conclude that the Mg II h and k lines are excellent probes of the very upper chromosphere just below the TR, a height regime that is impossible to probe with other spectral lines. They also provide decent temperature and velocity diagnostics of the middle

  12. NOAA's National Air Quality Prediction and Development of Aerosol and Atmospheric Composition Prediction Components for NGGPS

    Science.gov (United States)

    Stajner, I.; McQueen, J.; Lee, P.; Stein, A. F.; Wilczak, J. M.; Upadhayay, S.; daSilva, A.; Lu, C. H.; Grell, G. A.; Pierce, R. B.

    2017-12-01

    NOAA's operational air quality predictions of ozone, fine particulate matter (PM2.5) and wildfire smoke over the United States and airborne dust over the contiguous 48 states are distributed at http://airquality.weather.gov. The National Air Quality Forecast Capability (NAQFC) providing these predictions was updated in June 2017. Ozone and PM2.5 predictions are now produced using the system linking the Community Multiscale Air Quality model (CMAQ) version 5.0.2 with meteorological inputs from the North American Mesoscale Forecast System (NAM) version 4. Predictions of PM2.5 include intermittent dust emissions and wildfire emissions from an updated version of BlueSky system. For the latter, the CMAQ system is initialized by rerunning it over the previous 24 hours to include wildfire emissions at the time when they were observed from the satellites. Post processing to reduce the bias in PM2.5 prediction was updated using the Kalman filter analog (KFAN) technique. Dust related aerosol species at the CMAQ domain lateral boundaries now come from the NEMS Global Aerosol Component (NGAC) v2 predictions. Further development of NAQFC includes testing of CMAQ predictions to 72 hours, Canadian fire emissions data from Environment and Climate Change Canada (ECCC) and the KFAN technique to reduce bias in ozone predictions. NOAA is developing the Next Generation Global Predictions System (NGGPS) with an aerosol and gaseous atmospheric composition component to improve and integrate aerosol and ozone predictions and evaluate their impacts on physics, data assimilation and weather prediction. Efforts are underway to improve cloud microphysics, investigate aerosol effects and include representations of atmospheric composition of varying complexity into NGGPS: from the operational ozone parameterization, GOCART aerosols, with simplified ozone chemistry, to CMAQ chemistry with aerosol modules. We will present progress on community building, planning and development of NGGPS.

  13. Fleet Numerical Meteorology and Oceanography Center (FNMOC) Navy Operational Global Atmospheric Prediction System (NOGAPS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Navy Operational Global Atmospheric Prediction System (NOGAPS) provides numerical guidance and products in support of a wide range of Navy oceanographic and...

  14. Disturbance observer based model predictive control for accurate atmospheric entry of spacecraft

    Science.gov (United States)

    Wu, Chao; Yang, Jun; Li, Shihua; Li, Qi; Guo, Lei

    2018-05-01

    Facing the complex aerodynamic environment of Mars atmosphere, a composite atmospheric entry trajectory tracking strategy is investigated in this paper. External disturbances, initial states uncertainties and aerodynamic parameters uncertainties are the main problems. The composite strategy is designed to solve these problems and improve the accuracy of Mars atmospheric entry. This strategy includes a model predictive control for optimized trajectory tracking performance, as well as a disturbance observer based feedforward compensation for external disturbances and uncertainties attenuation. 500-run Monte Carlo simulations show that the proposed composite control scheme achieves more precise Mars atmospheric entry (3.8 km parachute deployment point distribution error) than the baseline control scheme (8.4 km) and integral control scheme (5.8 km).

  15. Isotope aided studies of atmospheric carbon dioxide and other greenhouse gases. Phase II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-01-01

    The substantial increase in atmospheric greenhouse gas concentrations and their role in global warming have become major concerns of world governments. Application of isotope techniques to label sources and sinks of CO{sub 2} and other greenhouse gases has emerged as a potentially powerful method for reducing uncertainties in the global CO{sub 2} budgets and for tracing pathways and interaction of terrestrial, oceanic, and atmospheric pools of carbon. As with CO{sub 2} concentration measurements, meaningful integration of isotopes in global models requires careful attention to quality assurance, quality control and inter-comparability of measurements made by a number of networks and laboratories. To support improvements in isotope measurement capabilities, the IAEA began implementing Co-ordinated Research Projects (CRPs) in 1992. The first project, entitled Isotope Variations of Carbon Dioxide and other Trace Gases in the Atmosphere, was implemented from 1992 to 1994. A significant contribution was made towards a better understanding of the global carbon cycle and especially of the sources and sinks of carbon with data on the {sup 14}C and {sup 13}C content of atmospheric CO{sub 2}, pointing to a better understanding of the problem of the 'missing sink' in the global carbon cycle. Important methodological developments in the field of high precision stable isotope mass spectrometry and improved data acquisition procedures emerged from work carried out within the framework of this programme. The development of pressurized gas standards and planning for an associated interlaboratory calibration were initiated. Due to the good progress and long standing nature of the required work a second CRP was initiated and implemented from 1996 to 1999. It was entitled Isotope aided Studies of Atmospheric Carbon Dioxide and Other Trace Gases - Phase II, to document the close relationship of both programmes. This publication provides an overview of the scientific outcomes of the

  16. Isotope aided studies of atmospheric carbon dioxide and other greenhouse gases. Phase II

    International Nuclear Information System (INIS)

    2002-01-01

    The substantial increase in atmospheric greenhouse gas concentrations and their role in global warming have become major concerns of world governments. Application of isotope techniques to label sources and sinks of CO 2 and other greenhouse gases has emerged as a potentially powerful method for reducing uncertainties in the global CO 2 budgets and for tracing pathways and interaction of terrestrial, oceanic, and atmospheric pools of carbon. As with CO 2 concentration measurements, meaningful integration of isotopes in global models requires careful attention to quality assurance, quality control and inter-comparability of measurements made by a number of networks and laboratories. To support improvements in isotope measurement capabilities, the IAEA began implementing Co-ordinated Research Projects (CRPs) in 1992. The first project, entitled Isotope Variations of Carbon Dioxide and other Trace Gases in the Atmosphere, was implemented from 1992 to 1994. A significant contribution was made towards a better understanding of the global carbon cycle and especially of the sources and sinks of carbon with data on the 14 C and 13 C content of atmospheric CO 2 , pointing to a better understanding of the problem of the 'missing sink' in the global carbon cycle. Important methodological developments in the field of high precision stable isotope mass spectrometry and improved data acquisition procedures emerged from work carried out within the framework of this programme. The development of pressurized gas standards and planning for an associated interlaboratory calibration were initiated. Due to the good progress and long standing nature of the required work a second CRP was initiated and implemented from 1996 to 1999. It was entitled Isotope aided Studies of Atmospheric Carbon Dioxide and Other Trace Gases - Phase II, to document the close relationship of both programmes. This publication provides an overview of the scientific outcomes of the studies conducted within Phase

  17. The evaluation of CRIB II scoring system in predicting mortality in preterm newborns

    Directory of Open Access Journals (Sweden)

    Homa Babaei

    2015-02-01

    Full Text Available Background: The survival rate of premature newborns depends on gestational age, birth weight and condition when they are hospitalized. Different scoring systems to predict mortality in newborns has been designed. The purpose of this study was to evaluate value of CRIB II scoring system in predicting mortality rate of infants with birth weights less than 1500 grams. Material and Methods: In this 8 month cross - sectional study (September 2010 to April 2010 which was conducted in the NICU of Imam Reza hospital in Kermanshah, preterm newborns with birth weight less than 1500 gr and gestational age less than 32 weeks who were admitted within 12 hours after birth in the NICU ,were evaluated based on CRIB II scoring system . Results: 50 neonates out of 1360 (36.8% survived and 86 neonates(63.2% died. Average CRIB II score in newborn survived was 5.8±2.9 and in infants died was 9.8±2.9 (p <0.0001. Based on the AUC, the CRIB II score could predict about 0.85 (CI: 0.77-0.92 of mortality. Also based on the ROC curve cut-off point for scoring CRIB II, was 6.5. Conclusion: Our study showed that CRIB II has a high value( about %85 in predicting mortality in newborns with birth weights less than 1500 grams.

  18. Multi-model global assessment of subseasonal prediction skill of atmospheric rivers

    Science.gov (United States)

    Deflorio, M. J.

    2017-12-01

    Atmospheric rivers (ARs) are global phenomena that are characterized by long, narrow plumes of water vapor transport. They are most often observed in the midlatitudes near climatologically active storm track regions. Because of their frequent association with floods, landslides, and other hydrological impacts on society, there is significant incentive at the intersection of academic research, water management, and policymaking to understand the skill with which state-of-the-art operational weather models can predict ARs weeks-to-months in advance. We use the newly assembled Subseasonal-to-Seasonal (S2S) database, which includes extensive hindcast records of eleven operational weather models, to assess global prediction skill of atmospheric rivers on S2S timescales. We develop a metric to assess AR skill that is suitable for S2S timescales by counting the total number of AR days which occur over each model and observational grid cell during a 2-week time window. This "2-week AR occurrence" metric is suitable for S2S prediction skill assessment because it does not consider discrete hourly or daily AR objects, but rather a smoothed representation of AR occurrence over a longer period of time. Our results indicate that several of the S2S models, especially the ECMWF model, show useful prediction skill in the 2-week forecast window, with significant interannual variation in some regions. We also present results from an experimental forecast of S2S AR prediction skill using the ECMWF and NCEP models.

  19. Calculated Resonance Line Profiles of [Mg II], [C II], and [Si IV] in the Solar Atmosphere

    Science.gov (United States)

    Avrett, E.; Landi, E.; McKillop, S.

    2013-12-01

    NASA's Interface Region Imaging Spectrograph space mission, launched 2013 June 27, is intended to study the structure of the solar chromosphere and the transition region between the chromosphere and corona. The spectral lines to be observed include the Mg II k line at 2796.5 Å, the C II 1334.5 Å line, and the Si IV line at 1393.8 Å, which are formed in the middle chromosphere, the upper chromosphere, and the lower transition region, respectively. Here we calculate the profiles of these lines from four models of the solar atmosphere, intended to represent the faint and mean internetwork, a network lane, and bright network. We show how the profiles change from the center of the solar disk toward the limb of the Sun and in response to outflows and inflows. These results are intended to cover the range of expected quiet-Sun observations and assist in their interpretation. We expect that the observations will lead to improvements in the models, which can then be used to estimate the required non-radiative heating in the different regions.

  20. Calculated resonance line profiles of [Mg II], [C II], and [Si IV] in the solar atmosphere

    International Nuclear Information System (INIS)

    Avrett, E.; McKillop, S.; Landi, E.

    2013-01-01

    NASA's Interface Region Imaging Spectrograph space mission, launched 2013 June 27, is intended to study the structure of the solar chromosphere and the transition region between the chromosphere and corona. The spectral lines to be observed include the Mg II k line at 2796.5 Å, the C II 1334.5 Å line, and the Si IV line at 1393.8 Å, which are formed in the middle chromosphere, the upper chromosphere, and the lower transition region, respectively. Here we calculate the profiles of these lines from four models of the solar atmosphere, intended to represent the faint and mean internetwork, a network lane, and bright network. We show how the profiles change from the center of the solar disk toward the limb of the Sun and in response to outflows and inflows. These results are intended to cover the range of expected quiet-Sun observations and assist in their interpretation. We expect that the observations will lead to improvements in the models, which can then be used to estimate the required non-radiative heating in the different regions.

  1. SOX9 Expression Predicts Relapse of Stage II Colon Cancer Patients

    DEFF Research Database (Denmark)

    Espersen, Maiken Lise Marcker; Linnemann, Dorte; Christensen, Ib Jarle

    2016-01-01

    The aim of this study was to investigate if the protein expression of Sex-determining region y-box 9 (SOX9) in primary tumors could predict relapse of stage II colon cancer patients.144 patients with stage II primary colon cancer were retrospectively enrolledin the study. SOX9 expression...

  2. Potential biosignatures in super-Earth atmospheres II. Photochemical responses.

    Science.gov (United States)

    Grenfell, J L; Gebauer, S; Godolt, M; Palczynski, K; Rauer, H; Stock, J; von Paris, P; Lehmann, R; Selsis, F

    2013-05-01

    Spectral characterization of super-Earth atmospheres for planets orbiting in the habitable zone of M dwarf stars is a key focus in exoplanet science. A central challenge is to understand and predict the expected spectral signals of atmospheric biosignatures (species associated with life). Our work applies a global-mean radiative-convective-photochemical column model assuming a planet with an Earth-like biomass and planetary development. We investigated planets with gravities of 1g and 3g and a surface pressure of 1 bar around central stars with spectral classes from M0 to M7. The spectral signals of the calculated planetary scenarios have been presented by in an earlier work by Rauer and colleagues. The main motivation of the present work is to perform a deeper analysis of the chemical processes in the planetary atmospheres. We apply a diagnostic tool, the Pathway Analysis Program, to shed light on the photochemical pathways that form and destroy biosignature species. Ozone is a potential biosignature for complex life. An important result of our analysis is a shift in the ozone photochemistry from mainly Chapman production (which dominates in Earth's stratosphere) to smog-dominated ozone production for planets in the habitable zone of cooler (M5-M7)-class dwarf stars. This result is associated with a lower energy flux in the UVB wavelength range from the central star, hence slower planetary atmospheric photolysis of molecular oxygen, which slows the Chapman ozone production. This is important for future atmospheric characterization missions because it provides an indication of different chemical environments that can lead to very different responses of ozone, for example, cosmic rays. Nitrous oxide, a biosignature for simple bacterial life, is favored for low stratospheric UV conditions, that is, on planets orbiting cooler stars. Transport of this species from its surface source to the stratosphere where it is destroyed can also be a key process. Comparing 1g with

  3. Real Time Radioactivity Monitoring and its Interface with predictive atmospheric transport modelling

    International Nuclear Information System (INIS)

    Raes, F.

    1990-01-01

    After the Chernobyl accident, a programme was initiated at the Joint Research Centre of the Commission of the European Communities named 'Radioactivity Environmental Monitoring' (REM). The main aspects considered in REM are: data handling, atmospheric modelling and data quality control related to radioactivity in the environment. The first REM workshop was held in December 1987: 'Aerosol Measurements and Nuclear Accidents: A Reconsideration'. (CEC EUR 11755 EN). These are the proceedings of the second REM workshop, held in December 1989, dealing with real-time radioactivity monitoring and its interface with predictive atmospheric models. Atmospheric transport models, in applications extending over time scales of the order of a day or more become progressively less reliable to the extent that an interface with real-time radiological field data becomes highly desirable. Through international arrangements for early exchange of information in the event of a nuclear accident (European Community, IAEA) such data might become available on a quasi real-time basis. The question is how best to use such information to improve our predictive capabilities. During the workshop the present status of on-line monitoring networks for airborne radioactivity in the EC Member States has been reviewed. Possibilities were discussed to use data from such networks as soon as they become available, in order to update predictions made with long range transport models. This publication gives the full text of 13 presentations and a report of the Round Table Discussion held afterwards

  4. In silico prediction of ROCK II inhibitors by different classification approaches.

    Science.gov (United States)

    Cai, Chuipu; Wu, Qihui; Luo, Yunxia; Ma, Huili; Shen, Jiangang; Zhang, Yongbin; Yang, Lei; Chen, Yunbo; Wen, Zehuai; Wang, Qi

    2017-11-01

    ROCK II is an important pharmacological target linked to central nervous system disorders such as Alzheimer's disease. The purpose of this research is to generate ROCK II inhibitor prediction models by machine learning approaches. Firstly, four sets of descriptors were calculated with MOE 2010 and PaDEL-Descriptor, and optimized by F-score and linear forward selection methods. In addition, four classification algorithms were used to initially build 16 classifiers with k-nearest neighbors [Formula: see text], naïve Bayes, Random forest, and support vector machine. Furthermore, three sets of structural fingerprint descriptors were introduced to enhance the predictive capacity of classifiers, which were assessed with fivefold cross-validation, test set validation and external test set validation. The best two models, MFK + MACCS and MLR + SubFP, have both MCC values of 0.925 for external test set. After that, a privileged substructure analysis was performed to reveal common chemical features of ROCK II inhibitors. Finally, binding modes were analyzed to identify relationships between molecular descriptors and activity, while main interactions were revealed by comparing the docking interaction of the most potent and the weakest ROCK II inhibitors. To the best of our knowledge, this is the first report on ROCK II inhibitors utilizing machine learning approaches that provides a new method for discovering novel ROCK II inhibitors.

  5. Atmospheric corrosion tests along the Norwegian-Russian border. Part II

    Energy Technology Data Exchange (ETDEWEB)

    Henriksen, J.F.; Mikhailov, A.A.

    1997-12-31

    A bilateral exposure programme was carried out along the Norwegian-Russian border in 1990-1991, 1992-1993 and 1993-1994 to evaluate quantitatively the effect of sulphur pollutants on the atmospheric corrosion of important materials in sub-arctic climate. The first part of the programme demonstrated that also in subarctic climate do metals corrode depending on the atmospheric corrosivity, and dose-response functions were derived which combined the effects of SO{sub 2} and time of wetness. The second part of the programme, which is described in this report, involved exposures of carbon steel, zinc and copper at two sites in Norway and three sites in Russia. It is concluded that the accelerated atmospheric corrosion of metals in regions along the border is mainly due to dry deposition of sulphur. At some sites, dry deposition of Cl contributes because of sea-salt aerosols. The corrosivity of acid precipitation is certain but could not be represented as a function because of the small differences observed in the pH values at the different sites. At all test sites the kinetics of corrosion of steel, zinc and copper are characterized by a reduced corrosion rate after one year of exposure. Time of wetness is an important parameter in predicting atmospheric corrosion of metals even on a regional scale. Hence, for monitoring and for trend-effect analysis, it is very important to determine the corrosivity of SO{sub 2} with time of wetness. In accordance with dose-response functions obtained, the yearly corrosion rate for steel and zinc are higher for the areas with higher amounts of dry deposition of Cl than for areas with analogous but only SO{sub 2}-containing atmosphere. 6 refs., 8 figs., 15 tabs.

  6. Infrasound Predictions Using the Weather Research and Forecasting Model: Atmospheric Green's Functions for the Source Physics Experiments 1-6.

    Energy Technology Data Exchange (ETDEWEB)

    Poppeliers, Christian; Aur, Katherine Anderson; Preston, Leiph

    2018-03-01

    This report shows the results of constructing predictive atmospheric models for the Source Physics Experiments 1-6. Historic atmospheric data are combined with topography to construct an atmo- spheric model that corresponds to the predicted (or actual) time of a given SPE event. The models are ultimately used to construct atmospheric Green's functions to be used for subsequent analysis. We present three atmospheric models for each SPE event: an average model based on ten one- hour snap shots of the atmosphere and two extrema models corresponding to the warmest, coolest, windiest, etc. atmospheric snap shots. The atmospheric snap shots consist of wind, temperature, and pressure profiles of the atmosphere for a one-hour time window centered at the time of the predicted SPE event, as well as nine additional snap shots for each of the nine preceding years, centered at the time and day of the SPE event.

  7. Evaluation of atmospheric transport models for use in Phase II of the historical public exposures studies at the Rocky Flats Plant

    Energy Technology Data Exchange (ETDEWEB)

    Rood, A.S.; Killough, G.G.; Till, J.E.

    1999-08-01

    Five atmospheric transport models were evaluated for use in Phase II of the Historical Public Exposures Studies at the Rocky Flats Plant. Models included a simple straight-line Gaussian plume model (ISCST2), several integrated puff models (RATCHET, TRIAD, and INPUFF2), and a complex terrain model (TRAC). Evaluations were based on how well model predictions compared with sulfur hexafluoride tracer measurements taken in the vicinity of Rocky Flats in February 1991. Twelve separate tracer experiments were conducted, each lasting 9 hr and measured at 140 samplers in arcs 8 and 16 km from the release point at Rocky Flats. Four modeling objectives were defined based on the endpoints of the overall study: (1) the unpaired maximum hourly average concentration, (2) paired time-averaged concentration, (3) unpaired time-averaged concentration, and (4) arc-integrated concentration. Performance measures were used to evaluate models and focused on the geometric mean and standard deviation of the predicted-to-observed ratio and the correlation coefficient between predicted and observed concentrations. No one model consistently outperformed the others in all modeling objectives and performance measures. The overall performance of the RATCHET model was somewhat better than the other models.

  8. Pretest Predictions for Phase II Ventilation Tests

    International Nuclear Information System (INIS)

    Yiming Sun

    2001-01-01

    The objective of this calculation is to predict the temperatures of the ventilating air, waste package surface, and concrete pipe walls that will be developed during the Phase II ventilation tests involving various test conditions. The results will be used as inputs to validating numerical approach for modeling continuous ventilation, and be used to support the repository subsurface design. The scope of the calculation is to identify the physical mechanisms and parameters related to thermal response in the Phase II ventilation tests, and describe numerical methods that are used to calculate the effects of continuous ventilation. The calculation is limited to thermal effect only. This engineering work activity is conducted in accordance with the ''Technical Work Plan for: Subsurface Performance Testing for License Application (LA) for Fiscal Year 2001'' (CRWMS M and O 2000d). This technical work plan (TWP) includes an AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', activity evaluation (CRWMS M and O 2000d, Addendum A) that has determined this activity is subject to the YMP quality assurance (QA) program. The calculation is developed in accordance with the AP-3.12Q procedure, ''Calculations''. Additional background information regarding this activity is contained in the ''Development Plan for Ventilation Pretest Predictive Calculation'' (DP) (CRWMS M and O 2000a)

  9. A Tool for Predicting Regulatory Approval After Phase II Testing of New Oncology Compounds.

    Science.gov (United States)

    DiMasi, J A; Hermann, J C; Twyman, K; Kondru, R K; Stergiopoulos, S; Getz, K A; Rackoff, W

    2015-11-01

    We developed an algorithm (ANDI) for predicting regulatory marketing approval for new cancer drugs after phase II testing has been conducted, with the objective of providing a tool to improve drug portfolio decision-making. We examined 98 oncology drugs from the top 50 pharmaceutical companies (2006 sales) that first entered clinical development from 1999 to 2007, had been taken to at least phase II development, and had a known final outcome (research abandonment or regulatory marketing approval). Data on safety, efficacy, operational, market, and company characteristics were obtained from public sources. Logistic regression and machine-learning methods were used to provide an unbiased approach to assess overall predictability and to identify the most important individual predictors. We found that a simple four-factor model (activity, number of patients in the pivotal phase II trial, phase II duration, and a prevalence-related measure) had high sensitivity and specificity for predicting regulatory marketing approval. © 2015 American Society for Clinical Pharmacology and Therapeutics.

  10. Predicting Earth orientation changes from global forecasts of atmosphere-hydrosphere dynamics

    Science.gov (United States)

    Dobslaw, Henryk; Dill, Robert

    2018-02-01

    Effective Angular Momentum (EAM) functions obtained from global numerical simulations of atmosphere, ocean, and land surface dynamics are routinely processed by the Earth System Modelling group at Deutsches GeoForschungsZentrum. EAM functions are available since January 1976 with up to 3 h temporal resolution. Additionally, 6 days-long EAM forecasts are routinely published every day. Based on hindcast experiments with 305 individual predictions distributed over 15 months, we demonstrate that EAM forecasts improve the prediction accuracy of the Earth Orientation Parameters at all forecast horizons between 1 and 6 days. At day 6, prediction accuracy improves down to 1.76 mas for the terrestrial pole offset, and 2.6 mas for Δ UT1, which correspond to an accuracy increase of about 41% over predictions published in Bulletin A by the International Earth Rotation and Reference System Service.

  11. Improved methods for predicting peptide binding affinity to MHC class II molecules.

    Science.gov (United States)

    Jensen, Kamilla Kjaergaard; Andreatta, Massimo; Marcatili, Paolo; Buus, Søren; Greenbaum, Jason A; Yan, Zhen; Sette, Alessandro; Peters, Bjoern; Nielsen, Morten

    2018-01-06

    Major histocompatibility complex class II (MHC-II) molecules are expressed on the surface of professional antigen-presenting cells where they display peptides to T helper cells, which orchestrate the onset and outcome of many host immune responses. Understanding which peptides will be presented by the MHC-II molecule is therefore important for understanding the activation of T helper cells and can be used to identify T-cell epitopes. We here present updated versions of two MHC-II-peptide binding affinity prediction methods, NetMHCII and NetMHCIIpan. These were constructed using an extended data set of quantitative MHC-peptide binding affinity data obtained from the Immune Epitope Database covering HLA-DR, HLA-DQ, HLA-DP and H-2 mouse molecules. We show that training with this extended data set improved the performance for peptide binding predictions for both methods. Both methods are publicly available at www.cbs.dtu.dk/services/NetMHCII-2.3 and www.cbs.dtu.dk/services/NetMHCIIpan-3.2. © 2018 John Wiley & Sons Ltd.

  12. Modified ensemble Kalman filter for nuclear accident atmospheric dispersion: prediction improved and source estimated.

    Science.gov (United States)

    Zhang, X L; Su, G F; Yuan, H Y; Chen, J G; Huang, Q Y

    2014-09-15

    Atmospheric dispersion models play an important role in nuclear power plant accident management. A reliable estimation of radioactive material distribution in short range (about 50 km) is in urgent need for population sheltering and evacuation planning. However, the meteorological data and the source term which greatly influence the accuracy of the atmospheric dispersion models are usually poorly known at the early phase of the emergency. In this study, a modified ensemble Kalman filter data assimilation method in conjunction with a Lagrangian puff-model is proposed to simultaneously improve the model prediction and reconstruct the source terms for short range atmospheric dispersion using the off-site environmental monitoring data. Four main uncertainty parameters are considered: source release rate, plume rise height, wind speed and wind direction. Twin experiments show that the method effectively improves the predicted concentration distribution, and the temporal profiles of source release rate and plume rise height are also successfully reconstructed. Moreover, the time lag in the response of ensemble Kalman filter is shortened. The method proposed here can be a useful tool not only in the nuclear power plant accident emergency management but also in other similar situation where hazardous material is released into the atmosphere. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method.

    Science.gov (United States)

    Nielsen, Morten; Lundegaard, Claus; Lund, Ole

    2007-07-04

    Antigen presenting cells (APCs) sample the extra cellular space and present peptides from here to T helper cells, which can be activated if the peptides are of foreign origin. The peptides are presented on the surface of the cells in complex with major histocompatibility class II (MHC II) molecules. Identification of peptides that bind MHC II molecules is thus a key step in rational vaccine design and developing methods for accurate prediction of the peptide:MHC interactions play a central role in epitope discovery. The MHC class II binding groove is open at both ends making the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC) and three mouse H2-IA alleles. The predictive performance of the SMM-align method was demonstrated to be superior to that of the Gibbs sampler, TEPITOPE, SVRMHC, and MHCpred methods. Cross validation between peptide data set obtained from different sources demonstrated that direct incorporation of peptide length potentially results in over-fitting of the binding prediction method. Focusing on amino terminal peptide flanking residues (PFR), we demonstrate a consistent gain in predictive performance by favoring binding registers with a minimum PFR length of two amino acids. Visualizing the binding motif as obtained by the SMM-align and TEPITOPE methods highlights a series of fundamental discrepancies between the two predicted motifs. For the DRB1*1302 allele for instance, the TEPITOPE method favors basic amino acids at most anchor positions, whereas the SMM-align method identifies a preference for hydrophobic or neutral amino acids at the anchors. The SMM-align method was shown to outperform other

  14. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method

    Directory of Open Access Journals (Sweden)

    Lund Ole

    2007-07-01

    Full Text Available Abstract Background Antigen presenting cells (APCs sample the extra cellular space and present peptides from here to T helper cells, which can be activated if the peptides are of foreign origin. The peptides are presented on the surface of the cells in complex with major histocompatibility class II (MHC II molecules. Identification of peptides that bind MHC II molecules is thus a key step in rational vaccine design and developing methods for accurate prediction of the peptide:MHC interactions play a central role in epitope discovery. The MHC class II binding groove is open at both ends making the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC and three mouse H2-IA alleles. Results The predictive performance of the SMM-align method was demonstrated to be superior to that of the Gibbs sampler, TEPITOPE, SVRMHC, and MHCpred methods. Cross validation between peptide data set obtained from different sources demonstrated that direct incorporation of peptide length potentially results in over-fitting of the binding prediction method. Focusing on amino terminal peptide flanking residues (PFR, we demonstrate a consistent gain in predictive performance by favoring binding registers with a minimum PFR length of two amino acids. Visualizing the binding motif as obtained by the SMM-align and TEPITOPE methods highlights a series of fundamental discrepancies between the two predicted motifs. For the DRB1*1302 allele for instance, the TEPITOPE method favors basic amino acids at most anchor positions, whereas the SMM-align method identifies a preference for hydrophobic or neutral amino acids at the anchors. Conclusion

  15. An evaluation of multigroup flux predictions in the EBR-II core

    International Nuclear Information System (INIS)

    Hill, R.N.; Fanning, T.H.; Finck, P.J.

    1991-01-01

    The unique physics characteristics of EBR-II which are difficult to model with conventional neutronic methodologies are identified; the high neutron leakage fraction and importance of neutron reflection cause errors when conventional calculational approximations are utilized. In this paper, various conventional and higher-order group constant evaluations and flux computation methods are compared for a simplified R-Z model of the EBR-II system. Although conventional methods do provide adequate predictions of the flux in the core region, significant mispredictions are observed in the reflector and radial blanket regions. Calculational comparisons indicate that a fine energy group structure is required for accurate predictions of the eigenvalue and flux distribution; greater detail is needed in the iron resonance scattering treatment. Calculational comparisons also indicate that transport theory with detailed anisotropic scattering treatment is required

  16. An evaluation of multigroup flux predictions in the EBR-II core

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.N.; Fanning, T.H.; Finck, P.J.

    1991-12-31

    The unique physics characteristics of EBR-II which are difficult to model with conventional neutronic methodologies are identified; the high neutron leakage fraction and importance of neutron reflection cause errors when conventional calculational approximations are utilized. In this paper, various conventional and higher-order group constant evaluations and flux computation methods are compared for a simplified R-Z model of the EBR-II system. Although conventional methods do provide adequate predictions of the flux in the core region, significant mispredictions are observed in the reflector and radial blanket regions. Calculational comparisons indicate that a fine energy group structure is required for accurate predictions of the eigenvalue and flux distribution; greater detail is needed in the iron resonance scattering treatment. Calculational comparisons also indicate that transport theory with detailed anisotropic scattering treatment is required.

  17. An evaluation of multigroup flux predictions in the EBR-II core

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.N.; Fanning, T.H.; Finck, P.J.

    1991-01-01

    The unique physics characteristics of EBR-II which are difficult to model with conventional neutronic methodologies are identified; the high neutron leakage fraction and importance of neutron reflection cause errors when conventional calculational approximations are utilized. In this paper, various conventional and higher-order group constant evaluations and flux computation methods are compared for a simplified R-Z model of the EBR-II system. Although conventional methods do provide adequate predictions of the flux in the core region, significant mispredictions are observed in the reflector and radial blanket regions. Calculational comparisons indicate that a fine energy group structure is required for accurate predictions of the eigenvalue and flux distribution; greater detail is needed in the iron resonance scattering treatment. Calculational comparisons also indicate that transport theory with detailed anisotropic scattering treatment is required.

  18. Snow contribution to springtime atmospheric predictability over the second half of the twentieth century

    Energy Technology Data Exchange (ETDEWEB)

    Peings, Yannick [CNRM-GAME, Meteo-France et CNRS, Toulouse (France); CNRM/GMGEC/VDR, Toulouse (France); Douville, H.; Alkama, R.; Decharme, B. [CNRM-GAME, Meteo-France et CNRS, Toulouse (France)

    2011-09-15

    A set of global atmospheric simulations has been performed with the ARPEGE-Climat model in order to quantify the contribution of realistic snow conditions to seasonal atmospheric predictability in addition to that of a perfect sea surface temperature (SST) forcing. The focus is on the springtime boreal hemisphere where the combination of a significant snow cover variability and an increasing solar radiation favour the potential snow influence on the surface energy budget. The study covers the whole 1950-2000 period through the use of an original snow mass reanalysis based on an off-line land surface model and possibly constrained by satellite snow cover observations. Two ensembles of 10-member AMIP-type experiments have been first performed with relaxed versus free snow boundary conditions. The nudging towards the monthly snow mass reanalysis significantly improves both potential and actual predictability of springtime surface air temperature over Central Europe and North America. Yet, the impact is confined to the lower troposphere and there is no clear improvement in the predictability of the large-scale atmospheric circulation. Further constraining the prescribed snow boundary conditions with satellite observations does not change much the results. Finally, using the snow reanalysis only for initializing the model on March 1st also leads to a positive impact on predicted low-level temperatures but with a weaker amplitude and persistence. A conditional skill approach as well as some selected case studies provide some guidelines for interpreting these results and suggest that an underestimated snow cover variability and a misrepresentation of ENSO teleconnections may hamper the benefit of an improved snow initialization in the ARPEGE-Climat model. (orig.)

  19. A Modified APACHE II Score for Predicting Mortality of Variceal ...

    African Journals Online (AJOL)

    Conclusion: Modified APACHE II score is effective in predicting outcome of patients with variceal bleeding. Score of L 15 points and long ICU stay are associated with high mortality. Keywords: liver cirrhosis, periportal fibrosis, portal hypertension, schistosomiasis udan Journal of Medical Sciences Vol. 2 (2) 2007: pp. 105- ...

  20. Modeling transducer impulse responses for predicting calibrated pressure pulses with the ultrasound simulation program Field II

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2010-01-01

    FIELD II is a simulation software capable of predicting the field pressure in front of transducers having any complicated geometry. A calibrated prediction with this program is, however, dependent on an exact voltage-to-surface acceleration impulse response of the transducer. Such impulse response...... is not calculated by FIELD II. This work investigates the usability of combining a one-dimensional multilayer transducer modeling principle with the FIELD II software. Multilayer here refers to a transducer composed of several material layers. Measurements of pressure and current from Pz27 piezoceramic disks...... transducer model and the FIELD II software in combination give good agreement with measurements....

  1. Initial conditions and ENSO prediction using a coupled ocean-atmosphere model

    Science.gov (United States)

    Larow, T. E.; Krishnamurti, T. N.

    1998-01-01

    A coupled ocean-atmosphere initialization scheme using Newtonian relaxation has been developed for the Florida State University coupled ocean-atmosphere global general circulation model. The initialization scheme is used to initialize the coupled model for seasonal forecasting the boreal summers of 1987 and 1988. The atmosphere model is a modified version of the Florida State University global spectral model, resolution T-42. The ocean general circulation model consists of a slightly modified version of the Hamburg's climate group model described in Latif (1987) and Latif et al. (1993). The coupling is synchronous with information exchanged every two model hours. Using ECMWF atmospheric daily analysis and observed monthly mean SSTs, two, 1-year, time-dependent, Newtonian relaxation were performed using the coupled model prior to conducting the seasonal forecasts. The coupled initializations were conducted from 1 June 1986 to 1 June 1987 and from 1 June 1987 to 1 June 1988. Newtonian relaxation was applied to the prognostic atmospheric vorticity, divergence, temperature and dew point depression equations. In the ocean model the relaxation was applied to the surface temperature. Two, 10-member ensemble integrations were conducted to examine the impact of the coupled initialization on the seasonal forecasts. The initial conditions used for the ensembles are the ocean's final state after the initialization and the atmospheric initial conditions are ECMWF analysis. Examination of the SST root mean square error and anomaly correlations between observed and forecasted SSTs in the Niño-3 and Niño-4 regions for the 2 seasonal forecasts, show closer agreement between the initialized forecast than two, 10-member non-initialized ensemble forecasts. The main conclusion here is that a single forecast with the coupled initialization outperforms, in SST anomaly prediction, against each of the control forecasts (members of the ensemble) which do not include such an initialization

  2. Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms

    Directory of Open Access Journals (Sweden)

    Feng Lin

    2007-11-01

    Full Text Available Abstract Background Peptides binding to Major Histocompatibility Complex (MHC class II molecules are crucial for initiation and regulation of immune responses. Predicting peptides that bind to a specific MHC molecule plays an important role in determining potential candidates for vaccines. The binding groove in class II MHC is open at both ends, allowing peptides longer than 9-mer to bind. Finding the consensus motif facilitating the binding of peptides to a MHC class II molecule is difficult because of different lengths of binding peptides and varying location of 9-mer binding core. The level of difficulty increases when the molecule is promiscuous and binds to a large number of low affinity peptides. In this paper, we propose two approaches using multi-objective evolutionary algorithms (MOEA for predicting peptides binding to MHC class II molecules. One uses the information from both binders and non-binders for self-discovery of motifs. The other, in addition, uses information from experimentally determined motifs for guided-discovery of motifs. Results The proposed methods are intended for finding peptides binding to MHC class II I-Ag7 molecule – a promiscuous binder to a large number of low affinity peptides. Cross-validation results across experiments on two motifs derived for I-Ag7 datasets demonstrate better generalization abilities and accuracies of the present method over earlier approaches. Further, the proposed method was validated and compared on two publicly available benchmark datasets: (1 an ensemble of qualitative HLA-DRB1*0401 peptide data obtained from five different sources, and (2 quantitative peptide data obtained for sixteen different alleles comprising of three mouse alleles and thirteen HLA alleles. The proposed method outperformed earlier methods on most datasets, indicating that it is well suited for finding peptides binding to MHC class II molecules. Conclusion We present two MOEA-based algorithms for finding motifs

  3. NKS NordRisk II: Atlas of long-range atmospheric dispersion and deposition of radionuclides from selected risk sites in the Northern Hemisphere

    DEFF Research Database (Denmark)

    Smith Korsholm, Ulrik; Astrup, Poul; Lauritzen, Bent

    The present atlas has been developed within the NKS/NordRisk-II project "Nuclear risk from atmospheric dispersion in Northern Europe". The atlas describes risks from hypothetical long-range dispersion and deposition of radionuclides from 16 nuclear risk sites on the Northern Hemisphere...... spanning the climate variability associated with the North Atlantic Oscillation, and corresponding time evolution of the ensemble mean atmospheric dispersion....

  4. The Impact of EuroSCORE II Risk Factors on Prediction of Long-Term Mortality.

    Science.gov (United States)

    Barili, Fabio; Pacini, Davide; D'Ovidio, Mariangela; Dang, Nicholas C; Alamanni, Francesco; Di Bartolomeo, Roberto; Grossi, Claudio; Davoli, Marina; Fusco, Danilo; Parolari, Alessandro

    2016-10-01

    The European System for Cardiac Operation Risk Evaluation (EuroSCORE) II has not been tested yet for predicting long-term mortality. This study was undertaken to evaluate the relationship between EuroSCORE II and long-term mortality and to develop a new algorithm based on EuroSCORE II factors to predict long-term survival after cardiac surgery. Complete data on 10,033 patients who underwent major cardiac surgery during a 7-year period were retrieved from three prospective institutional databases and linked with the Italian Tax Register Information System. Mortality at follow-up was analyzed with time-to-event analysis. The Kaplan-Meier estimates of survival at 1 and 5 were, respectively, 95.0% ± 0.2% and 84.7% ± 0.4%. Both discrimination and calibration of EuroSCORE II decreased in the prediction of 1-year and 5-year mortality. Nonetheless, EuroSCORE II was confirmed to be an independent predictor of long-term mortality with a nonlinear trend. Several EuroSCORE II variables were independent risk factors for long-term mortality in a regression model, most of all very low ejection fraction (less than 20%), salvage operation, and dialysis. In the final model, isolated mitral valve surgery and isolated coronary artery bypass graft surgery were associated with improved long-term survival. The EuroSCORE II cannot be considered a direct estimator of long-term risk of death, as its performance fades for mortality at follow-up longer than 30 days. Nonetheless, it is nonlinearly associated with long-term mortality, and most of its variables are risk factors for long-term mortality. Hence, they can be used in a different algorithm to stratify the risk of long-term mortality after surgery. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  5. A Unified Air-Sea Interface in Fully Coupled Atmosphere-Wave-Ocean Models for Data Assimilation and Ensemble Prediction

    Science.gov (United States)

    Chen, Shuyi; Curcic, Milan; Donelan, Mark; Campbell, Tim; Smith, Travis; Chen, Sue; Allard, Rick; Michalakes, John

    2014-05-01

    The goals of this study are to 1) better understand the physical processes controlling air-sea interaction and their impact on coastal marine and storm predictions, 2) explore the use of coupled atmosphere-ocean observations in model verification and data assimilation, and 3) develop a physically based and computationally efficient coupling at the air-sea interface that is flexible for use in a multi-model system and portable for transition to the next generation research and operational coupled atmosphere-wave-ocean-land models. We have developed a unified air-sea interface module that couples multiple atmosphere, wave, and ocean models using the Earth System Modeling Framework (ESMF). This standardized coupling framework allows researchers to develop and test air-sea coupling parameterizations and coupled data assimilation, and to better facilitate research-to-operation activities. It also allows for future ensemble forecasts using coupled models that can be used for coupled data assimilation and assessment of uncertainties in coupled model predictions. The current component models include two atmospheric models (WRF and COAMPS), two ocean models (HYCOM and NCOM), and two wave models (UMWM and SWAN). The coupled modeling systems have been tested and evaluated using the coupled air-sea observations (e.g., GPS dropsondes and AXBTs, drifters and floats) collected in recent field campaigns in the Gulf of Mexico and tropical cyclones in the Atlantic and Pacific basins. This talk will provide an overview of the unified air-sea interface model and fully coupled atmosphere-wave-ocean model predictions over various coastal regions and tropical cyclones in the Pacific and Atlantic basins including an example from coupled ensemble prediction of Superstorm Sandy (2012).

  6. Accuracy and Predictability of PANC-3 Scoring System over APACHE II in Acute Pancreatitis: A Prospective Study.

    Science.gov (United States)

    Rathnakar, Surag Kajoor; Vishnu, Vikram Hubbanageri; Muniyappa, Shridhar; Prasath, Arun

    2017-02-01

    Acute Pancreatitis (AP) is one of the common conditions encountered in the emergency room. The course of the disease ranges from mild form to severe acute form. Most of these episodes are mild and spontaneously subsiding within 3 to 5 days. In contrast, Severe Acute Pancreatitis (SAP) occurring in around 15-20% of all cases, mortality can range between 10 to 85% across various centres and countries. In such a situation we need an indicator which can predict the outcome of an attack, as severe or mild, as early as possible and such an indicator should be sensitive and specific enough to trust upon. PANC-3 scoring is such a scoring system in predicting the outcome of an attack of AP. To assess the accuracy and predictability of PANC-3 scoring system over APACHE II in predicting severity in an attack of AP. This prospective study was conducted on 82 patients admitted with the diagnosis of pancreatitis. Investigations to evaluate PANC-3 and APACHE II were done on all the patients and the PANC-3 and APACHE II score was calculated. PANC-3 score has a sensitivity of 82.6% and specificity of 77.9%, the test had a Positive Predictive Value (PPV) of 0.59 and Negative Predictive Value (NPV) of 0.92. Sensitivity of APACHE II in predicting SAP was 91.3% and specificity was 96.6% with PPV of 0.91, NPV was 0.96. Our study shows that PANC-3 can be used to predict the severity of pancreatitis as efficiently as APACHE II. The interpretation of PANC-3 does not need expertise and can be applied at the time of admission which is an advantage when compared to classical scoring systems.

  7. Southern hemisphere ocean CO2 uptake: reconciling atmospheric and oceanic estimates

    International Nuclear Information System (INIS)

    Roy, T.; Matear, R.; Rayner, P.; Francey, R.

    2003-01-01

    Using an atmospheric inversion model we investigate the southern hemisphere ocean CO 2 uptake. From sensitivity studies that varied both the initial ocean flux distribution and the atmospheric data used in the inversion, our inversion predicted a total (ocean and land) uptake of 1.65-1.90 Gt C/yr. We assess the consistency between the mean southern hemisphere ocean uptake predicted by an atmospheric inversion model for the 1991-1997 period and the T99 ocean flux estimate based on observed pCO 2 in Takahashi et al. (2002; Deep-Sea Res II, 49, 1601-1622). The inversion can not match the large 1.8 Gt C/yr southern extratropical (20-90 deg S) uptake of the T99 ocean flux estimate without producing either unreasonable land fluxes in the southern mid-latitudes or by increasing the mismatches between observed and simulated atmospheric CO 2 data. The southern extratropical uptake is redistributed between the mid and high latitudes. Our results suggest that the T99 estimate of the Southern Ocean uptake south of 50 deg S is too large, and that the discrepancy reflects the inadequate representation of wintertime conditions in the T99 estimate

  8. The Relation Between Atmospheric Humidity and Temperature Trends for Stratospheric Water

    Science.gov (United States)

    Fueglistaler, S.; Liu, Y. S.; Flannaghan, T. J.; Haynes, P. H.; Dee, D. P.; Read, W. J.; Remsberg, E. E.; Thomason, L. W.; Hurst, D. F.; Lanzante, J. R.; hide

    2013-01-01

    We analyze the relation between atmospheric temperature and water vapor-a fundamental component of the global climate system-for stratospheric water vapor (SWV). We compare measurements of SWV (and methane where available) over the period 1980-2011 from NOAA balloon-borne frostpoint hygrometer (NOAA-FPH), SAGE II, Halogen Occultation Experiment (HALOE), Microwave Limb Sounder (MLS)/Aura, and Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) to model predictions based on troposphere-to-stratosphere transport from ERA-Interim, and temperatures from ERA-Interim, Modern Era Retrospective-Analysis (MERRA), Climate Forecast System Reanalysis (CFSR), Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC), HadAT2, and RICHv1.5. All model predictions are dry biased. The interannual anomalies of the model predictions show periods of fairly regular oscillations, alternating with more quiescent periods and a few large-amplitude oscillations. They all agree well (correlation coefficients 0.9 and larger) with observations for higherfrequency variations (periods up to 2-3 years). Differences between SWV observations, and temperature data, respectively, render analysis of the model minus observation residual difficult. However, we find fairly well-defined periods of drifts in the residuals. For the 1980s, model predictions differ most, and only the calculation with ERA-Interim temperatures is roughly within observational uncertainties. All model predictions show a drying relative to HALOE in the 1990s, followed by a moistening in the early 2000s. Drifts to NOAA-FPH are similar (but stronger), whereas no drift is present against SAGE II. As a result, the model calculations have a less pronounced drop in SWV in 2000 than HALOE. From the mid-2000s onward, models and observations agree reasonably, and some differences can be traced to problems in the temperature data. These results indicate that both SWV and temperature data may still suffer

  9. Prediction of the binding affinities of peptides to class II MHC using a regularized thermodynamic model

    Directory of Open Access Journals (Sweden)

    Mittelmann Hans D

    2010-01-01

    Full Text Available Abstract Background The binding of peptide fragments of extracellular peptides to class II MHC is a crucial event in the adaptive immune response. Each MHC allotype generally binds a distinct subset of peptides and the enormous number of possible peptide epitopes prevents their complete experimental characterization. Computational methods can utilize the limited experimental data to predict the binding affinities of peptides to class II MHC. Results We have developed the Regularized Thermodynamic Average, or RTA, method for predicting the affinities of peptides binding to class II MHC. RTA accounts for all possible peptide binding conformations using a thermodynamic average and includes a parameter constraint for regularization to improve accuracy on novel data. RTA was shown to achieve higher accuracy, as measured by AUC, than SMM-align on the same data for all 17 MHC allotypes examined. RTA also gave the highest accuracy on all but three allotypes when compared with results from 9 different prediction methods applied to the same data. In addition, the method correctly predicted the peptide binding register of 17 out of 18 peptide-MHC complexes. Finally, we found that suboptimal peptide binding registers, which are often ignored in other prediction methods, made significant contributions of at least 50% of the total binding energy for approximately 20% of the peptides. Conclusions The RTA method accurately predicts peptide binding affinities to class II MHC and accounts for multiple peptide binding registers while reducing overfitting through regularization. The method has potential applications in vaccine design and in understanding autoimmune disorders. A web server implementing the RTA prediction method is available at http://bordnerlab.org/RTA/.

  10. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction

    Directory of Open Access Journals (Sweden)

    Lund Ole

    2009-09-01

    Full Text Available Abstract Background The major histocompatibility complex (MHC molecule plays a central role in controlling the adaptive immune response to infections. MHC class I molecules present peptides derived from intracellular proteins to cytotoxic T cells, whereas MHC class II molecules stimulate cellular and humoral immunity through presentation of extracellularly derived peptides to helper T cells. Identification of which peptides will bind a given MHC molecule is thus of great importance for the understanding of host-pathogen interactions, and large efforts have been placed in developing algorithms capable of predicting this binding event. Results Here, we present a novel artificial neural network-based method, NN-align that allows for simultaneous identification of the MHC class II binding core and binding affinity. NN-align is trained using a novel training algorithm that allows for correction of bias in the training data due to redundant binding core representation. Incorporation of information about the residues flanking the peptide-binding core is shown to significantly improve the prediction accuracy. The method is evaluated on a large-scale benchmark consisting of six independent data sets covering 14 human MHC class II alleles, and is demonstrated to outperform other state-of-the-art MHC class II prediction methods. Conclusion The NN-align method is competitive with the state-of-the-art MHC class II peptide binding prediction algorithms. The method is publicly available at http://www.cbs.dtu.dk/services/NetMHCII-2.0.

  11. Sensitivity of decadal predictions to the initial atmospheric and oceanic perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Du, H.; Garcia-Serrano, J.; Guemas, V.; Soufflet, Y. [Institut Catala de Ciencies del Clima (IC3), Barcelona (Spain); Doblas-Reyes, F.J. [Institut Catala de Ciencies del Clima (IC3), Barcelona (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Wouters, B. [Royal Netherlands Meteorological Institute (KNMI), De Bilt (Netherlands)

    2012-10-15

    A coupled global atmosphere-ocean model is employed to investigate the impact of initial perturbation methods on the behaviour of five-member ensemble decadal re-forecasts. Three initial-condition perturbation strategies, atmosphere only, ocean only and atmosphere-ocean, have been used and the impact on selected variables have been investigated. The impact has been assessed in terms of climate drift, forecast quality and spread. The simulated global means of near-surface air temperature (T2M), sea surface temperature (SST) and sea ice area (SIA) for both Arctic and Antarctic show reasonably good quality, in spite of the non-negligible drift of the model. The skill in terms of correlation is not significantly affected by the particular perturbation method employed. The ensemble spread generated for T2M, SST and land surface precipitation (PCP) saturates quickly with any of the perturbation methods. However, for SIA, Atlantic meridional overturning circulation (AMOC) and ocean heat content (OHC), the spread increases substantially during the forecast time when ocean perturbations are applied. Ocean perturbations are particularly important for Antarctic SIA and OHC for the middle and deep layers of the ocean. The results will be helpful in the design of ensemble prediction experiments. (orig.)

  12. Predicting Ionization Rates from SEP and Solar Wind Proton Precipitation into the Martian Atmosphere

    Science.gov (United States)

    Jolitz, R.; Dong, C.; Lee, C. O.; Curry, S.; Lillis, R. J.; Brain, D.; Halekas, J. S.; Larson, D. E.; Bougher, S. W.; Jakosky, B. M.

    2017-12-01

    Precipitating energetic particles ionize planetary atmospheres and increase total electron content. At Mars, the solar wind and solar energetic particles (SEPs) can precipitate directly into the atmosphere because solar wind protons can charge exchange to become neutrals and pass through the magnetosheath, while SEPs are sufficiently energetic to cross the magnetosheath unchanged. In this study we will present predicted ionization rates and resulting electron densities produced by solar wind and SEP proton ionization during nominal solar activity and a CME shock front impact event on May 16 2016. We will use the Atmospheric Scattering of Protons and Energetic Neutrals (ASPEN) model to compare ionization by SEP and solar wind protons currently measured by the SWIA (Solar Wind Ion Analyzer) and SEP instruments aboard the MAVEN spacecraft. Results will help to quantify how the ionosphere responds to extreme solar events during solar minimum.

  13. Nuclear risk from atmospheric dispersion in Northern Europe - Summary Report

    DEFF Research Database (Denmark)

    Lauritzen, Bent

    The objective of the NordRisk II project has been to derive practical means for assessing the risks from long-range atmospheric dispersion of radioac-tive materials. An atlas over different atmospheric dispersion and deposi-tion scenarios has been developed using historical numerical weather pre......-diction (NWP) model data. The NWP model data covers three years span-ning the climate variability associated with the North Atlantic Oscillation, and the atlas considers radioactive releases from 16 release sites in and near the Nordic countries. A statistical analysis of the long-range disper......-sion and deposition patterns is undertaken to quantify the mean dispersion and deposition as well as the variability. Preliminary analyses show that the large-scale atmospheric dispersion and deposition is near-isotropic, irrespective of the release site and detailed climatology, and allows for a simple...

  14. The role of atmospheric diagnosis and Big Data science in improving hydroclimatic extreme prediction and the merits of climate informed prediction for future water resources management

    Science.gov (United States)

    Lu, Mengqian; Lall, Upmanu

    2017-04-01

    The threats that hydroclimatic extremes pose to sustainable development, safety and operation of infrastructure are both severe and growing. Recent heavy precipitation triggered flood events in many regions and increasing frequency and intensity of extreme precipitation suggested by various climate projections highlight the importance of understanding the associated hydrometeorological patterns and space-time variability of such extreme events, and developing a new approach to improve predictability with a better estimation of uncertainty. This clear objective requires the optimal utility of Big Data analytics on multi-source datasets to extract informative predictors from the complex ocean-atmosphere coupled system and develop a statistical and physical based framework. The proposed presentation includes the essence of our selected works in the past two years, as part of our Global Floods Initiatives. Our approach for an improved extreme prediction begins with a better understanding of the associated atmospheric circulation patterns, under the influence and regulation of slowly changing oceanic boundary conditions [Lu et al., 2013, 2016a; Lu and Lall, 2016]. The study of the associated atmospheric circulation pattern and the regulation of teleconnected climate signals adopted data science techniques and statistical modeling recognizing the nonstationarity and nonlinearity of the system, as the underlying statistical assumptions of the classical extreme value frequency analysis are challenged in hydroclimatic studies. There are two main factors that are considered important for understanding how future flood risk will change. One is the consideration of moisture holding capacity as a function of temperature, as suggested by Clausius-Clapeyron equation. The other is the strength of the convergence or convection associated with extreme precipitation. As convergence or convection gets stronger, rain rates can be expected to increase if the moisture is available. For

  15. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method

    DEFF Research Database (Denmark)

    Nielsen, Morten; Lundegaard, Claus; Lund, Ole

    2007-01-01

    the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance...... of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC) and three mouse H2-IA alleles. RESULTS: The predictive performance of the SMM-align method was demonstrated to be superior to that of the Gibbs sampler, TEPITOPE, SVRMHC, and MHCpred methods. Cross validation...... between peptide data set obtained from different sources demonstrated that direct incorporation of peptide length potentially results in over-fitting of the binding prediction method. Focusing on amino terminal peptide flanking residues (PFR), we demonstrate a consistent gain in predictive performance...

  16. Measurement and prediction of dabigatran etexilate mesylate Form II solubility in mono-solvents and mixed solvents

    International Nuclear Information System (INIS)

    Xiao, Yan; Wang, Jingkang; Wang, Ting; Ouyang, Jinbo; Huang, Xin; Hao, Hongxun; Bao, Ying; Fang, Wen; Yin, Qiuxiang

    2016-01-01

    Highlights: • Solubility of DEM Form II in mono-solvents and binary solvent mixtures was measured. • Regressed UNIFAC model was used to predict the solubility in solvent mixtures. • The experimental solubility data were correlated by different models. - Abstract: UV spectrometer method was used to measure the solubility data of dabigatran etexilate mesylate (DEM) Form II in five mono-solvents (methanol, ethanol, ethane-1,2-diol, DMF, DMAC) and binary solvent mixtures of methanol and ethanol in the temperature range from 287.37 K to 323.39 K. The experimental solubility data in mono-solvents were correlated with modified Apelblat equation, van’t Hoff equation and λh equation. GSM model and Modified Jouyban-Acree model were employed to correlate the solubility data in mixed solvent systems. And Regressed UNIFAC model was used to predict the solubility of DEM Form II in the binary solvent mixtures. Results showed that the predicted data were consistent with the experimental data.

  17. Peak-summer East Asian rainfall predictability and prediction part II: extratropical East Asia

    Science.gov (United States)

    Yim, So-Young; Wang, Bin; Xing, Wen

    2016-07-01

    The part II of the present study focuses on northern East Asia (NEA: 26°N-50°N, 100°-140°E), exploring the source and limit of the predictability of the peak summer (July-August) rainfall. Prediction of NEA peak summer rainfall is extremely challenging because of the exposure of the NEA to midlatitude influence. By examining four coupled climate models' multi-model ensemble (MME) hindcast during 1979-2010, we found that the domain-averaged MME temporal correlation coefficient (TCC) skill is only 0.13. It is unclear whether the dynamical models' poor skills are due to limited predictability of the peak-summer NEA rainfall. In the present study we attempted to address this issue by applying predictable mode analysis method using 35-year observations (1979-2013). Four empirical orthogonal modes of variability and associated major potential sources of variability are identified: (a) an equatorial western Pacific (EWP)-NEA teleconnection driven by EWP sea surface temperature (SST) anomalies, (b) a western Pacific subtropical high and Indo-Pacific dipole SST feedback mode, (c) a central Pacific-El Nino-Southern Oscillation mode, and (d) a Eurasian wave train pattern. Physically meaningful predictors for each principal component (PC) were selected based on analysis of the lead-lag correlations with the persistent and tendency fields of SST and sea-level pressure from March to June. A suite of physical-empirical (P-E) models is established to predict the four leading PCs. The peak summer rainfall anomaly pattern is then objectively predicted by using the predicted PCs and the corresponding observed spatial patterns. A 35-year cross-validated hindcast over the NEA yields a domain-averaged TCC skill of 0.36, which is significantly higher than the MME dynamical hindcast (0.13). The estimated maximum potential attainable TCC skill averaged over the entire domain is around 0.61, suggesting that the current dynamical prediction models may have large rooms to improve

  18. Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach

    DEFF Research Database (Denmark)

    Nielsen, Morten; Lundegaard, Claus; Worning, Peder

    2004-01-01

    Prediction of which peptides will bind a specific major histocompatibility complex (MHC) constitutes an important step in identifying potential T-cell epitopes suitable as vaccine candidates. MHC class II binding peptides have a broad length distribution complicating such predictions. Thus......, identifying the correct alignment is a crucial part of identifying the core of an MHC class II binding motif. In this context, we wish to describe a novel Gibbs motif sampler method ideally suited for recognizing such weak sequence motifs. The method is based on the Gibbs sampling method, and it incorporates...

  19. Japan Meteorological Agency/Meteorological Research Institute-Coupled Prediction System version 2 (JMA/MRI-CPS2): atmosphere-land-ocean-sea ice coupled prediction system for operational seasonal forecasting

    Science.gov (United States)

    Takaya, Yuhei; Hirahara, Shoji; Yasuda, Tamaki; Matsueda, Satoko; Toyoda, Takahiro; Fujii, Yosuke; Sugimoto, Hiroyuki; Matsukawa, Chihiro; Ishikawa, Ichiro; Mori, Hirotoshi; Nagasawa, Ryoji; Kubo, Yutaro; Adachi, Noriyuki; Yamanaka, Goro; Kuragano, Tsurane; Shimpo, Akihiko; Maeda, Shuhei; Ose, Tomoaki

    2018-02-01

    This paper describes the Japan Meteorological Agency/Meteorological Research Institute-Coupled Prediction System version 2 (JMA/MRI-CPS2), which was put into operation in June 2015 for the purpose of performing seasonal predictions. JMA/MRI-CPS2 has various upgrades from its predecessor, JMA/MRI-CPS1, including improved resolution and physics in its atmospheric and oceanic components, introduction of an interactive sea-ice model and realistic initialization of its land component. Verification of extensive re-forecasts covering a 30-year period (1981-2010) demonstrates that JMA/MRI-CPS2 possesses improved seasonal predictive skills for both atmospheric and oceanic interannual variability as well as key coupled variability such as the El Niño-Southern Oscillation (ENSO). For ENSO prediction, the new system better represents the forecast uncertainty and transition/duration of ENSO phases. Our analysis suggests that the enhanced predictive skills are attributable to incremental improvements resulting from all of the changes, as is apparent in the beneficial effects of sea-ice coupling and land initialization on 2-m temperature predictions. JMA/MRI-CPS2 is capable of reasonably representing the seasonal cycle and secular trends of sea ice. The sea-ice coupling remarkably enhances the predictive capability for the Arctic 2-m temperature, indicating the importance of this factor, particularly for seasonal predictions in the Arctic region.

  20. Testing the Predictive Validity of the Hendrich II Fall Risk Model.

    Science.gov (United States)

    Jung, Hyesil; Park, Hyeoun-Ae

    2018-03-01

    Cumulative data on patient fall risk have been compiled in electronic medical records systems, and it is possible to test the validity of fall-risk assessment tools using these data between the times of admission and occurrence of a fall. The Hendrich II Fall Risk Model scores assessed during three time points of hospital stays were extracted and used for testing the predictive validity: (a) upon admission, (b) when the maximum fall-risk score from admission to falling or discharge, and (c) immediately before falling or discharge. Predictive validity was examined using seven predictive indicators. In addition, logistic regression analysis was used to identify factors that significantly affect the occurrence of a fall. Among the different time points, the maximum fall-risk score assessed between admission and falling or discharge showed the best predictive performance. Confusion or disorientation and having a poor ability to rise from a sitting position were significant risk factors for a fall.

  1. NKS NordRisk II: Atlas of long-range atmospheric dispersion and deposition of radionuclides from selected risk sites in the Northern Hemisphere

    International Nuclear Information System (INIS)

    Smith Korsholm, U.; Havskov Soerensen, J.; Astrup, P.; Lauritzen, B.

    2011-04-01

    The present atlas has been developed within the NKS/NordRisk-II project 'Nuclear risk from atmospheric dispersion in Northern Europe'. The atlas describes risks from hypothetical long-range dispersion and deposition of radionuclides from 16 nuclear risk sites on the Northern Hemisphere. The atmospheric dispersion model calculations cover a period of 30 days following each release to ensure almost complete deposition of the dispersed material. The atlas contains maps showing the total deposition and time-integrated air concentration of Cs-137 and I-131 based on three years of meteorological data spanning the climate variability associated with the North Atlantic Oscillation, and corresponding time evolution of the ensemble mean atmospheric dispersion. (Author)

  2. NKS NordRisk II: Atlas of long-range atmospheric dispersion and deposition of radionuclides from selected risk sites in the Northern Hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Smith Korsholm, U.; Havskov Soerensen, J. (Danish Meteorological Institute (DMI), Copenhagen (Denmark)); Astrup, P.; Lauritzen, B. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy. Radiation Research Div., Roskilde (Denmark))

    2011-04-15

    The present atlas has been developed within the NKS/NordRisk-II project 'Nuclear risk from atmospheric dispersion in Northern Europe'. The atlas describes risks from hypothetical long-range dispersion and deposition of radionuclides from 16 nuclear risk sites on the Northern Hemisphere. The atmospheric dispersion model calculations cover a period of 30 days following each release to ensure almost complete deposition of the dispersed material. The atlas contains maps showing the total deposition and time-integrated air concentration of Cs-137 and I-131 based on three years of meteorological data spanning the climate variability associated with the North Atlantic Oscillation, and corresponding time evolution of the ensemble mean atmospheric dispersion. (Author)

  3. Nonlinear Aerodynamic and Nonlinear Structures Interations (NANSI) Methodology for Ballute/Inflatable Aeroelasticity in Hypersonic Atmospheric Entry, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA proposes a phase II effort to fully develop a comprehensive methodology for aeroelastic predictions of the nonlinear aerodynamic/aerothermodynamic - structure...

  4. A conceptual prediction model for seasonal drought processes using atmospheric and oceanic standardized anomalies: application to regional drought processes in China

    Science.gov (United States)

    Liu, Zhenchen; Lu, Guihua; He, Hai; Wu, Zhiyong; He, Jian

    2018-01-01

    Reliable drought prediction is fundamental for water resource managers to develop and implement drought mitigation measures. Considering that drought development is closely related to the spatial-temporal evolution of large-scale circulation patterns, we developed a conceptual prediction model of seasonal drought processes based on atmospheric and oceanic standardized anomalies (SAs). Empirical orthogonal function (EOF) analysis is first applied to drought-related SAs at 200 and 500 hPa geopotential height (HGT) and sea surface temperature (SST). Subsequently, SA-based predictors are built based on the spatial pattern of the first EOF modes. This drought prediction model is essentially the synchronous statistical relationship between 90-day-accumulated atmospheric-oceanic SA-based predictors and SPI3 (3-month standardized precipitation index), calibrated using a simple stepwise regression method. Predictor computation is based on forecast atmospheric-oceanic products retrieved from the NCEP Climate Forecast System Version 2 (CFSv2), indicating the lead time of the model depends on that of CFSv2. The model can make seamless drought predictions for operational use after a year-to-year calibration. Model application to four recent severe regional drought processes in China indicates its good performance in predicting seasonal drought development, despite its weakness in predicting drought severity. Overall, the model can be a worthy reference for seasonal water resource management in China.

  5. Evaluation of proposed shallow-land burial sites using the PRESTO-II [Prediction of Radiation Effects from Shallow Trench Operations] methodology and code

    International Nuclear Information System (INIS)

    Fields, D.E.; Uslu, I.; Yalcintas, M.G.

    1987-01-01

    PRESTO-II (Prediction of Radiation Effects from Shallow Trench Operations) is a computer code designed to evaluate possible doses and risks (health effects) from shallow-land burial sites. The model is intended to serve as a non-site-specific screening model for assessing radionuclide transport, ensuing exposure, and health impacts to a static local population for a 1000-year period following the end of disposal operations. Human exposure scenarios include normal releases (including leaching and operational spillage), human intrusion, and limited site farming or reclamation. Pathways and processes of transport from the trench to an individual or population include ground-water transport, overland flow, erosion, surface water dilution, suspension, atmospheric transport and deposition, inhalation, external exposure, and ingestion of contaminated beef, milk, crops, and water. The proposed waste disposal area in Koteyli, Balikesir, Turkey, has been evaluated using the PRESTO-II methodology. The results have been compared to those obtained for the Barnwell, South Carolina, site. Dose estimates for both sites are below regulatory limits, for the release and exposure scenarios considered. The doses for the sites are comparable, with slightly higher estimates obtained for the Turkish site. 7 refs., 1 tab

  6. Coordination-driven self-assembly of a novel carbonato-bridged heteromolecular neutral nickel(II) triangle by atmospheric CO2 fixation.

    Science.gov (United States)

    Mukherjee, Pampa; Drew, Michael G B; Estrader, Marta; Ghosh, Ashutosh

    2008-09-01

    Formation of a quasi-symmetrical mu 3-carbonato-bridged self-assembled heteromolecular triangle of Ni(II), [(mu 3-CO 3){Ni 2(salmeNH) 2(NCS) 2}{Ni(salmeNH 2) 2].Et 2O.H 2O (HsalmeNH = 2-[(3-methylamino-propylimino)-methyl]-phenol) involves atmospheric CO 2 uptake in a neutral medium, by spontaneous self-reorganization of the starting mononuclear Ni(II)-Schiff-base complex, [Ni(salmeNH) 2]. The environment around Ni(II) in two of the subunits is different from the third one. The starting complex, [Ni(salmeNH) 2], and one of the possible intermediate species, [Ni(salmeNH 2) 2(NCS) 2], which has a very similar coordination environment to that in the third Ni(II) center, have been characterized structurally. A plausible mechanism for the formation of such a triangle has also been proposed. The compound shows a very strong antiferromagnetic coupling. Fit as a regular triangular arrangement gave J = -53.1, g = 2.24, and R = 1.5 x 10 (-4).

  7. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues.

    Science.gov (United States)

    Scholtz, M T; Bidleman, T F

    2007-05-01

    In the first part of this paper, a simple coupled dynamic soil-atmosphere model for studying the gaseous exchange of pesticide soil residues with the atmosphere is described and evaluated by comparing model results with published measurements of pesticide concentrations in air and soil. In Part II, the model is used to study the concentration profiles of pesticide residues in both undisturbed and annually tilled agricultural soils. Future trends are estimated for the measured air and soil concentrations of lindane and six highly persistent pesticides (toxaphene, p,p'-DDE, dieldrin, cis- and trans-chlordane and trans-nonachlor) over a twenty-year period due to volatilization and leaching into the deeper soil. Wet deposition and particle associated pesticide deposition (that increase soil residue concentrations) and soil erosion, degradation in the soil (other than for lindane) and run-off in precipitation are not considered in this study. Estimates of the rain deposition fluxes are reported that show that, other than for lindane, net volatilization fluxes greatly exceed rain deposition fluxes. The model shows that the persistent pesticides studied are highly immobile in soil and that loss of these highly persistent residues from the soil is by volatilization rather than leaching into the deeper soil. The soil residue levels of these six pesticides are currently sources of net volatilization to the atmosphere and will remain so for many years. The maximum rate of volatilization from the soil was simulated by setting the atmospheric background concentration to zero; these simulations show that the rates of volatilization will not be significantly increased since soil resistance rather than the atmospheric concentration controls the volatilization rates. Annual tilling of the soils increases the volatilization loss to the atmosphere. Nonetheless, the model predicts that, if only air-soil exchange is considered, more than 76% of current persistent pesticide residues

  8. Prediction of Beck Depression Inventory (BDI-II) Score Using Acoustic Measurements in a Sample of Iium Engineering Students

    Science.gov (United States)

    Fikri Zanil, Muhamad; Nur Wahidah Nik Hashim, Nik; Azam, Huda

    2017-11-01

    Psychiatrist currently relies on questionnaires and interviews for psychological assessment. These conservative methods often miss true positives and might lead to death, especially in cases where a patient might be experiencing suicidal predisposition but was only diagnosed as major depressive disorder (MDD). With modern technology, an assessment tool might aid psychiatrist with a more accurate diagnosis and thus hope to reduce casualty. This project will explore on the relationship between speech features of spoken audio signal (reading) in Bahasa Malaysia with the Beck Depression Inventory scores. The speech features used in this project were Power Spectral Density (PSD), Mel-frequency Ceptral Coefficients (MFCC), Transition Parameter, formant and pitch. According to analysis, the optimum combination of speech features to predict BDI-II scores include PSD, MFCC and Transition Parameters. The linear regression approach with sequential forward/backward method was used to predict the BDI-II scores using reading speech. The result showed 0.4096 mean absolute error (MAE) for female reading speech. For male, the BDI-II scores successfully predicted 100% less than 1 scores difference with MAE of 0.098437. A prediction system called Depression Severity Evaluator (DSE) was developed. The DSE managed to predict one out of five subjects. Although the prediction rate was low, the system precisely predict the score within the maximum difference of 4.93 for each person. This demonstrates that the scores are not random numbers.

  9. BALTEX water and energy budgets in the NCEP/DOE reanalysis II

    Energy Technology Data Exchange (ETDEWEB)

    Roads, J. [Experimental Climate Prediction Center, Scripps Institution of Oceanography, La Jolla, CA (United States); Raschke, E. [Meteorologisches Institut der Universitaet Hamburg (Germany); Rocke, B. [Institute for Coastal Research, GKSS Research Center, Geesthacht (Germany)

    2002-07-01

    Water and energy budgets from the National Centers for Environmental Prediction/Dept. of Energy (NCEP/DOE) reanalysis II (NCEPRII) are described for the Baltic Sea catchment and sea (BALTEX). Annually, NCEPRII shows 0.7 mm d{sup -1} of atmospheric moisture converged into the land region with a corresponding runoff of 0.7 mm d{sup -1} to the Baltic Sea, consistent with observations. However, precipitation is too low; evaporation is too large; runoff does not have an appropriate winter minimum and spring maximum; the assimilation and surface nudging are too large. Important hydroclimatic characteristics can still be discerned. During summer, atmospheric water vapor, precipitation, evaporation, and surface and atmospheric radiative heating increase and the atmospheric radiative cooling, dry static energy convergence decrease. There are large contrasts between the sea and land; during winter sensible heat is transferred from the sea to the atmosphere and sea evaporation and precipitation are largest during the fall and winter; somewhat opposite behavior occurs over land. (orig.)

  10. Real-time prediction of atmospheric Lagrangian coherent structures based on forecast data: An application and error analysis

    Science.gov (United States)

    BozorgMagham, Amir E.; Ross, Shane D.; Schmale, David G.

    2013-09-01

    The language of Lagrangian coherent structures (LCSs) provides a new means for studying transport and mixing of passive particles advected by an atmospheric flow field. Recent observations suggest that LCSs govern the large-scale atmospheric motion of airborne microorganisms, paving the way for more efficient models and management strategies for the spread of infectious diseases affecting plants, domestic animals, and humans. In addition, having reliable predictions of the timing of hyperbolic LCSs may contribute to improved aerobiological sampling of microorganisms with unmanned aerial vehicles and LCS-based early warning systems. Chaotic atmospheric dynamics lead to unavoidable forecasting errors in the wind velocity field, which compounds errors in LCS forecasting. In this study, we reveal the cumulative effects of errors of (short-term) wind field forecasts on the finite-time Lyapunov exponent (FTLE) fields and the associated LCSs when realistic forecast plans impose certain limits on the forecasting parameters. Objectives of this paper are to (a) quantify the accuracy of prediction of FTLE-LCS features and (b) determine the sensitivity of such predictions to forecasting parameters. Results indicate that forecasts of attracting LCSs exhibit less divergence from the archive-based LCSs than the repelling features. This result is important since attracting LCSs are the backbone of long-lived features in moving fluids. We also show under what circumstances one can trust the forecast results if one merely wants to know if an LCS passed over a region and does not need to precisely know the passage time.

  11. The Value of the SYNTAX Score II in Predicting Clinical Outcomes in Patients Undergoing Transcatheter Aortic Valve Implantation.

    Science.gov (United States)

    Ryan, Nicola; Nombela-Franco, Luis; Jiménez-Quevedo, Pilar; Biagioni, Corina; Salinas, Pablo; Aldazábal, Andrés; Cerrato, Enrico; Gonzalo, Nieves; Del Trigo, María; Núñez-Gil, Iván; Fernández-Ortiz, Antonio; Macaya, Carlos; Escaned, Javier

    2017-11-27

    The predictive value of the SYNTAX score (SS) for clinical outcomes after transcatheter aortic valve implantation (TAVI) is very limited and could potentially be improved by the combination of anatomic and clinical variables, the SS-II. We aimed to evaluate the value of the SS-II in predicting outcomes in patients undergoing TAVI. A total of 402 patients with severe symptomatic aortic stenosis undergoing transfemoral TAVI were included. Preprocedural TAVI angiograms were reviewed and the SS-I and SS-II were calculated using the SS algorithms. Patients were stratified in 3 groups according to SS-II tertiles. The coprimary endpoints were all-cause death and major adverse cardiovascular events (MACE), a composite of all-cause death, cerebrovascular event, or myocardial infarction at 1 year. Increased SS-II was associated with higher 30-day mortality (P=.036) and major bleeding (P=.015). The 1-year risk of death and MACE was higher among patients in the 3rd SS-II tertile (HR, 2.60; P=.002 and HR, 2.66; P<.001) and was similar among patients in the 2nd tertile (HR, 1.27; P=.507 and HR, 1.05; P=.895) compared with patients in the 1st tertile. The highest SS-II tertile was an independent predictor of long-term mortality (P=.046) and MACE (P=.001). The SS-II seems more suited to predict clinical outcomes in patients undergoing TAVI than the SS-I. Increased SS-II was associated with poorer clinical outcomes at 1 and 4 years post-TAVI, independently of the presence of coronary artery disease. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  12. Predicting top-of-atmosphere radiance for arbitrary viewing geometries from the visible to thermal infrared: generalization to arbitrary average scene temperatures

    Science.gov (United States)

    Florio, Christopher J.; Cota, Steve A.; Gaffney, Stephanie K.

    2010-08-01

    In a companion paper presented at this conference we described how The Aerospace Corporation's Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) may be used in conjunction with a limited number of runs of AFRL's MODTRAN4 radiative transfer code, to quickly predict the top-of-atmosphere (TOA) radiance received in the visible through midwave IR (MWIR) by an earth viewing sensor, for any arbitrary combination of solar and sensor elevation angles. The method is particularly useful for large-scale scene simulations where each pixel could have a unique value of reflectance/emissivity and temperature, making the run-time required for direct prediction via MODTRAN4 prohibitive. In order to be self-consistent, the method described requires an atmospheric model (defined, at a minimum, as a set of vertical temperature, pressure and water vapor profiles) that is consistent with the average scene temperature. MODTRAN4 provides only six model atmospheres, ranging from sub-arctic winter to tropical conditions - too few to cover with sufficient temperature resolution the full range of average scene temperatures that might be of interest. Model atmospheres consistent with intermediate temperature values can be difficult to come by, and in any event, their use would be too cumbersome for use in trade studies involving a large number of average scene temperatures. In this paper we describe and assess a method for predicting TOA radiance for any arbitrary average scene temperature, starting from only a limited number of model atmospheres.

  13. ISLSCP II GlobalView: Atmospheric Methane Concentrations

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The GlobalView Methane (CH4) data product contains synchronized and smoothed time series of atmospheric CH4 concentrations at selected sites that were...

  14. Prediction of individual mandibular changes induced by functional jaw orthopedics followed by fixed appliances in Class II patients.

    Science.gov (United States)

    Franchi, Lorenzo; Baccetti, Tiziano

    2006-11-01

    To identify pretreatment cephalometric variables for the prediction of individual mandibular outcomes of functional jaw orthopedics (FJO) followed by fixed appliances in Class II patients treated at the peak in mandibular growth. The study was performed on 51 subjects (24 females, 27 males) with Class II malocclusion. First-phase therapy was accomplished with a twin block in 16 subjects, a stainless steel crown Herbst in 15 subjects, and an acrylic splint Herbst in 20 subjects. Lateral cephalograms were available at the start of treatment with FJO and at the completion of fixed appliance therapy. All subjects received FJO at the peak in mandibular growth (CS 3 at T1). Individual responsiveness to Class II treatment including FJO was defined on the basis of the T2-T1 increment in total mandibular length (Co-Gn) when compared with untreated Class II subjects. Discriminant analysis identified a single predictive parameter (Co-Go-Me degrees) with a classification power of 80%. Pretreatment vertical and sagittal parameters were not able to improve the prediction based upon the mandibular angle. A Class II patient at the peak in skeletal maturation (CS 3) with a pretreatment Co-Go-Me degrees smaller than 125.5 degrees is expected to respond favorably to treatment including FJO. A Class II patient at CS 3 with a pretreatment value for Co-Go-Me degrees greater than 125.5 degrees is expected to respond poorly to treatment including FJO.

  15. The atmospheric boundary layer — advances in knowledge and application

    Science.gov (United States)

    Garratt, J. R.; Hess, G. D.; Physick, W. L.; Bougeault, P.

    1996-02-01

    We summarise major activities and advances in boundary-layer knowledge in the 25 years since 1970, with emphasis on the application of this knowledge to surface and boundary-layer parametrisation schemes in numerical models of the atmosphere. Progress in three areas is discussed: (i) the mesoscale modelling of selected phenomena; (ii) numerical weather prediction; and (iii) climate simulations. Future trends are identified, including the incorporation into models of advanced cloud schemes and interactive canopy schemes, and the nesting of high resolution boundary-layer schemes in global climate models.

  16. Monitoring Top-of-Atmosphere Radiative Energy Imbalance for Climate Prediction

    Science.gov (United States)

    Lin, Bing; Chambers, Lin H.; Stackhouse, Paul W., Jr.; Minnis, Patrick

    2009-01-01

    Large climate feedback uncertainties limit the prediction accuracy of the Earth s future climate with an increased CO2 atmosphere. One potential to reduce the feedback uncertainties using satellite observations of top-of-atmosphere (TOA) radiative energy imbalance is explored. Instead of solving the initial condition problem in previous energy balance analysis, current study focuses on the boundary condition problem with further considerations on climate system memory and deep ocean heat transport, which is more applicable for the climate. Along with surface temperature measurements of the present climate, the climate feedbacks are obtained based on the constraints of the TOA radiation imbalance. Comparing to the feedback factor of 3.3 W/sq m/K of the neutral climate system, the estimated feedback factor for the current climate system ranges from -1.3 to -1.0 W/sq m/K with an uncertainty of +/-0.26 W/sq m/K. That is, a positive climate feedback is found because of the measured TOA net radiative heating (0.85 W/sq m) to the climate system. The uncertainty is caused by the uncertainties in the climate memory length. The estimated time constant of the climate is large (70 to approx. 120 years), implying that the climate is not in an equilibrium state under the increasing CO2 forcing in the last century.

  17. PREDICTING Lyα AND Mg II FLUXES FROM K AND M DWARFS USING GALAXY EVOLUTION EXPLORER ULTRAVIOLET PHOTOMETRY

    International Nuclear Information System (INIS)

    Shkolnik, Evgenya L.; Rolph, Kristina A.; Peacock, Sarah; Barman, Travis S.

    2014-01-01

    A star's ultraviolet (UV) emission can greatly affect the atmospheric chemistry and physical properties of closely orbiting planets with the potential for severe mass loss. In particular, the Lyα emission line at 1216 Å, which dominates the far-ultraviolet (FUV) spectrum, is a major source of photodissociation of important atmospheric molecules such as water and methane. The intrinsic flux of Lyα, however, cannot be directly measured due to the absorption of neutral hydrogen in the interstellar medium and contamination by geocoronal emission. To date, reconstruction of the intrinsic Lyα line based on Hubble Space Telescope spectra has been accomplished for 46 FGKM nearby stars, 28 of which have also been observed by the Galaxy Evolution Explorer (GALEX). Our investigation provides a correlation between published intrinsic Lyα and GALEX far- and near-ultraviolet (NUV) chromospheric fluxes for K and M stars. The negative correlations between the ratio of the Lyα to the GALEX fluxes reveal how the relative strength of Lyα compared to the broadband fluxes weakens as the FUV and NUV excess flux increase. We also correlate GALEX fluxes with the strong NUV Mg II h+k spectral emission lines formed at lower chromospheric temperatures than Lyα. The reported correlations provide estimates of intrinsic Lyα and Mg II fluxes for the thousands of K and M stars in the archived GALEX all-sky surveys. These will constrain new stellar upper atmosphere models for cool stars and provide realistic inputs to models describing exoplanetary photochemistry and atmospheric evolution in the absence of UV spectroscopy

  18. Surface tensions of multi-component mixed inorganic/organic aqueous systems of atmospheric significance: measurements, model predictions and importance for cloud activation predictions

    Directory of Open Access Journals (Sweden)

    D. O. Topping

    2007-01-01

    Full Text Available In order to predict the physical properties of aerosol particles, it is necessary to adequately capture the behaviour of the ubiquitous complex organic components. One of the key properties which may affect this behaviour is the contribution of the organic components to the surface tension of aqueous particles in the moist atmosphere. Whilst the qualitative effect of organic compounds on solution surface tensions has been widely reported, our quantitative understanding on mixed organic and mixed inorganic/organic systems is limited. Furthermore, it is unclear whether models that exist in the literature can reproduce the surface tension variability for binary and higher order multi-component organic and mixed inorganic/organic systems of atmospheric significance. The current study aims to resolve both issues to some extent. Surface tensions of single and multiple solute aqueous solutions were measured and compared with predictions from a number of model treatments. On comparison with binary organic systems, two predictive models found in the literature provided a range of values resulting from sensitivity to calculations of pure component surface tensions. Results indicate that a fitted model can capture the variability of the measured data very well, producing the lowest average percentage deviation for all compounds studied. The performance of the other models varies with compound and choice of model parameters. The behaviour of ternary mixed inorganic/organic systems was unreliably captured by using a predictive scheme and this was dependent on the composition of the solutes present. For more atmospherically representative higher order systems, entirely predictive schemes performed poorly. It was found that use of the binary data in a relatively simple mixing rule, or modification of an existing thermodynamic model with parameters derived from binary data, was able to accurately capture the surface tension variation with concentration. Thus

  19. ISLSCP II Globalview: Atmospheric CO2 Concentrations

    Data.gov (United States)

    National Aeronautics and Space Administration — The GlobalView Carbon Dioxide (CO2) data product contains synchronized and smoothed time series of atmospheric CO2 concentrations at selected sites that were created...

  20. ISLSCP II GlobalView: Atmospheric Methane Concentrations

    Data.gov (United States)

    National Aeronautics and Space Administration — The GlobalView Methane (CH4) data product contains synchronized and smoothed time series of atmospheric CH4 concentrations at selected sites that were created using...

  1. Would be the Atmosphere Chaotic?

    Directory of Open Access Journals (Sweden)

    Isimar de Azevedo Santos

    2013-07-01

    Full Text Available The atmosphere has often been considered “chaotic” when in fact the “chaos” is a manifestation of the models that simulate it, which do not include all the physical mechanisms that exist within it. A weather prediction cannot be perfectly verified after a few days of integration due to the inherent nonlinearity of the equations of the hydrodynamic models. The innovative ideas of Lorenz led to the use of the ensemble forecast, with clear improvements in the quality of the numerical weather prediction. The present study addresses the statement that “even with perfect models and perfect observations, the ‘chaotic’ nature of the atmosphere would impose a finite limit of about two weeks to the predictability of the weather” as the atmosphere is not necessarily “chaotic”, but the models used in the simulation of atmospheric processes are. We conclude, therefore, that potential exists for developments to increase the horizon of numerical weather prediction, starting with better models and observations.

  2. A global high-resolution model experiment on the predictability of the atmosphere

    Science.gov (United States)

    Judt, F.

    2016-12-01

    Forecasting high-impact weather phenomena is one of the most important aspects of numerical weather prediction (NWP). Over the last couple of years, a tremendous increase in computing power has facilitated the advent of global convection-resolving NWP models, which allow for the seamless prediction of weather from local to planetary scales. Unfortunately, the predictability of specific meteorological phenomena in these models is not very well known. This raises questions about which forecast problems are potentially tractable, and what is the value of global convection-resolving model predictions for the end user. To address this issue, we use the Yellowstone supercomputer to conduct a global high-resolution predictability experiment with the recently developed Model for Prediction Across Scales (MPAS). The computing power of Yellowstone enables the model to run at a globally uniform resolution of 4 km with 55 vertical levels (>2 billion grid cells). These simulations, which require 3 million core-hours for the entire experiment, allow for the explicit treatment of organized deep moist convection (i.e., thunderstorm systems). Resolving organized deep moist convection alleviates grave limitations of previous predictability studies, which either used high-resolution limited-area models or global simulations with coarser grids and cumulus parameterization. By computing the error growth characteristics in a set of "identical twin" model runs, the experiment will clarify the intrinsic predictability limits of atmospheric phenomena on a wide range of scales, from severe thunderstorms to global-scale wind patterns that affect the distribution of tropical rainfall. Although a major task by itself, this study is intended to be exploratory work for a future predictability experiment going beyond of what has so far been feasible. We hope to use CISL's new Cheyenne supercomputer to conduct a similar predictability experiments on a global mesh with 1-2 km resolution. This

  3. Atmospheric anthropic impacts tracked by the French atmospheric mobile observatory

    Science.gov (United States)

    Cuesta, J.; Chazette, P.; Flamant, P. H.

    2009-04-01

    A new ATmospheric Mobile ObServatory, so called "ATMOS", has been developed by the LiMAG "Lidar, Meteorology and Geophysics" team of the Institut Pierre Simon Laplace (IPSL) in France, in order to contribute to international field campaigns for studying atmospheric physico-chemistry, air quality and climate (i.e. aerosols, clouds, trace gazes, atmospheric dynamics and energy budget) and the ground-based validation of satellite observations. ATMOS has been deployed in the framework of i) LISAIR, for monitoring air quality in Paris in 2005, ii) AMMA "African Monsoon Multidisciplinary Analysis", in Tamanrasset and in Niamey for observing the aerosols and the atmospheric boundary layer in the Sahara and in the Sahel in 2006, iii) COPS "Convectively and Orographycally driven Precipitation Study" in the Rhin Valley in 2007 and iv) the validation of the spatial mission CALIPSO, launched in April 2006. In the coming years, ATMOS will be deployed i) in the Paris Megacity, in the framework of MEGAPOLI (2009-2010), ii) in southern France (near Marseille) for the Chemistry-Aerosol Mediterranean Experiment CHARMEX (2011-2012) and iii) the validation of ADM-Aeolus in 2010-2011 and Earth-Care in 2012. ATMOS payload is modular, accounting for the different platforms, instruments and measuring techniques. The deployment of ATMOS is an essential contribution to field campaigns, complementing the fixed sites, and a potential alternative of airborne platforms, heavier and more expensive. ATMOS mobile payload comprises both the remote sensing platform MOBILIS ("Moyens mOBIles de téLédetection de l'IPSL") and the in-situ physico-chemical station SAMMO ("Station Aérosols et chiMie MObile"). MOBILIS is an autonomous and high-performance system constituted by a full set of active and passive remote sensing instrumentation (i.e. Lidars and radiometers), whose payload may be adapted for either i) long term fixed monitoring in a maritime container or a shelter, ii) ground-based transect

  4. Atmospheric Effects on Signal Propagation in Adverse Environmental Conditions: A Validation of the Advanced Refractive Effects Prediction System

    Science.gov (United States)

    2008-09-01

    65 Figure 30. Chiang Mai , Thailand March Climatology AREPS M-unit graphic. ..............66 Figure 31. Standard Atmosphere AREPS M-unit...experiment as a precursor to the annual capstone field experiment (May and June) at the Mae Ngat Dam north of Chiang Mai , Thailand. COASTS R&D...Motorola 802.16 network components as discussed in Chapter II. Testing occurred approximately 40 km north of Chiang Mai , Thailand, at the Mae Ngat Dam

  5. Prediction of CMEs and Type II Bursts from Sun to Earth

    Science.gov (United States)

    Cairns, I. H.; Schmidt, J. M.; Gopalswamy, N.; van der Holst, B.

    2017-12-01

    Most major space weather events are due to fast CMEs and their shocks interacting with Earth's magnetosphere. SImilarly, type II solar radio bursts are well-known signatures of CMEs and their shocks moving through the corona and solar wind. The properties of the space weather events and the type II radio bursts depend sensitively on the CME velocity, shape, and evolution as functions of position and time, as well as on the magnetic field vector in the coronal and solar wind plasma, downstream of the CME shock, and inside the CME. We report simulations of CMEs and type II bursts from the Sun to Earth with the Space Weather Modelling Framework (2015 and 2016 versions), set up carefully using relevant data, and a kinetic radio emission theory. Excellent agreement between observations, simulations, and theory are found for the coronal (metric) type II burst of 7 September 2014 and associated CME, including the lack of radio emission in the solar wind beyond about 10 solar radii. Similarly, simulation of a CME and type II burst from the Sun to 1 AU over the period 29 November - 1 December 2013 yield excellent agreement for the radio burst from 10 MHz to 30 kHz for STEREO A and B and Wind, arrival of the CME at STEREO A within 1 hour reported time, deceleration of the CME in agreement with the Gopalswamy et al. [2011] observational analyses, and Bz rotations at STEREO A from upstream of the CME shock to within the CME. These results provide strong support for the type II theory and also that the Space WeatherModeling Framework can accurately predict the properties and evolution of CMEs and the interplanetary magnetic field and plasma from the Sun to 1 AU when sufficiently carefully initialized.

  6. The Copernicus Atmosphere Monitoring Service: facilitating the prediction of air quality from global to local scales

    Science.gov (United States)

    Engelen, R. J.; Peuch, V. H.

    2017-12-01

    The European Copernicus Atmosphere Monitoring Service (CAMS) operationally provides daily forecasts of global atmospheric composition and regional air quality. The global forecasting system is using ECMWF's Integrated Forecasting System (IFS), which is used for numerical weather prediction and which has been extended with modules for atmospheric chemistry, aerosols and greenhouse gases. The regional forecasts are produced by an ensemble of seven operational European air quality models that take their boundary conditions from the global system and provide an ensemble median with ensemble spread as their main output. Both the global and regional forecasting systems are feeding their output into air quality models on a variety of scales in various parts of the world. We will introduce the CAMS service chain and provide illustrations of its use in downstream applications. Both the usage of the daily forecasts and the usage of global and regional reanalyses will be addressed.

  7. Atmospheres of Brown Dwarfs

    Science.gov (United States)

    Wang, Ruoyan; Seay, Christopher

    2018-01-01

    We construct a grid of brown dwarf model atmospheres spanning a wide range of atmospheric metallicity (0.3x ≤ met ≤ 100x), C/O ratios (0.25x ≤ C/O ≤ 2.5x), and cloud properties, encompassing atmospheres of effective temperatures 200 ≤ Teff ≤ 2400 K and gravities 2.5 ≤ log g ≤ 5.5. We produce the expected temperature-pressure profiles and emergent spectra from an atmosphere in radiative-convective equilibrium. We can then compare our predicted spectra to observations and retrieval results to aid in their predictions and influence future missions and telescopic observations. In our poster we briefly describe our modeling methodology and present our progress on model grid construction, spanning solar and subsolar C/O and metallicity.

  8. Extreme Environment Damage Index and Accumulation Model for CMC Laminate Fatigue Life Prediction, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Materials Research & Design (MR&D) is proposing in the SBIR Phase II an effort to develop a tool for predicting the fatigue life of C/SiC composite...

  9. The atmospheric release advisory capability (ARAC): A federal emergency response capability

    International Nuclear Information System (INIS)

    Dickerson, M.H.; Sullivan, T.J.

    1988-03-01

    The Atmospheric Release Capability (ARAC) is a Department of Energy (DOE)-sponsored emergency-response service set up to provide real-time prediction of the dose levels and the extent of surface contamination resulting from a broad range of possible occurrences (accidents, spills, extortion threats involving nuclear material, reentry of nuclear-powered satellites, and atmospheric nuclear tests) that could involve the release of airborne radioactive material. During the past decade, ARAC has responded to more than 150 real-time situations, including exercises. The most notable responses include the Three Mile Island accident in Pennsylvania, the Titan II missile accident in Arkansas, the reentry of the USSR's COSMOS-954 into the atmosphere over Canada, the accidental release of uranium hexafluoride from the Sequoyah Facility accident in Oklahoma, and, most recently, the Chernobyl reactor accident in the Soviet Union. ARAC currently supports the emergency-preparedness plans at 50 Department of Defense (DOD) and DOE sites within the US and also responds to accidents that happen elsewhere. Our ARAC center serves as the focal point for data acquisition, data analysis and assessments during a response, using a computer-based communication network to acquire real-time weather data from the accident site and the surrounding region, as well as pertinent accident information. Its three-dimensional computer models for atmospheric dispersion, MATHEW and ADPIC, digest all this information and produce the predictions used in accident assessment. 9 refs., 6 figs., 1 tab

  10. Model Stellar Atmospheres and Real Stellar Atmospheres and Status of the ATLAS12 Opacity Sampling Program and of New Programs for Rosseland and for Distribution Function Opacity

    Science.gov (United States)

    Kurucz, Robert L.

    1996-01-01

    I discuss errors in theory and in interpreting observations that are produced by the failure to consider resolution in space, time, and energy. I discuss convection in stellar model atmospheres and in stars. Large errors in abundances are possible such as the factor of ten error in the Li abundance for extreme Population II stars. Finally I discuss the variation of microturbulent velocity with depth, effective temperature, gravity, and abundance. These variations must be dealt with in computing models and grids and in any type of photometric calibration. I have also developed a new opacity-sampling version of my model atmosphere program called ATLAS12. It recognizes more than 1000 atomic and molecular species, each in up to 10 isotopic forms. It can treat all ions of the elements up through Zn and the first 5 ions of heavier elements up through Es. The elemental and isotopic abundances are treated as variables with depth. The fluxes predicted by ATLAS12 are not accurate in intermediate or narrow bandpass intervals because the sample size is too small. A special stripped version of the spectrum synthesis program SYNTHE is used to generate the surface flux for the converged model using the line data on CD-ROMs 1 and 15. ATLAS12 can be used to produce improved models for Am and Ap stars. It should be very useful for investigating diffusion effects in atmospheres. It can be used to model exciting stars for H II regions with abundances consistent with those of the H II region. These programs and line files will be distributed on CD-ROMs.

  11. Prediction on long-term mean and mean square pollutant concentrations in an urban atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S; Lamb, R G; Seinfeld, J H

    1976-01-01

    The general problem of predicting long-term average (say yearly) pollutant concentrations in an urban atmosphere is formulated. The pollutant concentration can be viewed as a random process, the complete description of which requires knowledge of its probability density function, which is unknown. The mean concentration is the first moment of the concentration distribution, and at present there exist a number of models for predicting the long-term mean concentration of an inert pollutant. The second moment, or mean square concentration, indicates additional features of the distribution, such as the level of fluctuations about the mean. In the paper a model proposed by Lamb for the long-term mean concentration is reviewed, and a new model for prediction of the long-term mean square concentration of an inert air pollutant is derived. The properties and uses of the model are discussed, and the equations defining the model are presented in a form for direct application to an urban area.

  12. The role of copper and oxalate in the redox cycling of iron in atmospheric waters

    Science.gov (United States)

    Sedlak, David L.; Hoigné, Jürg

    During daytime, the redox cycling of dissolved iron compounds in atmospheric waters, and the related in-cloud transformations of photooxidants, are affected by reactions of Fe and Cu with hydroperoxy (HO 2) and superoxide (O 2-) radicals and the photoreduction of Fe(III)-oxalato complexes. We have investigated several of the important chemical reactions in this redox cycle, through laboratory simulation of the system, using γ-radiation to produce HO 2/O 2-. At concentrations comparable to those measured in atmospheric waters, the redox cycling of Fe was dramatically affected by the presence of oxalate and trace concentrations of Cu. At concentrations more than a hundred times lower than Fe, Cu consumed most of the HO 2/O 2-, and cycled between the Cu(II) and Cu(I) forms. Cu + reacted with FeOH 2+ to produce Fe(II) and Cu(II), with a second order rate constant of approximately 3 × 10 7 M -1s -1. The presence of oxalate resulted in the formation of Fe(III)-oxalato complexes that were essentially unreactive with HO 2/O 2-. Only at high oxalate concentrations was the Fe(II)C 2O 4 complex also formed, and it reacted relatively rapidly with hydrogen peroxide ( k = (3.1 ± 0.6) × 10 4 M -1s -1). Simulations incorporating measurements for other redox mechanisms, including oxidation by ozone, indicate that, during daytime, Fe should be found mostly in the ferrous oxidation state, and that reactions of FeOH 2+ with Cu(I) and HO 2/O 2-, and to a lesser degree, the photolysis of Fe(III)-oxalato complexes, are important mechanisms of Fe reduction in atmospheric waters. The catalytic effect of Cu(II)/Cu(I) and Fe(III)/Fe(II) should also significantly increase the sink function of the atmospheric liquid phase for HO 2 present in a cloud. A simple kinetic model for the reactions of Fe, Cu and HO 2/O 2-, accurately predicted the changes in Fe oxidation states that occurred when authentic fogwater samples were exposed to HO 2/O 2-.

  13. FORUM - FutureTox II: In vitro Data and In Silico Models for Predictive Toxicology

    Science.gov (United States)

    FutureTox II, a Society of Toxicology Contemporary Concepts in Toxicology workshop, was held in January, 2014. The meeting goals were to review and discuss the state of the science in toxicology in the context of implementing the NRC 21st century vision of predicting in vivo resp...

  14. A tool model for predicting atmospheric kinetics with sensitivity analysis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A package( a tool model) for program of predicting atmospheric chemical kinetics with sensitivity analysis is presented. The new direct method of calculating the first order sensitivity coefficients using sparse matrix technology to chemical kinetics is included in the tool model, it is only necessary to triangularize the matrix related to the Jacobian matrix of the model equation. The Gear type procedure is used to integrate amodel equation and its coupled auxiliary sensitivity coefficient equations. The FORTRAN subroutines of the model equation, the sensitivity coefficient equations, and their Jacobian analytical expressions are generated automatically from a chemical mechanism. The kinetic representation for the model equation and its sensitivity coefficient equations, and their Jacobian matrix is presented. Various FORTRAN subroutines in packages, such as SLODE, modified MA28, Gear package, with which the program runs in conjunction are recommended.The photo-oxidation of dimethyl disulfide is used for illustration.

  15. Predictive Modeling of a Paradigm Mechanical Cooling Tower Model: II. Optimal Best-Estimate Results with Reduced Predicted Uncertainties

    Directory of Open Access Journals (Sweden)

    Ruixian Fang

    2016-09-01

    Full Text Available This work uses the adjoint sensitivity model of the counter-flow cooling tower derived in the accompanying PART I to obtain the expressions and relative numerical rankings of the sensitivities, to all model parameters, of the following model responses: (i outlet air temperature; (ii outlet water temperature; (iii outlet water mass flow rate; and (iv air outlet relative humidity. These sensitivities are subsequently used within the “predictive modeling for coupled multi-physics systems” (PM_CMPS methodology to obtain explicit formulas for the predicted optimal nominal values for the model responses and parameters, along with reduced predicted standard deviations for the predicted model parameters and responses. These explicit formulas embody the assimilation of experimental data and the “calibration” of the model’s parameters. The results presented in this work demonstrate that the PM_CMPS methodology reduces the predicted standard deviations to values that are smaller than either the computed or the experimentally measured ones, even for responses (e.g., the outlet water flow rate for which no measurements are available. These improvements stem from the global characteristics of the PM_CMPS methodology, which combines all of the available information simultaneously in phase-space, as opposed to combining it sequentially, as in current data assimilation procedures.

  16. The propagation of light pollution in the atmosphere

    Science.gov (United States)

    Cinzano, P.; Falchi, F.

    2012-12-01

    Recent methods to map artificial night-sky brightness and stellar visibility across large territories or their distribution over the entire sky at any site are based on computation of the propagation of light pollution with Garstang models, a simplified solution of the radiative transfer problem in the atmosphere that allows fast computation by reducing it to a ray-tracing approach. They are accurate for a clear atmosphere, when a two-scattering approximation is acceptable, which is the most common situation. We present here up-to-date extended Garstang models (EGM), which provide a more general numerical solution for the radiative transfer problem applied to the propagation of light pollution in the atmosphere. We also present the LPTRAN software package, an application of EGM to high-resolution Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) satellite measurements of artificial light emission and to GTOPO30 (Global 30 Arcsecond) digital elevation data, which provides an up-to-date method to predict the artificial brightness distribution of the night sky at any site in the world at any visible wavelength for a broad range of atmospheric situations and the artificial radiation density in the atmosphere across the territory. EGM account for (i) multiple scattering, (ii) wavelengths from 250 nm to infrared, (iii) the Earth's curvature and its screening effects, (iv) site and source elevation, (v) many kinds of atmosphere with the possibility of custom set-up (e.g. including thermal inversion layers), (vi) a mix of different boundary-layer aerosols and tropospheric aerosols, with the possibility of custom set-up, (vii) up to five aerosol layers in the upper atmosphere, including fresh and aged volcanic dust and meteoric dust, (viii) variations of the scattering phase function with elevation, (ix) continuum and line gas absorption from many species, ozone included, (x) up to five cloud layers, (xi) wavelength-dependent bidirectional

  17. The influence of an atmospheric Two-Way coupled model system on the predictability of extratropical cyclones

    Science.gov (United States)

    Schuster, Mareike; Thürkow, Markus; Weiher, Stefan; Kirchner, Ingo; Ulbrich, Uwe; Will, Andreas

    2016-04-01

    A general bias of global atmosphere ocean models, and also of the MPI-ESM, is an under-representation of the high latitude cyclone activity and an overestimation of the mid latitude cyclone activity in the North Atlantic, thus representing the extra-tropical storm track too zonal. We will show, that this effect can be antagonized by applying an atmospheric Two-Way Coupling (TWC). In this study we present a newly developed Two-Way Coupled model system, which is based on the MPI-ESM, and show that it is able to capture the mean storm track location more accurate. It also influences the sub-decadal deterministic predictability of extra-tropical cyclones and shows significantly enhanced skill compared to the "uncoupled" MPI-ESM standalone system. This study evaluates a set of hindcast experiments performed with said Two-Way Coupled model system. The regional model COSMO CLM is Two-Way Coupled to the atmosphere of the global Max-Plack-Institute Earth System Model (MPI-ESM) and therefore integrates and exchanges the state of the atmosphere every 10 minutes (MPI-TWC-ESM). In the coupled source region (North Atlantic), mesoscale processes which are relevant for the formation and early-stage development of cyclones are expected to be better represented, and therefore influence the large scale dynamics of the target region (Europe). The database covers 102 "uncoupled" years and 102 Two-Way Coupled years of the recent climate (1960-2010). Results are validated against the ERA-Interim reanalysis. Besides the climatological point of view, the design of this single model ensemble allows for an analysis of the predictability of the first and second leadyears of the hindcasts. As a first step to understand the improved predictability of cyclones, we will show a detailed analysis of climatologies for specific cyclone categories, sorted by season and region. Especially for cyclones affecting Europe, the TWC is capable to counteract the AOGCM's biases in the North Atlantic. Also

  18. Predicted mineral melt formation by BCURA Coal Sample Bank coals: Variation with atmosphere and comparison with reported ash fusion test data

    Energy Technology Data Exchange (ETDEWEB)

    D. Thompson [University of Sheffield (United Kingdom). Department of Engineering Materials

    2010-08-15

    The thermodynamic equilibrium phases formed under ash fusion test and excess air combustion conditions by 30 coals of the BCURA Coal Sample Bank have been predicted from 1100 to 2000 K using the MTDATA computational suite and the MTOX database for silicate melts and associated phases. Predicted speciation and degree of melting varied widely from coal to coal. Melting under an ash fusion test atmosphere of CO{sub 2}:H{sub 2} 1:1 was essentially the same as under excess air combustion conditions for some coals, and markedly different for others. For those ashes which flowed below the fusion test maximum temperature of 1773 K flow coincided with 75-100% melting in most cases. Flow at low predicted melt formation (46%) for one coal cannot be attributed to any one cause. The difference between predicted fusion behaviours under excess air and fusion test atmospheres becomes greater with decreasing silica and alumina, and increasing iron, calcium and alkali metal content in the coal mineral. 22 refs., 7 figs., 3 tabs.

  19. Practical use of offsite atmospheric measurements to enhance profitability of onsite wind prediction

    Energy Technology Data Exchange (ETDEWEB)

    Collier, Craig [GL Garrad Hassan (Canada)

    2011-07-01

    This paper presents the use of offsite atmospheric measurements to improve the profitability of onsite wind prediction. There are two common sensitivities used, intraday and interday. Results from US mid-western sites show that the error associated with wind predictions is large but there are possibilities for improvement. Inter- and intraday can be used traditionally to contribute towards NWP bias correction. Intraday alone can be used with machine learning and NWP. These techniques are compared and given in order of ease of use and potential accuracy gains. Some considerations and differences for all three techniques, namely, traditional, data assimilation and machine learning are also detailed. An offsite selection matrix shows how elements like location, geography and telemetry rate in the 3 techniques. The experimental setup for all 3 techniques over a 3-month period is given and the results are presented. It can be concluded that the results from these simple experiments show promise but vary in method and time scale.

  20. Forecasting global atmospheric CO2

    International Nuclear Information System (INIS)

    Agusti-Panareda, A.; Massart, S.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Engelen, R.; Jones, L.; Peuch, V.H.; Chevallier, F.; Ciais, P.; Paris, J.D.; Sherlock, V.

    2014-01-01

    A new global atmospheric carbon dioxide (CO 2 ) real-time forecast is now available as part of the preoperational Monitoring of Atmospheric Composition and Climate - Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO 2 forecasting system is that the land surface, including vegetation CO 2 fluxes, is modelled online within the IFS. Other CO 2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO 2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO 2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO 2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO 2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO 2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO 2 fluxes also lead to accumulating errors in the CO 2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO 2 fluxes compared to total optimized fluxes and the atmospheric CO 2 compared to observations. The largest biases in the atmospheric CO 2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO 2 analyses based on the assimilation of CO 2 products retrieved from satellite

  1. Hydroclimatic variability and predictability: a survey of recent research

    Directory of Open Access Journals (Sweden)

    R. D. Koster

    2017-07-01

    Full Text Available Recent research in large-scale hydroclimatic variability is surveyed, focusing on five topics: (i variability in general, (ii droughts, (iii floods, (iv land–atmosphere coupling, and (v hydroclimatic prediction. Each surveyed topic is supplemented by illustrative examples of recent research, as presented at a 2016 symposium honoring the career of Professor Eric Wood. Taken together, the recent literature and the illustrative examples clearly show that current research into hydroclimatic variability is strong, vibrant, and multifaceted.

  2. World War II Weather Record Transmittances

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World War II Weather Record Transmittances are a record of the weather and meteorological data observed during World War II and transferred to the archive. It...

  3. A Comparison of a Machine Learning Model with EuroSCORE II in Predicting Mortality after Elective Cardiac Surgery: A Decision Curve Analysis.

    Science.gov (United States)

    Allyn, Jérôme; Allou, Nicolas; Augustin, Pascal; Philip, Ivan; Martinet, Olivier; Belghiti, Myriem; Provenchere, Sophie; Montravers, Philippe; Ferdynus, Cyril

    2017-01-01

    The benefits of cardiac surgery are sometimes difficult to predict and the decision to operate on a given individual is complex. Machine Learning and Decision Curve Analysis (DCA) are recent methods developed to create and evaluate prediction models. We conducted a retrospective cohort study using a prospective collected database from December 2005 to December 2012, from a cardiac surgical center at University Hospital. The different models of prediction of mortality in-hospital after elective cardiac surgery, including EuroSCORE II, a logistic regression model and a machine learning model, were compared by ROC and DCA. Of the 6,520 patients having elective cardiac surgery with cardiopulmonary bypass, 6.3% died. Mean age was 63.4 years old (standard deviation 14.4), and mean EuroSCORE II was 3.7 (4.8) %. The area under ROC curve (IC95%) for the machine learning model (0.795 (0.755-0.834)) was significantly higher than EuroSCORE II or the logistic regression model (respectively, 0.737 (0.691-0.783) and 0.742 (0.698-0.785), p machine learning model, in this monocentric study, has a greater benefit whatever the probability threshold. According to ROC and DCA, machine learning model is more accurate in predicting mortality after elective cardiac surgery than EuroSCORE II. These results confirm the use of machine learning methods in the field of medical prediction.

  4. Impact of atmospheric release in stable night meteorological conditions; can emergency models predict dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Connan, O.; Hebert, D.; Solier, L.; Voiseux, C.; Lamotte, M.; Laguionie, P.; Maro, D.; Thomas, L. [IRSN/PRP-ENV/SERIS/LRC (France)

    2014-07-01

    Atmospheric dispersion of pollutant or radionuclides in stratified meteorological condition, i.e. especially when weather conditions are very stable, mainly at night, is still poorly understood and not well apprehended by the operational atmospheric dispersion models. However, correctly predicting the dispersion of a radioactive plume, and estimating the radiological consequences for the population, following an unplanned atmospheric release of radionuclides are crucial steps in an emergency response. To better understand dispersion in these special weather conditions, IRSN performed a series of 22 air sampling campaigns between 2010 and 2013 in the vicinity of the La Hague nuclear reprocessing plant (AREVA - NC, France), at distances between 200 m and 3000 m from the facility. Krypton-85 ({sup 85}Kr), a b-and g-emitting radionuclide, released during the reprocessing of spent nuclear fuel was used as a non-reactive tracer of radioactive plumes. Experimental campaigns were realized in stability class stable or very stable (E or F according to Pasquill classification) 18 times, and in neutral conditions (D according to Pasquill classification) 4 times. During each campaign, Krypton-85 real time measurement were made to find the plume around the plant, and then integrated samples (30 min) were collected in bag perpendicularly to the assumed wind direction axis. After measurement by gamma spectrometry, we have, when it was possible, estimate the point of impact and the width of the plume. The objective was to estimate the horizontal dispersion (width) of the plume at ground level in function of the distance and be able to calculate atmospheric transfer coefficients. In a second step, objective was to conclude on the use of common model and on their uncertainties. The results will be presented in terms of impact on the near-field. They will be compared with data obtained in previous years in neutral atmospheric conditions, and finally the results will be confronted with

  5. The Role of the Indian Ocean Sector for Prediction of the Coupled Indo-Pacific System: Impact of Atmospheric Coupling

    Science.gov (United States)

    Hackert, E. C.; Busalacchi, A. J.; Carton, J.; Murtugudde, R.; Arkin, P.; Evans, M. N.

    2017-01-01

    Indian Ocean (IO) dynamics impact ENSO predictability by influencing wind and precipitation anomalies in the Pacific. To test if the upstream influence of the IO improves ENSO validation statistics, a combination of forced ocean, atmosphere, and coupled models are utilized. In one experiment, the full tropical Indo-Pacific region atmosphere is forced by observed interannual SST anomalies. In the other, the IO is forced by climatological SST. Differences between these two forced atmospheric model experiments spotlight a much richer wind response pattern in the Pacific than previous studies that used idealized forcing and simple linear atmospheric models. Weak westerlies are found near the equator similar to earlier literature. However, at initialization strong easterlies between 30 deg. S to 10 deg. S and 0 deg. N to 25 deg. N and equatorial convergence of the meridional winds across the entire Pacific are unique findings from this paper. The large-scale equatorial divergence west of the dateline and northeasterly-to-northwesterly cross-equatorial flow converging on the equator east of the dateline in the Pacific are generated from interannual IO SST coupling. In addition, off-equatorial downwelling curl impacts large-scale oceanic waves (i.e., Rossby waves reflect as western boundary Kelvin waves). After 3 months, these downwelling equatorial Kelvin waves propagate across the Pacific and strengthen the NINO3 SST. Eventually Bjerknes feedbacks take hold in the eastern Pacific which allows this warm anomaly to grow. Coupled forecasts for NINO3 SST anomalies for 1993-2014 demonstrate that including interannual IO forcing significantly improves predictions for 3-9 month lead times.

  6. The role of the Indian Ocean sector for prediction of the coupled Indo-Pacific system: Impact of atmospheric coupling

    Science.gov (United States)

    Hackert, E. C.; Busalacchi, A. J.; Carton, J.; Murtugudde, R.; Arkin, P.; Evans, M. N.

    2017-04-01

    Indian Ocean (IO) dynamics impact ENSO predictability by influencing wind and precipitation anomalies in the Pacific. To test if the upstream influence of the IO improves ENSO validation statistics, a combination of forced ocean, atmosphere, and coupled models are utilized. In one experiment, the full tropical Indo-Pacific region atmosphere is forced by observed interannual SST anomalies. In the other, the IO is forced by climatological SST. Differences between these two forced atmospheric model experiments spotlight a much richer wind response pattern in the Pacific than previous studies that used idealized forcing and simple linear atmospheric models. Weak westerlies are found near the equator similar to earlier literature. However, at initialization strong easterlies between 30°S-10°S and 0°N-25°N and equatorial convergence of the meridional winds across the entire Pacific are unique findings from this paper. The large-scale equatorial divergence west of the dateline and northeasterly-to-northwesterly cross-equatorial flow converging on the equator east of the dateline in the Pacific are generated from interannual IO SST coupling. In addition, off-equatorial downwelling curl impacts large-scale oceanic waves (i.e., Rossby waves reflect as western boundary Kelvin waves). After 3 months, these downwelling equatorial Kelvin waves propagate across the Pacific and strengthen the NINO3 SST. Eventually Bjerknes feedbacks take hold in the eastern Pacific which allows this warm anomaly to grow. Coupled forecasts for NINO3 SST anomalies for 1993-2014 demonstrate that including interannual IO forcing significantly improves predictions for 3-9 month lead times.

  7. PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. II. H{sub 2}S AND SO{sub 2} PHOTOCHEMISTRY IN ANOXIC ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Hu Renyu; Seager, Sara; Bains, William, E-mail: hury@mit.edu [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2013-05-20

    Sulfur gases are common components in the volcanic and biological emission on Earth, and are expected to be important input gases for atmospheres on terrestrial exoplanets. We study the atmospheric composition and the spectra of terrestrial exoplanets with sulfur compounds (i.e., H{sub 2}S and SO{sub 2}) emitted from their surfaces. We use a comprehensive one-dimensional photochemistry model and radiative transfer model to investigate the sulfur chemistry in atmospheres ranging from reducing to oxidizing. The most important finding is that both H{sub 2}S and SO{sub 2} are chemically short-lived in virtually all types of atmospheres on terrestrial exoplanets, based on models of H{sub 2}, N{sub 2}, and CO{sub 2} atmospheres. This implies that direct detection of surface sulfur emission is unlikely, as their surface emission rates need to be extremely high (>1000 times Earth's volcanic sulfur emission) for these gases to build up to a detectable level. We also find that sulfur compounds emitted from the surface lead to photochemical formation of elemental sulfur and sulfuric acid in the atmosphere, which would condense to form aerosols if saturated. For terrestrial exoplanets in the habitable zone of Sun-like stars or M stars, Earth-like sulfur emission rates result in optically thick haze composed of elemental sulfur in reducing H{sub 2}-dominated atmospheres for a wide range of particle diameters (0.1-1 {mu}m), which is assumed as a free parameter in our simulations. In oxidized atmospheres composed of N{sub 2} and CO{sub 2}, optically thick haze, composed of elemental sulfur aerosols (S{sub 8}) or sulfuric acid aerosols (H{sub 2}SO{sub 4}), will form if the surface sulfur emission is two orders of magnitude more than the volcanic sulfur emission of Earth. Although direct detection of H{sub 2}S and SO{sub 2} by their spectral features is unlikely, their emission might be inferred by observing aerosol-related features in reflected light with future generation

  8. A conceptual prediction model for seasonal drought processes using atmospheric and oceanic standardized anomalies and its application to four recent severe regional drought events in China

    Science.gov (United States)

    Liu, Z.; LU, G.; He, H.; Wu, Z.; He, J.

    2017-12-01

    Reliable drought prediction is fundamental for seasonal water management. Considering that drought development is closely related to the spatio-temporal evolution of large-scale circulation patterns, we develop a conceptual prediction model of seasonal drought processes based on atmospheric/oceanic Standardized Anomalies (SA). It is essentially the synchronous stepwise regression relationship between 90-day-accumulated atmospheric/oceanic SA-based predictors and 3-month SPI updated daily (SPI3). It is forced with forecasted atmospheric and oceanic variables retrieved from seasonal climate forecast systems, and it can make seamless drought prediction for operational use after a year-to-year calibration. Simulation and prediction of four severe seasonal regional drought processes in China were forced with the NCEP/NCAR reanalysis datasets and the NCEP Climate Forecast System Version 2 (CFSv2) operationally forecasted datasets, respectively. With the help of real-time correction for operational application, model application during four recent severe regional drought events in China revealed that the model is good at development prediction but weak in severity prediction. In addition to weakness in prediction of drought peak, the prediction of drought relief is possible to be predicted as drought recession. This weak performance may be associated with precipitation-causing weather patterns during drought relief. Based on initial virtual analysis on predicted 90-day prospective SPI3 curves, it shows that the 2009/2010 drought in Southwest China and 2014 drought in North China can be predicted and simulated well even for the prospective 1-75 day. In comparison, the prospective 1-45 day may be a feasible and acceptable lead time for simulation and prediction of the 2011 droughts in Southwest China and East China, after which the simulated and predicted developments clearly change.

  9. Optimization of simultaneous electrochemical determination of Cd(II), Pb(II), Cu(II) and Hg(II) at carbon nanotube-modified graphite electrodes.

    Science.gov (United States)

    Pikna, L'ubomír; Heželová, Mária; Kováčová, Zuzana

    2015-01-01

    The health of the environment is worsening every day. Monitoring of potentially toxic elements and remediation of environmental pollution are necessary. Therefore, the research and development of simple, inexpensive, portable and effective sensors is important. Electrochemistry is a useful component of the field of environment monitoring. The present study focuses on evaluating and comparing three types of electrodes (PIGE, PIGE/MWCNT/HNO3 and PIGE/MWCNT/EDTA/HNO3) employed for the simultaneous electrochemical determination of four potentially toxic elements: Cd(II), Pb(II), Cu(II) and Hg(II). Cyclic voltammograms were measured in an acetate buffer. The LOD, LOQ, the standard and relative precisions of the method and a prediction intervals were calculated (according to the technical procedure DIN 32 645) for the three electrodes and for each measured element. The LOD for PIGE/CNT/HNO3 (the electrode with narrowest calculated prediction intervals) was 2.98 × 10(-7) mol L(-1) for Cd(II), 4.83 × 10(-7) mol L(-1) for Pb(II), 3.81 × 10(-7) mol L(-1) for Cu(II), 6.79 × 10(-7) mol L(-1) for Hg(II). One of the benefits of this study was the determination of the amount of Hg(II) in the mixture of other elements.

  10. Atmospheric neutrino challenges

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)

    2005-08-15

    We briefly review the improvements in the predictions of atmospheric neutrino fluxes since the NOW2000 workshop. In spite of the great progress of the calculational technique the predictions are still not exact because of the uncertainties in the two major sets of input - cosmic ray flux and hadronic interactions on light nuclei.

  11. EMERGENCE OF GRANULAR-SIZED MAGNETIC BUBBLES THROUGH THE SOLAR ATMOSPHERE. II. NON-LTE CHROMOSPHERIC DIAGNOSTICS AND INVERSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Jaime de la Cruz [Institute for Solar Physics, Department of Astronomy, Stockholm University, Albanova University Center, SE-10691 Stockholm (Sweden); Hansteen, Viggo; Ortiz, Ada [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Bellot-Rubio, Luis, E-mail: jaime@astro.su.se [Instituto de Astrofísica de Andalucía (CSIC), Apartado de Correos 3004, E-18080 Granada (Spain)

    2015-09-10

    Magnetic flux emergence into the outer layers of the Sun is a fundamental mechanism for releasing energy into the chromosphere and the corona. In this paper, we study the emergence of granular-sized flux concentrations and the structuring of the corresponding physical parameters and atmospheric diagnostics in the upper photosphere and in the chromosphere. We make use of a realistic 3D MHD simulation of the outer layers of the Sun to study the formation of the Ca ii 8542 line. We also derive semi-empirical 3D models from non-LTE inversions of our observations. These models contain information on the line-of-sight stratifications of temperature, velocity, and the magnetic field. Our analysis explains the peculiar Ca ii 8542 Å profiles observed in the flux emerging region. Additionally, we derive detailed temperature and velocity maps describing the ascent of a magnetic bubble from the photosphere to the chromosphere. The inversions suggest that, in active regions, granular-sized bubbles emerge up to the lower chromosphere where the existing large-scale field hinders their ascent. We report hints of heating when the field reaches the chromosphere.

  12. The Development of New Atmospheric Models for K and M DwarfStars with Exoplanets

    Science.gov (United States)

    Linsky, Jeffrey L.

    2018-01-01

    The ultraviolet and X-ray emissions of host stars play critical roles in the survival and chemical composition of the atmospheres of their exoplanets. The need to measure and understand this radiative output, in particular for K and M dwarfs, is the main rationale for computing a new generation of stellar models that includes magnetically heated chromospheres and coronae in addition to their photospheres. We describe our method for computing semi-empirical models that includes solutions of the statistical equilibrium equations for 52 atoms and ions and of the non-LTE radiative transfer equations for all important spectral lines. The code is an offspring of the Solar Radiation Physical Modelling system (SRPM) developed by Fontenla et al. (2007--2015) to compute one-dimensional models in hydrostatic equilibrium to fit high-resolution stellar X-ray to IR spectra. Also included are 20 diatomic molecules and their more than 2 million spectral lines. Our-proof-of-concept model is for the M1.5 V star GJ 832 (Fontenla et al. ApJ 830, 154 (2016)). We will fit the line fluxes and profiles of X-ray lines and continua observed by Chandra and XMM-Newton, UV lines observed by the COS and STIS instruments on HST (N V, C IV, Si IV, Si III, Mg II, C II, and O I), optical lines (including H$\\alpha$, Ca II, Na I), and continua. These models will allow us to compute extreme-UV spectra, which are unobservable but required to predict the hydrodynamic mass-loss rate from exoplanet atmospheres, and to predict panchromatic spectra of new exoplanet host stars discovered after the end of the HST mission.This work is supported by grant HST-GO-15038 from the Space Telescope Science Institute to the Univ. of Colorado

  13. Contact angle study on the activation mechanisms of sphalerite with Cu(II) and Pb(II); Estudio de los mecanismos de activacion de la esfalerita con Cu(II) y Pb(II)

    Energy Technology Data Exchange (ETDEWEB)

    Davila Pulido, G. I.; Uribe Salas, A.

    2011-07-01

    This article presents results of an experimental study on the sphalerite activation with Cu(II) and Pb(II), whose main objective was to investigate the activation mechanisms and to evaluate the magnitude of the hydrophobization achieved with both chemical species. The hydrophobicity acquired by the mineral due to the interaction with the activator and collector (sodium isopropyl xanthate) is characterized making use of the contact angle technique. The results show that Cu(II) replaces the Zn of the external layers of the mineral, promoting the sulfide (S{sup 2}-) oxidation to produce a mixture of CuS, Cu{sub 2}S and S{sup o}, of hydrophobic nature. The subsequent interaction with xanthate increases the hydrophobicity of the mineral surface. In turn, Pb(II) activation of sphalerite is due to the formation of a PbS layer that reacts with xanthate to produce hydrophobic species (e.g., PbX{sub 2}). It is also observed that the hydrophobicity of sphalerite activated with Pb(II) is favored under air atmospheres, as compared to that obtained under nitrogen atmospheres. It is concluded that the hydrophobicity achieved by lead activation may be of the same order of magnitude to that deliverately induced by copper activation. (Author) 11 refs.

  14. Impact of rainstorm and runoff modeling on predicted consequences of atmospheric releases from nuclear reactor accidents

    International Nuclear Information System (INIS)

    Ritchie, L.T.; Brown, W.D.; Wayland, J.R.

    1980-05-01

    A general temperate latitude cyclonic rainstorm model is presented which describes the effects of washout and runoff on consequences of atmospheric releases of radioactive material from potential nuclear reactor accidents. The model treats the temporal and spatial variability of precipitation processes. Predicted air and ground concentrations of radioactive material and resultant health consequences for the new model are compared to those of the original WASH-1400 model under invariant meteorological conditions and for realistic weather events using observed meteorological sequences. For a specific accident under a particular set of meteorological conditions, the new model can give significantly different results from those predicted by the WASH-1400 model, but the aggregate consequences produced for a large number of meteorological conditions are similar

  15. Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model

    Energy Technology Data Exchange (ETDEWEB)

    Katata, G.; Chino, M.; Kobayashi, T. [Japan Atomic Energy Agency (JAEA), Ibaraki (Japan); and others

    2015-07-01

    Temporal variations in the amount of radionuclides released into the atmosphere during the Fukushima Daiichi Nuclear Power Station (FNPS1) accident and their atmospheric and marine dispersion are essential to evaluate the environmental impacts and resultant radiological doses to the public. In this paper, we estimate the detailed atmospheric releases during the accident using a reverse estimation method which calculates the release rates of radionuclides by comparing measurements of air concentration of a radionuclide or its dose rate in the environment with the ones calculated by atmospheric and oceanic transport, dispersion and deposition models. The atmospheric and oceanic models used are WSPEEDI-II (Worldwide version of System for Prediction of Environmental Emergency Dose Information) and SEA-GEARN-FDM (Finite difference oceanic dispersion model), both developed by the authors. A sophisticated deposition scheme, which deals with dry and fog-water depositions, cloud condensation nuclei (CCN) activation, and subsequent wet scavenging due to mixed-phase cloud microphysics (in-cloud scavenging) for radioactive iodine gas (I{sub 2} and CH{sub 3}I) and other particles (CsI, Cs, and Te), was incorporated into WSPEEDI-II to improve the surface deposition calculations. The results revealed that the major releases of radionuclides due to the FNPS1 accident occurred in the following periods during March 2011: the afternoon of 12 March due to the wet venting and hydrogen explosion at Unit 1, midnight of 14 March when the SRV (safety relief valve) was opened three times at Unit 2, the morning and night of 15 March, and the morning of 16 March. According to the simulation results, the highest radioactive contamination areas around FNPS1 were created from 15 to 16 March by complicated interactions among rainfall, plume movements, and the temporal variation of release rates. The simulation by WSPEEDI-II using the new source term reproduced the local and regional patterns of

  16. Atmospheric fluoride pollution. Part II

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, T; Yamazaki, Y

    1969-01-01

    In East Osaka, agricultural crops either died or showed poor growth in the neighborhood of a factory producing white cosmetic bottles. Since fluorite was used as a material and there was no damage before the establishment of the factory, it was suspected that fluorine compounds were causing the damage. Quantitative analysis was performed on the agricultural crops and the exhaust gas as well as the dust particles in order to determine the fluorine content. Gas samplers were used to collect the dusts from the surrounding atmosphere. The fluorine content of dust near the factory was about 93 mg per cubic meter per day, and in some parts, as high as 1.54 mq per cubic meter per day. Relatively larger quantities of fluorine were measured at the southwestern and southeastern area of the factory, corresponding to the general wind pattern. Rice and soy beans from the neighborhood of the factory showed concentrations of fluorine and, especially in the leaves of the damaged crops, the concentrations were several hundred times higher than those of the undamaged leaves.

  17. Atmospheres of central stars

    International Nuclear Information System (INIS)

    Hummer, D.G.

    1978-01-01

    The author presents a brief summary of atmospheric models that are of possible relevance to the central stars of planetary nebulae, and then discusses the extent to which these models accord with the observations of both nebulae and central stars. Particular attention is given to the significance of the very high Zanstra temperature implied by the nebulae He II lambda 4686 A line, and to the discrepancy between the Zanstra He II temperature and the considerably lower temperatures suggested by the appearance of the visual spectrum for some of these objects. (Auth.)

  18. Sources of long-lived atmospheric VOCs at the rural boreal forest site, SMEAR II

    Science.gov (United States)

    Patokoski, J.; Ruuskanen, T. M.; Kajos, M. K.; Taipale, R.; Rantala, P.; Aalto, J.; Ryyppö, T.; Nieminen, T.; Hakola, H.; Rinne, J.

    2015-12-01

    In this study a long-term volatile organic compound (VOCs) concentration data set, measured at the SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations) boreal forest site in Hyytiälä, Finland during the years 2006-2011, was analyzed in order to identify source areas and profiles of the observed VOCs. VOC mixing ratios were measured using proton transfer reaction mass spectrometry. Four-day HYSPLIT 4 (Hybrid Single Particle Lagrangian Integrated Trajectory) backward trajectories and the Unmix 6.0 receptor model were used for source area and source composition analysis. Two major forest fire events in Russia took place during the measurement period. The effect of these fires was clearly visible in the trajectory analysis, lending confidence to the method employed with this data set. Elevated volume mixing ratios (VMRs) of non-biogenic VOCs related to forest fires, e.g. acetonitrile and aromatic VOCs, were observed. Ten major source areas for long-lived VOCs (methanol, acetonitrile, acetaldehyde, acetone, benzene, and toluene) observed at the SMEAR II site were identified. The main source areas for all the targeted VOCs were western Russia, northern Poland, Kaliningrad, and the Baltic countries. Industrial areas in northern continental Europe were also found to be source areas for certain VOCs. Both trajectory and receptor analysis showed that air masses from northern Fennoscandia were less polluted with respect to both the VOCs studied and other trace gases (CO, SO2 and NOx), compared to areas of eastern and western continental Europe, western Russia, and southern Fennoscandia.

  19. Transforming Atmospheric and Remotely-Sensed Information to Hydrologic Predictability in South Asia

    Science.gov (United States)

    Hopson, T. M.; Riddle, E. E.; Broman, D.; Brakenridge, G. R.; Birkett, C. M.; Kettner, A.; Sampson, K. M.; Boehnert, J.; Priya, S.; Collins, D. C.; Rostkier-Edelstein, D.; Young, W.; Singh, D.; Islam, A. S.

    2017-12-01

    South Asia is a flashpoint for natural disasters with profound societal impacts for the region and globally. Although close to 40% of the world's population depends on the Greater Himalaya's great rivers, $20 Billion of GDP is affected by river floods each year. The frequent occurrence of floods, combined with large and rapidly growing populations with high levels of poverty, make South Asia highly susceptible to humanitarian disasters. The challenges of mitigating such devastating disasters are exacerbated by the limited availability of real-time rain and stream gauge measuring stations and transboundary data sharing, and by constrained institutional commitments to overcome these challenges. To overcome such limitations, India and the World Bank have committed resources to the National Hydrology Project III, with the development objective to improve the extent, quality, and accessibility of water resources information and to strengthen the capacity of targeted water resources management institutions in India. The availability and application of remote sensing products and weather forecasts from ensemble prediction systems (EPS) have transformed river forecasting capability over the last decade, and is of interest to India. In this talk, we review the potential predictability of river flow contributed by some of the freely-available remotely-sensed and weather forecasting products within the framework of the physics of water migration through a watershed. Our specific geographical context is the Ganges, Brahmaputra, and Meghna river basin and a newly-available set of stream gauge measurements located over the region. We focus on satellite rainfall estimation, river height and width estimation, and EPS weather forecasts. For the later, we utilize the THORPEX-TIGGE dataset of global forecasts, and discuss how atmospheric predictability, as measured by an EPS, is transformed into hydrometeorological predictability. We provide an overview of the strengths and

  20. Solar Atmosphere to Earth's Surface: Long Lead Time dB/dt Predictions with the Space Weather Modeling Framework

    Science.gov (United States)

    Welling, D. T.; Manchester, W.; Savani, N.; Sokolov, I.; van der Holst, B.; Jin, M.; Toth, G.; Liemohn, M. W.; Gombosi, T. I.

    2017-12-01

    The future of space weather prediction depends on the community's ability to predict L1 values from observations of the solar atmosphere, which can yield hours of lead time. While both empirical and physics-based L1 forecast methods exist, it is not yet known if this nascent capability can translate to skilled dB/dt forecasts at the Earth's surface. This paper shows results for the first forecast-quality, solar-atmosphere-to-Earth's-surface dB/dt predictions. Two methods are used to predict solar wind and IMF conditions at L1 for several real-world coronal mass ejection events. The first method is an empirical and observationally based system to estimate the plasma characteristics. The magnetic field predictions are based on the Bz4Cast system which assumes that the CME has a cylindrical flux rope geometry locally around Earth's trajectory. The remaining plasma parameters of density, temperature and velocity are estimated from white-light coronagraphs via a variety of triangulation methods and forward based modelling. The second is a first-principles-based approach that combines the Eruptive Event Generator using Gibson-Low configuration (EEGGL) model with the Alfven Wave Solar Model (AWSoM). EEGGL specifies parameters for the Gibson-Low flux rope such that it erupts, driving a CME in the coronal model that reproduces coronagraph observations and propagates to 1AU. The resulting solar wind predictions are used to drive the operational Space Weather Modeling Framework (SWMF) for geospace. Following the configuration used by NOAA's Space Weather Prediction Center, this setup couples the BATS-R-US global magnetohydromagnetic model to the Rice Convection Model (RCM) ring current model and a height-integrated ionosphere electrodynamics model. The long lead time predictions of dB/dt are compared to model results that are driven by L1 solar wind observations. Both are compared to real-world observations from surface magnetometers at a variety of geomagnetic latitudes

  1. Mg II Line Variation of 32 Cygni

    Directory of Open Access Journals (Sweden)

    Young Woon Kang

    1992-12-01

    Full Text Available The Mg II lines have been extracted from the IUE archival spectra of 32 Cygni to investigate the effect of the atmospheric eclipse. The UV light curve has been reduced from the continuum flux at the center wavelength of 2807.5 Å in the IUE spectra. The equivalent width of the Mg II k absoption line has been measured for each spectra. The results of the light variation and flux tracing of the absorption line at the vicinity of the primary eclipse confirmed the atmospheric eclipse. The atmospheric effect lasted until the phase 0.06 in the absorptin line tracing, while it lasted until the phase 0.02 in the UV light curve, respectively.

  2. Collaborative project. Ocean-atmosphere interaction from meso-to planetary-scale. Mechanisms, parameterization, and variability

    Energy Technology Data Exchange (ETDEWEB)

    Small, Richard [National Center for Atmospheric Research, Boulder, CO (United States); Bryan, Frank [National Center for Atmospheric Research, Boulder, CO (United States); Tribbia, Joseph [National Center for Atmospheric Research, Boulder, CO (United States); Park, Sungsu [National Center for Atmospheric Research, Boulder, CO (United States); Dennis, John [National Center for Atmospheric Research, Boulder, CO (United States); Saravanan, R. [National Center for Atmospheric Research, Boulder, CO (United States); Schneider, Niklas [National Center for Atmospheric Research, Boulder, CO (United States); Kwon, Young-Oh [National Center for Atmospheric Research, Boulder, CO (United States)

    2015-06-11

    This project aims to improve long term global climate simulations by resolving ocean mesoscale activity and the corresponding response in the atmosphere. The main computational objectives are; i) to perform and assess Community Earth System Model (CESM) simulations with the new Community Atmospheric Model (CAM) spectral element dynamical core; ii) use static mesh refinement to focus on oceanic fronts; iii) develop a new Earth System Modeling tool to investigate the atmospheric response to fronts by selectively filtering surface flux fields in the CESM coupler. The climate research objectives are 1) to improve the coupling of ocean fronts and the atmospheric boundary layer via investigations of dependency on model resolution and stability functions: 2) to understand and simulate the ensuing tropospheric response that has recently been documented in observations: and 3) to investigate the relationship of ocean frontal variability to low frequency climate variability and the accompanying storm tracks and extremes in high resolution simulations. This is a collaborative multi-institution project consisting of computational scientists, climate scientists and climate model developers. It specifically aims at DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation.

  3. Simulation and prediction the impact of climate change into water resources in Bengawan Solo watershed based on CCAM (Conformal Cubic Atmospheric Model) data

    Science.gov (United States)

    Sipayung, Sinta B.; Nurlatifah, Amalia; Siswanto, Bambang

    2018-05-01

    Bengawan Solo Watershed is one of the largest watersheds in Indonesia. This watershed flows in many areas both in Central Java and East Java. Therefore, the water resources condition greatly affects many people. This research will be conducted on prediction of climate change effect on water resources condition in terms of rainfall conditions in Bengawan Solo River Basin. The goal of this research is to know and predict the climate change impact on water resources based on CCAM (Conformal Cubic Atmosphere Model) with downscaling baseline (historical) model data from 1949 to 2005 and RCP 4.5 from 2006 to 2069. The modeling data was validated with in-situ data (measurement data). To analyse the water availability condition in Bengawan Solo Watershed, the simulation of river flow and water balance condition were done in Bengawan Solo River. Simulation of river flow and water balance conditions were done with ArcSWAT model using climate data from CCAM, DEM SRTM 90 meter, soil type, and land use data. The results of this simulation indicate there is (i) The CCAM data itself after validation has a pretty good result when compared to the insitu data. Based on CCAM simulation results, it is predicted that in 2040-2069 rainfall in Bengawan Solo River Basin will decrease, to a maximum of only about 1 mm when compared to 1971-2000. (ii) The CCAM rainfall prediction itself shows that rainfall in Bengawan Solo River basin will decline until 2069 although the decline itself is not significant and tends to be negligible (rainfall is considered unchanged) (iii) Both in the DJF and JJA seasons, precipitation is predicted to decline as well despite the significant decline. (iv) The river flow simulation show that the water resources in Bengawan Solo River did not change significantly. This event occurred because the rainfall also did not change greatly and close to 0 mm/month.

  4. Turbidity, SOLAR RADIATION - ATMOSPHERIC and other data from ATLANTIS II in the NW Atlantic and South Atlantic Ocean from 1980-08-06 to 1980-09-04 (NODC Accession 9500041)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water depth, temperature and other nutrient bottle data were collected in NW Atlantic (limit-40 W) from ship ATLANTIS II cruise 107 Leg 10 between August 6, 1980...

  5. ISLSCP II Atmospheric Carbon Dioxide Consumption by Continental Erosion

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The Continental Atmospheric CO2 Consumption data set represents gridded estimates for the riverine export of carbon and of sediments based on empirical...

  6. Model for Atmospheric Propagation of Spatially Combined Laser Beams

    Science.gov (United States)

    2016-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS MODEL FOR ATMOSPHERIC PROPAGATION OF SPATIALLY COMBINED LASER BEAMS by Kum Leong Lee September...MODEL FOR ATMOSPHERIC PROPAGATION OF SPATIALLY COMBINED LASER BEAMS 5. FUNDING NUMBERS 6. AUTHOR(S) Kum Leong Lee 7. PERFORMING ORGANIZATION NAME(S) AND...BLANK ii Approved for public release. Distribution is unlimited. MODEL FOR ATMOSPHERIC PROPAGATION OF SPATIALLY COMBINED LASER BEAMS Kum Leong Lee

  7. Predictive Performance of the Simplified Acute Physiology Score (SAPS) II and the Initial Sequential Organ Failure Assessment (SOFA) Score in Acutely Ill Intensive Care Patients

    DEFF Research Database (Denmark)

    Granholm, Anders; Møller, Morten Hylander; Kragh, Mette

    2016-01-01

    PURPOSE: Severity scores including the Simplified Acute Physiology Score (SAPS) II and the Sequential Organ Failure Assessment (SOFA) score are used in intensive care units (ICUs) to assess disease severity, predict mortality and in research. We aimed to assess the predictive performance of SAPS II...... compared the discrimination of SAPS II and initial SOFA scores, compared the discrimination of SAPS II in our cohort with the original cohort, assessed the calibration of SAPS II customised to our cohort, and compared the discrimination for 90-day mortality vs. in-hospital mortality for both scores....... Discrimination was evaluated using areas under the receiver operating characteristics curves (AUROC). Calibration was evaluated using Hosmer-Lemeshow's goodness-of-fit Ĉ-statistic. RESULTS: AUROC for in-hospital mortality was 0.80 (95% confidence interval (CI) 0.77-0.83) for SAPS II and 0.73 (95% CI 0...

  8. Application of a Reduced Order Kalman Filter to Initialize a Coupled Atmosphere-Ocean Model: Impact on the Prediction of El Nino

    Science.gov (United States)

    Ballabrera-Poy, Joaquim; Busalacchi, Antonio J.; Murtugudde, Ragu

    2000-01-01

    A reduced order Kalman Filter, based on a simplification of the Singular Evolutive Extended Kalman (SEEK) filter equations, is used to assimilate observed fields of the surface wind stress, sea surface temperature and sea level into the nonlinear coupled ocean-atmosphere model. The SEEK filter projects the Kalman Filter equations onto a subspace defined by the eigenvalue decomposition of the error forecast matrix, allowing its application to high dimensional systems. The Zebiak and Cane model couples a linear reduced gravity ocean model with a single vertical mode atmospheric model of Zebiak. The compatibility between the simplified physics of the model and each observed variable is studied separately and together. The results show the ability of the model to represent the simultaneous value of the wind stress, SST and sea level, when the fields are limited to the latitude band 10 deg S - 10 deg N. In this first application of the Kalman Filter to a coupled ocean-atmosphere prediction model, the sea level fields are assimilated in terms of the Kelvin and Rossby modes of the thermocline depth anomaly. An estimation of the error of these modes is derived from the projection of an estimation of the sea level error over such modes. This method gives a value of 12 for the error of the Kelvin amplitude, and 6 m of error for the Rossby component of the thermocline depth. The ability of the method to reconstruct the state of the equatorial Pacific and predict its time evolution is demonstrated. The method is shown to be quite robust for predictions I up to six months, and able to predict the onset of the 1997 warm event fifteen months before its occurrence.

  9. Comparison of mortality prediction models and validation of SAPS II in critically ill burns patients.

    Science.gov (United States)

    Pantet, O; Faouzi, M; Brusselaers, N; Vernay, A; Berger, M M

    2016-06-30

    Specific burn outcome prediction scores such as the Abbreviated Burn Severity Index (ABSI), Ryan, Belgian Outcome of Burn Injury (BOBI) and revised Baux scores have been extensively studied. Validation studies of the critical care score SAPS II (Simplified Acute Physiology Score) have included burns patients but not addressed them as a cohort. The study aimed at comparing their performance in a Swiss burns intensive care unit (ICU) and to observe whether they were affected by a standardized definition of inhalation injury. We conducted a retrospective cohort study, including all consecutive ICU burn admissions (n=492) between 1996 and 2013: 5 epochs were defined by protocol changes. As required for SAPS II calculation, stays burned (TBSA) and inhalation injury (systematic standardized diagnosis since 2006). Study epochs were compared (χ2 test, ANOVA). Score performance was assessed by receiver operating characteristic curve analysis. SAPS II performed well (AUC 0.89), particularly in burns burns <40% TBSA. Ryan and BOBI scores were least accurate, as they heavily weight inhalation injury.

  10. Evaporated metal films as indicators of atmospheric pollution. II. Resistance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lodge, Jr, J P; Frank, E R

    1962-01-01

    There appears to be a direct relationship between gross atmospheric features associated with the accumulation of substances in air that are corrosive to metals and the rate of resistance change of thin metallic films. This behavior is the most striking in aluminum. The suggested apparatus provides an inexpensive and rapid method determining total atmospheric corrosiveness. 1 reference, 10 figures.

  11. Identification and Construction of Combinatory Cancer Hallmark-Based Gene Signature Sets to Predict Recurrence and Chemotherapy Benefit in Stage II Colorectal Cancer.

    Science.gov (United States)

    Gao, Shanwu; Tibiche, Chabane; Zou, Jinfeng; Zaman, Naif; Trifiro, Mark; O'Connor-McCourt, Maureen; Wang, Edwin

    2016-01-01

    Decisions regarding adjuvant therapy in patients with stage II colorectal cancer (CRC) have been among the most challenging and controversial in oncology over the past 20 years. To develop robust combinatory cancer hallmark-based gene signature sets (CSS sets) that more accurately predict prognosis and identify a subset of patients with stage II CRC who could gain survival benefits from adjuvant chemotherapy. Thirteen retrospective studies of patients with stage II CRC who had clinical follow-up and adjuvant chemotherapy were analyzed. Respective totals of 162 and 843 patients from 2 and 11 independent cohorts were used as the discovery and validation cohorts, respectively. A total of 1005 patients with stage II CRC were included in the 13 cohorts. Among them, 84 of 416 patients in 3 independent cohorts received fluorouracil-based adjuvant chemotherapy. Identification of CSS sets to predict relapse-free survival and identify a subset of patients with stage II CRC who could gain substantial survival benefits from fluorouracil-based adjuvant chemotherapy. Eight cancer hallmark-based gene signatures (30 genes each) were identified and used to construct CSS sets for determining prognosis. The CSS sets were validated in 11 independent cohorts of 767 patients with stage II CRC who did not receive adjuvant chemotherapy. The CSS sets accurately stratified patients into low-, intermediate-, and high-risk groups. Five-year relapse-free survival rates were 94%, 78%, and 45%, respectively, representing 60%, 28%, and 12% of patients with stage II disease. The 416 patients with CSS set-defined high-risk stage II CRC who received fluorouracil-based adjuvant chemotherapy showed a substantial gain in survival benefits from the treatment (ie, recurrence reduced by 30%-40% in 5 years). The CSS sets substantially outperformed other prognostic predictors of stage 2 CRC. They are more accurate and robust for prognostic predictions and facilitate the identification of patients with stage

  12. SRNL EMERGENCY RESPONSE CAPABILITY FOR ATMOSPHERIC CONTAMINANT RELEASES

    International Nuclear Information System (INIS)

    Koffman, L; Chuck Hunter, C; Robert Buckley, R; Robert Addis, R

    2006-01-01

    Emergency response to an atmospheric release of chemical or radiological contamination is enhanced when plume predictions, field measurements, and real-time weather information are integrated into a geospatial framework. The Weather Information and Display (WIND) System at Savannah River National Laboratory (SRNL) utilizes such an integrated framework. The rapid availability of predictions from a suite of atmospheric transport models within this geospatial framework has proven to be of great value to decision makers during an emergency involving an atmospheric contaminant release

  13. Atmospheric dispersion prediction and source estimation of hazardous gas using artificial neural network, particle swarm optimization and expectation maximization

    Science.gov (United States)

    Qiu, Sihang; Chen, Bin; Wang, Rongxiao; Zhu, Zhengqiu; Wang, Yuan; Qiu, Xiaogang

    2018-04-01

    Hazardous gas leak accident has posed a potential threat to human beings. Predicting atmospheric dispersion and estimating its source become increasingly important in emergency management. Current dispersion prediction and source estimation models cannot satisfy the requirement of emergency management because they are not equipped with high efficiency and accuracy at the same time. In this paper, we develop a fast and accurate dispersion prediction and source estimation method based on artificial neural network (ANN), particle swarm optimization (PSO) and expectation maximization (EM). The novel method uses a large amount of pre-determined scenarios to train the ANN for dispersion prediction, so that the ANN can predict concentration distribution accurately and efficiently. PSO and EM are applied for estimating the source parameters, which can effectively accelerate the process of convergence. The method is verified by the Indianapolis field study with a SF6 release source. The results demonstrate the effectiveness of the method.

  14. Magic gamma rays, extra-atmospheric source

    International Nuclear Information System (INIS)

    Bolufer, P.

    2010-01-01

    Without the atmospheric layer, the cosmos radiation would kill every living, our planet would be like the moon. The cosmic gamma ray to collide with gases in land cover, as it is disintegrated. They are harmless, they form a cone of light that points to the cosmic source comes from. On April 25, 2009 was born on the island of Palma Magic II and Magic I the best observer of atmospheric gamma rays of low intensity. (Author)

  15. Solar photocatalytic removal of Cu(II), Ni(II), Zn(II) and Pb(II): Speciation modeling of metal-citric acid complexes

    International Nuclear Information System (INIS)

    Kabra, Kavita; Chaudhary, Rubina; Sawhney, R.L.

    2008-01-01

    The present study is targeted on solar photocatalytic removal of metal ions from wastewater. Photoreductive deposition and dark adsorption of metal ions Cu(II), Ni(II), Pb(II) and Zn(II), using solar energy irradiated TiO 2 , has been investigated. Citric acid has been used as a hole scavenger. Modeling of metal species has been performed and speciation is used as a tool for discussing the photodeposition trends. Ninety-seven percent reductive deposition was obtained for copper. The deposition values of other metals were significantly low [nickel (36.4%), zinc (22.2%) and lead (41.4%)], indicating that the photocatalytic treatment process, using solar energy, was more suitable for wastewater containing Cu(II) ions. In absence of citric acid, the decreasing order deposition was Cu(II) > Ni(II) > Pb(II) > Zn(II), which proves the theoretical thermodynamic predictions about the metals

  16. Review: the atmospheric boundary layer

    Science.gov (United States)

    Garratt, J. R.

    1994-10-01

    An overview is given of the atmospheric boundary layer (ABL) over both continental and ocean surfaces, mainly from observational and modelling perspectives. Much is known about ABL structure over homogeneous land surfaces, but relatively little so far as the following are concerned, (i) the cloud-topped ABL (over the sea predominantly); (ii) the strongly nonhomogeneous and nonstationary ABL; (iii) the ABL over complex terrain. These three categories present exciting challenges so far as improved understanding of ABL behaviour and improved representation of the ABL in numerical models of the atmosphere are concerned.

  17. Operational mesoscale atmospheric dispersion prediction using high performance parallel computing cluster for emergency response

    International Nuclear Information System (INIS)

    Srinivas, C.V.; Venkatesan, R.; Muralidharan, N.V.; Das, Someshwar; Dass, Hari; Eswara Kumar, P.

    2005-08-01

    An operational atmospheric dispersion prediction system is implemented on a cluster super computer for 'Online Emergency Response' for Kalpakkam nuclear site. The numerical system constitutes a parallel version of a nested grid meso-scale meteorological model MM5 coupled to a random walk particle dispersion model FLEXPART. The system provides 48 hour forecast of the local weather and radioactive plume dispersion due to hypothetical air borne releases in a range of 100 km around the site. The parallel code was implemented on different cluster configurations like distributed and shared memory systems. Results of MM5 run time performance for 1-day prediction are reported on all the machines available for testing. A reduction of 5 times in runtime is achieved using 9 dual Xeon nodes (18 physical/36 logical processors) compared to a single node sequential run. Based on the above run time results a cluster computer facility with 9-node Dual Xeon is commissioned at IGCAR for model operation. The run time of a triple nested domain MM5 is about 4 h for 24 h forecast. The system has been operated continuously for a few months and results were ported on the IMSc home page. Initial and periodic boundary condition data for MM5 are provided by NCMRWF, New Delhi. An alternative source is found to be NCEP, USA. These two sources provide the input data to the operational models at different spatial and temporal resolutions and using different assimilation methods. A comparative study on the results of forecast is presented using these two data sources for present operational use. Slight improvement is noticed in rainfall, winds, geopotential heights and the vertical atmospheric structure while using NCEP data probably because of its high spatial and temporal resolution. (author)

  18. An overview of the rangelands atmosphere hydrosphere biosphere interaction study experiment in northeastern Asia (RAISE)

    Science.gov (United States)

    Sugita, Michiaki; Asanuma, Jun; Tsujimura, Maki; Mariko, Shigeru; Lu, Minjiao; Kimura, Fujio; Azzaya, Dolgorsuren; Adyasuren, Tsokhio

    2007-01-01

    SummaryIntensive observations, analysis and modeling within the framework of the rangelands atmosphere-hydrosphere-biosphere interaction study experiment in northeastern Asia (RAISE) project, have allowed investigations into the hydrologic cycle in the ecotone of forest-steppe, and its relation to atmosphere and ecosystem in the eastern part of Mongolia. In this region, changes in the climate have been reported and a market oriented economy was introduced recently, but their impact on the natural environment is still not well understood. In this RAISE special issue, the outcome is presented of the studies carried out by six groups within RAISE, namely: (1) Land-atmosphere interaction analysis, (2) ecosystem analysis and modeling, (3) hydrologic cycle analysis, (4) climatic modeling, (5) hydrologic modeling, and (6) integration. The results are organized in five relevant categories comprising (i) hydrologic cycle including precipitation, groundwater, and surface water, (ii) hydrologic cycle and ecosystem, (iii) surface-atmosphere interaction, (iv) effect of grazing activities on soils, plant ecosystem and surface fluxes, and (v) future prediction. Comparison with studies on rangelands in other parts of the world, and some future directions of studies still needed in this region are also summarized.

  19. NARAC: an emergency response resource for predicting the atmospheric dispersion and assessing the consequences of airborne radionuclides

    International Nuclear Information System (INIS)

    Bradley, Michael M.

    2007-01-01

    The National Atmospheric Release Advisory Center (NARAC) serves as a national resource for the United States, providing tools and services to quickly predict the environmental contamination and health effects caused by airborne radionuclides, and to provide scientifically based guidance to emergency managers for the protection of human life. NARAC's scientists have developed a diverse tool kit of numerical modeling capabilities to respond to different types of release events, distance scales (local, regional, continental, and global), and response times

  20. Atmospheric release advisory capability

    International Nuclear Information System (INIS)

    Sullivan, T.J.

    1981-01-01

    The ARAC system (Atmospheric Release Advisory Capability) is described. The system is a collection of people, computers, computer models, topographic data and meteorological input data that together permits a calculation of, in a quasi-predictive sense, where effluent from an accident will migrate through the atmosphere, where it will be deposited on the ground, and what instantaneous and integrated dose an exposed individual would receive

  1. Structure of cometary atmospheres. II. Ion distribution

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, M [Tokyo Univ. (Japan). Inst. of Space and Aeronautical Science

    1976-04-01

    The distributions of various kinds of molecular ions in the atmospheres of new and old comets made up from dirty ice of the second kind (H/sub 2/O ice and hydrate clathrates of CO and N/sub 2/) have been computed at various heliocentric distances, by taking into account photoionization, ion-molecular reactions, electron-ion recombinations, and some transport effects. The results have been compared with observations and other computations. It is argued that dirty ice of the second kind model will impose a restriction on the theory of the origin of the solar system.

  2. Isotope techniques in the study of past and current environmental changes in the hydrosphere and the atmosphere

    International Nuclear Information System (INIS)

    1993-01-01

    Expanding economic and technological activities of mankind are contributing to rapid and potentially stressful changes in the global ecosystem. These changes may have harmful, far-reaching consequences in the near future. The current changes in the global ecosystem are also affecting the hydrological cycle. Environmental isotopes, whose distribution in natural compounds is governed by environmental conditions, are among the most powerful tools for investigating past and current environmental changes. Thorough understanding of the past environment is a prerequisite for any meaningful prediction of the Earth's ecosystem behaviour. Important conclusions on past environment conditions can be derived from the analysis of isotope ratios preserved in various environmental archives. The present worked covers both the 'present' and the 'past' of the global atmosphere/hydrosphere system. The presentations were organized in five major topics: (i) isotopes in atmospheric studies; (ii) isotopes in the soil-plants-atmosphere system; (iii) degradation of water resources; (iv) palaeohydrology and palaeowaters; and (v) isotope indicators of climatic changes. Refs, figs and tabs

  3. WSPEEDI-II system user's manual for a nuclear or radiological emergency

    International Nuclear Information System (INIS)

    Nakanishi, Chika; Sato, Sohei; Muto, Shigeo; Furuno, Akiko; Terada, Hiroaki; Nagai, Haruyasu

    2011-03-01

    Nuclear Emergency Assistance and Training Center (NEAT) has developed the response system to evaluate the radiological consequences of an accident on a nuclear power plant or nuclear weapons testing around Japan and to support prediction of radioactive material distributions by using an atmospheric dispersion model on the framework of the Response Assistance Network (RANET) which is established by the International Atomic Energy Agency (IAEA). For the enhancement of assistance capability to external organizations at a nuclear or radiological emergency, NEAT will introduce a computer-based emergency response system, 'Worldwide version of System for Prediction of Environmental Emergency Dose Information: WSPEEDI 2nd version (WSPEEDI-II)' developed by Division of Environmental and Radiation Sciences. This manual covers the overview of the system and configuration parameters as the basic knowledge needed for operating the systems. (author)

  4. Search for Ultra High-Energy Neutrinos with AMANDA-II

    International Nuclear Information System (INIS)

    IceCube Collaboration; Klein, Spencer; Ackermann, M.

    2007-01-01

    A search for diffuse neutrinos with energies in excess of 10 5 GeV is conducted with AMANDA-II data recorded between 2000 and 2002. Above 10 7 GeV, the Earth is essentially opaque to neutrinos. This fact, combined with the limited overburden of the AMANDA-II detector (roughly 1.5 km), concentrates these ultra high-energy neutrinos at the horizon. The primary background for this analysis is bundles of downgoing, high-energy muons from the interaction of cosmic rays in the atmosphere. No statistically significant excess above the expected background is seen in the data, and an upper limit is set on the diffuse all-flavor neutrino flux of E 2 Φ 90%CL -7 GeV cm -2 s -1 sr -1 valid over the energy range of 2 x 10 5 GeV to 10 9 GeV. A number of models which predict neutrino fluxes from active galactic nuclei are excluded at the 90% confidence level

  5. Atmospheric Processing of Volcanic Glass: Effects on Iron Solubility and Redox Speciation.

    Science.gov (United States)

    Maters, Elena C; Delmelle, Pierre; Bonneville, Steeve

    2016-05-17

    Volcanic ash from explosive eruptions can provide iron (Fe) to oceanic regions where this micronutrient limits primary production. Controls on the soluble Fe fraction in ash remain poorly understood but Fe solubility is likely influenced during atmospheric transport by condensation-evaporation cycles which induce large pH fluctuations. Using glass powder as surrogate for ash, we experimentally simulate its atmospheric processing via cycles of pH 2 and 5 exposure. Glass fractional Fe solubility (maximum 0.4%) is governed by the pH 2 exposure duration rather than by the pH fluctuations, however; pH 5 exposure induces precipitation of Fe-bearing nanoparticles which (re)dissolve at pH 2. Glass leaching/dissolution release Fe(II) and Fe(III) which are differentially affected by changes in pH; the average dissolved Fe(II)/Fetot ratio is ∼0.09 at pH 2 versus ∼0.18 at pH 5. Iron release at pH 2 from glass with a relatively high bulk Fe(II)/Fetot ratio (0.5), limited aqueous Fe(II) oxidation at pH 5, and possibly glass-mediated aqueous Fe(III) reduction may render atmospherically processed ash a significant source of Fe(II) for phytoplankton. By providing new insight into the form(s) of Fe associated with ash as wet aerosol versus cloud droplet, we improve knowledge of atmospheric controls on volcanogenic Fe delivery to the ocean.

  6. Improving Wind Predictions in the Marine Atmospheric Boundary Layer through Parameter Estimation in a Single-Column Model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jared A.; Hacker, Joshua P.; Delle Monache, Luca; Kosović, Branko; Clifton, Andrew; Vandenberghe, Francois; Rodrigo, Javier Sanz

    2016-12-14

    A current barrier to greater deployment of offshore wind turbines is the poor quality of numerical weather prediction model wind and turbulence forecasts over open ocean. The bulk of development for atmospheric boundary layer (ABL) parameterization schemes has focused on land, partly due to a scarcity of observations over ocean. The 100-m FINO1 tower in the North Sea is one of the few sources worldwide of atmospheric profile observations from the sea surface to turbine hub height. These observations are crucial to developing a better understanding and modeling of physical processes in the marine ABL. In this study, we use the WRF single column model (SCM), coupled with an ensemble Kalman filter from the Data Assimilation Research Testbed (DART), to create 100-member ensembles at the FINO1 location. The goal of this study is to determine the extent to which model parameter estimation can improve offshore wind forecasts.

  7. Atmospheric rivers: a mini-review

    Directory of Open Access Journals (Sweden)

    Luis eGimeno

    2014-03-01

    Full Text Available Atmospheric rivers (ARs are narrow regions responsible for the majority of the poleward water vapour transport across the midlatitudes. They are characterized by high water vapour content and strong low level winds, and form a part of the broader warm conveyor belt of extratropical cyclones. Although the meridional water vapour transport within ARs is critical for water resources, ARs can also cause disastrous floods especially when encountering mountainous terrain. They were labelled as atmospheric rivers in the 1990s, and have since become a well-studied feature of the midlatitude climate. We briefly review the conceptual model, the methods used to identify them, their main climatological characteristics, their impacts, the predictive ability of numerical weather prediction models, their relationship with large-scale ocean-atmosphere dynamics, possible changes under future climates, and some future challenges.

  8. Theory of extended stellar atmospheres. II. A grid of static spherical models for O stars and planetary nebula nuclei

    International Nuclear Information System (INIS)

    Kunasz, P.B.; Hummer, D.G.; Mihalas, D.

    1975-01-01

    Spherical static non-LTE model atmospheres are presented for stars with M/M/sub sun/=30 and 60 at various points on their evolutionary tracks, and for some nuclei of planetary nebulae at two points of a modified Harman-Seaton sequence. The method of Mihalas and Hummer was employed, which uses a parametrized radiation force multiplier to simulate the force of radiation arising from the entire line spectrum. However, in the present work the density structure computed in the LTE models was held fixed in the calculation of the corresponding non-LTE models; in addition, the opacity of an ''average light ion'' was taken into account. The temperatures for the non-LTE models are generally lower, at a given depth, than for the corresponding LTE models when T/sub eff/<45,000 K, while the situation is reversed at higher temperatures. The continuous energy distributions are generally flattened by extension. The Lyman jump is in emission for extended models of massive stars, but never for the models of nuclei of planetary nebulae (this is primarily a temperature effect). The Balmer jumps are always in absorption. The Lyman lines are in emission, and the Balmer lines in absorption; He ii lambda4686 comes into emission in the most extended models without hydrogen line pumping, showing that it is an indicator of atmospheric extension. Very severe limb darkening is found for extended models, which have apparent angular sized significantly smaller than expected from the geometrical size of the star. Extensive tables are given of monochromatic magnitudes, continuum jumps and gradients, Stomgren-system colors, monochromatic extensions, and the profiles and equivalent widths of the hydrogen lines for all models, and of the He ii lines for some of the 60 M/sub X/ models

  9. HLA Class-II Associated HIV Polymorphisms Predict Escape from CD4+ T Cell Responses.

    Directory of Open Access Journals (Sweden)

    Nathan Erdmann

    2015-08-01

    Full Text Available Antiretroviral therapy, antibody and CD8+ T cell-mediated responses targeting human immunodeficiency virus-1 (HIV-1 exert selection pressure on the virus necessitating escape; however, the ability of CD4+ T cells to exert selective pressure remains unclear. Using a computational approach on HIV gag/pol/nef sequences and HLA-II allelic data, we identified 29 HLA-II associated HIV sequence polymorphisms or adaptations (HLA-AP in an African cohort of chronically HIV-infected individuals. Epitopes encompassing the predicted adaptation (AE or its non-adapted (NAE version were evaluated for immunogenicity. Using a CD8-depleted IFN-γ ELISpot assay, we determined that the magnitude of CD4+ T cell responses to the predicted epitopes in controllers was higher compared to non-controllers (p<0.0001. However, regardless of the group, the magnitude of responses to AE was lower as compared to NAE (p<0.0001. CD4+ T cell responses in patients with acute HIV infection (AHI demonstrated poor immunogenicity towards AE as compared to NAE encoded by their transmitted founder virus. Longitudinal data in AHI off antiretroviral therapy demonstrated sequence changes that were biologically confirmed to represent CD4+ escape mutations. These data demonstrate an innovative application of HLA-associated polymorphisms to identify biologically relevant CD4+ epitopes and suggests CD4+ T cells are active participants in driving HIV evolution.

  10. Predictive validity of the Hendrich fall risk model II in an acute geriatric unit.

    Science.gov (United States)

    Ivziku, Dhurata; Matarese, Maria; Pedone, Claudio

    2011-04-01

    Falls are the most common adverse events reported in acute care hospitals, and older patients are the most likely to fall. The risk of falling cannot be completely eliminated, but it can be reduced through the implementation of a fall prevention program. A major evidence-based intervention to prevent falls has been the use of fall-risk assessment tools. Many tools have been increasingly developed in recent years, but most instruments have not been investigated regarding reliability, validity and clinical usefulness. This study intends to evaluate the predictive validity and inter-rater reliability of Hendrich fall risk model II (HFRM II) in order to identify older patients at risk of falling in geriatric units and recommend its use in clinical practice. A prospective descriptive design was used. The study was carried out in a geriatric acute care unit of an Italian University hospital. All over 65 years old patients consecutively admitted to a geriatric acute care unit of an Italian University hospital over 8-month period were enrolled. The patients enrolled were screened for the falls risk by nurses with the HFRM II within 24h of admission. The falls occurring during the patient's hospital stay were registered. Inter-rater reliability, area under the ROC curve, sensitivity, specificity, positive and negative predictive values and time for the administration were evaluated. 179 elderly patients were included. The inter-rater reliability was 0.87 (95% CI 0.71-1.00). The administration time was about 1min. The most frequently reported risk factors were depression, incontinence, vertigo. Sensitivity and specificity were respectively 86% and 43%. The optimal cut-off score for screening at risk patients was 5 with an area under the ROC curve of 0.72. The risk factors more strongly associated with falls were confusion and depression. As falls of older patients are a common problem in acute care settings it is necessary that the nurses use specific validate and reliable

  11. Surface complexation modeling calculation of Pb(II) adsorption onto the calcined diatomite

    Science.gov (United States)

    Ma, Shu-Cui; Zhang, Ji-Lin; Sun, De-Hui; Liu, Gui-Xia

    2015-12-01

    Removal of noxious heavy metal ions (e.g. Pb(II)) by surface adsorption of minerals (e.g. diatomite) is an important means in the environmental aqueous pollution control. Thus, it is very essential to understand the surface adsorptive behavior and mechanism. In this work, the Pb(II) apparent surface complexation reaction equilibrium constants on the calcined diatomite and distributions of Pb(II) surface species were investigated through modeling calculations of Pb(II) based on diffuse double layer model (DLM) with three amphoteric sites. Batch experiments were used to study the adsorption of Pb(II) onto the calcined diatomite as a function of pH (3.0-7.0) and different ionic strengths (0.05 and 0.1 mol L-1 NaCl) under ambient atmosphere. Adsorption of Pb(II) can be well described by Freundlich isotherm models. The apparent surface complexation equilibrium constants (log K) were obtained by fitting the batch experimental data using the PEST 13.0 together with PHREEQC 3.1.2 codes and there is good agreement between measured and predicted data. Distribution of Pb(II) surface species on the diatomite calculated by PHREEQC 3.1.2 program indicates that the impurity cations (e.g. Al3+, Fe3+, etc.) in the diatomite play a leading role in the Pb(II) adsorption and dominant formation of complexes and additional electrostatic interaction are the main adsorption mechanism of Pb(II) on the diatomite under weak acidic conditions.

  12. [Prediction of the side-cut product yield of atmospheric/vacuum distillation unit by NIR crude oil rapid assay].

    Science.gov (United States)

    Wang, Yan-Bin; Hu, Yu-Zhong; Li, Wen-Le; Zhang, Wei-Song; Zhou, Feng; Luo, Zhi

    2014-10-01

    In the present paper, based on the fast evaluation technique of near infrared, a method to predict the yield of atmos- pheric and vacuum line was developed, combined with H/CAMS software. Firstly, the near-infrared (NIR) spectroscopy method for rapidly determining the true boiling point of crude oil was developed. With commercially available crude oil spectroscopy da- tabase and experiments test from Guangxi Petrochemical Company, calibration model was established and a topological method was used as the calibration. The model can be employed to predict the true boiling point of crude oil. Secondly, the true boiling point based on NIR rapid assay was converted to the side-cut product yield of atmospheric/vacuum distillation unit by H/CAMS software. The predicted yield and the actual yield of distillation product for naphtha, diesel, wax and residual oil were compared in a 7-month period. The result showed that the NIR rapid crude assay can predict the side-cut product yield accurately. The near infrared analytic method for predicting yield has the advantages of fast analysis, reliable results, and being easy to online operate, and it can provide elementary data for refinery planning optimization and crude oil blending.

  13. Shark class II invariant chain reveals ancient conserved relationships with cathepsins and MHC class II.

    Science.gov (United States)

    Criscitiello, Michael F; Ohta, Yuko; Graham, Matthew D; Eubanks, Jeannine O; Chen, Patricia L; Flajnik, Martin F

    2012-03-01

    The invariant chain (Ii) is the critical third chain required for the MHC class II heterodimer to be properly guided through the cell, loaded with peptide, and expressed on the surface of antigen presenting cells. Here, we report the isolation of the nurse shark Ii gene, and the comparative analysis of Ii splice variants, expression, genomic organization, predicted structure, and function throughout vertebrate evolution. Alternative splicing to yield Ii with and without the putative protease-protective, thyroglobulin-like domain is as ancient as the MHC-based adaptive immune system, as our analyses in shark and lizard further show conservation of this mechanism in all vertebrate classes except bony fish. Remarkable coordinate expression of Ii and class II was found in shark tissues. Conserved Ii residues and cathepsin L orthologs suggest their long co-evolution in the antigen presentation pathway, and genomic analyses suggest 450 million years of conserved Ii exon/intron structure. Other than an extended linker preceding the thyroglobulin-like domain in cartilaginous fish, the Ii gene and protein are predicted to have largely similar physiology from shark to man. Duplicated Ii genes found only in teleosts appear to have become sub-functionalized, as one form is predicted to play the same role as that mediated by Ii mRNA alternative splicing in all other vertebrate classes. No Ii homologs or potential ancestors of any of the functional Ii domains were found in the jawless fish or lower chordates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Atmospheric modelling and prediction at time scales from days to seasons

    CSIR Research Space (South Africa)

    Landman, WA

    2010-09-01

    Full Text Available to seasonal forecasts, and produce multi-decadal climate change projections. This paper focuses on the shorter time-range from days to seasons. The conformal-cubic atmospheric model (CCAM) is an atmospheric global circulation model (AGCM) that can operate...

  15. NOAA/NCEP Global Forecast System (GFS) Atmospheric Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — U.S. National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) numerical weather...

  16. A Study of Subseasonal Predictability of the Atmospheric Circulation Low-frequency Modes based on SL-AV forecasts

    Science.gov (United States)

    Kruglova, Ekaterina; Kulikova, Irina; Khan, Valentina; Tischenko, Vladimir

    2017-04-01

    The subseasonal predictability of low-frequency modes and the atmospheric circulation regimes is investigated based on the using of outputs from global Semi-Lagrangian (SL-AV) model of the Hydrometcentre of Russia and Institute of Numerical Mathematics of Russian Academy of Science. Teleconnection indices (AO, WA, EA, NAO, EU, WP, PNA) are used as the quantitative characteristics of low-frequency variability to identify zonal and meridional flow regimes with focus on control distribution of high impact weather patterns in the Northern Eurasia. The predictability of weekly and monthly averaged indices is estimated by the methods of diagnostic verification of forecast and reanalysis data covering the hindcast period, and also with the use of the recommended WMO quantitative criteria. Characteristics of the low frequency variability have been discussed. Particularly, it is revealed that the meridional flow regimes are reproduced by SL-AV for summer season better comparing to winter period. It is shown that the model's deterministic forecast (ensemble mean) skill at week 1 (days 1-7) is noticeably better than that of climatic forecasts. The decrease of skill scores at week 2 (days 8-14) and week 3( days 15-21) is explained by deficiencies in the modeling system and inaccurate initial conditions. It was noticed the slightly improvement of the skill of model at week 4 (days 22-28), when the condition of atmosphere is more determined by the flow of energy from the outside. The reliability of forecasts of monthly (days 1-30) averaged indices is comparable to that at week 1 (days 1-7). Numerical experiments demonstrated that the forecast accuracy can be improved (thus the limit of practical predictability can be extended) through the using of probabilistic approach based on ensemble forecasts. It is shown that the quality of forecasts of the regimes of circulation like blocking is higher, than that of zonal flow.

  17. Atmospheric Photochemistry

    Science.gov (United States)

    Massey, Harrie; Potter, A. E.

    1961-01-01

    The upper atmosphere offers a vast photochemical laboratory free from solid surfaces, so all reactions take place in the gaseous phase. At 30 km altitude the pressure has fallen to about one-hundredth of that at ground level, and we shall, rather arbitrarily, regard the upper atmosphere as beginning at that height. By a little less than 100 km the pressure has fallen to 10(exp -3) mm Hg and is decreasing by a power of ten for every 15 km increase in altitude. Essentially we are concerned then with the photochemistry of a nitrogen-oxygen mixture under low-pressure conditions in which photo-ionization, as well as photodissociation, plays an important part. Account must also be taken of the presence of rare constituents, such as water vapour and its decomposition products, including particularly hydroxyl, oxides of carbon, methane and, strangely enough, sodium, lithium and calcium. Many curious and unfamiliar reactions occur in the upper atmosphere. Some of them are luminescent, causing the atmosphere to emit a dim light called the airglow. Others, between gaseous ions and neutral molecules, are almost a complete mystery at this time. Similar interesting phenomena must occur in other planetary atmospheres, and they might be predicted if sufficient chemical information were available.

  18. Atmospheric turbulence and diffusion research

    International Nuclear Information System (INIS)

    Hosker, R.P. Jr.

    1993-01-01

    The Atmospheric Turbulence and Diffusion Division (well known in the atmospheric dispersion community as the Atmospheric Turbulence and Diffusion Laboratory, ATDL) is one of several field facilities of NOAAs Air Resources Laboratory, headquartered in Silver Spring, Maryland. The laboratory conducts research on matters of atmospheric diffusion and turbulent exchange, concerning air quality. ATDD focuses attention on the physics of the lower atmosphere, with special emphasis on the processes contributing to atmospheric transport, dispersion, deposition, and air-surface exchange, and on the development of predictive capabilities using the results of this research. Research is directed toward issues of national and global importance related to the missions of DOE, to DOE's Oak Ridge Field Office, and to NOAA. The program is divided into four major projects: plume transport and diffusion in the planetary boundary layer, complex topography, canopy micrometeorology, and air-surface exchange

  19. Transport with Astra in TJ-II; Transporte con Astra en TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Bruna, D; Castejon, F; Fontdecaba, J M

    2004-07-01

    This report describes the adaptation of the numerical transport shell ASTRA for performing plasma calculations in the TJ-II stellarator device. Firstly, an approximation to the TJ-II geometry is made and a simple transport model is shared with two other codes in order to compare these codes (PROCTR, PRETOR-Stellarator) with ASTRA as calculation tool for TJ-II plasmas are provided: interpretative and predictive transport. The first consists in estimating the transport coefficients from real experimental data, thes being taken from three TJ-II discharges. The predictive facet is illustrated using a model that is able to includes self-consistently thedynamics of transport barriers. The report includes this model, written in the ASTRA programming language, to illustrate the use of ASTRA. (Author) 26 refs.

  20. LATTICE: The Lower ATmosphere-Thermosphere-Ionosphere Coupling Experiment

    Science.gov (United States)

    Mlynczak, M. G.; Yee, J. H.

    2017-12-01

    We present the Lower Atmosphere-Thermosphere-Ionosphere Coupling Experiment (LATTICE), which is a candidate mission for proposal to a future NASA Announcement of Opportunity. LATTICE will make the first consistent measurements of global kinetic temperature from the tropopause up to at least 160 km, along with global vector winds from 100 to 160 km at all local times. LATTICE thus provides, for the first time, a consistent picture of the coupling of the terrestrial lower atmosphere to the thermosphere-ionosphere system, which is a major scientific goal outlined in the 2012 Heliophysics Decadal Survey. The core instruments on LATTICE are the Terahertz Limb Sounder (TLS) and the Sounding of the Atmosphere using Broadband Emission Radiometry-II (SABER-II) instrument. The TLS instrument measures the 147 µm (2.04 THz) fine structure line of atomic oxygen. From these measurements TLS will provide kinetic temperature, atomic oxygen density, and vector wind from 100 to at least 160 km altitude. SABER-II is an infrared radiometer and is optically identical to the legacy SABER instrument on the current TIMED satellite. SABER-II is half the mass, half the power, and one-third the volume of the legacy instrument, and expects the same radiometric performance. SABER-II will again measure kinetic temperature from 15 to 110 km and will make measurements of key parameters in the thermosphere-ionosphere system including NO+, the green line and red line emissions, as well as continuing legacy measurements of ozone, water vapor, atomic oxygen, and atomic hydrogen in the mesosphere and lower thermosphere. We will describe the LATTICE mission in detail including other potential instruments for diagnosing thermospheric composition and high latitude energy inputs, and for measuring solar ultraviolet irradiance.

  1. Compressor Part II: Volute Flow Predictions

    Directory of Open Access Journals (Sweden)

    Yu-Tai Lee

    1999-01-01

    Full Text Available A numerical method that solves the Reynolds-averaged Navier-Stokes equations is used to study an inefficient component of a shipboard air-conditioning HCFC-124 compressor system. This high-loss component of the centrifugal compressor was identified as the volute through a series of measurements given in Part I of the paper. The predictions were made using three grid topologies. The first grid closes the connection between the cutwater and the discharge diffuser. The other two grids connect the cutwater area with the discharge diffuser. Experiments were performed to simulate both the cutwater conditions used in the predictions. Surface pressures along the outer wall and near the inlet of the volute were surveyed for comparisons with the predictions. Good agreements between the predicted results and the measurements validate the calculations. Total pressure distributions and flow stream traces from the prediction results support the loss distribution through the volute. A modified volute configuration is examined numerically for further loss comparison.

  2. Prediction of Mortality after Emergent Transjugular Intrahepatic Portosystemic Shunt Placement: Use of APACHE II, Child-Pugh and MELD Scores in Asian Patients with Refractory Variceal Hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Tzeng, Wen Sheng; Wu, Reng Hong; Lin, Ching Yih; Chen, Jyh Jou; Sheu, Ming Juen; Koay, Lok Beng; Lee, Chuan [Chi-Mei Foundation Medical Center, Tainan (China)

    2009-10-15

    This study was designed to determine if existing methods of grading liver function that have been developed in non-Asian patients with cirrhosis can be used to predict mortality in Asian patients treated for refractory variceal hemorrhage by the use of the transjugular intrahepatic portosystemic shunt (TIPS) procedure. Data for 107 consecutive patients who underwent an emergency TIPS procedure were retrospectively analyzed. Acute physiology and chronic health evaluation (APACHE II), Child-Pugh and model for end-stage liver disease (MELD) scores were calculated. Survival analyses were performed to evaluate the ability of the various models to predict 30-day, 60-day and 360-day mortality. The ability of stratified APACHE II, Child-Pugh, and MELD scores to predict survival was assessed by the use of Kaplan-Meier analysis with the log-rank test. No patient died during the TIPS procedure, but 82 patients died during the follow-up period. Thirty patients died within 30 days after the TIPS procedure; 37 patients died within 60 days and 53 patients died within 360 days. Univariate analysis indicated that hepatorenal syndrome, use of inotropic agents and mechanical ventilation were associated with elevated 30-day mortality (p < 0.05). Multivariate analysis showed that a Child-Pugh score > 11 or an MELD score > 20 predicted increased risk of death at 30, 60 and 360 days (p < 0.05). APACHE II scores could only predict mortality at 360 days (p < 0.05). A Child-Pugh score > 11 or an MELD score > 20 are predictive of mortality in Asian patients with refractory variceal hemorrhage treated with the TIPS procedure. An APACHE II score is not predictive of early mortality in this patient population.

  3. A climate sensitive model of carbon transfer through atmosphere, vegetation and soil in managed forest ecosystems

    Science.gov (United States)

    Loustau, D.; Moreaux, V.; Bosc, A.; Trichet, P.; Kumari, J.; Rabemanantsoa, T.; Balesdent, J.; Jolivet, C.; Medlyn, B. E.; Cavaignac, S.; Nguyen-The, N.

    2012-12-01

    For predicting the future of the forest carbon cycle in forest ecosystems, it is necessary to account for both the climate and management impacts. Climate effects are significant not only at a short time scale but also at the temporal horizon of a forest life cycle e.g. through shift in atmospheric CO2 concentration, temperature and precipitation regimes induced by the enhanced greenhouse effect. Intensification of forest management concerns an increasing fraction of temperate and tropical forests and untouched forests represents only one third of the present forest area. Predicting tools are therefore needed to project climate and management impacts over the forest life cycle and understand the consequence of management on the forest ecosystem carbon cycle. This communication summarizes the structure, main components and properties of a carbon transfer model that describes the processes controlling the carbon cycle of managed forest ecosystems. The model, GO+, links three main components, (i) a module describing the vegetation-atmosphere mass and energy exchanges in 3D, (ii) a plant growth module and a (iii) soil carbon dynamics module in a consistent carbon scheme of transfer from atmosphere back into the atmosphere. It was calibrated and evaluated using observed data collected on coniferous and broadleaved forest stands. The model predicts the soil, water and energy balance of entire rotations of managed stands from the plantation to the final cut and according to a range of management alternatives. It accounts for the main soil and vegetation management operations such as soil preparation, understorey removal, thinnings and clearcutting. Including the available knowledge on the climatic sensitivity of biophysical and biogeochemical processes involved in atmospheric exchanges and carbon cycle of forest ecosystems, GO+ can produce long-term backward or forward simulations of forest carbon and water cycles under a range of climate and management scenarios. This

  4. Verification of atmospheric diffusion models using data of long term atmospheric diffusion experiments

    International Nuclear Information System (INIS)

    Tamura, Junji; Kido, Hiroko; Hato, Shinji; Homma, Toshimitsu

    2009-03-01

    Straight-line or segmented plume models as atmospheric diffusion models are commonly used in probabilistic accident consequence assessment (PCA) codes due to cost and time savings. The PCA code, OSCAAR developed by Japan Atomic Energy Research Institute (Present; Japan Atomic Energy Agency) uses the variable puff trajectory model to calculate atmospheric transport and dispersion of released radionuclides. In order to investigate uncertainties involved with the structure of the atmospheric dispersion/deposition model in OSCAAR, we have introduced the more sophisticated computer codes that included regional meteorological models RAMS and atmospheric transport model HYPACT, which were developed by Colorado State University, and comparative analyses between OSCAAR and RAMS/HYPACT have been performed. In this study, model verification of OSCAAR and RAMS/HYPACT was conducted using data of long term atmospheric diffusion experiments, which were carried out in Tokai-mura, Ibaraki-ken. The predictions by models and the results of the atmospheric diffusion experiments indicated relatively good agreements. And it was shown that model performance of OSCAAR was the same degree as it of RAMS/HYPACT. (author)

  5. Atmospheric dispersion modeling: Challenges of the Fukushima Daiichi response

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Gayle [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nasstrom, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pobanz, Brenda [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, Kevin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vogt, Phil [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Aluzzi, Fernando [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homann, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-05-01

    In this research, the U.S. Department of Energy’s (DOE) National Atmospheric Release Advisory Center (NARAC) provided a wide range of predictions and analyses as part of the response to the Fukushima Daiichi Nuclear Power Plant accident including: daily Japanese weather forecasts and atmospheric transport predictions to inform planning for field monitoring operations and to provide U.S. government agencies with ongoing situational awareness of meteorological conditions; estimates of possible dose in Japan based on hypothetical U.S. Nuclear Regulatory Commission scenarios of potential radionuclide releases to support protective action planning for U.S. citizens; predictions of possible plume arrival times and dose levels at U.S. locations; and source estimation and plume model refinement based on atmospheric dispersion modeling and available monitoring data.

  6. Predictive value of pretreatment lymphocyte count in stage II colorectal cancer and in high-risk patients treated with adjuvant chemotherapy.

    Science.gov (United States)

    Liang, Lei; Zhu, Ji; Jia, Huixun; Huang, Liyong; Li, Dawei; Li, Qingguo; Li, Xinxiang

    2016-01-05

    Pretreatment lymphocyte count (LC) has been associated with prognosis and chemotherapy response in several cancers. The predictive value of LC for stage II colorectal cancer (CRC) and for high-risk patients treated with adjuvant chemotherapy (AC) has not been determined. A retrospective review of prospectively collected data from 1332 consecutive stage II CRC patients who underwent curative tumor resection was conducted. A pretreatment LC value risk, 459 (62.2%) of whom received AC. Patients with low LCs had significantly worse 5-year OS (74.6% vs. 90.2%, p risk patients with low LCs had the poorest DFS (p value or combined with high-risk status were both independent prognostic factors(p risk, AC-treated patients with high LCs had significantly longer DFS than untreated patients (HR, 0.594; 95% CI, 0.364-0.970; p = 0.035). There was no difference or trend for DFS or OS in patients with low LCs, regardless of the use of AC (DFS, p = 0.692; OS, p = 0.522). Low LC was also independently associated with poorer DFS in high-risk, AC-treated patients (HR, 1.885; 95% CI, 1.112-3.196; p = 0.019). Pretreatment LC is an independent prognostic factor for survival in stage II CRC. Furthermore, pretreatment LC reliably predicts chemotherapeutic efficacy in high-risk patients with stage II CRC.

  7. FutureTox II: in vitro data and in silico models for predictive toxicology.

    Science.gov (United States)

    Knudsen, Thomas B; Keller, Douglas A; Sander, Miriam; Carney, Edward W; Doerrer, Nancy G; Eaton, David L; Fitzpatrick, Suzanne Compton; Hastings, Kenneth L; Mendrick, Donna L; Tice, Raymond R; Watkins, Paul B; Whelan, Maurice

    2015-02-01

    FutureTox II, a Society of Toxicology Contemporary Concepts in Toxicology workshop, was held in January, 2014. The meeting goals were to review and discuss the state of the science in toxicology in the context of implementing the NRC 21st century vision of predicting in vivo responses from in vitro and in silico data, and to define the goals for the future. Presentations and discussions were held on priority concerns such as predicting and modeling of metabolism, cell growth and differentiation, effects on sensitive subpopulations, and integrating data into risk assessment. Emerging trends in technologies such as stem cell-derived human cells, 3D organotypic culture models, mathematical modeling of cellular processes and morphogenesis, adverse outcome pathway development, and high-content imaging of in vivo systems were discussed. Although advances in moving towards an in vitro/in silico based risk assessment paradigm were apparent, knowledge gaps in these areas and limitations of technologies were identified. Specific recommendations were made for future directions and research needs in the areas of hepatotoxicity, cancer prediction, developmental toxicity, and regulatory toxicology. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Atmospheric Rivers in Europe: impacts, predictability, and future climate scenarios

    Science.gov (United States)

    Ramos, A. M.; Tome, R.; Sousa, P. M.; Liberato, M. L. R.; Lavers, D.; Trigo, R. M.

    2017-12-01

    In recent years a strong relationship has been found between Atmospheric Rivers (ARs) and extreme precipitation and floods across western Europe, with some regions having 8 of their top 10 annual maxima precipitation events related to ARs. In the particular case of the Iberian Peninsula, the association between ARs and extreme precipitation days in the western river basins is noteworthy, while for the eastern and southern basins the impact of ARs is reduced. An automated ARs detection algorithm is used for the North Atlantic Ocean Basin, allowing the identification of major ARs affecting western European coasts in the present climate and under different climate change scenarios. We have used both reanalyzes and six General Circulation models under three climate scenarios (the control simulation, the RCP4.5 and RCP8.5 scenarios). The western coast of Europe was divided into five domains, namely the Iberian Peninsula, France, UK, Southern Scandinavia and the Netherlands, and Northern Scandinavia. It was found that there is an increase in the vertically integrated horizontal water transport which led to an increase in the AR frequency, a result more visible in the high emission scenarios (RCP8.5) for the 2074-2099 period. Since ARs are associated with high impact weather, it is important to study their predictability. This assessment was performed with the ECMWF ensemble forecasts up to 10 days for winters 2013/14, 2014/15 and 2015/16 for events that made landfall in the Iberian Peninsula. We show the model's potential added value to detect upcoming ARs events, which is particularly useful to predict potential hydrometeorological extremes. AcknowledgementsThis work was supported by the project FORLAND - Hydrogeomorphologic risk in Portugal: driving forces and application for land use planning [PTDC / ATPGEO / 1660/2014] funded by the Portuguese Foundation for Science and Technology (FCT), Portugal. A. M. Ramos was also supported by a FCT postdoctoral grant (FCT

  9. Improvement of a mesoscale atmospheric dynamic model PHYSIC. Utilization of output from synoptic numerical prediction model for initial and boundary condition

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Yamazawa, Hiromi

    1995-03-01

    This report describes the improvement of the mesoscale atmospheric dynamic model which is a part of the atmospheric dispersion calculation model PHYSIC. To introduce large-scale meteorological changes into the mesoscale atmospheric dynamic model, it is necessary to make the initial and boundary conditions of the model by using GPV (Grid Point Value) which is the output of the numerical weather prediction model of JMA (Japan Meteorological Agency). Therefore, the program which preprocesses the GPV data to make a input file to PHYSIC was developed and the input process and the methods of spatial and temporal interpolation were improved to correspond to the file. Moreover, the methods of calculating the cloud amount and ground surface moisture from GPV data were developed and added to the model code. As the example of calculation by the improved model, the wind field simulations of a north-west monsoon in winter and a sea breeze in summer in the Tokai area were also presented. (author)

  10. A Kinetic Model for Predicting the Relative Humidity in Modified Atmosphere Packaging and Its Application in Lentinula edodes Packages

    Directory of Open Access Journals (Sweden)

    Li-xin Lu

    2013-01-01

    Full Text Available Adjusting and controlling the relative humidity (RH inside package is crucial for ensuring the quality of modified atmosphere packaging (MAP of fresh produce. In this paper, an improved kinetic model for predicting the RH in MAP was developed. The model was based on heat exchange and gases mass transport phenomena across the package, gases heat convection inside the package, and mass and heat balances accounting for the respiration and transpiration behavior of fresh produce. Then the model was applied to predict the RH in MAP of fresh Lentinula edodes (one kind of Chinese mushroom. The model equations were solved numerically using Adams-Moulton method to predict the RH in model packages. In general, the model predictions agreed well with the experimental data, except that the model predictions were slightly high in the initial period. The effect of the initial gas composition on the RH in packages was notable. In MAP of lower oxygen and higher carbon dioxide concentrations, the ascending rate of the RH was reduced, and the RH inside packages was saturated slowly during storage. The influence of the initial gas composition on the temperature inside package was not much notable.

  11. A network-based predictive gene-expression signature for adjuvant chemotherapy benefit in stage II colorectal cancer.

    Science.gov (United States)

    Cao, Bangrong; Luo, Liping; Feng, Lin; Ma, Shiqi; Chen, Tingqing; Ren, Yuan; Zha, Xiao; Cheng, Shujun; Zhang, Kaitai; Chen, Changmin

    2017-12-13

    The clinical benefit of adjuvant chemotherapy for stage II colorectal cancer (CRC) is controversial. This study aimed to explore novel gene signature to predict outcome benefit of postoperative 5-Fu-based therapy in stage II CRC. Gene-expression profiles of stage II CRCs from two datasets with 5-Fu-based adjuvant chemotherapy (training dataset, n = 212; validation dataset, n = 85) were analyzed to identify the indicator. A systemic approach by integrating gene-expression and protein-protein interaction (PPI) network was implemented to develop the predictive signature. Kaplan-Meier curves and Cox proportional hazards model were used to determine the survival benefit of adjuvant chemotherapy. Experiments with shRNA knock-down were carried out to confirm the signature identified in this study. In the training dataset, we identified 44 PPI sub-modules, by which we separate patients into two clusters (1 and 2) having different chemotherapeutic benefit. A predictor of 11 PPI sub-modules (11-PPI-Mod) was established to discriminate the two sub-groups, with an overall accuracy of 90.1%. This signature was independently validated in an external validation dataset. Kaplan-Meier curves showed an improved outcome for patients who received adjuvant chemotherapy in Cluster 1 sub-group, but even worse survival for those in Cluster 2 sub-group. Similar results were found in both the training and the validation dataset. Multivariate Cox regression revealed an interaction effect between 11-PPI-Mod signature and adjuvant therapy treatment in the training dataset (RFS, p = 0.007; OS, p = 0.006) and the validation dataset (RFS, p = 0.002). From the signature, we found that PTGES gene was up-regulated in CRC cells which were more resistant to 5-Fu. Knock-down of PTGES indicated a growth inhibition and up-regulation of apoptotic markers induced by 5-Fu in CRC cells. Only a small proportion of stage II CRC patients could benefit from adjuvant therapy. The 11-PPI-Mod as

  12. Atmospheric conditions important for the assessment of population exposure

    International Nuclear Information System (INIS)

    Vidic, S.

    2005-01-01

    Atmospheric distribution of a pollutant can be predicted using numerical weather prediction models and atmospheric dispersion models. The first provides prediction on the evaluation of the meteorological fields for specified time period and the second uses this information to determine the evolution of the dispersing cloud in time and space. There is a number of conditions and features that limit the performance of both models, as they contain a degree of parametrisation that may be a source of error. This paper discusses influential parameters and conditions.(author)

  13. Effect of increased ionization on the atmospheric electric field

    International Nuclear Information System (INIS)

    Boeck, W.L.

    1980-01-01

    This study is a review of atmospheric electrical theory with the purpose of predicting the atmospheric electrical effects of increased ionization caused by radioactive inert gases. A time-independent perturbation model for the global atmospheric electric circuit precdicts that the electric field at the sea surface would be reduced to about 76% of its unperturbed value by a surface 85 Kr concentration of 3 nCi/m 3 . The electric field at a typical land station is predicted to be about 84% of its unperturbed value. Some scientists have suggested that the atmospheric electric field is part of a closed electrical feedback loop. The present model does not include such a closed feedback loop and may underestimate the total effects. This model is also useful for interpreting atmospheric electrical responses to natural fluctuations in the cosmic-ray component of background radiation

  14. Modeling of atmospheric dispersion of radionuclides

    International Nuclear Information System (INIS)

    Baklouti, Nada

    2010-01-01

    This work is a prediction of atmospheric dispersion of radionuclide from a chronic rejection of the nuclear power generating plant that can be located in one of the Tunisian sites: Skhira or Bizerte. Also it contains a study of acute rejection 'Chernobyl accident' which was the reference for the validation of GENII the code of modeling of atmospheric dispersion.

  15. Prediction of health effects of cross-border atmospheric pollutants using an aerosol forecast model.

    Science.gov (United States)

    Onishi, Kazunari; Sekiyama, Tsuyoshi Thomas; Nojima, Masanori; Kurosaki, Yasunori; Fujitani, Yusuke; Otani, Shinji; Maki, Takashi; Shinoda, Masato; Kurozawa, Youichi; Yamagata, Zentaro

    2018-08-01

    Health effects of cross-border air pollutants and Asian dust are of significant concern in Japan. Currently, models predicting the arrival of aerosols have not investigated the association between arrival predictions and health effects. We investigated the association between subjective health symptoms and unreleased aerosol data from the Model of Aerosol Species in the Global Atmosphere (MASINGAR) acquired from the Japan Meteorological Agency, with the objective of ascertaining if these data could be applied to predicting health effects. Subjective symptom scores were collected via self-administered questionnaires and, along with modeled surface aerosol concentration data, were used to conduct a risk evaluation using generalized estimating equations between October and November 2011. Altogether, 29 individuals provided 1670 responses. Spearman's correlation coefficients were determined for the relationship between the proportion of the participants reporting the maximum score of two or more for each symptom and the surface concentrations for each considered aerosol species calculated using MASINGAR; the coefficients showed significant intermediate correlations between surface sulfate aerosol concentration and respiratory, throat, and fever symptoms (R = 0.557, 0.454, and 0.470, respectively; p < 0.01). In the general estimation equation (logit link) analyses, a significant linear association of surface sulfate aerosol concentration, with an endpoint determined by reported respiratory symptom scores of two or more, was observed (P trend = 0.001, odds ratio [OR] of the highest quartile [Q4] vs. the lowest [Q1] = 5.31, 95% CI = 2.18 to 12.96), with adjustment for potential confounding. The surface sulfate aerosol concentration was also associated with throat and fever symptoms. In conclusion, our findings suggest that modeled data are potentially useful for predicting health risks of cross-border aerosol arrivals. Copyright © 2018 Elsevier Ltd

  16. Haze heats Pluto's atmosphere yet explains its cold temperature.

    Science.gov (United States)

    Zhang, Xi; Strobel, Darrell F; Imanaka, Hiroshi

    2017-11-15

    Pluto's atmosphere is cold and hazy. Recent observations have shown it to be much colder than predicted theoretically, suggesting an unknown cooling mechanism. Atmospheric gas molecules, particularly water vapour, have been proposed as a coolant; however, because Pluto's thermal structure is expected to be in radiative-conductive equilibrium, the required water vapour would need to be supersaturated by many orders of magnitude under thermodynamic equilibrium conditions. Here we report that atmospheric hazes, rather than gases, can explain Pluto's temperature profile. We find that haze particles have substantially larger solar heating and thermal cooling rates than gas molecules, dominating the atmospheric radiative balance from the ground to an altitude of 700 kilometres, above which heat conduction maintains an isothermal atmosphere. We conclude that Pluto's atmosphere is unique among Solar System planetary atmospheres, as its radiative energy equilibrium is controlled primarily by haze particles instead of gas molecules. We predict that Pluto is therefore several orders of magnitude brighter at mid-infrared wavelengths than previously thought-a brightness that could be detected by future telescopes.

  17. Experimental prediction of severe droughts on seasonal to intra-annual time scales with GFDL High-Resolution Atmosphere Model

    Science.gov (United States)

    Yu, Z.; Lin, S.

    2011-12-01

    Regional heat waves and drought have major economic and societal impacts on regional and even global scales. For example, during and following the 2010-2011 La Nina period, severe droughts have been reported in many places around the world including China, the southern US, and the east Africa, causing severe hardship in China and famine in east Africa. In this study, we investigate the feasibility and predictability of severe spring-summer draught events, 3 to 6 months in advance with the 25-km resolution Geophysical Fluid Dynamics Laboratory High-Resolution Atmosphere Model (HiRAM), which is built as a seamless weather-climate model, capable of long-term climate simulations as well as skillful seasonal predictions (e.g., Chen and Lin 2011, GRL). We adopted a similar methodology and the same (HiRAM) model as in Chen and Lin (2011), which is used successfully for seasonal hurricane predictions. A series of initialized 7-month forecasts starting from Dec 1 are performed each year (5 members each) during the past decade (2000-2010). We will then evaluate the predictability of the severe drought events during this period by comparing model predictions vs. available observations. To evaluate the predictive skill, in this preliminary report, we will focus on the anomalies of precipitation, sea-level-pressure, and 500-mb height. These anomalies will be computed as the individual model prediction minus the mean climatology obtained by an independent AMIP-type "simulation" using observed SSTs (rather than using predictive SSTs in the forecasts) from the same model.

  18. On the response of the tropical atmosphere to large-scale deforestation

    Science.gov (United States)

    Eltahir, E. A. B.; Bras, R. L.

    1993-01-01

    Recent studies on the Amazon deforestation problem predict that removal of the forest will result in a higher surface temperature, a significant reduction in evaporation and precipitation, and possibly significant changes in the tropical circulation. Here, we discuss the basic mechanisms contributing to the response of the tropical atmosphere to deforestation. A simple linear model of the tropical atmosphere is used in studying the effects of deforestation on climate. It is suggested that the impact of large-scale deforestation on the circulation of the tropical atmosphere consists of two components: the response of the tropical circulation to the negative change in precipitation (heating), and the response of the same circulation to the positive change in surface temperature. Owing to their different signs, the changes in predicted temperature and precipitation excite competing responses working in opposite directions. The predicted change in tropical circulation determines the change, if any, in atmospheric moisture convergence, which is equivalent to the change in run-off. The dependence of run-off predictions on the relative magnitudes of the predicted changes in precipitation and surface temperature implies that the predictions about run-off are highly sensitive, which explains, at least partly, the disagreement between the different models concerning the sign of the predicted change in Amazonian run-off.

  19. Does the KABC-II Display Ethnic Bias in the Prediction of Reading, Math, and Writing in Elementary School Through High School?

    Science.gov (United States)

    Scheiber, Caroline

    2017-09-01

    This study explored whether the Kaufman Assessment Battery for Children-Second Edition (KABC-II) predicted academic achievement outcomes of the Kaufman Test of Educational Achievement-Second Edition (KTEA-II) equally well across a representative sample of African American, Hispanic, and Caucasian school-aged children ( N = 2,001) in three grade groups (1-4, 5-8, 9-12). It was of interest to study possible prediction bias in the slope and intercept of the five underlying Cattell-Horn-Carroll (CHC) cognitive factors of the KABC-II-Sequential/Gsm (Short-Term Memory), Learning/Glr (Long-Term Storage and Retrieval), Simultaneous/Gv (Visual Processing), Planning/Gf (Fluid Reasoning), and Knowledge/Gc (Crystallized Ability)-in estimating reading, writing, and math. Structural equation modeling techniques demonstrated a lack of bias in the slopes; however, four of the five CHC indexes showed a persistent overprediction of the minority groups' achievement in the intercept. The overprediction is likely attributable to institutional or societal contributions, which limit the students' ability to achieve to their fullest potential.

  20. Comparison of the Nosocomial Pneumonia Mortality Prediction (NPMP) model with standard mortality prediction tools.

    Science.gov (United States)

    Srinivasan, M; Shetty, N; Gadekari, S; Thunga, G; Rao, K; Kunhikatta, V

    2017-07-01

    Severity or mortality prediction of nosocomial pneumonia could aid in the effective triage of patients and assisting physicians. To compare various severity assessment scoring systems for predicting intensive care unit (ICU) mortality in nosocomial pneumonia patients. A prospective cohort study was conducted in a tertiary care university-affiliated hospital in Manipal, India. One hundred patients with nosocomial pneumonia, admitted in the ICUs who developed pneumonia after >48h of admission, were included. The Nosocomial Pneumonia Mortality Prediction (NPMP) model, developed in our hospital, was compared with Acute Physiology and Chronic Health Evaluation II (APACHE II), Mortality Probability Model II (MPM 72  II), Simplified Acute Physiology Score II (SAPS II), Multiple Organ Dysfunction Score (MODS), Sequential Organ Failure Assessment (SOFA), Clinical Pulmonary Infection Score (CPIS), Ventilator-Associated Pneumonia Predisposition, Insult, Response, Organ dysfunction (VAP-PIRO). Data and clinical variables were collected on the day of pneumonia diagnosis. The outcome for the study was ICU mortality. The sensitivity and specificity of the various scoring systems was analysed by plotting receiver operating characteristic (ROC) curves and computing the area under the curve for each of the mortality predicting tools. NPMP, APACHE II, SAPS II, MPM 72  II, SOFA, and VAP-PIRO were found to have similar and acceptable discrimination power as assessed by the area under the ROC curve. The AUC values for the above scores ranged from 0.735 to 0.762. CPIS and MODS showed least discrimination. NPMP is a specific tool to predict mortality in nosocomial pneumonia and is comparable to other standard scores. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  1. Recent Advances in Atmospheric Chemistry of Mercury

    Directory of Open Access Journals (Sweden)

    Lin Si

    2018-02-01

    Full Text Available Mercury is one of the most toxic metals and has global importance due to the biomagnification and bioaccumulation of organomercury via the aquatic food web. The physical and chemical transformations of various mercury species in the atmosphere strongly influence their composition, phase, transport characteristics and deposition rate back to the ground. Modeling efforts to assess global cycling of mercury require an accurate understanding of atmospheric mercury chemistry. Yet, there are several key uncertainties precluding accurate modeling of physical and chemical transformations. We focus this article on recent studies (since 2015 on improving our understanding of the atmospheric chemistry of mercury. We discuss recent advances in determining the dominant atmospheric oxidant of elemental mercury (Hg0 and understanding the oxidation reactions of Hg0 by halogen atoms and by nitrate radical (NO3—in the aqueous reduction of oxidized mercury compounds (HgII as well as in the heterogeneous reactions of Hg on atmospheric-relevant surfaces. The need for future research to improve understanding of the fate and transformation of mercury in the atmosphere is also discussed.

  2. Experimental study of the atmospheric neutrino flux

    International Nuclear Information System (INIS)

    Hirata, K.S.; Kajita, T.; Koshiba, M.

    1988-01-01

    We have observed 277 fully contained events in the KAMIOKANDE detector. The number of electron-like single prong events is in good agreement with the predictions of a Monte Carlo calculation based on atmospheric neutrino interactions in the detector. On the other hand, the number of muon-like single prong events is 59 ± 7 %(statistical error) of the predicted number of the Monte Carlo calculation. We are unable to explain the data as the result of systematic detector effects or uncertainties in the atmospheric neutrino fluxes. (author)

  3. A Scalable Version of the Navy Operational Global Atmospheric Prediction System Spectral Forecast Model

    Directory of Open Access Journals (Sweden)

    Thomas E. Rosmond

    2000-01-01

    Full Text Available The Navy Operational Global Atmospheric Prediction System (NOGAPS includes a state-of-the-art spectral forecast model similar to models run at several major operational numerical weather prediction (NWP centers around the world. The model, developed by the Naval Research Laboratory (NRL in Monterey, California, has run operational at the Fleet Numerical Meteorological and Oceanographic Center (FNMOC since 1982, and most recently is being run on a Cray C90 in a multi-tasked configuration. Typically the multi-tasked code runs on 10 to 15 processors with overall parallel efficiency of about 90%. resolution is T159L30, but other operational and research applications run at significantly lower resolutions. A scalable NOGAPS forecast model has been developed by NRL in anticipation of a FNMOC C90 replacement in about 2001, as well as for current NOGAPS research requirements to run on DOD High-Performance Computing (HPC scalable systems. The model is designed to run with message passing (MPI. Model design criteria include bit reproducibility for different processor numbers and reasonably efficient performance on fully shared memory, distributed memory, and distributed shared memory systems for a wide range of model resolutions. Results for a wide range of processor numbers, model resolutions, and different vendor architectures are presented. Single node performance has been disappointing on RISC based systems, at least compared to vector processor performance. This is a common complaint, and will require careful re-examination of traditional numerical weather prediction (NWP model software design and data organization to fully exploit future scalable architectures.

  4. Energy and zenith angle dependence of atmospheric muons

    CERN Document Server

    Maeda, K

    1973-01-01

    The recently proposed new process for energetic-muon production in the atmosphere should be tested at Mt. Chacaltaya. Rigorous calculations of zenith-angle distribution of atmospheric muons have been made for the altitude of 5200 m above sea level with energy range from 100 GeV to 100 TeV and for zenith angles from 0 degrees to 92.3 degrees . Calculations are based on the extension of the Chapman function to the case of a non-isothermal atmosphere, taking into account (i) energy- dependent nuclear-interaction mean free path of cosmic-ray hadrons in air, (ii) different magnitudes of photonuclear cross-section in the energy-loss process of muons in the atmosphere, (iii) contributions of atmospheric muons arriving below the horizontal directions, and (iv) atmospheric structure and geomagnetic deflection. Results are compared with those corresponding to sea level. Range straggling, particularly its effect on horizontally incident muons, is investigated by Monte Carlo calculation, indicating that its effects and t...

  5. The Atmospheric Data Acquisition And Interpolation Process For Center-TRACON Automation System

    Science.gov (United States)

    Jardin, M. R.; Erzberger, H.; Denery, Dallas G. (Technical Monitor)

    1995-01-01

    The Center-TRACON Automation System (CTAS), an advanced new air traffic automation program, requires knowledge of spatial and temporal atmospheric conditions such as the wind speed and direction, the temperature and the pressure in order to accurately predict aircraft trajectories. Real-time atmospheric data is available in a grid format so that CTAS must interpolate between the grid points to estimate the atmospheric parameter values. The atmospheric data grid is generally not in the same coordinate system as that used by CTAS so that coordinate conversions are required. Both the interpolation and coordinate conversion processes can introduce errors into the atmospheric data and reduce interpolation accuracy. More accurate algorithms may be computationally expensive or may require a prohibitively large amount of data storage capacity so that trade-offs must be made between accuracy and the available computational and data storage resources. The atmospheric data acquisition and processing employed by CTAS will be outlined in this report. The effects of atmospheric data processing on CTAS trajectory prediction will also be analyzed, and several examples of the trajectory prediction process will be given.

  6. [Role of angiotensin II receptor type 2 in predicting biochemical recurrence in the treatment of prostate cancer].

    Science.gov (United States)

    Chibichyan, M B; Kogan, M I; Chernogubova, E A; Pavlenko, I A; Matishov, D G

    2016-12-01

    To identify markers for predicting aggressive forms of prostate cancer. The study retrospectively evaluated expression of angiotensin II type 2 receptors (AT2-R) in prostate needle biopsy tissue from patients with and without biochemical recurrence after combined hormone and radiation therapy. The study findings showed that low expression of AT2-R in prostate tissue was associated with a high risk of biochemical recurrence. The data on the nature of AT2-R expression in prostate tissue of prostate cancer patients may be considered as a tool for predicting biochemical recurrence after combined hormone and radiation therapy. The test has a sensitivity of 87.5% and specificity of 85.71%.

  7. Identification of new fluorescence processes in the UV spectra of cool stars from new energy levels of Fe II and Cr II

    Science.gov (United States)

    Johansson, Sveneric; Carpenter, Kenneth G.

    1988-01-01

    Two fluorescence processes operating in atmospheres of cool stars, symbiotic stars, and the Sun are presented. Two emission lines, at 1347.03 and 1360.17 A, are identified as fluorescence lines of Cr II and Fe II. The lines are due to transitions from highly excited levels, which are populated radiatively by the hydrogen Lyman alpha line due to accidental wavelength coincidences. Three energy levels, one in Cr II and two in Fe II, are reported.

  8. Influence of Atmospheric Processes on the Solubility and Composition of Iron in Saharan Dust.

    Science.gov (United States)

    Longo, Amelia F; Feng, Yan; Lai, Barry; Landing, William M; Shelley, Rachel U; Nenes, Athanasios; Mihalopoulos, Nikolaos; Violaki, Kalliopi; Ingall, Ellery D

    2016-07-05

    Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation state became more reduced, and aerosol acidity increased. Atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility.

  9. LIFETIME AND SPECTRAL EVOLUTION OF A MAGMA OCEAN WITH A STEAM ATMOSPHERE: ITS DETECTABILITY BY FUTURE DIRECT IMAGING

    Energy Technology Data Exchange (ETDEWEB)

    Hamano, Keiko; Kawahara, Hajime; Abe, Yutaka [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Onishi, Masanori [Department of Earth and Planetary Sciences, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501 (Japan); Hashimoto, George L., E-mail: keiko@eps.s.u-tokyo.ac.jp [Department of Earth Sciences, Okayama University, 3-1-1 Tsushima-Naka, Kita, Okayama, 700-8530 (Japan)

    2015-06-20

    We present the thermal evolution and emergent spectra of solidifying terrestrial planets along with the formation of steam atmospheres. The lifetime of a magma ocean and its spectra through a steam atmosphere depends on the orbital distance of the planet from the host star. For a Type I planet, which is formed beyond a certain critical distance from the host star, the thermal emission declines on a timescale shorter than approximately 10{sup 6} years. Therefore, young stars should be targets when searching for molten planets in this orbital region. In contrast, a Type II planet, which is formed inside the critical distance, will emit significant thermal radiation from near-infrared atmospheric windows during the entire lifetime of the magma ocean. The K{sub s} and L bands will be favorable for future direct imaging because the planet-to-star contrasts of these bands are higher than approximately 10{sup −7}–10{sup −8}. Our model predicts that, in the Type II orbital region, molten planets would be present over the main sequence of the G-type host star if the initial bulk content of water exceeds approximately 1 wt%. In visible atmospheric windows, the contrasts of the thermal emission drop below 10{sup −10} in less than 10{sup 5} years, whereas those of the reflected light remain 10{sup −10} for both types of planets. Since the contrast level is comparable to those of reflected light from Earth-sized planets in the habitable zone, the visible reflected light from molten planets also provides a promising target for direct imaging with future ground- and space-based telescopes.

  10. Improved Meteorological Input for Atmospheric Release Decision support Systems and an Integrated LES Modeling System for Atmospheric Dispersion of Toxic Agents: Homeland Security Applications

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, E; Simpson, M; Larsen, S; Gash, J; Aluzzi, F; Lundquist, J; Sugiyama, G

    2010-04-26

    When hazardous material is accidently or intentionally released into the atmosphere, emergency response organizations look to decision support systems (DSSs) to translate contaminant information provided by atmospheric models into effective decisions to protect the public and emergency responders and to mitigate subsequent consequences. The Department of Homeland Security (DHS)-led Interagency Modeling and Atmospheric Assessment Center (IMAAC) is one of the primary DSSs utilized by emergency management organizations. IMAAC is responsible for providing 'a single piont for the coordination and dissemination of Federal dispersion modeling and hazard prediction products that represent the Federal position' during actual or potential incidents under the National Response Plan. The Department of Energy's (DOE) National Atmospheric Release Advisory Center (NARAC), locatec at the Lawrence Livermore National Laboratory (LLNL), serves as the primary operations center of the IMAAC. A key component of atmospheric release decision support systems is meteorological information - models and data of winds, turbulence, and other atmospheric boundary-layer parameters. The accuracy of contaminant predictions is strongly dependent on the quality of this information. Therefore, the effectiveness of DSSs can be enhanced by improving the meteorological options available to drive atmospheric transport and fate models. The overall goal of this project was to develop and evaluate new meteorological modeling capabilities for DSSs based on the use of NASA Earth-science data sets in order to enhance the atmospheric-hazard information provided to emergency managers and responders. The final report describes the LLNL contributions to this multi-institutional effort. LLNL developed an approach to utilize NCAR meteorological predictions using NASA MODIS data for the New York City (NYC) region and demonstrated the potential impact of the use of different data sources and data

  11. Enroute NASA/FAA low-frequency propfan test in Alabama (October 1987): A versatile atmospheric aircraft long-range noise prediction system

    Science.gov (United States)

    Tsouka, Despina G.

    In order to obtain a flight-to-static noise prediction of an advanced Turboprop (propfan) Aircraft, FAA went on an elaboration of the data that were measured during a full scale measuring program that was conducted by NASA and FAA/DOT/TSC on October 1987 in Alabama. The elaboration process was based on aircraft simulation to a point source, on an atmospheric two dimensional noise model, on the American National Standard algorithm for the calculation of atmospheric absortion, and on the DOT/TSC convention for ground reflection effects. Using the data of the Alabama measurements, the present paper examines the development of a generalized, flexible and more accurate process for the evaluation of the static and flight low-frequency long-range noise data. This paper also examines the applicability of the assumptions made by the Integrated Noise Model about linear propagation, of the three dimensional Hamiltonian Rays Tracing model and of the Weyl-Van der Pol model. The model proposes some assumptions in order to increase the calculations flexibility without significant loss of accuracy. In addition, it proposes the usage of the three dimensional Hamiltonian Rays Tracing model and the Weyl-Van der Pol model in order to increase the accuracy and to ensure the generalization of noise propagation prediction over grounds with variable impedance.

  12. Hydrolysis of bis(dimethylamido)tin to tin (II) oxyhydroxide and its selective transformation into tin (II) or tin (IV) oxide

    KAUST Repository

    Khanderi, Jayaprakash; Shi, Lei; Rothenberger, Alexander

    2015-01-01

    Sn6O4(OH)4, a hydrolysis product of Sn(NMe2)2, is transformed to tin (II) or tin (IV) oxide by solid and solution phase processing. Tin (II) oxide is formed by heating Sn6O4(OH)4 at ≤200 °C in air or under inert atmosphere. Tin (IV) oxide

  13. Meteorological uncertainty of atmospheric dispersion model results (MUD)

    International Nuclear Information System (INIS)

    Havskov Soerensen, J.; Amstrup, B.; Feddersen, H.

    2013-08-01

    The MUD project addresses assessment of uncertainties of atmospheric dispersion model predictions, as well as possibilities for optimum presentation to decision makers. Previously, it has not been possible to estimate such uncertainties quantitatively, but merely to calculate the 'most likely' dispersion scenario. However, recent developments in numerical weather prediction (NWP) include probabilistic forecasting techniques, which can be utilised also for long-range atmospheric dispersion models. The ensemble statistical methods developed and applied to NWP models aim at describing the inherent uncertainties of the meteorological model results. These uncertainties stem from e.g. limits in meteorological observations used to initialise meteorological forecast series. By perturbing e.g. the initial state of an NWP model run in agreement with the available observational data, an ensemble of meteorological forecasts is produced from which uncertainties in the various meteorological parameters are estimated, e.g. probabilities for rain. Corresponding ensembles of atmospheric dispersion can now be computed from which uncertainties of predicted radionuclide concentration and deposition patterns can be derived. (Author)

  14. Translation of Land Surface Model Accuracy and Uncertainty into Coupled Land-Atmosphere Prediction

    Science.gov (United States)

    Santanello, Joseph A.; Kumar, Sujay; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Zhou, Shuija

    2012-01-01

    Land-atmosphere (L-A) Interactions playa critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface heat and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) land surface conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty estimation module in NASA's Land Information System (US-OPT/UE), whereby parameter sets are calibrated in the Noah land surface model and classified according to a land cover and soil type mapping of the observation sites to the full model domain. The impact of calibrated parameters on the a) spinup of the land surface used as initial conditions, and b) heat and moisture states and fluxes of the coupled WRF Simulations are then assessed in terms of ambient weather and land-atmosphere coupling along with measures of uncertainty propagation into the forecasts. In addition, the sensitivity of this approach to the period of calibration (dry, wet, average) is investigated. Finally, tradeoffs of computational tractability and scientific validity, and the potential for combining this approach with satellite remote sensing data are also discussed.

  15. Translation of Land Surface Model Accuracy and Uncertainty into Coupled Land-Atmosphere Prediction

    Science.gov (United States)

    Santanello, J. A.; Kumar, S.; Peters-Lidard, C. D.; Harrison, K. W.; Zhou, S.

    2012-12-01

    Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface heat and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) land surface conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty estimation module in NASA's Land Information System (LIS-OPT/UE), whereby parameter sets are calibrated in the Noah land surface model and classified according to a land cover and soil type mapping of the observation sites to the full model domain. The impact of calibrated parameters on the a) spinup of the land surface used as initial conditions, and b) heat and moisture states and fluxes of the coupled WRF simulations are then assessed in terms of ambient weather and land-atmosphere coupling along with measures of uncertainty propagation into the forecasts. In addition, the sensitivity of this approach to the period of calibration (dry, wet, average) is investigated. Finally, tradeoffs of computational tractability and scientific validity, and the potential for combining this approach with satellite remote sensing data are also discussed.

  16. Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of atmospheric dispersion model with improved deposition scheme and oceanic dispersion model

    Science.gov (United States)

    Katata, G.; Chino, M.; Kobayashi, T.; Terada, H.; Ota, M.; Nagai, H.; Kajino, M.; Draxler, R.; Hort, M. C.; Malo, A.; Torii, T.; Sanada, Y.

    2014-06-01

    Temporal variations in the amount of radionuclides released into the atmosphere during the Fukushima Dai-ichi Nuclear Power Station (FNPS1) accident and their atmospheric and marine dispersion are essential to evaluate the environmental impacts and resultant radiological doses to the public. In this paper, we estimate a detailed time trend of atmospheric releases during the accident by combining environmental monitoring data with atmospheric model simulations from WSPEEDI-II (Worldwide version of System for Prediction of Environmental Emergency Dose Information), and simulations from the oceanic dispersion model SEA-GEARN-FDM, both developed by the authors. A sophisticated deposition scheme, which deals with dry and fogwater depositions, cloud condensation nuclei (CCN) activation and subsequent wet scavenging due to mixed-phase cloud microphysics (in-cloud scavenging) for radioactive iodine gas (I2 and CH3I) and other particles (CsI, Cs, and Te), was incorporated into WSPEEDI-II to improve the surface deposition calculations. The fallout to the ocean surface calculated by WSPEEDI-II was used as input data for the SEA-GEARN-FDM calculations. Reverse and inverse source-term estimation methods based on coupling the simulations from both models was adopted using air dose rates and concentrations, and sea surface concentrations. The results revealed that the major releases of radionuclides due to FNPS1 accident occurred in the following periods during March 2011: the afternoon of 12 March due to the wet venting and hydrogen explosion at Unit 1, the morning of 13 March after the venting event at Unit 3, midnight of 14 March when the SRV (Safely Relief Valve) at Unit 2 was opened three times, the morning and night of 15 March, and the morning of 16 March. According to the simulation results, the highest radioactive contamination areas around FNPS1 were created from 15 to 16 March by complicated interactions among rainfall, plume movements, and the temporal variation of

  17. Increasing atmospheric carbon dioxide and its consequences

    Energy Technology Data Exchange (ETDEWEB)

    Lockwood, J G

    1982-09-16

    The effects of increasing CO/sub 2/ concentrations in the atmosphere are estimated using general circulation models (GCMs), which have the ability to portray many of the nonlinear feedback processes which serve to regulate atmospheric (and hence climatic) changes. GCMs predict that a doubling of atmospheric CO/sub 2/ would result in a 2-3 k increase of globally averaged surface air temperature. The largest warming will occur in the winter in high latitudes. Detection studies are now being directed towards isolating those parts of observed climate fluctuations that are attributable to increasing atmospheric CO/sub 2/. (KRM)

  18. Predictive value of PET-CT for pathological response in stages II and III breast cancer patients following neoadjuvant chemotherapy with docetaxel.

    Science.gov (United States)

    García García-Esquinas, Marta A; Arrazola García, Juan; García-Sáenz, José A; Furió-Bacete, V; Fuentes Ferrer, Manuel E; Ortega Candil, Aída; Cabrera Martín, María N; Carreras Delgado, José L

    2014-01-01

    To prospectively study the value of PET-CT with fluorine-18 fluorodeoxyglucose (FDG) to predict neoadjuvant chemotherapy (NAC) response of locoregional disease of stages II and III breast cancer patients. A written informed consent and approval were obtained from the Ethics Committee. PET-CT accuracy in the prediction of pathologic complete response (pCR) after NAC was studied in primary tumors and lymph node metastasis in 43 women (mean age: 50 years: range: 27-71 years) with histologically proven breast cancer between December 2009 and January 2011. PET-CT was performed at baseline and after NAC. SUV(max) percentage changes (ΔSUV(max)) were compared with pathology findings at surgery. Receiver-operator characteristic (ROC) analysis was used to discriminate between locoregional pCR and non-pCR. In patients not achieving pCR, it was investigated if ΔSUV(max) could accurately identify the residual cancer burden (RCB) classes: RCB-I (minimal residual disease (MRD)), RCB-II (moderate RD), and RCB-III (extensive RD). pCR was obtained in 11 patients (25.6%). Residual disease was found in 32 patients (74.4%): 16 (37.2%) RCB-I, 15 (35.6%) RCB-II and 2 (4.7%) RCB-III. Sensitivity, specificity, and accuracy to predict pCR were 90.9%, 90.6%, and 90.7%, respectively. Specificity was 94.1% in the identification of a subset of patients who had either pCR or MRD. Accuracy of ΔSUV(max) in the locoregional disease of stages II and III breast cancer patients after NAC is high for the identification of pCR cases. Its specificity is potentially sufficient to identify a subgroup of patients who could be managed with conservative surgery. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.

  19. The atmosphere and ocean: A physical introduction

    International Nuclear Information System (INIS)

    Wells, N.

    1986-01-01

    The book's contents are: The Earth within the solar system. Composition and physical properties of the ocean and atmosphere. Radiation, temperature and stability. Water in the atmosphere. Global budgets of heat, water and salt. Observations of winds and currents. The influence of the Earth's rotation on fluid motion. Waves and tides. Energy transfer in the ocean-atmosphere system. Climate variability and predictability. The atmosphere and ocean are two different environmental systems, yet both are interdependent, interacting and exchanging energy, heat and matter. This book attempts to bring the study of the atmosphere and ocean together. It is a descriptive account of physical properties, exploring their common bases, similarities, interactions and fundamental differences

  20. Compact, Rugged and Low-Cost Atmospheric Ozone DIAL Transmitter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Real-time, high-frequency measurements of atmospheric ozone are becoming increasingly important to understand the impact of ozone towards climate change, to monitor...

  1. Transport Risk Index of Physiologic Stability, version II (TRIPS-II): a simple and practical neonatal illness severity score.

    Science.gov (United States)

    Lee, Shoo K; Aziz, Khalid; Dunn, Michael; Clarke, Maxine; Kovacs, Lajos; Ojah, Cecil; Ye, Xiang Y

    2013-05-01

    Derive and validate a practical assessment of infant illness severity at admission to neonatal intensive care units (NICUs). Prospective study involving 17,075 infants admitted to 15 NICUs in 2006 to 2008. Logistic regression was used to derive a prediction model for mortality comprising four empirically weighted items (temperature, blood pressure, respiratory status, response to noxious stimuli). This Transport Risk Index of Physiologic Stability, version II (TRIPS-II) was then validated for prediction of 7-day and total NICU mortality. TRIPS-II discriminated 7-day (receiver operating curve [ROC] area, 0.90) and total NICU mortality (ROC area, 0.87) from survival. Furthermore, there was a direct association between changes in TRIPS-II at 12 and 24 hours and mortality. There was good calibration across the full range of TRIPS-II scores and the gestational age at birth, and addition of TRIPS-II improved performance of prediction models that use gestational age and baseline population risk variables. TRIPS-II is a validated benchmarking tool for assessing infant illness severity at admission and for up to 24 hours after. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. A Big Data Approach for Situation-Aware estimation, correction and prediction of aerosol effects, based on MODIS Joint Atmosphere product (collection 6) time series data

    Science.gov (United States)

    Singh, A. K.; Toshniwal, D.

    2017-12-01

    The MODIS Joint Atmosphere product, MODATML2 and MYDATML2 L2/3 provided by LAADS DAAC (Level-1 and Atmosphere Archive & Distribution System Distributed Active Archive Center) re-sampled from medium resolution MODIS Terra /Aqua Satellites data at 5km scale, contains Cloud Reflectance, Cloud Top Temperature, Water Vapor, Aerosol Optical Depth/Thickness, Humidity data. These re-sampled data, when used for deriving climatic effects of aerosols (particularly in case of cooling effect) still exposes limitations in presence of uncertainty measures in atmospheric artifacts such as aerosol, cloud, cirrus cloud etc. The effect of uncertainty measures in these artifacts imposes an important challenge for estimation of aerosol effects, adequately affecting precise regional weather modeling and predictions: Forecasting and recommendation applications developed largely depend on these short-term local conditions (e.g. City/Locality based recommendations to citizens/farmers based on local weather models). Our approach inculcates artificial intelligence technique for representing heterogeneous data(satellite data along with air quality data from local weather stations (i.e. in situ data)) to learn, correct and predict aerosol effects in the presence of cloud and other atmospheric artifacts, defusing Spatio-temporal correlations and regressions. The Big Data process pipeline consisting correlation and regression techniques developed on Apache Spark platform can easily scale for large data sets including many tiles (scenes) and over widened time-scale. Keywords: Climatic Effects of Aerosols, Situation-Aware, Big Data, Apache Spark, MODIS Terra /Aqua, Time Series

  3. Harsh Environment Gas Sensor Array for Venus Atmospheric Measurements, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering and the Ohio State University propose to develop a harsh environment tolerant gas sensor array for atmospheric analysis in future Venus missions....

  4. Prediction of Mortality after Emergent Transjugular Intrahepatic Portosystemic Shunt Placement: Use of APACHE II, Child-Pugh and MELD Scores in Asian Patients with Refractory Variceal Hemorrhage

    International Nuclear Information System (INIS)

    Tzeng, Wen Sheng; Wu, Reng Hong; Lin, Ching Yih; Chen, Jyh Jou; Sheu, Ming Juen; Koay, Lok Beng; Lee, Chuan

    2009-01-01

    This study was designed to determine if existing methods of grading liver function that have been developed in non-Asian patients with cirrhosis can be used to predict mortality in Asian patients treated for refractory variceal hemorrhage by the use of the transjugular intrahepatic portosystemic shunt (TIPS) procedure. Data for 107 consecutive patients who underwent an emergency TIPS procedure were retrospectively analyzed. Acute physiology and chronic health evaluation (APACHE II), Child-Pugh and model for end-stage liver disease (MELD) scores were calculated. Survival analyses were performed to evaluate the ability of the various models to predict 30-day, 60-day and 360-day mortality. The ability of stratified APACHE II, Child-Pugh, and MELD scores to predict survival was assessed by the use of Kaplan-Meier analysis with the log-rank test. No patient died during the TIPS procedure, but 82 patients died during the follow-up period. Thirty patients died within 30 days after the TIPS procedure; 37 patients died within 60 days and 53 patients died within 360 days. Univariate analysis indicated that hepatorenal syndrome, use of inotropic agents and mechanical ventilation were associated with elevated 30-day mortality (p 11 or an MELD score > 20 predicted increased risk of death at 30, 60 and 360 days (p 11 or an MELD score > 20 are predictive of mortality in Asian patients with refractory variceal hemorrhage treated with the TIPS procedure. An APACHE II score is not predictive of early mortality in this patient population

  5. Validation of the LOD score compared with APACHE II score in prediction of the hospital outcome in critically ill patients.

    Science.gov (United States)

    Khwannimit, Bodin

    2008-01-01

    The Logistic Organ Dysfunction score (LOD) is an organ dysfunction score that can predict hospital mortality. The aim of this study was to validate the performance of the LOD score compared with the Acute Physiology and Chronic Health Evaluation II (APACHE II) score in a mixed intensive care unit (ICU) at a tertiary referral university hospital in Thailand. The data were collected prospectively on consecutive ICU admissions over a 24 month period from July1, 2004 until June 30, 2006. Discrimination was evaluated by the area under the receiver operating characteristic curve (AUROC). The calibration was assessed by the Hosmer-Lemeshow goodness-of-fit H statistic. The overall fit of the model was evaluated by the Brier's score. Overall, 1,429 patients were enrolled during the study period. The mortality in the ICU was 20.9% and in the hospital was 27.9%. The median ICU and hospital lengths of stay were 3 and 18 days, respectively, for all patients. Both models showed excellent discrimination. The AUROC for the LOD and APACHE II were 0.860 [95% confidence interval (CI) = 0.838-0.882] and 0.898 (95% Cl = 0.879-0.917), respectively. The LOD score had perfect calibration with the Hosmer-Lemeshow goodness-of-fit H chi-2 = 10 (p = 0.44). However, the APACHE II had poor calibration with the Hosmer-Lemeshow goodness-of-fit H chi-2 = 75.69 (p < 0.001). Brier's score showed the overall fit for both models were 0.123 (95%Cl = 0.107-0.141) and 0.114 (0.098-0.132) for the LOD and APACHE II, respectively. Thus, the LOD score was found to be accurate for predicting hospital mortality for general critically ill patients in Thailand.

  6. Predictive values of urine paraquat concentration, dose of poison, arterial blood lactate and APACHE II score in the prognosis of patients with acute paraquat poisoning.

    Science.gov (United States)

    Liu, Xiao-Wei; Ma, Tao; Li, Lu-Lu; Qu, Bo; Liu, Zhi

    2017-07-01

    The present study investigated the predictive values of urine paraquat (PQ) concentration, dose of poison, arterial blood lactate and Acute Physiology and Chronic Health Evaluation (APACHE) II score in the prognosis of patients with acute PQ poisoning. A total of 194 patients with acute PQ poisoning, hospitalized between April 2012 and January 2014 at the First Affiliated Hospital of P.R. China Medical University (Shenyang, China), were selected and divided into survival and mortality groups. Logistic regression analysis, receiver operator characteristic (ROC) curve analysis and Kaplan-Meier curve were applied to evaluate the values of urine paraquat (PQ) concentration, dose of poison, arterial blood lactate and (APACHE) II score for predicting the prognosis of patients with acute PQ poisoning. Initial urine PQ concentration (C0), dose of poison, arterial blood lactate and APACHE II score of patients in the mortality group were significantly higher compared with the survival group (all Ppoison and arterial blood lactate correlated with mortality risk of acute PQ poisoning (all Ppoison, arterial blood lactate and APACHE II score in predicting the mortality of patients within 28 days were 0.921, 0.887, 0.808 and 0.648, respectively. The AUC of C0 for predicting early and delayed mortality were 0.890 and 0.764, respectively. The AUC values of urine paraquat concentration the day after poisoning (Csec) and the rebound rate of urine paraquat concentration in predicting the mortality of patients within 28 days were 0.919 and 0.805, respectively. The 28-day survival rate of patients with C0 ≤32.2 µg/ml (42/71; 59.2%) was significantly higher when compared with patients with C0 >32.2 µg/ml (38/123; 30.9%). These results suggest that the initial urine PQ concentration may be the optimal index for predicting the prognosis of patients with acute PQ poisoning. Additionally, dose of poison, arterial blood lactate, Csec and rebound rate also have referential significance.

  7. Inversion for atmosphere duct parameters using real radar sea clutter

    International Nuclear Information System (INIS)

    Sheng Zheng; Fang Han-Xian

    2012-01-01

    This paper addresses the problem of estimating the lower atmospheric refractivity (M profile) under nonstandard propagation conditions frequently encountered in low altitude maritime radar applications. The vertical structure of the refractive environment is modeled using five parameters and the horizontal structure is modeled using five parameters. The refractivity model is implemented with and without a priori constraint on the duct strength as might be derived from soundings or numerical weather-prediction models. An electromagnetic propagation model maps the refractivity structure into a replica field. Replica fields are compared with the observed clutter using a squared-error objective function. A global search for the 10 environmental parameters is performed using genetic algorithms. The inversion algorithm is implemented on the basis of S-band radar sea-clutter data from Wallops Island, Virginia (SPANDAR). Reference data are from range-dependent refractivity profiles obtained with a helicopter. The inversion is assessed (i) by comparing the propagation predicted from the radar-inferred refractivity profiles with that from the helicopter profiles, (ii) by comparing the refractivity parameters from the helicopter soundings with those estimated. This technique could provide near-real-time estimation of ducting effects. (geophysics, astronomy, and astrophysics)

  8. Atmospheric River Characteristics under Decadal Climate Variability

    Science.gov (United States)

    Done, J.; Ge, M.

    2017-12-01

    How does decadal climate variability change the nature and predictability of atmospheric river events? Decadal swings in atmospheric river frequency, or shifts in the proportion of precipitation falling as rain, could challenge current water resource and flood risk management practice. Physical multi-scale processes operating between Pacific sea surface temperatures (SSTs) and atmospheric rivers over the Western U.S. are explored using the global Model for Prediction Across Scales (MPAS). A 45km global mesh is refined over the Western U.S. to 12km to capture the major terrain effects on precipitation. The performance of the MPAS is first evaluated for a case study atmospheric river event over California. Atmospheric river characteristics are then compared in a pair of idealized simulations, each driven by Pacific SST patterns characteristic of opposite phases of the Interdecadal Pacific Oscillation (IPO). Given recent evidence that we have entered a positive phase of the IPO, implications for current reservoir management practice over the next decade will be discussed. This work contributes to the NSF-funded project UDECIDE (Understanding Decision-Climate Interactions on Decadal Scales). UDECIDE brings together practitioners, engineers, statisticians, and climate scientists to understand the role of decadal climate information for water management and decisions.

  9. Development of regional atmospheric dynamic and air pollution models for nuclear emergency response system WSPEEDI

    International Nuclear Information System (INIS)

    Furuno, Akiko; Yamazawa, Hiromi; Lee, Soon-Hwan; Tsujita, Yuichi; Takemiya, Hiroshi; Chino, Masamichi

    2000-01-01

    WSPEEDI (Worldwide version of System for Prediction of Environmental Emergency Dose Information) is a computer-based emergency response system to predict long-range atmospheric dispersion of radionuclides discharged into the atmosphere due to a nuclear accident. WSPEEDI has been applied to several international exercises and real events. Through such experiences, the new version of WSPEEDI aims to employ a combination of an atmospheric dynamic model and a particle random walk model for more accurate predictions. This paper describes these models, improvement of prediction and computational techniques for quick responses. (author)

  10. On the atmospheric drag in orbit determination for low Earth orbit

    Science.gov (United States)

    Tang, Jingshi; Liu, Lin; Miao, Manqian

    2012-07-01

    The atmosphere model is always a major limitation for low Earth orbit (LEO) in orbit prediction and determination. The accelerometer can work around the non-gravitational perturbations in orbit determination, but it helps little to improve the atmosphere model or to predict the orbit. For certain satellites, there may be some specific software to handle the orbit problem. This solution can improve the orbit accuracy for both prediction and determination, yet it always contains empirical terms and is exclusive for certain satellites. This report introduces a simple way to handle the atmosphere drag for LEO, which does not depend on instantaneous atmosphere conditions and improves accuracy of predicted orbit. This approach, which is based on mean atmospheric density, is supported by two reasons. One is that although instantaneous atmospheric density is very complicated with time and height, the major pattern is determined by the exponential variation caused by hydrostatic equilibrium and periodic variation caused by solar radiation. The mean density can include the major variations while neglect other minor details. The other reason is that the predicted orbit is mathematically the result from integral and the really determinant factor is the mean density instead of instantaneous density for every time and spot. Using the mean atmospheric density, which is mainly determined by F10.7 solar flux and geomagnetic index, can be combined into an overall parameter B^{*} = C_{D}(S/m)ρ_{p_{0}}. The combined parameter contains several less accurate parameters and can be corrected during orbit determination. This approach has been confirmed in various LEO computations and an example is given below using Tiangong-1 spacecraft. Precise orbit determination (POD) is done using one-day GPS positioning data without any accurate a-priori knowledge on spacecraft or atmosphere conditions. Using the corrected initial state vector of the spacecraft and the parameter B^* from POD, the

  11. Modeling the atmospheric chemistry of TICs

    Science.gov (United States)

    Henley, Michael V.; Burns, Douglas S.; Chynwat, Veeradej; Moore, William; Plitz, Angela; Rottmann, Shawn; Hearn, John

    2009-05-01

    An atmospheric chemistry model that describes the behavior and disposition of environmentally hazardous compounds discharged into the atmosphere was coupled with the transport and diffusion model, SCIPUFF. The atmospheric chemistry model was developed by reducing a detailed atmospheric chemistry mechanism to a simple empirical effective degradation rate term (keff) that is a function of important meteorological parameters such as solar flux, temperature, and cloud cover. Empirically derived keff functions that describe the degradation of target toxic industrial chemicals (TICs) were derived by statistically analyzing data generated from the detailed chemistry mechanism run over a wide range of (typical) atmospheric conditions. To assess and identify areas to improve the developed atmospheric chemistry model, sensitivity and uncertainty analyses were performed to (1) quantify the sensitivity of the model output (TIC concentrations) with respect to changes in the input parameters and (2) improve, where necessary, the quality of the input data based on sensitivity results. The model predictions were evaluated against experimental data. Chamber data were used to remove the complexities of dispersion in the atmosphere.

  12. Prediction of near-term increases in suicidal ideation in recently depressed patients with bipolar II disorder using intensive longitudinal data.

    Science.gov (United States)

    Depp, Colin A; Thompson, Wesley K; Frank, Ellen; Swartz, Holly A

    2017-01-15

    There are substantial gaps in understanding near-term precursors of suicidal ideation in bipolar II disorder. We evaluated whether repeated patient-reported mood and energy ratings predicted subsequent near-term increases in suicide ideation. Secondary data were used from 86 depressed adults with bipolar II disorder enrolled in one of 3 clinical trials evaluating Interpersonal and Social Rhythm Therapy and/or pharmacotherapy as treatments for depression. Twenty weeks of daily mood and energy ratings and weekly Hamilton Depression Rating Scale (HDRS) were obtained. Penalized regression was used to model trajectories of daily mood and energy ratings in the 3 week window prior to HDRS Suicide Item ratings. Participants completed an average of 68.6 (sd=52) days of mood and energy ratings. Aggregated across the sample, 22% of the 1675 HDRS Suicide Item ratings were non-zero, indicating presence of at least some suicidal thoughts. A cross-validated model with longitudinal ratings of energy and depressed mood within the three weeks prior to HDRS ratings resulted in an AUC of 0.91 for HDRS Suicide item >2, accounting for twice the variation when compared to baseline HDRS ratings. Energy, both at low and high levels, was an earlier predictor than mood. Data derived from a heterogeneous treated sample may not generalize to naturalistic samples. Identified suicidal behavior was absent from the sample so it could not be predicted. Prediction models coupled with intensively gathered longitudinal data may shed light on the dynamic course of near-term risk factors for suicidal ideation in bipolar II disorder. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Atmospheric oxidation of selected alcohols and esters

    Energy Technology Data Exchange (ETDEWEB)

    Becker, K H; Cavalli, F

    2001-03-01

    The decision whether it is appropriate and beneficial for the environment to deploy specific oxygenated organic compounds as replacements for traditional solvent types requires a quantitative assessment of their potential atmospheric impacts including tropospheric ozone and other photooxidant formation. This involves developing chemical mechanisms for the gasphase atmospheric oxidation of the compounds which can be reliably used in models to predict their atmospheric reactivity under a variety of environmental conditions. Until this study, there was very little information available concerning the atmospheric fate of alcohols and esters. The objectives of this study were to measure the atmospheric reaction rates and to define atmospheric reaction mechanisms for the following selected oxygenated volatile organic compounds: the alcohols, 1-butanol and 1-pentanol, and the esters, methyl propionate and dimethyl succinate. The study has successfully addressed these objectives. (orig.)

  14. The lesson learnt during interact - I and INTERACT - II actris measurement campaigns

    Directory of Open Access Journals (Sweden)

    Rosoldi Marco

    2018-01-01

    Full Text Available The INTERACT-II (INTERcomparison of Aerosol and Cloud Tracking campaign, performed at the CNR-IMAA Atmospheric Observatory (760 m a.s.l., 40.60° N, 15.72° E, aims to evaluate the performances of commercial automatic lidars and ceilometers for atmospheric aerosol profiling, through the comparison with Potenza EARLINET (European Aerosol Research Lidar NETwork lidars. The results of the campaign and the overall lesson learnt within INTERACT-I and INTERACT-II ACTRIS campaigns will be presented.

  15. Zn(II, Mn(II and Sr(II Behavior in a Natural Carbonate Reservoir System. Part I: Impact of Salinity, Initial pH and Initial Zn(II Concentration in Atmospheric Conditions

    Directory of Open Access Journals (Sweden)

    Auffray B.

    2016-07-01

    Full Text Available The sorption of inorganic elements on carbonate minerals is well known in strictly controlled conditions which limit the impact of other phenomena such as dissolution and/or precipitation. In this study, we evidence the behavior of Zn(II (initially in solution and two trace elements, Mn(II and Sr(II (released by carbonate dissolution in the context of a leakage from a CO2 storage site. The initial pH chosen are either equal to the pH of the water-CO2 equilibrium (~ 2.98 or equal to the pH of the water-CO2-calcite system (~ 4.8 in CO2 storage conditions. From this initial influx of liquid, saturated or not with respect to calcite, the batch experiments evolve freely to their equilibrium, as it would occur in a natural context after a perturbation. The batch experiments are carried out on two natural carbonates (from Lavoux and St-Emilion with PCO2 = 10−3.5 bar, with different initial conditions ([Zn(II]i from 10−4 to 10−6 M, either with pure water or 100 g/L NaCl brine. The equilibrium regarding calcite dissolution is confirmed in all experiments, while the zinc sorption evidenced does not always correspond to the two-step mechanism described in the literature. A preferential sorption of about 10% of the concentration is evidenced for Mn(II in aqueous experiments, while Sr(II is more sorbed in saline conditions. This study also shows that this preferential sorption, depending on the salinity, is independent of the natural carbonate considered. Then, the simulations carried out with PHREEQC show that experiments and simulations match well concerning the equilibrium of dissolution and the sole zinc sorption, with log KZn(II ~ 2 in pure water and close to 4 in high salinity conditions. When the simulations were possible, the log K values for Mn(II and Sr(II were much different from those in the literature obtained by sorption in controlled conditions. It is shown that a new conceptual model regarding multiple Trace Elements (TE sorption is

  16. Thick Galactic Cosmic Radiation Shielding Using Atmospheric Data

    Science.gov (United States)

    Youngquist, Robert C.; Nurge, Mark A.; Starr, Stanley O.; Koontz, Steven L.

    2013-01-01

    NASA is concerned with protecting astronauts from the effects of galactic cosmic radiation and has expended substantial effort in the development of computer models to predict the shielding obtained from various materials. However, these models were only developed for shields up to about 120 g!cm2 in thickness and have predicted that shields of this thickness are insufficient to provide adequate protection for extended deep space flights. Consequently, effort is underway to extend the range of these models to thicker shields and experimental data is required to help confirm the resulting code. In this paper empirically obtained effective dose measurements from aircraft flights in the atmosphere are used to obtain the radiation shielding function of the earth's atmosphere, a very thick shield. Obtaining this result required solving an inverse problem and the method for solving it is presented. The results are shown to be in agreement with current code in the ranges where they overlap. These results are then checked and used to predict the radiation dosage under thick shields such as planetary regolith and the atmosphere of Venus.

  17. Meteorological uncertainty of atmospheric dispersion model results (MUD)

    Energy Technology Data Exchange (ETDEWEB)

    Havskov Soerensen, J.; Amstrup, B.; Feddersen, H. [Danish Meteorological Institute, Copenhagen (Denmark)] [and others

    2013-08-15

    The MUD project addresses assessment of uncertainties of atmospheric dispersion model predictions, as well as possibilities for optimum presentation to decision makers. Previously, it has not been possible to estimate such uncertainties quantitatively, but merely to calculate the 'most likely' dispersion scenario. However, recent developments in numerical weather prediction (NWP) include probabilistic forecasting techniques, which can be utilised also for long-range atmospheric dispersion models. The ensemble statistical methods developed and applied to NWP models aim at describing the inherent uncertainties of the meteorological model results. These uncertainties stem from e.g. limits in meteorological observations used to initialise meteorological forecast series. By perturbing e.g. the initial state of an NWP model run in agreement with the available observational data, an ensemble of meteorological forecasts is produced from which uncertainties in the various meteorological parameters are estimated, e.g. probabilities for rain. Corresponding ensembles of atmospheric dispersion can now be computed from which uncertainties of predicted radionuclide concentration and deposition patterns can be derived. (Author)

  18. Composition of atmospheric precipitation. II. Sulfur, chloride, iodine compounds. Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, E

    1952-01-01

    Atmospheric precipitation invariably contains insoluble substances of different origin. A large scale study was conducted to determine the content of sulfur, chloride, and iodine in rainwater from various places around the world. The origin of these elements in rainwater is discussed. Several meteorological factors influence the Cl-content of rainwater. They include: rainfall, wind direction and wind strength, altitude, and seasonal variation.

  19. Vertical propagation of waves in the solar atmosphere. II. Phase delays in the quiet chromosphere and cell-network distinctions

    International Nuclear Information System (INIS)

    Lites, B.W.; Chipman, E.G.; White, O.R.

    1982-01-01

    The differences in the phase of the velocity oscillations between a pair of chromospheric Ca II lines was measured using the Vacuum Tower Telescope at the Sacramento Peak Observatory. The observed phase differences indicate that the acoustic modes are trapped or envanescent, rather than propagating in the chromosphere. We find systematic distinctions in the phase delays between quiet network and cell interior regions for both intensity and velocity oscillations in photospheric and chromospheric lines. The theory of linear perturbations in a isothermal atmosphere is invoked to interpret these differences. From this analysis we find that one or more of the following explanations is possible. (1) the radiative damping is more effective in the network than in the cell interior; (2) the network features exclude oscillations of large horizontal wavenumber; or (3) the scale height of the chromosphere is larger in the network than in the cell interior

  20. Concentrations and fate of decamethylcyclopentasiloxane (D(5)) in the atmosphere.

    Science.gov (United States)

    McLachlan, Michael S; Kierkegaard, Amelie; Hansen, Kaj M; van Egmond, Roger; Christensen, Jesper H; Skjøth, Carsten A

    2010-07-15

    Decamethylcyclopentasiloxane (D(5)) is a volatile compound used in personal care products that is released to the atmosphere in large quantities. Although D(5) is currently under consideration for regulation, there have been no field investigations of its atmospheric fate. We employed a recently developed, quality assured method to measure D(5) concentration in ambient air at a rural site in Sweden. The samples were collected with daily resolution between January and June 2009. The D(5) concentration ranged from 0.3 to 9 ng m(-3), which is 1-3 orders of magnitude lower than previous reports. The measured data were compared with D(5) concentrations predicted using an atmospheric circulation model that included both OH radical and D(5) chemistry. The model was parametrized using emissions estimates and physical chemical properties determined in laboratory experiments. There was good agreement between the measured and modeled D(5) concentrations. The results show that D(5) is clearly subject to long-range atmospheric transport, but that it is also effectively removed from the atmosphere via phototransformation. Atmospheric deposition has little influence on the atmospheric fate. The good agreement between the model predictions and the field observations indicates that there is a good understanding of the major factors governing D(5) concentrations in the atmosphere.

  1. Medium-resolution Isaac Newton Telescope library of empirical spectra - II. The stellar atmospheric parameters

    NARCIS (Netherlands)

    Cenarro, A. J.; Peletier, R. F.; Sanchez-Blazquez, P.; Selam, S. O.; Toloba, E.; Cardiel, N.; Falcon-Barroso, J.; Gorgas, J.; Jimenez-Vicente, J.; Vazdekis, A.

    2007-01-01

    We present a homogeneous set of stellar atmospheric parameters (T-eff, log g, [Fe/H]) for MILES, a new spectral stellar library covering the range lambda lambda 3525-7500 angstrom at 2.3 angstrom (FWHM) spectral resolution. The library consists of 985 stars spanning a large range in atmospheric

  2. Pol II promoter prediction using characteristic 4-mer motifs: a machine learning approach

    Directory of Open Access Journals (Sweden)

    Shoyaib Mohammad

    2008-10-01

    Full Text Available Abstract Background Eukaryotic promoter prediction using computational analysis techniques is one of the most difficult jobs in computational genomics that is essential for constructing and understanding genetic regulatory networks. The increased availability of sequence data for various eukaryotic organisms in recent years has necessitated for better tools and techniques for the prediction and analysis of promoters in eukaryotic sequences. Many promoter prediction methods and tools have been developed to date but they have yet to provide acceptable predictive performance. One obvious criteria to improve on current methods is to devise a better system for selecting appropriate features of promoters that distinguish them from non-promoters. Secondly improved performance can be achieved by enhancing the predictive ability of the machine learning algorithms used. Results In this paper, a novel approach is presented in which 128 4-mer motifs in conjunction with a non-linear machine-learning algorithm utilising a Support Vector Machine (SVM are used to distinguish between promoter and non-promoter DNA sequences. By applying this approach to plant, Drosophila, human, mouse and rat sequences, the classification model has showed 7-fold cross-validation percentage accuracies of 83.81%, 94.82%, 91.25%, 90.77% and 82.35% respectively. The high sensitivity and specificity value of 0.86 and 0.90 for plant; 0.96 and 0.92 for Drosophila; 0.88 and 0.92 for human; 0.78 and 0.84 for mouse and 0.82 and 0.80 for rat demonstrate that this technique is less prone to false positive results and exhibits better performance than many other tools. Moreover, this model successfully identifies location of promoter using TATA weight matrix. Conclusion The high sensitivity and specificity indicate that 4-mer frequencies in conjunction with supervised machine-learning methods can be beneficial in the identification of RNA pol II promoters comparative to other methods. This

  3. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. II. LAMB, SURFACE, AND CENTRIFUGAL WAVES

    International Nuclear Information System (INIS)

    Peralta, J.; López-Valverde, M. A.; Imamura, T.; Read, P. L.; Luz, D.; Piccialli, A.

    2014-01-01

    This paper is the second in a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases where the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this second part, we study the waves' solutions when several atmospheric approximations are applied: Lamb, surface, and centrifugal waves. Lamb and surface waves are found to be quite similar to those in a geostrophic regime. By contrast, centrifugal waves turn out to be a special case of Rossby waves that arise in atmospheres in cyclostrophic balance. Finally, we use our results to identify the nature of the waves behind atmospheric periodicities found in polar and lower latitudes of Venus's atmosphere

  4. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. II. LAMB, SURFACE, AND CENTRIFUGAL WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)

    2014-07-01

    This paper is the second in a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases where the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this second part, we study the waves' solutions when several atmospheric approximations are applied: Lamb, surface, and centrifugal waves. Lamb and surface waves are found to be quite similar to those in a geostrophic regime. By contrast, centrifugal waves turn out to be a special case of Rossby waves that arise in atmospheres in cyclostrophic balance. Finally, we use our results to identify the nature of the waves behind atmospheric periodicities found in polar and lower latitudes of Venus's atmosphere.

  5. Atmospheric sugar alcohols: evaporation rates and saturation vapor pressures

    DEFF Research Database (Denmark)

    Bilde, Merete; Zardini, Alessandro Alessio; Hong, Juan

    alcohols. These polyols are common in the water soluble fraction of atmospheric aerosols. In our experimental system sub-micron particles are generated by nebulization from aqueous solution, and a mono disperse fraction of the aerosol is selected using a differential mobility analyzer. The particles......The atmospheric partitioning between gas and condensed phase of organic molecules is poorly understood, and discrepancies exist between predicted and observed concentrations of secondary organic aerosols. A key problem is the lack of information about thermodynamic properties of semi- and low...... volatile organic molecules. Saturation vapor pressure and the associated temperature dependence (dH) are key parameters for improving predictive atmospheric models. In this work we combine experiments and thermodynamic modeling to investigate these parameters for a series of polyols, so-called sugar...

  6. Intermediate range atmospheric transport and technology assessments: nuclear pollutants

    International Nuclear Information System (INIS)

    Rohwer, P.S.; Hoffman, F.O.; Miller, C.W.

    1981-01-01

    Mathematical models have been used to assess potential impacts of radioactivity releases during all phases of our country's development of nuclear power. Experience to date has shown that in terms of potential dose to man, the most significant releases of radioactivity from nuclear fuel cycle facilities are those to the atmosphere. Our ability to predict atmospheric dispersion will, therefore, ultimately affect our capability to understand and assess the significance of both routine and accidental discharges of radionuclides. Assessment of potential radiological exposures from postulated routine and accidental releases of radionuclides from the fast-breeder reactor will require the use of atmospheric dispersion models, and the design, siting, and licensing of breeder reactor fuel cycle facilities will be influenced by the predictions made by these models

  7. Syntheses, spectroscopic and thermal analyses of cyanide bridged heteronuclear polymeric complexes: [M(L)2Ni(CN)4]n (Ldbnd N-methylethylenediamine or N-ethylethylenediamine; Mdbnd Ni(II), Cu(II), Zn(II) or Cd(II))

    Science.gov (United States)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla

    2016-02-01

    Polymeric tetracyanonickelate(II) complexes of the type [M(L)2Ni(CN)4]n (Ldbnd N-methylethylenediamine (men) or N-ethylethylenediamine (neen); Mdbnd Ni(II), Cu(II), Zn(II) or Cd(II)) have been prepared and characterized by FT-IR, Raman spectroscopy, thermal and elemental analysis techniques. Additionally, FT-IR and Raman spectral analyses of men and neen have experimentally and theoretically investigated in the range of 4000-250 cm-1. The corresponding vibration assignments of men and neen are performed by using B3LYP density functional theory (DFT) method together with 6-31 G(d) basis set. The spectral features of the complexes suggest that the coordination environment of the M(II) ions are surrounded by the two symmetry related men and neen ligands and the two symmetry related N atom of cyanide groups, whereas the Ni(II) atoms are coordinated with a square-planar to four C atoms of the cyanide groups. Polymeric structures of the complexes consist of one dimensional alternative chains of [M(L)2]2+ and [Ni(CN)4]2- moieties. The thermal decompositions in the temperature range 30-700 °C of the complexes were investigated in the static air atmosphere.

  8. Transport with Astra in TJ-II

    International Nuclear Information System (INIS)

    Lopez-Bruna, D.; Castejon, F.; Fontdecaba, J. M.

    2004-01-01

    This report describes the adaptation of the numerical transport shell ASTRA for performing plasma calculations in the TJ-II stellarator device. Firstly, an approximation to the TJ-II geometry is made and a simple transport model is shared with two other codes in order to compare these codes (PROCTR, PRETOR-Stellarator) with ASTRA as calculation tool for TJ-II plasmas are provided: interpretative and predictive transport. The first consists in estimating the transport coefficients from real experimental data, thes being taken from three TJ-II discharges. The predictive facet is illustrated using a model that is able to includes self-consistently the dynamics of transport barriers. The report includes this model, written in the ASTRA programming language, to illustrate the use of ASTRA. (Author) 26 refs

  9. Critical review of hydraulic modeling on atmospheric heat dissipation

    International Nuclear Information System (INIS)

    Onishi, Y.; Brown, S.M.

    1977-01-01

    Objectives of this study were: to define the useful roles of hydraulic modeling in understanding the predicting atmospheric effects of heat dissipation systems; to assess the state-of-the-art of hydraulic modeling of atmospheric phenomena; to inventory potentially useful existing hydraulic modeling facilities both in the United States and abroad; and to scope hydraulic model studies to assist the assessment of atmospheric effects of nuclear energy centers

  10. Mathematical modeling of atmospheric fine particle-associated primary organic compound concentrations

    Science.gov (United States)

    Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.

    1996-08-01

    An atmospheric transport model has been used to explore the relationship between source emissions and ambient air quality for individual particle phase organic compounds present in primary aerosol source emissions. An inventory of fine particulate organic compound emissions was assembled for the Los Angeles area in the year 1982. Sources characterized included noncatalyst- and catalyst-equipped autos, diesel trucks, paved road dust, tire wear, brake lining dust, meat cooking operations, industrial oil-fired boilers, roofing tar pots, natural gas combustion in residential homes, cigarette smoke, fireplaces burning oak and pine wood, and plant leaf abrasion products. These primary fine particle source emissions were supplied to a computer-based model that simulates atmospheric transport, dispersion, and dry deposition based on the time series of hourly wind observations and mixing depths. Monthly average fine particle organic compound concentrations that would prevail if the primary organic aerosol were transported without chemical reaction were computed for more than 100 organic compounds within an 80 km × 80 km modeling area centered over Los Angeles. The monthly average compound concentrations predicted by the transport model were compared to atmospheric measurements made at monitoring sites within the study area during 1982. The predicted seasonal variation and absolute values of the concentrations of the more stable compounds are found to be in reasonable agreement with the ambient observations. While model predictions for the higher molecular weight polycyclic aromatic hydrocarbons (PAH) are in agreement with ambient observations, lower molecular weight PAH show much higher predicted than measured atmospheric concentrations in the particle phase, indicating atmospheric decay by chemical reactions or evaporation from the particle phase. The atmospheric concentrations of dicarboxylic acids and aromatic polycarboxylic acids greatly exceed the contributions that

  11. Marine atmospheric corrosion of carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Morcillo, M.; Alcantara, J.; Diaz, I.; Chico, B.; Simancas, J.; Fuente, D. de la

    2015-07-01

    Basic research on marine atmospheric corrosion of carbon steels is a relatively young scientific field and there continue to be great gaps in this area of knowledge. The presence of akaganeite in the corrosion products that form on steel when it is exposed to marine atmospheres leads to a notable increase in the corrosion rate. This work addresses the following issues: (a) environmental conditions necessary for akaganeite formation; (b) characterisation of akaganeite in the corrosion products formed; (c) corrosion mechanisms of carbon steel in marine atmospheres; (d) exfoliation of rust layers formed in highly aggressive marine atmospheres; (e) long-term corrosion rate prediction; and (f) behaviour of weathering steels. Field research has been carried out at Cabo Vilano wind farm (Camarinas, Galicia) in a wide range of atmospheric salinities and laboratory work involving the use of conventional atmospheric corrosion techniques and near-surface and bulk sensitive analytical techniques: scanning electron microscopy (SEM)/energy dispersive spectrometry (EDS), X-ray diffraction (XRD), Mossbauer spectroscopy and SEM/μRaman spectroscopy. (Author)

  12. Chemical Thermodynamics of Aqueous Atmospheric Aerosols: Modeling and Microfluidic Measurements

    Science.gov (United States)

    Nandy, L.; Dutcher, C. S.

    2017-12-01

    Accurate predictions of gas-liquid-solid equilibrium phase partitioning of atmospheric aerosols by thermodynamic modeling and measurements is critical for determining particle composition and internal structure at conditions relevant to the atmosphere. Organic acids that originate from biomass burning, and direct biogenic emission make up a significant fraction of the organic mass in atmospheric aerosol particles. In addition, inorganic compounds like ammonium sulfate and sea salt also exist in atmospheric aerosols, that results in a mixture of single, double or triple charged ions, and non-dissociated and partially dissociated organic acids. Statistical mechanics based on a multilayer adsorption isotherm model can be applied to these complex aqueous environments for predictions of thermodynamic properties. In this work, thermodynamic analytic predictive models are developed for multicomponent aqueous solutions (consisting of partially dissociating organic and inorganic acids, fully dissociating symmetric and asymmetric electrolytes, and neutral organic compounds) over the entire relative humidity range, that represent a significant advancement towards a fully predictive model. The model is also developed at varied temperatures for electrolytes and organic compounds the data for which are available at different temperatures. In addition to the modeling approach, water loss of multicomponent aerosol particles is measured by microfluidic experiments to parameterize and validate the model. In the experimental microfluidic measurements, atmospheric aerosol droplet chemical mimics (organic acids and secondary organic aerosol (SOA) samples) are generated in microfluidic channels and stored and imaged in passive traps until dehydration to study the influence of relative humidity and water loss on phase behavior.

  13. Phenomenology of atmospheric neutrinos

    Directory of Open Access Journals (Sweden)

    Fedynitch Anatoli

    2016-01-01

    Full Text Available The detection of astrophysical neutrinos, certainly a break-through result, introduced new experimental challenges and fundamental questions about acceleration mechanisms of cosmic rays. On one hand IceCube succeeded in finding an unambiguous proof for the existence of a diffuse astrophysical neutrino flux, on the other hand the precise determination of its spectral index and normalization requires a better knowledge about the atmospheric background at hundreds of TeV and PeV energies. Atmospheric neutrinos in this energy range originate mostly from decays of heavy-flavor mesons, which production in the phase space relevant for prompt leptons is uncertain. Current accelerator-based experiments are limited by detector acceptance and not so much by the collision energy. This paper recaps phenomenological aspects of atmospheric leptons and calculation methods, linking recent progress in flux predictions with particle physics at colliders, in particular the Large Hadron Collider.

  14. Treatment of uncertainties in atmospheric chemical systems: A combined modeling and experimental approach

    Science.gov (United States)

    Pun, Betty Kong-Ling

    1998-12-01

    Uncertainty is endemic in modeling. This thesis is a two- phase program to understand the uncertainties in urban air pollution model predictions and in field data used to validate them. Part I demonstrates how to improve atmospheric models by analyzing the uncertainties in these models and using the results to guide new experimentation endeavors. Part II presents an experiment designed to characterize atmospheric fluctuations, which have significant implications towards the model validation process. A systematic study was undertaken to investigate the effects of uncertainties in the SAPRC mechanism for gas- phase chemistry in polluted atmospheres. The uncertainties of more than 500 parameters were compiled, including reaction rate constants, product coefficients, organic composition, and initial conditions. Uncertainty propagation using the Deterministic Equivalent Modeling Method (DEMM) revealed that the uncertainties in ozone predictions can be up to 45% based on these parametric uncertainties. The key parameters found to dominate the uncertainties of the predictions include photolysis rates of NO2, O3, and formaldehyde; the rate constant for nitric acid formation; and initial amounts of NOx and VOC. Similar uncertainty analysis procedures applied to two other mechanisms used in regional air quality models led to the conclusion that in the presence of parametric uncertainties, the mechanisms cannot be discriminated. Research efforts should focus on reducing parametric uncertainties in photolysis rates, reaction rate constants, and source terms. A new tunable diode laser (TDL) infrared spectrometer was designed and constructed to measure multiple pollutants simultaneously in the same ambient air parcels. The sensitivities of the one hertz measurements were 2 ppb for ozone, 1 ppb for NO, and 0.5 ppb for NO2. Meteorological data were also collected for wind, temperature, and UV intensity. The field data showed clear correlations between ozone, NO, and NO2 in the one

  15. Sensitivity of Numerical Weather Prediction to the Choice of Variable for Atmospheric Moisture Analysis into the Brazilian Global Model Data Assimilation System

    Directory of Open Access Journals (Sweden)

    Thamiris B. Campos

    2018-03-01

    Full Text Available Due to the high spatial and temporal variability of atmospheric water vapor associated with the deficient methodologies used in its quantification and the imperfect physics parameterizations incorporated in the models, there are significant uncertainties in characterizing the moisture field. The process responsible for incorporating the information provided by observation into the numerical weather prediction is denominated data assimilation. The best result in atmospheric moisture depend on the correct choice of the moisture control variable. Normalized relative humidity and pseudo-relative humidity are the variables usually used by the main weather prediction centers. The objective of this study is to assess the sensibility of the Center for Weather Forecast and Climate Studies to choose moisture control variable in the data assimilation scheme. Experiments using these variables are carried out. The results show that the pseudo-relative humidity improves the variables that depend on temperature values but damage the moisture field. The opposite results show when the simulation used the normalized relative humidity. These experiments suggest that the pseudo-relative humidity should be used in the cyclical process of data assimilation and the normalized relative humidity should be used in non-cyclic process (e.g., nowcasting application in high resolution.

  16. A Reusable and Autonomous Ocean-Atmosphere Sensor Integration System (OASIS), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The need to acquire observations on oceanic and atmospheric physical and biogeochemical processes continues to increase. These data are presently being used as...

  17. Ensemble atmospheric dispersion calculations for decision support systems

    International Nuclear Information System (INIS)

    Borysiewicz, M.; Potempski, S.; Galkowski, A.; Zelazny, R.

    2003-01-01

    This document describes two approaches to long-range atmospheric dispersion of pollutants based on the ensemble concept. In the first part of the report some experiences related to the exercises undertaken under the ENSEMBLE project of the European Union are presented. The second part is devoted to the implementation of mesoscale numerical prediction models RAMS and atmospheric dispersion model HYPACT on Beowulf cluster and theirs usage for ensemble forecasting and long range atmospheric ensemble dispersion calculations based on available meteorological data from NCEO, NOAA (USA). (author)

  18. Nuclear risk from atmospheric dispersion in Northern Europe

    International Nuclear Information System (INIS)

    Lauritzen, B.

    2007-04-01

    The aim of the 2005-06 NKS-B NordRisk project has been to present practical methods for probabilistic risk assessment from long-range atmospheric transport and deposition of radioactive material. In this project an atlas of long-range atmospheric dispersion and deposition patterns derived from archived numerical weather prediction (NWP) model data coupled to an atmospheric dispersion model has been produced, and a PC-based software tool has been developed, based on a simplified description of the long-term, long-range atmospheric dispersion and deposition. The atlas and the software tool may allow for a rapid, first assessment of the risks following a nuclear emergency, when detailed information on the long-range atmospheric dispersion and deposition is not available. (au)

  19. Monolayer II-VI semiconductors: A first-principles prediction

    Science.gov (United States)

    Zheng, Hui; Chen, Nian-Ke; Zhang, S. B.; Li, Xian-Bin

    A systematic study of 32 honeycomb monolayer II-VI semiconductors is carried out by first-principles methods. It appears that BeO, MgO, CaO, ZnO, CdO, CaS, SrS, SrSe, BaTe, and HgTe honeycomb monolayers have a good dynamic stability which is revealed by phonon calculations. In addition, from the molecular dynamic (MD) simulation of other unstable candidates, we also find two extra monolayers dynamically stable, which are tetragonal BaS and orthorhombic HgS. The honeycomb monolayers exist in form of either a planar perfect honeycomb or a low-buckled 2D layer, all of which possess a band gap and most of them are in the ultraviolet region. Interestingly, the dynamically stable SrSe has a gap near visible light, and displays exotic electronic properties with a flat top of the valence band, and hence has a strong spin polarization upon hole doping. The honeycomb HgTe has been reported to achieve a topological nontrivial phase under appropriate in-plane tensile strain and spin-orbital coupling (SOC). Some II-VI partners with less than 5% lattice mismatch may be used to design novel 2D heterojunction devices. If synthesized, potential applications of these 2D II-VI families could include optoelectronics, spintronics, and strong correlated electronics. Distinguished Student (DS) Program of APS FIP travel funds.

  20. TBscore II

    DEFF Research Database (Denmark)

    Rudolf, Frauke; Lemvik, Grethe; Abate, Ebba

    2013-01-01

    Abstract Background: The TBscore, based on simple signs and symptoms, was introduced to predict unsuccessful outcome in tuberculosis patients on treatment. A recent inter-observer variation study showed profound variation in some variables. Further, some variables depend on a physician assessing...... them, making the score less applicable. The aim of the present study was to simplify the TBscore. Methods: Inter-observer variation assessment and exploratory factor analysis were combined to develop a simplified score, the TBscore II. To validate TBscore II we assessed the association between start...

  1. Transboundary radioactive and chemical pollution simulation using an atmospheric/marine predicting system

    International Nuclear Information System (INIS)

    Telenta, B.; Antic, D.

    2001-01-01

    The atmospheric models can be used to simulate the transport of contaminants in typical accidental cases and for realistic meteorological conditions. Some numerical models for weather forecast can be used for near to real simulations of propagation of radioactive nuclides or classical chemical pollutants to the atmosphere. The various meteorological parameters are taken into account and various meteorological conditions, even complex ones, can be analyzed. The models can be used for very well assessment of the airborne pollution from energy sources and industrial installations, for comparative studies and for safety analysis. This report describes an proposal for a project of the transboundary pollution simulation, that can be used for the East Mediterranean Region. The project is based on the numerical models developed in the in simulating of the Chernobyl accident and similar hypothetical cases. The study is based on an atmospheric models developed in Euro-Mediterranean Centre on Insular Coastal Dynamics (ICoD), Foundation for International Studies, Valeta, Malta

  2. Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation

    Directory of Open Access Journals (Sweden)

    M. Kulmala

    2010-02-01

    Full Text Available Aerosol particles affect the Earth's radiative balance by directly scattering and absorbing solar radiation and, indirectly, through their activation into cloud droplets. Both effects are known with considerable uncertainty only, and translate into even bigger uncertainties in future climate predictions. More than a decade ago, variations in galactic cosmic rays were suggested to closely correlate with variations in atmospheric cloud cover and therefore constitute a driving force behind aerosol-cloud-climate interactions. Later, the enhancement of atmospheric aerosol particle formation by ions generated from cosmic rays was proposed as a physical mechanism explaining this correlation. Here, we report unique observations on atmospheric aerosol formation based on measurements at the SMEAR II station, Finland, over a solar cycle (years 1996–2008 that shed new light on these presumed relationships. Our analysis shows that none of the quantities related to aerosol formation correlates with the cosmic ray-induced ionisation intensity (CRII. We also examined the contribution of ions to new particle formation on the basis of novel ground-based and airborne observations. A consistent result is that ion-induced formation contributes typically significantly less than 10% to the number of new particles, which would explain the missing correlation between CRII and aerosol formation. Our main conclusion is that galactic cosmic rays appear to play a minor role for atmospheric aerosol formation events, and so for the connected aerosol-climate effects as well.

  3. DISC ATMOSPHERES AND WINDS IN X-RAY BINARIES

    Directory of Open Access Journals (Sweden)

    Maria Díaz Trigo

    2013-12-01

    Full Text Available We review the current status of studies of disc atmospheres and winds in low mass X-ray binaries. We discuss the possible wind launching mechanisms and compare the predictions of the models with the existent observations. We conclude that a combination of thermal and radiative pressure (the latter being relevant at high luminosities can explain the current observations of atmospheres and winds in both neutron star and black hole binaries. Moreover, these winds and atmospheres could contribute significantly to the broad iron emission line observed in these systems.

  4. Prediction of interannual climate variations

    International Nuclear Information System (INIS)

    Shukla, J.

    1993-01-01

    It has been known for some time that the behavior of the short-term fluctuations of the earth's atmosphere resembles that of a chaotic non-linear dynamical system, and that the day-to-day weather cannot be predicted beyond a few weeks. However, it has also been found that the interactions of the atmosphere with the underlying oceans and the land surfaces can produce fluctuations whose time scales are much longer than the limits of deterministic prediction of weather. It is, therefore, natural to ask whether it is possible that the seasonal and longer time averages of climate fluctuations can be predicted with sufficient skill to be beneficial for social and economic applications, even though the details of day-to-day weather cannot be predicted beyond a few weeks. The main objective of the workshop was to address this question by assessing the current state of knowledge on predictability of seasonal and interannual climate variability and to investigate various possibilities for its prediction. (orig./KW)

  5. Prediction of a new region in the H-T phase diagram of a disordered type II superconductor

    International Nuclear Information System (INIS)

    Nandgaonkar, Ajay; Kanhere, D.G.; Trivedi, Nandini

    1997-01-01

    The phase diagram of a type II superconductor (SC) in the magnetic field (B) - temperature (T) plane is shown schematically. At low T the system consists of an Abrikosov triangular vortex lattice which melts as the temperature is increased. At high B, the rigidity of the vortex lattice C 66 decreases with increasing B. Thus, the melting curve essentially tracks the H c2 behaviour, as shown in region (a) in fig. It was further suggested by Nelson, based on a mapping of vortices in 3D onto a problem of boson world-lines in spatial 2D and 1 imaginary dimension, that the classical statistical mechanics of vortices is analogous to the problem of quantum melting of the bosons. He used this mapping to predict a novel reentrant behavior of the phase boundary. These predictions were verified by experiments

  6. NOAA Ship Delaware II Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Delaware II Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  7. NOAA Ship Oregon II Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oregon II Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  8. Testing model energy spectra of charged particles produced in hadron interactions on the basis of atmospheric muons

    International Nuclear Information System (INIS)

    Dedenko, L. G.; Roganova, T. M.; Fedorova, G. F.

    2015-01-01

    An original method for calculating the spectrum of atmospheric muons with the aid of the CORSIKA 7.4 code package and numerical integration is proposed. The first step consists in calculating the energy distribution of muons for various fixed energies of primary-cosmic-ray particles and within several chosen hadron-interaction models included in the CORSIKA 7.4 code package. After that, the spectrum of atmospheric muons is calculated via integrating the resulting distribution densities with the chosen spectrum of primary-cosmic-ray particles. The atmospheric-muon fluxes that were calculated on the basis of the SIBYLL 2.1, QGSJET01, and QGSJET II-04 models exceed the predictions of the wellknown Gaisser approximation of this spectrum by a factor of 1.5 to 1.8 in the range of muon energies between about 10 3 and 10 4 GeV.Under the assumption that, in the region of extremely highmuon energies, a dominant contribution to the muon flux comes from one to two generations of charged π ± and K ± mesons, the production rate calculated for these mesons is overestimated by a factor of 1.3 to 1.5. This conclusion is confirmed by the results of the LHCf and TOTEM experiments

  9. The novel EuroSCORE II algorithm predicts the hospital mortality of thoracic aortic surgery in 461 consecutive Japanese patients better than both the original additive and logistic EuroSCORE algorithms.

    Science.gov (United States)

    Nishida, Takahiro; Sonoda, Hiromichi; Oishi, Yasuhisa; Tanoue, Yoshihisa; Nakashima, Atsuhiro; Shiokawa, Yuichi; Tominaga, Ryuji

    2014-04-01

    The European System for Cardiac Operative Risk Evaluation (EuroSCORE) II was developed to improve the overestimation of surgical risk associated with the original (additive and logistic) EuroSCOREs. The purpose of this study was to evaluate the significance of the EuroSCORE II by comparing its performance with that of the original EuroSCOREs in Japanese patients undergoing surgery on the thoracic aorta. We have calculated the predicted mortalities according to the additive EuroSCORE, logistic EuroSCORE and EuroSCORE II algorithms in 461 patients who underwent surgery on the thoracic aorta during a period of 20 years (1993-2013). The actual in-hospital mortality rates in the low- (additive EuroSCORE of 3-6), moderate- (7-11) and high-risk (≥11) groups (followed by overall mortality) were 1.3, 6.2 and 14.4% (7.2% overall), respectively. Among the three different risk groups, the expected mortality rates were 5.5 ± 0.6, 9.1 ± 0.7 and 13.5 ± 0.2% (9.5 ± 0.1% overall) by the additive EuroSCORE algorithm, 5.3 ± 0.1, 16 ± 0.4 and 42.4 ± 1.3% (19.9 ± 0.7% overall) by the logistic EuroSCORE algorithm and 1.6 ± 0.1, 5.2 ± 0.2 and 18.5 ± 1.3% (7.4 ± 0.4% overall) by the EuroSCORE II algorithm, indicating poor prediction (P algorithms were 0.6937, 0.7169 and 0.7697, respectively. Thus, the mortality expected by the EuroSCORE II more closely matched the actual mortality in all three risk groups. In contrast, the mortality expected by the logistic EuroSCORE overestimated the risks in the moderate- (P = 0.0002) and high-risk (P < 0.0001) patient groups. Although all of the original EuroSCOREs and EuroSCORE II appreciably predicted the surgical mortality for thoracic aortic surgery in Japanese patients, the EuroSCORE II best predicted the mortalities in all risk groups.

  10. Absolute Kr I and Kr II transition probabilities

    International Nuclear Information System (INIS)

    Brandt, T.; Helbig, V.; Nick, K.P.

    1982-01-01

    Transition probabilities for 11 KrI and 9 KrII lines between 366.5 and 599.3nm were obtained from measurements with a wall-stabilised arc at atmospheric pressure in pure krypton. The population densities of the excited krypton levels were calculated under the assumption of LTE from electron densities measured by laser interferometry. The uncertainties for the KrI and the KrII data are 15 and 25% respectively. (author)

  11. Using commercial software products for atmospheric remote sensing

    Science.gov (United States)

    Kristl, Joseph A.; Tibaudo, Cheryl; Tang, Kuilian; Schroeder, John W.

    2002-02-01

    The Ontar Corporation (www.Ontar.com) has developed several products for atmospheric remote sensing to calculate radiative transport, atmospheric transmission, and sensor performance in both the normal atmosphere and the atmosphere disturbed by battlefield conditions of smoke, dust, explosives and turbulence. These products include: PcModWin: Uses the USAF standard MODTRAN model to compute the atmospheric transmission and radiance at medium spectral resolution (2 cm-1) from the ultraviolet/visible into the infrared and microwave regions of the spectrum. It can be used for any geometry and atmospheric conditions such as aerosols, clouds and rain. PcLnWin: Uses the USAF standard FASCOD model to compute atmospheric transmission and emission at high (line-by-line) spectral resolution using the HITRAN 2000 database. It can be used over the same spectrum from the UV/visible into the infrared and microwave regions of the spectrum. HitranPC: Computes the absolute high (line-by-line) spectral resolution transmission spectrum of the atmosphere for different temperatures and pressures. HitranPC is a user-friendly program developed by the University of South Florida (USF) and uses the international standard molecular spectroscopic database, HITRAN. LidarPC: A computer program to calculate the Laser Radar/L&n Equation for hard targets and atmospheric backscatter using manual input atmospheric parameters or HitranPC and BETASPEC - transmission and backscatter calculations of the atmosphere. Also developed by the University of South Florida (USF). PcEosael: is a library of programs that mathematically describe aspects of electromagnetic propagation in battlefield environments. 25 modules are connected but can be exercised individually. Covers eight general categories of atmospheric effects, including gases, aerosols and laser propagation. Based on codes developed by the Army Research Lab. NVTherm: NVTherm models parallel scan, serial scan, and staring thermal imagers that operate

  12. Gene expression profiles in stages II and III colon cancers

    DEFF Research Database (Denmark)

    Thorsteinsson, Morten; Kirkeby, Lene T; Hansen, Raino

    2012-01-01

    PURPOSE: A 128-gene signature has been proposed to predict outcome in patients with stages II and III colorectal cancers. In the present study, we aimed to reproduce and validate the 128-gene signature in external and independent material. METHODS: Gene expression data from the original material...... were retrieved from the Gene Expression Omnibus (GEO) (n¿=¿111) in addition to a Danish data set (n¿=¿37). All patients had stages II and III colon cancers. A Prediction Analysis of Microarray classifier, based on the 128-gene signature and the original training set of stage I (n¿=¿65) and stage IV (n...... correctly predicted as stage IV-like, and the remaining patients were predicted as stage I-like and unclassifiable, respectively. Stage II patients could not be stratified. CONCLUSIONS: The 128-gene signature showed reproducibility in stage III colon cancer, but could not predict recurrence in stage II...

  13. Atmospheres and spectra of strongly magnetized neutron stars - II. The effect of vacuum polarization

    Science.gov (United States)

    Ho, Wynn C. G.; Lai, Dong

    2003-01-01

    We study the effect of vacuum polarization on the atmosphere structure and radiation spectra of neutron stars with surface magnetic fields B= 1014-1015 G, as appropriate for magnetars. Vacuum polarization modifies the dielectric property of the medium and gives rise to a resonance feature in the opacity; this feature is narrow and occurs at a photon energy that depends on the plasma density. Vacuum polarization can also induce resonant conversion of photon modes via a mechanism analogous to the Mikheyev-Smirnov-Wolfenstein (MSW) mechanism for neutrino oscillation. We construct atmosphere models in radiative equilibrium with an effective temperature of a few ×106 K by solving the full radiative transfer equations for both polarization modes in a fully ionized hydrogen plasma. We discuss the subtleties in treating the vacuum polarization effects in the atmosphere models and present approximate solutions to the radiative transfer problem which bracket the true answer. We show from both analytic considerations and numerical calculations that vacuum polarization produces a broad depression in the X-ray flux at high energies (a few keV <~E<~ a few tens of keV) as compared to models without vacuum polarization; this arises from the density dependence of the vacuum resonance feature and the large density gradient present in the atmosphere. Thus the vacuum polarization effect softens the high-energy tail of the thermal spectrum, although the atmospheric emission is still harder than the blackbody spectrum because of the non-grey opacities. We also show that the depression of continuum flux strongly suppresses the equivalent width of the ion cyclotron line and therefore makes the line more difficult to observe.

  14. Statistical downscaling of historical monthly mean winds over a coastal region of complex terrain. II. Predicting wind components

    Energy Technology Data Exchange (ETDEWEB)

    Kamp, Derek van der [University of Victoria, Pacific Climate Impacts Consortium, Victoria, BC (Canada); University of Victoria, School of Earth and Ocean Sciences, Victoria, BC (Canada); Curry, Charles L. [Environment Canada University of Victoria, Canadian Centre for Climate Modelling and Analysis, Victoria, BC (Canada); University of Victoria, School of Earth and Ocean Sciences, Victoria, BC (Canada); Monahan, Adam H. [University of Victoria, School of Earth and Ocean Sciences, Victoria, BC (Canada)

    2012-04-15

    A regression-based downscaling technique was applied to monthly mean surface wind observations from stations throughout western Canada as well as from buoys in the Northeast Pacific Ocean over the period 1979-2006. A predictor set was developed from principal component analysis of the three wind components at 500 hPa and mean sea-level pressure taken from the NCEP Reanalysis II. Building on the results of a companion paper, Curry et al. (Clim Dyn 2011), the downscaling was applied to both wind speed and wind components, in an effort to evaluate the utility of each type of predictand. Cross-validated prediction skill varied strongly with season, with autumn and summer displaying the highest and lowest skill, respectively. In most cases wind components were predicted with better skill than wind speeds. The predictive ability of wind components was found to be strongly related to their orientation. Wind components with the best predictions were often oriented along topographically significant features such as constricted valleys, mountain ranges or ocean channels. This influence of directionality on predictive ability is most prominent during autumn and winter at inland sites with complex topography. Stations in regions with relatively flat terrain (where topographic steering is minimal) exhibit inter-station consistencies including region-wide seasonal shifts in the direction of the best predicted wind component. The conclusion that wind components can be skillfully predicted only over a limited range of directions at most stations limits the scope of statistically downscaled wind speed predictions. It seems likely that such limitations apply to other regions of complex terrain as well. (orig.)

  15. Neutron star model atmospheres - a comparison with MXB 1728-34

    International Nuclear Information System (INIS)

    Foster, A.J.; Fabian, A.C.; Ross, R.R.

    1986-01-01

    A detailed comparison between the X-ray spectra calculated for model atmospheres in neutron stars and the observed spectra of X-ray bursts is presented. Comptonization and free - free absorption and emission processes are taken into account, as are the effects of iron in its last three states of ionization. Two types of model are formulated: (i) a constant density atmosphere and (ii) an atmosphere in approximate hydrostatic equilibrium. The models have been fitted to X-ray burst data obtained with EXOSAT from the source MXB 1728-34. It is possible simultaneously to fit a sub-Eddington burst luminosity, a neutron star radius consistent with current equations of state, and a distance in agreement with optical estimates. (author)

  16. Evaluation of Different Topographic Corrections for Landsat TM Data by Prediction of Foliage Projective Cover (FPC in Topographically Complex Landscapes

    Directory of Open Access Journals (Sweden)

    Sisira Ediriweera

    2013-12-01

    Full Text Available The reflected radiance in topographically complex areas is severely affected by variations in topography; thus, topographic correction is considered a necessary pre-processing step when retrieving biophysical variables from these images. We assessed the performance of five topographic corrections: (i C correction (C, (ii Minnaert, (iii Sun Canopy Sensor (SCS, (iv SCS + C and (v the Processing Scheme for Standardised Surface Reflectance (PSSSR on the Landsat-5 Thematic Mapper (TM reflectance in the context of prediction of Foliage Projective Cover (FPC in hilly landscapes in north-eastern Australia. The performance of topographic corrections on the TM reflectance was assessed by (i visual comparison and (ii statistically comparing TM predicted FPC with ground measured FPC and LiDAR (Light Detection and Ranging-derived FPC estimates. In the majority of cases, the PSSSR method performed best in terms of eliminating topographic effects, providing the best relationship and lowest residual error when comparing ground measured FPC and LiDAR FPC with TM predicted FPC. The Minnaert, C and SCS + C showed the poorest performance. Finally, the use of TM surface reflectance, which includes atmospheric correction and broad Bidirectional Reflectance Distribution Function (BRDF effects, seemed to account for most topographic variation when predicting biophysical variables, such as FPC.

  17. The behaviour of the atmosphere of σ scorpii

    International Nuclear Information System (INIS)

    Costa, A.; Ringuelet, A.

    1985-01-01

    The β CMa star σ Scorpii has been observed spectroscopically along two cycles. It has been found that absorption lines representing different depths in the atmosphere (excluding the transition region) yield different radial velocity curves; the amplitudes decrease and the γ's become more negative in the outermost layers. Ca II lambda 3933 A has a chromospheric component. (author)

  18. Lifetime predictions for the Solar Maximum Mission (SMM) and San Marco spacecraft

    Science.gov (United States)

    Smith, E. A.; Ward, D. T.; Schmitt, M. W.; Phenneger, M. C.; Vaughn, F. J.; Lupisella, M. L.

    1989-01-01

    Lifetime prediction techniques developed by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) are described. These techniques were developed to predict the Solar Maximum Mission (SMM) spacecraft orbit, which is decaying due to atmospheric drag, with reentry predicted to occur before the end of 1989. Lifetime predictions were also performed for the Long Duration Exposure Facility (LDEF), which was deployed on the 1984 SMM repair mission and is scheduled for retrieval on another Space Transportation System (STS) mission later this year. Concepts used in the lifetime predictions were tested on the San Marco spacecraft, which reentered the Earth's atmosphere on December 6, 1988. Ephemerides predicting the orbit evolution of the San Marco spacecraft until reentry were generated over the final 90 days of the mission when the altitude was less than 380 kilometers. The errors in the predicted ephemerides are due to errors in the prediction of atmospheric density variations over the lifetime of the satellite. To model the time dependence of the atmospheric densities, predictions of the solar flux at the 10.7-centimeter wavelength were used in conjunction with Harris-Priester (HP) atmospheric density tables. Orbital state vectors, together with the spacecraft mass and area, are used as input to the Goddard Trajectory Determination System (GTDS). Propagations proceed in monthly segments, with the nominal atmospheric drag model scaled for each month according to the predicted monthly average value of F10.7. Calibration propagations are performed over a period of known orbital decay to obtain the effective ballistic coefficient. Progagations using plus or minus 2 sigma solar flux predictions are also generated to estimate the despersion in expected reentry dates. Definitive orbits are compared with these predictions as time expases. As updated vectors are received, these are also propagated to reentryto continually update the lifetime predictions.

  19. In silico prediction of drug dissolution and absorption with variation in intestinal pH for BCS class II weak acid drugs: ibuprofen and ketoprofen.

    Science.gov (United States)

    Tsume, Yasuhiro; Langguth, Peter; Garcia-Arieta, Alfredo; Amidon, Gordon L

    2012-10-01

    The FDA Biopharmaceutical Classification System guidance allows waivers for in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms only for BCS class I. Extensions of the in vivo biowaiver for a number of drugs in BCS class III and BCS class II have been proposed, in particular, BCS class II weak acids. However, a discrepancy between the in vivo BE results and in vitro dissolution results for BCS class II acids was recently observed. The objectives of this study were to determine the oral absorption of BCS class II weak acids via simulation software and to determine if the in vitro dissolution test with various dissolution media could be sufficient for in vitro bioequivalence studies of ibuprofen and ketoprofen as models of carboxylic acid drugs. The oral absorption of these BCS class II acids from the gastrointestinal tract was predicted by GastroPlus™. Ibuprofen did not satisfy the bioequivalence criteria at lower settings of intestinal pH of 6.0. Further the experimental dissolution of ibuprofen tablets in a low concentration phosphate buffer at pH 6.0 (the average buffer capacity 2.2 mmol l (-1) /pH) was dramatically reduced compared with the dissolution in SIF (the average buffer capacity 12.6 mmol l (-1) /pH). Thus these predictions for the oral absorption of BCS class II acids indicate that the absorption patterns depend largely on the intestinal pH and buffer strength and must be considered carefully for a bioequivalence test. Simulation software may be a very useful tool to aid the selection of dissolution media that may be useful in setting an in vitro bioequivalence dissolution standard. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Deposition of atmospheric 210Pb and total beta activity in Finland

    International Nuclear Information System (INIS)

    Jussi Paatero; Murat Buyukay; Juha Hatakka; Kaisa Vaaramaa; Jukka Lehto

    2015-01-01

    The seasonal and regional variation of the atmospheric 210 Pb deposition in Finland was studied. The 210 Pb activity concentration in precipitation shows a decreasing trend from southeastern Finland north-westwards. An average deposition of 40 Bq/m 2 during a 12 months period was observed. The deposition of 210 Pb shows a seasonal variation with minimum in spring and maximum in autumn and winter. The specific activity of 210 Pb (activity of 210 Pb per unit mass of stable lead) in the atmosphere has returned to the level prior to World War II owing to the reduced lead emissions into the atmosphere. (author)

  1. Modeling of Red Giant and AGB Stars Atmospheres: Constraints from VLTI and HST Observations

    Science.gov (United States)

    Rau, Gioia

    2018-04-01

    The chemical enrichment of the Universe is considerably affected by the contributions of low-to-intermediate mass stars through the mass-loss provided via their stellar winds. First, we will present our investigation in the near-IR with VLTI/GRAVITY (Wittkowski, Rau, et al., in prep.). Our aim was to verify at different epochs the model-predicted variability of the visibility spectra. We use CODEX model atmospheres, as well as best-fit 3D radiation hydrodynamic simulations (e.g. Freytag et al., 2017), for comparison with the observations. Our preliminary results on R Peg suggest a decreasing contribution by extended CO layers as the star transitions from maximum to minimum phase. Second, we will show a preliminary modeling of UV spectra obtained with HST/GHRS that contain chromospheric emission lines of, e.g., Mg II and Fe II. Via Sobolev with Exact Integration (SEI) modeling, we determined for the two M-giant stars γ Cru and µ Gem the characteristics of their winds (turbulence, acceleration, and opacity), and their average global mass-loss rates (Rau, Carpenter et al., in prep.). Finally, we briefly discuss the impact of instruments on board JWST in progressing this investigation.

  2. Structure-based prediction and identification of 4-epimerization activity of phosphate sugars in class II aldolases.

    Science.gov (United States)

    Lee, Seon-Hwa; Hong, Seung-Hye; An, Jung-Ung; Kim, Kyoung-Rok; Kim, Dong-Eun; Kang, Lin-Woo; Oh, Deok-Kun

    2017-05-16

    Sugar 4-epimerization reactions are important for the production of rare sugars and their derivatives, which have various potential industrial applications. For example, the production of tagatose, a functional sweetener, from fructose by sugar 4-epimerization is currently constrained because a fructose 4-epimerase does not exist in nature. We found that class II D-fructose-1,6-bisphosphate aldolase (FbaA) catalyzed the 4-epimerization of D-fructose-6-phosphate (F6P) to D-tagatose-6-phosphate (T6P) based on the prediction via structural comparisons with epimerase and molecular docking and the identification of the condensed products of C3 sugars. In vivo, the 4-epimerization activity of FbaA is normally repressed. This can be explained by our results showing the catalytic efficiency of D-fructose-6-phosphate kinase for F6P phosphorylation was significantly higher than that of FbaA for F6P epimerization. Here, we identified the epimerization reactions and the responsible catalytic residues through observation of the reactions of FbaA and L-rhamnulose-1-phosphate aldolases (RhaD) variants with substituted catalytic residues using different substrates. Moreover, we obtained detailed potential epimerization reaction mechanism of FbaA and a general epimerization mechanism of the class II aldolases L-fuculose-1-phosphate aldolase, RhaD, and FbaA. Thus, class II aldolases can be used as 4-epimerases for the stereo-selective synthesis of valuable carbohydrates.

  3. Prediction of the oscillator strengths for the electric dipole transitions in Th II

    Energy Technology Data Exchange (ETDEWEB)

    Dembczynski, Jerzy [Institute of Control and Information Engineering, Faculty of Electrical Engineering, Poznan University of Technology, Piotrowo 3A, 60-965 Poznan (Poland); Ruczkowski, Jaroslaw; Elantkowska, Magdalena [Laboratory of Quantum Engineering and Metrology, Faculty of Technical Physics, Poznan University of Technology, Nieszawska 13B, 60-965 Poznan (Poland)

    2014-07-01

    In order to parametrize the oscillator strength, the matrix of angular coefficients of the possible transitions in multiconfiguration system were calculated. In the odd and even configuration systems, the fine structure eigenvectors for both parities were obtained, using our semiempirical method, which taken into account also the second order effects, resulting from the excitations from electronic closed shells to open shells and from open shells to empty shell. The correctness of the fine structure wave functions was verified by the comparison of calculated and experimental hyperfine structure constants for Th II available in the literature. The least square fit to experimental values for some transitions allow to obtain the values of radial parameters and predict the oscillator strengths values for all possible transitions from the levels under consideration. These calculations are necessary for the design of the nuclear frequency standard based on the thorium ion.

  4. Building and validating a prediction model for paediatric type 1 diabetes risk using next generation targeted sequencing of class II HLA genes.

    Science.gov (United States)

    Zhao, Lue Ping; Carlsson, Annelie; Larsson, Helena Elding; Forsander, Gun; Ivarsson, Sten A; Kockum, Ingrid; Ludvigsson, Johnny; Marcus, Claude; Persson, Martina; Samuelsson, Ulf; Örtqvist, Eva; Pyo, Chul-Woo; Bolouri, Hamid; Zhao, Michael; Nelson, Wyatt C; Geraghty, Daniel E; Lernmark, Åke

    2017-11-01

    It is of interest to predict possible lifetime risk of type 1 diabetes (T1D) in young children for recruiting high-risk subjects into longitudinal studies of effective prevention strategies. Utilizing a case-control study in Sweden, we applied a recently developed next generation targeted sequencing technology to genotype class II genes and applied an object-oriented regression to build and validate a prediction model for T1D. In the training set, estimated risk scores were significantly different between patients and controls (P = 8.12 × 10 -92 ), and the area under the curve (AUC) from the receiver operating characteristic (ROC) analysis was 0.917. Using the validation data set, we validated the result with AUC of 0.886. Combining both training and validation data resulted in a predictive model with AUC of 0.903. Further, we performed a "biological validation" by correlating risk scores with 6 islet autoantibodies, and found that the risk score was significantly correlated with IA-2A (Z-score = 3.628, P < 0.001). When applying this prediction model to the Swedish population, where the lifetime T1D risk ranges from 0.5% to 2%, we anticipate identifying approximately 20 000 high-risk subjects after testing all newborns, and this calculation would identify approximately 80% of all patients expected to develop T1D in their lifetime. Through both empirical and biological validation, we have established a prediction model for estimating lifetime T1D risk, using class II HLA. This prediction model should prove useful for future investigations to identify high-risk subjects for prevention research in high-risk populations. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Uncertain Henry's law constants compromise equilibrium partitioning calculations of atmospheric oxidation products

    Directory of Open Access Journals (Sweden)

    C. Wang

    2017-06-01

    Full Text Available Gas–particle partitioning governs the distribution, removal, and transport of organic compounds in the atmosphere and the formation of secondary organic aerosol (SOA. The large variety of atmospheric species and their wide range of properties make predicting this partitioning equilibrium challenging. Here we expand on earlier work and predict gas–organic and gas–aqueous phase partitioning coefficients for 3414 atmospherically relevant molecules using COSMOtherm, SPARC Performs Automated Reasoning in Chemistry (SPARC, and poly-parameter linear free-energy relationships. The Master Chemical Mechanism generated the structures by oxidizing primary emitted volatile organic compounds. Predictions for gas–organic phase partitioning coefficients (KWIOM/G by different methods are on average within 1 order of magnitude of each other, irrespective of the numbers of functional groups, except for predictions by COSMOtherm and SPARC for compounds with more than three functional groups, which have a slightly higher discrepancy. Discrepancies between predictions of gas–aqueous partitioning (KW/G are much larger and increase with the number of functional groups in the molecule. In particular, COSMOtherm often predicts much lower KW/G for highly functionalized compounds than the other methods. While the quantum-chemistry-based COSMOtherm accounts for the influence of intra-molecular interactions on conformation, highly functionalized molecules likely fall outside of the applicability domain of the other techniques, which at least in part rely on empirical data for calibration. Further analysis suggests that atmospheric phase distribution calculations are sensitive to the partitioning coefficient estimation method, in particular to the estimated value of KW/G. The large uncertainty in KW/G predictions for highly functionalized organic compounds needs to be resolved to improve the quantitative treatment of SOA formation.

  6. Multi-metals column adsorption of lead(II), cadmium(II) and manganese(II) onto natural bentonite clay.

    Science.gov (United States)

    Alexander, Jock Asanja; Surajudeen, Abdulsalam; Aliyu, El-Nafaty Usman; Omeiza, Aroke Umar; Zaini, Muhammad Abbas Ahmad

    2017-10-01

    The present work was aimed at evaluating the multi-metals column adsorption of lead(II), cadmium(II) and manganese(II) ions onto natural bentonite. The bentonite clay adsorbent was characterized for physical and chemical properties using X-ray diffraction, X-ray fluorescence, Brunauer-Emmett-Teller surface area and cation exchange capacity. The column performance was evaluated using adsorbent bed height of 5.0 cm, with varying influent concentrations (10 mg/L and 50 mg/L) and flow rates (1.4 mL/min and 2.4 mL/min). The result shows that the breakthrough time for all metal ions ranged from 50 to 480 minutes. The maximum adsorption capacity was obtained at initial concentration of 10 mg/L and flow rate of 1.4 mL/min, with 2.22 mg/g of lead(II), 1.71 mg/g of cadmium(II) and 0.37 mg/g of manganese(II). The order of metal ions removal by natural bentonite is lead(II) > cadmium(II) > manganese(II). The sorption performance and the dynamic behaviour of the column were predicted using Adams-Bohart, Thomas, and Yoon-Nelson models. The linear regression analysis demonstrated that the Thomas and Yoon-Nelson models fitted well with the column adsorption data for all metal ions. The natural bentonite was effective for the treatment of wastewater laden with multi-metals, and the process parameters obtained from this work can be used at the industrial scale.

  7. In Silico Prediction of Drug Dissolution and Absorption with variation in Intestinal pH for BCS Class II Weak Acid Drugs: Ibuprofen and Ketoprofen§

    Science.gov (United States)

    Tsume, Yasuhiro; Langguth, Peter; Garcia-Arieta, Alfredo; Amidon, Gordon L.

    2012-01-01

    The FDA Biopharmaceutical Classification System guidance allows waivers for in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms only for BCS class I. Extensions of the in vivo biowaiver for a number of drugs in BCS Class III and BCS class II have been proposed, particularly, BCS class II weak acids. However, a discrepancy between the in vivo- BE results and in vitro- dissolution results for a BCS class II acids was recently observed. The objectives of this study were to determine the oral absorption of BCS class II weak acids via simulation software and to determine if the in vitro dissolution test with various dissolution media could be sufficient for in vitro bioequivalence studies of ibuprofen and ketoprofen as models of carboxylic acid drugs. The oral absorption of these BCS class II acids from the gastrointestinal tract was predicted by GastroPlus™. Ibuprofen did not satisfy the bioequivalence criteria at lower settings of intestinal pH=6.0. Further the experimental dissolution of ibuprofen tablets in the low concentration phosphate buffer at pH 6.0 (the average buffer capacity 2.2 mmol L-1/pH) was dramatically reduced compared to the dissolution in SIF (the average buffer capacity 12.6 mmol L -1/pH). Thus these predictions for oral absorption of BCS class II acids indicate that the absorption patterns largely depend on the intestinal pH and buffer strength and must be carefully considered for a bioequivalence test. Simulation software may be very useful tool to aid the selection of dissolution media that may be useful in setting an in vitro bioequivalence dissolution standard. PMID:22815122

  8. Relationship between personality disorder functioning styles and the emotional states in bipolar I and II disorders.

    Directory of Open Access Journals (Sweden)

    Jiashu Yao

    Full Text Available Bipolar disorder types I (BD I and II (BD II behave differently in clinical manifestations, normal personality traits, responses to pharmacotherapies, biochemical backgrounds and neuroimaging activations. How the varied emotional states of BD I and II are related to the comorbid personality disorders remains to be settled.We therefore administered the Plutchick - van Praag Depression Inventory (PVP, the Mood Disorder Questionnaire (MDQ, the Hypomanic Checklist-32 (HCL-32, and the Parker Personality Measure (PERM in 37 patients with BD I, 34 BD II, and in 76 healthy volunteers.Compared to the healthy volunteers, patients with BD I and II scored higher on some PERM styles, PVP, MDQ and HCL-32 scales. In BD I, the PERM Borderline style predicted the PVP scale; and Antisocial predicted HCL-32. In BD II, Borderline, Dependent, Paranoid (- and Schizoid (- predicted PVP; Borderline predicted MDQ; Passive-Aggressive and Schizoid (- predicted HCL-32. In controls, Borderline and Narcissistic (- predicted PVP; Borderline and Dependent (- predicted MDQ.Besides confirming the different predictability of the 11 functioning styles of personality disorder to BD I and II, we found that the prediction was more common in BD II, which might underlie its higher risk of suicide and poorer treatment outcome.

  9. Relationship between Personality Disorder Functioning Styles and the Emotional States in Bipolar I and II Disorders

    Science.gov (United States)

    Yao, Jiashu; Xu, You; Qin, Yanhua; Liu, Jing; Shen, Yuedi; Wang, Wei; Chen, Wei

    2015-01-01

    Background Bipolar disorder types I (BD I) and II (BD II) behave differently in clinical manifestations, normal personality traits, responses to pharmacotherapies, biochemical backgrounds and neuroimaging activations. How the varied emotional states of BD I and II are related to the comorbid personality disorders remains to be settled. Methods We therefore administered the Plutchick – van Praag Depression Inventory (PVP), the Mood Disorder Questionnaire (MDQ), the Hypomanic Checklist-32 (HCL-32), and the Parker Personality Measure (PERM) in 37 patients with BD I, 34 BD II, and in 76 healthy volunteers. Results Compared to the healthy volunteers, patients with BD I and II scored higher on some PERM styles, PVP, MDQ and HCL-32 scales. In BD I, the PERM Borderline style predicted the PVP scale; and Antisocial predicted HCL-32. In BD II, Borderline, Dependant, Paranoid (-) and Schizoid (-) predicted PVP; Borderline predicted MDQ; Passive-Aggressive and Schizoid (-) predicted HCL-32. In controls, Borderline and Narcissistic (-) predicted PVP; Borderline and Dependant (-) predicted MDQ. Conclusion Besides confirming the different predictability of the 11 functioning styles of personality disorder to BD I and II, we found that the prediction was more common in BD II, which might underlie its higher risk of suicide and poorer treatment outcome. PMID:25625553

  10. The Mars Crustal Magnetic Field Control of Plasma Boundary Locations and Atmospheric Loss: MHD Prediction and Comparison with MAVEN

    Science.gov (United States)

    Fang, Xiaohua; Ma, Yingjuan; Masunaga, Kei; Dong, Chuanfei; Brain, David; Halekas, Jasper; Lillis, Robert; Jakosky, Bruce M.; Connerney, Jack; Grebowsky, Joseph; hide

    2017-01-01

    We present results from a global Mars time-dependent MHD simulation under constant solar wind and solar radiation impact considering inherent magnetic field variations due to continuous planetary rotation. We calculate the 3-D shapes and locations of the bow shock (BS) and the induced magnetospheric boundary (IMB) and then examine their dynamic changes with time. We develop a physics-based, empirical algorithm to effectively summarize the multidimensional crustal field distribution. It is found that by organizing the model results using this new approach, the Mars crustal field shows a clear, significant influence on both the IMB and the BS. Specifically, quantitative relationships have been established between the field distribution and the mean boundary distances and the cross-section areas in the terminator plane for both of the boundaries. The model-predicted relationships are further verified by the observations from the NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. Our analysis shows that the boundaries are collectively affected by the global crustal field distribution, which, however, cannot be simply parameterized by a local parameter like the widely used subsolar longitude. Our calculations show that the variability of the intrinsic crustal field distribution in Mars-centered Solar Orbital itself may account for approx.60% of the variation in total atmospheric loss, when external drivers are static. It is found that the crustal field has not only a shielding effect for atmospheric loss but also an escape-fostering effect by positively affecting the transterminator ion flow cross-section area.

  11. Climate Prediction Center - Monitoring & Data Index

    Science.gov (United States)

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Site Map News Oceanic & Atmospheric Monitoring and Data Monitoring Weather & Climate in Realtime Climate Diagnostics Bulletin Preliminary Climate Diagnostics Bulletin Figures Monthly Atmospheric & Sea Surface

  12. Atmospheric Infrared Sounder on NASA's Aqua Satellite: Applications for Volcano Rapid Response, Influenza Outbreak Prediction, and Drought Onset Prediction

    Science.gov (United States)

    Ray, S. E.; Fetzer, E. J.; Lambrigtsen, B.; Olsen, E. T.; Licata, S. J.; Hall, J. R.; Penteado, P. F.; Realmuto, V. J.; Thrastarson, H. T.; Teixeira, J.; Granger, S. L.; Behrangi, A.; Farahmand, A.

    2017-12-01

    The Atmospheric Infrared Sounder (AIRS) has been returning daily global observations of Earth's atmospheric constituents and properties since 2002. With its 15-year data record and near real-time capability, AIRS data are being used in the development of applications that fall within many of the NASA Applied Science focus areas. An automated alert system for volcanic plumes has been developed that triggers on threshold breaches of SO2, ash and dust in granules of AIRS data. The system generates a suite of granule-scale maps that depict both plume and clouds, all accessible from the AIRS web site. Alerts are sent to a curated list of volcano community members, and links to views in NASA Worldview and Google Earth are also available. Seasonal influenza epidemics are major public health concern with millions of cases of severe illness and large economic impact. Recent studies have highlighted the role of absolute or specific humidity as a likely player in the seasonal nature of these outbreaks. A quasi-operational influenza outbreak prediction system has been developed based on the SIRS model which uses AIRS and NCEP humidity data, Center for Disease Control reports on flu and flu-like illnesses, and results from Google Flu Trends. Work is underway to account for diffusion (spatial) in addition to the temporal spreading of influenza. The US Drought Monitor (USDM) is generated weekly by the National Drought Mitigation Center (NDMC) and is used by policymakers for drought decision-making. AIRS data have demonstrated utility in monitoring the development and detection of meteorological drought with both AIRS-derived standardized vapor pressure deficit and standardized relative humidity, showing early detection lead times of up to two months. An agreement was secured with the NDMC to begin a trial period using AIRS products in the production of the USDM, and in July of 2017 the operational delivery of weekly CONUS AIRS images of Relative Humidity, Surface Air Temperature

  13. Better prognostic marker in ICU - APACHE II, SOFA or SAP II!

    Science.gov (United States)

    Naqvi, Iftikhar Haider; Mahmood, Khalid; Ziaullaha, Syed; Kashif, Syed Mohammad; Sharif, Asim

    2016-01-01

    This study was designed to determine the comparative efficacy of different scoring system in assessing the prognosis of critically ill patients. This was a retrospective study conducted in medical intensive care unit (MICU) and high dependency unit (HDU) Medical Unit III, Civil Hospital, from April 2012 to August 2012. All patients over age 16 years old who have fulfilled the criteria for MICU admission were included. Predictive mortality of APACHE II, SAP II and SOFA were calculated. Calibration and discrimination were used for validity of each scoring model. A total of 96 patients with equal gender distribution were enrolled. The average APACHE II score in non-survivors (27.97+8.53) was higher than survivors (15.82+8.79) with statistically significant p value (discrimination power than SAP II and SOFA.

  14. A scoring system based on artificial neural network for predicting 10-year survival in stage II A colon cancer patients after radical surgery

    Science.gov (United States)

    Jiang, Wu; Lu, Shi-Xun; Lu, Zhen-Hai; Li, Pei-Xing; Yun, Jing-Ping; Zhang, Rong-Xin; Pan, Zhi-Zhong; Wan, De-Sen

    2016-01-01

    Nearly 20% patients with stage II A colon cancer will develop recurrent disease post-operatively. The present study aims to develop a scoring system based on Artificial Neural Network (ANN) model for predicting 10-year survival outcome. The clinical and molecular data of 117 stage II A colon cancer patients from Sun Yat-sen University Cancer Center were used for training set and test set; poor pathological grading (score 49), reduced expression of TGFBR2 (score 33), over-expression of TGF-β (score 45), MAPK (score 32), pin1 (score 100), β-catenin in tumor tissue (score 50) and reduced expression of TGF-β in normal mucosa (score 22) were selected as the prognostic risk predictors. According to the developed scoring system, the patients were divided into 3 subgroups, which were supposed with higher, moderate and lower risk levels. As a result, for the 3 subgroups, the 10-year overall survival (OS) rates were 16.7%, 62.9% and 100% (P < 0.001); and the 10-year disease free survival (DFS) rates were 16.7%, 61.8% and 98.8% (P < 0.001) respectively. It showed that this scoring system for stage II A colon cancer could help to predict long-term survival and screen out high-risk individuals for more vigorous treatment. PMID:27008710

  15. A scoring system based on artificial neural network for predicting 10-year survival in stage II A colon cancer patients after radical surgery.

    Science.gov (United States)

    Peng, Jian-Hong; Fang, Yu-Jing; Li, Cai-Xia; Ou, Qing-Jian; Jiang, Wu; Lu, Shi-Xun; Lu, Zhen-Hai; Li, Pei-Xing; Yun, Jing-Ping; Zhang, Rong-Xin; Pan, Zhi-Zhong; Wan, De Sen

    2016-04-19

    Nearly 20% patients with stage II A colon cancer will develop recurrent disease post-operatively. The present study aims to develop a scoring system based on Artificial Neural Network (ANN) model for predicting 10-year survival outcome. The clinical and molecular data of 117 stage II A colon cancer patients from Sun Yat-sen University Cancer Center were used for training set and test set; poor pathological grading (score 49), reduced expression of TGFBR2 (score 33), over-expression of TGF-β (score 45), MAPK (score 32), pin1 (score 100), β-catenin in tumor tissue (score 50) and reduced expression of TGF-β in normal mucosa (score 22) were selected as the prognostic risk predictors. According to the developed scoring system, the patients were divided into 3 subgroups, which were supposed with higher, moderate and lower risk levels. As a result, for the 3 subgroups, the 10-year overall survival (OS) rates were 16.7%, 62.9% and 100% (P < 0.001); and the 10-year disease free survival (DFS) rates were 16.7%, 61.8% and 98.8% (P < 0.001) respectively. It showed that this scoring system for stage II A colon cancer could help to predict long-term survival and screen out high-risk individuals for more vigorous treatment.

  16. Optical propagation in linear media atmospheric gases and particles, solid-state components, and water

    CERN Document Server

    Thomas, Michael E

    2006-01-01

    PART I: Background Theory and Measurement. 1. Optical Electromagnetics I. 2. Optical Electromagnetics II. 3. Spectroscopy of Matter. 4. Electrodynamics I: Macroscopic Interaction of Light and Matter. 5. Electrodynamics II: Microscopic Interaction of Light and Matter. 6. Experimental Techniques. PART II: Practical Models for Various Media. 7. Optical Propagation in Gases and the Atmosphere of the Earth. 8. Optical Propagation in Solids. 9. Optical Propagation in Liquids. 10. Particle Absorption and Scatter. 11. Propagation Background and Noise

  17. Using A Priori Information to Improve Atmospheric Duct Estimation

    Science.gov (United States)

    Zhao, X.

    2017-12-01

    Knowledge of refractivity condition in the marine atmospheric boundary layer (MABL) is crucial for the prediction of radar and communication systems performance at frequencies above 1 GHz on low-altitude paths. Since early this century, the `refractivity from clutter (RFC)' technique has been proved to be an effective way to estimate the MABL refractivity structure. Refractivity model is very important for RFC techniques. If prior knowledge of the local refractivity information is available (e.g., from numerical weather prediction models, atmospheric soundings, etc.), more accurate parameterized refractivity model can be constructed by the statistical method, e.g. principal analysis, which in turn can be used to improve the quality of the local refractivity retrievals. This work extends the adjoint parabolic equation approach to range-varying atmospheric duct structure inversions, in which a linear empirical reduced-dimension refractivity model constructed from the a priori refractive information is used.

  18. Rate law of Fe(II) oxidation under low O2 conditions

    Science.gov (United States)

    Kanzaki, Yoshiki; Murakami, Takashi

    2013-12-01

    Despite intensive studies on Fe(II) oxidation kinetics, the oxidation rate law has not been established under low O2 conditions. The importance of Fe(II) oxidation under low O2 conditions has been recently recognized; for instance, the Fe(II)/Fe(III) compositions of paleosols, ancient soils formed by weathering, can produce a quantitative pattern of the atmospheric oxygen increase during the Paleoproterozoic. The effects of partial pressure of atmospheric oxygen (PO2) on the Fe(II) oxidation rate were investigated to establish the Fe(II) oxidation rate - PO2 relationships under low O2 conditions. All oxidation experiments were carried out in a glove box by introducing Ar gas at ∼10-5-∼10-4 atm of PO2, pH 7.57-8.09 and 22 °C. Luminol chemiluminescence was adopted to measure low Fe(II) concentrations (down to ∼2 nM). Combining previous data under higher PO2 conditions (10-3-0.2 atm) with the present data, the rate law for Fe(II) oxidation over a wide range of PO2 (10-5-0.2 atm) was found to be written as: d[Fe(II)]/dt=-k[Fe(II)][[]2 where the exponent of [O2], x, and the rate constant, k, change from x = 0.98 (±0.04) and log k = 15.46 (±0.06) at ∼6 × 10-3-0.2 atm of PO2 to x = 0.58 (±0.02) and log k = 13.41 (±0.03) at 10-5-∼6 × 10-3 atm of PO2. The most plausible mechanism that explains the change in x under low O2 conditions is that, instead of O2, oxygen-derived oxidants, H2O2 and to some extent, O2rad -, dominate the oxidation reactions at PO2. The rate law found in the present study requires us to reconsider distributions of Fe redox species at low PO2 in natural environments, especially in paleoweathering profiles, and may provide a deeper understanding of the evolution of atmospheric oxygen in the Precambrian.

  19. NON-LTE INVERSIONS OF THE Mg ii h and k AND UV TRIPLET LINES

    Energy Technology Data Exchange (ETDEWEB)

    De la Cruz Rodríguez, Jaime; Leenaarts, Jorrit [Institute for Solar Physics, Dept. of Astronomy, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm Sweden (Sweden); Ramos, Andrés Asensio [Instituto de Astrofísica de Canarias, E-38205, La Laguna, Tenerife (Spain)

    2016-10-20

    The Mg ii h and k lines are powerful diagnostics for studying the solar chromosphere. They have become particularly popular with the launch of the Interface Region Imaging Spectrograph ( IRIS ) satellite, and a number of studies that include these lines have lead to great progress in understanding chromospheric heating, in many cases thanks to the support from 3D MHD simulations. In this study, we utilize another approach to analyze observations: non-LTE inversions of the Mg ii h and k and UV triplet lines including the effects of partial redistribution. Our inversion code attempts to construct a model atmosphere that is compatible with the observed spectra. We have assessed the capabilities and limitations of the inversions using the FALC atmosphere and a snapshot from a 3D radiation-MHD simulation. We find that Mg ii h and k allow reconstructing a model atmosphere from the middle photosphere to the transition region. We have also explored the capabilities of a multi-line/multi-atom setup, including the Mg ii h and k, the Ca ii 854.2 nm, and the Fe i 630.25 lines to recover the full stratification of physical parameters, including the magnetic field vector, from the photosphere to the chromosphere. Finally, we present the first inversions of observed IRIS spectra from quiet-Sun, plage, and sunspot, with very promising results.

  20. Global Atmosphere Watch Workshop on Measurement-Model ...

    Science.gov (United States)

    The World Meteorological Organization’s (WMO) Global Atmosphere Watch (GAW) Programme coordinates high-quality observations of atmospheric composition from global to local scales with the aim to drive high-quality and high-impact science while co-producing a new generation of products and services. In line with this vision, GAW’s Scientific Advisory Group for Total Atmospheric Deposition (SAG-TAD) has a mandate to produce global maps of wet, dry and total atmospheric deposition for important atmospheric chemicals to enable research into biogeochemical cycles and assessments of ecosystem and human health effects. The most suitable scientific approach for this activity is the emerging technique of measurement-model fusion for total atmospheric deposition. This technique requires global-scale measurements of atmospheric trace gases, particles, precipitation composition and precipitation depth, as well as predictions of the same from global/regional chemical transport models. The fusion of measurement and model results requires data assimilation and mapping techniques. The objective of the GAW Workshop on Measurement-Model Fusion for Global Total Atmospheric Deposition (MMF-GTAD), an initiative of the SAG-TAD, was to review the state-of-the-science and explore the feasibility and methodology of producing, on a routine retrospective basis, global maps of atmospheric gas and aerosol concentrations as well as wet, dry and total deposition via measurement-model

  1. Atmospheric muons in Hanoi

    International Nuclear Information System (INIS)

    Pham Ngoc Diep; Pham thi Tuyet Nhung; Pierre Darriulat; Nguyen Thi Thao; Dang Quang Thieu; Vo Van Thuan

    2006-01-01

    Recent measurements of the atmospheric muon flux in Hanoi were reviewed. As the measurements were carried out in a region of maximal geomagnetic rigidity cutoff, they provided a sensitive test of air shower models used in the interpretation of neutrino oscillation experiments. The measured data were found to be in a very good agreement with the prediction from the model of M. Honda. (author)

  2. Simulating the Mg II NUV Spectra & C II Resonance Lines During Solar Flares

    Science.gov (United States)

    Kerr, Graham Stewart; Allred, Joel C.; Leenaarts, Jorrit; Butler, Elizabeth; Kowalski, Adam

    2017-08-01

    The solar chromosphere is the origin of the bulk of the enhanced radiative output during solar flares, and so comprehensive understanding of this region is important if we wish to understand energy transport in solar flares. It is only relatively recently, however, with the launch of IRIS that we have routine spectroscopic flarea observations of the chromsphere and transition region. Since several of the spectral lines observed by IRIS are optically thick, it is necessary to use forward modelling to extract the useful information that these lines carry about the flaring chromosphere and transition region. We present the results of modelling the formation properties Mg II resonance lines & subordinate lines, and the C II resonance lines during solar flares. We focus on understanding their relation to the physical strucutre of the flaring atmosphere, exploiting formation height differences to determine if we can extract information about gradients in the atmosphere. We show the effect of degrading the profiles to the resolution of the IRIS, and that the usual observational techniques used to identify the line centroid do a poor job in the early stages of the flare (partly due to multiple optically thick line components). Finally, we will tentatively comment on the effects that 3D radiation transfer may have on these lines.

  3. Uniform Atmospheric Retrieval Analysis of Ultracool Dwarfs. II. Properties of 11 T dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Line, Michael R. [School of Earth and Space Exploration, Arizona State University, Tempe AZ 85287 (United States); Marley, Mark S.; Freedman, Richard [NASA Ames Research Center, Mail Stop 245-3, Moffett Field, CA 94035 (United States); Liu, Michael C. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Burningham, Ben [Centre for Astrophysics Research, School of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Morley, Caroline V. [Department of Astronomy, Harvard University, Cambridge, MA 02138 (United States); Hinkel, Natalie R. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Teske, Johanna [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lupu, Roxana, E-mail: mrline@asu.edu [BAER Institute/NASA Ames Research Center, Mail Stop 245-3, Moffett Field, CA 94035 (United States)

    2017-10-20

    Brown dwarf spectra are rich in information revealing of the chemical and physical processes operating in their atmospheres. We apply a recently developed atmospheric retrieval tool to an ensemble of late-T dwarf (600–800 K) near-infrared (1–2.5 μ m) spectra. With these spectra we are able to directly constrain the molecular abundances for the first time of H{sub 2}O, CH{sub 4}, CO, CO{sub 2}, NH{sub 3}, H{sub 2}S, and Na+K, surface gravity, effective temperature, thermal structure, photometric radius, and cloud optical depths. We find that ammonia, water, methane, and the alkali metals are present and that their abundances are well constrained in all 11 objects. We find no significant trend in the water, methane, or ammonia abundances with temperature, but find a very strong (>25 σ ) decreasing trend in the alkali metal abundances with decreasing effective temperature, indicative of alkali rainout. As expected from previous work, we also find little evidence for optically thick clouds. With the methane and water abundances, we derive the intrinsic atmospheric metallicity and carbon-to-oxygen ratios. We find in our sample that metallicities are typically subsolar (−0.4 < [ M /H] < 0.1 dex) and carbon-to-oxygen ratios are somewhat supersolar (0.4 < C/O < 1.2), different than expectations from the local stellar population. We also find that the retrieved vertical thermal profiles are consistent with radiative equilibrium over the photospheric regions. Finally, we find that our retrieved effective temperatures are lower than previous inferences for some objects and that some of our radii are larger than expectations from evolutionary models, possibly indicative of unresolved binaries. This investigation and method represent a new and powerful paradigm for using spectra to determine the fundamental chemical and physical processes governing cool brown dwarf atmospheres.

  4. Information Retrieval from SAGE II and MFRSR Multi-Spectral Extinction Measurements

    Science.gov (United States)

    Lacis, Andrew A.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Direct beam spectral extinction measurements of solar radiation contain important information on atmospheric composition in a form that is essentially free from multiple scattering contributions that otherwise tend to complicate the data analysis and information retrieval. Such direct beam extinction measurements are available from the solar occultation satellite-based measurements made by the Stratospheric and Aerosol Gas Experiment (SAGE II) instrument and by ground-based Multi-Filter Shadowband Radiometers (MFRSRs). The SAGE II data provide cross-sectional slices of the atmosphere twice per orbit at seven wavelengths between 385 and 1020 nm with approximately 1 km vertical resolution, while the MFRSR data provide atmospheric column measurements at six wavelengths between 415 and 940 nm but at one minute time intervals. We apply the same retrieval technique of simultaneous least-squares fit to the observed spectral extinctions to retrieve aerosol optical depth, effective radius and variance, and ozone, nitrogen dioxide, and water vapor amounts from the SAGE II and MFRSR measurements. The retrieval technique utilizes a physical model approach based on laboratory measurements of ozone and nitrogen dioxide extinction, line-by-line and numerical k-distribution calculations for water vapor absorption, and Mie scattering constraints on aerosol spectral extinction properties. The SAGE II measurements have the advantage of being self-calibrating in that deep space provides an effective zero point for the relative spectral extinctions. The MFRSR measurements require periodic clear-day Langley regression calibration events to maintain accurate knowledge of instrument calibration.

  5. Search for prompt neutrinos with AMANDA-II

    International Nuclear Information System (INIS)

    Gozzini, Sara Rebecca

    2008-01-01

    The investigation performed in this work aims to identify and disentangle the signal of prompt neutrinos from the inclusive atmospheric spectrum. We have analysed data recorded in the years 2000-2003 by the AMANDA-II detector at the geographical South Pole. After a tight event selection, our sample is composed of about 4 . 10 3 atmospheric neutrinos. Prompt neutrinos are decay products of heavy quark hadrons, which are produced in the collision of a cosmic ray particle with a nucleon in the atmosphere. The technique used to recognise prompt neutrinos is based on a simulated information of their energy spectrum, which appears harder than that of the conventional component from light quarks. Models accounting for different hadron production and decay schemes have been included in a Monte Carlo simulation and convoluted with the detector response, in order to reproduce the different spectra. The background of conventional events has been described with the Bartol 2006 tables. The energy spectrum of our data has been reconstructed through a numerical unfolding algorithm. The reconstruction is based on a Monte Carlo simulation and uses as an input three parameters of the neutrino track which are correlated with the energy of the event. Numerical regularisation is introduced to achieve a result free of unphysical oscillations, typical unfortunate feature of unfolding. The reconstructed data spectrum has been compared with different predictions using the model rejection factor technique. The prompt neutrino models differ in the choice of the hadron interaction model, the set of parton distribution functions and the numerical parameterisation of the fragmentation functions describing the transition from quark to hadrons. Here we considered mainly three classes of models, known in the literature as the Recombination Quark Parton Model, the Quark Gluon String Model and the Perturbative QCD model. Upper limits have been set on the expected flux predictions, based on our

  6. Theoretical basal Ca II fluxes for late-type stars: results from magnetic wave models with time-dependent ionization and multi-level radiation treatments

    Science.gov (United States)

    Fawzy, Diaa E.; Stȩpień, K.

    2018-03-01

    In the current study we present ab initio numerical computations of the generation and propagation of longitudinal waves in magnetic flux tubes embedded in the atmospheres of late-type stars. The interaction between convective turbulence and the magnetic structure is computed and the obtained longitudinal wave energy flux is used in a self-consistent manner to excite the small-scale magnetic flux tubes. In the current study we reduce the number of assumptions made in our previous studies by considering the full magnetic wave energy fluxes and spectra as well as time-dependent ionization (TDI) of hydrogen, employing multi-level Ca II atomic models, and taking into account departures from local thermodynamic equilibrium. Our models employ the recently confirmed value of the mixing-length parameter α=1.8. Regions with strong magnetic fields (magnetic filling factors of up to 50%) are also considered in the current study. The computed Ca II emission fluxes show a strong dependence on the magnetic filling factors, and the effect of time-dependent ionization (TDI) turns out to be very important in the atmospheres of late-type stars heated by acoustic and magnetic waves. The emitted Ca II fluxes with TDI included into the model are decreased by factors that range from 1.4 to 5.5 for G0V and M0V stars, respectively, compared to models that do not consider TDI. The results of our computations are compared with observations. Excellent agreement between the observed and predicted basal flux is obtained. The predicted trend of Ca II emission flux with magnetic filling factor and stellar surface temperature also agrees well with the observations but the calculated maximum fluxes for stars of different spectral types are about two times lower than observations. Though the longitudinal MHD waves considered here are important for chromosphere heating in high activity stars, additional heating mechanism(s) are apparently present.

  7. NOAA Ship Oregon II Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oregon II Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  8. Balancing atmospheric carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Goreau, T.J. (Discovery Bay Marine Laboratory, Univ. of the West Indies (JM))

    1990-01-01

    Rising carbon dioxide and global temperatures are causing increasing worldwide concern, and pressure towards an international law of the atmosphere is rapidly escalating, yet widespread misconceptions about the greenhouse effect's inevitability, time scale, and causes have inhibited effective consensus and action. Observations from Antarctic ice cores, Amazonian rain forests, and Carribean coral reefs suggest that the biological effects of climate change may be more severe than climate models predict. Efforts to limit emissions from fossil-fuel combustion alone are incapable of stabilizing levels of carbon dioxide in the atmosphere. Stabilizing atmospheric carbon dioxide requires coupled measures to balance sources and sinks of the gas, and will only be viable with large-scale investments in increased sustainable productivity on degraded tropical soils, and in long-term research on renewable energy and biomass product development in the developing countries. A mechanism is outlined which directly links fossil-fuel combustion sources of carbon dioxide to removal via increasing biotic productivity and storage. A preliminary cost-benefit analysis suggests that such measures are very affordable, costing far less than inaction. (With 88 refs.).

  9. Balancing atmospheric carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Goreau, T J [Discovery Bay Marine Laboratory, Univ. of the West Indies (JM)

    1990-01-01

    Rising carbon dioxide and global temperatures are causing increasing worldwide concern, and pressure towards an international law of the atmosphere is rapidly escalating, yet widespread misconceptions about the greenhouse effect's inevitability, time scale, and causes have inhibited effective consensus and action. Observations from Antarctic ice cores, Amazonian rain forests, and Carribean coral reefs suggest that the biological effects of climate change may be more severe than climate models predict. Efforts to limit emissions from fossil-fuel combustion alone are incapable of stabilizing levels of carbon dioxide in the atmosphere. Stabilizing atmospheric carbon dioxide requires coupled measures to balance sources and sinks of the gas, and will only be viable with large-scale investments in increased sustainable productivity on degraded tropical soils, and in long-term research on renewable energy and biomass product development in the developing countries. A mechanism is outlined which directly links fossil-fuel combustion sources of carbon dioxide to removal via increasing biotic productivity and storage. A preliminary cost-benefit analysis suggests that such measures are very affordable, costing far less than inaction. (With 88 refs.).

  10. Mercury from combustion sources: a review of the chemical species emitted and their transport in the atmosphere

    International Nuclear Information System (INIS)

    Carpi, A.

    1997-01-01

    Different species of mercury have different physical/chemical properties and thus behave quite differentially in air pollution control equipment and in the atmosphere. In general, emission of mercury from coal combustion sources are approximately 20-50% elemental mercury (Hg 0 ) and 50-80% divalent mercury (Hg(II)), which may be predominantly HgCl 2 . Emissions of mercury from waste incinerators are approximately 10-20% Hg 0 and 75-85% Hg(II). The partitioning of mercury in flue gas between the elemental and divalent forms may be dependent on the concentration of particulate carbon, HCl and other pollutants in the stack emissions. The emission of mercury from combustion facilities depends on the species in the exhaust stream and the type of air pollution control equipment used at the source. Air pollution control equipment for mercury removal at combustion facilities includes activated carbon injection, sodium sulfide injection and wet lime/limestone flue gas desulfurization. White Hg(II) is water-soluble and may be removed form the atmosphere by wet and dry deposition close to the combustion sources, the combination of a high vapor pressure and low water-solubility facilitate the long-range transport of Hg 0 in the atmosphere. Background mercury in the atmosphere is predominantly Hg 0 . Elemental mercury is eventually removed from the atmosphere by dry deposition onto surfaces and by wet deposition after oxidation to water-soluble, divalent mercury. 62 refs., 2 figs., 1 tab

  11. Numerical Predictions of Wind Turbine Power and Aerodynamic Loads for the NREL Phase II and IV Combined Experiment Rotor

    Science.gov (United States)

    Duque, Earl P. N.; Johnson, Wayne; vanDam, C. P.; Chao, David D.; Cortes, Regina; Yee, Karen

    1999-01-01

    Accurate, reliable and robust numerical predictions of wind turbine rotor power remain a challenge to the wind energy industry. The literature reports various methods that compare predictions to experiments. The methods vary from Blade Element Momentum Theory (BEM), Vortex Lattice (VL), to variants of Reynolds-averaged Navier-Stokes (RaNS). The BEM and VL methods consistently show discrepancies in predicting rotor power at higher wind speeds mainly due to inadequacies with inboard stall and stall delay models. The RaNS methodologies show promise in predicting blade stall. However, inaccurate rotor vortex wake convection, boundary layer turbulence modeling and grid resolution has limited their accuracy. In addition, the inherently unsteady stalled flow conditions become computationally expensive for even the best endowed research labs. Although numerical power predictions have been compared to experiment. The availability of good wind turbine data sufficient for code validation experimental data that has been extracted from the IEA Annex XIV download site for the NREL Combined Experiment phase II and phase IV rotor. In addition, the comparisons will show data that has been further reduced into steady wind and zero yaw conditions suitable for comparisons to "steady wind" rotor power predictions. In summary, the paper will present and discuss the capabilities and limitations of the three numerical methods and make available a database of experimental data suitable to help other numerical methods practitioners validate their own work.

  12. Catalogue of oscillator strengths for Ti II lines

    International Nuclear Information System (INIS)

    Savanov, I.S.; Huovelin, J.; Tuominen, I.

    1990-01-01

    We have revised the published values of oscillator strengths for ionized titanium. The zero point of gf-values has been established using the lifetime measurements of excited states of atoms. The data on the adopted oscillator strengths for 419 Ti II lines are compiled. Using the adopted gf-values and the analysis by Biemont for the titanium in the solar atmosphere determined from the Ti II lines and the HOLMU model, we obtained the abundance log A(Ti) = 4.96 ± 0.05

  13. The prediction of creep damage in Type 347 weld metal: part II creep fatigue tests

    International Nuclear Information System (INIS)

    Spindler, M.W.

    2005-01-01

    Calculations of creep damage under conditions of strain control are often carried out using either a time fraction approach or a ductility exhaustion approach. In part I of this paper the rupture strength and creep ductility data for a Type 347 weld metal were fitted to provide the material properties that are used to calculate creep damage. Part II of this paper examines whether the time fraction approach or the ductility exhaustion approach gives the better predictions of creep damage in creep-fatigue tests on the same Type 347 weld metal. In addition, a new creep damage model, which was developed by removing some of the simplifying assumptions that are made in the ductility exhaustion approach, was used. This new creep damage model is a function of the strain rate, stress and temperature and was derived from creep and constant strain rate test data using a reverse modelling technique (see part I of this paper). It is shown that the new creep damage model gives better predictions of creep damage in the creep-fatigue tests than the time fraction and the ductility exhaustion approaches

  14. Effect of Atmospheric Organics on Bioavailable Fe Lifetime in the Oceans

    Science.gov (United States)

    Meskhidze, Nicholas; Hurley, David; Royalty, Taylor Michael; Johnson, Matthew S.

    2016-01-01

    The deposition of atmospheric aerosols is an important supply pathway of soluble iron (sol-Fe) to the global oceans influencing marine ecosystem processes and climate. Previous studies have shown that natural and anthropogenic acidic trace gases, when mixed with mineral dust, can lead to production of sol-Fe, leading to considerable increase in dust-Fe solubility. Recent studies have further highlighted the importance of atmospheric organic compounds/ligands in the production of sol-Fe during atmospheric transport and transformation of mineral aerosols. However, the actual scope of this aerosol sol-Fe for stimulating the primary productivity in the oceans is determined by both: the total atmospheric fluxes of sol-Fe and the lifetime of sol-Fe after its deposition to the ocean. In this study several atmospheric organic ligands were investigated for their effect on the lifetime of sol-Fe after mixing with seawater. Organic ligands were selected based on their abundance in the marine boundary layer and rainwater and their ability to form bidentate complexes with Fe. The results reveal that the tested organics had minor influence on Fe(II) lifetime in seawater. However, results also show that some organic acid considerably extended the lifetime of colloidal and aqueous Fe(III). Using these results we simulate aerosol sol-Fe lifetime in the ocean for different mineral dust deposition events in the presence and the absence of atmospheric organic ligands. The calculations suggest that when a large dust plume is assumed to contain Fe(II) alone, less than 15% of aerosol sol-Fe gets complexed with marine organic ligands. However, this fraction increases to over 90% when atmospheric Fe is allowed to bond with atmospheric organic acids prior to deposition to the oceans. Calculations also show that for the conditions when seawater organic ligands get titrated by Fe released from dust aerosol particles, retention of sol-Fe in the ocean depends on surface ocean mixing, i

  15. NOAA Ship McArthurII Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship McArthur II Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  16. Biomass burning studies and the International Global Atmospheric Chemistry (IGAC) Project

    International Nuclear Information System (INIS)

    Prinn, R.G.

    1991-01-01

    The perturbations to local and regional atmospheric chemistry caused by biomass burning also have global significance. The International Global Atmospheric Chemistry (IGAC) Project was created by scientists from over twenty countries in response to the growing interest concern about atmospheric chemical changes and their potential impact on mankind. The goal of the IGAC is to develop a fundamental understanding of the natural and anthropogenic processes that determine the chemical composition of the atmosphere and the interactions between atmospheric composition and biospheric and climatic processes. A specific objective is to accurately predict changes over the next century in the composition and chemistry of the global atmosphere. Current activities, leaders and scientists involved are presented in this chapter

  17. Asymmetries of the solar Ca II lines

    International Nuclear Information System (INIS)

    Heasley, J.N.

    1975-01-01

    A theoretical study of the influence of propagating acoustic pulses in the solar chromosphere upon the line profiles of the Ca II resonance and infrared triplet lines has been made. The major objective has been to explain the observed asymmetries seen in the cores of the H and K lines and to predict the temporal behavior of the infrared lines caused by passing acoustic or shock pulses. The velocities in the pulses, calculated from weak shock theory, have been included consistently in the non-LTE calculations. The results of the calculations show that these lines are very sensitive to perturbations in the background atmosphere caused by the pulses. Only minor changes in the line shapes result from including the velocities consistently in the line source function calculations. The qualitative changes in the line profiles vary markedly with the strength of the shock pulses. The observed differences in the K line profiles seen on the quiet Sun can be explained in terms of a spectrum of pulses with different wavelengths and initial amplitudes in the photosphere. (Auth.)

  18. Atmospheric Signatures and Effects of Space-based Relativistic Electron Beam Injection

    Science.gov (United States)

    Marshall, R. A.; Sanchez, E. R.; Kero, A.; Turunen, E. S.; Marsh, D. R.

    2017-12-01

    Future relativistic electron beam injection experiments have the potential to provide groundbreaking insights into the physics of wave-particle interactions and beam-neutral interactions, relevant to space physics and to fundamental plasma physics. However, these experiments are only useful if their signatures can be detected. In this work, we use a physics-based forward modeling framework to investigate the observable signatures of a relativistic beam interacting with the upper atmosphere. The modeling framework is based around the Electron Precipitation Monte Carlo (EPMC) model, used to simulate electron precipitation in the upper atmosphere. That model is coupled to physics-based models of i) optical emission production; ii) bremsstrahlung photon production and propagation; iii) D-region ion chemistry; and iv) VLF wave propagation in the Earth-ionosphere waveguide. Using these modeling tools, we predict the optical, X-ray, chemical, radar, and VLF signatures of a realistic beam injection, based on recent space-based accelerator designs. In particular, we inject a beam pulse of 10 mA for a duration of 500 μs at an energy of 1 MeV, providing a total pulse energy of 5 J. We further investigate variations in these parameters, in particular the total energy and the electron energy. Our modeling shows that for this 5 J pulse injection at 1 MeV electron energy, the optical signal is easily detectable from the ground in common emission bands, but the X-ray signal is likely too weak to be seen from either balloons or LEO orbiting spacecraft. We further predict the optical signal-to-noise ratio that would be expected in different optical systems. Chemical signatures such as changes to NOx and HOx concentrations are too short-lived to be detectable; however our modeling provides a valuable estimate of the total chemical response. Electron density perturbations should be easily measurable from ground-based high-power radars and via VLF subionospheric remote sensing

  19. A non-local thermodynamical equilibrium line formation for neutral and singly ionized titanium in model atmospheres of reference A-K stars

    Science.gov (United States)

    Sitnova, T. M.; Mashonkina, L. I.; Ryabchikova, T. A.

    2016-09-01

    We construct a model atom for Ti I-II using more than 3600 measured and predicted energy levels of Ti I and 1800 energy levels of Ti II, and quantum mechanical photoionization cross-sections. Non-local thermodynamical equilibrium (NLTE) line formation for Ti I and Ti II is treated through a wide range of spectral types from A to K, including metal-poor stars with [Fe/H] down to -2.6 dex. NLTE leads to weakened Ti I lines and positive abundance corrections. The magnitude of NLTE corrections is smaller compared to the literature data for FGK atmospheres. NLTE leads to strengthened Ti II lines and negative NLTE abundance corrections. For the first time, we have performed NLTE calculations for Ti I-II in the 6500 ≤ Teff ≤ 13 000 K range. For four A-type stars, we derived in LTE an abundance discrepancy of up to 0.22 dex between Ti I and Ti II, which vanishes in NLTE. For four other A-B stars, with only Ti II lines observed, NLTE leads to a decrease of line-to-line scatter. An efficiency of inelastic Ti I + H I collisions was estimated from an analysis of Ti I and Ti II lines in 17 cool stars with -2.6 ≤ [Fe/H] ≤ 0.0. Consistent NLTE abundances from Ti I and Ti II were obtained by applying classical Drawinian rates for the stars with log g ≥ 4.1, and neglecting inelastic collisions with H I for the very metal-poor (VMP) giant HD 122563. For the VMP turn-off stars ([Fe/H] ≤ -2 and log g ≤ 4.1), we obtained the positive abundance difference Ti I-II already in LTE, which increases in NLTE. Accurate collisional data for Ti I and Ti II are necessary to help solve this problem.

  20. Atmospheric Radiation Measurement Program Plan

    International Nuclear Information System (INIS)

    1990-02-01

    In order to understand energy's role in anthropogenic global climate change, significant reliance is being placed on General Circulation Models (GCMs). A major goal of the Department is to foster the development of GCMs capable of predicting the timing and magnitude of greenhouse gas-induced global warming and the regional effects of such warming. DOE research has revealed that cloud radiative feedback is the single most important effect determining the magnitude of possible climate responses to human activity. However, cloud radiative forcing and feedbacks are not understood at the levels needed for reliable climate prediction. The Atmospheric Radiation Measurement (ARM) Program will contribute to the DOE goal by improving the treatment of cloud radiative forcing and feedbacks in GCMs. Two issues will be addressed: the radiation budget and its spectral dependence and the radiative and other properties of clouds. Understanding cloud properties and how to predict them is critical because cloud properties may very well change as climate changes. The experimental objective of the ARM Program is to characterize empirically the radiative processes in the Earth's atmosphere with improved resolution and accuracy. A key to this characterization is the effective treatment of cloud formation and cloud properties in GCMs. Through this characterization of radiative properties, it will be possible to understand both the forcing and feedback effects. GCM modelers will then be able to better identify the best approaches to improved parameterizations of radiative transfer effects. This is expected to greatly improve the accuracy of long-term, GCM predictions and the efficacy of those predictions at the important regional scale, as the research community and DOE attempt to understand the effects of greenhouse gas emissions on the Earth's climate. 153 refs., 24 figs., 6 tabs

  1. Macrocyclic receptor showing extremely high Sr(II)/Ca(II) and Pb(II)/Ca(II) selectivities with potential application in chelation treatment of metal intoxication.

    Science.gov (United States)

    Ferreirós-Martínez, Raquel; Esteban-Gómez, David; Tóth, Éva; de Blas, Andrés; Platas-Iglesias, Carlos; Rodríguez-Blas, Teresa

    2011-04-18

    Herein we report a detailed investigation of the complexation properties of the macrocyclic decadentate receptor N,N'-Bis[(6-carboxy-2-pyridil)methyl]-4,13-diaza-18-crown-6 (H(2)bp18c6) toward different divalent metal ions [Zn(II), Cd(II), Pb(II), Sr(II), and Ca(II)] in aqueous solution. We have found that this ligand is especially suited for the complexation of large metal ions such as Sr(II) and Pb(II), which results in very high Pb(II)/Ca(II) and Pb(II)/Zn(II) selectivities (in fact, higher than those found for ligands widely used for the treatment of lead poisoning such as ethylenediaminetetraacetic acid (edta)), as well as in the highest Sr(II)/Ca(II) selectivity reported so far. These results have been rationalized on the basis of the structure of the complexes. X-ray crystal diffraction, (1)H and (13)C NMR spectroscopy, as well as theoretical calculations at the density functional theory (B3LYP) level have been performed. Our results indicate that for large metal ions such as Pb(II) and Sr(II) the most stable conformation is Δ(δλδ)(δλδ), while for Ca(II) our calculations predict the Δ(λδλ)(λδλ) form being the most stable one. The selectivity that bp18c6(2-) shows for Sr(II) over Ca(II) can be attributed to a better fit between the large Sr(II) ions and the relatively large crown fragment of the ligand. The X-ray crystal structure of the Pb(II) complex shows that the Δ(δλδ)(δλδ) conformation observed in solution is also maintained in the solid state. The Pb(II) ion is endocyclically coordinated, being directly bound to the 10 donor atoms of the ligand. The bond distances to the donor atoms of the pendant arms (2.55-2.60 Å) are substantially shorter than those between the metal ion and the donor atoms of the crown moiety (2.92-3.04 Å). This is a typical situation observed for the so-called hemidirected compounds, in which the Pb(II) lone pair is stereochemically active. The X-ray structures of the Zn(II) and Cd(II) complexes show that

  2. Predicting Atmospheric Ionization and Excitation by Precipitating SEP and Solar Wind Protons Measured By MAVEN

    Science.gov (United States)

    Jolitz, Rebecca; Dong, Chuanfei; Lee, Christina; Lillis, Rob; Brain, David; Curry, Shannon; Halekas, Jasper; Bougher, Stephen W.; Jakosky, Bruce

    2017-10-01

    Precipitating energetic particles ionize and excite planetary atmospheres, increasing electron content and producing aurora. At Mars, the solar wind and solar energetic particles (SEPs) can precipitate directly into the atmosphere because solar wind protons can charge exchange to become neutral and pass the magnetosheath, and SEPs are sufficiently energetic to cross the magnetosheath unchanged. We will compare ionization and Lyman alpha emission rates for solar wind and SEP protons during nominal solar activity and a CME shock front impact event on May 16 2016. We will use the Atmospheric Scattering of Protons and Energetic Neutrals (ASPEN) model to compare excitation and ionization rates by SEPs and solar wind protons currently measured by the SWIA (Solar Wind Ion Analyzer) and SEP instruments aboard the MAVEN spacecraft. Results will help quantify how SEP and solar wind protons influence atmospheric energy deposition during solar minimum.

  3. Report of the Solar and Atmospheric Neutrino Working Group

    International Nuclear Information System (INIS)

    Back, H.; Bahcall, J.N.; Bernabeu, J.; Boulay, M.G.; Bowles, T.; Calaprice, F.; Champagne, A.; Freedman, S.; Gai, M.; Galbiati, C.; Gallagher, H.; Gonzalez-Garcia, C.; Hahn, R.L.; Heeger, K.M.; Hime, A.; Jung, C.K.; Klein, J.R.; Koike, M.; Lanou, R.; Learned, J.G.; Lesko, K.T.; Losecco, J.; Maltoni, M.; Mann, A.; McKinsey, D.; Palomares-Ruiz, S.; Pena-Garay, C.; Petcov, S.T.; Piepke, A.; Pitt, M.; Raghavan, R.; Robertson, R.G.H.; Scholberg, K.; Sobel, H.W.; Takeuchi, T.; Vogelaar, R.; Wolfenstein, L.

    2004-01-01

    The highest priority of the Solar and Atmospheric Neutrino Experiment Working Group is the development of a real-time, precision experiment that measures the pp solar neutrino flux. A measurement of the pp solar neutrino flux, in comparison with the existing precision measurements of the high energy 8 B neutrino flux, will demonstrate the transition between vacuum and matter-dominated oscillations, thereby quantitatively testing a fundamental prediction of the standard scenario of neutrino flavor transformation. The initial solar neutrino beam is pure ν e , which also permits sensitive tests for sterile neutrinos. The pp experiment will also permit a significantly improved determination of θ 12 and, together with other solar neutrino measurements, either a measurement of θ 13 or a constraint a factor of two lower than existing bounds. In combination with the essential pre-requisite experiments that will measure the 7 Be solar neutrino flux with a precision of 5%, a measurement of the pp solar neutrino flux will constitute a sensitive test for non-standard energy generation mechanisms within the Sun. The Standard Solar Model predicts that the pp and 7 Be neutrinos together constitute more than 98% of the solar neutrino flux. The comparison of the solar luminosity measured via neutrinos to that measured via photons will test for any unknown energy generation mechanisms within the nearest star. A precise measurement of the pp neutrino flux (predicted to be 92% of the total flux) will also test stringently the theory of stellar evolution since the Standard Solar Model predicts the pp flux with a theoretical uncertainty of 1%. We also find that an atmospheric neutrino experiment capable of resolving the mass hierarchy is a high priority. Atmospheric neutrino experiments may be the only alternative to very long baseline accelerator experiments as a way of resolving this fundamental question. Such an experiment could be a very large scale water Cerenkov detector, or a

  4. An Overview of the BIOMOVS II Study and its Findings

    International Nuclear Information System (INIS)

    1996-11-01

    BIOMOVS (BIOspheric MOdel Validation Study) was started under the auspices of the Swedish Radiation Protection Institute in 1985. Prior to the inception of the study, model testing had focussed on models of contaminant dispersion in the atmosphere, surface water and groundwater. In contrast, testing models of contaminant behaviour in soils, and in the terrestrial and aquatic food chains was receiving scant attention. BIOMOVS was therefore established as an international cooperative effort to redress this imbalance through the testing of models designed to quantify the transfer and uptake of radionuclides and other trace substances in the environment. When the first phase of BIOMOVS was completed in 1990, there still remained scope for further work. Clearly, in discussion of what should be done next, consideration had to be given to the output and conclusions of phase one of BIOMOVS, but also the objectives and programmes of other international projects and programmes, as well as the research and assessment interests of national bodies and organisations. Key interests were in particular areas of radioecology research, model validation and evaluation of uncertainties, and problems in performance assessment for solid waste repositories. Account was taken of the VAMP programme of the International Atomic Energy Agency (IAEA) and the interests of the Nuclear Energy Agency's Performance Assessment Advisory Group. Finally, it was decided that a second phase, BIOMOVS II, should be undertaken with funding from five organisations: The Atomic Energy Control Board, Canada; Atomic Energy of Canada Limited; Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Spain; Empresa Nacional de Residuos Radiactivos SA, Spain; Swedish Radiation Protection Institute. By the completion of BIOMOVS II in October 1996 over 300 people from 31 countries and over 160 organisations had participated. This report provides an overview of the activities and achievements of BIOMOVS II

  5. Impact of Soil Moisture Assimilation on Land Surface Model Spin-Up and Coupled LandAtmosphere Prediction

    Science.gov (United States)

    Santanello, Joseph A., Jr.; Kumar, Sujay V.; Peters-Lidard, Christa D.; Lawston, P.

    2016-01-01

    Advances in satellite monitoring of the terrestrial water cycle have led to a concerted effort to assimilate soil moisture observations from various platforms into offline land surface models (LSMs). One principal but still open question is that of the ability of land data assimilation (LDA) to improve LSM initial conditions for coupled short-term weather prediction. In this study, the impact of assimilating Advanced Microwave Scanning Radiometer for EOS (AMSR-E) soil moisture retrievals on coupled WRF Model forecasts is examined during the summers of dry (2006) and wet (2007) surface conditions in the southern Great Plains. LDA is carried out using NASAs Land Information System (LIS) and the Noah LSM through an ensemble Kalman filter (EnKF) approach. The impacts of LDA on the 1) soil moisture and soil temperature initial conditions for WRF, 2) land-atmosphere coupling characteristics, and 3) ambient weather of the coupled LIS-WRF simulations are then assessed. Results show that impacts of soil moisture LDA during the spin-up can significantly modify LSM states and fluxes, depending on regime and season. Results also indicate that the use of seasonal cumulative distribution functions (CDFs) is more advantageous compared to the traditional annual CDF bias correction strategies. LDA performs consistently regardless of atmospheric forcing applied, with greater improvements seen when using coarser, global forcing products. Downstream impacts on coupled simulations vary according to the strength of the LDA impact at the initialization, where significant modifications to the soil moisture flux- PBL-ambient weather process chain are observed. Overall, this study demonstrates potential for future, higher-resolution soil moisture assimilation applications in weather and climate research.

  6. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing

    Science.gov (United States)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerone C.; Kolody, Mark R.

    2011-01-01

    Evaluation of metal-based structures has long relied on atmospheric exposure test sites to determine corrosion resistance in marine environments. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions of the corrosive environment. Their success for correlation to atmospheric exposure is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated laboratory testing, which often focuses on the electrochemical reactions that occur during corrosion conditions, has yet to be universally accepted as a useful tool in predicting the long term service life of a metal despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard and their use is imperative, a method that correlates timescales from atmospheric exposure to accelerated testing would be very valuable. This work uses surface chemistry to interpret the chemical changes occurring on low carbon steel during atmospheric and accelerated corrosion conditions with the objective of finding a correlation between its accelerated and long-term corrosion performance. The current results of correlating data from marine atmospheric exposure conditions at the Kennedy Space Center beachside corrosion test site, alternating seawater spray, and immersion in typical electrochemical laboratory conditions, will be presented. Key words: atmospheric exposure, accelerated corrosion testing, alternating seawater spray, marine, correlation, seawater, carbon steel, long-term corrosion performance prediction, X-ray photoelectron spectroscopy.

  7. Perovskite phases in the systems Asup(II)O-Usup(VI)O/sub 3/. 2. On the system A/sub 2/sup(II)Bsup(II)Usup(VI)O/sub 6/, with Asup(II), Bsup(II) = Ba, Sr, Ca

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, A J; Kemmler-Sack, S [Tuebingen Univ. (Germany, F.R.). Lehrstuhl fuer Anorganische Chemie 2

    1980-07-01

    Studies on the system A/sub 2/sup(II)Bsup(II)Usup(VI)O/sub 6/ with Asup(II), Bsup(II) = Ba, Sr, Ca or combinations of these have shown that the alkaline earth ions cannot substitute each other in all proportions. The perovskites were studied by X-ray diffraction and vibrational spectroscopic methods. The lattice vibration region of the far infrared spectra proved to be of particular value in providing information on the occupancy of the A and B sites. Analysis of the spectra shows that, in the majority of cases, contary to the geometrical predictions some of the larger alkaline earth ions occupy the six-coordinated B sites and some smaller ions the A positions. The number of ions that take in this A reversible B site-exchange can amount to 20%, but is normally smaller.

  8. Climate Prediction Center - Monitoring and Data Index

    Science.gov (United States)

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News ; Atmospheric Monitoring and Data Monitoring Weather & Climate in Realtime Climate Diagnostics Bulletin Preliminary Climate Diagnostics Bulletin Figures Monthly Atmospheric & Sea Surface Temperature Indices

  9. Results of atmospheric diffusion experiments, vol.3

    International Nuclear Information System (INIS)

    Kakuta, Michio; Hayashi, Takashi; Adachi, Takashi.

    1988-02-01

    An extensive study on 'Emergency monitoring and prediction code system' has been carried in JAERI since 1980. Six series of field experiments on atmospheric diffusion were conducted to develop and verify the prediction models for environmental concentration distribution following accidental release of radioactivity. Results of field experiments (Inland complex terrain, surface and elevated point sources) conducted in 15 - 19th October 1984 (TSUKUBA84) and in 6 - 10th November 1985 (TSUKUBA85) are contained in this volume. (author)

  10. Atmospheric Wind Relaxations and the Oceanic Response in the California Current Large Marine Ecosystem

    Science.gov (United States)

    Fewings, M. R.; Dorman, C. E.; Washburn, L.; Liu, W.

    2010-12-01

    the Gulf of Alaska influence ocean conditions in central and southern California via these wind relaxations. The ocean response within a few km of the coast involves poleward-flowing currents that transport warm water out of the lees of capes and headlands and counter to the direction of the California Current [Send et al. 1987, Harms and Winant 1998, Winant et al. 2003, Melton et al. 2009]. A similar response occurs in the Benguela and Canary Current coastal upwelling systems. The ocean response involves both barotropic and baroclinic dynamics and is consistent with existing geophysical models of buoyant, coastally-trapped plumes [Washburn et al., in prep]. Our ongoing work includes i) studying the regional ocean response to determine its spatial extent, time evolution, and ocean-atmosphere coupling dynamics; ii) developing an atmospheric index to predict wind relaxations in southern California based on pressure in the Gulf of Alaska; iii) examining the strength and frequency of wind relaxations over the past 30 years for connections to El Niño and the Pacific Decadal Oscillation; and iv) predicting future variations in wind relaxations and the response of the California Current Large Marine Ecosystem.

  11. Extreme precipitation response to climate perturbations in an atmospheric mesoscale model

    International Nuclear Information System (INIS)

    Attema, Jisk J; Loriaux, Jessica M; Lenderink, Geert

    2014-01-01

    Observations of extreme (sub-)hourly precipitation at mid-latitudes show a large dependency on the dew point temperature often close to 14% per degree—2 times the dependency of the specific humidity on dew point temperature which is given by the Clausius–Clapeyron (CC) relation. By simulating a selection of 11 cases over the Netherlands characterized by intense showers, we investigate this behavior in the non-hydrostatic weather prediction model Harmonie at a resolution of 2.5 km. These experiments are repeated using perturbations of the atmospheric profiles of temperature and humidity: (i) using an idealized approach with a 2° warmer (colder) atmosphere assuming constant relative humidity, and (ii) using changes in temperature and humidity derived from a long climate change simulation at 2° global warming. All perturbations have a difference in the local dew point temperature compared to the reference of approximately 2°. Differences are considerable between the cases, with dependencies ranging from almost zero to an increase of 18% per degree rise of the dew point temperature. On average however, we find an increase of extreme precipitation intensity of 11% per degree for the idealized perturbation, and 9% per degree for the climate change perturbation. For the most extreme events these dependencies appear to approach a rate of 11–14% per degree, in closer agreement with the observed relation. (paper)

  12. Charging and coagulation of radioactive and nonradioactive particles in the atmosphere

    International Nuclear Information System (INIS)

    Kim, Yong-ha; Yiacoumi, Sotira

    2016-01-01

    Charging and coagulation influence one another and impact the particle charge and size distributions in the atmosphere. However, few investigations to date have focused on the coagulation kinetics of atmospheric particles accumulating charge. This study presents three approaches to include mutual effects of charging and coagulation on the microphysical evolution of atmospheric particles such as radioactive particles. The first approach employs ion balance, charge balance, and a bivariate population balance model (PBM) to comprehensively calculate both charge accumulation and coagulation rates of particles. The second approach involves a much simpler description of charging, and uses a monovariate PBM and subsequent effects of charge on particle coagulation. The third approach is further simplified assuming that particles instantaneously reach their steady-state charge distributions. It is found that compared to the other two approaches, the first approach can accurately predict time-dependent changes in the size and charge distributions of particles over a wide size range covering from the free molecule to continuum regimes. The other two approaches can reliably predict both charge accumulation and coagulation rates for particles larger than about 0.04 micrometers and atmospherically relevant conditions. These approaches are applied to investigate coagulation kinetics of particles accumulating charge in a radioactive neutralizer, the urban atmosphere, and an atmospheric system containing radioactive particles. Limitations of the approaches are discussed.

  13. Preparing for Exascale: Towards convection-permitting, global atmospheric simulations with the Model for Prediction Across Scales (MPAS)

    Science.gov (United States)

    Heinzeller, Dominikus; Duda, Michael G.; Kunstmann, Harald

    2017-04-01

    With strong financial and political support from national and international initiatives, exascale computing is projected for the end of this decade. Energy requirements and physical limitations imply the use of accelerators and the scaling out to orders of magnitudes larger numbers of cores then today to achieve this milestone. In order to fully exploit the capabilities of these Exascale computing systems, existing applications need to undergo significant development. The Model for Prediction Across Scales (MPAS) is a novel set of Earth system simulation components and consists of an atmospheric core, an ocean core, a land-ice core and a sea-ice core. Its distinct features are the use of unstructured Voronoi meshes and C-grid discretisation to address shortcomings of global models on regular grids and the use of limited area models nested in a forcing data set, with respect to parallel scalability, numerical accuracy and physical consistency. Here, we present work towards the application of the atmospheric core (MPAS-A) on current and future high performance computing systems for problems at extreme scale. In particular, we address the issue of massively parallel I/O by extending the model to support the highly scalable SIONlib library. Using global uniform meshes with a convection-permitting resolution of 2-3km, we demonstrate the ability of MPAS-A to scale out to half a million cores while maintaining a high parallel efficiency. We also demonstrate the potential benefit of a hybrid parallelisation of the code (MPI/OpenMP) on the latest generation of Intel's Many Integrated Core Architecture, the Intel Xeon Phi Knights Landing.

  14. ATMOSPHERIC HEAT REDISTRIBUTION ON HOT JUPITERS

    International Nuclear Information System (INIS)

    Perez-Becker, Daniel; Showman, Adam P.

    2013-01-01

    Infrared light curves of transiting hot Jupiters present a trend in which the atmospheres of the hottest planets are less efficient at redistributing the stellar energy absorbed on their daysides—and thus have a larger day-night temperature contrast—than colder planets. To this day, no predictive atmospheric model has been published that identifies which dynamical mechanisms determine the atmospheric heat redistribution efficiency on tidally locked exoplanets. Here we present a shallow-water model of the atmospheric dynamics on synchronously rotating planets that explains why heat redistribution efficiency drops as stellar insolation rises. Our model shows that planets with weak friction and weak irradiation exhibit a banded zonal flow with minimal day-night temperature differences, while models with strong irradiation and/or strong friction exhibit a day-night flow pattern with order-unity fractional day-night temperature differences. To interpret the model, we develop a scaling theory which shows that the timescale for gravity waves to propagate horizontally over planetary scales, τ wave , plays a dominant role in controlling the transition from small to large temperature contrasts. This implies that heat redistribution is governed by a wave-like process, similar to the one responsible for the weak temperature gradients in the Earth's tropics. When atmospheric drag can be neglected, the transition from small to large day-night temperature contrasts occurs when τ wave ∼√(τ rad /Ω), where τ rad is the radiative relaxation time and Ω is the planetary rotation frequency. Alternatively, this transition criterion can be expressed as τ rad ∼ τ vert , where τ vert is the timescale for a fluid parcel to move vertically over the difference in day-night thickness. These results subsume the more widely used timescale comparison for estimating heat redistribution efficiency between τ rad and the horizontal day-night advection timescale, τ adv . Only

  15. Origin of fluctuations in atmospheric pressure arc plasma devices

    International Nuclear Information System (INIS)

    Ghorui, S.; Das, A.K.

    2004-01-01

    Fluctuations in arc plasma devices are extremely important for any technological application in thermal plasma. The origin of such fluctuations remains unexplained. This paper presents a theory for observed fluctuations in atmospheric pressure arc plasma devices. A qualitative explanation for observed behavior on atmospheric pressure arc plasma fluctuations, reported in the literature, can be obtained from the theory. The potential of the theory is demonstrated through comparison of theoretical predictions with reported experimental observations

  16. A Parameter Study for Modeling Mg ii h and k Emission during Solar Flares

    Energy Technology Data Exchange (ETDEWEB)

    Rubio da Costa, Fatima [Department of Physics, Stanford University, Stanford, CA 94305 (United States); Kleint, Lucia, E-mail: frubio@stanford.edu [University of Applied Sciences and Arts Northwestern Switzerland, 5210, Windisch (Switzerland)

    2017-06-20

    Solar flares show highly unusual spectra in which the thermodynamic conditions of the solar atmosphere are encoded. Current models are unable to fully reproduce the spectroscopic flare observations, especially the single-peaked spectral profiles of the Mg ii h and k lines. We aim to understand the formation of the chromospheric and optically thick Mg ii h and k lines in flares through radiative transfer calculations. We take a flare atmosphere obtained from a simulation with the radiative hydrodynamic code RADYN as input for a radiative transfer modeling with the RH code. By iteratively changing this model atmosphere and varying thermodynamic parameters such as temperature, electron density, and velocity, we study their effects on the emergent intensity spectra. We reproduce the typical single-peaked Mg ii h and k flare spectral shape and approximate the intensity ratios to the subordinate Mg ii lines by increasing either densities, temperatures, or velocities at the line core formation height range. Additionally, by combining unresolved upflows and downflows up to ∼250 km s{sup −1} within one resolution element, we reproduce the widely broadened line wings. While we cannot unambiguously determine which mechanism dominates in flares, future modeling efforts should investigate unresolved components, additional heat dissipation, larger velocities, and higher densities and combine the analysis of multiple spectral lines.

  17. Pathways, Impacts, and Policies on Severe Aerosol Injections into the Atmosphere: 2011 Severe Atmospheric Aerosols Events Conference

    KAUST Repository

    Weil, Martin

    2012-09-01

    The 2011 severe atmospheric events conference, held on August 11-12, 2011, Hamburg, Germany, discussed climatic and environmental changes as a result of various kinds of huge injections of aerosols into the atmosphere and the possible consequences for the world population. Various sessions of the conference dealt with different aspects of large aerosol injections and severe atmospheric aerosol events along the geologic time scale. A presentation about radiative heating of aerosols as a self-lifting mechanism in the Australian forest fires discussed the question of how the impact of tropical volcanic eruptions depends on the eruption season. H.-F. Graf showed that cloud-resolving plume models are more suitable to predict the volcanic plume height and dispersion than one-dimensional models. G. Stenchikov pointed out that the absorbing smoke plumes in the upper troposphere can be partially mixed into the lower stratosphere because of the solar heating and lofting effect.

  18. Pathways, Impacts, and Policies on Severe Aerosol Injections into the Atmosphere: 2011 Severe Atmospheric Aerosols Events Conference

    KAUST Repository

    Weil, Martin; Grassl, Hartmut; Hoshyaripour, Gholamali; Kloster, Silvia; Kominek, Jasmin; Misios, Stergios; Scheffran, Juergen; Starr, Steven; Stenchikov, Georgiy L.; Sudarchikova, Natalia; Timmreck, Claudia; Zhang, Dan; Kalinowski, Martin

    2012-01-01

    The 2011 severe atmospheric events conference, held on August 11-12, 2011, Hamburg, Germany, discussed climatic and environmental changes as a result of various kinds of huge injections of aerosols into the atmosphere and the possible consequences for the world population. Various sessions of the conference dealt with different aspects of large aerosol injections and severe atmospheric aerosol events along the geologic time scale. A presentation about radiative heating of aerosols as a self-lifting mechanism in the Australian forest fires discussed the question of how the impact of tropical volcanic eruptions depends on the eruption season. H.-F. Graf showed that cloud-resolving plume models are more suitable to predict the volcanic plume height and dispersion than one-dimensional models. G. Stenchikov pointed out that the absorbing smoke plumes in the upper troposphere can be partially mixed into the lower stratosphere because of the solar heating and lofting effect.

  19. Weather Research and Forecasting (WRF) Regional Atmospheric Model: CNMI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the Commonwealth of the Northern...

  20. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Samoa

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the islands of Samoa at...

  1. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the island of Guam at...

  2. CONSTRAINING HIGH-SPEED WINDS IN EXOPLANET ATMOSPHERES THROUGH OBSERVATIONS OF ANOMALOUS DOPPLER SHIFTS DURING TRANSIT

    International Nuclear Information System (INIS)

    Miller-Ricci Kempton, Eliza; Rauscher, Emily

    2012-01-01

    Three-dimensional (3D) dynamical models of hot Jupiter atmospheres predict very strong wind speeds. For tidally locked hot Jupiters, winds at high altitude in the planet's atmosphere advect heat from the day side to the cooler night side of the planet. Net wind speeds on the order of 1-10 km s –1 directed towards the night side of the planet are predicted at mbar pressures, which is the approximate pressure level probed by transmission spectroscopy. These winds should result in an observed blueshift of spectral lines in transmission on the order of the wind speed. Indeed, Snellen et al. recently observed a 2 ± 1 km s –1 blueshift of CO transmission features for HD 209458b, which has been interpreted as a detection of the day-to-night (substellar to anti-stellar) winds that have been predicted by 3D atmospheric dynamics modeling. Here, we present the results of a coupled 3D atmospheric dynamics and transmission spectrum model, which predicts the Doppler-shifted spectrum of a hot Jupiter during transit resulting from winds in the planet's atmosphere. We explore four different models for the hot Jupiter atmosphere using different prescriptions for atmospheric drag via interaction with planetary magnetic fields. We find that models with no magnetic drag produce net Doppler blueshifts in the transmission spectrum of ∼2 km s –1 and that lower Doppler shifts of ∼1 km s –1 are found for the higher drag cases, results consistent with—but not yet strongly constrained by—the Snellen et al. measurement. We additionally explore the possibility of recovering the average terminator wind speed as a function of altitude by measuring Doppler shifts of individual spectral lines and spatially resolving wind speeds across the leading and trailing terminators during ingress and egress.

  3. The Dehydration of Water Worlds via Atmospheric Losses

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chuanfei; Bhattacharjee, Amitava [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Huang, Zhenguang; Tóth, Gábor; Gombosi, Tamas [Center for Space Environment Modeling, University of Michigan, Ann Arbor, MI 48109 (United States); Lingam, Manasvi, E-mail: dcfy@princeton.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2017-09-20

    We present a three-species multi-fluid magnetohydrodynamic model (H{sup +}, H{sub 2}O{sup +}, and e {sup −}), endowed with the requisite atmospheric chemistry, that is capable of accurately quantifying the magnitude of water ion losses from exoplanets. We apply this model to a water world with Earth-like parameters orbiting a Sun-like star for three cases: (i) current normal solar wind conditions, (ii) ancient normal solar wind conditions, and (iii) one extreme “Carrington-type” space weather event. We demonstrate that the ion escape rate for (ii), with a value of 6.0 × 10{sup 26} s{sup −1}, is about an order of magnitude higher than the corresponding value of 6.7 × 10{sup 25} s{sup −1} for (i). Studies of ion losses induced by space weather events, where the ion escape rates can reach ∼10{sup 28} s{sup −1}, are crucial for understanding how an active, early solar-type star (e.g., with frequent coronal mass ejections) could have accelerated the depletion of the exoplanet’s atmosphere. We briefly explore the ramifications arising from the loss of water ions, especially for planets orbiting M-dwarfs where such effects are likely to be significant.

  4. The Dehydration of Water Worlds via Atmospheric Losses

    International Nuclear Information System (INIS)

    Dong, Chuanfei; Bhattacharjee, Amitava; Huang, Zhenguang; Tóth, Gábor; Gombosi, Tamas; Lingam, Manasvi

    2017-01-01

    We present a three-species multi-fluid magnetohydrodynamic model (H"+, H_2O"+, and e "−), endowed with the requisite atmospheric chemistry, that is capable of accurately quantifying the magnitude of water ion losses from exoplanets. We apply this model to a water world with Earth-like parameters orbiting a Sun-like star for three cases: (i) current normal solar wind conditions, (ii) ancient normal solar wind conditions, and (iii) one extreme “Carrington-type” space weather event. We demonstrate that the ion escape rate for (ii), with a value of 6.0 × 10"2"6 s"−"1, is about an order of magnitude higher than the corresponding value of 6.7 × 10"2"5 s"−"1 for (i). Studies of ion losses induced by space weather events, where the ion escape rates can reach ∼10"2"8 s"−"1, are crucial for understanding how an active, early solar-type star (e.g., with frequent coronal mass ejections) could have accelerated the depletion of the exoplanet’s atmosphere. We briefly explore the ramifications arising from the loss of water ions, especially for planets orbiting M-dwarfs where such effects are likely to be significant.

  5. Prediction of atmospheric δ13CO2 using fossil plant tissues

    Energy Technology Data Exchange (ETDEWEB)

    Jahren, A. Hope [Johns Hopkins Univ., Baltimore, MD (United States); Arens, Nan Crystal [Hobart and William Smith Colleges, Geneva, NY (United States); Harbeson, Stephanie A. [Johns Hopkins Univ., Baltimore, MD (United States); Univ. of Virginia, Charlottesville, VA (United States)

    2008-06-30

    To summarize the content: we presented the results of laboratory experiments designed to quantify the relationship between plant tissue δ13C and δ13CO2 values under varying environmental conditions, including differential pCO2 ranging from 1 to 3 times today’s levels. As predicted, plants grown under elevated pCO2 showed increased average biomass compared to controls grown at the same temperature. Across a very large range in δ13Ca (≈ 24 ‰) and pCO2 (≈ 740 ppmv) we observed a consistent correlation between δ13Ca and δ13Cp (p<0.001). We show an average isotopic depletion of -25.4 ‰ for above-ground tissue and -23.2 ‰ for below-ground tissue of Raphanus sativus L. relative to the composition of the atmosphere under which it formed. For both above- and below-ground tissue, grown at both ~23 °C and ~29 °C, correlation was strong and significant (r2 ≥ 0.98, p<0.001); variation in pCO2 level had little or no effect on this relationship.

  6. Cometary origin of atmospheric methane variations on Mars unlikely

    Science.gov (United States)

    Roos-Serote, M.; Atreya, S. K.; Webster, C. R.; Mahaffy, P. R.

    2016-10-01

    The detection of methane in the atmosphere of Mars was first reported in 2004. Since then a number of independent observations of methane have been reported, all showing temporal variability. Up until recently, the origin of methane was attributed to sources either indigenous to Mars or exogenous, where methane is a UV degradation byproduct of organics falling on to the surface. Most recently, a new hypothesis has been proposed that argues that the appearance and variation of methane are correlated with specific meteor events at Mars. Indeed, extraplanetary material can be brought to a planet when it passes through a meteoroid stream left behind by cometary bodies orbiting the Sun. This occurs repeatedly at specific times in a planet's year as streams tend to be fairly stable in space. In this paper, we revisit this latest hypothesis by carrying out a complete analysis of all available data on Mars atmospheric methane, including the very recent data not previously published, together with all published predicted meteor events for Mars. Whether we consider the collection of individual data points and predicted meteor events, whether we apply statistical analysis, or whether we consider different time spans between high methane measurements and the occurrence of meteor events, we find no compelling evidence for any correlation between atmospheric methane and predicted meteor events.

  7. Recent advances in non-LTE stellar atmosphere models

    Science.gov (United States)

    Sander, Andreas A. C.

    2017-11-01

    In the last decades, stellar atmosphere models have become a key tool in understanding massive stars. Applied for spectroscopic analysis, these models provide quantitative information on stellar wind properties as well as fundamental stellar parameters. The intricate non-LTE conditions in stellar winds dictate the development of adequate sophisticated model atmosphere codes. The increase in both, the computational power and our understanding of physical processes in stellar atmospheres, led to an increasing complexity in the models. As a result, codes emerged that can tackle a wide range of stellar and wind parameters. After a brief address of the fundamentals of stellar atmosphere modeling, the current stage of clumped and line-blanketed model atmospheres will be discussed. Finally, the path for the next generation of stellar atmosphere models will be outlined. Apart from discussing multi-dimensional approaches, I will emphasize on the coupling of hydrodynamics with a sophisticated treatment of the radiative transfer. This next generation of models will be able to predict wind parameters from first principles, which could open new doors for our understanding of the various facets of massive star physics, evolution, and death.

  8. Modeling Fe II Emission and Revised Fe II (UV) Empirical Templates for the Seyfert 1 Galaxy I Zw 1

    Science.gov (United States)

    Bruhweiler, F.; Verner, E.

    2008-03-01

    We use the narrow-lined broad-line region (BLR) of the Seyfert 1 galaxy, I Zw 1, as a laboratory for modeling the ultraviolet (UV) Fe II 2100-3050 Å emission complex. We calculate a grid of Fe II emission spectra representative of BLR clouds and compare them with the observed I Zw 1 spectrum. Our predicted spectrum for log [nH/(cm -3) ] = 11.0, log [ΦH/(cm -2 s-1) ] = 20.5, and ξ/(1 km s-1) = 20, using Cloudy and an 830 level model atom for Fe II with energies up to 14.06 eV, gives a better fit to the UV Fe II emission than models with fewer levels. Our analysis indicates (1) the observed UV Fe II emission must be corrected for an underlying Fe II pseudocontinuum; (2) Fe II emission peaks can be misidentified as that of other ions in active galactic nuclei (AGNs) with narrow-lined BLRs possibly affecting deduced physical parameters; (3) the shape of 4200-4700 Å Fe II emission in I Zw 1 and other AGNs is a relative indicator of narrow-line region (NLR) and BLR Fe II emission; (4) predicted ratios of Lyα, C III], and Fe II emission relative to Mg II λ2800 agree with extinction corrected observed I Zw 1 fluxes, except for C IV λ1549 (5) the sensitivity of Fe II emission strength to microturbulence ξ casts doubt on existing relative Fe/Mg abundances derived from Fe II (UV)/Mg II flux ratios. Our calculated Fe II emission spectra, suitable for BLRs in AGNs, are available at http://iacs.cua.edu/people/verner/FeII. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 05-26555.

  9. Atmospheric modelling for seasonal prediction at the CSIR

    CSIR Research Space (South Africa)

    Landman, WA

    2014-10-01

    Full Text Available re-forecasts) made at lead-times which are the result of forcing the CCAM with predicted SST (while the sea-ice remains specified as climatological values) in order to determine how the model can be expected to perform under real-time operational...

  10. Search for prompt neutrinos with AMANDA-II

    Energy Technology Data Exchange (ETDEWEB)

    Gozzini, Sara Rebecca

    2008-09-11

    The investigation performed in this work aims to identify and disentangle the signal of prompt neutrinos from the inclusive atmospheric spectrum. We have analysed data recorded in the years 2000-2003 by the AMANDA-II detector at the geographical South Pole. After a tight event selection, our sample is composed of about 4 . 10{sup 3} atmospheric neutrinos. Prompt neutrinos are decay products of heavy quark hadrons, which are produced in the collision of a cosmic ray particle with a nucleon in the atmosphere. The technique used to recognise prompt neutrinos is based on a simulated information of their energy spectrum, which appears harder than that of the conventional component from light quarks. Models accounting for different hadron production and decay schemes have been included in a Monte Carlo simulation and convoluted with the detector response, in order to reproduce the different spectra. The background of conventional events has been described with the Bartol 2006 tables. The energy spectrum of our data has been reconstructed through a numerical unfolding algorithm. The reconstruction is based on a Monte Carlo simulation and uses as an input three parameters of the neutrino track which are correlated with the energy of the event. Numerical regularisation is introduced to achieve a result free of unphysical oscillations, typical unfortunate feature of unfolding. The reconstructed data spectrum has been compared with different predictions using the model rejection factor technique. The prompt neutrino models differ in the choice of the hadron interaction model, the set of parton distribution functions and the numerical parameterisation of the fragmentation functions describing the transition from quark to hadrons. Here we considered mainly three classes of models, known in the literature as the Recombination Quark Parton Model, the Quark Gluon String Model and the Perturbative QCD model. Upper limits have been set on the expected flux predictions, based on our

  11. Retrieving atmospheric dust opacity on Mars by imaging spectroscopy at large angles

    Science.gov (United States)

    Douté, S.; Ceamanos, X.; Appéré, T.

    2013-09-01

    We propose a new method to retrieve the optical depth of Martian aerosols (AOD) from OMEGA and CRISM hyperspectral imagery at a reference wavelength of 1 μm. Our method works even if the underlying surface is completely made of minerals, corresponding to a low contrast between surface and atmospheric dust, while being observed at a fixed geometry. Minimizing the effect of the surface reflectance properties on the AOD retrieval is the second principal asset of our method. The method is based on the parametrization of the radiative coupling between particles and gas determining, with local altimetry, acquisition geometry, and the meteorological situation, the absorption band depth of gaseous CO2. Because the last three factors can be predicted to some extent, we can define a new parameter β that expresses specifically the strength of the gas-aerosols coupling while directly depending on the AOD. Combining estimations of β and top of the atmosphere radiance values extracted from the observed spectra within the CO2 gas band at 2 μm, we evaluate the AOD and the surface reflectance by radiative transfer inversion. One should note that practically β can be estimated for a large variety of mineral or icy surfaces with the exception of CO2 ice when its 2 μm solid band is not sufficiently saturated. Validation of the proposed method shows that it is reliable if two conditions are fulfilled: (i) the observation conditions provide large incidence or/and emergence angles (ii) the aerosols are vertically well mixed in the atmosphere. Experiments conducted on OMEGA nadir looking observations as well as CRISM multi-angular acquisitions with incidence angles higher than 65° in the first case and 33° in the second case produce very satisfactory results. Finally in a companion paper the method is applied to monitoring atmospheric dust spring activity at high southern latitudes on Mars using OMEGA.

  12. Ocean Prediction Center

    Science.gov (United States)

    Social Media Facebook Twitter YouTube Search Search For Go NWS All NOAA Weather Analysis & Forecasts of Commerce Ocean Prediction Center National Oceanic and Atmospheric Administration Analysis & Unified Surface Analysis Ocean Ocean Products Ice & Icebergs NIC Ice Products NAIS Iceberg Analysis

  13. Propagation of high-energy laser beams through the earth's atmosphere II; Proceedings of the Meeting, Los Angeles, CA, Jan. 21-23, 1991

    Science.gov (United States)

    Ulrich, Peter B. (Editor); Wilson, Leroy E. (Editor)

    1991-01-01

    Consideration is given to turbulence at the inner scale, modeling turbulent transport in laser beam propagation, variable wind direction effects on thermal blooming correction, realistic wind effects on turbulence and thermal blooming compensation, wide bandwidth spectral measurements of atmospheric tilt turbulence, remote alignment of adaptive optical systems with far-field optimization, focusing infrared laser beams on targets in space without using adaptive optics, and a simplex optimization method for adaptive optics system alignment. Consideration is also given to ground-to-space multiline propagation at 1.3 micron, a path integral approach to thermal blooming, functional reconstruction predictions of uplink whole beam Strehl ratios in the presence of thermal blooming, and stability analysis of semidiscrete schemes for thermal blooming computation.

  14. Oceanographic station, temperature profiles, meteorological, and other data from XBT and bottle casts from NOAA Ship OREGON II as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1972-07-13 to 1972-08-08 (NODC Accession 7300271)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic station, temperature profiles, meteorological, and other data were collected from bottle and XBT casts from NOAA Ship OREGON II from 13 July 1972 to 08...

  15. Meteorological Uncertainty of atmospheric Dispersion model results (MUD)

    DEFF Research Database (Denmark)

    Havskov Sørensen, Jens; Amstrup, Bjarne; Feddersen, Henrik

    The MUD project addresses assessment of uncertainties of atmospheric dispersion model predictions, as well as optimum presentation to decision makers. Previously, it has not been possible to estimate such uncertainties quantitatively, but merely to calculate the 'most likely' dispersion scenario....

  16. Accelerated Prediction of the Polar Ice and Global Ocean (APPIGO)

    Science.gov (United States)

    2014-09-30

    APPIGO) Eric Chassignet Center for Ocean-Atmosphere Prediction Studies (COAPS) Florida State University PO Box 3062840 Tallahassee, FL 32306...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Florida Atlantic University,Center for Ocean-Atmosphere Prediction Studies (COAPS),PO Box 3062840...Cavalieri, D. J., C. I. Parkinson , P. Gloersen, and H. J. Zwally. 1997. Arctic and Antarctic Sea Ice Concentrations from Multichannel Passive-Microwave

  17. Tight coupling of particle size, number and composition in atmospheric cloud droplet activation

    Directory of Open Access Journals (Sweden)

    D. O. Topping

    2012-04-01

    Full Text Available The substantial uncertainty in the indirect effect of aerosol particles on radiative forcing in large part arises from the influences of atmospheric aerosol particles on (i the brightness of clouds, exerting significant shortwave cooling with no appreciable compensation in the long wave, and on (ii their ability to precipitate, with implications for cloud cover and lifetime.

    Predicting the ambient conditions at which aerosol particles may become cloud droplets is largely reliant on an equilibrium relationship derived by Köhler (1936. However, the theoretical basis of the relationship restricts its application to particles solely comprising involatile compounds and water, whereas a substantial fraction of particles in the real atmosphere will contain potentially thousands of semi-volatile organic compounds in addition to containing semi-volatile inorganic components such as ammonium nitrate.

    We show that equilibration of atmospherically reasonable concentrations of organic compounds with a growing particle as the ambient humidity increases has potentially larger implications on cloud droplet formation than any other equilibrium compositional dependence, owing to inextricable linkage between the aerosol composition, a particles size and concentration under ambient conditions.

    Whilst previous attempts to account for co-condensation of gases other than water vapour have been restricted to one inorganic condensate, our method demonstrates that accounting for the co-condensation of any number of organic compounds substantially decreases the saturation ratio of water vapour required for droplet activation. This effect is far greater than any other compositional dependence; more so even than the unphysical effect of surface tension reduction in aqueous organic mixtures, ignoring differences in bulk and surface surfactant concentrations.

  18. Statistical analysis of accurate prediction of local atmospheric optical attenuation with a new model according to weather together with beam wandering compensation system: a season-wise experimental investigation

    Science.gov (United States)

    Arockia Bazil Raj, A.; Padmavathi, S.

    2016-07-01

    Atmospheric parameters strongly affect the performance of Free Space Optical Communication (FSOC) system when the optical wave is propagating through the inhomogeneous turbulent medium. Developing a model to get an accurate prediction of optical attenuation according to meteorological parameters becomes significant to understand the behaviour of FSOC channel during different seasons. A dedicated free space optical link experimental set-up is developed for the range of 0.5 km at an altitude of 15.25 m. The diurnal profile of received power and corresponding meteorological parameters are continuously measured using the developed optoelectronic assembly and weather station, respectively, and stored in a data logging computer. Measured meteorological parameters (as input factors) and optical attenuation (as response factor) of size [177147 × 4] are used for linear regression analysis and to design the mathematical model that is more suitable to predict the atmospheric optical attenuation at our test field. A model that exhibits the R2 value of 98.76% and average percentage deviation of 1.59% is considered for practical implementation. The prediction accuracy of the proposed model is investigated along with the comparative results obtained from some of the existing models in terms of Root Mean Square Error (RMSE) during different local seasons in one-year period. The average RMSE value of 0.043-dB/km is obtained in the longer range dynamic of meteorological parameters variations.

  19. Effects of atmospheric inorganic nitrogen deposition on ocean biogeochemistry

    OpenAIRE

    Krishnamurthy, Aparna; Moore, J. Keith; Zender, Charles S; Luo, Chao

    2007-01-01

     We perform a sensitivity study with the Biogeochemical Elemental Cycling (BEC) ocean model to understand the impact of atmospheric inorganic nitrogen deposition on marine biogeochemistry and air-sea CO2 exchange. Simulations involved examining the response to three different atmospheric inorganic nitrogen deposition scenarios namely, Pre-industrial (22 Tg N/year), 1990s (39 Tg N/year), and an Intergovernmental Panel on Climate Change (IPCC) prediction for 2100, IPCC-A1FI (69 Tg N/year). Glob...

  20. Single-Column Modeling, GCM Parameterizations and Atmospheric Radiation Measurement Data

    International Nuclear Information System (INIS)

    Somerville, R.C.J.; Iacobellis, S.F.

    2005-01-01

    Our overall goal is identical to that of the Atmospheric Radiation Measurement (ARM) Program: the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data at all three ARM sites, and the implementation and testing of these parameterizations in global and regional models. To test recently developed prognostic parameterizations based on detailed cloud microphysics, we have first compared single-column model (SCM) output with ARM observations at the Southern Great Plains (SGP), North Slope of Alaska (NSA) and Topical Western Pacific (TWP) sites. We focus on the predicted cloud amounts and on a suite of radiative quantities strongly dependent on clouds, such as downwelling surface shortwave radiation. Our results demonstrate the superiority of parameterizations based on comprehensive treatments of cloud microphysics and cloud-radiative interactions. At the SGP and NSA sites, the SCM results simulate the ARM measurements well and are demonstrably more realistic than typical parameterizations found in conventional operational forecasting models. At the TWP site, the model performance depends strongly on details of the scheme, and the results of our diagnostic tests suggest ways to develop improved parameterizations better suited to simulating cloud-radiation interactions in the tropics generally. These advances have made it possible to take the next step and build on this progress, by incorporating our parameterization schemes in state-of-the-art 3D atmospheric models, and diagnosing and evaluating the results using independent data. Because the improved cloud-radiation results have been obtained largely via implementing detailed and physically comprehensive cloud microphysics, we anticipate that improved predictions of hydrologic cycle components, and hence of precipitation, may also be achievable. We are currently testing the performance of our ARM-based parameterizations in state-of-the--art global and regional

  1. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Oahu

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 3.5-day hourly forecast for the region surrounding the Hawaiian island of Oahu at...

  2. Oceanographic Station, temperature profiles, and other data from CTD, XBT, and bottle casts from NOAA Ship DELAWARE II as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) from 1972-07-01 to 1972-08-13 (NODC Accession 7201299)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic Station,temperature profiles, and other data were collected from CTD, XBT, and bottle casts from NOAA Ship DELAWARE II from 01 July 1972 to 13 August...

  3. Liquid chromatography-dopant-assisted atmospheric pressure photoionization-mass spectrometry: Application to the analysis of aldehydes in atmospheric aerosol particles.

    Science.gov (United States)

    Ruiz-Jiménez, José; Hautala, Sanna; Parshintsev, Jevgeni; Laitinen, Totti; Hartonen, Kari; Petäjä, Tuukka; Kulmala, Markku; Riekkola, Marja-Liisa

    2013-01-01

    A complete methodology based on LC-anisole-toluene dopant-assisted atmospheric pressure photoionization-IT-MS was developed for the determination of aldehydes in atmospheric aerosol particles. For the derivatization, ultrasound was used to accelerate the reaction between the target analytes and 2,4-dinitrophenylhydrazine. The developed methodology was validated for three different samples, gas phase, ultrafine (Dp = 30 ± 4 nm; where Dp stands for particle diameter) and all-sized particles, collected on Teflon filters. The method quantitation limits ranged from 5 to 227 pg. The accuracy and the potential matrix effects were evaluated using standard addition methodology. Recoveries ranged between 91.7 and 109.9%, and the repeatability and the reproducibility of the method developed between 0.5 and 8.0% and between 2.9 and 11.1%, respectively. The results obtained by the developed methodology compared to those provided by the previously validated method revealed no statistical differences. The method developed was applied to the determination of aldehydes in 16 atmospheric aerosol samples (30 nm and all-sized samples) collected at the Station for Measuring Forest Ecosystem-Atmosphere Relations II during spring 2011. The mean concentrations of aldehydes, and oxidation products of terpenes were between 0.05 and 82.70 ng/m(3). © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Modelization and numerical simulation of atmospheric aerosols dynamics

    International Nuclear Information System (INIS)

    Debry, Edouard

    2004-01-01

    Chemical-transport models are now able to describe in a realistic way gaseous pollutants behavior in the atmosphere. Nevertheless atmospheric pollution also exists as a fine suspended particles, called aerosols which interact with gaseous phase, solar radiation, and have their own dynamic behavior. The goal of this thesis is the modelization and numerical simulation of the General Dynamic Equation of aerosols (GDE). Part I deals with some theoretical aspects of aerosol modelization. Part II is dedicated to the building of one size resolved aerosol model (SIREAM). In part III we perform the reduction of this model in order to use it in dispersion models as POLAIR3D. Several modelization issues are still opened: organic aerosol matter, externally mixed aerosols, coupling with turbulent mixing, and nano-particles. (author) [fr

  5. Impact of atmospheric refraction: how deeply can we probe exo-earth's atmospheres during primary eclipse observations?

    Energy Technology Data Exchange (ETDEWEB)

    Bétrémieux, Yan [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Kaltenegger, Lisa, E-mail: betremieux@mpia.de [Also at Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA. (United States)

    2014-08-10

    Most models used to predict or fit exoplanet transmission spectra do not include all the effects of atmospheric refraction. Namely, the angular size of the star with respect to the planet can limit the lowest altitude, or highest density and pressure, probed during primary eclipses as no rays passing below this critical altitude can reach the observer. We discuss this geometrical effect of refraction for all exoplanets and tabulate the critical altitude, density, and pressure for an exoplanet identical to Earth with a 1 bar N{sub 2}/O{sub 2} atmosphere as a function of both the incident stellar flux (Venus, Earth, and Mars-like) at the top of the atmosphere and the spectral type (O5-M9) of the host star. We show that such a habitable exo-Earth can be probed to a surface pressure of 1 bar only around the coolest stars. We present 0.4-5.0 μm model transmission spectra of Earth's atmosphere viewed as a transiting exoplanet, and show how atmospheric refraction modifies the transmission spectrum depending on the spectral type of the host star. We demonstrate that refraction is another phenomenon that can potentially explain flat transmission spectra over some spectral regions.

  6. Southern hemisphere climate variability as represented by an ocean-atmosphere coupled model

    CSIR Research Space (South Africa)

    Beraki, A

    2012-09-01

    Full Text Available in the atmospheric circulation. The ability of predicting these modes of climate variability on longer timescales is vital. Potential predictability is usually measured as a signal-to-noise contrast between the slowly evolving and chaotic components of the climate...

  7. Meteorological Uncertainty of atmospheric Dispersion model results (MUD)

    DEFF Research Database (Denmark)

    Havskov Sørensen, Jens; Amstrup, Bjarne; Feddersen, Henrik

    The MUD project addresses assessment of uncertainties of atmospheric dispersion model predictions, as well as possibilities for optimum presentation to decision makers. Previously, it has not been possible to estimate such uncertainties quantitatively, but merely to calculate the ‘most likely’ di...

  8. The Electrostatic Environments of Mars: Atmospheric Discharges

    Science.gov (United States)

    Calle, Carlos I.; Mackey, Paul J.; Johansen, Michael R.; Hogue, Michael D.; Phillips, James, III; Cox, Rachel E.

    2016-01-01

    The electrostatic environment on Mars is controlled by its ever present atmospheric dust. Dust devils and dust storms tribocharge this dust. Theoretical studies predict that lightning and/or glow discharges should be present on Mars, but none have been directly observed. Experiments are planned to shed light on this issue.

  9. Predictive Models and Computational Toxicology (II IBAMTOX)

    Science.gov (United States)

    EPA’s ‘virtual embryo’ project is building an integrative systems biology framework for predictive models of developmental toxicity. One schema involves a knowledge-driven adverse outcome pathway (AOP) framework utilizing information from public databases, standardized ontologies...

  10. Doppler Lidar Vector Retrievals and Atmospheric Data Visualization in Mixed/Augmented Reality

    Science.gov (United States)

    Cherukuru, Nihanth Wagmi

    Environmental remote sensing has seen rapid growth in the recent years and Doppler wind lidars have gained popularity primarily due to their non-intrusive, high spatial and temporal measurement capabilities. While lidar applications early on, relied on the radial velocity measurements alone, most of the practical applications in wind farm control and short term wind prediction require knowledge of the vector wind field. Over the past couple of years, multiple works on lidars have explored three primary methods of retrieving wind vectors viz., using homogeneous windfield assumption, computationally extensive variational methods and the use of multiple Doppler lidars. Building on prior research, the current three-part study, first demonstrates the capabilities of single and dual Doppler lidar retrievals in capturing downslope windstorm-type flows occurring at Arizona's Barringer Meteor Crater as a part of the METCRAX II field experiment. Next, to address the need for a reliable and computationally efficient vector retrieval for adaptive wind farm control applications, a novel 2D vector retrieval based on a variational formulation was developed and applied on lidar scans from an offshore wind farm and validated with data from a cup and vane anemometer installed on a nearby research platform. Finally, a novel data visualization technique using Mixed Reality (MR)/ Augmented Reality (AR) technology is presented to visualize data from atmospheric sensors. MR is an environment in which the user's visual perception of the real world is enhanced with live, interactive, computer generated sensory input (in this case, data from atmospheric sensors like Doppler lidars). A methodology using modern game development platforms is presented and demonstrated with lidar retrieved wind fields. In the current study, the possibility of using this technology to visualize data from atmospheric sensors in mixed reality is explored and demonstrated with lidar retrieved wind fields as well as

  11. Syntheses, structural characterization and spectroscopic studies of cadmium(II)-metal(II) cyanide complexes with 4-(2-aminoethyl)pyridine

    Science.gov (United States)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Hökelek, Tuncer

    2017-02-01

    Three new cadmium(II)-metal(II) cyanide complexes, [Cd(4aepy)2(H2O)2][Ni(CN)4] (1), [Cd(4aepy)2(H2O)2][Pd(CN)4] (2) and [Cd(4aepy)2(H2O)2][Pt(CN)4] (3) [4aepy = 4-(2-aminoethyl)pyridine], have been synthesized and characterized by elemental, thermal, FT-IR and Raman spectral analyses. The crystal structures of 1 and 2 have been determined by single crystal X-ray diffraction technique, in which they crystallize in the monoclinic system and C2/c space group. The M(II) [M(II) = Ni(II), Pd(II) and Pt(II)] ions are coordinated with the carbon atoms of the four cyanide groups in the square planar geometries and the [M(CN)4]2- ions act as counter ions. The Cd(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. 3D supramolecular structures of 1 and 2 were occurred by M⋯π and hydrogen bonding (Nsbnd H⋯N and Osbnd H⋯N) interactions. Vibrational assignments of all the observed bands were given and the spectral properties were also supported the crystal structures of the complexes. A possible decompositions of the complexes were investigated in the temperature range 30-800 °C in the static atmosphere.

  12. Theoretical predictions of arsenic and selenium species under atmospheric conditions

    Energy Technology Data Exchange (ETDEWEB)

    Monahan-Pendergast, M.T.; Przybylek, M.; Lindblad, M.; Wilcox, J. [Worcester Polytechnic Institute, Worcester, MA (United States). Dept. of Chemical Engineering

    2008-03-15

    Thermochemical properties of arsenic and selenium species thought to be released into the atmosphere during the coal combustion were examined using ab initio methods. At various levels of theory, calculated geometries and vibrational frequencies of the species were compared with experimental data, where available. Through a comparison of equilibrium constants for a series of gaseous arsenic and selenium oxidation reactions involving OH and HO{sub 2}, five thermodynamically favored reactions were found. In addition, it was determined that all favored reactions were more likely to go to completion tinder tropospheric, rather than stratospheric, conditions.

  13. Estudio de los mecanismos de activación de la esfalerita con Cu(II y Pb(II

    Directory of Open Access Journals (Sweden)

    Dávila Pulido, G. I.

    2011-08-01

    Full Text Available This article presents results of an experimental study on the sphalerite activation with Cu(II and Pb(II, whose main objective was to investigate the activation mechanisms and to evaluate the magnitude of the hydrophobization achieved with both chemical species. The hydrophobicity acquired by the mineral due to the interaction with the activator and collector (sodium isopropyl xanthate is characterized making use of the contact angle technique. The results show that Cu(II replaces the Zn of the external layers of the mineral, promoting the sulfide (S2– oxidation to produce a mixture of CuS, Cu2S and S°, of hydrophobic nature. The subsequent interaction with xanthate increases the hydrophobicity of the mineral surface. In turn, Pb(II activation of sphalerite is due to the formation of a PbS layer that reacts with xanthate to produce hydrophobic species (e.g., PbX2. It is also observed that the hydrophobicity of sphalerite activated with Pb(II is favored under air atmospheres, as compared to that obtained under nitrogen atmospheres. It is concluded that the hydrophobicity achieved by lead activation may be of the same order of magnitude to that deliverately induced by copper activation.

    Este artículo presenta los resultados de un estudio experimental sobre la activación de esfalerita (ZnS con Cu(II y Pb(II, cuyo objetivo principal consistió en investigar los mecanismos de activación y en evaluar la magnitud relativa de la hidrofobización alcanzada con ambas especies químicas. La hidrofobicidad que la superficie mineral adquiere como resultado de la interacción con los activadores y colectores tipo xantato (ditiocarbonatos alquílicos, R-O-CS2 –, se caracteriza mediante la técnica del ángulo de contacto. Los resultados muestran que el Cu(II es intercambiado por el Zn de las capas exteriores del cristal, promoviendo la oxidación de sulfuro (S2– para producir una mezcla de

  14. EBR-II: summary of operating experience

    International Nuclear Information System (INIS)

    Perry, W.H.; Leman, J.D.; Lentz, G.L.; Longua, K.J.; Olson, W.H.; Shields, J.A.; Wolz, G.C.

    1978-01-01

    Experimental Breeder Reactor II (EBR-II) is an unmoderated, sodium-cooled reactor with a design power of 62.5 MWt. The primary cooling system is a submerged-pool type. The early operation of the reactor successfully demonstrated the feasibility of a sodium-cooled fast breeder reactor operating as an integrated reactor, power plant, and fuel-processing facility. In 1967, the role of EBR-II was reoriented from a demonstration plant to an irradiation facility. Many changes have been made and are continuing to be made to increase the usefulness of EBR-II for irradiation and safety tests. A review of EBR-II's operating history reveals a plant that has demonstrated high availability, stable and safe operating characteristics, and excellent performance of sodium components. Levels of radiation exposure to the operating and maintenance workers have been low; and fission-gas releases to the atmosphere have been minimal. Driver-fuel performance has been excellent. The repairability of radioactive sodium components has been successfully demonstrated a number of times. Recent highlights include installation and successful operation of (1) the hydrogen-meter leak detectors for the steam generators, (2) the cover-gas-cleanup system and (3) the cesium trap in the primary sodium. Irradiations now being conducted in EBR-II include the run-beyond-cladding breach fuel tests for mixed-oxide and carbide elements. Studies are in progress to determine EBR-II's capability for conducting important ''operational safety'' tests. These tests would extend the need and usefulness of EBR-II into the 1980's

  15. Climate Prediction Center - Atlantic Hurricane Outlook

    Science.gov (United States)

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News ; Seasonal Climate Summary Archive The 2018 Atlantic hurricane season outlook is an official product of the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC). The outlook is

  16. Chaotic time series. Part II. System Identification and Prediction

    Directory of Open Access Journals (Sweden)

    Bjørn Lillekjendlie

    1994-10-01

    Full Text Available This paper is the second in a series of two, and describes the current state of the art in modeling and prediction of chaotic time series. Sample data from deterministic non-linear systems may look stochastic when analysed with linear methods. However, the deterministic structure may be uncovered and non-linear models constructed that allow improved prediction. We give the background for such methods from a geometrical point of view, and briefly describe the following types of methods: global polynomials, local polynomials, multilayer perceptrons and semi-local methods including radial basis functions. Some illustrative examples from known chaotic systems are presented, emphasising the increase in prediction error with time. We compare some of the algorithms with respect to prediction accuracy and storage requirements, and list applications of these methods to real data from widely different areas.

  17. Estimating top-of-atmosphere thermal infrared radiance using MERRA-2 atmospheric data

    Science.gov (United States)

    Kleynhans, Tania; Montanaro, Matthew; Gerace, Aaron; Kanan, Christopher

    2017-05-01

    Thermal infrared satellite images have been widely used in environmental studies. However, satellites have limited temporal resolution, e.g., 16 day Landsat or 1 to 2 day Terra MODIS. This paper investigates the use of the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis data product, produced by NASA's Global Modeling and Assimilation Office (GMAO) to predict global topof-atmosphere (TOA) thermal infrared radiance. The high temporal resolution of the MERRA-2 data product presents opportunities for novel research and applications. Various methods were applied to estimate TOA radiance from MERRA-2 variables namely (1) a parameterized physics based method, (2) Linear regression models and (3) non-linear Support Vector Regression. Model prediction accuracy was evaluated using temporally and spatially coincident Moderate Resolution Imaging Spectroradiometer (MODIS) thermal infrared data as reference data. This research found that Support Vector Regression with a radial basis function kernel produced the lowest error rates. Sources of errors are discussed and defined. Further research is currently being conducted to train deep learning models to predict TOA thermal radiance

  18. Atlantic Coast Unique Regional Atmospheric Tracer Experiment (ACURATE)

    International Nuclear Information System (INIS)

    Schubert, J.F.; Heffter, J.L.; Mead, G.A.

    1983-05-01

    The Atlantic Coast Unique Regional Atmospheric Tracer Experiment (ACURATE) is a program designed to obtain data necessary to evaluate atmospheric transport and diffusion models used to calculate regional population doses caused by nuclear facility emissions to the atmosphere. This experiment will significantly improve the basis for evaluating the cost effectiveness of different methods of managing airborne nuclear wastes. During the period from March 1982 through September 1982, twice daily air samples have been collected at each of five sampling stations located on a radial from the SRP to Murray Hill, NJ (1000 km). Kr-85 emitted from the F and H area chemical separations facilities is being used as a tracer to determine the transport and diffusion of atmospheric releases from the SRP. The Kr-85 concentrations in the air samples will be compared with the calculated concentrations as predicted by the transport and diffusion models. The Kr-85 data and the meteorological data are being archived and will be made available to the modeling community

  19. Using Pop-II models to predict effects of wolf predation and hunter harvests on elk, mule deer, and moose on the northern range

    Science.gov (United States)

    Mack, John A.; Singer, Francis J.

    1993-01-01

    The effects of establishing a gray wolf (Canis lupus) population in Yellowstone National Park were predicted for three ungulate species—elk (Cervus elaphus), mule deer (Odocoileus hemionus), and moose (Alces alces)—using previously developed POP-II population models. We developed models for 78 and 100 wolves. For each wolf population, we ran scenarios using wolf predation rates of 9, 12, and 15 ungulates/wolf/year. With 78 wolves and the antlerless elk harvest reduced 27%, our modeled elk population estimated were 5-18% smaller than the model estimate without wolves. With 100 wolves and the antlerless elk harvest reduced 27%, our elk population estimated were 11-30% smaller than the population estimates without wolves. Wolf predation effects were greater on the modeled mule deer population than on elk. With 78 wolves and no antlerless deer harvest, we predicted the mule deer population could be 13-44% larger than without wolves. With 100 wolves and no antlerless deer harvest, the mule deer population was 0-36% larger than without wolves. After wolf recovery, our POP-II models suggested moose harvests would have to be reduced at least 50% to maintain moose numbers at the levels predicted when wolves were not present. Mule deer and moose population data are limited, and these wolf predation effects may be overestimated if population sizes or male-female ratios were underestimated in our population models. We recommend additional mule deer and moose population data be obtained.

  20. Impacts of Cosmic Dust on Planetary Atmospheres and Surfaces

    Science.gov (United States)

    Plane, John M. C.; Flynn, George J.; Määttänen, Anni; Moores, John E.; Poppe, Andrew R.; Carrillo-Sanchez, Juan Diego; Listowski, Constantino

    2018-02-01

    Recent advances in interplanetary dust modelling provide much improved estimates of the fluxes of cosmic dust particles into planetary (and lunar) atmospheres throughout the solar system. Combining the dust particle size and velocity distributions with new chemical ablation models enables the injection rates of individual elements to be predicted as a function of location and time. This information is essential for understanding a variety of atmospheric impacts, including: the formation of layers of metal atoms and ions; meteoric smoke particles and ice cloud nucleation; perturbations to atmospheric gas-phase chemistry; and the effects of the surface deposition of micrometeorites and cosmic spherules. There is discussion of impacts on all the planets, as well as on Pluto, Triton and Titan.

  1. Ecosystem-atmosphere exchange of carbon in a heathland under future climatic conditions

    DEFF Research Database (Denmark)

    Selsted, Merete Bang

    understanding plant and soil responses to such changes are necessary, as ecosystems potentially can ameliorate or accelerate global change. To predict the feedback of ecosystems to the atmospheric CO2 concentrations experiments imitating global change effects are therefore an important tool. This work....... Fluxes of CO2 from soil to atmosphere depend on a physical equilibrium between those two medias, why it is important to keep the CO2 gradient between soil and atmosphere unchanged during measurement. Uptake to plants via photosynthesis depends on a physiological process, which depends strongly...... on the atmospheric CO2 concentration. Photosynthesis and respiration run in parallel during measurements of net ecosystem exchange, and these measurements should therefore be performed with care to both the atmospheric CO2 concentration and the CO2 soil-atmosphere gradient....

  2. A systematic review of the factors associated with interest in predictive genetic testing for obesity, type II diabetes and heart disease.

    Science.gov (United States)

    Collins, J; Ryan, L; Truby, H

    2014-10-01

    In the future, it may be possible for individuals to take a genetic test to determine their genetic predisposition towards developing lifestyle-related chronic diseases. A systematic review of the literature was undertaken to identify the factors associated with an interest in having predictive genetic testing for obesity, type II diabetes and heart disease amongst unaffected adults. Ovid Medline, PsycINFO and EMBASE online databases were searched using predefined search terms. Publications meeting the inclusion criteria (English language, free-living adult population not selected as a result of their disease diagnosis, reporting interest as an outcome, not related to a single gene inherited disease) were assessed for quality and content. Narrative synthesis of the results was undertaken. From the 2329 publications retrieved, eight studies met the inclusion criteria and were included in the review. Overall, the evidence base was small but of positive quality. Interest was associated with personal attitudes towards disease risk and the provision of information about genetic testing, shaped by perceived risk of disease and expected outcomes of testing. The role of demographic factors was investigated with largely inconclusive findings. Interest in predictive genetic testing for obesity, type II diabetes or heart disease was greatest amongst those who perceived the risk of disease to be high and/or the outcomes of testing to be beneficial. © 2013 The British Dietetic Association Ltd.

  3. Predicting scholars' scientific impact.

    Directory of Open Access Journals (Sweden)

    Amin Mazloumian

    Full Text Available We tested the underlying assumption that citation counts are reliable predictors of future success, analyzing complete citation data on the careers of ~150,000 scientists. Our results show that i among all citation indicators, the annual citations at the time of prediction is the best predictor of future citations, ii future citations of a scientist's published papers can be predicted accurately (r(2 = 0.80 for a 1-year prediction, P<0.001 but iii future citations of future work are hardly predictable.

  4. Influence of ship emission on atmospheric pollutant concentration around Osaka Bay, Japan

    International Nuclear Information System (INIS)

    Kondo, A.; Yamaguchi, K.; Nishikawa, E.

    1999-01-01

    Marine traffic in Osaka Bay is very intensified and much atmosphere pollutant (SO x and NO x ) from ships is released but there is no regulation about the ship emission. In this paper, we investigated the emission amounts of SO x NO x and HC from car, factory and ships in Osaka bay area and estimated the influence of the ship emission on the atmospheric pollutant concentration, using both the meteorological prediction model and the atmospheric pollutant concentration prediction model including the dry deposition and the chemical reaction. In Osaka bay area, the emission amounts of SO x and NO x from ships were about 30% of the total emission amounts, respectively. Using these emission data, the atmospheric pollutant concentration was simulated on a summer fine day when high oxidant concentration was measured at several observatories and was compared with the observed data. Though some differences were seen between the simulated results and the observed data, the diurnal variation agreed reasonably. The second simulation was carried out except for the ship emission and we estimated the influence of the ship emission on the atmospheric pollutant concentration. It was found that the ship emission raised SO 2 , NO 2 and NO concentration not only in shore area but also in 40km inland. (Author)

  5. Initialization and Predictability of a Coupled ENSO Forecast Model

    Science.gov (United States)

    Chen, Dake; Zebiak, Stephen E.; Cane, Mark A.; Busalacchi, Antonio J.

    1997-01-01

    The skill of a coupled ocean-atmosphere model in predicting ENSO has recently been improved using a new initialization procedure in which initial conditions are obtained from the coupled model, nudged toward observations of wind stress. The previous procedure involved direct insertion of wind stress observations, ignoring model feedback from ocean to atmosphere. The success of the new scheme is attributed to its explicit consideration of ocean-atmosphere coupling and the associated reduction of "initialization shock" and random noise. The so-called spring predictability barrier is eliminated, suggesting that such a barrier is not intrinsic to the real climate system. Initial attempts to generalize the nudging procedure to include SST were not successful; possible explanations are offered. In all experiments forecast skill is found to be much higher for the 1980s than for the 1970s and 1990s, suggesting decadal variations in predictability.

  6. Neutrino oscillations in a predictive SUSY GUT

    International Nuclear Information System (INIS)

    Blazek, T.; Raby, S.; Tobe, K.

    1999-01-01

    In this paper we present a predictive SO(10) supersymmetric grand unified theory with the family symmetry U(2)xU(1) which has several nice features. We are able to fit fermion masses and mixing angles, including recent neutrino data, with nine parameters in the charged fermion sector and four in the neutrino sector. The family symmetry plays a preeminent role. (i) The model is ''natural''--we include all terms allowed by the symmetry. It restricts the number of arbitrary parameters and enforces many zeros in the effective mass matrices. (ii) Family symmetry breaking from U(2)xU(1)→U(1)→ nothing generates the family hierarchy. It also constrains squark and slepton mass matrices, thus ameliorating flavor violation resulting from squark and slepton loop contributions. (iii) It naturally gives large angle ν μ -ν τ mixing describing atmospheric neutrino oscillation data and small angle ν e -ν s mixing, consistent with the small mixing angle Mikheyev-Smirnov-Wolfenstein (MSW) solution to solar neutrino data. (iv) Finally, in this paper we assume minimal family symmetry-breaking vacuum expectation values (VEV's). As a result we cannot obtain a three neutrino solution to both atmospheric and solar neutrino oscillations. In addition, the solution discussed here cannot fit liquid scintillation neutrino detector (LSND) data even though this solution requires a sterile neutrino ν s . It is important to note, however, that with nonminimal family symmetry-breaking VEV's, a three neutrino solution is possible with the small mixing angle MSW solution to solar neutrino data and large angle ν μ -ν τ mixing describing atmospheric neutrino oscillation data. In the four neutrino case, nonminimal family VEV's may also permit a solution for LSND. The results with nonminimal family breaking are still under investigation and will be reported in a future paper. (c) 1999 The American Physical Society

  7. Prediction of cloud droplet number in a general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Ghan, S.J.; Leung, L.R. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-04-01

    We have applied the Colorado State University Regional Atmospheric Modeling System (RAMS) bulk cloud microphysics parameterization to the treatment of stratiform clouds in the National Center for Atmospheric Research Community Climate Model (CCM2). The RAMS predicts mass concentrations of cloud water, cloud ice, rain and snow, and number concnetration of ice. We have introduced the droplet number conservation equation to predict droplet number and it`s dependence on aerosols.

  8. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Maui-Oahu

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the Hawaiian islands of Oahu,...

  9. ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+─Ca²+─Mg²+─NH4+─Na+─SO4²-─NO3-─Cl-─H2O aerosols

    Directory of Open Access Journals (Sweden)

    C. Fountoukis

    2007-09-01

    Full Text Available This study presents ISORROPIA II, a thermodynamic equilibrium model for the K+–Ca2+–Mg2+–NH4+–Na+–SO42−–NO3−–Cl−–H2O aerosol system. A comprehensive evaluation of its performance is conducted against water uptake measurements for laboratory aerosol and predictions of the SCAPE2 thermodynamic module over a wide range of atmospherically relevant conditions. The two models agree well, to within 13% for aerosol water content and total PM mass, 16% for aerosol nitrate and 6% for aerosol chloride and ammonium. Largest discrepancies were found under conditions of low RH, primarily from differences in the treatment of water uptake and solid state composition. In terms of computational speed, ISORROPIA II was more than an order of magnitude faster than SCAPE2, with robust and rapid convergence under all conditions. The addition of crustal species does not slow down the thermodynamic calculations (compared to the older ISORROPIA code because of optimizations in the activity coefficient calculation algorithm. Based on its computational rigor and performance, ISORROPIA II appears to be a highly attractive alternative for use in large scale air quality and atmospheric transport models.

  10. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    International Nuclear Information System (INIS)

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

    1992-03-01

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth's atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy's Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described

  11. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    Energy Technology Data Exchange (ETDEWEB)

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

    1992-03-01

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.

  12. LIGHT SCATTERING FROM EXOPLANET OCEANS AND ATMOSPHERES

    International Nuclear Information System (INIS)

    Zugger, M. E.; Kane, T. J.; Kasting, J. F.; Williams, D. M.; Philbrick, C. R.

    2010-01-01

    Orbital variation in reflected starlight from exoplanets could eventually be used to detect surface oceans. Exoplanets with rough surfaces, or dominated by atmospheric Rayleigh scattering, should reach peak brightness in full phase, orbital longitude (OL) = 180 0 , whereas ocean planets with transparent atmospheres should reach peak brightness in crescent phase near OL = 30 0 . Application of Fresnel theory to a planet with no atmosphere covered by a calm ocean predicts a peak polarization fraction of 1 at OL = 74 0 ; however, our model shows that clouds, wind-driven waves, aerosols, absorption, and Rayleigh scattering in the atmosphere and within the water column dilute the polarization fraction and shift the peak to other OLs. Observing at longer wavelengths reduces the obfuscation of the water polarization signature by Rayleigh scattering but does not mitigate the other effects. Planets with thick Rayleigh scattering atmospheres reach peak polarization near OL = 90 0 , but clouds and Lambertian surface scattering dilute and shift this peak to smaller OL. A shifted Rayleigh peak might be mistaken for a water signature unless data from multiple wavelength bands are available. Our calculations suggest that polarization alone may not positively identify the presence of an ocean under an Earth-like atmosphere; however, polarization adds another dimension which can be used, in combination with unpolarized orbital light curves and contrast ratios, to detect extrasolar oceans, atmospheric water aerosols, and water clouds. Additionally, the presence and direction of the polarization vector could be used to determine planet association with the star, and constrain orbit inclination.

  13. A Study of stable Atmospheric Boundary Layer over highveld South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Luhunga, P; Djolov, G [University of Pretoria (South Africa); Esau, I, E-mail: george.djolov@up.ac.z

    2010-08-15

    The study is part of the South African - Norwegian Programme for Research and Co-operation Phase II 'Analysis and Possibility for Control of Atmospheric Boundary Layer Processes to Facilitate Adaptation to Environmental Changes'. The research strategy of the project is based on 4 legged approach. 1) Application and further development of contemporary atmospheric boundary layer theory. 2) Use of modeling based on large eddy simulation techniques. 3) Experimental investigation of turbulent fluxes. 4) Training and developing academics capable of dealing with the present and new challenges. The paper presents some preliminary results on the micrometeorological variability of the basic meteorological parameters and turbulent fluxes.

  14. A Study of stable Atmospheric Boundary Layer over highveld South Africa

    International Nuclear Information System (INIS)

    Luhunga, P; Djolov, G; Esau, I

    2010-01-01

    The study is part of the South African - Norwegian Programme for Research and Co-operation Phase II 'Analysis and Possibility for Control of Atmospheric Boundary Layer Processes to Facilitate Adaptation to Environmental Changes'. The research strategy of the project is based on 4 legged approach. 1) Application and further development of contemporary atmospheric boundary layer theory. 2) Use of modeling based on large eddy simulation techniques. 3) Experimental investigation of turbulent fluxes. 4) Training and developing academics capable of dealing with the present and new challenges. The paper presents some preliminary results on the micrometeorological variability of the basic meteorological parameters and turbulent fluxes.

  15. Atmospheric stability-dependent infinite wind-farm models and the wake-decay coefficient

    DEFF Research Database (Denmark)

    Peña, Alfredo; Rathmann, Ole

    2014-01-01

    We extend the infinite wind-farm boundary-layer (IWFBL) model of Frandsen to take into account atmospheric static stability effects. This extended model is compared with the IWFBL model of Emeis and to the Park wake model used inWind Atlas Analysis and Application Program (WAsP), which is computed......) larger than the adjusted values for a wide range of neutral to stable atmospheric stability conditions, a number of roughness lengths and turbine separations lower than _ 10 rotor diameters and (ii) too large compared with those obtained by a semiempirical formulation (relating the ratio of the friction...

  16. Stable isotope characterization of pan-derived and directly sampled atmospheric water vapour

    International Nuclear Information System (INIS)

    Maric, R.; St. Amour, N.A.; Gibson, J.J.; Edwards, T.W.D.

    2002-01-01

    Isotopic characterization of atmospheric water vapour, δ A , and its temporal variability are important prerequisites for quantifying water balance of surface reservoirs and partitioning of evaporation and transpiration fluxes using isotope techniques. Here we present results from a detailed comparison of several methods for determining δ A in field situations, (i) by back-calculation from isotopic and micrometeorological monitoring of a steady-state terminal reservoir (standard Class-A evaporation pan) using boundary-layer mass transfer models [1], (ii) through direct (cryogenic) sampling of ambient atmospheric moisture, and (iii) using the precipitation-equilibrium approximation (i.e., δ A =δ P - ε*)

  17. CHARACTERIZING TRANSITING EXOPLANET ATMOSPHERES WITH JWST

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Thomas P. [NASA Ames Research Center, Space Science and Astrobiology Division, M.S. 245-6, Moffett Field, CA 94035 (United States); Line, Michael R.; Montero, Cezar; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lustig-Yaeger, Jacob [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Luther, Kyle, E-mail: tom.greene@nasa.gov [Department of Physics, University of California, 366 LeConte Hall MC 7300, Berkeley, CA 94720 (United States)

    2016-01-20

    We explore how well spectra from the James Webb Space Telescope (JWST) will likely constrain bulk atmospheric properties of transiting exoplanets. We start by modeling the atmospheres of archetypal hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-Earth planets with atmospheres that are clear, cloudy, or of high mean molecular weight (HMMW). Next we simulate the λ = 1–11 μm transmission and emission spectra of these systems for several JWST instrument modes for single-transit or single-eclipse events. We then perform retrievals to determine how well temperatures and molecular mixing ratios (CH{sub 4}, CO, CO{sub 2}, H{sub 2}O, NH{sub 3}) can be constrained. We find that λ = 1–2.5 μm transmission spectra will often constrain the major molecular constituents of clear solar-composition atmospheres well. Cloudy or HMMW atmospheres will often require full 1–11 μm spectra for good constraints, and emission data may be more useful in cases of sufficiently high F{sub p} and high F{sub p}/F{sub *}. Strong temperature inversions in the solar-composition hot-Jupiter atmosphere should be detectable with 1–2.5+ μm emission spectra, and 1–5+ μm emission spectra will constrain the temperature–pressure profiles of warm planets. Transmission spectra over 1–5+ μm will constrain [Fe/H] values to better than 0.5 dex for the clear atmospheres of the hot and warm planets studied. Carbon-to-oxygen ratios can be constrained to better than a factor of 2 in some systems. We expect that these results will provide useful predictions of the scientific value of single-event JWST spectra until its on-orbit performance is known.

  18. Atmospheric processes over complex terrain

    Science.gov (United States)

    Banta, Robert M.; Berri, G.; Blumen, William; Carruthers, David J.; Dalu, G. A.; Durran, Dale R.; Egger, Joseph; Garratt, J. R.; Hanna, Steven R.; Hunt, J. C. R.

    1990-06-01

    A workshop on atmospheric processes over complex terrain, sponsored by the American Meteorological Society, was convened in Park City, Utah from 24 vto 28 October 1988. The overall objective of the workshop was one of interaction and synthesis--interaction among atmospheric scientists carrying out research on a variety of orographic flow problems, and a synthesis of their results and points of view into an assessment of the current status of topical research problems. The final day of the workshop was devoted to an open discussion on the research directions that could be anticipated in the next decade because of new and planned instrumentation and observational networks, the recent emphasis on development of mesoscale numerical models, and continual theoretical investigations of thermally forced flows, orographic waves, and stratified turbulence. This monograph represents an outgrowth of the Park City Workshop. The authors have contributed chapters based on their lecture material. Workshop discussions indicated interest in both the remote sensing and predictability of orographic flows. These chapters were solicited following the workshop in order to provide a more balanced view of current progress and future directions in research on atmospheric processes over complex terrain.

  19. Atmospheric density determination using high-accuracy satellite GPS data

    Science.gov (United States)

    Tingling, R.; Miao, J.; Liu, S.

    2017-12-01

    Atmospheric drag is the main error source in the orbit determination and prediction of low Earth orbit (LEO) satellites, however, empirical models which are used to account for atmosphere often exhibit density errors around 15 30%. Atmospheric density determination thus become an important topic for atmospheric researchers. Based on the relation between atmospheric drag force and the decay of orbit semi-major axis, we derived atmospheric density along the trajectory of CHAMP with its Rapid Science Orbit (RSO) data. Three primary parameters are calculated, including the ratio of cross sectional area to mass, drag coefficient, and the decay of semi-major axis caused by atmospheric drag. We also analyzed the source of error and made a comparison between GPS-derived and reference density. Result on 2 Dec 2008 shows that the mean error of GPS-derived density can decrease from 29.21% to 9.20% when time span adopted on the process of computation increase from 10min to 50min. Result for the whole December indicates that when the time span meet the condition that the amplitude of the decay of semi-major axis is much greater than its standard deviation, then density precision of 10% can be achieved.

  20. Gas exchange between the forest and the atmosphere

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.

    1985-01-01

    Forest gas exchange is discussed in terms of the processes that control the rate of exchange with the atmosphere. Examples are presented to show how vegetative uptake control is varied for gases with different characteristics. The prediction of uptake for large areas and over long periods of time is discussed in terms of quantitative models of the gas exchange processes. Finally, remote sensing is suggested as a means of obtaining the parameters needed to make the model predictions. 46 refs., 6 figs

  1. White dwarf stars with carbon atmospheres.

    Science.gov (United States)

    Dufour, P; Liebert, J; Fontaine, G; Behara, N

    2007-11-22

    White dwarfs represent the endpoint of stellar evolution for stars with initial masses between approximately 0.07 and 8-10, where is the mass of the Sun (more massive stars end their life as either black holes or neutron stars). The theory of stellar evolution predicts that the majority of white dwarfs have a core made of carbon and oxygen, which itself is surrounded by a helium layer and, for approximately 80 per cent of known white dwarfs, by an additional hydrogen layer. All white dwarfs therefore have been traditionally found to belong to one of two categories: those with a hydrogen-rich atmosphere (the DA spectral type) and those with a helium-rich atmosphere (the non-DAs). Here we report the discovery of several white dwarfs with atmospheres primarily composed of carbon, with little or no trace of hydrogen or helium. Our analysis shows that the atmospheric parameters found for these stars do not fit satisfactorily in any of the currently known theories of post-asymptotic giant branch evolution, although these objects might be the cooler counterpart of the unique and extensively studied PG 1159 star H1504+65 (refs 4-7). These stars, together with H1504+65, might accordingly form a new evolutionary sequence that follows the asymptotic giant branch.

  2. ATLID, ESA Atmospheric LIDAR Developement Status

    Directory of Open Access Journals (Sweden)

    do Carmo João Pereira

    2016-01-01

    Full Text Available The ATmospheric LIDAR ATLID[1] is part of the payload of the Earth Cloud and Aerosol Explorer[2] (EarthCARE satellite mission, the sixth Earth Explorer Mission of the European Space Agency (ESA Living Planet Programme. EarthCARE is a joint collaborative satellite mission conducted between ESA and the National Space Development Agency of Japan (JAXA that delivers the Cloud Profiling Radar (CPR instrument. The payload consists of four instruments on the same platform with the common goal to provide a picture of the 3D-dimensional spatial and the temporal structure of the radiative flux field at the top of atmosphere, within the atmosphere and at the Earth’s surface. This paper is presenting an updated status of the development of the ATLID instrument and its subsystem design. The instrument has recently completed its detailed design, and most of its subsystems are already under manufacturing of their Flight Model (FM parts and running specific qualification activities. Clouds and aerosols are currently one of the biggest uncertainties in our understanding of the atmospheric conditions that drive the climate system. A better modelling of the relationship between clouds, aerosols and radiation is therefore amongst the highest priorities in climate research and weather prediction.

  3. N2O and CO production by electric discharge - Atmospheric implications. [Venus atmosphere simulation

    Science.gov (United States)

    Levine, J. S.; Howell, W. E.; Hughes, R. E.; Chameides, W. L.

    1979-01-01

    Enhanced levels of N2O and CO were measured in tropospheric air samples exposed to a 17,500-J laboratory discharge. These enhanced levels correspond to an N2O production rate of about 4 trillion molecules/J and a CO production rate of about 10 to the 14th molecules/J. The CO measurements suggest that the primary region of chemical production in the discharge is the shocked air surrounding the lightning channel, as opposed to the slower-cooling inner core. Additional experiments in a simulated Venus atmosphere (CO2 - 95%, N2 - 5%, at one atmosphere) indicate an enhancement of CO from less than 0.1 ppm prior to the laboratory discharge to more than 2000 ppm after the discharge. Comparison with theoretical calculations appears to confirm the ability of a shock-wave/thermochemical model to predict the rate of production of trace species by an electrical discharge.

  4. Atmospheric teleconnection influence on North American land surface phenology

    Science.gov (United States)

    Dannenberg, Matthew P.; Wise, Erika K.; Janko, Mark; Hwang, Taehee; Kolby Smith, W.

    2018-03-01

    Short-term forecasts of vegetation activity are currently not well constrained due largely to our lack of understanding of coupled climate-vegetation dynamics mediated by complex interactions between atmospheric teleconnection patterns. Using ecoregion-scale estimates of North American vegetation activity inferred from remote sensing (1982-2015), we examined seasonal and spatial relationships between land surface phenology and the atmospheric components of five teleconnection patterns over the tropical Pacific, north Pacific, and north Atlantic. Using a set of regression experiments, we also tested for interactions among these teleconnection patterns and assessed predictability of vegetation activity solely based on knowledge of atmospheric teleconnection indices. Autumn-to-winter composites of the Southern Oscillation Index (SOI) were strongly correlated with start of growing season timing, especially in the Pacific Northwest. The two leading modes of north Pacific variability (the Pacific-North American, PNA, and West Pacific patterns) were significantly correlated with start of growing season timing across much of southern Canada and the upper Great Lakes. Regression models based on these Pacific teleconnections were skillful predictors of spring phenology across an east-west swath of temperate and boreal North America, between 40°N-60°N. While the North Atlantic Oscillation (NAO) was not strongly correlated with start of growing season timing on its own, we found compelling evidence of widespread NAO-SOI and NAO-PNA interaction effects. These results suggest that knowledge of atmospheric conditions over the Pacific and Atlantic Oceans increases the predictability of North American spring phenology. A more robust consideration of the complexity of the atmospheric circulation system, including interactions across multiple ocean basins, is an important step towards accurate forecasts of vegetation activity.

  5. Physical modeling of emergency emission in the atmosphere (experimental investigation of Lagrangian turbulence characteristics in the surface and boundary layer of the atmosphere)

    International Nuclear Information System (INIS)

    Garger, E.K.

    2013-01-01

    Results of diffusion experiments simulating emergency emission in the surface and boundary layers of the atmosphere are presented. Interpretation of measurements in the surface layer of the atmosphere had been conducted on the basis of the Lagrangian similarity hypothesis., Results of measurements in the boundary layer of the atmosphere are interpreted with use of the homogeneous turbulence theory. Regimes of turbulent diffusion from land and low sources of admixtures predicted by the Lagrangian similarity hypothesis for various conditions of thermal stratification in the surface layer of the atmosphere are experimentally confirmed. Universal empirical constants for these regimes are received that allows to use their in practice. Calculation diffusion parameters and concentrations of an admixture from various sources in the surface layer of the atmosphere by model is presented. Results of calculation on this model are compared to independent measurements of mass concentration of a admixture in horizontal and vertical planes. Results of simultaneous measurements Eulerian and Lagrangian turbulence characteristics for various diffusion times in the boundary layer of the atmosphere have allowed to estimate turbulence time scales in Lagrangian variables for conditions close to neutral thermal stratification. The monograph is intended for scientists and students engaged in the field of meteorology, physics of the atmosphere and pollution air control, services of radiation and ecological safety

  6. Determination of the potential radiation exposure of the population close to the Asse II mine caused by deduction of radioactive substances with the discharge air in the normal operation using the ''Atmospheric Radionuclide-Transport-Model'' (ARTM)

    International Nuclear Information System (INIS)

    Esch, D.; Wittwer, C.

    2014-01-01

    Between 1967 and 1978 125.787 packages filled with low-level and intermediate-level radioactive waste were emplaced in the mining plant Asse II. Volatile radioactive substances like H-3, C-14 and Rn-222 are released from the emplaced waste. These substances reach the ventilated parts of the mine and are released with the discharge air. The potential radiation exposure of the population caused by deduction of radioactive substances with the discharge air in the normal operation is determined by the ''Atmospheric Radionuclide-Transport-Model'' (ARTM). As result the maximal deductions of volatile radioactive substances with the discharge air in the normal operation of the Asse II mine lead to radiation exposure of the population, which is considerably lower than the permissible values of application rate.

  7. Emerging pattern of global change in the upper atmosphere and ionosphere

    Directory of Open Access Journals (Sweden)

    J. Laštovička

    2008-05-01

    Full Text Available In the upper atmosphere, greenhouse gases produce a cooling effect, instead of a warming effect. Increases in greenhouse gas concentrations are expected to induce substantial changes in the mesosphere, thermosphere, and ionosphere, including a thermal contraction of these layers. In this article we construct for the first time a pattern of the observed long-term global change in the upper atmosphere, based on trend studies of various parameters. The picture we obtain is qualitative, and contains several gaps and a few discrepancies, but the overall pattern of observed long-term changes throughout the upper atmosphere is consistent with model predictions of the effect of greenhouse gas increases. Together with the large body of lower atmospheric trend research, our synthesis indicates that anthropogenic emissions of greenhouse gases are affecting the atmosphere at nearly all altitudes between ground and space.

  8. A comparison of the WIND System atmospheric models and RASCAL

    International Nuclear Information System (INIS)

    Fast, J.D.

    1991-01-01

    A detailed comparison of the characteristics of the WIND System atmospheric models and the NRC's RASCAL code was made. The modeling systems differ substantially in the way input is entered and the way output is displayed. Nevertheless, using the same source term and meteorological input parameters, the WIND System atmospheric models and RASCAL produce similar results in most situations. The WIND System atmospheric model predictions and those made by RASCAL are within a factor of two at least 70% of the time and are within a factor of four 89% of the time. Significant differences in the dose between the models may occur during conditions of low wind speeds, strong atmospheric stability, and/or wet deposition as well as for many atmospheric cases involving cloud shine. Even though the numerical results are similar in most cases, there are many site-specific and operational characteristics that have been incorporated into the WIND System atmospheric models to provide SRS emergency response personnel with a more effective emergency response tool than is currently available from using RASCAL

  9. TransCom N2O model inter-comparison, Part II : Atmospheric inversion estimates of N2O emissions

    NARCIS (Netherlands)

    Thompson, R. L.; Ishijima, K.; Saikawa, E.; Corazza, M.; Karstens, U.; Patra, P. K.; Bergamaschi, P.; Chevallier, F.; Dlugokencky, E.; Prinn, R. G.; Weiss, R. F.; O'Doherty, S.; Fraser, P. J.; Steele, L. P.; Krummel, P. B.; Vermeulen, A.; Tohjima, Y.; Jordan, A.; Haszpra, L.; Steinbacher, M.; Van Der Laan, S.; Aalto, T.; Meinhardt, F.; Popa, Maria Elena; Moncrieff, J.; Bousquet, P.

    2014-01-01

    This study examines N2O emission estimates from 5 different atmospheric inversion frameworks. The 5 frameworks differ in the choice of atmospheric transport model, meteorological data, prior uncertainties and inversion method but use the same prior emissions and observation dataset. The mean

  10. The thermal structure of Triton's atmosphere - Pre-Voyager models

    Science.gov (United States)

    Mckay, Christopher P.; Pollack, James B.; Zent, Aaron P.; Cruikshank, Dale P.; Courtin, Regis

    1989-01-01

    Spectral data from earth observations have indicated the presence of N2 and CH4 on Triton. This paper outlines the use of the 1-D radiative-convective model developed for Titan to calculate the current pressure of N2 and CH4 on Triton. The production of haze material is obtained by scaling down from the Titan value. Results and predictions for the Voyager Triton encounter are as follows: A N2-CH4 atmosphere on Triton is thermodynamically self consistent and would have a surface pressure of approximately 50 millibar; due to the chemically produced haze, Triton has a hot atmosphere with a temperature of approximately 130 K; Triton's troposphere is a region of saturation of the major constituent of the atmosphere, N2.

  11. Quadratic prediction of factor scores

    NARCIS (Netherlands)

    Wansbeek, T

    1999-01-01

    Factor scores are naturally predicted by means of their conditional expectation given the indicators y. Under normality this expectation is linear in y but in general it is an unknown function of y. II is discussed that under nonnormality factor scores can be more precisely predicted by a quadratic

  12. The atmosphere: Global commons to protect

    International Nuclear Information System (INIS)

    Obasi, G.O.P.

    1996-01-01

    One of the most important greenhouse gases is CO 2 , whose concentration in the atmosphere has increased from 280 parts per million by volume (ppmv) to 358ppmv in 1994, giving a general increase of over 27 per cent since pre-industrial times. This increase has been attributed largely to fossil fuel combustion. Significant increases have also been observed in atmospheric concentrations of the other greenhouse gases, including methane, nitrous oxide and global tropospheric ozone. Concentrations of methane and nitrous oxide have, for example, grown by 145 per cent and 15 per cent respectively since pre-industrial times. Such increases have been linked to the rapid world population growth, which has resulted in increasing demands for energy, food, water, shelter and other basic needs. Computer models indicate that the continued accumulation of greenhouse gases in the atmosphere could result in global climate change and global warming. As some uncertainties still exists in the model predictions, it may take a few more years to uniquely separate human-induced climate change signals from natural climate variability in global climate trends

  13. Visibility enhancement of color images using Type-II fuzzy membership function

    Science.gov (United States)

    Singh, Harmandeep; Khehra, Baljit Singh

    2018-04-01

    Images taken in poor environmental conditions decrease the visibility and hidden information of digital images. Therefore, image enhancement techniques are necessary for improving the significant details of these images. An extensive review has shown that histogram-based enhancement techniques greatly suffer from over/under enhancement issues. Fuzzy-based enhancement techniques suffer from over/under saturated pixels problems. In this paper, a novel Type-II fuzzy-based image enhancement technique has been proposed for improving the visibility of images. The Type-II fuzzy logic can automatically extract the local atmospheric light and roughly eliminate the atmospheric veil in local detail enhancement. The proposed technique has been evaluated on 10 well-known weather degraded color images and is also compared with four well-known existing image enhancement techniques. The experimental results reveal that the proposed technique outperforms others regarding visible edge ratio, color gradients and number of saturated pixels.

  14. Predicting Ground Illuminance

    Science.gov (United States)

    Lesniak, Michael V.; Tregoning, Brett D.; Hitchens, Alexandra E.

    2015-01-01

    Our Sun outputs 3.85 x 1026 W of radiation, of which roughly 37% is in the visible band. It is directly responsible for nearly all natural illuminance experienced on Earth's surface, either in the form of direct/refracted sunlight or in reflected light bouncing off the surfaces and/or atmospheres of our Moon and the visible planets. Ground illuminance, defined as the amount of visible light intercepting a unit area of surface (from all incident angles), varies over 7 orders of magnitude from day to night. It is highly dependent on well-modeled factors such as the relative positions of the Sun, Earth, and Moon. It is also dependent on less predictable factors such as local atmospheric conditions and weather.Several models have been proposed to predict ground illuminance, including Brown (1952) and Shapiro (1982, 1987). The Brown model is a set of empirical data collected from observation points around the world that has been reduced to a smooth fit of illuminance against a single variable, solar altitude. It provides limited applicability to the Moon and for cloudy conditions via multiplicative reduction factors. The Shapiro model is a theoretical model that treats the atmosphere as a three layer system of light reflectance and transmittance. It has different sets of reflectance and transmittance coefficients for various cloud types.In this paper we compare the models' predictions to ground illuminance data from an observing run at the White Sands missile range (data was obtained from the United Kingdom's Meteorology Office). Continuous illuminance readings were recorded under various cloud conditions, during both daytime and nighttime hours. We find that under clear skies, the Shapiro model tends to better fit the observations during daytime hours with typical discrepancies under 10%. Under cloudy skies, both models tend to poorly predict ground illuminance. However, the Shapiro model, with typical average daytime discrepancies of 25% or less in many cases

  15. Oceanographic station, temperature profile, meteorological, and other data from CTD and XBT casts from NOAA Ship DELAWARE II and other platforms as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1980-06-25 to 1983-08-04 (NODC Accession 8300119)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic station, temperature profile, meteorological, and other data were collected from CTD and XBT casts from NOAA Ship DELAWARE II and other platforms from...

  16. NASA/MSFC FY88 Global Scale Atmospheric Processes Research Program Review

    Science.gov (United States)

    Wilson, Greg S. (Editor); Leslie, Fred W. (Editor); Arnold, J. E. (Editor)

    1989-01-01

    Interest in environmental issues and the magnitude of the environmental changes continues. One way to gain more understanding of the atmosphere is to make measurements on a global scale from space. The Earth Observation System is a series of new sensors to measure globally atmospheric parameters. Analysis of satellite data by developing algorithms to interpret the radiance information improves the understanding and also defines requirements for these sensors. One measure of knowledge of the atmosphere lies in the ability to predict its behavior. Use of numerical and experimental models provides a better understanding of these processes. These efforts are described in the context of satellite data analysis and fundamental studies of atmospheric dynamics which examine selected processes important to the global circulation.

  17. Relating landfill gas emissions to atmospheric pressure using numerical modeling and state-space analysis

    DEFF Research Database (Denmark)

    Poulsen, T.G.; Christophersen, Mette; Moldrup, P.

    2003-01-01

    were applied: (I) State-space analysis was used to identify relations between gas flux and short-term (hourly) variations in atmospheric pressure. (II) A numerical gas transport model was fitted to the data and used to quantify short-term impacts of variations in atmospheric pressure, volumetric soil......-water content, soil gas permeability, soil gas diffusion coefficients, and biological CH4 degradation rate upon landfill gas concentration and fluxes in the soil. Fluxes and concentrations were found to be most sensitive to variations in volumetric soil water content, atmospheric pressure variations and gas...... permeability whereas variations in CH4 oxidation rate and molecular coefficients had less influence. Fluxes appeared to be most sensitive to atmospheric pressure at intermediate distances from the landfill edge. Also overall CH4 fluxes out of the soil over longer periods (years) were largest during periods...

  18. Mars atmospheric escape and evolution; interaction with the solar wind

    Science.gov (United States)

    Chassefière, Eric; Leblanc, François

    2004-09-01

    This tutorial deals with the question of atmospheric escape on Mars. After a brief introduction describing the general context of Mars escape studies, we will present in Section 2 a simplified theory of thermal escape, of both Jeans and hydrodynamic types. The phenomenon of hydrodynamic escape, still hypothetical and not proved to have ever existed on terrestrial planets, will be treated with the help of two well known examples: (i) the isotopic fractionation of xenon in Mars and Earth atmospheres, (ii) the paradox of missing oxygen in Venus atmosphere. In Section 3, a simplified approach of non-thermal escape will be developed, treating in a specific way the different kinds of escape (photochemical escape, ion sputtering, ion escape and ionospheric outflow). As a matter of illustration, some calculations of the relative contributions of these mechanisms, and of their time evolutions, will be given, and the magnitude of the total amount of atmosphere lost by non-thermal escape will be estimated. Section 4 will present the state of knowledge concerning the constraints derived from Mars isotopic geochemistry in terms of past escape and evolution. Finally, a few conclusions, which are more interrogations, will be proposed.

  19. The relative value of operon predictions

    NARCIS (Netherlands)

    Brouwer, Rutger W. W.; Kuipers, Oscar P.; van Hijum, Sacha A. F. T.

    For most organisms, computational operon predictions are the only source of genome-wide operon information. Operon prediction methods described in literature are based on (a combination of) the following five criteria: (i) intergenic distance, (ii) conserved gene clusters, (iii) functional relation,

  20. Indicators of Mass in Spherical Stellar Atmospheres

    Science.gov (United States)

    Lester, John B.; Dinshaw, Rayomond; Neilson, Hilding R.

    2013-04-01

    Mass is the most important stellar parameter, but it is not directly observable for a single star. Spherical model stellar atmospheres are explicitly characterized by their luminosity ( L⋆), mass ( M⋆), and radius ( R⋆), and observations can now determine directly L⋆ and R⋆. We computed spherical model atmospheres for red giants and for red supergiants holding L⋆ and R⋆ constant at characteristic values for each type of star but varying M⋆, and we searched the predicted flux spectra and surface-brightness distributions for features that changed with mass. For both stellar classes we found similar signatures of the stars’ mass in both the surface-brightness distribution and the flux spectrum. The spectral features have been use previously to determine log 10(g), and now that the luminosity and radius of a non-binary red giant or red supergiant can be observed, spherical model stellar atmospheres can be used to determine a star’s mass from currently achievable spectroscopy. The surface-brightness variations of mass are slightly smaller than can be resolved by current stellar imaging, but they offer the advantage of being less sensitive to the detailed chemical composition of the atmosphere.

  1. Lunar eclipses: Probing the atmosphere of an inhabited planet

    Science.gov (United States)

    García Muñoz, A.

    2013-04-01

    The Moon's brightness during a lunar eclipse is indicative of the composition, cloudiness and aerosol loading of the Earth's atmosphere. The idea of using lunar eclipse observations to characterize the Earth's atmosphere is not new, but the interest raised by the prospects of discovering Earth-like exoplanets transiting their host stars has brought renewed attention to the method. We review some recent efforts made in the prediction and interpretation of lunar eclipses. We also comment on the contribution of the lunar eclipse theory to the refractive theory of planetary transits.

  2. Lunar eclipses: Probing the atmosphere of an inhabited planet

    Directory of Open Access Journals (Sweden)

    Muñoz A. García

    2013-04-01

    Full Text Available The Moon's brightness during a lunar eclipse is indicative of the composition, cloudiness and aerosol loading of the Earth's atmosphere. The idea of using lunar eclipse observations to characterize the Earth's atmosphere is not new, but the interest raised by the prospects of discovering Earth-like exoplanets transiting their host stars has brought renewed attention to the method. We review some recent efforts made in the prediction and interpretation of lunar eclipses. We also comment on the contribution of the lunar eclipse theory to the refractive theory of planetary transits.

  3. Development of atmosphere-soil-vegetation model for investigation of radioactive materials transport in terrestrial biosphere

    International Nuclear Information System (INIS)

    Katata, Genki; Nagai, Haruyasu; Zhang, Leiming; Held, Andreas; Serca, Dominique; Klemm, Otto

    2010-01-01

    In order to investigate the transport of radionuclides in the terrestrial biosphere we have developed a one-dimensional numerical model named SOLVEG that predicts the transfer of water, heat, and gaseous and particulate matters in atmosphere-soil-vegetation system. The SOLVEG represents atmosphere, soil, and vegetation as an aggregation of several layers. Basic equations used in the model are solved using the finite difference method. Most of predicted variables are interrelated with the source/sink terms of momentum, water, heat, gases, and particles based on mathematically described biophysical processes in atmosphere, soil and vegetation. The SOLVEG can estimate dry, wet and fog deposition of gaseous and particulate matters at each canopy layer. Performance tests of the SOLVEG with several observational sites were carried out. The SOLVEG predicted the observed temporal changes in water vapor, CO 2 , and ozone fluxes over vegetated surfaces. The SOLVEG also reproduced measured fluxes of fog droplets and of fine aerosols over the forest. (author)

  4. Confocal arthroscopy-based patient-specific constitutive models of cartilaginous tissues - II: prediction of reaction force history of meniscal cartilage specimens.

    Science.gov (United States)

    Taylor, Zeike A; Kirk, Thomas B; Miller, Karol

    2007-10-01

    The theoretical framework developed in a companion paper (Part I) is used to derive estimates of mechanical response of two meniscal cartilage specimens. The previously developed framework consisted of a constitutive model capable of incorporating confocal image-derived tissue microstructural data. In the present paper (Part II) fibre and matrix constitutive parameters are first estimated from mechanical testing of a batch of specimens similar to, but independent from those under consideration. Image analysis techniques which allow estimation of tissue microstructural parameters form confocal images are presented. The constitutive model and image-derived structural parameters are then used to predict the reaction force history of the two meniscal specimens subjected to partially confined compression. The predictions are made on the basis of the specimens' individual structural condition as assessed by confocal microscopy and involve no tuning of material parameters. Although the model does not reproduce all features of the experimental curves, as an unfitted estimate of mechanical response the prediction is quite accurate. In light of the obtained results it is judged that more general non-invasive estimation of tissue mechanical properties is possible using the developed framework.

  5. Prediction uncertainty and data worth assessment for groundwater transport times in an agricultural catchment

    Science.gov (United States)

    Zell, Wesley O.; Culver, Teresa B.; Sanford, Ward E.

    2018-06-01

    Uncertainties about the age of base-flow discharge can have serious implications for the management of degraded environmental systems where subsurface pathways, and the ongoing release of pollutants that accumulated in the subsurface during past decades, dominate the water quality signal. Numerical groundwater models may be used to estimate groundwater return times and base-flow ages and thus predict the time required for stakeholders to see the results of improved agricultural management practices. However, the uncertainty inherent in the relationship between (i) the observations of atmospherically-derived tracers that are required to calibrate such models and (ii) the predictions of system age that the observations inform have not been investigated. For example, few if any studies have assessed the uncertainty of numerically-simulated system ages or evaluated the uncertainty reductions that may result from the expense of collecting additional subsurface tracer data. In this study we combine numerical flow and transport modeling of atmospherically-derived tracers with prediction uncertainty methods to accomplish four objectives. First, we show the relative importance of head, discharge, and tracer information for characterizing response times in a uniquely data rich catchment that includes 266 age-tracer measurements (SF6, CFCs, and 3H) in addition to long term monitoring of water levels and stream discharge. Second, we calculate uncertainty intervals for model-simulated base-flow ages using both linear and non-linear methods, and find that the prediction sensitivity vector used by linear first-order second-moment methods results in much larger uncertainties than non-linear Monte Carlo methods operating on the same parameter uncertainty. Third, by combining prediction uncertainty analysis with multiple models of the system, we show that data-worth calculations and monitoring network design are sensitive to variations in the amount of water leaving the system via

  6. Relative effects of climate and source strength on atmospheric lead concentrations in Auckland, New Zealand

    Science.gov (United States)

    Power, H. C.; de Freitas, C. R.; Hay, J. E.

    1992-06-01

    Atmospheric lead levels were examined to assess the consequences of the 46 percent reduction in the lead content of premium grade petrol in New Zealand. Since this change was implemented in July 1986 observed levels of atmospheric lead decreased by 38 percent, but all or part of this reduction may have been due to factors other than fluctuations in lead emissions, notably variations in climate. Analysis of detailed atmospheric lead, meteorological and traffic data measured contemporaneously provided insight into the atmospheric processes influencing lead levels in Auckland and formed the basis of a statistical model capable of predicting monthly lead concentrations. The model was used to predict lead levels in Auckland for the period July 1986 through to July 1989 in the absence of any reduction in the lead content of petrol. Comparison with values observed for the same period showed that all of the reduction in atmospheric lead levels since July 1986 can be attributed to the reduction in the lead content of petrol. Policy planning implications of such a finding are considered.

  7. Isotope ratio in stellar atmospheres and nucleosynthesis

    International Nuclear Information System (INIS)

    Barbuy, B.L.S.

    1987-01-01

    The determination of isotopic ratios in stellar atmospheres is studied. The isotopic shift of atomic and molecular lines of different species of a certain element is examined. CH and MgH lines are observed in order to obtain the 12 C: 13 C and 24 Mg: 25 Mg: 26 Mg isotpic ratios. The formation of lines in stellar atmospheres is computed and the resulting synthetic spectra are employed to determine the isotopic abundances. The results obtained for the isotopic ratios are compared to predictions of nucleosynthesis theories. Finally, the concept of primary and secondary element is discussed, and these definitions are applied to the observed variations in the abundance of elements as a function of metallicity. (author) [pt

  8. Mitigation of Atmospheric Delay in SAR Absolute Ranging Using Global Numerical Weather Prediction Data: Corner Reflector Experiments at 3 Different Test Sites

    Science.gov (United States)

    Cong, Xiaoying; Balss, Ulrich; Eineder, Michael

    2015-04-01

    The atmospheric delay due to vertical stratification, the so-called stratified atmospheric delay, has a great impact on both interferometric and absolute range measurements. In our current researches [1][2][3], centimeter-range accuracy has been proven based on Corner Reflector (CR) based measurements by applying atmospheric delay correction using the Zenith Path Delay (ZPD) corrections derived from nearby Global Positioning System (GPS) stations. For a global usage, an effective method has been introduced to estimate the stratified delay based on global 4-dimensional Numerical Weather Prediction (NWP) products: the direct integration method [4][5]. Two products, ERA-Interim and operational data, provided by European Centre for Medium-Range Weather Forecast (ECMWF) are used to integrate the stratified delay. In order to access the integration accuracy, a validation approach is investigated based on ZPD derived from six permanent GPS stations located in different meteorological conditions. Range accuracy at centimeter level is demonstrated using both ECMWF products. Further experiments have been carried out in order to determine the best interpolation method by analyzing the temporal and spatial correlation of atmospheric delay using both ECMWF and GPS ZPD. Finally, the integrated atmospheric delays in slant direction (Slant Path Delay, SPD) have been applied instead of the GPS ZPD for CR experiments at three different test sites with more than 200 TerraSAR-X High Resolution SpotLight (HRSL) images. The delay accuracy is around 1-3 cm depending on the location of test site due to the local water vapor variation and the acquisition time/date. [1] Eineder M., Minet C., Steigenberger P., et al. Imaging geodesy - Toward centimeter-level ranging accuracy with TerraSAR-X. Geoscience and Remote Sensing, IEEE Transactions on, 2011, 49(2): 661-671. [2] Balss U., Gisinger C., Cong X. Y., et al. Precise Measurements on the Absolute Localization Accuracy of TerraSAR-X on the

  9. Short- and medium-term atmospheric constituent effects of very large solar proton events

    Directory of Open Access Journals (Sweden)

    C. H. Jackman

    2008-02-01

    Full Text Available Solar eruptions sometimes produce protons, which impact the Earth's atmosphere. These solar proton events (SPEs generally last a few days and produce high energy particles that precipitate into the Earth's atmosphere. The protons cause ionization and dissociation processes that ultimately lead to an enhancement of odd-hydrogen and odd-nitrogen in the polar cap regions (>60° geomagnetic latitude. We have used the Whole Atmosphere Community Climate Model (WACCM3 to study the atmospheric impact of SPEs over the period 1963–2005. The very largest SPEs were found to be the most important and caused atmospheric effects that lasted several months after the events. We present the short- and medium-term (days to a few months atmospheric influence of the four largest SPEs in the past 45 years (August 1972; October 1989; July 2000; and October–November 2003 as computed by WACCM3 and observed by satellite instruments. Polar mesospheric NOx (NO+NO2 increased by over 50 ppbv and mesospheric ozone decreased by over 30% during these very large SPEs. Changes in HNO3, N2O5, ClONO2, HOCl, and ClO were indirectly caused by the very large SPEs in October–November 2003, were simulated by WACCM3, and previously measured by Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIPAS. WACCM3 output was also represented by sampling with the MIPAS averaging kernel for a more valid comparison. Although qualitatively similar, there are discrepancies between the model and measurement with WACCM3 predicted HNO3 and ClONO2 enhancements being smaller than measured and N2O5 enhancements being larger than measured. The HOCl enhancements were fairly similar in amounts and temporal variation in WACCM3 and MIPAS. WACCM3 simulated ClO decreases below 50 km, whereas MIPAS mainly observed increases, a very perplexing difference. Upper stratospheric

  10. DFT predictions, synthesis, stoichiometric structures and anti-diabetic activity of Cu (II) and Fe (III) complexes of quercetin, morin, and primuletin

    Science.gov (United States)

    Jabeen, Erum; Janjua, Naveed Kausar; Ahmed, Safeer; Murtaza, Iram; Ali, Tahir; Masood, Nosheen; Rizvi, Aysha Sarfraz; Murtaza, Gulam

    2017-12-01

    The current study is aimed at the synthesis of Cu (II) and Fe (III) complexes of three flavonoids {morin (mor), quercetin (quer) and primuletin (prim)} and characterization through UV-Vis spectroscopy, cyclic voltammetry, FTIR, and thermal analysis. Structure prediction through DFT calculation was supported by experimental data. Benesi-Hildebrand equation was modified to function for 1:2 Cu-flavonoid and 1:3 Fe-flavonoid complexes. DFT predictions revealed that out of poly chelation sites present in morin and quercetin, 3-OH site was utilized as preferable chelation site while primuletin chelated through 5-OH position. In-vivo trials revealed the complexes to have better anti-diabetic potential than respective flavonoid. Fls/M-Fls proved as antagonistic to Alloxan induced diabetes and also retained anti-diabetic activity even in the presence of (2-hydroxypropyl)-β-cyclodextrin (HPβCD).

  11. Improving InSAR geodesy using Global Atmospheric Models

    Science.gov (United States)

    Jolivet, Romain; Agram, Piyush Shanker; Lin, Nina Y.; Simons, Mark; Doin, Marie-Pierre; Peltzer, Gilles; Li, Zhenghong

    2014-03-01

    Spatial and temporal variations of pressure, temperature, and water vapor content in the atmosphere introduce significant confounding delays in interferometric synthetic aperture radar (InSAR) observations of ground deformation and bias estimates of regional strain rates. Producing robust estimates of tropospheric delays remains one of the key challenges in increasing the accuracy of ground deformation measurements using InSAR. Recent studies revealed the efficiency of global atmospheric reanalysis to mitigate the impact of tropospheric delays, motivating further exploration of their potential. Here we explore the effectiveness of these models in several geographic and tectonic settings on both single interferograms and time series analysis products. Both hydrostatic and wet contributions to the phase delay are important to account for. We validate these path delay corrections by comparing with estimates of vertically integrated atmospheric water vapor content derived from the passive multispectral imager Medium-Resolution Imaging Spectrometer, onboard the Envisat satellite. Generally, the performance of the prediction depends on the vigor of atmospheric turbulence. We discuss (1) how separating atmospheric and orbital contributions allows one to better measure long-wavelength deformation and (2) how atmospheric delays affect measurements of surface deformation following earthquakes, and (3) how such a method allows us to reduce biases in multiyear strain rate estimates by reducing the influence of unevenly sampled seasonal oscillations of the tropospheric delay.

  12. Atmospherical simulations of the OMEGA/MEX observations

    Science.gov (United States)

    Melchiorri, R.; Drossart, P.; Combes, M.; Encrenaz, T.; Fouchet, T.; Forget, F.; Bibring, J. P.; Ignatiev, N.; Moroz, V.; OMEGA Team

    The modelization of the atmospheric contribution in the martian spectrum is an important step for the OMEGA data analysis.A full line by line radiative transfer calculation is made for the gas absorption; the dust opacity component, in a first approximation, is calculated as an optically thin additive component.Due to the large number of parameters needed in the calculations, the building of a huge data base to be interpolated is not envisageable, for each observed OMEGA spectrum with calculation for all the involved parameters (atmospheric pressure, water abundance, CO abundance, dust opacity and geometric angles of observation). The simulation of the observations allows us to fix all the orbital parameters and leave the unknown parameters as the only variables.Starting from the predictions of the current meteorological models of Mars we build a smaller data base corresponding on each observation. We present here a first order simulation, which consists in retrieving atmospheric contribution from the solar reflected component as a multiplicative (for gas absorption) and an additive component (for suspended dust contribution); although a fully consistent approach will require to include surface and atmosphere contributions together in synthetic calculations, this approach is sufficient for retrieving mineralogic information cleaned from atmospheric absorption at first order.First comparison to OMEGA spectra will be presented, with first order retrieval of CO2 pressure, CO and H2O abundance, and dust opacity.

  13. Comparison of different models for ground-level atmospheric turbulence strength (C(n)(2)) prediction with a new model according to local weather data for FSO applications.

    Science.gov (United States)

    Arockia Bazil Raj, A; Arputha Vijaya Selvi, J; Durairaj, S

    2015-02-01

    Atmospheric parameters strongly affect the performance of free-space optical communication (FSOC) systems when the optical wave is propagating through the inhomogeneous turbulence transmission medium. Developing a model to get an accurate prediction of the atmospheric turbulence strength (C(n)(2)) according to meteorological parameters (weather data) becomes significant to understand the behavior of the FSOC channel during different seasons. The construction of a dedicated free-space optical link for the range of 0.5 km at an altitude of 15.25 m built at Thanjavur (Tamil Nadu) is described in this paper. The power level and beam centroid information of the received signal are measured continuously with weather data at the same time using an optoelectronic assembly and the developed weather station, respectively, and are recorded in a data-logging computer. Existing models that exhibit relatively fewer prediction errors are briefed and are selected for comparative analysis. Measured weather data (as input factors) and C(n)(2) (as a response factor) of size [177,147×4] are used for linear regression analysis and to design mathematical models more suitable in the test field. Along with the model formulation methodologies, we have presented the contributions of the input factors' individual and combined effects on the response surface and the coefficient of determination (R(2)) estimated using analysis of variance tools. An R(2) value of 98.93% is obtained using the new model, model equation V, from a confirmatory test conducted with a testing data set of size [2000×4]. In addition, the prediction accuracies of the selected and the new models are investigated during different seasons in a one-year period using the statistics of day, week-averaged, month-averaged, and seasonal-averaged diurnal Cn2 profiles, and are verified in terms of the sum of absolute error (SAE). A Cn2 prediction maximum average SAE of 2.3×10(-13)  m(-2/3) is achieved using the new model in

  14. Feasibility and predictive performance of the Hendrich Fall Risk Model II in a rehabilitation department: a prospective study.

    Science.gov (United States)

    Campanini, Isabella; Mastrangelo, Stefano; Bargellini, Annalisa; Bassoli, Agnese; Bosi, Gabriele; Lombardi, Francesco; Tolomelli, Stefano; Lusuardi, Mirco; Merlo, Andrea

    2018-01-11

    Falls are a common adverse event in both elderly inpatients and patients admitted to rehabilitation units. The Hendrich Fall Risk Model II (HIIFRM) has been already tested in all hospital wards with high fall rates, with the exception of the rehabilitation setting. This study's aim is to address the feasibility and predictive performances of HIIFRM in a hospital rehabilitation department. A 6 months prospective study in a Italian rehabilitation department with patients from orthopaedic, pulmonary, and neurological rehabilitation wards. All admitted patients were enrolled and assessed within 24 h of admission by means of the HIIFRM. The occurrence of falls was checked and recorded daily. HIIFRM feasibility was assessed as the percentage of successful administrations at admission. HIIFRM predictive performance was determined in terms of area under the Receiver Operating Characteristic (ROC) curve (AUC), best cutoff, sensitivity, specificity, positive and negative predictive values, along with their asymptotic 95% confidence intervals (95% CI). One hundred ninety-one patents were admitted. HIIFRM was feasible in 147 cases (77%), 11 of which suffered a fall (7.5%). Failures in administration were mainly due to bedridden patients (e.g. minimally conscious state, vegetative state). AUC was 0.779(0.685-0.873). The original HIIFRM cutoff of 5 led to a sensitivity of 100% with a mere specificity of 49%(40-57%), thus suggesting using higher cutoffs. Moreover, the median score for non-fallers at rehabilitation units was higher than that reported in literature for geriatric non fallers. The best trade-off between sensitivity and specificity was obtained by using a cutoff of 8. This lead to sensitivity = 73%(46-99%), specificity = 72%(65-80%), positive predictive value = 17% and negative predictive value = 97%. These results support the use of the HIIFRM as a predictive tool. The HIIFRM showed satisfactory feasibility and predictive performances in

  15. Science Plan for the Atmospheric Radiation Measurement Program (ARM)

    International Nuclear Information System (INIS)

    1996-02-01

    The purpose of this Atmospheric Radiation Measurement (ARM) Science Plan is to articulate the scientific issues driving the ARM Program, and to relate them to DOE's programmatic objectives for ARM, based on the experience and scientific progress gained over the past five years. ARM programmatic objectives are to: (1) Relate observed radiative fluxes and radiances in the atmosphere, spectrally resolved and as a function of position and time, to the temperature and composition of the atmosphere, specifically including water vapor and clouds, and to surface properties, and sample sufficient variety of situations so as to span a wide range of climatologically relevant possibilities; (2) develop and test parameterizations that can be used to accurately predict the radiative properties and to model the radiative interactions involving water vapor and clouds within the atmosphere, with the objective of incorporating these parameterizations into general circulation models. The primary observational methods remote sending and other observations at the surface, particularly remote sensing of clouds, water vapor and aerosols

  16. Numerical Weather Prediction Models on Linux Boxes as tools in meteorological education in Hungary

    Science.gov (United States)

    Gyongyosi, A. Z.; Andre, K.; Salavec, P.; Horanyi, A.; Szepszo, G.; Mille, M.; Tasnadi, P.; Weidiger, T.

    2012-04-01

    . Numerical modeling became a common tool in the daily practice of weather experts forecasters due to the i) increasing user demands for weather data by the costumers, ii) the growth in computer resources, iii) numerical weather prediction systems available for integration on affordable, off the shelf computers and iv) available input data (from ECMWF or NCEP) for model integrations. Beside learning the theoretical basis, since the last year. Students in their MSc or BSc Thesis Research or in Student's Research ProjectsStudent's Research Projects h have the opportunity to run numerical models and to analyze the outputs for different purposes including wind energy estimation, simulation of the dynamics of a polar low, and subtropical cyclones, analysis of the isentropic potential vorticity field, examination of coupled atmospheric dispersion models, etc. A special course in the application of numerical modeling has been held (is being announced for the upcoming semester) (is being announced for the upcoming semester) for our students in order to improve their skills on this field. Several numerical model (NRIPR ETA and WRF) systems have been adapted in the University and integrated WRF have been tested and used for the geographical region of the Carpathian Basin (NRIPR, ETA and WRF). Recently ALADIN/CHAPEAU the academic version of the ARPEGE ALADIN cy33t1 meso-scale numerical weather prediction model system (which is the operational forecasting tool of our National Weather Service) has been installed at our Institute. ALADIN is the operational forecasting model of the Hungarian Meteorological Service and developed in the framework of the international ALADIN co-operation. Our main objectives are i) the analysis of different typical weather situations, ii) fine tuning of parameterization schemes and the iii) comparison of the ALADIN/CHAPEAU and WRF model outputs based on case studies. The necessary hardware and software innovations has have been done. In the presentation the

  17. Deformation mechanism of the Cryostat in the CADS Injector II

    Science.gov (United States)

    Yuan, Jiandong; Zhang, Bin; Wan, Yuqin; Sun, Guozhen; Bai, Feng; Zhang, Juihui; He, Yuan

    2018-01-01

    Thermal contraction and expansion of the Cryostat will affect its reliability and stability. To optimize and upgrade the Cryostat, we analyzed the heat transfer in a cryo-vacuum environment from the theoretical point first. The simulation of cryo-vacuum deformation based on a finite element method was implemented respectively. The completed measurement based on a Laser Tracker and a Micro Alignment Telescope was conducted to verify its correctness. The monitored deformations were consistent with the simulated ones. After the predictable deformations in vertical direction have been compensated, the superconducting solenoids and Half Wave Resonator cavities approached the ideal "zero" position under liquid helium conditions. These guaranteed the success of 25 MeV@170 uA continuous wave protons of Chinese accelerator driven subcritical system Injector II. By correlating the vacuum and cryo-deformation, we have demonstrated that the complete deformation was the superposition effect of the atmospheric pressure, gravity and thermal stress during both the process of cooling down and warming up. The results will benefit to an optimization for future Cryostat's design.

  18. Non-LTE equivalent widths for Si II, III and IV

    International Nuclear Information System (INIS)

    Becker, S.R.; Butler, K.

    1990-01-01

    Equivalent widths for a set of Si II, III and IV lines reliable for the determination of temperatures in the B star parameter range are given. They are calculated on a fine grid of LTE line blanketed model atmospheres and lie in the wavelength region from 4070 A to 5070 A

  19. Prediction of equilibrium parameters of adsorption of lead (II) ions onto diatomite

    Science.gov (United States)

    Salman, Taylan; Ardalı, Yüksel; Gamze Turan, N.

    2013-04-01

    Heavy metals from industrial wastewaters are one of the most important environmental issues to be solved today. Due to their toxicity and nonbiodegradable nature, heavy metals cause environmental and public health problems. Various techniques have been developed to remove heavy metals from aqueous solutions. These include chemical precipitation, reverse osmosis, ion Exchange and adsorption. Among them, adsorption is considered to be a particularly competitive and effective process for the removal of heavy metals from aqueous solutions. There is growing interest in using low cost, commercially available materials for the adsorption of heavy metals. Diatomite is a siliceous sedimentary rock having an amorphous form of silica (SiO2. nH2O) containing a small amount of microcrystalline material. It has unique combination of physical and chemical properties such as high porosity, high permeability, small particle size, large surface area, and low thermal conductivity. In addition, it is available in Turkey and in various locations around the world. Therefore, diatomite has been successfully used as adsorbent for the removal of heavy metals. The aim of the study is to investigate the adsorption properties of diatomite. The equilibrium adsorption data were applied to the Langmuir, Freundlich and Dubinin-Radushkevic (D-R) isotherm models. Adsorption experiments were performed under batch process, using Pb (II) initial concentration, pH of solution and contact time as variables. The results demonstrated that the adsorption of Pb (II) was strongly dependent on pH of solution. The effect of pH on adsorption of Pb(II) on diatomite was conducted by varying pH from 2 to 12 at 20 oC. In the pH range of 2.0-4.0, the adsorption percentage increases slightly as the pH increasing. At pH>4, the adsorption percentage decreases with increasing pH because hydrolysis product and the precipitation begin to play an important role in the sorption of Pb (II). At pH4, the maximum adsorption

  20. Aircraft noise prediction program theoretical manual: Rotorcraft System Noise Prediction System (ROTONET), part 4

    Science.gov (United States)

    Weir, Donald S.; Jumper, Stephen J.; Burley, Casey L.; Golub, Robert A.

    1995-01-01

    This document describes the theoretical methods used in the rotorcraft noise prediction system (ROTONET), which is a part of the NASA Aircraft Noise Prediction Program (ANOPP). The ANOPP code consists of an executive, database manager, and prediction modules for jet engine, propeller, and rotor noise. The ROTONET subsystem contains modules for the prediction of rotor airloads and performance with momentum theory and prescribed wake aerodynamics, rotor tone noise with compact chordwise and full-surface solutions to the Ffowcs-Williams-Hawkings equations, semiempirical airfoil broadband noise, and turbulence ingestion broadband noise. Flight dynamics, atmosphere propagation, and noise metric calculations are covered in NASA TM-83199, Parts 1, 2, and 3.

  1. Improved methods for predicting peptide binding affinity to MHC class II molecules

    DEFF Research Database (Denmark)

    Jensen, Kamilla Kjærgaard; Andreatta, Massimo; Marcatili, Paolo

    2018-01-01

    Major histocompatibility complex class II (MHC-II) molecules are expressed on the surface of professional antigen presenting cells where they display peptides to T helper cells, which orchestrate the onset and outcome of many host immune responses. Understanding which peptides will be presented b...... are publicly available at www.cbs.dtu.dk/services/NetMHCII-2.3 and www.cbs.dtu.dk/services/NetMHCIIpan-3.2. This article is protected by copyright. All rights reserved....

  2. Combination of Mean Platelet Volume/Platelet Count Ratio and the APACHE II Score Better Predicts the Short-Term Outcome in Patients with Acute Kidney Injury Receiving Continuous Renal Replacement Therapy.

    Science.gov (United States)

    Li, Junhui; Li, Yingchuan; Sheng, Xiaohua; Wang, Feng; Cheng, Dongsheng; Jian, Guihua; Li, Yongguang; Feng, Liang; Wang, Niansong

    2018-03-29

    Both the Acute physiology and Chronic Health Evaluation (APACHE II) score and mean platelet volume/platelet count Ratio (MPR) can independently predict adverse outcomes in critically ill patients. This study was aimed to investigate whether the combination of them could have a better performance in predicting prognosis of patients with acute kidney injury (AKI) who received continuous renal replacement therapy (CRRT). Two hundred twenty-three patients with AKI who underwent CRRT between January 2009 and December 2014 in a Chinese university hospital were enrolled. They were divided into survivals group and non-survivals group based on the situation at discharge. Receiver Operating Characteristic (ROC) curve was used for MPR and APACHE II score, and to determine the optimal cut-off value of MPR for in-hospital mortality. Factors associated with mortality were identified by univariate and multivariate logistic regression analysis. The mean age of the patients was 61.4 years, and the overall in-hospital mortality was 48.4%. Acute cardiorenal syndrome (ACRS) was the most common cause of AKI. The optimal cut-off value of MPR for mortality was 0.099 with an area under the ROC curve (AUC) of 0.636. The AUC increased to 0.851 with the addition of the APACHE II score. The mortality of patients with of MPR > 0.099 was 56.4%, which was significantly higher than that of the control group with of ≤ 0.099 (39.6%, P= 0.012). Logistic regression analysis showed that average number of organ failure (OR = 2.372), APACHE II score (OR = 1.187), age (OR = 1.028) and vasopressors administration (OR = 38.130) were significantly associated with poor prognosis. Severity of illness was significantly associated with prognosis of patients with AKI. The combination of MPR and APACHE II score may be helpful in predicting the short-term outcome of AKI. © 2018 The Author(s). Published by S. Karger AG, Basel.

  3. Combination of Mean Platelet Volume/Platelet Count Ratio and the APACHE II Score Better Predicts the Short-Term Outcome in Patients with Acute Kidney Injury Receiving Continuous Renal Replacement Therapy

    Directory of Open Access Journals (Sweden)

    Junhui Li

    2018-03-01

    Full Text Available Background/Aims: Both the Acute physiology and Chronic Health Evaluation (APACHE II score and mean platelet volume/platelet count Ratio (MPR can independently predict adverse outcomes in critically ill patients. This study was aimed to investigate whether the combination of them could have a better performance in predicting prognosis of patients with acute kidney injury (AKI who received continuous renal replacement therapy (CRRT. Methods: Two hundred twenty-three patients with AKI who underwent CRRT between January 2009 and December 2014 in a Chinese university hospital were enrolled. They were divided into survivals group and non-survivals group based on the situation at discharge. Receiver Operating Characteristic (ROC curve was used for MPR and APACHE II score, and to determine the optimal cut-off value of MPR for in-hospital mortality. Factors associated with mortality were identified by univariate and multivariate logistic regression analysis. Results: The mean age of the patients was 61.4 years, and the overall in-hospital mortality was 48.4%. Acute cardiorenal syndrome (ACRS was the most common cause of AKI. The optimal cut-off value of MPR for mortality was 0.099 with an area under the ROC curve (AUC of 0.636. The AUC increased to 0.851 with the addition of the APACHE II score. The mortality of patients with of MPR > 0.099 was 56.4%, which was significantly higher than that of the control group with of ≤ 0.099 (39.6%, P= 0.012. Logistic regression analysis showed that average number of organ failure (OR = 2.372, APACHE II score (OR = 1.187, age (OR = 1.028 and vasopressors administration (OR = 38.130 were significantly associated with poor prognosis. Conclusion: Severity of illness was significantly associated with prognosis of patients with AKI. The combination of MPR and APACHE II score may be helpful in predicting the short-term outcome of AKI.

  4. BARTTest: Community-Standard Atmospheric Radiative-Transfer and Retrieval Tests

    Science.gov (United States)

    Harrington, Joseph; Himes, Michael D.; Cubillos, Patricio E.; Blecic, Jasmina; Challener, Ryan C.

    2018-01-01

    Atmospheric radiative transfer (RT) codes are used both to predict planetary and brown-dwarf spectra and in retrieval algorithms to infer atmospheric chemistry, clouds, and thermal structure from observations. Observational plans, theoretical models, and scientific results depend on the correctness of these calculations. Yet, the calculations are complex and the codes implementing them are often written without modern software-verification techniques. The community needs a suite of test calculations with analytically, numerically, or at least community-verified results. We therefore present the Bayesian Atmospheric Radiative Transfer Test Suite, or BARTTest. BARTTest has four categories of tests: analytically verified RT tests of simple atmospheres (single line in single layer, line blends, saturation, isothermal, multiple line-list combination, etc.), community-verified RT tests of complex atmospheres, synthetic retrieval tests on simulated data with known answers, and community-verified real-data retrieval tests.BARTTest is open-source software intended for community use and further development. It is available at https://github.com/ExOSPORTS/BARTTest. We propose this test suite as a standard for verifying atmospheric RT and retrieval codes, analogous to the Held-Suarez test for general circulation models. This work was supported by NASA Planetary Atmospheres grant NX12AI69G, NASA Astrophysics Data Analysis Program grant NNX13AF38G, and NASA Exoplanets Research Program grant NNX17AB62G.

  5. A cephalometric analysis of Class II dentate subjects to establish a formula to determine the occlusal plane in Class II edentate subjects: A neo adjunct

    OpenAIRE

    Nikita Sinha; K Mahendranadh Reddy; Nidhi Gupta; Y M Shastry

    2017-01-01

    Purpose: Occlusal plane (OP) differs considerably in participants with skeletal Class I and Class II participants. In this study, cephalometrics has been used to help in the determination of orientation of the OP utilizing the nonresorbable bony anatomic landmarks in skeletal Class II participants and an attempt has been made to predict and examine the OP in individuals with skeletal class II jaw relationship. Materials and Methods: One hundred dentulous participants with skeletal Class II...

  6. Size distribution and concentrations of heavy metals in atmospheric aerosols originating from industrial emissions as predicted by the HYSPLIT model

    Science.gov (United States)

    Chen, Bing; Stein, Ariel F.; Maldonado, Pabla Guerrero; Sanchez de la Campa, Ana M.; Gonzalez-Castanedo, Yolanda; Castell, Nuria; de la Rosa, Jesus D.

    2013-06-01

    This study presents a description of the emission, transport, dispersion, and deposition of heavy metals contained in atmospheric aerosols emitted from a large industrial complex in southern Spain using the HYSPLIT model coupled with high- (MM5) and low-resolution (GDAS) meteorological simulations. The dispersion model was configured to simulate eight size fractions (17 μm) of metals based on direct measurements taken at the industrial emission stacks. Twelve stacks in four plants were studied and the stacks showed considerable differences for both emission fluxes and size ranges of metals. We model the dispersion of six major metals; Cr, Co, Ni, La, Zn, and Mo, which represent 77% of the total mass of the 43 measured elements. The prediction shows that the modeled industrial emissions produce an enrichment of heavy metals by a factor of 2-5 for local receptor sites when compared to urban and rural background areas in Spain. The HYSPLIT predictions based on the meteorological fields from MM5 show reasonable consistence with the temporal evolution of concentrations of Cr, Co, and Ni observed at three sites downwind of the industrial area. The magnitude of concentrations of metals at two receptors was underestimated for both MM5 (by a factor of 2-3) and GDAS (by a factor of 4-5) meteorological runs. The model prediction shows that heavy metal pollution from industrial emissions in this area is dominated by the ultra-fine (<0.66 μm) and fine (<2.5 μm) size fractions.

  7. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Main Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the Main Hawaiian Islands (MHI)...

  8. Measuring and prediction of global solar ultraviolet radiation (0295-0385 μ m) under clear and cloudless skies

    International Nuclear Information System (INIS)

    Wright, Jaime

    2008-01-01

    Values of global solar ultraviolet radiation were measured with an ultraviolet radiometer and also predicted with a atmospheric spectral model. The values obtained with the atmospheric spectral model, based physically, were analyzed and compared with experimental values measured in situ. Measurements were performed for different zenith angles in conditions of clear skies in Heredia, Costa Rica. The necessary input data include latitude, altitude, surface albedo, Earth-Sun distance, as well as atmospheric characteristics: atmospheric turbidity, precipitable water and atmospheric ozone. The comparison between measured and predicted values have been successful. (author) [es

  9. Development of mathematical techniques for the assimilation of remote sensing data into atmospheric models

    International Nuclear Information System (INIS)

    Seinfeld, J.H.

    1982-01-01

    The problem of the assimilation of remote sensing data into mathematical models of atmospheric pollutant species was investigated. The data assimilation problem is posed in terms of the matching of spatially integrated species burden measurements to the predicted three-dimensional concentration fields from atmospheric diffusion models. General conditions were derived for the reconstructability of atmospheric concentration distributions from data typical of remote sensing applications, and a computational algorithm (filter) for the processing of remote sensing data was developed

  10. Development of mathematical techniques for the assimilation of remote sensing data into atmospheric models

    International Nuclear Information System (INIS)

    Seinfeld, J.H.

    1982-01-01

    The problem of the assimilation of remote sensing data into mathematical models of atmospheric pollutant species was investigated. The problem is posed in terms of the matching of spatially integrated species burden measurements to the predicted three dimensional concentration fields from atmospheric diffusion models. General conditions are derived for the reconstructability of atmospheric concentration distributions from data typical of remote sensing applications, and a computational algorithm (filter) for the processing of remote sensing data is developed

  11. Understanding the Atmosphere of 51 Eri b: Do Photochemical Hazes Cloud the Planets Spectrum?

    Science.gov (United States)

    Marley, Mark Scott; Zahnle, Kevin; Moses, J.; Morley, C.

    2015-01-01

    The first young giant planet to be discovered by the Gemini Planet Imager was the (is) approximately 2MJ planet 51 Eri b. This approximately 20 Myr old young Jupiter is the first directly imaged planet to show unmistakable methane in H band. To constrain the planet's mass, atmospheric temperature, and composition, the GPI J and H band spectra as well as some limited photometric points were compared to the predictions of substellar atmosphere models. The best fitting models reported in the discovery paper (Macintosh et al. 2015) relied upon a combination of clear and cloudy atmospheric columns to reproduce the data. However for an object as cool as 700 K, the origin of the cloud coverage is somewhat puzzling, as the global silicate and iron clouds would be expected to have sunk well below the photosphere by this effective temperature. While strong vertical mixing in these low gravity atmospheres remains a plausible explanation, we have explored whether atmospheric photochemistry, driven by the UV flux from the primary star, may yield hazes that also influence the observed spectrum of the planet. To explore this possibility we have modeled the atmospheric photochemistry of 51 Eri b using two state-of-the-art photochemical models, both capable of predicting yields of complex hydrocarbons under various atmospheric conditions. In our presentation we will summarize the modeling approach employed to characterize 51 Eri b, explaining constraints on the planet's effective temperature, gravity, and atmospheric composition and also present results of our studies of atmospheric photochemistry. We will discuss whether photochemical hazes could indeed be responsible for the particulate opacity that apparently sculpts the spectrum of the planet.

  12. Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates.

    Science.gov (United States)

    Csavina, Janae; Field, Jason; Félix, Omar; Corral-Avitia, Alba Y; Sáez, A Eduardo; Betterton, Eric A

    2014-07-15

    Atmospheric particulate have deleterious impacts on human health. Predicting dust and aerosol emission and transport would be helpful to reduce harmful impacts but, despite numerous studies, prediction of dust events and contaminant transport in dust remains challenging. In this work, we show that relative humidity and wind speed are both determinants in atmospheric dust concentration. Observations of atmospheric dust concentrations in Green Valley, AZ, USA, and Juárez, Chihuahua, México, show that PM10 concentrations are not directly correlated with wind speed or relative humidity separately. However, selecting the data for high wind speeds (>4m/s at 10 m elevation), a definite trend is observed between dust concentration and relative humidity: dust concentration increases with relative humidity, reaching a maximum around 25% and it subsequently decreases with relative humidity. Models for dust storm forecasting may be improved by utilizing atmospheric humidity and wind speed as main drivers for dust generation and transport. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. First results from SAGE II

    International Nuclear Information System (INIS)

    Abdurashitov, J.N.; Faizov, E.L.; Gavrin, V.N.

    1994-01-01

    The Russian-American Gallium solar neutrino Experiment (SAGE) began the second phase of operation (SAGE II) in September of 1992. Monthly measurements of the integral flux of solar neutrinos have been made with 55 tonnes of gallium. The K-peak results of the first five runs of SAGE II give a capture rate of 76 -18 +21 (stat) -7 +5 (sys) SNU. combined with the SAGE I result, the capture rate is 74 -12 +13 (stat) -7 +5 (sys) SNU. This represents only 56%--60% of the capture rate predicted by different Standard Solar Models

  14. Atmospheric Circulations of Rocky Planets as Heat Engines

    Science.gov (United States)

    Koll, D. D. B.

    2017-12-01

    Rocky planets are extremely common in the galaxy and include Earth, Mars, Venus, and hundreds of exoplanets. To understand and compare the climates of these planets, we need theories that are general enough to accommodate drastically different atmospheric and planetary properties. Unfortunately, few such theories currently exist.For Earth, there is a well-known principle that its atmosphere resembles a heat engine - the atmosphere absorbs heat near the surface, at a hot temperature, and emits heat to space in the upper troposphere, at a cold temperature, which allows it to perform work and balance dissipative processes such as friction. However, previous studies also showed that Earth's hydrological cycle uses up a large fraction of the heat engine's work output, which makes it difficult to view other atmospheres as heat engines.In this work I extend the heat engine principle from Earth towards other rocky planets. I explore both dry and moist atmospheres in an idealized general circulation model (GCM), and quantify their work output using entropy budgets. First, I show that convection and turbulent heat diffusion are important entropy sources in dry atmospheres. I develop a scaling that accounts for its effects, which allows me to predict the strength of frictional dissipation in dry atmospheres. There are strong parallels between my scaling and so-called potential intensity theory, which is a seminal theory for understanding tropical cyclones on Earth. Second, I address how moisture affects atmospheric heat engines. Moisture modifies both the thermodynamic properties of air and releases latent heat when water vapor condenses. I explore the impact of both effects, and use numerical simulations to explore the difference between dry and moist atmospheric circulations across a wide range of climates.

  15. Can Early Computed Tomography Angiography after Endovascular Aortic Aneurysm Repair Predict the Need for Reintervention in Patients with Type II Endoleak?

    Energy Technology Data Exchange (ETDEWEB)

    Dudeck, O., E-mail: oliver.dudeck@med.ovgu.de [University of Magdeburg, Department of Radiology and Nuclear Medicine (Germany); Schnapauff, D. [Charité Universitätsmedizin Berlin, Department of Radiology (Germany); Herzog, L.; Löwenthal, D.; Bulla, K.; Bulla, B. [University of Magdeburg, Department of Radiology and Nuclear Medicine (Germany); Halloul, Z.; Meyer, F. [University of Magdeburg, Department of General, Visceral and Vascular Surgery (Germany); Pech, M. [University of Magdeburg, Department of Radiology and Nuclear Medicine (Germany); Gebauer, B. [Charité Universitätsmedizin Berlin, Department of Radiology (Germany); Ricke, J. [University of Magdeburg, Department of Radiology and Nuclear Medicine (Germany)

    2015-02-15

    PurposeThis study was designed to identify parameters on CT angiography (CTA) of type II endoleaks following endovascular aortic aneurysm repair (EVAR) for abdominal aortic aneurysm (AAA), which can be used to predict the subsequent need for reinterventions.MethodsWe retrospectively identified 62 patients with type II endoleak who underwent early CTA in mean 3.7 ± 1.9 days after EVAR. On the basis of follow-up examinations (mean follow-up period 911 days; range, 373–1,987 days), patients were stratified into two groups: those who did (n = 18) and those who did not (n = 44) require reintervention. CTA characteristics, such as AAA, endoleak, as well as nidus dimensions, patency of the inferior mesenteric artery, number of aortic branch vessels, and the pattern of endoleak appearance, were recorded and correlated with the clinical outcome.ResultsUnivariate and receiver operating characteristic curve regression analyses revealed significant differences between the two groups for the endoleak volume (surveillance group: 1391.6 ± 1427.9 mm{sup 3}; reintervention group: 3227.7 ± 2693.8 mm{sup 3}; cutoff value of 2,386 mm{sup 3}; p = 0.002), the endoleak diameter (13.6 ± 4.3 mm compared with 25.9 ± 9.6 mm; cutoff value of 19 mm; p < 0.0001), the number of aortic branch vessels (2.9 ± 1.2 compared with 4.2 ± 1.4 vessels; p = 0.001), as well as a “complex type” endoleak pattern (13.6 %, n = 6 compared with 44.4 %, n = 8; p = 0.02).ConclusionsEarly CTA can predict the future need for reintervention in patients with type II endoleak. Therefore, treatment decision should be based not only on aneurysm enlargement alone but also on other imaging characteristics.

  16. WSA-Enlil Solar Wind Prediction

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSA-Enlil is a large-scale, physics-based prediction model of the heliosphere, used by the Space Weather Forecast Office to provide 1-4 day advance warning of solar...

  17. COLLABORATIVE RESEARCH: TOWARDS ADVANCED UNDERSTANDING AND PREDICTIVE CAPABILITY OF CLIMATE CHANGE IN THE ARCTIC USING A HIGH-RESOLUTION REGIONAL ARCTIC CLIMATE SYSTEM MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Gutowski, William J.

    2013-02-07

    The motivation for this project was to advance the science of climate change and prediction in the Arctic region. Its primary goals were to (i) develop a state-of-the-art Regional Arctic Climate system Model (RACM) including high-resolution atmosphere, land, ocean, sea ice and land hydrology components and (ii) to perform extended numerical experiments using high performance computers to minimize uncertainties and fundamentally improve current predictions of climate change in the northern polar regions. These goals were realized first through evaluation studies of climate system components via one-way coupling experiments. Simulations were then used to examine the effects of advancements in climate component systems on their representation of main physics, time-mean fields and to understand variability signals at scales over many years. As such this research directly addressed some of the major science objectives of the BER Climate Change Research Division (CCRD) regarding the advancement of long-term climate prediction.

  18. The sources and fate of radionuclides emitted to the atmosphere

    International Nuclear Information System (INIS)

    Sandalls, J.

    2001-01-01

    The thesis represents an account of the sources and fate of radionuclides entering the atmosphere, and indicates where the candidate, through his own work, has contributed to the overall picture. The sources of the natural and man-made radionuclides found in the atmosphere are identified. New data on emissions from UK coal-fired power stations and UK steel works are reported. Radionuclides produced in nuclear fission and released to the atmosphere in the detonation of nuclear weapons, in nuclear accidents, and through routine discharges from nuclear sites have added to the atmospheric burden of radioactive materials; both acute and chronic low-level emissions are discussed. The various natural processes which remove radionuclides from the atmosphere are described. Soon after release, many radioactive materials become attached to the atmospheric aerosol, but others undergo gas-phase reactions. Some gases are sufficiently long-lived in the troposphere as to find their way into the stratosphere where their fate may be determined by the short-wave radiation from the sun. The nature of the particles of fuel emitted to the atmosphere in the explosion and fire at the Chernobyl nuclear power plant in 1986 are discussed, together with the associated environmental problems. The ground is the major sink for radionuclides leaving the atmosphere, and the behaviour of the more radiologically important radionuclides following deposition is described with special reference to: (i) fallout in both the urban and living environments; (ii) the pathways which may lead to contamination of the food chain; (iii) how the fuel particle fallout from Chernobyl was unique in nuclear accidents; (iv) soil-to-plant transfer of radioelements and (v) how radiation exposure of man can be mitigated in both the contaminated urban and rural environments. (author)

  19. Reactive Fe(II) layers in deep-sea sediments

    Science.gov (United States)

    König, Iris; Haeckel, Matthias; Drodt, Matthias; Suess, Erwin; Trautwein, Alfred X.

    1999-05-01

    The percentage of the structural Fe(II) in clay minerals that is readily oxidized to Fe(III) upon contact with atmospheric oxygen was determined across the downcore tan-green color change in Peru Basin sediments. This latent fraction of reactive Fe(II) was only found in the green strata, where it proved to be large enough to constitute a deep reaction layer with respect to the pore water O 2 and NO 3-. Large variations were detected in the proportion of the reactive Fe(II) concentration to the organic matter content along core profiles. Hence, the commonly observed tan-green color change in marine sediments marks the top of a reactive Fe(II) layer, which may represent the major barrier to the movement of oxidation fronts in pelagic subsurface sediments. This is also demonstrated by numerical model simulations. The findings imply that geochemical barriers to pore water oxidation fronts form diagenetically in the sea floor wherever the stage of iron reduction is reached, provided that the sediments contain a significant amount of structural iron in clay minerals.

  20. Jovian atmospheres

    International Nuclear Information System (INIS)

    Allison, M.; Travis, L.D.

    1986-10-01

    A conference on the atmosphere of Jupiter produced papers in the areas of thermal and ortho-para hydrogen structure, clouds and chemistry, atmospheric structure, global dynamics, synoptic features and processes, atmospheric dynamics, and future spaceflight opportunities. A session on the atmospheres of Uranus and Neptune was included, and the atmosphere of Saturn was discussed in several papers

  1. Physical Properties of the MER and Beagle II Landing Sites on Mars

    Science.gov (United States)

    Jakosky, B. M.; Pelkey, S. M.; Mellon, M. T.; Putzig, N.; Martinez-Alonso, S.; Murphy, N.; Hynek, B.

    2003-12-01

    The ESA Beagle II and the NASA Mars Exploration Rover spacecraft are scheduled to land on the martian surface in December 2003 and January 2004, respectively. Mission operations and success depends on the physical properties of the surfaces on which they land. Surface structural characteristics such as the abundances of loose, unconsolidated fine material, of fine material that has been cemented into a duricrust, and of rocks affect the ability to safely land and to successfully sample and traverse the surface. Also, physical properties affect surface and atmospheric temperatures, which affect lander and rover functionality. We are in the process of analyzing surface temperature information for these sites, derived from MGS TES and Odyssey THEMIS daytime and nighttime measurements. Our approach is to: (i) remap thermal inertia using TES data at ~3-km resolution, to obtain the most complete coverage possible; (ii) interpret physical properties from TES coverage in conjunction with other remote-sensing data sets; (iii) map infrared brightness using daytime and nighttime THEMIS data at 100-m resolution, and do qualitative analysis of physical properties and processes; and (iv) derive thermal inertia from THEMIS nighttime data in conjunction with daytime albedo measurements derived from TES, THEMIS, and MOC observations. In addition, we will use measured temperatures and derived thermal inertia to predict surface temperatures for the periods of the missions.

  2. Limits to Creation of Oxygen-Rich Atmospheres on Planets in the Outer Reaches of the Conventional Habitable Zone

    Science.gov (United States)

    Zahnle, Kevin

    2017-01-01

    Abundant free oxygen appears to be a requirement for macroflora and macrofauna. To the best of our knowledge, a general discussion of which habitable planets are conducive to oxygen has not taken place. Theories for the rise of oxygen fall into 4 categories: (i) It is governed by an intrinsic rate of biological innovation, independent of environmental factors. (ii) It is caused by mantle evolution, probably consequent to secular cooling. (iii) It is caused by hydrogen escape, which irreversibly oxidizes the Earth. (iv) It is Gaia's response to the brightening Sun, its rise prevented until reduced greenhouse gases were no longer needed to maintain a clement climate. All but the first of these make implicit astronomical predictions that can be quantified and made explicit. Here we address the third hypothesis. In this hypothesis hydrogen escape acts like an hourglass that continues until all relevant reduced mineral buffers have been oxidized (titrated, as it were) and the surface made safe for O2. The hypothesis predicts that abundant free O2 will be absent from habitable planets that have not experienced significant hydrogen escape. Where hydrogen escape is modest or insignificant, the atmosphere can be approximated as hydrostatic, which makes assessing radiative cooling by embedded molecules, atoms, and ions such as CO2 and H3+ straightforward. In particular, H2 is efficient at exciting non-LTE CO2 15 micron emission, which makes radiative cooling very effective when H2 is abundant. We can therefore map out the region of phase space in which habitable planets do not lose hydrogen, and therefore do not develop O2 atmospheres. A related matter is the power of radiative cooling by embedded molecules to enforce the diffusion limit to hydrogen escape. This matter in particular is relevant to addressing the empirical observation that rocky planets with thin or negligible atmospheres are rarely or never bigger than approx.1.6 Earth radii.

  3. Limits to Creation of Oxygen-Rich Atmospheres on Planets in the Outer Reaches of the Conventional Habitable Zone

    Science.gov (United States)

    Zahnle, Kevin

    2017-10-01

    Abundant free oxygen appears to be a requirement for macroflora and macrofauna. To the best of our knowledge, a general discussion of which habitable planets are conducive to oxygen has not taken place. Theories for the rise of oxygen fall into 4 categories: (i) It is governed by an intrinsic rate of biological innovation, independent of environmental factors. (ii) It is caused by mantle evolution, probably consequent to secular cooling. (iii) It is caused by hydrogen escape, which irreversibly oxidizes the Earth. (iv) It is Gaia’s response to the brightening Sun, its rise prevented until reduced greenhouse gases were no longer needed to maintain a clement climate. All but the first of these make implicit astronomical predictions that can be quantified and made explicit.Here we address the third hypothesis. In this hypothesis hydrogen escape acts like an hourglass that continues until all relevant reduced mineral buffers have been oxidized (titrated, as it were) and the surface made safe for O2. The hypothesis predicts that abundant free O2 will be absent from habitable planets that have not experienced significant hydrogen escape. Where hydrogen escape is modest or insignificant, the atmosphere can be approximated as hydrostatic, which makes assessing radiative cooling by embedded molecules, atoms, and ions such as CO2 and H3+ straightforward. In particular, H2 is efficient at exciting non-LTE CO2 15 micron emission, which makes radiative cooling very effective when H2 is abundant. We can therefore map out the region of phase space in which habitable planets do not lose hydrogen, and therefore do not develop O2 atmospheres.A related matter is the power of radiative cooling by embedded molecules to enforce the diffusion limit to hydrogen escape. This matter in particular is relevant to addressing the empirical observation that rocky planets with thin or negligible atmospheres are rarely or never bigger than ~1.6 Earth radii.

  4. Results from SAGE II

    International Nuclear Information System (INIS)

    Nico, J.S.

    1994-01-01

    The Russian-American Gallium solar neutrino Experiment (SAGE) began the second phase of operation (SAGE II) in September of 1992. Monthly measurements of the integral flux of solar neutrinos have been made with 55 tonnes of gallium. The K-peak results of the first nine runs of SAGE II give a capture rate of 66 -13 +18 (stat) -7 +5 (sys) SNU. Combined with the SAGE I result of 73 -16 +18 (stat) -7 5 (sys) SNU, the capture rate is 69 -11 +11 (stat) -7 +5 (sys) SNU. This represents only 52%--56% of the capture rate predicted by different Standard Solar Models

  5. Estimates of the atmospheric parameters of M-type stars: a machine-learning perspective

    Science.gov (United States)

    Sarro, L. M.; Ordieres-Meré, J.; Bello-García, A.; González-Marcos, A.; Solano, E.

    2018-05-01

    Estimating the atmospheric parameters of M-type stars has been a difficult task due to the lack of simple diagnostics in the stellar spectra. We aim at uncovering good sets of predictive features of stellar atmospheric parameters (Teff, log (g), [M/H]) in spectra of M-type stars. We define two types of potential features (equivalent widths and integrated flux ratios) able to explain the atmospheric physical parameters. We search the space of feature sets using a genetic algorithm that evaluates solutions by their prediction performance in the framework of the BT-Settl library of stellar spectra. Thereafter, we construct eight regression models using different machine-learning techniques and compare their performances with those obtained using the classical χ2 approach and independent component analysis (ICA) coefficients. Finally, we validate the various alternatives using two sets of real spectra from the NASA Infrared Telescope Facility (IRTF) and Dwarf Archives collections. We find that the cross-validation errors are poor measures of the performance of regression models in the context of physical parameter prediction in M-type stars. For R ˜ 2000 spectra with signal-to-noise ratios typical of the IRTF and Dwarf Archives, feature selection with genetic algorithms or alternative techniques produces only marginal advantages with respect to representation spaces that are unconstrained in wavelength (full spectrum or ICA). We make available the atmospheric parameters for the two collections of observed spectra as online material.

  6. Uncertainties in (E)UV model atmosphere fluxes

    Science.gov (United States)

    Rauch, T.

    2008-04-01

    Context: During the comparison of synthetic spectra calculated with two NLTE model atmosphere codes, namely TMAP and TLUSTY, we encounter systematic differences in the EUV fluxes due to the treatment of level dissolution by pressure ionization. Aims: In the case of Sirius B, we demonstrate an uncertainty in modeling the EUV flux reliably in order to challenge theoreticians to improve the theory of level dissolution. Methods: We calculated synthetic spectra for hot, compact stars using state-of-the-art NLTE model-atmosphere techniques. Results: Systematic differences may occur due to a code-specific cutoff frequency of the H I Lyman bound-free opacity. This is the case for TMAP and TLUSTY. Both codes predict the same flux level at wavelengths lower than about 1500 Å for stars with effective temperatures (T_eff) below about 30 000 K only, if the same cutoff frequency is chosen. Conclusions: The theory of level dissolution in high-density plasmas, which is available for hydrogen only should be generalized to all species. Especially, the cutoff frequencies for the bound-free opacities should be defined in order to make predictions of UV fluxes more reliable.

  7. Parallel implementation of the PHOENIX generalized stellar atmosphere program. II. Wavelength parallelization

    International Nuclear Information System (INIS)

    Baron, E.; Hauschildt, Peter H.

    1998-01-01

    We describe an important addition to the parallel implementation of our generalized nonlocal thermodynamic equilibrium (NLTE) stellar atmosphere and radiative transfer computer program PHOENIX. In a previous paper in this series we described data and task parallel algorithms we have developed for radiative transfer, spectral line opacity, and NLTE opacity and rate calculations. These algorithms divided the work spatially or by spectral lines, that is, distributing the radial zones, individual spectral lines, or characteristic rays among different processors and employ, in addition, task parallelism for logically independent functions (such as atomic and molecular line opacities). For finite, monotonic velocity fields, the radiative transfer equation is an initial value problem in wavelength, and hence each wavelength point depends upon the previous one. However, for sophisticated NLTE models of both static and moving atmospheres needed to accurately describe, e.g., novae and supernovae, the number of wavelength points is very large (200,000 - 300,000) and hence parallelization over wavelength can lead both to considerable speedup in calculation time and the ability to make use of the aggregate memory available on massively parallel supercomputers. Here, we describe an implementation of a pipelined design for the wavelength parallelization of PHOENIX, where the necessary data from the processor working on a previous wavelength point is sent to the processor working on the succeeding wavelength point as soon as it is known. Our implementation uses a MIMD design based on a relatively small number of standard message passing interface (MPI) library calls and is fully portable between serial and parallel computers. copyright 1998 The American Astronomical Society

  8. MAGNETIC DIAGNOSTICS OF THE SOLAR CHROMOSPHERE WITH THE Mg II h–k LINES

    Energy Technology Data Exchange (ETDEWEB)

    Del Pino Alemán, T.; Casini, R. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Manso Sainz, R. [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2016-10-20

    We investigated the formation of the Mg ii h–k doublet in a weakly magnetized atmosphere (20–100 G) using a newly developed numerical code for polarized radiative transfer in a plane-parallel geometry, which implements a recent formulation of partially coherent scattering by polarized multi-term atoms in arbitrary magnetic-field regimes. Our results confirm the importance of partial redistribution effects in the formation of the Mg ii h and k lines, as pointed out by previous work in the non-magnetic case. We show that the presence of a magnetic field can produce measurable modifications of the broadband linear polarization even for relatively small field strengths (∼10 G), while the circular polarization remains well represented by the classical magnetograph formula. Both these results open an important new window for the weak-field diagnostics of the upper solar atmosphere.

  9. Effectiveness of short-term numerical weather prediction in predicting growing degree days and meteorological conditions for apple scab appearance

    Czech Academy of Sciences Publication Activity Database

    Lalic, B.; Francia, M.; Eitzinger, Josef; Podrascanin, Z.; Arsenic, I.

    2016-01-01

    Roč. 23, č. 1 (2016), s. 50-56 ISSN 1350-4827 Institutional support: RVO:86652079 Keywords : venturia-inaequalis * temperature * equation * schemes * model * numerical weather prediction * disease prediction * verification * apple scab * growing degree days Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 1.411, year: 2016

  10. Staging atmospheres

    DEFF Research Database (Denmark)

    Bille, Mikkel; Bjerregaard, Peter; Sørensen, Tim Flohr

    2015-01-01

    The article introduces the special issue on staging atmospheres by surveying the philosophical, political and anthropological literature on atmosphere, and explores the relationship between atmosphere, material culture, subjectivity and affect. Atmosphere seems to occupy one of the classic...

  11. Nighttime atmospheric chemistry of iodine

    Science.gov (United States)

    Saiz-Lopez, Alfonso; Plane, John M. C.; Cuevas, Carlos A.; Mahajan, Anoop S.; Lamarque, Jean-François; Kinnison, Douglas E.

    2016-12-01

    Little attention has so far been paid to the nighttime atmospheric chemistry of iodine species. Current atmospheric models predict a buildup of HOI and I2 during the night that leads to a spike of IO at sunrise, which is not observed by measurements. In this work, electronic structure calculations are used to survey possible reactions that HOI and I2 could undergo at night in the lower troposphere, and hence reduce their nighttime accumulation. The new reaction NO3+ HOI → IO + HNO3 is proposed, with a rate coefficient calculated from statistical rate theory over the temperature range 260-300 K and at a pressure of 1000 hPa to be k(T) = 2.7 × 10-12 (300 K/T)2.66 cm3 molecule-1 s-1. This reaction is included in two atmospheric models, along with the known reaction between I2 and NO3, to explore a new nocturnal iodine radical activation mechanism. The results show that this iodine scheme leads to a considerable reduction of nighttime HOI and I2, which results in the enhancement of more than 25 % of nighttime ocean emissions of HOI + I2 and the removal of the anomalous spike of IO at sunrise. We suggest that active nighttime iodine can also have a considerable, so far unrecognized, impact on the reduction of the NO3 radical levels in the marine boundary layer (MBL) and hence upon the nocturnal oxidizing capacity of the marine atmosphere. The effect of this is exemplified by the indirect effect on dimethyl sulfide (DMS) oxidation.

  12. Atmospheric Radiation Measurement Program plan

    International Nuclear Information System (INIS)

    1990-02-01

    In order to understand energy's role in anthropogenic global climate change, significant reliance is being placed on General Circulation Models (GCMs). A major goal is to foster the development of GCMs capable of predicting the timing and magnitude of greenhouse gas-induced global warming and the regional effects of such warming. The Atmospheric Radiation Measurement (ARM) Program will contribute to the Department of Energy goal by improving the treatment of cloud radiative forcing and feedbacks in GCMs. Two issues will be addressed: the radiation budget and its spectral dependence and the radiative and other properties of clouds. The experimental objective of the ARM Program is to characterize empirically the radiative processes in the Earth's atmosphere with improved resolution and accuracy. A key to this characterization is the effective treatment of cloud formation and cloud properties in GCMs. Through this characterization of radiative properties, it will be possible to understand both the forcing and feedback effects. 19 refs., 4 figs., 2 tabs

  13. Characterization of spent EBR-II driver fuel

    International Nuclear Information System (INIS)

    McKnight, R. D.

    1998-01-01

    Operations and material control and accountancy requirements for the Fuel Conditioning Facility demand accurate prediction of the mass flow of spent EBR-II driver fuel into the facility. This requires validated calculational tools that can predict the burnup and isotopic distribution in irradiated Zr-alloy fueled driver assemblies. Detailed core-follow depletion calculations have been performed for an extensive series of EBR-II runs to produce a database of material inventories for the spent fuel to be processed. As this fuel is processed, comparison of calculated values with measured data obtained from samples of this fuel is producing a growing set of validation data. A more extensive set of samples and measurements from the initial processing of irradiated driver fuel has produced valuable estimates of the biases and uncertainties in both the measured and calculated values. Results of these comparisons are presented herein and indicate the calculated values adequately predict the mass flows

  14. Calibration and performance of the MARK II drift chamber vertex detector

    International Nuclear Information System (INIS)

    Durrett, D.; Ford, W.T.; Hinshaw, D.A.; Rankin, P.; Smith, J.G.; Weber, P.

    1990-05-01

    We have calibrated and studied the performance of the MARK II drift chamber vertex detector with cosmic ray tracks collected with the chamber inside the MARK II detector at the SLC. The chamber achieves 30 μm impact parameter resolution and 500 μm track-pair resolution using CO 2 /C 2 H 6 H 6 (92/8) at 2 atmospheres pressure. The chamber has successfully recorded Z 0 decays at the SLC, and resolved tracks in dense hadronic jets with good efficiency and high accuracy. 5 refs., 13 figs

  15. Accessing the public MIMIC-II intensive care relational database for clinical research.

    Science.gov (United States)

    Scott, Daniel J; Lee, Joon; Silva, Ikaro; Park, Shinhyuk; Moody, George B; Celi, Leo A; Mark, Roger G

    2013-01-10

    The Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II) database is a free, public resource for intensive care research. The database was officially released in 2006, and has attracted a growing number of researchers in academia and industry. We present the two major software tools that facilitate accessing the relational database: the web-based QueryBuilder and a downloadable virtual machine (VM) image. QueryBuilder and the MIMIC-II VM have been developed successfully and are freely available to MIMIC-II users. Simple example SQL queries and the resulting data are presented. Clinical studies pertaining to acute kidney injury and prediction of fluid requirements in the intensive care unit are shown as typical examples of research performed with MIMIC-II. In addition, MIMIC-II has also provided data for annual PhysioNet/Computing in Cardiology Challenges, including the 2012 Challenge "Predicting mortality of ICU Patients". QueryBuilder is a web-based tool that provides easy access to MIMIC-II. For more computationally intensive queries, one can locally install a complete copy of MIMIC-II in a VM. Both publicly available tools provide the MIMIC-II research community with convenient querying interfaces and complement the value of the MIMIC-II relational database.

  16. Bowing-reactivity trends in EBR-II assuming zero-swelling ducts

    International Nuclear Information System (INIS)

    Meneghetti, D.

    1994-01-01

    Predicted trends of duct-bowing reactivities for the Experimental Breeder Reactor II (EBR-II) are correlated with predicted row-wise duct deflections assuming use of idealized zero-void-swelling subassembly ducts. These assume no irradiation induced swellings of ducts but include estimates of the effects of irradiation-creep relaxation of thermally induced bowing stresses. The results illustrate the manners in which at-power creeps may affect subsequent duct deflections at zero power and thereby the trends of the bowing component of a subsequent power reactivity decrement

  17. A Novel Procedure for Prediction of Mixed Mode I/II in Fracture Toughness of Laminate Composites

    Directory of Open Access Journals (Sweden)

    M. Mahmood Shokrieh

    2014-06-01

    Full Text Available Delamination is one of the important modes of failure in laminated composite materials. In this respect, the mixed mode I/II fracture is the most major mode of delamination incidence in laminated composite. In the present research, a relation between the fracture toughness of double cantilever beam (DCB and asymmetric double cantilever beam (ADCB specimens is presented. The DCB and ADCB samples are used for measuring the mode I and mixed mode I/II fracture toughness (G of laminated composite materials, respectively. By considering the diversity of the stacking sequence of lay-ups, the test performance on all different types of lay-ups in order to measure the fracture toughness of laminated composites is a tedious, costly and time consuming task. The purpose of deriving this relation is to estimate the value of the strain energy release rate of laminated composite ADCB specimens by testing a unidirectional DCB. To develop this relationship, the geometry of DCB and ADCB specimens are considered to obtain fracture toughness of multi-directional laminate composites of ADCB samples with arbitrary ply sequence which may be used for design purposes. The procedure presented here reduces the calculation costs of the finite element modeling and its corresponding test significantly. The results obtained by this method are compared with those of experimental and numerical methods. It is shown that the fracture toughness of multi-directional lay-ups can be predicted by measuring the unidirectional ply with an error less than 10% demonstrating the accuracy of the procedure developed in the present research.

  18. Atmospheric structure deduced from disturbed line profiles application to Ca II lines

    International Nuclear Information System (INIS)

    Mein, N.; Mein, P.; Malherbe, J.-M.; Dame, L.; Dumont, S.; CNRS, Laboratoire de Physique Stellaire et Planetaire, Verrieres-le-Buisson, France; College de France, Paris)

    1985-01-01

    A new method is described in order to derive physical quantities (temperature, pressure, radial velocities) from the observation of disturbed line profiles. A method of Fourier analysis is suggested with double profiles and a nonlinear expansion of the coefficient of the Fourier terms. An application to a sequence of H-Ca II lines is attempted. The method is a powerful tool allowing for the simultaneous determination of at least four physical quantities. 9 references

  19. Land-Atmosphere Interactions in Cold Environments (LATICE): The role of Atmosphere - Biosphere - Cryosphere - Hydrosphere interactions in a changing climate

    Science.gov (United States)

    Burkhart, J. F.; Tallaksen, L. M.; Stordal, F.; Berntsen, T.; Westermann, S.; Kristjansson, J. E.; Etzelmuller, B.; Hagen, J. O.; Schuler, T.; Hamran, S. E.; Lande, T. S.; Bryn, A.

    2015-12-01

    Climate change is impacting the high latitudes more rapidly and significantly than any other region of the Earth because of feedback processes between the atmosphere and the underlying surface. A warmer climate has already led to thawing of permafrost, reducing snow cover and a longer growing season; changes, which in turn influence the atmospheric circulation and the hydrological cycle. Still, many studies rely on one-way coupling between the atmosphere and the land surface, thereby neglecting important interactions and feedbacks. The observation, understanding and prediction of such processes from local to regional and global scales, represent a major scientific challenge that requires multidisciplinary scientific effort. The successful integration of earth observations (remote and in-situ data) and model development requires a harmonized research effort between earth system scientists, modelers and the developers of technologies and sensors. LATICE, which is recognized as a priority research area by the Faculty of Mathematics and Natural Sciences at the University of Oslo, aims to advance the knowledge base concerning land atmosphere interactions and their role in controlling climate variability and climate change at high northern latitudes. The consortium consists of an interdisciplinary team of experts from the atmospheric and terrestrial (hydrosphere, cryosphere and biosphere) research groups, together with key expertise on earth observations and novel sensor technologies. LATICE addresses critical knowledge gaps in the current climate assessment capacity through: Improving parameterizations of processes in earth system models controlling the interactions and feedbacks between the land (snow, ice, permafrost, soil and vegetation) and the atmosphere at high latitudes, including the boreal, alpine and artic zone. Assessing the influence of climate and land cover changes on water and energy fluxes. Integrating remote earth observations with in-situ data and

  20. Increasing coccolith calcification during CO2 rise of the penultimate deglaciation (Termination II)

    DEFF Research Database (Denmark)

    Meier, K. J. S.; Berger, C.; Kinkel, Hanno

    2014-01-01

    during Termination II. This is partly due to an assemblage shift towards larger and heavier calcifying morphotypes, but mainly an effect of increasing coccolithophore calcification. This increase is exactly mirroring the rise in atmospheric CO2, contradicting previous findings from Termination I......Glacial to interglacial environmental changes have a strong impact on coccolithophore assemblage composition. At the same time, glacial terminations are characterised by an increase in atmospheric CO2 concentration. In order to determine how these two processes influence the calcite production...... for the coccolithophore calcification increase during atmospheric CO2 rise. Our results illustrate that even during rising atmospheric CO2 the conditions of the seawater carbonate system can be favourable for coccolithophore calcification. The total CaCO3 production of a coccolithophore assemblage under increasing CO2...

  1. Pre/post-strike atmospheric assessment system (PAAS)

    International Nuclear Information System (INIS)

    Peglow, S. G.; Molitoris, J. D.

    1997-01-01

    The Pre/Post-Strike Atmospheric Assessment System was proposed to show the importance of local meteorological conditions in the vicinity of a site suspected of storing or producing toxic agents and demonstrate a technology to measure these conditions, specifically wind fields. The ability to predict the collateral effects resulting from an attack on a facility containing hazardous materials is crucial to conducting effective military operations. Our study approach utilized a combination of field measurements with dispersion modeling to better understand which variables in terrain and weather were most important to collateral damage predictions. To develop the PAAS wind-sensing technology, we utilized a combination of emergent and available technology from micro-Doppler and highly coherent laser systems. The method used for wind sensing is to probe the atmosphere with a highly coherent laser beam. As the beam probes, light is back-scattered from particles entrained in the air to the lidar transceiver and detected by the instrument. Any motion of the aerosols with a component along the beam axis leads to a Doppler shift of the received light. Scanning in a conical fashion about the zenith results in a more accurate and two-dimensional measurement of the wind velocity. The major milestones in the benchtop system development were to verify the design by demonstrating the technique in the laboratory, then scale the design down to a size consistent with a demonstrator unit which could be built to take data in the field. The micro-Doppler heterodyne system we developed determines absolute motion by optically mixing a reference beam with the return signal and has shown motion sensitivity to better than 1 cm/s. This report describes the rationale, technical approach and laboratory testing undertaken to demonstrate the feasibility and utility of a system to provide local meteorological data and predict atmospheric particulate motion. The work described herein was funded by

  2. Effect of atmospheric organic complexation on iron-bearing dust solubility

    Directory of Open Access Journals (Sweden)

    R. Paris

    2013-05-01

    Full Text Available Recent studies reported that the effect of organic complexation may be a potentially important process to be considered by models estimating atmospheric iron flux to the ocean. In this study, we investigated this process effect by a series of dissolution experiments on iron-bearing dust in the presence or the absence of various organic compounds (acetate, formate, oxalate, malonate, succinate, glutarate, glycolate, lactate, tartrate and humic acid as an analogue of humic like substances, HULIS typically found in atmospheric waters. Only 4 of tested organic ligands (oxalate, malonate, tartrate and humic acid caused an enhancement of iron solubility which was associated with an increase of dissolved Fe(II concentrations. For all of these organic ligands, a positive linear dependence of iron solubility to organic concentrations was observed and showed that the extent of organic complexation on iron solubility decreased in the following order: oxalate >malonate = tartrate > humic acid. This was attributed to the ability of electron donors of organic ligands and implies a reductive ligand-promoted dissolution. This study confirms that among the known atmospheric organic binding ligands of Fe, oxalate is the most effective ligand promoting dust iron solubility and showed, for the first time, the potential effect of HULIS on iron dissolution under atmospheric conditions.

  3. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing - Part 2

    Science.gov (United States)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerome C.; Kolody, Mark R.

    2012-01-01

    Evaluation of metals to predict service life of metal-based structures in corrosive environments has long relied on atmospheric exposure test sites. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions similar to those of the corrosive environment. Their reliability to correlate to atmospheric exposure test results is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated corrosion testing has yet to be universally accepted as a useful tool in predicting the long-term service life of a metal, despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard, and their use is crucial, a method that correlates timescales from accelerated testing to atmospheric exposure would be very valuable. This paper presents work that began with the characterization of the atmospheric environment at the Kennedy Space Center (KSC) Beachside Corrosion Test Site. The chemical changes that occur on low carbon steel, during atmospheric and accelerated corrosion conditions, were investigated using surface chemistry analytical methods. The corrosion rates and behaviors of panels subjected to long-term and accelerated corrosion conditions, involving neutral salt fog and alternating seawater spray, were compared to identify possible timescale correlations between accelerated and long-term corrosion performance. The results, as well as preliminary findings on the correlation investigation, are presented.

  4. Biosorption of copper(II) and lead(II) onto potassium hydroxide treated pine cone powder.

    Science.gov (United States)

    Ofomaja, A E; Naidoo, E B; Modise, S J

    2010-08-01

    Pine cone powder surface was treated with potassium hydroxide and applied for copper(II) and lead(II) removal from solution. Isotherm experiments and desorption tests were conducted and kinetic analysis was performed with increasing temperatures. As solution pH increased, the biosorption capacity and the change in hydrogen ion concentration in solution increased. The change in hydrogen ion concentration for lead(II) biosorption was slightly higher than for copper(II) biosorption. The results revealed that ion-exchange is the main mechanism for biosorption for both metal ions. The pseudo-first order kinetic model was unable to describe the biosorption process throughout the effective biosorption period while the modified pseudo-first order kinetics gave a better fit but could not predict the experimentally observed equilibrium capacities. The pseudo-second order kinetics gave a better fit to the experimental data over the temperature range from 291 to 347 K and the equilibrium capacity increased from 15.73 to 19.22 mg g(-1) for copper(II) and from 23.74 to 26.27 for lead(II). Activation energy was higher for lead(II) (22.40 kJ mol(-1)) than for copper(II) (20.36 kJ mol(-1)). The free energy of activation was higher for lead(II) than for copper(II) and the values of DeltaH* and DeltaS* indicate that the contribution of reorientation to the activation stage is higher for lead(II) than copper(II). This implies that lead(II) biosorption is more spontaneous than copper(II) biosorption. Equilibrium studies showed that the Langmuir isotherm gave a better fit for the equilibrium data indicating monolayer coverage of the biosorbent surface. There was only a small interaction between metal ions when simultaneously biosorbed and cation competition was higher for the Cu-Pb system than for the Pb-Cu system. Desorption studies and the Dubinin-Radushkevich isotherm and energy parameter, E, also support the ion-exchange mechanism. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Atmospheric aerosol dispersion models and their applications to environmental risk assessment

    Directory of Open Access Journals (Sweden)

    Andrzej Mazur

    2014-03-01

    Full Text Available Introduction. Numerical models of dispersion of atmospheric pollutants are widely used to forecast the spread of contaminants in the air and to analyze the effects of this phenomenon. The aim of the study is to investigate the possibilities and the quality of diagnosis and prediction of atmospheric transport of aerosols in the air using the dispersion model of atmospheric pollutants, developed at the Institute of Meteorology and Water Management (IMWM in Warsaw. Material and methods. A model of the dispersion of atmospheric pollutants, linked with meteorological models in a diagnostic mode, was used to simulate the transport of the cloud of aerosols released during the crash near the town of Ożydiw (Ukraine and of volcanic ash – during the volcanic eruption of Eyjafjallajökull in Iceland. Results. Possible directions of dispersion of pollutants in the air and its concentration in the atmosphere and deposition to the soil were assessed. The analysis of temporal variability of concentrations of aerosols in the atmosphere confirmed that the model developed at IMWM is an effective tool for diagnosis of air quality in the area of Poland as well as for determination of exposure duration to the aerosol clouds for different weather scenarios. Conclusions. The results are a confirmation of the thesis, that because in the environmental risk assessment, an important element is not only current information on the level of pollution concentrations, but also the time of exposure to pollution and forecast of these elements, and consequently the predicted effects on man or the environment in general; so it is necessary to use forecasting tools, similar to presented application. The dispersion model described in the paper is an operational tool for description, analysis and forecasting of emergency situations in case of emissions of hazardous substances.

  6. Atmospheric contamination

    International Nuclear Information System (INIS)

    Gruetter, Juerg

    1997-01-01

    It is about the levels of contamination in center America, the population's perception on the problem, effects of the atmospheric contamination, effects in the environment, causes of the atmospheric contamination, possibilities to reduce the atmospheric contamination and list of Roeco Swisscontac in atmospheric contamination

  7. Submersible Data (Dive Trackpoints) for Lophelia II 2008 - Office of Ocean Exploration and Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data and information collected by the Remotely Operated Vehicle SeaEye Falcon along its track during four dives of the "Lophelia II 2008" expedition sponsored by the...

  8. Atmospheric diffusion of large clouds

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, T. V. [Univ. of California, Lawrence Radiation Lab., Livermore, California (United States)

    1967-07-01

    Clouds of pollutants travel within a coordinate system that is fixed to the earth's surface, and they diffuse and grow within a coordinate system fixed to the cloud's center. This paper discusses an approach to predicting the cloud's properties, within the latter coordinate system, on space scales of a few hundred meters to a few hundred kilometers and for time periods of a few days. A numerical cloud diffusion model is presented which starts with a cloud placed arbitrarily within the troposphere. Similarity theories of atmospheric turbulence are used to predict the horizontal diffusivity as a function of initial cloud size, turbulent atmospheric dissipation, and time. Vertical diffusivity is input as a function of time and height. Therefore, diurnal variations of turbulent diffusion in the boundary layer and effects of temperature inversions, etc. can be modeled. Nondiffusive cloud depletion mechanisms, such as dry deposition, washout, and radioactive decay, are also a part of this numerical model. An effluent cloud, produced by a reactor run at the Nuclear Rocket Development Station, Nevada, is discussed in this paper. Measurements on this cloud, for a period of two days, are compared to calculations with the above numerical cloud diffusion model. In general, there is agreement. within a factor of two, for airborne concentrations, cloud horizontal area, surface air concentrations, and dry deposition as airborne concentration decreased by seven orders of magnitude during the two-day period. (author)

  9. Predicting the mixed-mode I/II spatial damage propagation along 3D-printed soft interfacial layer via a hyperelastic softening model

    Science.gov (United States)

    Liu, Lei; Li, Yaning

    2018-07-01

    A methodology was developed to use a hyperelastic softening model to predict the constitutive behavior and the spatial damage propagation of nonlinear materials with damage-induced softening under mixed-mode loading. A user subroutine (ABAQUS/VUMAT) was developed for numerical implementation of the model. 3D-printed wavy soft rubbery interfacial layer was used as a material system to verify and validate the methodology. The Arruda - Boyce hyperelastic model is incorporated with the softening model to capture the nonlinear pre-and post- damage behavior of the interfacial layer under mixed Mode I/II loads. To characterize model parameters of the 3D-printed rubbery interfacial layer, a series of scarf-joint specimens were designed, which enabled systematic variation of stress triaxiality via a single geometric parameter, the slant angle. It was found that the important model parameter m is exponentially related to the stress triaxiality. Compact tension specimens of the sinusoidal wavy interfacial layer with different waviness were designed and fabricated via multi-material 3D printing. Finite element (FE) simulations were conducted to predict the spatial damage propagation of the material within the wavy interfacial layer. Compact tension experiments were performed to verify the model prediction. The results show that the model developed is able to accurately predict the damage propagation of the 3D-printed rubbery interfacial layer under complicated stress-state without pre-defined failure criteria.

  10. On the impact of atmospheric thermal stability on the characteristics of nocturnal downslope flows

    Science.gov (United States)

    Ye, Z. J.; Garratt, J. R.; Segal, M.; Pielke, R. A.

    1990-04-01

    The impacts of background (or ambient) and local atmospheric thermal stabilities, and slope steepness, on nighttime thermally induced downslope flow in meso-β domains (i.e., 20 200 km horizontal extent) have been investigated using analytical and numerical model approaches. Good agreement between the analytical and numerical evaluations was found. It was concluded that: (i) as anticipated, the intensity of the downslope flow increases with increased slope steepness, although the depth of the downslope flow was found to be insensitive to slope steepness in the studied situations; (ii) the intensity of the downslope flow is generally independent of background atmospheric thermal stability; (iii) for given integrated nighttime cooling across the nocturnal boundary layer (NBL), Q s the local atmospheric thermal stability exerts a strong influence on downslope flow behavior: the downslope flow intensity increases when local atmospheric thermal stability increases; and (iv) the downslope flow intensity is proportional to Q s 1/2.

  11. Examination of the uncertainty in air concentration predictions using Hanford field data

    International Nuclear Information System (INIS)

    Miller, C.W.; Fields, D.E.; Cotter, S.J.

    1986-10-01

    The accuracy of an environmental transport model is best determined by comparing model predictions with environmental measurements made under conditions similar to those assumed by the model, a process commonly referred to as model validation. Over the past several years, we have done a variety of validation studies with the popular Gaussian plume atmospheric dispersion model using data from tests conducted on the Hanford reservation. Data for short-term releases of small particles for release heights of 2 m, 56 m, and 111 m have been used. Up to six different sets of atmospheric dispersion parameters and three different atmospheric stability class specification schemes have been examined. Overall, dispersion parameters based on measurements made near Juelich, West Germany, give the best comparisons between observed and predicted air concentrations. The commonly-used vertical temperature gradient method for determining atmospheric stability class consistently gives poor results. The accuracy of air concentration predictions improves when dry deposition processes are included in the model. Further validation studies using various Hanford data sets are planned

  12. Solid solutions of platinum(II) and palladium(II) oxalato-complex salt as precursors of nanoalloys

    Science.gov (United States)

    Zadesenets, A. V.; Asanova, T. I.; Vikulova, E. S.; Filatov, E. Yu.; Plyusnin, P. E.; Baidina, I. A.; Asanov, I. P.; Korenev, S. V.

    2013-03-01

    A solid solution of platinum (II) and palladium (II) oxalato-complex salt, (NH4)2[Pt0.5Pd0.5(C2O4)2]·2H2O, has been synthesized and studied as a precursor for preparing bimetallic PtPd nanoparticles through its thermal decomposition. The smallest homogenous bimetallic PtPd nanoparticles were found to form in hydrogen and helium atmospheres. The annealing temperature and time have low effect on the bimetallic particles size. Comparative analysis of structural and thermal properties of the solid solution and individual Pt, Pd oxalato-complex salts was performed to investigate a mechanism of thermal decomposition of (NH4)2[Pt0.5Pd0.5(C2O4)2]·2H2O. Based on in situ X-ray photoemission spectroscopy investigation it was proposed a mechanism of formation of bimetallic PtPd nanoparticles from the solid-solution oxalato-complex salt during thermal decomposition.

  13. Synthesis, characterization, spectroscopic and theoretical studies of new zinc(II), copper(II) and nickel(II) complexes based on imine ligand containing 2-aminothiophenol moiety

    Science.gov (United States)

    Shafaatian, Bita; Mousavi, S. Sedighe; Afshari, Sadegh

    2016-11-01

    New dimer complexes of zinc(II), copper(II) and nickel(II) were synthesized using the Schiff base ligand which was formed by the condensation of 2-aminothiophenol and 2-hydroxy-5-methyl benzaldehyde. This tridentate Schiff base ligand was coordinated to the metal ions through the NSO donor atoms. In order to prevent the oxidation of the thiole group during the formation of Schiff base and its complexes, all of the reactions were carried out under an inert atmosphere of argon. The X-ray structure of the Schiff base ligand showed that in the crystalline form the SH groups were oxidized to produce a disulfide Schiff base as a new double Schiff base ligand. The molar conductivity values of the complexes in dichloromethane implied the presence of non-electrolyte species. The fluorescence properties of the Schiff base ligand and its complexes were also studied in dichloromethane. The products were characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis, and conductometry. The crystal structure of the double Schiff base was determined by single crystal X-ray diffraction. Furthermore, the density functional theory (DFT) calculations were performed at the B3LYP/6-31G(d,p) level of theory for the determination of the optimized structures of Schiff base complexes.

  14. Estimating European historical production, consumption and atmospheric emissions of decabromodiphenyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Earnshaw, Mark R., E-mail: m.earnshaw2@lancaster.ac.uk; Jones, Kevin C., E-mail: k.c.jones@lancaster.ac.uk; Sweetman, Andy J., E-mail: a.sweetman@lancaster.ac.uk

    2013-03-01

    A European scale production, consumption and environmental emissions inventory is produced for decabromodiphenyl ether (DecaBDE) for the period 1970–2020. A dynamic substance flow analysis model of DecaBDE is developed and emission of the main congener, BDE-209, to environmental compartments is estimated. From 1970 to 2010, it is estimated that a total of 185,000–250,000 tonnes of DecaBDE was consumed in Europe. Consumption peaked in the late 1990s at approximately 9000 tonnes/year and has declined by ∼ 30% in 2010. Predicted BDE-209 atmospheric emissions peak in 2004 at 10 tonnes/year. The waste management phase of the BDE-209 life cycle is responsible for the majority of atmospheric emissions via volatilisation and particle bound emissions from landfills, whilst leakage from Sewerage systems is the major source of emissions to the hydrosphere. Use of sewage sludge from wastewater treatment works as an agricultural fertiliser is the most important pathway of BDE-209 to soil. Although DecaBDE consumption has declined in recent years, the stock in use for 2010 remains considerable (60,000 tonnes) and is likely to act as a source of atmospheric emissions for several decades. Uncertainties exist in these estimations and more field or experimental data is needed to clarify the significance of certain emission pathways, in particular, emissions from landfill sites. - Highlights: ► Total DecaBDE consumption in Europe for the period 1970–2010 is estimated to be between 185,000 and 250,000 tonnes. ► European atmospheric emissions of BDE-209 is predicted to peak in 2004 at 10 tonnes/year. ► The waste management phase is responsible for the majority of BDE-209 environmental emissions. ► The volume of BDE-209 present in the anthroposphere is declining and is predicted to fall to negligible levels by 2030.

  15. Estimating European historical production, consumption and atmospheric emissions of decabromodiphenyl ether

    International Nuclear Information System (INIS)

    Earnshaw, Mark R.; Jones, Kevin C.; Sweetman, Andy J.

    2013-01-01

    A European scale production, consumption and environmental emissions inventory is produced for decabromodiphenyl ether (DecaBDE) for the period 1970–2020. A dynamic substance flow analysis model of DecaBDE is developed and emission of the main congener, BDE-209, to environmental compartments is estimated. From 1970 to 2010, it is estimated that a total of 185,000–250,000 tonnes of DecaBDE was consumed in Europe. Consumption peaked in the late 1990s at approximately 9000 tonnes/year and has declined by ∼ 30% in 2010. Predicted BDE-209 atmospheric emissions peak in 2004 at 10 tonnes/year. The waste management phase of the BDE-209 life cycle is responsible for the majority of atmospheric emissions via volatilisation and particle bound emissions from landfills, whilst leakage from Sewerage systems is the major source of emissions to the hydrosphere. Use of sewage sludge from wastewater treatment works as an agricultural fertiliser is the most important pathway of BDE-209 to soil. Although DecaBDE consumption has declined in recent years, the stock in use for 2010 remains considerable (60,000 tonnes) and is likely to act as a source of atmospheric emissions for several decades. Uncertainties exist in these estimations and more field or experimental data is needed to clarify the significance of certain emission pathways, in particular, emissions from landfill sites. - Highlights: ► Total DecaBDE consumption in Europe for the period 1970–2010 is estimated to be between 185,000 and 250,000 tonnes. ► European atmospheric emissions of BDE-209 is predicted to peak in 2004 at 10 tonnes/year. ► The waste management phase is responsible for the majority of BDE-209 environmental emissions. ► The volume of BDE-209 present in the anthroposphere is declining and is predicted to fall to negligible levels by 2030

  16. Any light particle search II. Technical Design Report

    International Nuclear Information System (INIS)

    Baehre, Robin; Doebrich, Babette; Dreyling-Eschweiler, Jan

    2013-02-01

    This document constitutes an excerpt of the Technical Design Report for the second stage of the ''Any Light Particle Search'' (ALPS-II) at DESY as submitted to the DESY PRC in August 2012 and reviewed in November 2012. ALPS-II is a ''Light Shining through a Wall'' experiment which searches for photon oscillations into weakly interacting sub-eV particles. These are often predicted by extensions of the Standard Model and motivated by astrophysical phenomena. The first phases of the ALPS-II project were approved by the DESY management on February 21st, 2013.

  17. Any light particle search II. Technical Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Baehre, Robin [Albert Einstein Institute, Hannover (Germany); Doebrich, Babette; Dreyling-Eschweiler, Jan [Deutsches Elektronen-Synchrotron, Hamburg (Germany); and others

    2013-02-15

    This document constitutes an excerpt of the Technical Design Report for the second stage of the ''Any Light Particle Search'' (ALPS-II) at DESY as submitted to the DESY PRC in August 2012 and reviewed in November 2012. ALPS-II is a ''Light Shining through a Wall'' experiment which searches for photon oscillations into weakly interacting sub-eV particles. These are often predicted by extensions of the Standard Model and motivated by astrophysical phenomena. The first phases of the ALPS-II project were approved by the DESY management on February 21st, 2013.

  18. Biological modulation of planetary atmospheres: The early Earth scenario

    Science.gov (United States)

    Schidlowski, M.

    1985-01-01

    The establishment and subsequent evolution of life on Earth had a profound impact on the chemical regime at the planet's surface and its atmosphere. A thermodynamic gradient was imposed on near-surface environments that served as the driving force for a number on important geochemical transformations. An example is the redox imbalance between the modern atmosphere and the material of the Earth's crust. Current photochemical models predict extremely low partial pressures of oxygen in the Earth's prebiological atmosphere. There is widespread consensus that any large-scale oxygenation of the primitive atmosphere was contingent on the advent of biological (autotrophic) carbon fixation. It is suggested that photoautotrophy existed both as a biochemical process and as a geochemical agent since at least 3.8 Ga ago. Combining the stoichiometry of the photosynthesis reaction with a carbon isotope mass balance and current concepts for the evolution of the stationary sedimentary mass as a funion of time, it is possible to quantify, the accumulation of oxygen and its photosynthetic oxidation equivalents through Earth history.

  19. Observations of ionospheric electric fields above atmospheric weather systems

    Science.gov (United States)

    Farrell, W. M.; Aggson, T. L.; Rodgers, E. B.; Hanson, W. B.

    1994-01-01

    We report on the observations of a number of quasi-dc electric field events associated with large-scale atmospheric weather formations. The observations were made by the electric field experiment onboard the San Marco D satellite, operational in an equatorial orbit from May to December 1988. Several theoretical studies suggest that electric fields generated by thunderstorms are present at high altitudes in the ionosphere. In spite of such favorable predictions, weather-related events are not often observed since they are relatively weak. We shall report here on a set of likely E field candidates for atmospheric-ionospheric causality, these being observed over the Indonesian Basin, northern South America, and the west coast of Africa; all known sites of atmospheric activity. As we shall demonstrate, individual events often be traced to specific active weather features. For example, a number of events were associated with spacecraft passages near Hurricane Joan in mid-October 1988. As a statistical set, the events appear to coincide with the most active regions of atmospheric weather.

  20. Model output statistics applied to wind power prediction

    Energy Technology Data Exchange (ETDEWEB)

    Joensen, A; Giebel, G; Landberg, L [Risoe National Lab., Roskilde (Denmark); Madsen, H; Nielsen, H A [The Technical Univ. of Denmark, Dept. of Mathematical Modelling, Lyngby (Denmark)

    1999-03-01

    Being able to predict the output of a wind farm online for a day or two in advance has significant advantages for utilities, such as better possibility to schedule fossil fuelled power plants and a better position on electricity spot markets. In this paper prediction methods based on Numerical Weather Prediction (NWP) models are considered. The spatial resolution used in NWP models implies that these predictions are not valid locally at a specific wind farm. Furthermore, due to the non-stationary nature and complexity of the processes in the atmosphere, and occasional changes of NWP models, the deviation between the predicted and the measured wind will be time dependent. If observational data is available, and if the deviation between the predictions and the observations exhibits systematic behavior, this should be corrected for; if statistical methods are used, this approaches is usually referred to as MOS (Model Output Statistics). The influence of atmospheric turbulence intensity, topography, prediction horizon length and auto-correlation of wind speed and power is considered, and to take the time-variations into account, adaptive estimation methods are applied. Three estimation techniques are considered and compared, Extended Kalman Filtering, recursive least squares and a new modified recursive least squares algorithm. (au) EU-JOULE-3. 11 refs.