WorldWideScience

Sample records for atmosphere

  1. Staging atmospheres

    DEFF Research Database (Denmark)

    Bille, Mikkel; Bjerregaard, Peter; Sørensen, Tim Flohr

    2015-01-01

    The article introduces the special issue on staging atmospheres by surveying the philosophical, political and anthropological literature on atmosphere, and explores the relationship between atmosphere, material culture, subjectivity and affect. Atmosphere seems to occupy one of the classic...... localities of tensions between matter and the immaterial, the practical and the ideal, and subject and object. In the colloquial language there can, moreover, often seem to be something authentic or genuine about atmosphere, juxtaposing it to staging, which is implied to be something simulated or artificial....... This introduction seeks to outline how a number of scholars have addressed the relationship between staged atmospheres and experience, and thus highlight both the philosophical, social and political aspects of atmospheres...

  2. Exoplanet Atmospheres

    CERN Document Server

    Seager, S

    2010-01-01

    At the dawn of the first discovery of exoplanets orbiting sun-like stars in the mid-1990s, few believed that observations of exoplanet atmospheres would ever be possible. After the 2002 Hubble Space Telescope detection of a transiting exoplanet atmosphere, many skeptics discounted it as a one-object, one-method success. Nevertheless, the field is now firmly established, with over two dozen exoplanet atmospheres observed today. Hot Jupiters are the type of exoplanet currently most amenable to study. Highlights include: detection of molecular spectral features; observation of day-night temperature gradients; and constraints on vertical atmospheric structure. Atmospheres of giant planets far from their host stars are also being studied with direct imaging. The ultimate exoplanet goal is to answer the enigmatic and ancient question, "Are we alone?" via detection of atmospheric biosignatures. Two exciting prospects are the immediate focus on transiting super Earths orbiting in the habitable zone of M-dwarfs, and u...

  3. Atmospheric Neutrinos

    OpenAIRE

    Takaaki Kajita

    1994-01-01

    Atmospheric neutrinos are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith angle and energy-dependent deficit of muon-neutrino events. It was found that neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. This paper discusses...

  4. Articulating Atmospheres

    DEFF Research Database (Denmark)

    Kinch, Sofie

    2011-01-01

    This paper presents an architectural approach to designing computational interfaces by articulating the notion of atmosphere in the field of interaction design. It draws upon the concept of kinesthetic interaction and a philosophical notion on atmosphere emphasizing the importance of bodily...... experience in space, presented as middle ground experience. In the field of HCI, middle ground experiences complete the unarticulated spectrum between designing for foreground of attention or background awareness. When “Articulating Atmospheres through Middle Ground Experiences in Interaction Design...

  5. Atmospheric Neutrinos

    Directory of Open Access Journals (Sweden)

    Takaaki Kajita

    2012-01-01

    Full Text Available Atmospheric neutrinos are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith angle and energy-dependent deficit of muon-neutrino events. It was found that neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. This paper discusses atmospheric neutrino experiments and the neutrino oscillation studies with these neutrinos.

  6. Atmospheric electricity

    CERN Document Server

    Chalmers, J Alan

    1957-01-01

    Atmospheric Electricity brings together numerous studies on various aspects of atmospheric electricity. This book is composed of 13 chapters that cover the main problems in the field, including the maintenance of the negative charge on the earth and the origin of the charges in thunderstorms. After a brief overview of the historical developments of atmospheric electricity, this book goes on dealing with the general principles, results, methods, and the MKS system of the field. The succeeding chapters are devoted to some aspects of electricity in the atmosphere, such as the occurrence and d

  7. Atmospheric materiality

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2016-01-01

    experience and, consequently, to the conceptual and methodological shifts in the production of space, and hence in the way we think about materiality. In this context, architectural space is understood as a contingent construction – a space of engagement that appears to us as a result of continuous...... characteristics of atmosphere as a spatial phenomenon, the aim of this text is to illustrate these associations and draw out design protocols, focusing on ways in which atmosphere can be conditioned architecturally. In other words, the objective is to trace the conceptual contours of ‘atmospheric materiality’....

  8. Atmospheric Dispositifs

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2015-01-01

    , the conceptual foundations and protocols for the production of atmosphere in architecture might be found beneath the surface of contemporary debates. In this context, the notion of atmospheric dispositif – illustrated through an oeuvre of the German architect Werner Ruhnau and its theoretical and historical...... as a spatial phenomenon, exploring a multiplicity of conditions that constitute their resonant origins – i.e. the production sites from and within they have emerged. The intention is also to argue that despite the fact that atmosphere as an aesthetic category has crystallised over the last few decades...... contextualisation – provides a platform for revealing productive entanglements between heterogeneous elements, disciplines and processes. It also allows rendering atmosphere as a site of co-production open to contingencies and affective interplay on multiples levels: at the moment of its conceptualisation...

  9. Atmospheric composition

    Science.gov (United States)

    Daniels, G. E.

    1973-01-01

    The earth's atmosphere is made up of a number of gases in different relative amounts. Near sea level and up to about 90 km, the amount of these atmospheric gases in clean, relatively dry air is practically constant. Four of these gases, nitrogen, oxygen, argon, and carbon dioxide, make up 99.99 percent by volume of the atmosphere. Two gases, ozone and water vapor, change in relative amounts, but the total amount of these two is very small compared to the amount of the other gases. The atmospheric composition shown in a table can be considered valid up to 90 km geometric altitude. Above 90 km, mainly because of molecular dissociation and diffusive separation, the composition changes.

  10. Atmospheric Photochemistry

    Science.gov (United States)

    Massey, Harrie; Potter, A. E.

    1961-01-01

    The upper atmosphere offers a vast photochemical laboratory free from solid surfaces, so all reactions take place in the gaseous phase. At 30 km altitude the pressure has fallen to about one-hundredth of that at ground level, and we shall, rather arbitrarily, regard the upper atmosphere as beginning at that height. By a little less than 100 km the pressure has fallen to 10(exp -3) mm Hg and is decreasing by a power of ten for every 15 km increase in altitude. Essentially we are concerned then with the photochemistry of a nitrogen-oxygen mixture under low-pressure conditions in which photo-ionization, as well as photodissociation, plays an important part. Account must also be taken of the presence of rare constituents, such as water vapour and its decomposition products, including particularly hydroxyl, oxides of carbon, methane and, strangely enough, sodium, lithium and calcium. Many curious and unfamiliar reactions occur in the upper atmosphere. Some of them are luminescent, causing the atmosphere to emit a dim light called the airglow. Others, between gaseous ions and neutral molecules, are almost a complete mystery at this time. Similar interesting phenomena must occur in other planetary atmospheres, and they might be predicted if sufficient chemical information were available.

  11. Atmospheric thermodynamics

    CERN Document Server

    Iribarne, J V

    1973-01-01

    The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a...

  12. Atmospheric Refraction

    CERN Document Server

    Nauenberg, Michael

    2016-01-01

    Calculations of atmospheric refraction are generally based on a simplified model of atmospheric density in the troposphere which assumes that the temperature decreases at a constant lapse rate from sea level up to a height equal to eleven km, and that afterwards it remains constant. In this model, the temperature divided by the lapse rate determines the length scale in the calculations for altitudes less than this height. But daily balloon measurements across the U.S.A. reveal that in some cases the air temperature actually increases from sea level up to a height of about one km, and only after reaching a plateau, it decreases at an approximately constant lapse rate. Moreover, in three examples considered here, the temperature does not remain constant at eleven km , but continues to decreases to a minimum at about sixteen kilometers , and then increases at higher altitudes at a lower rate. Calculations of atmospheric refraction based on this atmospheric data is compared with the results of simplified models.

  13. Atmospheric Neutrinos

    CERN Document Server

    Gaisser, Thomas K

    2016-01-01

    In view of the observation by IceCube of high-energy astrophysical neutrinos, it is important to quantify the uncertainty in the background of atmospheric neutrinos. There are two sources of uncertainty, the imperfect knowledge of the spectrum and composition of the primary cosmic rays that produce the neutrinos and the limited understanding of hadron production, including charm, at high energy. This paper is an overview of both aspects.

  14. Alarming atmospheres

    DEFF Research Database (Denmark)

    Højlund, Marie; Kinch, Sofie

    2014-01-01

    . As a response to this situation, our design artefact, the interactive furniture Kidkit, invites children to become accustomed to the alarming sounds sampled from the ward while they are waiting in the waiting room. Our design acknowledges how atmospheres emerge as temporal negotiations between the rhythms......, a familiar relationship with the alarming sounds in the ward, enabling her to focus later more on the visit with the relative. The article discusses the proposed design strategy behind this solution and the potentiality for its use in hospital environments in general....

  15. Atmosphere: Power, Critique, Politics

    DEFF Research Database (Denmark)

    Albertsen, Niels

    2016-01-01

    This paper hans three interrelated parts. First, atmosphere is approached through the concept of power. Atmospheres 'grip' us directly or mediate power indirectly by manipulating moods and evoking emotions. How does atmosphere relate to different conceptions of power? Second, atmospheric powers m...... be critiqued. Which conception of critique can be involved? Third, critiquing atmospheric powers can generate political conflict. How does atmospheric disputes relate to conceptions of politics and the political?...

  16. Atmospheric composition change: Ecosystems-Atmosphere interactions

    NARCIS (Netherlands)

    Fowler, D.; Pilegaard, K.; Sutton, M.A.; Ambus, P.; Raivonen, M.; Duyzer, J.; Simpson, D.; Fagerli, H.; Fuzzi, S.; Schjoerring, J.K.; Granier, C.; Neftel, A.; Isaksen, I.S.A.; Laj, P.; Maione, M.; Monks, P.S.; Burkhardt, J.; Daemmgen, U.; Neirynck, J.; Personne, E.; Wichink Kruit, R.J.; Butterbach-Bahl, K.; Flechard, C.; Tuovinen, J.P.; Coyle, M.; Gerosa, G.; Loubet, B.; Altimir, N.; Gruenhage, L.; Ammann, C.; Cieslik, S.; Paoletti, E.; Mikkelsen, T.N.; Ro-Poulsen, H.; Cellier, P.; Cape, J.N.; Horvath, L.; Loreto, F.; Niinemets, U.; Palmer, P.I.; Rinne, J.; Misztal, P.; Nemitz, E.; Nilsson, D.; Pryor, S.; Gallagher, M.W.; Vesala, T.; Skiba, U.; Brueggemann, N.; Zechmeister-Boltenstern, S.; Williams, J.; O'Dowd, C.; Facchini, M.C.; Leeuw, de G.; Flossman, A.; Chaumerliac, N.; Erisman, J.W.

    2009-01-01

    Ecosystems and the atmosphere: This review describes the state of understanding the processes involved in the exchange of trace gases and aerosols between the earth's surface and the atmosphere. The gases covered include NO, NO2, HONO, HNO3, NH3, SO2, DMS, Biogenic VOC, O-3, CH4, N2O and particles i

  17. Mirador - Atmospheric Composition

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth Science data access made simple. Atmospheric Composition is focused on the composition of Earth's atmosphere in relation to climate prediction, solar effects,...

  18. Planetary Atmospheric Electricity

    CERN Document Server

    Leblanc, F; Yair, Y; Harrison, R. G; Lebreton, J. P; Blanc, M

    2008-01-01

    This volume presents our contemporary understanding of atmospheric electricity at Earth and in other solar system atmospheres. It is written by experts in terrestrial atmospheric electricity and planetary scientists. Many of the key issues related to planetary atmospheric electricity are discussed. The physics presented in this book includes ionisation processes in planetary atmospheres, charge generation and separation, and a discussion of electromagnetic signatures of atmospheric discharges. The measurement of thunderstorms and lightning, including its effects and hazards, is highlighted by articles on ground and space based instrumentation, and new missions.Theory and modelling of planetary atmospheric electricity complete this review of the research that is undertaken in this exciting field of space science. This book is an essential research tool for space scientists and geoscientists interested in electrical effects in atmospheres and planetary systems. Graduate students and researchers who are new to t...

  19. Our shared atmosphere

    Science.gov (United States)

    Our atmosphere is a precious and fascinating resource, providing air to breath, shielding us from harmful ultraviolet radiation (UV), and maintaining a comfortable climate. Since the industrial revolution, people have significantly altered the composition of the atmosphere throu...

  20. Atmospheric and accelerator neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoichiro [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo Higashi-Mozumi, Kamioka, Hida-City, Gifu 506-1205 (Japan)

    2006-05-15

    Results from the atmospheric neutrino measurements are presented. Evidence for the {nu}{sub {tau}} appearance in the atmospheric neutrino events was shown by statistical methods. The long baseline oscillation experiment using man-made neutrinos has confirmed the atmospheric neutrino oscillation. The future accelerator experiments are briefly discussed.

  1. Atmospheric refraction : a history

    NARCIS (Netherlands)

    Lehn, WH; van der Werf, S

    2005-01-01

    We trace the history of atmospheric refraction from the ancient Greeks up to the time of Kepler. The concept that the atmosphere could refract light entered Western science in the second century B.C. Ptolemy, 300 years later, produced the first clearly defined atmospheric model, containing air of un

  2. Atmospheric Habitable Zones in Y Dwarf Atmospheres

    Science.gov (United States)

    Yates, Jack S.; Palmer, Paul I.; Biller, Beth; Cockell, Charles S.

    2017-02-01

    We use a simple organism lifecycle model to explore the viability of an atmospheric habitable zone (AHZ), with temperatures that could support Earth-centric life, which sits above an environment that does not support life. To illustrate our model, we use a cool Y dwarf atmosphere, such as WISE J085510.83–0714442.5, whose 4.5–5.2 μm spectrum shows absorption features consistent with water vapor and clouds. We allow organisms to adapt to their atmospheric environment (described by temperature, convection, and gravity) by adopting different growth strategies that maximize their chance of survival and proliferation. We assume a constant upward vertical velocity through the AHZ. We found that the organism growth strategy is most sensitive to the magnitude of the atmospheric convection. Stronger convection supports the evolution of more massive organisms. For a purely radiative environment, we find that evolved organisms have a mass that is an order of magnitude smaller than terrestrial microbes, thereby defining a dynamical constraint on the dimensions of life that an AHZ can support. Based on a previously defined statistical approach, we infer that there are of the order of 109 cool Y brown dwarfs in the Milky Way, and likely a few tens of these objects are within 10 pc from Earth. Our work also has implications for exploring life in the atmospheres of temperate gas giants. Consideration of the habitable volumes in planetary atmospheres significantly increases the volume of habitable space in the galaxy.

  3. Atmospheric Habitable Zones in Y Dwarf Atmospheres

    CERN Document Server

    Yates, Jack S; Biller, Beth; Cockell, Charles S

    2016-01-01

    We use a simple organism lifecycle model to explore the viability of an atmospheric habitable zone (AHZ), with temperatures that could support Earth-centric life, which sits above an environment that does not support life. We illustrate this idea using the object WISE J085510.83-0714442.5, which is a cool, free-floating brown dwarf. We allow organisms to adapt to their atmospheric environment (described by temperature, convection, and gravity) by adopting different growth strategies that maximize their chance of survival and proliferation. We assume a constant upward vertical velocity through the AHZ. We found that the organism growth strategy is most sensitive to the magnitude of the atmospheric convection. Stronger convection supports the evolution of more massive organisms. For a purely radiative environment we find that evolved organisms have a mass that is an order of magnitude smaller than terrestrial microbes, thereby defining a dynamical constraint on the dimensions of life that an AHZ can support. Ba...

  4. Measurement of the Atmospheric $\

    CERN Document Server

    Aartsen, M G; Abdou, Y; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beattie, K; Beatty, J J; Bechet, S; Tjus, J Becker; Becker, K -H; Bell, M; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohaichuk, S; Bohm, C; Bose1, D; Boser, S; Botner, O; Brayeur, L; Brown, A M; Bruijn, R; Brunner, J; Buitink, S; Carson, M; Casey, J; Casier, M; Chirkin, D; Christy, B; Clark, K; Clevermann, F; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; De Ridder, S; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Diaz-Velez, J C; Dreyer, J; Dumm, J P; Dunkman, M; Eagan, R; Eberhardt, B; Eisch, J; Ellsworth, R W; Engdegard, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glusenkamp, T; Goldschmidt, A; Golup, G; Goodman, J A; Gora, D; Grant, D; Gross, A; Grullon, S; Gurtner, M; Ha, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heimann, P; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jlelati, O; Kappes, A; Karg, T; Karle, A; Kiryluk, J; Kislat, F; Klas, J; Klein, S R; Kohne, J -H; Kohnen, G; Kolanoski, H; Kopke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lauer, R; Lesiak-Bzdak, M; Lunemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Meszaros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Panknin, S; Paul, L; Pepper, J A; Heros, C Perez de los; Pieloth, D; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Radel, L; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schoneberg, S; Schonherr, L; Schonwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Seo, S H; Sestayo, Y; Seunarine, S; Sheremata, C; Smith, M W E; Soiron, M; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stoss, A; Strahler, E A; Strom, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Usner, M; van der Drift, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge1, M; Vraeghe, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Wasserman, R; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zilles, A; Zoll, M

    2012-01-01

    We report the first observation in a high energy neutrino telescope of cascades induced by atmospheric electron neutrinos and by neutral current interactions of atmospheric neutrinos of all flavors. Using data recorded during the first year of operation of IceCube's DeepCore low energy extension, a sample of 1029 events is observed in 281 days of data. The number of observed cascades is $N_{\\rm cascade} = 496 \\pm 66 (stat.) \\pm 88(syst.)$ and the rest of the sample consists of residual backgrounds due to atmospheric muons and charged current interactions of atmospheric muon neutrinos. The flux of the atmospheric electron neutrinos is determined in the energy range between approximately 80 GeV and 6 TeV and is consistent with models of atmospheric neutrinos.

  5. Atmospheric Circulation of Exoplanets

    CERN Document Server

    Showman, Adam P; Menou, Kristen

    2009-01-01

    We survey the basic principles of atmospheric dynamics relevant to explaining existing and future observations of exoplanets, both gas giant and terrestrial. Given the paucity of data on exoplanet atmospheres, our approach is to emphasize fundamental principles and insights gained from Solar-System studies that are likely to be generalizable to exoplanets. We begin by presenting the hierarchy of basic equations used in atmospheric dynamics, including the Navier-Stokes, primitive, shallow-water, and two-dimensional nondivergent models. We then survey key concepts in atmospheric dynamics, including the importance of planetary rotation, the concept of balance, and scaling arguments to show how turbulent interactions generally produce large-scale east-west banding on rotating planets. We next turn to issues specific to giant planets, including their expected interior and atmospheric thermal structures, the implications for their wind patterns, and mechanisms to pump their east-west jets. Hot Jupiter atmospheric d...

  6. Atmospheric Measurements Laboratory (AML)

    Data.gov (United States)

    Federal Laboratory Consortium — The Atmospheric Measurements Laboratory (AML) is one of the nation's leading research facilities for understanding aerosols, clouds, and their interactions. The AML...

  7. Designing Dynamic Atmospheres

    DEFF Research Database (Denmark)

    Højlund, Marie; Kinch, Sofie

    2012-01-01

    This paper addresses the notion of atmospheres from a designerly perspective, and discusses temporal challenges facing interaction designers when acknowledging the dynamic character of it. As atmospheres are created in the relation between body, space, and time, a pragmatic approach seems useful...

  8. Proterozoic atmospheric oxygen

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene

    2014-01-01

    This article is concerned with the evolution of atmospheric oxygen concentrations through the Proterozoic Eon. In particular, this article will seek to place the history of atmospheric oxygenation through the Proterozoic Eon in the context of the evolving physical environment including the histor...

  9. Clouds in Planetary Atmospheres

    Science.gov (United States)

    West, R.; Murdin, P.

    2000-11-01

    What are clouds? The answer to that question is both obvious and subtle. In the terrestrial atmosphere clouds are familiar as vast collections of small water drops or ice crystals suspended in the air. In the atmospheres of Venus, Mars, Jupiter, Saturn, Saturn's moon Titan, Uranus, Neptune, and possibly Pluto, they are composed of several other substances including sulfuric acid, ammonia, hydroge...

  10. Atmospheric composition change: Ecosystems–Atmosphere interactions

    DEFF Research Database (Denmark)

    Fowler, D.; Pilegaard, Kim; Sutton, M.A.

    2009-01-01

    and techniques in micrometeorology. For some of the compounds there have been paradigm shifts in approach and application of both techniques and assessment. These include flux measurements over marine surfaces and urban areas using micrometeorological methods and the up-scaling of flux measurements using...... in the size range 1 nm–10 μm including organic and inorganic chemical species. The main focus of the review is on the exchange between terrestrial ecosystems, both managed and natural and the atmosphere, although some new developments in ocean–atmosphere exchange are included. The material presented is biased...... towards the last decade, but includes earlier work, where more recent developments are limited or absent. New methodologies and instrumentation have enabled, if not driven technical advances in measurement. These developments have advanced the process understanding and upscaling of fluxes, especially...

  11. Glacial atmospheric phosphorus deposition

    Science.gov (United States)

    Kjær, Helle Astrid; Dallmayr, Remi; Gabrieli, Jacopo; Goto-Azuma, Kumiko; Hirabayashi, Motohiro; Svensson, Anders; Vallelonga, Paul

    2016-04-01

    Phosphorus in the atmosphere is poorly studied and thus not much is known about atmospheric phosphorus and phosphate transport and deposition changes over time, though it is well known that phosphorus can be a source of long-range nutrient transport, e.g. Saharan dust transported to the tropical forests of Brazil. In glacial times it has been speculated that transport of phosphorus from exposed shelves would increase the ocean productivity by wash out. However whether the exposed shelf would also increase the atmospheric load to more remote places has not been investigated. Polar ice cores offer a unique opportunity to study the atmospheric transport of aerosols on various timescales, from glacial-interglacial periods to recent anthropogenic influences. We have for the first time determined the atmospheric transport of phosphorus to the Arctic by means of ice core analysis. Both total and dissolved reactive phosphorus were measured to investigate current and past atmospheric transport of phosphorus to the Arctic. Results show that glacial cold stadials had increased atmospheric total phosphorus mass loads of 70 times higher than in the past century, while DRP was only increased by a factor of 14. In the recent period we find evidence of a phosphorus increase over the past 50 yrs in ice cores close to human occupation likely correlated to forest fires. References: Kjær, Helle Astrid, et al. "Continuous flow analysis method for determination of dissolved reactive phosphorus in ice cores." Environmental science & technology 47.21 (2013): 12325-12332. Kjær, Helle Astrid, et al. "Greenland ice cores constrain glacial atmospheric fluxes of phosphorus." Journal of Geophysical Research: Atmospheres120.20 (2015).

  12. Atmosphere beyond Poetics

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2014-01-01

    . In doing so, analysing the Crystal Palace – recognised as the epitome of controlled immersive experience as well as of atmospheric engineering (Sloterdijk 2008 (2005) – in parallel with other examples and theoretical explorations, will provide a canvas for discerning the means of creation of atmosphere...... Physical Presence in Space.” Oase #91, Building Atmosphere, 21-33 Sloterdijk, Peter. (2005) 2008. “The Crystal Palace.” Translated by Michael Darroch. Public 37: Public?, 12-15. Originally published in Peter Sloterdijk. Im Weltinnenraum des Kapitals: Für eine philoso-phische Theorie der Globalisierung, 265...

  13. Carbon neutron star atmospheres

    CERN Document Server

    Suleimanov, V F; Pavlov, G G; Werner, K

    2013-01-01

    The accuracy of measuring the basic parameters of neutron stars is limited in particular by uncertainties in chemical composition of their atmospheres. For example, atmospheres of thermally - emitting neutron stars in supernova remnants might have exotic chemical compositions, and for one of them, the neutron star in CasA, a pure carbon atmosphere has recently been suggested by Ho & Heinke (2009). To test such a composition for other similar sources, a publicly available detailed grid of carbon model atmosphere spectra is needed. We have computed such a grid using the standard LTE approximation and assuming that the magnetic field does not exceed 10^8 G. The opacities and pressure ionization effects are calculated using the Opacity Project approach. We describe the properties of our models and investigate the impact of the adopted assumptions and approximations on the emergent spectra.

  14. The invention of atmosphere.

    Science.gov (United States)

    Martin, Craig

    2015-08-01

    The word "atmosphere" was a neologism Willebrord Snellius created for his Latin translation of Simon Stevin's cosmographical writings. Astronomers and mathematical practitioners, such as Snellius and Christoph Scheiner, applying the techniques of Ibn Mu'ādh and Witelo, were the first to use the term in their calculations of the height of vapors that cause twilight. Their understandings of the atmosphere diverged from Aristotelian divisions of the aerial region. From the early years of the seventeenth century, the term was often associated with atomism or corpuscular matter theory. The concept of the atmosphere changed dramatically with the advent of pneumatic experiments in the middle of the seventeenth century. Pierre Gassendi, Walter Charleton, and Robert Boyle transformed the atmosphere of the mathematicians giving it the characteristics of weight, specific gravity, and fluidity, while disputes about its extent and border remained unresolved.

  15. Atmospheric muons: experimental aspects

    OpenAIRE

    Cecchini, S.; Spurio, M.

    2012-01-01

    We present a review of atmospheric muon flux and energy spectrum measurements over almost six decades of muon momentum. Sea-level and underground/water/ice experiments are considered. Possible sources of systematic errors in the measurements are examinated. The characteristics of underground/water muons (muons in bundle, lateral distribution, energy spectrum) are discussed. The connection between the atmospheric muon and neutrino measurements are also reported.

  16. Atmospheric muons: experimental aspects

    Directory of Open Access Journals (Sweden)

    S. Cecchini

    2012-11-01

    Full Text Available We present a review of atmospheric muon flux and energy spectrum measurements over almost six decades of muon momentum. Sea level and underground/water/ice experiments are considered. Possible sources of systematic errors in the measurements are examined. The characteristics of underground/water muons (muons in bundle, lateral distribution, energy spectrum are discussed. The connection between the atmospheric muon and neutrino measurements are also reported.

  17. Global atmospheric changes.

    OpenAIRE

    Piver, W T

    1991-01-01

    Increasing concentrations of CO2 and other greenhouse gases in the atmosphere can be directly related to global warming. In terms of human health, because a major cause of increasing atmospheric concentrations of CO2 is the increased combustion of fossil fuels, global warming also may result in increases in air pollutants, acid deposition, and exposure to ultraviolet (UV) radiation. To understand better the impacts of global warming phenomena on human health, this review emphasizes the proces...

  18. Atmospheric Laser Communication.

    Science.gov (United States)

    Fischer(, Kenneth W.; Witiw, Michael R.; Baars+, Jeffrey A.; Oke, T. R.

    2004-05-01

    Atmospheric laser communication, often referred to as free-space optics (FSO) or free-space laser (FSL) communication, is similar to fiber optic cable in terms of carrier wavelength and bandwidth capability, but data are transmitted directly through the atmosphere via laser beams over paths from a few meters to 4 km or longer. FSL uses lasers in the near-infrared spectrum, typically at wavelengths of 850 or 1550 nm. Given these wavelengths, atmospheric attenuation must be considered, and an adequate margin of optical power (dB) must exist to support high system availability (the percentage of time that an FSL link is in operation, typically 99.9%). A visual range of 100 m can attenuate a laser beam at a rate of nearly 130 dB km-1. For short links (rain, and snow frequently become issues. To address these issues, long-term climate data are analyzed to determine the frequency of occurrence of low visibilities and low-cloud ceilings. To estimate availability at a site of interest, adjustments to airport climate data are made to accommodate differences in altitude, geography, and the effects of the urban heat island. In sum, communication via FSL is a feasible alternative to fiber optic cable when atmospheric conditions are considered and properly analyzed.(Current affiliation: The Boeing Company, Seattle, Washington+Current affiliation: Department of Atmospheric Sciences, University of Washington, Seattle, Washington

  19. Atmosphere and Ambient Space

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Atmosphere and Ambient Space This paper explores the relation between atmosphere and ambient space. Atmosphere and ambient space share many salient properties. They are both ontologically indeterminate, constantly varying and formally diffuse and they are both experienced as a subtle, non......-signifying property of a given space. But from a certain point of view, the two concepts also designate quite dissimilar experiences of space. To be ’ambient’ means to surround. Accordingly, ambient space is that space, which surrounds something or somebody. (Gibson 1987: 65) Since space is essentially...... of a surrounding character, all space can thus be described as having a fundamentally ambient character. So what precisely is an ambient space, then? As I will argue in my presentation, ambient space is a sensory effect of spatiality when a space is experienced as being particularly surrounding: a ‘space effect...

  20. Phenomenology of atmospheric neutrinos

    Directory of Open Access Journals (Sweden)

    Fedynitch Anatoli

    2016-01-01

    Full Text Available The detection of astrophysical neutrinos, certainly a break-through result, introduced new experimental challenges and fundamental questions about acceleration mechanisms of cosmic rays. On one hand IceCube succeeded in finding an unambiguous proof for the existence of a diffuse astrophysical neutrino flux, on the other hand the precise determination of its spectral index and normalization requires a better knowledge about the atmospheric background at hundreds of TeV and PeV energies. Atmospheric neutrinos in this energy range originate mostly from decays of heavy-flavor mesons, which production in the phase space relevant for prompt leptons is uncertain. Current accelerator-based experiments are limited by detector acceptance and not so much by the collision energy. This paper recaps phenomenological aspects of atmospheric leptons and calculation methods, linking recent progress in flux predictions with particle physics at colliders, in particular the Large Hadron Collider.

  1. Observations of Exoplanet Atmospheres

    CERN Document Server

    Crossfield, Ian J M

    2015-01-01

    Detailed characterization of an extrasolar planet's atmosphere provides the best hope for distinguishing the makeup of its outer layers, and the only hope for understanding the interplay between initial composition, chemistry, dynamics & circulation, and disequilibrium processes. In recent years, some areas have seen rapid progress while developments in others have come more slowly and/or have been hotly contested. This article gives an observer's perspective on the current understanding of extrasolar planet atmospheres prior to the considerable advances expected from the next generation of observing facilities. Atmospheric processes of both transiting and directly-imaged planets are discussed, including molecular and atomic abundances, cloud properties, thermal structure, and planetary energy budgets. In the future we can expect a continuing and accelerating stream of new discoveries, which will fuel the ongoing exoplanet revolution for many years to come.

  2. Atmospheres of Brown Dwarfs

    CERN Document Server

    Helling, Christiane

    2014-01-01

    Brown Dwarfs are the coolest class of stellar objects known to date. Our present perception is that Brown Dwarfs follow the principles of star formation, and that Brown Dwarfs share many characteristics with planets. Being the darkest and lowest mass stars known makes Brown Dwarfs also the coolest stars known. This has profound implication for their spectral fingerprints. Brown Dwarfs cover a range of effective temperatures which cause brown dwarfs atmospheres to be a sequence that gradually changes from a M-dwarf-like spectrum into a planet-like spectrum. This further implies that below an effective temperature of < 2800K, clouds form already in atmospheres of objects marking the boundary between M-Dwarfs and brown dwarfs. Recent developments have sparked the interest in plasma processes in such very cool atmospheres: sporadic and quiescent radio emission has been observed in combination with decaying Xray-activity indicators across the fully convective boundary.

  3. Dreaming of Atmospheres

    Science.gov (United States)

    Waldmann, Ingo

    2016-10-01

    Radiative transfer retrievals have become the standard in modelling of exoplanetary transmission and emission spectra. Analysing currently available observations of exoplanetary atmospheres often invoke large and correlated parameter spaces that can be difficult to map or constrain.To address these issues, we have developed the Tau-REx (tau-retrieval of exoplanets) retrieval and the RobERt spectral recognition algorithms. Tau-REx is a bayesian atmospheric retrieval framework using Nested Sampling and cluster computing to fully map these large correlated parameter spaces. Nonetheless, data volumes can become prohibitively large and we must often select a subset of potential molecular/atomic absorbers in an atmosphere.In the era of open-source, automated and self-sufficient retrieval algorithms, such manual input should be avoided. User dependent input could, in worst case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is build to address these issues. RobERt is a deep belief neural (DBN) networks trained to accurately recognise molecular signatures for a wide range of planets, atmospheric thermal profiles and compositions. Using these deep neural networks, we work towards retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.In this talk I will discuss how neural networks and Bayesian Nested Sampling can be used to solve highly degenerate spectral retrieval problems and what 'dreaming' neural networks can tell us about atmospheric characteristics.

  4. Exoplanet atmospheres physical processes

    CERN Document Server

    Seager, Sara

    2010-01-01

    Over the past twenty years, astronomers have identified hundreds of extrasolar planets--planets orbiting stars other than the sun. Recent research in this burgeoning field has made it possible to observe and measure the atmospheres of these exoplanets. This is the first textbook to describe the basic physical processes--including radiative transfer, molecular absorption, and chemical processes--common to all planetary atmospheres, as well as the transit, eclipse, and thermal phase variation observations that are unique to exoplanets. In each chapter, Sara Seager offers a conceptual introdu

  5. Symmetries in atmospheric sciences

    CERN Document Server

    Bihlo, Alexander

    2009-01-01

    Selected applications of symmetry methods in the atmospheric sciences are reviewed briefly. In particular, focus is put on the utilisation of the classical Lie symmetry approach to derive classes of exact solutions from atmospheric models. This is illustrated with the barotropic vorticity equation. Moreover, the possibility for construction of partially-invariant solutions is discussed for this model. A further point is a discussion of using symmetries for relating different classes of differential equations. This is illustrated with the spherical and the potential vorticity equation. Finally, discrete symmetries are used to derive the minimal finite-mode version of the vorticity equation first discussed by E. Lorenz (1960) in a sound mathematical fashion.

  6. Intensifying the Atmospheric

    DEFF Research Database (Denmark)

    Liebst, Lasse Suonperä

    2012-01-01

    The phenomenological concept of urban atmospheres is more often applied as an aesthetic description of the metropolitan space as such. This conceptualization is supported in this paper; however, I strive to give the concept a post-phenomenological axial turn. While phenomenology, due to its under...... sufficiently intense. All things considered, the paper should be read as a sociological contribution to theoretically reconstruct the concept of urban atmospheres in the light of spatial morphology.......The phenomenological concept of urban atmospheres is more often applied as an aesthetic description of the metropolitan space as such. This conceptualization is supported in this paper; however, I strive to give the concept a post-phenomenological axial turn. While phenomenology, due to its...... are ‘compressed’ by the spatial morphologies of urban space. In this perspective atmospheres are to be understood as an emergent property that develops when the spatial morphological compression of urban life passes a certain threshold, that is, when the affective rhythm of the urban assemblages becomes...

  7. Exoplanet atmosphere highlights

    Science.gov (United States)

    García Muñoz, A.

    2017-03-01

    In only two decades since the first identification of a planet outside the Solar System,and about one since the pioneering detection of an atmosphere, exoplanet science has established itself as a mature field of astrophysics. As the search of as-of-yet undiscovered planets goes on, the field is steadily expanding its focus from detection only to detection and characterization. The information to be grasped from exoplanet atmospheres provides valuable insight into the formation and evolution of the planets and, in turn, into how unique our Solar System is. Ultimately, a dedicated search for life in these distant worlds will have to deal with the information encoded in their atmospheres. In recent years there has been rapid progress on both the theoretical and observational fronts in the investigation of exoplanet atmospheres. Theorists are predicting the prevailing conditions (temperature, chemical composition, cloud occurrence, energy transport) in these objects' envelopes, and are building the frameworks with which to approach the interpretation of observables. In parallel, observers have consolidated the remote sensing techniques that were utilized during the early years, and are now venturing into techniques that hold great promise for the future. With a number of space missions soon to fly and ground-based telescopes and instruments to be commissioned, all of them conceived during the exoplanet era, the field is set to experience unprecedented progress.

  8. Atmospheric and aerosol chemistry

    Energy Technology Data Exchange (ETDEWEB)

    McNeill, V. Faye [Columbia Univ., New York, NY (United States). Dept. of Chemical Engineering; Ariya, Parisa A. (ed.) [McGill Univ. Montreal, QC (Canada). Dept. of Chemistry; McGill Univ. Montreal, QC (Canada). Dept. of Atmospheric and Oceanic Sciences

    2014-09-01

    This series presents critical reviews of the present position and future trends in modern chemical research. Short and concise reports on chemistry, each written by the world renowned experts. Still valid and useful after 5 or 10 years. More information as well as the electronic version of the whole content available at: springerlink.com. Christian George, Barbara D'Anna, Hartmut Herrmann, Christian Weller, Veronica Vaida, D. J. Donaldson, Thorsten Bartels-Rausch, Markus Ammann Emerging Areas in Atmospheric Photochemistry. Lisa Whalley, Daniel Stone, Dwayne Heard New Insights into the Tropospheric Oxidation of Isoprene: Combining Field Measurements, Laboratory Studies, Chemical Modelling and Quantum Theory. Neil M. Donahue, Allen L. Robinson, Erica R. Trump, Ilona Riipinen, Jesse H. Kroll Volatility and Aging of Atmospheric Organic Aerosol. P. A. Ariya, G. Kos, R. Mortazavi, E. D. Hudson, V. Kanthasamy, N. Eltouny, J. Sun, C. Wilde Bio-Organic Materials in the Atmosphere and Snow: Measurement and Characterization V. Faye McNeill, Neha Sareen, Allison N. Schwier Surface-Active Organics in Atmospheric Aerosols.

  9. Modeling of Cometary Atmospheres

    Science.gov (United States)

    Gombosi, Tamas

    2004-01-01

    The NASA supported project 'Modeling of Cometary Atmospheres' has been quite successful in broadening our understanding of the cometary environment. We list peer reviewed publications and conference presentation that have been made as a result of studies performed under this project. Following the list we present details of a selection of the results.

  10. Results from atmospheric neutrinos

    Indian Academy of Sciences (India)

    J G Learned

    2000-07-01

    With the announcement of new evidence for muon neutrino disappearance observed by the super-Kamiokande experiment, the more than a decade old atmospheric neutrino anomaly moved from a possible indication for neutrino oscillations to an apparently inescapable fact. The evidence is reviewed, and new indications are presented that the oscillations are probably between muon and tau neutrinos. Implications and future directions are discussed.

  11. Astronomy and Atmospheric Optics

    Science.gov (United States)

    Cowley, Les; Gaina, Alex

    2011-12-01

    The authors discusse the insuccess of the observation of the Total Eclipse of the Moon from 10 december 2011 in Romania and relate them with meteoconditions. Only a very short part of the last penumbral phase was observed, while the inital part and the totality was not observed due to very dense clouds. The change in color and brightness during this phase was signaled. Meanwhile, there is an area of science where clouds are of great use and interest. This area is Atmospheric optics, while the science which study clouds is meteorology. Clouds in combination with Solar and Moon light could give rise to a variety of strange, rare and unobvious phenomena in the atmosphere (sky), sometimes confused with Unidentified Flying Objects (UFO). The importance of meteorology for astronomy and atmospheric optics is underlined and an invitation to astronomers to use unfavourable days for athmospheric observations was sent. The web address of the site by Les Cowley, designed for atmospheric optics phenomena is contained in the text of the entry.

  12. Atmospheric pollution in Lisbon urban atmosphere

    Science.gov (United States)

    Oliveira, C.

    2009-04-01

    Lisbon is the capital city of Portugal with about 565,000 residents in 2008 and a population density of 6,600 inhabitants per square kilometre. Like several other major metropolis, the town is surrounded by satellite cities, forming together a region known as "Lisbon Metropolitan Area" with about 3 million inhabitants, a quarter of the overall Portuguese population. Besides their local residents, it is estimated that more than one million citizens come into the Lisbon area every day from the outskirts, leading to elevated traffic densities and intense traffic jams, with important consequences on air pollution levels and obvious negative impacts on human health. Airborne particulate matter limit values are frequently exceeded, making urgent the existence of consistent programs to monitor and help taking measures to control them. Within the Portuguese project PAHLIS (Polycyclic Aromatic Hydrocarbons Contamination in Lisbon Urban Atmosphere) financed by the Portuguese Science Foundation ("Fundação para a Ciência e a Tecnologia"), an aerosol and vapour phase sampling program is being implemented in the city of Lisbon at two selected contrasting zones, namely a typically busy area with intense road traffic and frequent exceedences of the particulate matter standard for the maximum allowable concentration, and a residential quieter area, thus with a cleaner atmosphere characterised as an urban background site. An one month-long sampling campaign was performed during the summer of 2008, where particulate matter was collected in two fractions (coarse 2.5µm

  13. Atmospheric lepton fluxes

    Directory of Open Access Journals (Sweden)

    Gaisser Thomas K.

    2015-01-01

    Full Text Available This review of atmospheric muons and neutrinos emphasizes the high energy range relevant for backgrounds to high-energy neutrinos of astrophysical origin. After a brief historical introduction, the main distinguishing features of atmospheric νμ and νe are discussed, along with the implications of the muon charge ratio for the νµ / ν̅µ ratio. Methods to account for effects of the knee in the primary cosmic-ray spectrum and the energy-dependence of hadronic interactions on the neutrino fluxes are discussed and illustrated in the context of recent results from IceCube. A simple numerical/analytic method is proposed for systematic investigation of uncertainties in neutrino fluxes arising from uncertainties in the primary cosmic-ray spectrum/composition and hadronic interactions.

  14. Dreaming of atmospheres

    CERN Document Server

    Waldmann, I P

    2015-01-01

    Here we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrievals of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep belief neural (DBN) networks trained to accurately recognise molecular signatures for a wide range of planets, atmospheric thermal profiles and compositions. Reconstructions of the learned features, also referred to as `dreams' of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work towards retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from curre...

  15. Atmospheric Plasma Depainting

    Science.gov (United States)

    2014-11-19

    Plasma Carbon Dioxide Water Vapor 11 Atmospheric Plasma Depainting, ASETSDefense, Nov 19, 2014 Features and Benefits of APCR Technology Feature...Depainting, ASETSDefense, Nov 19, 2014 14 APC on Aluminum Removal to Primer RAM on Carbon Fiber Partial Topcoat Removal APC Topcoat RAM...60Hz Plasma Flux™ Power Supply VENT To Facility HEPA <= Filtration COTS Six-Axis Robot Aircraft part Particulate Collection System

  16. Atmospheric Science Without Borders

    Science.gov (United States)

    Panday, Arnico; Praveen, Ps; Adhikary, Bhupesh; Bhave, Prakash; Surapipith, Vanisa; Pradhan, Bidya; Karki, Anita; Ghimire, Shreta; Thapa, Alpha; Shrestha, Sujan

    2016-04-01

    The Indo-Gangetic Plains (IGP) in northern South Asia are among the most polluted and most densely populated places in the world, and they are upwind of vulnerable ecosystems in the Himalaya mountains. They are also fragmented across 5 countries between which movement of people, data, instruments and scientific understanding have been very limited. ICIMOD's Atmosphere Initiative has for the past three years been working on filling data gaps in the region, while facilitating collaborations across borders. It has established several atmospheric observatories at low and mid elevations in Bhutan and Nepal that provide new data on the inflow of pollutants from the IGP towards the mountains, as well as quantify the effects of local emissions on air quality in mountain cities. EGU will be the first international conference where these data will be presented. ICIMOD is in the process of setting up data servers through which data from the region will be shared with scientists and the general public across borders. Meanwhile, to promote cross-border collaboration among scientists in the region, while addressing an atmospheric phenomenon that affects the lives of the several hundred million people, ICIMOD' Atmosphere Initiative has been coordinating an interdisciplinary multi-year study of persistent winter fog over the Indo-Gangetic Plains, with participation by researchers from Pakistan, India, China, Nepal, Bhutan and Bangladesh. Using a combination of in-situ measurements and sample collection, remote sensing, modeling and community based research, the researchers are studying how changing moisture availability and air pollution have led to increases in fog frequency and duration, as well as the fog's impacts on local communities and energy demand that may affect air pollution emissions. Preliminary results of the Winter 2015-2016 field campaign will be shown.

  17. Atmospheres around Neutron Stars

    Science.gov (United States)

    Fryer, Chris L.; Benz, Willy

    1994-12-01

    Interest in the behavior of atmospheres around neutron stars has grown astronomically in the past few years. Some of this interest arrived in the wake of the explosion of Supernova 1987A and its elusive remnant; spawning renewed interest in a method to insure material ``fall-back'' onto the adolescent neutron star in an effort to transform it into a silent black hole. However, the bulk of the activity with atmospheres around neutron stars is concentrated in stellar models with neutron star, rather than white dwarf, cores; otherwise known as Thorne-Zytkow objects. First a mere seed in the imagination of theorists, Thorne-Zytkow objects have grown into an observational reality with an ever-increasing list of formation scenarios and observational prospects. Unfortunately, the analytic work of Chevalier on supernova fall-back implies that, except for a few cases, the stellar simulations of Thorne-Zytkow objects are missing an important aspect of physics: neutrinos. Neutrino cooling removes the pressure support of these atmospheres, allowing accretion beyond the canonical Eddington rate for these objects. We present here the results of detailed hydrodynamical simulations in one and two dimensions with the additional physical effects of neutrinos, advanced equations of state, and relativity over a range of parameters for our atmosphere including entropy and chemical composition as well as a range in the neutron star size. In agreement with Chevalier, we find, under the current list of formation scenarios, that the creature envisioned by Thorne and Zytkow will not survive the enormous appetite of a neutron star. However, neutrino heating (a physical effect not considered in Chevalier's analysis) can play an important role in creating instabilities in some formation schemes, leading to an expulsion of matter rather than rapid accretion. By placing scrutiny upon the formation methods, we can determine the observational prospects for each.

  18. Contaminants in the Atmosphere

    DEFF Research Database (Denmark)

    Skov, H.; Bossi, R.; Wåhlin, P.

    This report presents the results of atmospheric monitoring in Nuuk, Greenland. A long series of heavy metals and persistent organic Pollutants (POPs) have been measured and model calculations have been carried out supporting the interpretation of the results. Financially, the Danish Environmental...... Protection Agency supported this work with means from the MIKA/DANCEA funds for Environmental Support to the Arctic Region and the work is part of the Danish contribution to Arctic Monitoring and Assessment Programme, AMAP...

  19. Dreaming of Atmospheres

    Science.gov (United States)

    Waldmann, I. P.

    2016-04-01

    Here, we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrieval of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated, and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst-case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep-belief neural (DBN) networks trained to accurately recognize molecular signatures for a wide range of planets, atmospheric thermal profiles, and compositions. Reconstructions of the learned features, also referred to as the “dreams” of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work toward retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data, and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.

  20. DREAMING OF ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Waldmann, I. P., E-mail: ingo@star.ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT (United Kingdom)

    2016-04-01

    Here, we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrieval of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated, and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst-case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep-belief neural (DBN) networks trained to accurately recognize molecular signatures for a wide range of planets, atmospheric thermal profiles, and compositions. Reconstructions of the learned features, also referred to as the “dreams” of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work toward retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data, and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.

  1. Titan's surface and atmosphere

    Science.gov (United States)

    Hayes, Alexander G.; Soderblom, Jason M.; Ádámkovics, Máté

    2016-05-01

    Since its arrival in late 2004, the NASA/ESA Cassini-Huygens mission to Saturn has revealed Titan to be a world that is both strange and familiar. Titan is the only extraterrestrial body known to support standing bodies of stable liquid on its surface and, along with Earth and early Mars, is one of three places in the Solar System known to have had an active hydrologic cycle. With atmospheric pressures of 1.5 bar and temperatures of 90-95 K at the surface, methane and ethane condense out of Titan's nitrogen-dominated atmosphere and flow as liquids on the surface. Despite vast differences in environmental conditions and materials from Earth, Titan's methane-based hydrologic cycle drives climatic and geologic processes which generate landforms that are strikingly similar to their terrestrial counterparts, including vast equatorial dunes, well-organized channel networks that route material through erosional and depositional landscapes, and lakes and seas of liquid hydrocarbons. These similarities make Titan a natural laboratory for studying the processes that shape terrestrial landscapes and drive climates, probing extreme conditions impossible to recreate in earthbound laboratories. Titan's exotic environment ensures that even rudimentary measurements of atmospheric/surface interactions, such as wind-wave generation or aeolian dune development, provide valuable data to anchor physical models.

  2. Saturn's Polar Atmosphere

    CERN Document Server

    Sayanagi, Kunio M; Dyudina, Ulyana A; Fletcher, Leigh N; Sánchez-Lavega, Agustin; West, Robert A

    2016-01-01

    This book chapter, Saturn's Polar Atmosphere, is to be published by Cambridge University Press as part of a multi-volume work edited by Kevin Baines, Michael Flasar, Norbert Krupp, and Thomas Stallard, entitled "Saturn in the 21st Century." This chapter reviews the state of our knowledge about Saturn's polar atmosphere that has been revealed through Earth- and space-based observation as well as theoretical and numerical modeling. In particular, the Cassini mission to Saturn, which has been in orbit around the ringed planet since 2004, has revolutionized our understanding of the planet. The current review updates a previous review by Del Genio et al (2009; Saturn Atmospheric Structure and Dynamics, Chapter 7 of "Saturn from Cassini-Huygens"), written after Cassini's primary mission phase that ended in 2008, by focusing on the north polar region of Saturn and comparing it to the southern high latitudes. Two prominent features in the northern high latitudes are the northern hexagon and the north polar vortex; we...

  3. Evolution of the atmosphere.

    Science.gov (United States)

    Nunn, J F

    1998-01-01

    Planetary atmospheres depend fundamentally upon their geochemical inventory, temperature and the ability of their gravitational field to retain gases. In the case of Earth and other inner planets, early outgassing released mainly carbon dioxide and water vapour. The secondary veneer of comets and meteorites added further volatiles. Photodissociation caused secondary changes, including the production of traces of oxygen from water. Earth's gravity cannot retain light gases, including hydrogen. but retains oxygen. Water vapour generally does not pass the cold trap at the stratopause. In the archaean, early evolution of life, probably in hydrothermal vents, and the subsequent development of photosynthesis in surface waters, produced oxygen, at 3500 Ma or even earlier, becoming a significant component of the atmosphere from about 2000 Ma. Thereafter banded iron formations became rare, and iron was deposited in oxidized red beds. Atmospheric levels of carbon dioxide and oxygen have varied during the Phanerozoic: major changes may have caused extinctions. particularly the Permian/Triassic. The declining greenhouse effect due to the long-term decrease in carbon dioxide has largely offset increasing solar luminosity, and changes in carbon dioxide levels relate strongly to cycles of glaciation.

  4. NOAA's Tropical Atmosphere Ocean Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Realtime El Nino and La Nina data from the tropical Pacific Ocean is provided by the Tropical Atmosphere Ocean / Triangle Trans-Ocean buoy network (TAO/TRITON) of...

  5. the Martian atmospheric boundary layer

    DEFF Research Database (Denmark)

    Petrosyan, A.; Galperin, B.; Larsen, Søren Ejling

    2011-01-01

    The planetary boundary layer (PBL) represents the part of the atmosphere that is strongly influenced by the presence of the underlying surface and mediates the key interactions between the atmosphere and the surface. On Mars, this represents the lowest 10 km of the atmosphere during the daytime...

  6. Venus Atmospheric Maneuverable Platform (VAMP)

    Science.gov (United States)

    Polidan, R.; Lee, G.; Sokol, D.; Griffin, K.; Bolisay, L.

    2014-05-01

    VAMP is a long lived, semi-buoyant, atmospheric “rover” that deploys in orbit, enters the Venus atmosphere and flies in the Venus atmosphere between 55 and 70 km for up to one year as a platform to address VEXAG goals I.A, I.B, and I.C.

  7. Stars with Extended Atmospheres

    Science.gov (United States)

    Sterken, C.

    2002-12-01

    This Workshop consisted of a full-day meeting of the Working Group "Sterren met Uitgebreide Atmosferen" (SUA, Working Group Stars with Extended Atmospheres), a discussion group founded in 1979 by Kees de Jager, Karel van der Hucht and Pik Sin The. This loose association of astronomers and astronomy students working in the Dutch-speaking part of the Low Countries (The Netherlands and Flanders) organised at regular intervals one-day meetings at the Universities of Utrecht, Leiden, Amsterdam and Brussels. These meetings consisted of the presentation of scientific results by junior as well as senior members of the group, and by discussions between the participants. As such, the SUA meetings became a forum for the exchange of ideas, and for asking questions and advice in an informal atmosphere. Kees de Jager has been chairman of the WG SUA from the beginning in 1979 till today, as the leading source of inspiration. At the occasion of Prof. Kees de Jager's 80th birthday, we decided to collect the presented talks in written form as a Festschrift in honour of this well-respected and much beloved scientist, teacher and friend. The first three papers deal with the personality of Kees de Jager, more specifically with his role as a supervisor and mentor of young researchers and as a catalyst in the research work of his colleagues. And also about his remarkable role in the establishment of astronomy education and research at the University of Brussels. The next presentation is a very detailed review of solar research, a field in which Cees was prominently active for many years. Then follow several papers dealing with stars about which Kees is a true expert: massive stars and extended atmospheres.

  8. Phytoremediation of Atmospheric Methane

    Science.gov (United States)

    2013-04-15

    photosynthetically fixing it into their tissues.  To calculate the atmospheric conductance or mass transfer  coefficient in vegetated fields of  maize  we used...uptake through aerodynamic and leaf boundary layers and the stomata of  maize  at  field scale as determined by continuous stable isotope measurements

  9. The Power of Atmosphere

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2014-01-01

    a “lawscape” where “every surface, smell, colour, taste is regulated by some form of law” (2013: 35). Lawscape calls, however, for exploring law beyond merely contractual agreements and verbal regulations, as it directs attention towards its material, spatial and corporeal dimensions. It also invites...... the exploration of the term law in its polysemy, bearing in mind that it has been deployed to describe both social and natural orders. Moreover, it brings to the fore the affective qualities of atmosphere that constitute “a sensory background” (Thibaud 2011: 2013), and, consequently, a background for socio...

  10. The Calern atmospheric turbulence station

    Science.gov (United States)

    Chabé, Julien; Ziad, Aziz; Fantéï-Caujolle, Yan; Aristidi, Éric; Renaud, Catherine; Blary, Flavien; Marjani, Mohammed

    2016-07-01

    From its long expertise in Atmospheric Optics, the Observatoire de la Côte d'Azur and the J.L. Lagrange Laboratory have equipped the Calern Observatory with a station of atmospheric turbulence measurement (CATS: Calern Atmospheric Turbulence Station). The CATS station is equipped with a set of complementary instruments for monitoring atmospheric turbulence parameters. These new-generation instruments are autonomous within original techniques for measuring optical turbulence since the first meters above the ground to the borders of the atmosphere. The CATS station is also a support for our training activities as part of our Masters MAUCA and OPTICS, through the organization of on-sky practical works.

  11. Titan's atmosphere from DISR

    Science.gov (United States)

    West, Robert

    This abstract distills information about Titan's atmosphere described in detail in a paper by M. G. Tomasko, L. Doose, S. Engel, L. E. Dafoe, R. West, M. Lemmon, E. Karkoschka and C. See, ‘A model of Titan's aerosols based on measurements made inside the atmosphere', Planetary and Space Sciences, in press, 2008. The Descent Imager Spectral Radiometer (DISR) observed Titan's sky and surface during the descent of the Huygens Probe in January, 2005. Measurements were made over the altitude range 160 Km to the surface near latitude -10 degrees. The DISR instrument package included several components to measure the radiation state as a function of altitude. These include upward and downward-looking visible and near-infrared spectrometers covering the wavelength range 450 to 1600 nm, an ultraviolet photometer, a solar aureole camera with polarizers, and a sun sensor. Measurements were made at a variety of azimuthal angles relative to the sun azimuth. Due to unanticipated behavior of the probe (reverse spin and high-amplitude, chaotic tip and tilt) the retrieval process has required more effort than was planned and the total science return is less than expected. Nevertheless the data yielded unsurpassed and unique information which constrain the optical and physical properties of the photochemical haze aerosols and condensate particles. The principal findings are (1) between 80 Km and 160 Km the photochemical haze is well mixed with the gas with a scale height of about 65 Km, (2) between 80 Km and the surface the particle optical depth is a linear function of altitude with a break in slope near 30 Km altitude, (3) optical properties of the haze do not depend much on altitude above 80 Km although more recent work by Tomasko and colleagues suggest a gradient in the stratosphere; below 80 Km there are changes in optical behavior which suggest that condensation plays a role, (4) the data confirm previous results which proposed a particle structure of aggregates of small

  12. Greenhouse effect in the atmosphere

    Science.gov (United States)

    Smirnov, B. M.

    2016-04-01

    Average optical atmospheric parameters for the infrared spectrum range are evaluated on the basis of the Earth energetic balance and parameters of the standard atmosphere. The average optical thickness of the atmosphere is u ≈ 2.5 and this atmospheric emission is originated at altitudes below 10 km. Variations of atmospheric radiative fluxes towards the Earth and outward are calculated as a function of the concentration of \\text{CO}2 molecules for the regular model of molecular spectrum. As a result of doubling of the \\text{CO}2 concentration the change of the global Earth temperature is (0.4 +/- 0.2) \\text{K} if other atmospheric parameters are conserved compared to the value (3.0 +/- 1.5) \\text{K} under real atmospheric conditions with the variation of the amount of atmospheric water. An observed variation of the global Earth temperature during the last century (0.8 ^\\circ \\text{C}) follows from an increase of the mass of atmospheric water by 7% or by conversion of 1% of atmospheric water in aerosols.

  13. Determination of the Atmospheric Neutrino Fluxes from Atmospheric Neutrino Data

    CERN Document Server

    González-Garciá, M C; Rojo, J

    2006-01-01

    The precise knowledge of the atmospheric neutrino fluxes is a key ingredient in the interpretation of the results from any atmospheric neutrino experiment. In the standard atmospheric neutrino data analysis, these fluxes are theoretical inputs obtained from sophisticated numerical calculations based on the convolution of the primary cosmic ray spectrum with the expected yield of neutrinos per incident cosmic ray. In this work we present an alternative approach to the determination of the atmospheric neutrino fluxes based on the direct extraction from the experimental data on neutrino event rates. The extraction is achieved by means of a combination of artificial neural networks as interpolants and Monte Carlo methods for faithful error estimation

  14. ZAP: Zurich Atmosphere Purge

    Science.gov (United States)

    Soto, Kurt T.; Lilly, Simon J.; Bacon, Roland; Richard, Johan; Conseil, Simon

    2016-02-01

    ZAP (Zurich Atmosphere Purge) provides sky subtraction for integral field spectroscopy; its approach is based on principal component analysis (PCA) developed for the Multi Unit Spectrographic Explorer (MUSE) integral field spectrograph. ZAP employs filtering and data segmentation to enhance the inherent capabilities of PCA for sky subtraction. ZAP reduces sky emission residuals while robustly preserving the flux and line shapes of astronomical sources; this method works in a variety of observational situations from sparse fields with a low density of sources to filled fields in which the target source fills the field of view. With the inclusion of both of these situations the method is generally applicable to many different science cases and should also be useful for other instrumentation.

  15. Halogens in the atmosphere

    Science.gov (United States)

    Cicerone, R. J.

    1981-01-01

    Atmospheric halogen measurement data are presented for: (1) inorganic and organic gaseous compounds of chlorine, fluorine, bromine and iodine; and (2) chloride, fluoride, bromide and iodine in particulate form and in precipitation. The roles that these data and other, unavailable data play in the determination of the global cycles of the halogens are discussed. It is found that the speciation of the halogen gases in the troposphere is uncertain, with the only inorganic species detected by species-specific methods being HC1 and SF6. It is shown that heterogeneous reactions, both gas-to-particle and particle-to-gas processes, precipitation removal, and sea-salt aerosol generation and fractionation processes, need quantitative investigation to allow progress in estimating halogen sources and sinks. Where practical, quantitative comparisons are made between measured and predicted concentrations.

  16. The Middle Atmosphere Program: A special project for the Antarctic Middle Atmosphere (AMA)

    Science.gov (United States)

    Hirasawa, T.

    1982-01-01

    Areas of concern are: dynamics, structure, and atmospheric composition of the middle atmosphere in Antarctica; particle precipitation and interaction of the middle atmosphere with the lower ionosphere; atmospheric pollution; and the difference between the northern and southern polar middle atmosphere.

  17. Exploring the atmosphere using smartphones

    CERN Document Server

    Monteiro, Martín; Stari, Cecilia; Cabeza, Cecilia; Marti, Arturo C

    2015-01-01

    The characteristics of the inner layer of the atmosphere, the troposphere, are determinant for the earth's life. In this experience we explore the first hundreds of meters using a smartphone mounted on a quadcopter. Both the altitude and the pressure are obtained using the smartphone's sensors. We complement these measures with data collected from the flight information system of an aircraft. The experimental results are compared with the International Standard Atmosphere and other simple approximations: isothermal and constant density atmospheres.

  18. Exploring the atmosphere using smartphones

    Science.gov (United States)

    Monteiro, Martín; Vogt, Patrik; Stari, Cecilia; Cabeza, Cecilia; Marti, Arturo C.

    2016-05-01

    The characteristics of the inner layer of the atmosphere, the troposphere, are determinant for Earth's life. In this experience we explore the first hundreds of meters using a smartphone mounted on a quadcopter. Both the altitude and the pressure are obtained using the smartphone's sensors. We complement these measures with data collected from the flight information system of an aircraft. The experimental results are compared with the International Standard Atmosphere and other simple approximations: isothermal and constant density atmospheres.

  19. A Theory of Atmospheric Oxygen

    OpenAIRE

    2015-01-01

    There is no direct geologic record of the level of free oxygen in the atmosphere over Earth history. Indirect proxy records have led to a canonical view of atmospheric pO2, according to which the atmosphere has passed through three stages. During the first of these periods, corresponding roughly to the Archean eon, pO2 was less than 0.001% present atmospheric levels (PAL). Oxygen levels rose abruptly around 2.4 billion years ago, a transition referred to as the “Great Oxidation Event” (GOE...

  20. Free from the Atmosphere

    Science.gov (United States)

    2007-06-01

    An artificial, laser-fed star now shines regularly over the sky of Paranal, home of ESO's Very Large Telescope, one of the world's most advanced large ground-based telescopes. This system provides assistance for the adaptive optics instruments on the VLT and so allows astronomers to obtain images free from the blurring effect of the atmosphere, regardless of the brightness and the location on the sky of the observed target. Now that it is routinely offered by the observatory, the skies seem much sharper to astronomers. In order to counteract the blurring effect of Earth's atmosphere, astronomers use the adaptive optics technique. This requires, however, a nearby reference star that has to be relatively bright, thereby limiting the area of the sky that can be surveyed. To surmount this limitation, astronomers now use at Paranal a powerful laser that creates an artificial star, where and when they need it. Two of the Adaptive Optics (AO) science instruments at the Paranal observatory, NACO and SINFONI, have been upgraded to work with the recently installed Laser Guide Star (LGS; see ESO 07/06) and have delivered their first scientific results. This achievement opens astronomers' access to a wealth of new targets to be studied under the sharp eyes of AO. "These unique results underline the advantage of using a Laser Guide Star with Adaptive Optics instruments, since they could not be obtained with Natural Guide Stars," says Norbert Hubin, head of the Adaptive Optics group at ESO. "This is also a crucial milestone towards the multi-laser systems ESO is designing for the VLT and the future E-ELT" (see e.g. ESO 19/07). ESO PR Photo 27a/07 ESO PR Photo 27a/07 An Ultra Luminous Merger (NACO-LGS/VLT) The Laser Guide Star System installed at Paranal uses the PARSEC dye laser developed by MPE-Garching and MPIA-Heidelberg, while the launch telescope and the laser laboratory was developed by ESO. "It is great to see the whole system working so well together," emphasises Richard

  1. Geologic data on atmospheric history

    NARCIS (Netherlands)

    Rutten, M.G.

    1966-01-01

    Attention is focussed on the possible existence of an anoxygenic, primeval atmosphere and on the history of atmospheric O2 and CO2. For this purpose, geologic data can be divided into those on fossil remains, on biogenic deposits formed by early life, on “chemicofossils”, and on deposits formed by

  2. Measurement of the atmospheric v

    NARCIS (Netherlands)

    Adrián-Martínez, S.; van Haren, H.; ANTARES collaboration

    2013-01-01

    Atmospheric neutrinos are produced during cascades initiated by the interaction of primary cosmic rays with air nuclei. In this paper, a measurement of the atmospheric ?µ+?¯µ energy spectrum in the energy range 0.1–200 TeV is presented, using data collected by the ANTARES underwater neutrino telesc

  3. Atmospheres of hot alien Worlds

    NARCIS (Netherlands)

    Brogi, Matteo

    2014-01-01

    This thesis presents observations of exoplanets orbiting very close to their parent star, with a particular focus on a novel technique for characterizing their atmospheres. This is based on the use of high-resolution spectroscopy from the ground. The first detection of the atmosphere of a non-transi

  4. Organic chemistry in Titan's atmosphere

    Science.gov (United States)

    Scattergood, T.

    1982-01-01

    Laboratory photochemical simulations and other types of chemical simulations are discussed. The chemistry of methane, which is the major known constituent of Titan's atmosphere was examined with stress on what can be learned from photochemistry and particle irradiation. The composition of dust that comprises the haze layer was determined. Isotope fractionation in planetary atmospheres is also discussed.

  5. Another Source of Atmospheric Methane

    Institute of Scientific and Technical Information of China (English)

    于心科

    1997-01-01

    The atmospheric concentration of methane is steadily increasin.Lacking of precise estimates of source and sink strengths for the atmospheric methane severely limits the current understanding of the global methane cycle.Agood budget of atmospheric methane can enhance our understanding of the global carbon cycle and global climate change,The known estimates of the main source and sink strengths are gresented in this paper,In terms of carbon isotopic studies,it is evidenced that the earth's primodial methane,which was trapped in the earth during its formation,may be another source of methane,with extensive,earth's degassing which is calleld the "breathing" process of the earth and played an important role in the formation of the promitive atmosphere,large amounts of methane were carried from the deep interior to the surface and then found its way into the atmosphere.

  6. Chemistry Of Atmospheric Brown Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey

    2015-05-27

    Organic carbon (OC) accounts for a large fraction of atmospheric aerosol and has profound effects on air quality, atmospheric chemistry and climate forcing. Molecular composition of the OC and its evolution during common processes of atmospheric aging have been a subject of extensive research over the last decade (see reviews of Ervens et al.,1 Hallquist et al.,2 Herckes et al.,3 Carlton et al.,4 Kroll and Seinfeld,5 Rudich et al.,6 and Kanakidou et al.7). Even though many fundamental advances have been reported in these studies, our understanding of the climate-related properties of atmospheric OC is still incomplete and the specific ways in which OC impacts atmospheric environment and climate forcing are just beginning to be understood. This review covers one topic of particular interest in this area –environmental chemistry of light-absorbing aerosol OC and its impact on radiative forcing.

  7. Atmospheres of Extrasolar Giant Planets

    CERN Document Server

    Marley, M S; Seager, S; Barman, T; Marley, Mark S.; Fortney, Jonathan; Seager, Sara; Barman, Travis

    2006-01-01

    The key to understanding an extrasolar giant planet's spectrum--and hence its detectability and evolution--lies with its atmosphere. Now that direct observations of thermal emission from extrasolar giant planets are in hand, atmosphere models can be used to constrain atmospheric composition, thermal structure, and ultimately the formation and evolution of detected planets. We review the important physical processes that influence the atmospheric structure and evolution of extrasolar giant planets and consider what has already been learned from the first generation of observations and modeling. We pay particular attention to the roles of cloud structure, metallicity, and atmospheric chemistry in affecting detectable properties through Spitzer Space Telescope observations of the transiting giant planets. Our review stresses the uncertainties that ultimately limit our ability to interpret EGP observations. Finally we will conclude with a look to the future as characterization of multiple individual planets in a ...

  8. Atmospheres of Extrasolar Giant Planets

    Science.gov (United States)

    Marley, M. S.; Fortney, J.; Seager, S.; Barman, T.

    The key to understanding an extrasolar giant planet's spectrum - and hence its detectability and evolution - lies with its atmosphere. Now that direct observations of thermal emission from extrasolar giant planets (EGPs) are in hand, atmosphere models can be used to constrain atmospheric composition, thermal structure, and ultimately the formation and evolution of detected planets. We review the important physical processes that influence the atmospheric structure and evolution of EGPs and consider what has already been learned from the first generation of observations and modeling. We pay particular attention to the roles of cloud structure, metallicity, and atmospheric chemistry in affecting detectable properties through Spitzer Space Telescope observations of the transiting giant planets. Our review stresses the uncertainties that ultimately limit our ability to interpret EGP observations. Finally we will conclude with a look to the future as characterization of multiple individual planets in a single stellar system leads to the study of comparative planetary architectures.

  9. Lord Kelvin's atmospheric electricity measuremnets

    CERN Document Server

    Aplin, K L

    2013-01-01

    Lord Kelvin (William Thomson) made important contributions to the study of atmospheric electricity during a brief but productive period from 1859-1861. By 1859 Kelvin had recognised the need for "incessant recording" of atmospheric electrical parameters, and responded by inventing both the water-dropper instrument for measuring the atmospheric Potential Gradient (PG), and photographic data logging. The water-dropper was widely adopted internationally and is still in use today. Following theoretical considerations of electric field distortion by local topography, Kelvin developed a portable electrometer, using it to investigate PG on the Scottish island of Arran. During these environmental measurements, Kelvin may have unwittingly detected atmospheric PG changes during solar activity in August/September 1859 associated with the "Carrington event". Kelvin's atmospheric electricity work presents an early representative study in quantitative environmental physics, through the application of mathematical principle...

  10. Cyberinfrastructure for Atmospheric Discovery

    Science.gov (United States)

    Wilhelmson, R.; Moore, C. W.

    2004-12-01

    Each year across the United States, floods, tornadoes, hail, strong winds, lightning, hurricanes, and winter storms cause hundreds of deaths, routinely disrupt transportation and commerce, and result in billions of dollars in annual economic losses . MEAD and LEAD are two recent efforts aimed at developing the cyberinfrastructure for studying and forecasting these events through collection, integration, and analysis of observational data coupled with numerical simulation, data mining, and visualization. MEAD (Modeling Environment for Atmospheric Discovery) has been funded for two years as an NCSA (National Center for Supercomputing Applications) Alliance Expedition. The goal of this expedition has been the development/adaptation of cyberinfrastructure that will enable research simulations, datamining, machine learning and visualization of hurricanes and storms utilizing the high performance computing environments including the TeraGrid. Portal grid and web infrastructure are being tested that will enable launching of hundreds of individual WRF (Weather Research and Forecasting) simulations. In a similar way, multiple Regional Ocean Modeling System (ROMS) or WRF/ROMS simulations can be carried out. Metadata and the resulting large volumes of data will then be made available for further study and for educational purposes using analysis, mining, and visualization services. Initial coupling of the ROMS and WRF codes has been completed and parallel I/O is being implemented for these models. Management of these activities (services) are being enabled through Grid workflow technologies (e.g. OGCE). LEAD (Linked Environments for Atmospheric Discovery) is a recently funded 5-year, large NSF ITR grant that involves 9 institutions who are developing a comprehensive national cyberinfrastructure in mesoscale meteorology, particularly one that can interoperate with others being developed. LEAD is addressing the fundamental information technology (IT) research challenges needed

  11. MARCS model atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Plez, B [GRAAL, CNRS, UMR5024, Universite Montpellier 2, F-34095 Montpellier, Cedex 5 (France) and Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala (Sweden)], E-mail: bertrand.plez@graal.univ-montp2.fr

    2008-12-15

    In this review presented at the Symposium A Stellar Journey in Uppsala, June 2008, I give an account of the historical development of the MARCS code, and its premises from the first version published in 1975 to the 2008 grid. The primary driver for the development team who constantly strive to include the best possible physical data, is the science that can be done with the models. A few preliminary comparisons of M star model spectra to spectrophotometric observations are presented. Particular results related to opacity effects are discussed. The size of errors in spectral energy distribution (SED) and model thermal stratification is estimated for different densities of wavelength sampling. The number of points used in the MARCS 2008 grid (108 000) is large enough to ensure errors of only a few K in all models of the grid, except the optically very thin layers of metal-poor stars. Errors in SEDs may reach about 10% locally in the UV. The published sampled SEDs are thus adequate to compute synthetic broadband photometry, but higher resolution spectra will be computed in the near future and published as well on the MARCS site (marcs.astro.uu.se). Test model calculations with TiO line opacity accounted for in scattering show significant cooling of the upper atmospheric layers of red giants. Rough estimates of radiative and collisional time scales for electronic transitions of TiO indicate that scattering may well be the dominant mechanism in these lines. However, models constructed with this hypothesis are incompatible with optical observations of TiO (Arcturus) or IR observations of OH (Betelgeuse), although they may succeed in explaining H{sub 2}O line observations. More work is needed in that direction.

  12. Exact results in modeling planetary atmospheres-I. Gray atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Chevallier, L. [Observatoire de Paris-Meudon, Laboratoire LUTH, 5 Place Jules Janssen, 92195 Meudon cedex (France)]. E-mail: loic.chevallier@obspm.fr; Pelkowski, J. [Institut fuer Meteorologie und Geophysik, J.W. Goethe Universitaet Frankfurt, Robert Mayer Strasse 1, D-60325 Frankfurt (Germany); Rutily, B. [Universite de Lyon, Lyon, F-69000 (France) and Universite Lyon 1, Villeurbanne, F-69622 (France) and Centre de Recherche Astronomique de Lyon, Observatoire de Lyon, 9 avenue Charles Andre, Saint-Genis Laval cedex, F-69561 (France) and CNRS, UMR 5574; Ecole Normale Superieure de Lyon, Lyon (France)

    2007-04-15

    An exact model is proposed for a gray, isotropically scattering planetary atmosphere in radiative equilibrium. The slab is illuminated on one side by a collimated beam and is bounded on the other side by an emitting and partially reflecting ground. We provide expressions for the incident and reflected fluxes on both boundary surfaces, as well as the temperature of the ground and the temperature distribution in the atmosphere, assuming the latter to be in local thermodynamic equilibrium. Tables and curves of the temperature distribution are included for various values of the optical thickness. Finally, semi-infinite atmospheres illuminated from the outside or by sources at infinity is dealt with.

  13. Hydrodynamics of oceans and atmospheres

    CERN Document Server

    Eckart, Carl

    1960-01-01

    Hydrodynamics of Oceans and Atmospheres is a systematic account of the hydrodynamics of oceans and atmospheres. Topics covered range from the thermodynamic functions of an ideal gas and the thermodynamic coefficients for water to steady motions, the isothermal atmosphere, the thermocline, and the thermosphere. Perturbation equations, field equations, residual equations, and a general theory of rays are also presented. This book is comprised of 17 chapters and begins with an introduction to the basic equations and their solutions, with the aim of illustrating the laws of dynamics. The nonlinear

  14. Atmospheric Research 2014 Technical Highlights

    Science.gov (United States)

    Platnick, Steven

    2015-01-01

    Atmospheric research in the Earth Sciences Division (610) consists of research and technology development programs dedicated to advancing knowledge and understanding of the atmosphere and its interaction with the climate of Earth. The Division's goals are to improve understanding of the dynamics and physical properties of precipitation, clouds, and aerosols; atmospheric chemistry, including the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and radiative properties of Earth's atmosphere and the influence of solar variability on the Earth's climate. Major research activities are carried out in the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office. The overall scope of the research covers an end-to-end process, starting with the identification of scientific problems, leading to observation requirements for remote-sensing platforms, technology and retrieval algorithm development; followed by flight projects and satellite missions; and eventually, resulting in data processing, analyses of measurements, and dissemination from flight projects and missions. Instrument scientists conceive, design, develop, and implement ultraviolet, infrared, optical, radar, laser, and lidar technology to remotely sense the atmosphere. Members of the various Laboratories conduct field measurements for satellite sensor calibration and data validation, and carry out numerous modeling activities. These modeling activities include climate model simulations, modeling the chemistry and transport of trace species on regional-to-global scales, cloud resolving models, and developing the next-generation Earth system models. Satellite missions, field campaigns, peer-reviewed publications, and successful proposals are essential at every stage of the research process to meeting our goals and maintaining leadership of the

  15. Atmospheres of Extrasolar Giant Planets

    Science.gov (United States)

    Marley, Mark

    2006-01-01

    The next decade will almost certainly see the direct imaging of extrasolar giant planets around nearby stars. Unlike purely radial velocity detections, direct imaging will open the door to characterizing the atmosphere and interiors of extrasola planets and ultimately provide clues on their formation and evolution through time. This process has already begun for the transiting planets, placing new constraints on their atmospheric structure, composition, and evolution. Indeed the key to understanding giant planet detectability, interpreting spectra, and constraining effective temperature and hence evolution-is the atmosphere. I will review the universe of extrasolar giant planet models, focusing on what we have already learned from modeling and what we will likely be able to learn from the first generation of direct detection data. In addition to these theoretical considerations, I will review the observations and interpretation of the - transiting hot Jupiters. These objects provide a test of our ability to model exotic atmospheres and challenge our current understanding of giant planet evolution.

  16. Atmospheric Circulation of Terrestrial Exoplanets

    CERN Document Server

    Showman, Adam P; Merlis, Timothy M; Kaspi, Yohai

    2013-01-01

    The investigation of planets around other stars began with the study of gas giants, but is now extending to the discovery and characterization of super-Earths and terrestrial planets. Motivated by this observational tide, we survey the basic dynamical principles governing the atmospheric circulation of terrestrial exoplanets, and discuss the interaction of their circulation with the hydrological cycle and global-scale climate feedbacks. Terrestrial exoplanets occupy a wide range of physical and dynamical conditions, only a small fraction of which have yet been explored in detail. Our approach is to lay out the fundamental dynamical principles governing the atmospheric circulation on terrestrial planets--broadly defined--and show how they can provide a foundation for understanding the atmospheric behavior of these worlds. We first survey basic atmospheric dynamics, including the role of geostrophy, baroclinic instabilities, and jets in the strongly rotating regime (the "extratropics") and the role of the Hadle...

  17. Atmospheric Methane in Ice Cores

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The reconstruction of air trapped in ice cores provides us the most direct information about atmospheric CH4 variations in the past history. Ice core records from the "Three Poles (Antarctica, Greenland and Tibetan Plateau)" reveal the detailed fluctuations of atmospheric CH4 concentration with time and are allowed to quantify the CH4 differences among latitudes. These data are indispensably in the farther study of the relationship between greenhouse gases and climatic change, and of the past changes in terrestrial CH4 emissions. Ice cores reconstruction indicates that atmospheric CH4 concentration has increased quickly since industrialization, and the present day's level of atmospheric CH4 (1800 ppbv) is unprecedented during the past Glacial-Interglacial climate cycles.

  18. The bibliometrics of atmospheric environment

    Science.gov (United States)

    Brimblecombe, Peter; Grossi, Carlota M.

    Bibliometric analysis is an important tool in the management of a journal. SCOPUS output is used to assess the increase in the quantity of material in Atmospheric Environment and stylistic changes in the way authors choose words and punctuation in titles and assemble their reference lists. Citation analysis is used to consider the impact factor of the journal, but perhaps more importantly the way in which it reflects the importance authors give to papers published in Atmospheric Environment. The impact factor of Atmospheric Environment (2.549 for 2007) from the Journal Citation Reports suggests it performs well within the atmospheric sciences, but it conceals the long term value authors place on papers appearing in the journal. Reference lists show that a fifth come through citing papers more than a decade old.

  19. Atmospheric science and power production

    Energy Technology Data Exchange (ETDEWEB)

    Randerson, D. (ed.)

    1984-07-01

    This is the third in a series of scientific publications sponsored by the US Atomic Energy Commission and the two later organizations, the US Energy Research and Development Adminstration, and the US Department of Energy. The first book, Meteorology and Atomic Energy, was published in 1955; the second, in 1968. The present volume is designed to update and to expand upon many of the important concepts presented previously. However, the present edition draws heavily on recent contributions made by atmospheric science to the analysis of air quality and on results originating from research conducted and completed in the 1970s. Special emphasis is placed on how atmospheric science can contribute to solving problems relating to the fate of combustion products released into the atmosphere. The framework of this book is built around the concept of air-quality modeling. Fundamentals are addressed first to equip the reader with basic background information and to focus on available meteorological instrumentation and to emphasize the importance of data management procedures. Atmospheric physics and field experiments are described in detail to provide an overview of atmospheric boundary layer processes, of how air flows around obstacles, and of the mechanism of plume rise. Atmospheric chemistry and removal processes are also detailed to provide fundamental knowledge on how gases and particulate matter can be transformed while in the atmosphere and how they can be removed from the atmosphere. The book closes with a review of how air-quality models are being applied to solve a wide variety of problems. Separate analytics have been prepared for each chapter.

  20. Monitoring Atmospheric Transmission with FLAME

    Science.gov (United States)

    Zimmer, Peter C.; McGraw, J. T.; Zirzow, D. C.; Koppa, M.; Buttler-Pena, K.

    2014-01-01

    Calibration of ground-based observations in the optical and near-infrared requires precise and accurate understanding of atmospheric transmission, at least as precise and accurate as that required for the spectral energy distributions of science targets. Traditionally this has used the Langley extrapolation method, observing targets and calibrators over a range of airmass and extrapolating to zero airmass by assuming a plane-parallel homogeneous atmosphere. The technique we present uses direct measurements of the atmosphere to derive the transmission along the line of sight to science targets at a few well-chosen wavelengths. The Facility Lidar Atmospheric Monitor of Extinction (FLAME) is a 0.5m diameter three Nd:YAG wavelength (355nm, 532nm & 1064nm) elastic backscatter lidar system. Laser pulses are transmitted into the atmosphere in the direction of the science target. Photons scattered back toward the receiver by molecules, aerosols and clouds are collected and time-gated so that the backscatter intensity is measured as a function of range to the scattering volume. The system is housed in a mobile calibration lab, which also contains auxiliary instrumentation to provide a NIST traceable calibration of the transmitted laser power and receiver efficiency. FLAME was designed to create a million photons per minute signal from the middle stratosphere, where the atmosphere is relatively calm and dominated by molecules of the well-mixed atmosphere (O2 & N2). Routine radiosonde measurements of the density at these altitudes constrain the scattering efficiency in this region and, combined with calibration of the transmitter and receiver, the only remaining unknown quantity is the two-way transmission to the stratosphere. These measurements can inform atmospheric transmission models to better understand the complex and ever-changing observatory radiative transfer environment. FLAME is currently under active development and we present some of our ongoing measurements.

  1. Atmospheric Chemistry and Greenhouse Gases

    Energy Technology Data Exchange (ETDEWEB)

    Ehhalt, D.; Prather, M.; Dentener, F.; Derwent, R.; Dlugokencky, Edward J.; Holland, E.; Isaksen, I.; Katima, J.; Kirchhoff, V.; Matson, P.; Midgley, P.; Wang, M.; Berntsen, T.; Bey, I.; Brasseur, G.; Buja, L.; Collins, W. J.; Daniel, J. S.; DeMore, W. B.; Derek, N.; Dickerson, R.; Etheridge, D.; Feichter, J.; Fraser, P.; Friedl, R.; Fuglestvedt, J.; Gauss, M.; Grenfell, L.; Grubler, Arnulf; Harris, N.; Hauglustaine, D.; Horowitz, L.; Jackman, C.; Jacob, D.; Jaegle, L.; Jain, Atul K.; Kanakidou, M.; Karlsdottir, S.; Ko, M.; Kurylo, M.; Lawrence, M.; Logan, J. A.; Manning, M.; Mauzerall, D.; McConnell, J.; Mickley, L. J.; Montzka, S.; Muller, J. F.; Olivier, J.; Pickering, K.; Pitari, G.; Roelofs, G.-J.; Rogers, H.; Rognerud, B.; Smith, Steven J.; Solomon, S.; Staehelin, J.; Steele, P.; Stevenson, D. S.; Sundet, J.; Thompson, A.; van Weele, M.; von Kuhlmann, R.; Wang, Y.; Weisenstein, D. K.; Wigley, T. M.; Wild, O.; Wuebbles, D.J.; Yantosca, R.; Joos, Fortunat; McFarland, M.

    2001-10-01

    Chapter 4 of the IPCC Third Assessment Report Climate Change 2001: The Scientific Basis. Sections include: Executive Summary 2414.1 Introduction 2434.2 Trace Gases: Current Observations, Trends and Budgets 2484.3 Projections of Future Emissions 2664.4 Projections of Atmospheric Composition for the 21st Century 2674.5 Open Questions 2774.6 Overall Impact of Global Atmospheric Chemistry Change 279

  2. Atmospheric neutrinos: Status and prospects

    OpenAIRE

    2016-01-01

    We present an overview of the current status of neutrino oscillation studies at atmospheric neutrino experiments. While the current data gives some tentalising hints regarding the neutrino mass hierarchy, octant of $\\theta_{23}$ and $\\delta_{CP}$, the hints are not statistically significant. We summarise the sensitivity to these sub-dominant three-generation effects from the next-generation proposed atmospheric neutrino experiments. We next present the prospects of new physics searches such a...

  3. Biogeochemical aspects of atmospheric methane

    OpenAIRE

    Cicerone, RJ; Oremland, RS

    1988-01-01

    Methane is the most abundant organic chemical in Earth's atmosphere, and its concentration is increasing with time, as a variety of independent measurements have shown. Photochemical reactions oxidize methane in the atmosphere; through these reactions, methane exerts strong influence over the chemistry of the troposphere and the stratosphere and many species including ozone, hydroxyl radicals, and carbon monoxide. Also, through its infrared absorption spectrum, methane is an important greenho...

  4. Geophysical Plasmas and Atmospheric Modeling.

    Science.gov (United States)

    1982-01-01

    will be submitted to the Journal of the Atmospheric Sciences. 32 - .- I. LIMITATIONS ON STRATOSPHERIC DYNAMICS We have performed an investigation of...Amplitudes" which will be submitted to the Journal of the Atmospheric Sciences. 1i 33 A& J. GENERAL CIRCULATION MODEL STUDIES Comparison computer runs...In tis case, as clearly shov.i by Petvia-mensona. I ths cseas ceary sou byPetia- cavities requires a local theory going beyond the limitshvilli,’ the

  5. Atmospheric changes from solar eclipses.

    Science.gov (United States)

    Aplin, K L; Scott, C J; Gray, S L

    2016-09-28

    This article reviews atmospheric changes associated with 44 solar eclipses, beginning with the first quantitative results available, from 1834 (earlier qualitative accounts also exist). Eclipse meteorology attracted relatively few publications until the total solar eclipse of 16 February 1980, with the 11 August 1999 eclipse producing the most papers. Eclipses passing over populated areas such as Europe, China and India now regularly attract scientific attention, whereas atmospheric measurements of eclipses at remote locations remain rare. Many measurements and models have been used to exploit the uniquely predictable solar forcing provided by an eclipse. In this paper, we compile the available publications and review a subset of them chosen on the basis of importance and novelty. Beyond the obvious reduction in incoming solar radiation, atmospheric cooling from eclipses can induce dynamical changes. Observations and meteorological modelling provide evidence for the generation of a local eclipse circulation that may be the origin of the 'eclipse wind'. Gravity waves set up by the eclipse can, in principle, be detected as atmospheric pressure fluctuations, though theoretical predictions are limited, and many of the data are inconclusive. Eclipse events providing important early insights into the ionization of the upper atmosphere are also briefly reviewed.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'.

  6. Venus Atmospheric Maneuverable Platform (VAMP)

    Science.gov (United States)

    Polidan, R.; Lee, G.; Sokol, D.; Griffin, K.; Bolisay, L.; Barnes, N.

    2014-04-01

    Over the past years we have explored a possible new approach to Venus upper atmosphere exploration by applying recent Northrop Grumman (non-NASA) development programs to the challenges associated with Venus upper atmosphere science missions. Our concept is a low ballistic coefficient (aircraft that deploys prior to entering the Venus atmosphere, enters the Venus atmosphere without an aeroshell, and provides a long-lived (months to years), maneuverable vehicle capable of carrying science payloads to explore the Venus upper atmosphere. VAMP targets the global Venus atmosphere between 55 and 70 km altitude and would be a platform to address VEXAG goals I.A, I.B, and I.C. We will discuss the overall mission architecture and concept of operations from launch through Venus arrival, orbit, entry, and atmospheric science operations. We will present a strawman concept of VAMP, including ballistic coefficient, planform area, percent buoyancy, inflation gas, wing span, vehicle mass, power supply, propulsion, materials considerations, structural elements, subsystems, and packaging. The interaction between the VAMP vehicle and the supporting orbiter will also be discussed. In this context, we will specifically focus upon four key factors impacting the design and performance of VAMP: 1. Science payload accommodation, constraints, and opportunities 2. Characteristics of flight operations and performance in the Venus atmosphere: altitude range, latitude and longitude access, day/night performance, aircraft performance, performance sensitivity to payload weight 3. Feasibility of and options for the deployment of the vehicle in space 4. Entry into the Venus atmosphere, including descent profile, heat rate, total heat load, stagnation temperature, control, and entry into level flight We will discuss interdependencies of the above factors and the manner in which the VAMP strawman's characteristics affect the CONOPs and the science objectives. We will show how the these factors provide

  7. Organic chemistry in the atmosphere. [laboratory modeling of Titan atmosphere

    Science.gov (United States)

    Sagan, C.

    1974-01-01

    The existence of an at least moderately complex organic chemistry on Titan is stipulated based on clear evidence of methane, and at least presumptive evidence of hydrogen in its atmosphere. The ratio of methane to hydrogen is the highest of any atmosphere in the solar system. Irradiation of hydrogen/methane mixtures produces aromatic and aliphatic hydrocarbons. A very reasonable hypothesis assumes that the red cloud cover of Titan is made of organic chemicals. Two-carbon hydrocarbons experimentally produced from irradiated mixtures of methane, ammonia, water, and hydrogen bear out the possible organic chemistry of the Titanian environment.

  8. Atmospheric Chemistry Over Southern Africa

    Science.gov (United States)

    Gatebe, Charles K.; Levy, Robert C.; Thompson, Anne M.

    2011-01-01

    During the southern African dry season, regional haze from mixed industrial pollution, biomass burning aerosol and gases from domestic and grassland fires, and biogenic sources from plants and soils is worsened by a semi-permanent atmosphere gyre over the subcontinent. These factors were a driver of several major international field campaigns in the 1990s and early 2000s, and attracted many scientists to the region. Some researchers were interested in understanding fundamental processes governing chemistry of the atmosphere and interaction with climate change. Others found favorable conditions for evaluating satellite-derived measurements of atmospheric properties and a changing land surface. With that background in mind a workshop on atmospheric chemistry was held in South Africa. Sponsored by the International Commission for Atmospheric Chemistry and Global Pollution (ICACGP; http://www.icacgp.org/), the workshop received generous support from the South African power utility, Eskom, and the Climatology Research Group of the University of the Witwatersrand, Johannesburg, South Africa. The purpose of the workshop was to review some earlier findings as well as more recent findings on southern African climate vulnerability, chemical changes due to urbanization, land-use modification, and how these factors interact. Originally proposed by John Burrows, president of ICACGP, the workshop was the first ICACGP regional workshop to study the interaction of air pollution with global chemical and climate change. Organized locally by the University of the Witwatersrand, the workshop attracted more than 60 delegates from South Africa, Mozambique, Botswana, Zimbabwe, France, Germany, Canada, and the United States. More than 30 presentations were given, exploring both retrospective and prospective aspects of the science. In several talks, attention was focused on southern African chemistry, atmospheric pollution monitoring, and climate processes as they were studied in the field

  9. Electrodynamics in Giant Planet Atmospheres

    Science.gov (United States)

    Koskinen, T.; Yelle, R. V.; Lavvas, P.; Cho, J.

    2014-12-01

    The atmospheres of close-in extrasolar giant planets such as HD209458b are strongly ionized by the UV flux of their host stars. We show that photoionization on such planets creates a dayside ionosphere that extends from the thermosphere to the 100 mbar level. The resulting peak electron density near the 1 mbar level is higher than that encountered in any planetary ionosphere of the solar system, and the model conductivity is in fact comparable to the atmospheres of Sun-like stars. As a result, the momentum and energy balance in the upper atmosphere of HD209458b and similar planets can be strongly affected by ion drag and resistive heating arising from wind-driven electrodynamics. Despite much weaker ionization, electrodynamics is nevertheless also important on the giant planets of the solar system. We use a generic framework to constrain the conductivity regimes on close-in extrasolar planets, and compare the results with conductivites based on the same approach for Jupiter and Saturn. By using a generalized Ohm's law and assumed magnetic fields, we then demonstrate the basic effects of wind-driven ion drag in giant planet atmospheres. Our results show that ion drag is often significant in the upper atmosphere where it can also substantially alter the energy budget through resistive heating.

  10. Atmospheric chemistry over southern Africa

    Science.gov (United States)

    Gatebe, Charles K.; Levy, Robert C.; Thompson, Anne M.

    2012-03-01

    Changing Chemistry in a Changing Climate: Human and Natural Impacts Over Southern Africa (C4-SAR); Midrand, South Africa, 31 May to 3 June 2011 During the southern African dry season, regional haze from mixed industrial pollution, biomass burning aerosol and gases from domestic and grassland fires, and biogenic sources from plants and soils is worsened by a semipermanent atmospheric gyre over the subcontinent. These factors were a driver of several major international field campaigns in the 1990s and early 2000s and attracted many scientists to the region. Some researchers were interested in understanding fundamental processes governing chemistry of the atmosphere and interaction with climate change. Others found favorable conditions for evaluating satellite- derived measurements of atmospheric properties and a changing land surface. With that background in mind a workshop on atmospheric chemistry was held in South Africa. Sponsored by the International Commission on Atmospheric Chemistry and Global Pollution (ICACGP; http://www.icacgp.org/), the workshop received generous support from Eskom, the South African power utility; and the Climatology Research Group of the University of the Witwatersrand, Johannesburg, South Africa.

  11. Chemical modeling of exoplanet atmospheres

    CERN Document Server

    Venot, Olivia

    2014-01-01

    The past twenty years have revealed the diversity of planets that exist in the Universe. It turned out that most of exoplanets are different from the planets of our Solar System and thus, everything about them needs to be explored. Thanks to current observational technologies, we are able to determine some information about the atmospheric composition, the thermal structure and the dynamics of these exoplanets, but many questions remain still unanswered. To improve our knowledge about exoplanetary systems, more accurate observations are needed and that is why the Exoplanet Characterisation Observatory (EChO) is an essential space mission. Thanks to its large spectral coverage and high spectral resolution, EChO will provide exoplanetary spectra with an unprecedented accuracy, allowing to improve our understanding of exoplanets. In this work, we review what has been done to date concerning the chemical modeling of exoplanet atmospheres and what are the main characteristics of warm exoplanet atmospheres, which a...

  12. Light atmosphere in hospital wards

    DEFF Research Database (Denmark)

    Stidsen, Lone Mandrup

    Sociocultural aspects of light are important for the user experience of the atmosphere in a ward. According to the Danish Regulation for light in hospitals (DS703, 1983), a home-like feeling is required to support the patients, as they needa pleasant environment for their recovery. The term ‘Light...... the requirements. What does it mean to create a 'home-like' and 'pleasant or appealing' light in this context? Does the composition of CRI and degree of Kelvin tell it all? Is it enough information to provide a proper illumination in which the patient can have a homely and pleasant experience? The 'Model of Light...... from the Danish interior design magazine BO BEDRE.The findings show that the placement of light atmosphere in Denmark are determined as three horizontal light zones: 'High Lighting Zone', 'Center Lighting Zone' and 'Low Lighting Zone' An experimental study evaluates the experience of the atmosphere...

  13. Lagrangian Modeling of the Atmosphere

    Science.gov (United States)

    Schultz, Colin

    2013-08-01

    Like watching a balloon borne by the breeze, a Lagrangian model tracks a parcel of air as it flows through the atmosphere. Whether running forward or backward in time, Lagrangian models offer a powerful tool for tracking and understanding the fates, or origins, of atmospheric flows. In the AGU monograph Lagrangian Modeling of the Atmosphere, editors John Lin, Dominik Brunner, Christoph Gerbig, Andreas Stohl, Ashok Luhar, and Peter Webley explore the nuances of the modeling technique. In this interview Eos talks to Lin about the growing importance of Lagrangian modeling as the world settles on climate change mitigation strategies, the societal value of operational modeling, and how recent advances are making it possible to run these complex calculations at home.

  14. An archetype hydrogen atmosphere problem

    Science.gov (United States)

    Athay, R. G.; Mihalas, D.; Shine, R. A.

    1975-01-01

    Populations for the first three bound states and the continuum of hydrogen are determined for an isothermal hydrostatic atmosphere at 20,000 K. The atmosphere is treated as optically thin in the Balmer and Paschen continua and illuminated by continuum radiation at these wavelengths with prescribed radiation temperatures. The atmosphere is optically thick in the 2-1, 3-1, 3-2 and c-1 transitions. Three stages of approximation are treated: (1) radiative detailed balance in the 2-1, 3-1 and 3-2 transitions, (2) radiative detailed balance in the 3-1 and 3-2 transitions, and (3) all transitions out of detailed balance. The solution of this problem is nontrivial and presents sufficient difficulty to have caused the failure of at least one rather standard technique. The problem is thus a good archetype against which new methods or new implementations of old methods may be tested.

  15. Atmospheric changes from solar eclipses

    CERN Document Server

    Aplin, Karen; Gray, Suzanne

    2016-01-01

    This article reviews atmospheric changes associated with 44 solar eclipses, beginning with the first quantitative results available, from 1834 (earlier qualitative, accounts also exist). Eclipse meteorology attracted relatively few publications until the total solar eclipse of 16 February 1980, with the 11 August 1999 eclipse producing the most papers. Eclipses passing over populated areas such as Europe, China and India now regularly attract scientific attention, whereas atmospheric measurements of eclipses at remote locations remain rare. Many measurements and models have been used to exploit the uniquely predictable solar forcing provided by an eclipse. In this paper we compile the available publications and review a sub-set of them chosen on the basis of importance and novelty. Beyond the obvious reduction in incoming solar radiation, atmospheric cooling from eclipses can induce dynamical changes. Observations and meteorological modelling provide evidence for the generation of a local eclipse circulation ...

  16. Cumulant expansions for atmospheric flows

    CERN Document Server

    Ait-Chaalal, Farid; Meyer, Bettina; Marston, J B

    2015-01-01

    The equations governing atmospheric flows are nonlinear, and consequently the hierarchy of cumulant equations is not closed. But because atmospheric flows are inhomogeneous and anisotropic, the nonlinearity may manifests itself only weakly through interactions of mean fields with disturbances such as thermals or eddies. In such situations, truncations of the hierarchy of cumulant equations hold promise as a closure strategy. We review how truncations at second order can be used to model and elucidate the dynamics of turbulent atmospheric flows. Two examples are considered. First, we study the growth of a dry convective boundary layer, which is heated from below, leading to turbulent upward energy transport and growth of the boundary layer. We demonstrate that a quasilinear truncation of the equations of motion, in which interactions of disturbances among each other are neglected but interactions with mean fields are taken into account, can successfully capture the growth of the convective boundary layer. Seco...

  17. Terrestrial atmosphere, water and astrobiology

    Directory of Open Access Journals (Sweden)

    Coradini M.

    2010-12-01

    Full Text Available Primitive life, defined as a chemical system capable to transfer its molecular information via self-replication and also capable to evolve, originated about 4 billion years ago from the processing of organic molecules by liquid water. Terrestrial atmosphere played a key role in the process by allowing the permanent presence of liquid water and by participating in the production of carbon-based molecules. Water molecules exhibit specific properties mainly due to a dense network of hydrogen bonds. The carbon-based molecules were either home made in the atmosphere and/or in submarine hydrothermal systems or delivered by meteorites and micrometeorites. The search for possible places beyond the earth where the trilogy atmosphere/water/life could exist is the main objective of astrobiology. Within the Solar System, exploration missions are dedicated to Mars, Europa, Titan and the icy bodies. The discovery of several hundreds of extrasolar planets opens the quest to the whole Milky Way.

  18. The Atmospheres of Extrasolar Planets

    Science.gov (United States)

    Richardson, L. J.; Seager, S.

    2007-01-01

    In this chapter we examine what can be learned about extrasolar planet atmospheres by concentrating on a class of planets that transit their parent stars. As discussed in the previous chapter, one way of detecting an extrasolar planet is by observing the drop in stellar intensity as the planet passes in front of the star. A transit represents a special case in which the geometry of the planetary system is such that the planet s orbit is nearly edge-on as seen from Earth. As we will explore, the transiting planets provide opportunities for detailed follow-up observations that allow physical characterization of extrasolar planets, probing their bulk compositions and atmospheres.

  19. The VLA Atmospheric Phase Interferometer

    Science.gov (United States)

    Morris, Keith

    2014-05-01

    The Atmospheric Phase Interferometer (API) is a two-element atmospheric seeing monitor located at the Very Large Array (VLA) site. The instrument measures turbulent refractive index variation through the atmosphere by examining phase differences in a satellite beacon signal detected at two (or more) antennas. With this measurement, the VLA scheduling software is able to consider atmospheric stability when determining which frequency observation to schedule next. We are in the process of extending this two-element interferometer to four elements, which will allow us to measure the turbulence in two dimensions and at multiple length scales. This thesis will look at some statistical properties of turbulence, the effects of atmospheric stability on radio interferometric observations, and discuss details of the instrument and the data that it collects. The thesis will also cover some techniques and principles of signal processing, and an analysis of some data from the instrument. The results demonstrate that other surface atmospheric variables (e.g. windspeed, water vapor pressure) show the same structure function exponent as the atmospheric phase fluctuations. In particular, the structure functions of water vapor partial pressure and wind speed show the same exponent as the phase. Though the agreement between meteorological variables and atmospheric phase is scientifically satisfying, these surface measurements are not nearly as sensitive as the API saturation phase measurement, and therefore cannot be used to schedule telescope time in its stead. What is informative about these results is that the similar structure functions for API and meteorological data are detecting reinforce the claim that both measurements represent turbulent transport, and not instrumental noise. Data from the instrument reveals that measurements are consistent with both Kolmogorov turbulence theory, and with prior observations. The API predominately measures three-dimensional isotropic

  20. Model for Simulation Atmospheric Turbulence

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik

    1976-01-01

    A method that produces realistic simulations of atmospheric turbulence is developed and analyzed. The procedure makes use of a generalized spectral analysis, often called a proper orthogonal decomposition or the Karhunen-Loève expansion. A set of criteria, emphasizing a realistic appearance....... The method is unique in modeling the three velocity components simultaneously, and it is found that important cross-statistical features are reasonably well-behaved. It is concluded that the model provides a practical, operational simulator of atmospheric turbulence....

  1. Plume spread and atmospheric stability

    Energy Technology Data Exchange (ETDEWEB)

    Weber, R.O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The horizontal spread of a plume in atmospheric dispersion can be described by the standard deviation of horizontal direction. The widely used Pasquill-Gifford classes of atmospheric stability have assigned typical values of the standard deviation of horizontal wind direction and of the lapse rate. A measured lapse rate can thus be used to estimate the standard deviation of wind direction. It is examined by means of a large dataset of fast wind measurements how good these estimates are. (author) 1 fig., 2 refs.

  2. Future of Atmospheric Neutrino Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Choubey, Sandhya [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India)

    2013-02-15

    Discovery of large θ{sub 13} has opened up the possibility of determining the neutrino mass hierarchy and θ{sub 23} octant through earth matter effects. The atmospheric neutrinos pick up large earth matter effects both in the ν{sub e} and ν{sub μ} channels, which if observed could lead to the determination of the mass hierarchy and θ{sub 23} octant using this class of experiments in the near future. In this talk I review the status and prospects of future atmospheric neutrino measurements in determining the mass hierarchy and octant of θ{sub 23}.

  3. Atmospheric Neutrinos: Status and Prospects

    CERN Document Server

    Choubey, Sandhya

    2016-01-01

    We present an overview of the current status of neutrino oscillation studies at atmospheric neutrino experiments. While the current data gives some tentalising hints regarding the neutrino mass hierarchy, octant of $\\theta_{23}$ and $\\delta_{CP}$, the hints are not statistically significant. We summarise the sensitivity to these sub-dominant three-generation effects from the next-generation proposed atmospheric neutrino experiments. We next present the prospects of new physics searches such as non-standard interactions, sterile neutrinos and CPT violation studies at these experiments.

  4. Future of Atmospheric Neutrino Measurements

    Science.gov (United States)

    Choubey, Sandhya

    2013-02-01

    Discovery of large θ13 has opened up the possibility of determining the neutrino mass hierarchy and θ23 octant through earth matter effects. The atmospheric neutrinos pick up large earth matter effects both in the νe and νμ channels, which if observed could lead to the determination of the mass hierarchy and θ23 octant using this class of experiments in the near future. In this talk I review the status and prospects of future atmospheric neutrino measurements in determining the mass hierarchy and octant of θ23.

  5. Atmospheric neutrinos: Status and prospects

    Science.gov (United States)

    Choubey, Sandhya

    2016-07-01

    We present an overview of the current status of neutrino oscillation studies at atmospheric neutrino experiments. While the current data gives some tantalising hints regarding the neutrino mass hierarchy, octant of θ23 and δCP, the hints are not statistically significant. We summarise the sensitivity to these sub-dominant three-generation effects from the next-generation proposed atmospheric neutrino experiments. We next present the prospects of new physics searches such as non-standard interactions, sterile neutrinos and CPT violation studies at these experiments.

  6. Existence of the atmosphere attractor

    Institute of Scientific and Technical Information of China (English)

    李建平; 丑纪范

    1997-01-01

    The global asymptotic behavior of solutions for the equations of large-scale atmospheric motion with the non-stationary external forcing is studied in the infinite-dimensional Hilbert space. Based on the properties of operators of the equations, some energy inequalities and the uniqueness theorem of solutions are obtained. On the assumption that external forces are bounded, the exsitence of the global absorbing set and the atmosphere attractor is proved, and the characteristics of the decay of effect of initial field and the adjustment to the external forcing are revealed. The physical sense of the results is discussed and some ideas about climatic numerical forecast are elucidated.

  7. Detection of Atmospheric Composition Based on Lidar

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jinye; Tong Yala; Yang Xiaoling; Gong Jiaoli [School of science, Hubei University of Technology, Wuhan 430068 (China); Gong Wei, E-mail: yezi.zh@163.com [State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079 (China)

    2011-02-01

    A summary overview about the types of lidar and their own applications on atmosphere detection is presented. Measurement of atmospheric aerosols by Mie lidar and Raman lidar is focused. The vertical profiles of aerosols in the atmosphere are retrieved. And at the same time, through analyzing aerosol vertical content distribution, the atmosphere boundary layer and the cloud are also observed. All the results show that the lidar has good performance on detecting the atmospheric composition.

  8. Looking inside exoplanets. Exoplanetary Atmospheres.

    Science.gov (United States)

    Lampon, M.; Lara, L. M.; Jimenez-Ortega, J.; Gomez-Gonzalez, J. L.

    2017-03-01

    If we want to help to obtain answers to scientific key questions like, what are exoplanets made of?, why are planets as they are?, how were they formed and how did they evolve?, we have to understand their atmospheres, so to be able to build suitable exoplanetary atmospheric models. For this purpose, we are developing the necessary tools. At present, we are able to build a one dimensional equilibrium thermodynamic atmospheric model for exoplanets, that is a first approximation to their characterization. In the near future, our model will be implemented with new tools for describing disequilibrium processes and therefore will let us to reach a deeper understanding. In this work we expose a sample of 3 exoplanets, 1 hot Jupiter and 2 hot Neptunes-like at which we build several one dimensional equilibrium thermodynamic atmospheric models. The purpose of this work is show the different variables that even in a first approximation (i.e. equilibrium thermodynamic model) seriously affect the characterization of the system.

  9. Positron production within our atmosphere

    Science.gov (United States)

    Dwyer, Joseph

    2016-04-01

    Positrons are commonly produced within our atmosphere by cosmic rays and the decay radioactive isotopes. Energetic positrons are also produced by pair production from the gamma rays generated by relativistic runaway electrons. Indeed, such positrons have been detected in Terrestrial Electron Beams (TEBs) in the inner magnetosphere by Fermi/GBM. In addition, positrons play an important role in relativistic feedback discharges (also known as dark lightning). Relativistic feedback models suggest that these discharges may be responsible for Terrestrial Gamma-ray Flashes (TGFs) and some gamma-ray glows. When producing TGFs, relativistic feedback discharges may generate large, lightning-like currents with current moments reaching hundreds of kA-km. In addition, relativistic feedback discharges also may limit the electric field that is possible in our atmosphere, affecting other mechanisms for generating runaway electrons. It is interesting that positrons, often thought of as exotic particles, may play an important role in thunderstorm processes. In this presentation, the role of positrons in high-energy atmospheric physics will be discussed. The unusual observation of positron clouds inside a thunderstorm by the ADELE instrument on an NCAR/NSF Gulfstream V aircraft will also be described. These observations illustrate that we still have much to learn about positron production within our atmosphere.

  10. Some advances in atmospheric chemistry

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the recent decade, researches have been carried out by our group on some aspects of atmospheric chemistry through field observation, mechanism analysis and model simulation. Here some main results on greenhouse gas (CH4, N2O) emission from Chinese agricultural fields, aerosol, global carbon cycle and ozone variation in surface laver over China are briefly reported.

  11. Would be the Atmosphere Chaotic?

    Directory of Open Access Journals (Sweden)

    Isimar de Azevedo Santos

    2013-07-01

    Full Text Available The atmosphere has often been considered “chaotic” when in fact the “chaos” is a manifestation of the models that simulate it, which do not include all the physical mechanisms that exist within it. A weather prediction cannot be perfectly verified after a few days of integration due to the inherent nonlinearity of the equations of the hydrodynamic models. The innovative ideas of Lorenz led to the use of the ensemble forecast, with clear improvements in the quality of the numerical weather prediction. The present study addresses the statement that “even with perfect models and perfect observations, the ‘chaotic’ nature of the atmosphere would impose a finite limit of about two weeks to the predictability of the weather” as the atmosphere is not necessarily “chaotic”, but the models used in the simulation of atmospheric processes are. We conclude, therefore, that potential exists for developments to increase the horizon of numerical weather prediction, starting with better models and observations.

  12. Atmospheric chemistry in volcanic plumes.

    Science.gov (United States)

    von Glasow, Roland

    2010-04-13

    Recent field observations have shown that the atmospheric plumes of quiescently degassing volcanoes are chemically very active, pointing to the role of chemical cycles involving halogen species and heterogeneous reactions on aerosol particles that have previously been unexplored for this type of volcanic plumes. Key features of these measurements can be reproduced by numerical models such as the one employed in this study. The model shows sustained high levels of reactive bromine in the plume, leading to extensive ozone destruction, that, depending on plume dispersal, can be maintained for several days. The very high concentrations of sulfur dioxide in the volcanic plume reduces the lifetime of the OH radical drastically, so that it is virtually absent in the volcanic plume. This would imply an increased lifetime of methane in volcanic plumes, unless reactive chlorine chemistry in the plume is strong enough to offset the lack of OH chemistry. A further effect of bromine chemistry in addition to ozone destruction shown by the model studies presented here, is the oxidation of mercury. This relates to mercury that has been coemitted with bromine from the volcano but also to background atmospheric mercury. The rapid oxidation of mercury implies a drastically reduced atmospheric lifetime of mercury so that the contribution of volcanic mercury to the atmospheric background might be less than previously thought. However, the implications, especially health and environmental effects due to deposition, might be substantial and warrant further studies, especially field measurements to test this hypothesis.

  13. Airborne Atmospheric Aerosol Measurement System

    Science.gov (United States)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  14. Entropic "sound" in the atmosphere

    CERN Document Server

    Apostol, B F; Apostol, M

    1996-01-01

    It is shown that small, local disturbances of entropy in the atmosphere may give rise to "sound" waves propagating with a velocity which depends on the amplitude ratio of the local relative variations of temperature and volume. This velocity is much smaller than the mean molecular velocity and the usual, adiabatic sound velocity.

  15. Temporal Variations in Jupiter's Atmosphere

    Science.gov (United States)

    Simon-Miller, Amy A.; Chanover, N. J.; Yanamandra-Fisher, P.; Hammel, H. B.; dePater, I.; Noll, K.; Wong, M.; Clarke, J.; Sanchez-Levega, A.; Orton, G. S.; Gonzaga, S.

    2009-01-01

    In recent years, Jupiter has undergone many atmospheric changes from storms turning red to global. cloud upheavals, and most recently, a cornet or asteroid impact. Yet, on top of these seemingly random changes events there are also periodic phenomena, analogous to observed Earth and Saturn atmospheric oscillations. We will present 15 years of Hubble data, from 1994 to 2009, to show how the equatorial tropospheric cloud deck and winds have varied over that time, focusing on the F953N, F41 ON and F255W filters. These filters give leverage on wind speeds plus cloud opacity, cloud height and tropospheric haze thickness, and stratospheric haze, respectively. The wind data consistently show a periodic oscillation near 7-8 S latitude. We will discuss the potential for variations with longitude and cloud height, within the calibration limits of those filters. Finally, we will discuss the role that large atmospheric events, such as the impacts in 1994 and 2009, and the global upheaval of 2007, have on temporal studies, This work was supported by a grant from the NASA Planetary Atmospheres Program. HST observational support was provided by NASA through grants from Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract NAS5-26555.

  16. Exploring the Atmosphere Using Smartphones

    Science.gov (United States)

    Monteiro, Martin; Vogt, Patrik; Stari, Cecilia; Cabeza, Cecilia; Marti, Arturo C.

    2016-01-01

    The characteristics of the inner layer of the atmosphere, the troposphere, are determinant for Earth's life. In this experience we explore the first hundreds of meters using a smartphone mounted on a quadcopter. Both the altitude and the pressure are obtained using the smartphone's sensors. We complement these measures with data collected from the…

  17. Forecasting global atmospheric CO2

    Directory of Open Access Journals (Sweden)

    A. Agustí-Panareda

    2014-05-01

    Full Text Available A new global atmospheric carbon dioxide (CO2 real-time forecast is now available as part of the pre-operational Monitoring of Atmospheric Composition and Climate – Interim Implementation (MACC-II service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF Integrated Forecasting System (IFS. One of the strengths of the CO2 forecasting system is that the land surface, including vegetation CO2 fluxes, is modelled online within the IFS. Other CO2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO2 fluxes also lead to accumulating errors in the CO2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO2 fluxes compared to total optimized fluxes and the atmospheric CO2 compared to observations. The largest biases in the atmospheric CO2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO2 analyses based on the assimilation of CO2 satellite retrievals, as they

  18. Archives of Atmospheric Lead Pollution

    Science.gov (United States)

    Weiss, Dominik; Shotyk, William; Kempf, Oliver

    Environmental archives such as peat bogs, sediments, corals, trees, polar ice, plant material from herbarium collections, and human tissue material have greatly helped to assess both ancient and recent atmospheric lead deposition and its sources on a regional and global scale. In Europe detectable atmospheric lead pollution began as early as 6000years ago due to enhanced soil dust and agricultural activities, as studies of peat bogs reveal. Increased lead emissions during ancient Greek and Roman times have been recorded and identified in many long-term archives such as lake sediments in Sweden, ice cores in Greenland, and peat bogs in Spain, Switzerland, the United Kingdom, and the Netherlands. For the period since the Industrial Revolution, other archives such as corals, trees, and herbarium collections provide similar chronologies of atmospheric lead pollution, with periods of enhanced lead deposition occurring at the turn of the century and since 1950. The main sources have been industry, including coal burning, ferrous and nonferrous smelting, and open waste incineration until c.1950 and leaded gasoline use since 1950. The greatest lead emissions to the atmosphere all over Europe occurred between 1950 and 1980 due to traffic exhaust. A marked drop in atmospheric lead fluxes found in most archives since the 1980s has been attributed to the phasing out of leaded gasoline. The isotope ratios of lead in the various archives show qualitatively similar temporal changes, for example, the immediate response to the introduction and phasing out of leaded gasoline. Isotope studies largely confirm source assessments based on lead emission inventories and allow the contributions of various anthropogenic sources to be calculated.

  19. Instrument safety in explosive atmospheres.

    Science.gov (United States)

    Bossert, J A

    1975-01-01

    The current "Energy Crisis" has dramatically increased our potential need for coal, the worlds most abundant fossil fuel. This will probably lead to a greater use of automation and instrumentation in the coal mining industry. The presence of methane in coal mines and in the coal itself plus the presence of coal dust, both of which can form an explosive atmosphere in air, means that the possibility of a gas or coal dust ignition must be considered when designing, purchasing and installing new equipment in this industry. In addition, many metallurgical processes involve the use of potentially explosive substances against which similar safety precautions must be taken. This paper outlines the various methods of protection currently in use and proposed for electrical instruments in explosive atmospheres, with particular emphasis on the work of the International Electrotechnical Commission.

  20. Super-Kamiokande atmospheric neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, S. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Higashi Mozumi, Hida city, Gifu prefecture (Japan)

    2005-08-15

    Results on atmospheric neutrino analysis at Super-Kamiokande I is presented. The whole data set of atmospheric neutrino sample in Super-Kamiokande I is consistently explained with an assumption of pure {nu}{sub {mu}}-{nu}{sub {tau}} oscillations. The allowed range of parameters is 1.5x10{sup -3}<{delta}m{sup 2}<3.4x10{sup -3} eV{sup 2} and sin{sup 2}2{theta}>0.92 at 90% C.L. In the oscillation analysis, we improved the treatment of systematic errors so that they can be considered as independent. This makes possible to find which systematic errors have larger effect on the analysis results. Some sensitivity studies under several assumptions of improvements in systematic errors are presented.

  1. Exotic tracers for atmospheric studies

    Energy Technology Data Exchange (ETDEWEB)

    Lovelock, J.E. (Brazzos Ltd., Launceston (UK)); Ferber, G.J. (National Oceanic and Atmospheric Administration, Silver Spring, MD (USA). Air Resources Lab.)

    1982-01-01

    Tracer materials can be injected into the atmosphere to study transport and dispersion processes and to validate air pollution model calculations. Tracers should be inert, non-toxic and harmless to the environment. Tracers for long-range experiments, where dilution is very great, must be measurable at extremely low concentrations, well below the parts per trillion level. Compounds suitable for long-range tracer work are rare and efforts should be made to reserve them for meteorological studies, barring them from commercial uses which would increase atmospheric background concentrations. The use of these exotic tracers, including certain perfluorocarbons and isotopically labelled methanes, should be coordinated within the meteorological community to minimize interferences and maximise research benefits.

  2. Exotic tracers for atmospheric studies

    Science.gov (United States)

    Lovelock, James E.; Ferber, Gilbert J.

    Tracer materials can be injected into the atmosphere to study transport and dispersion processes and to validate air pollution model calculations. Tracers should be inert, non-toxic and harmless to the environment. Tracers for long-range experiments, where dilution is very great, must be measurable at extremely low concentrations, well below the parts per trillion level. Compounds suitable for long-range tracer work are rare and efforts should be made to reserve them for meteorological studies, barring them from commercial uses which would increase atmospheric background concentrations. The use of these exotic tracers, including certain perfluorocarbons and isotopically labelled methanes, should be coordinated within the meteorological community to minimize interferences and maximize research benefits.

  3. Atmospheric Chemistry and Air Pollution

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Gaffney

    2003-01-01

    Full Text Available Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozone and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.

  4. Atmospheric Neutrino Oscillations in Antares

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, J.

    2013-04-15

    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximum mixing, a mass difference of Δm{sub 32}{sup 2}=(3.1±0.9)⋅10{sup −3}eV{sup 2} is obtained, in good agreement with the world average value.

  5. Image Ellipticity from Atmospheric Aberrations

    CERN Document Server

    De Vries, W H; Asztalos, S J; Rosenberg, L J; Baker, K L

    2007-01-01

    We investigate the ellipticity of the point-spread function (PSF) produced by imaging an unresolved source with a telescope, subject to the effects of atmospheric turbulence. It is important to quantify these effects in order to understand the errors in shape measurements of astronomical objects, such as those used to study weak gravitational lensing of field galaxies. The PSF modeling involves either a Fourier transform of the phase information in the pupil plane or a ray-tracing approach, which has the advantage of requiring fewer computations than the Fourier transform. Using a standard method, involving the Gaussian weighted second moments of intensity, we then calculate the ellipticity of the PSF patterns. We find significant ellipticity for the instantaneous patterns (up to more than 10%). Longer exposures, which we approximate by combining multiple (N) images from uncorrelated atmospheric realizations, yield progressively lower ellipticity (as 1 / sqrt(N)). We also verify that the measured ellipticity ...

  6. Electrochemical Measurement of Atmospheric Corrosion

    Science.gov (United States)

    DeArmond, Anna H.; Davis, Dennis D.; Beeson, Harold D.

    1999-01-01

    Corrosion of Shuttle thruster components in atmospheres containing high concentrations of nitrogen tetroxide (NTO) and water is an important issue in ground operations of bipropellant systems in humid locations. Measurements of the corrosivities of NTO-containing atmospheres and the responses of different materials to these atmospheres have been accomplished using an electrochemical sensor. The sensor is composed of alternating aluminum/titanium strips separated by thin insulating layers. Under high humidity conditions a thin film of water covers the surface of the sensor. Added NTO vapor reacts with the water film to form a conductive medium and establishes a galvanic cell. The current from this cell can be integrated with respect to time and related to the corrosion activity. The surface layer formed from humid air/NTO reacts in the same way as an aqueous solution of nitric acid. Nitric acid is generally considered an important agent in NTO corrosion situations. The aluminum/titanium sensor is unresponsive to dry air, responds slightly to humid air (> 75% RH), and responds strongly to the combination of humid air and NTO. The sensor response is a power function (n = 2) of the NTO concentration. The sensor does not respond to NTO in dry air. The response of other materials in this type of sensor is related to position of the material in a galvanic series in aqueous nitric acid. The concept and operation of this electrochemical corrosion measurement is being applied to other corrosive atmospheric contaminants such as hydrogen chloride, hydrogen fluoride, sulfur dioxide, and acidic aerosols.

  7. Atmospheric radiation flight dose rates

    Science.gov (United States)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  8. Electrochemical Studies of Atmospheric Corrosion.

    Science.gov (United States)

    1979-01-01

    Todynamlc polarization curves using a mod ifiedatmospheric corrosion mon i tor (ACM). Norma l Tafel behavior was observed , the limiting current for oxygen...following a suggestion of Peter Serada, who is heading a task group on time-of-wetness measurements In ASTM GO1 .04, in which the author is participating...about 5 papers except for 1968 where a symposium on atmospheric corrosion was held which resulted in the publ ication of an ASTM Special Technical

  9. Lightning detection in planetary atmospheres

    CERN Document Server

    Aplin, Karen L

    2016-01-01

    Lightning in planetary atmospheres is now a well-established concept. Here we discuss the available detection techniques for, and observations of, planetary lightning by spacecraft, planetary landers and, increasingly, sophisticated terrestrial radio telescopes. Future space missions carrying lightning-related instrumentation are also summarised, specifically the European ExoMars mission and Japanese Akatsuki mission to Venus, which could both yield lightning observations in 2016.

  10. Venus: an isothermal lower atmosphere?

    Science.gov (United States)

    Gale, W; Liwshitz, M; Sinclair, A C

    1969-05-30

    Use of Earth-based microwave data in extrapolating the atmospheric profile of Venus below the region probed by Mariner V and Venera 4 reveals an isothermal layer at 670 degrees +/- 20 degrees K that extends to an altitude of 7 +/- 2 kilometers. This model gives a value of 6054.8 kilometers for the radius of Venus, and agreement with brightness spectrum, radar cross sections, and results of microwave interferometry.

  11. Oxygen Chemistry in Titan's Atmosphere

    Science.gov (United States)

    Wilson, E. H.; Atreya, S. K.

    2002-09-01

    Oxygen chemistry in the atmosphere of Titan is controlled by the presence of CO and a likely influx of extraplanetary oxygen. The presence of water vapor, corroborated by the Infrared Space Observatory (ISO) stratospheric detection [1], combined with CO induces the formation of CO2, which has also been observed [2]. However, the high CO/H2O ratio in Titan's atmosphere causes the propagation of oxygen chemistry to follow a different path than what is predicted for the Jovian planets. Specifically, the efficient CO recycling mechanisms serve to inhibit significant formation of larger oxygen compounds such as CH3OH (methanol) and CH2CO (ketene). The results of a 1-D photochemical model are presented in the context of identifying possible oxygen compounds that might be detected by the Cassini/Huygens mission which will arrive at Titan in 2004. This work was supported by the NASA Planetary Atmospheres Program and by the GCMS Project of the Cassini/Huygens mission. [1] A. Coustenis et al., Astron. Astrophys., 336, L85-L89, 1998. [2] A. Coustenis et al., Icarus, 80, 54-76, 1989.

  12. Types of Hot Jupiter Atmospheres

    Science.gov (United States)

    Bisikalo, Dmitry V.; Kaygorodov, Pavel V.; Ionov, Dmitry E.; Shematovich, Valery I.

    Hot Jupiters, i.e. exoplanet gas giants, having masses comparable to the mass of Jupiter and semimajor axes shorter than 0.1 AU, are a unique class of objects. Since they are so close to the host stars, their atmospheres form and evolve under the action of very active gas dynamical processes caused by the gravitational field and irradiation of the host star. As a matter of fact, the atmospheres of several of these planets fill their Roche lobes , which results in a powerful outflow of material from the planet towards the host star. The energy budget of this process is so important that it almost solely governs the evolution of hot Jupiters gaseous envelopes. Based on the years of experience in the simulations of gas dynamics in mass-exchanging close binary stars, we have investigated specific features of hot Jupiters atmospheres. The analytical estimates and results of 3D numerical simulations, discussed in this Chapter, show that the gaseous envelopes around hot Jupiters may be significantly non-spherical and, at the same time, stationary and long-lived. These results are of fundamental importance for the interpretation of observational data.

  13. The Atmospheric Chemistry Experiment (ACE)

    Science.gov (United States)

    Bernath, P. F.

    2017-01-01

    The Atmospheric Chemistry Experiment (ACE), also called SCISAT, is a Canadian-led small satellite mission for remote sensing of the Earth's atmosphere. ACE was launched into a low Earth circular orbit by NASA on August 12, 2003 and it continues to function nominally. The ACE instruments are a high spectral resolution (0.02 cm-1) Fourier Transform Spectrometer (FTS) operating from 2.2 to 13.3 μm (750-4400 cm-1), a spectrophotometer known as Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (MAESTRO) with wavelength coverage of 285-1020 nm and two filtered detector arrays to image the Sun at 0.525 and 1.02 μm. ACE operates in solar occultation mode to provide altitude profiles of temperature, pressure, atmospheric extinction and the volume mixing ratios (VMRs) for several dozen molecules and related isotopologues. This paper presents a mission overview and a summary of selected scientific results.

  14. International Comprehensive Ocean Atmosphere Data Set (ICOADS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — International Comprehensive Ocean Atmosphere Data Set (ICOADS) consists of digital data set DSI-1173, archived at the National Climatic Data Center (NCDC). ICOADS is...

  15. Atmospheric Sondes and Method for Tracking

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A system for wind profiling comprises sondes for being borne through the atmosphere by balloons and transmitting signals enabling identifying the sondes, and...

  16. Atmospheric Downscaling using Genetic Programming

    Science.gov (United States)

    Zerenner, Tanja; Venema, Victor; Simmer, Clemens

    2013-04-01

    Coupling models for the different components of the Soil-Vegetation-Atmosphere-System requires up-and downscaling procedures. Subject of our work is the downscaling scheme used to derive high resolution forcing data for land-surface and subsurface models from coarser atmospheric model output. The current downscaling scheme [Schomburg et. al. 2010, 2012] combines a bi-quadratic spline interpolation, deterministic rules and autoregressive noise. For the development of the scheme, training and validation data sets have been created by carrying out high-resolution runs of the atmospheric model. The deterministic rules in this scheme are partly based on known physical relations and partly determined by an automated search for linear relationships between the high resolution fields of the atmospheric model output and high resolution data on surface characteristics. Up to now deterministic rules are available for downscaling surface pressure and partially, depending on the prevailing weather conditions, for near surface temperature and radiation. Aim of our work is to improve those rules and to find deterministic rules for the remaining variables, which require downscaling, e.g. precipitation or near surface specifc humidity. To accomplish that, we broaden the search by allowing for interdependencies between different atmospheric parameters, non-linear relations, non-local and time-lagged relations. To cope with the vast number of possible solutions, we use genetic programming, a method from machine learning, which is based on the principles of natural evolution. We are currently working with GPLAB, a Genetic Programming toolbox for Matlab. At first we have tested the GP system to retrieve the known physical rule for downscaling surface pressure, i.e. the hydrostatic equation, from our training data. We have found this to be a simple task to the GP system. Furthermore we have improved accuracy and efficiency of the GP solution by implementing constant variation and

  17. Hypersonic Flight Mechanics. [for atmospheric entry trajectories

    Science.gov (United States)

    Busemann, A.; Vinh, N. X.; Culp, R. D.

    1976-01-01

    The effects of aerodynamic forces on trajectories at orbital speeds are discussed in terms of atmospheric models. The assumptions for the model are spherical symmetry, nonrotating, and an exponential atmosphere. The equations of flight, and the performance in extra-atmospheric flight are discussed along with the return to the atmosphere, and the entry. Solutions of the exact equations using directly matched asymptotic expansions are presented.

  18. Atmospheric anthropic impacts tracked by the French atmospheric mobile observatory

    Science.gov (United States)

    Cuesta, J.; Chazette, P.; Flamant, P. H.

    2009-04-01

    A new ATmospheric Mobile ObServatory, so called "ATMOS", has been developed by the LiMAG "Lidar, Meteorology and Geophysics" team of the Institut Pierre Simon Laplace (IPSL) in France, in order to contribute to international field campaigns for studying atmospheric physico-chemistry, air quality and climate (i.e. aerosols, clouds, trace gazes, atmospheric dynamics and energy budget) and the ground-based validation of satellite observations. ATMOS has been deployed in the framework of i) LISAIR, for monitoring air quality in Paris in 2005, ii) AMMA "African Monsoon Multidisciplinary Analysis", in Tamanrasset and in Niamey for observing the aerosols and the atmospheric boundary layer in the Sahara and in the Sahel in 2006, iii) COPS "Convectively and Orographycally driven Precipitation Study" in the Rhin Valley in 2007 and iv) the validation of the spatial mission CALIPSO, launched in April 2006. In the coming years, ATMOS will be deployed i) in the Paris Megacity, in the framework of MEGAPOLI (2009-2010), ii) in southern France (near Marseille) for the Chemistry-Aerosol Mediterranean Experiment CHARMEX (2011-2012) and iii) the validation of ADM-Aeolus in 2010-2011 and Earth-Care in 2012. ATMOS payload is modular, accounting for the different platforms, instruments and measuring techniques. The deployment of ATMOS is an essential contribution to field campaigns, complementing the fixed sites, and a potential alternative of airborne platforms, heavier and more expensive. ATMOS mobile payload comprises both the remote sensing platform MOBILIS ("Moyens mOBIles de téLédetection de l'IPSL") and the in-situ physico-chemical station SAMMO ("Station Aérosols et chiMie MObile"). MOBILIS is an autonomous and high-performance system constituted by a full set of active and passive remote sensing instrumentation (i.e. Lidars and radiometers), whose payload may be adapted for either i) long term fixed monitoring in a maritime container or a shelter, ii) ground-based transect

  19. Hypothesis on the nature of atmospheric UFOs

    Science.gov (United States)

    Mukharev, L. A.

    1991-08-01

    A hypothesis is developed according to which the atmospheric UFO phenomenon has an electromagnetic nature. It is suggested that an atmospheric UFO is an agglomeration of charged atmospheric dust within which there exists a slowly damped electromagnetic field. This field is considered to be the source of the observed optical effects and the motive force of the UFO.

  20. Determining Atmospheric Pressure Using a Water Barometer

    Science.gov (United States)

    Lohrengel, C. Frederick, II; Larson, Paul R.

    2012-01-01

    The atmosphere is an envelope of compressible gases that surrounds Earth. Because of its compressibility and nonuniform heating by the Sun, it is in constant motion. The atmosphere exerts pressure on Earth's surface, but that pressure is in constant flux. This experiment allows students to directly measure atmospheric pressure by measuring the…

  1. Models of magnetized neutron star atmospheres: thin atmospheres and partially ionized hydrogen atmospheres with vacuum polarization

    CERN Document Server

    Suleimanov, V F; Werner, K

    2009-01-01

    Observed X-ray spectra of some isolated magnetized neutron stars display absorption features, sometimes interpreted as ion cyclotron lines. Modeling the observed spectra is necessary to check this hypothesis and to evaluate neutron star parameters.We develop a computer code for modeling magnetized neutron star atmospheres in a wide range of magnetic fields (10^{12} - 10^{15} G) and effective temperatures (3 \\times 10^5 - 10^7 K). Using this code, we study the possibilities to explain the soft X-ray spectra of isolated neutron stars by different atmosphere models. The atmosphere is assumed to consist either of fully ionized electron-ion plasmas or of partially ionized hydrogen. Vacuum resonance and partial mode conversion are taken into account. Any inclination of the magnetic field relative to the stellar surface is allowed. We use modern opacities of fully or partially ionized plasmas in strong magnetic fields and solve the coupled radiative transfer equations for the normal electromagnetic modes in the plas...

  2. Possible atmospheric research with Aristoteles

    Science.gov (United States)

    Barlier, Francois

    1991-12-01

    Use of the Aristoteles mission in measuring atmospheric parameters is discussed. The total density of the thermosphere, the temperature of the stratosphere and the total electron count of the ionosphere are identified as three areas in which the Aristoteles mission could be of great use in carrying out research. Combining the accelerometer measurements yields the gravity tensor as well as the nongravitational acceleration acting upon the satellite. Ways in which the temperature of the stratosphere around the Earth, and the annual, seasonal and secular variations it goes through could be measured are discussed.

  3. Multiple frequency atmospheric radar techniques

    Science.gov (United States)

    Stitt, Gary Richard

    The use of multiple frequency coding to improve the vertical resolution of pulsed-Doppler very high frequency atmospheric radars, especially with regards to the two-frequency techniques known as frequency domain interferometry (FDI), is presented. This technique consists of transmitting alternate pulses on two distinct carrier frequencies. The two resulting time series are used to evaluate the normalized cross-correlation function, whose magnitude and phase are related to the thickness and position of a scattering layer. These same time series are also used to evaluate cross-spectra, which yield magnitude and phase values for each Doppler frequency component of the return signal.

  4. Atmospheric Physics Background – Methods – Trends

    CERN Document Server

    2012-01-01

    On the occasion of the 50th anniversary of the Institute of Atmospheric Physics of the German Aerospace Center (DLR), this book presents more than 50 chapters highlighting results of the institute’s research. The book provides an up-to-date, in-depth survey across the entire field of atmospheric science, including atmospheric dynamics, radiation, cloud physics, chemistry, climate, numerical simulation, remote sensing, instruments and measurements, as well as atmospheric acoustics. The authors have provided a readily comprehensible and self-contained presentation of the complex field of atmospheric science. The topics are of direct relevance for aerospace science and technology. Future research challenges are identified.

  5. Radiation-Hydrodynamics of Hot Jupiter Atmospheres

    CERN Document Server

    Menou, Kristen

    2009-01-01

    Radiative transfer in planetary atmospheres is usually treated in the static limit, i.e., neglecting atmospheric motions. We argue that hot Jupiter atmospheres, with possibly fast (sonic) wind speeds, may require a more strongly coupled treatment, formally in the regime of radiation-hydrodynamics. To lowest order in v/c, relativistic Doppler shifts distort line profiles along optical paths with finite wind velocity gradients. This leads to flow-dependent deviations in the effective emission and absorption properties of the atmospheric medium. Evaluating the overall impact of these distortions on the radiative structure of a dynamic atmosphere is non-trivial. We present transmissivity and systematic equivalent width excess calculations which suggest possibly important consequences for radiation transport in hot Jupiter atmospheres. If winds are fast and bulk Doppler shifts are indeed important for the global radiative balance, accurate modeling and reliable data interpretation for hot Jupiter atmospheres may p...

  6. Waves in vertically inhomogeneous dissipative atmosphere

    CERN Document Server

    Dmitrienko, I S

    2015-01-01

    A method of construction of solution for acoustic-gravity waves (AGW) above a wave source, taking dissipation throughout the atmosphere into account (Dissipative Solution above Source, DSAS), is proposed. The method is to combine three solutions for three parts of the atmosphere: an analytical solution for the upper isothermal part and numerical solutions for the real non-isothermal dissipative atmosphere in the middle part and for the real non-isothermal small dissipation atmosphere in the lower one. In this paper the method has been carried out for the atmosphere with thermal conductivity but without viscosity. The heights of strong dissipation and the total absorption index in the regions of weak and average dissipation are found. For internal gravity waves the results of test calculations for an isothermal atmosphere and calculations for a real non-isothermal atmosphere are shown in graphical form. An algorithm and appropriate code to calculate DSAS, taking dissipation due to finite thermal conductivity i...

  7. Escape and Stand of the Pluto Atmosphere

    Institute of Scientific and Technical Information of China (English)

    GAO Chong-Yi

    2002-01-01

    Molar mass μmin of the lightest gas, which will exist "forever" in the atmosphere at the planet surface,can be evaluated by Jeans rule. The μmin of Pluto is 17.3 g@ mol-1. It is evident that both N2 and CO can be major atmospheric composition at the Pluto surface, and will exist "forever". CH4 can only be escaping slowly from Pluto atmosphere, and still holds quite a proportion in current Pluto atmosphere. However, it will not escape from Titan (or Jupiter, Saturn) atmosphere largely, and will exist "forever". Given the quantitylevelof partial pressure of CH4 in Pluto and Titan (or Jupiter, Saturn) original atmosphere is the same, it will be clear that the current partial pressure of CH4 in Pluto surface atmosphere is 10-3 Pa.

  8. Regional Ecosystem-Atmosphere CO2 Exchange Via Atmospheric Budgets

    Energy Technology Data Exchange (ETDEWEB)

    Davis, K J; Richardson, S J; Miles, N L

    2007-03-07

    Inversions of atmospheric CO2 mixing ratio measurements to determine CO2 sources and sinks are typically limited to coarse spatial and temporal resolution. This limits our ability to evaluate efforts to upscale chamber- and stand-level CO2 flux measurements to regional scales, where coherent climate and ecosystem mechanisms govern the carbon cycle. As a step towards the goal of implementing atmospheric budget or inversion methodology on a regional scale, a network of five relatively inexpensive CO2 mixing ratio measurement systems was deployed on towers in northern Wisconsin. Four systems were distributed on a circle of roughly 150-km radius, surrounding one centrally located system at the WLEF tower near Park Falls, WI. All measurements were taken at a height of 76 m AGL. The systems used single-cell infrared CO2 analyzers (Licor, model LI-820) rather than the siginificantly more costly two-cell models, and were calibrated every two hours using four samples known to within ± 0.2 ppm CO2. Tests prior to deployment in which the systems sampled the same air indicate the precision of the systems to be better than ± 0.3 ppm and the accuracy, based on the difference between the daily mean of one system and a co-located NOAA-ESRL system, is consistently better than ± 0.3 ppm. We demonstrate the utility of the network in two ways. We interpret regional CO2 differences using a Lagrangian parcel approach. The difference in the CO2 mixing ratios across the network is at least 2-3 ppm, which is large compared to the accuracy and precision of the systems. Fluxes estimated assuming Lagrangian parcel transport are of the same sign and magnitude as eddy-covariance flux measurements at the centrally-located WLEF tower. These results indicate that the network will be useful in a full inversion model. Second, we present a case study involving a frontal passage through the region. The progression of a front across the network is evident; changes as large as four ppm in one minute

  9. High-energy atmospheric neutrinos

    CERN Document Server

    Sinegovsky, S I; Sinegovskaya, T S

    2010-01-01

    High-energy neutrinos, arising from decays of mesons that were produced through the cosmic rays collisions with air nuclei, form unavoidable background noise in the astrophysical neutrino detection problem. The atmospheric neutrino flux above 1 PeV should be supposedly dominated by the contribution of charmed particle decays. These (prompt) neutrinos originated from decays of massive and shortlived particles, $D^\\pm$, $D^0$, $\\bar{D}{}^0$, $D_s^\\pm$, $\\Lambda^+_c$, form the most uncertain fraction of the high-energy atmospheric neutrino flux because of poor explored processes of the charm production. Besides, an ambiguity in high-energy behavior of pion and especially kaon production cross sections for nucleon-nucleus collisions may affect essentially the calculated neutrino flux. There is the energy region where above flux uncertainties superimpose. A new calculation presented here reveals sizable differences, up to the factor of 1.8 above 1 TeV, in muon neutrino flux predictions obtained with usage of known...

  10. Domestic atmospheric pressure thermal deaerators

    Science.gov (United States)

    Egorov, P. V.; Gimmelberg, A. S.; Mikhailov, V. G.; Baeva, A. N.; Chuprakov, M. V.; Grigoriev, G. V.

    2016-04-01

    Based on many years of experience and proven technical solutions, modern atmospheric pressure deaerators of the capacity of 0.4 to 800 t/h were designed and developed. The construction of such deaerators is based on known and explored technical solutions. A two-stage deaeration scheme is applied where the first stage is a jet dripping level (in a column) and the second one is a bubble level (in a tank). In the design of deaeration columns, low-pressure hydraulic nozzles (Δ p tests of the new deaerator prototypes of the capacity of 800 and 500 t/h in the HPP conditions showed their sustainable, reliable, and efficient work in the designed range of hydraulic and thermal loads. The content of solved oxygen and free carbon dioxide in make-up water after deaerators meets the requirements of State Standard GOST 16860-88, the operating rules and regulations, and the customer's specifications. Based on these results, the proposals were developed on the structure and the design of deaerators of the productivity of more than 800 t/h for the use in circuits of large heating systems and the preparation of feed water to the TPP at heating and industrial-heating plants. The atmospheric pressure thermal deaerators developed at NPO TsKTI with consideration of the current requirements are recommended for the use in water preparation schemes of various power facilities.

  11. Dust ablation in Pluto's atmosphere

    Science.gov (United States)

    Horanyi, Mihaly; Poppe, Andrew; Sternovsky, Zoltan

    2016-04-01

    Based on measurements by dust detectors onboard the Pioneer 10/11 and New Horizons spacecraft the total production rate of dust particles born in the Edgeworth Kuiper Belt (EKB) has been be estimated to be on the order of 5 ṡ 103 kg/s in the approximate size range of 1 - 10 μm. Dust particles are produced by collisions between EKB objects and their bombardment by both interplanetary and interstellar dust particles. Dust particles of EKB origin, in general, migrate towards the Sun due to Poynting-Robertson drag but their distributions are further sculpted by mean-motion resonances as they first approach the orbit of Neptune and later the other planets, as well as mutual collisions. Subsequently, Jupiter will eject the vast majority of them before they reach the inner solar system. The expected mass influx into Pluto atmosphere is on the order of 200 kg/day, and the arrival speed of the incoming particles is on the order of 3 - 4 km/s. We have followed the ablation history as function of speed and size of dust particles in Pluto's atmosphere, and found that volatile rich particles can fully sublimate due to drag heating and deposit their mass in narrow layers. This deposition might promote the formation of the haze layers observed by the New Horizons spacecraft. This talk will explore the constraints on the composition of the dust particles by comparing the altitude of the deposition layers to the observed haze layers.

  12. Atmospheric turbidity over Kathmandu valley

    Science.gov (United States)

    Sapkota, Balkrishna; Dhaubhadel, Rajan

    The atmosphere of Kathmandu Valley has been investigated by using Sunphotometer and Nephelometer during the pre-monsoon period of 1999. The atmospheric turbidity parameters (extinction coefficient for 500 nm wavelength τAG and Angstrom coefficient β) are found high in the morning and show decreasing trends from morning to late afternoon on average. Vertical dispersion of pollutants and increasing pollutant flushing rate by increasing wind speed from morning to late afternoon is the cause for this decreasing trend of turbidity over the valley. Being surrounded by high hills all around the valley, horizontal exit of pollutants without vertical dispersion is not possible. The scattering coefficient bscat of aerosols in ground level troposphere is also found high in the morning, which decreases and becomes minimum during afternoon. During late afternoon, bscat again shows a slightly increasing trend. The reason is the increasing vehicular emission during late afternoon rush period. The average values of Angstrom exponent α, β, τAG and bscat are found to be 0.624±0.023, 0.299±0.009, 0.602±0.022 and 0.353±0.014 km -1, respectively. About 76.8% of the observed values of β lie above 0.2 indicating heavy particulate pollution in the valley. A comparison of observed values of turbidity parameters with other major cities of the world shows that Kathmandu is as polluted as cities like Jakarta, Kansas, Beijing, Vienna, etc.

  13. Atmospheric escape, redox evolution, and planetary habitability

    Science.gov (United States)

    Catling, D. C.; Zahnle, K. J.

    2011-12-01

    Through the greenhouse effect, the presence and composition of an atmosphere is critical for defining a (conventional) circumstellar habitable zone in terms of planetary surface temperatures suitable for liquid water. Lack of knowledge of planetary atmospheres is likely to frustrate attempts to say with any certainty whether detected terrestrial-sized exoplanets may or may not be habitable. Perhaps an underappreciated role in such considerations is the evolutionary effect of atmospheric escape for determining atmospheric composition or whether an atmosphere exists in the first place. Whether atmospheres exist at all on planets is demonstrably connected to the effect of integrated atmospheric escape. When we observe our own Solar System and transiting exoplanets, the existence of an atmosphere is clearly delineated by a relative vulnerability to thermal escape and impact erosion. The prevalence of thermal escape as a key evolutionary determinant for the presence of planetary atmosphere is shown by a relationship between the relative solar (or stellar) heating and the escape velocity. Those bodies with too much stellar heating and too smaller escape velocity end up devoid of atmospheres. Impact erosion is evident in the relationship between impact velocity and escape velocity. Escape due to impacts is particularly important for understanding the large differences in the atmospheres of giant planet moons, such as Ganymede versus Titan. It is also significant for Mars-sized planets. The oxidation state of atmospheres is important for some theories of the origin of life (where an early reducing atmosphere is helpful for organic synthesis) and the evolution of advanced life (where free molecular oxygen is the best source of high energy metabolism). Surfaces on some relatively small planets and moons are observed to have evolved to an oxidized state, which theory and observation can explain through atmospheric escape. There are several examples in the Solar System where a

  14. Atmospheric Mass Loss During Planet Formation

    CERN Document Server

    Schlichting, Hilke; Yalinewich, Almog

    2014-01-01

    We quantify the atmospheric mass loss during planet formation by examining the contributions to atmospheric loss from both giant impacts and planetesimal accretion. Giant impacts cause global motion of the ground. Using analytic self-similar solutions and full numerical integrations we find (for isothermal atmospheres with adiabatic index ($\\gamma=5/3$) that the local atmospheric mass loss fraction for ground velocities $v_g \\sqrt{2} \\rho_0 (\\pi h R)^{3/2}$ (25~km for the current Earth), are able to eject all the atmosphere above the tangent plane of the impact site, which is $h/2R$ of the whole atmosphere, where $h$, $R$ and $\\rho_0$ are the atmospheric scale height, radius of the target, and its atmospheric density at the ground. 2) Smaller impactors, but above $m>4 \\pi \\rho_0 h^3$ (1~km for the current Earth) are only able to eject a fraction of the atmospheric mass above the tangent plane. We find that the most efficient impactors (per unit impactor mass) for atmospheric loss are planetesimals just above...

  15. Seasonally Varying Reference Atmospheres for East Asia

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Vertical profiles of seasonally varying pressure, temperature, water vapor, and trace gases (O3, N2O, CO,CH4), representing atmospheric conditions up to a height of 100 km over the East Asia region (30°-50°N,110°-150°E) were constructed by using various observation data, model outputs of atmospheric thermodynamic parameters, and gaseous concentrations. Optical characteristics of the obtained East Asia reference atmospheres were compared with those from typical midlatitude summer and winter atmospheres. It was noted that, in the water vapor field, there are major differences between the two model atmospheres during the summer. The resultant impact during the summer of water vapor difference on incoming solar fluxes at the surface and emitted terrestrial fluxes at the top of the atmosphere are 14.3 W m-2 and 6.5 W m-2,respectively. On the other hand, the winter difference between East Asian and midlatitude atmospheres appears to be insignificant. Reference atmospheres for the spring and fall are also available. Utilizing the constructed atmospheric profiles as inputs to the radiative transfer model, it is expected that the constructed seasonally varying reference atmospheres can facilitate better descriptions of optical properties in East Asia.

  16. Titan's Atmospheric Dynamics and Meteorology

    Science.gov (United States)

    Flasar, F. M.; Baines, K. H.; Bird, M. K.; Tokano, T.; West, R. A.

    2008-01-01

    Titan, after Venus, is the second example of an atmosphere with a global cyclostrophic circulation in the solar system, but a circulation that has a strong seasonal modulation in the middle atmosphere. Direct measurement of Titan's winds, particularly observations tracking the Huygens probe at 10degS, indicate that the zonal winds are generally in the sense of the satellites rotation. They become cyclostrophic approx. 35 km above the surface and generally increase with altitude, with the exception of a sharp minimum centered near 75 km, where the wind velocity decreases to nearly zero. Zonal winds derived from the temperature field retrieved from Cassini measurements, using the thermal wind equation, indicate a strong winter circumpolar vortex, with maximum winds at mid northern latitudes of 190 ms-' near 300 km. Above this level, the vortex decays. Curiously, the zonal winds and temperatures are symmetric about a pole that is offset from the surface pole by approx.4 degrees. The cause of this is not well understood, but it may reflect the response of a cyclostrophic circulation to the offset between the equator, where the distance to the rotation axis is greatest, and the solar equator. The mean meridional circulation can be inferred from the temperature field and the meridional distribution of organic molecules and condensates and hazes. Both the warm temperatures in the north polar region near 400 km and the enhanced concentration of several organic molecules suggests subsidence there during winter and early spring. Stratospheric condensates are localized at high northern latitudes, with a sharp cut-off near 50degN. Titan's winter polar vortex appears to share many of the same characteristics of winter vortices on Earth-the ozone holes. Global mapping of temperatures, winds, and composition in he troposphere, by contrast, is incomplete. The few suitable discrete clouds that have bee found for tracking indicate smaller velocities than aloft, consistent with the

  17. Do atmospheric aerosols form glasses?

    Science.gov (United States)

    Zobrist, B.; Marcolli, C.; Pedernera, D. A.; Koop, T.

    2008-09-01

    A new process is presented by which water soluble organics might influence ice nucleation, ice growth, chemical reactions and water uptake of aerosols in the upper troposphere: the formation of glassy aerosol particles. Glasses are disordered amorphous (non-crystalline) solids that form when a liquid is cooled without crystallization until the viscosity increases exponentially and molecular diffusion practically ceases. The glass transition temperatures, Tg, homogeneous ice nucleation temperatures, Thom, and ice melting temperatures, Tm, of various aqueous inorganic, organic and multi-component solutions are investigated with a differential scanning calorimeter. The investigated solutes are: various polyols, glucose, raffinose, levoglucosan, an aromatic compound, sulfuric acid, ammonium bisulfate and mixtures of dicarboxylic acids (M5), of dicarboxylic acids and ammonium sulfate (M5AS), of two polyols, of glucose and ammonium nitrate, and of raffinose and M5AS. The results indicate that aqueous solutions of the investigated inorganic solutes show Tg values that are too low to be of atmospheric importance. In contrast, aqueous organic and multi-component solutions readily form glasses at low but atmospherically relevant temperatures (≤230 K). To apply the laboratory data to the atmospheric situation, the measured phase transition temperatures were transformed from a concentration to a water activity scale by extrapolating water activities determined between 252 K and 313 K to lower temperatures. The obtained state diagrams reveal that the higher the molar mass of the aqueous organic or multi-component solutes, the higher Tg of their respective solutions at a given water activity. To a lesser extent, Tg also depends on the hydrophilicity of the organic solutes. Therefore, aerosol particles containing larger (≳150 g mol-1) and more hydrophobic organic molecules are more likely to form glasses at intermediate to high relative humidities in the upper troposphere

  18. Do atmospheric aerosols form glasses?

    Directory of Open Access Journals (Sweden)

    D. A. Pedernera

    2008-09-01

    Full Text Available A new process is presented by which water soluble organics might influence ice nucleation, ice growth, chemical reactions and water uptake of aerosols in the upper troposphere: the formation of glassy aerosol particles. Glasses are disordered amorphous (non-crystalline solids that form when a liquid is cooled without crystallization until the viscosity increases exponentially and molecular diffusion practically ceases. The glass transition temperatures, Tg, homogeneous ice nucleation temperatures, Thom, and ice melting temperatures, Tm, of various aqueous inorganic, organic and multi-component solutions are investigated with a differential scanning calorimeter. The investigated solutes are: various polyols, glucose, raffinose, levoglucosan, an aromatic compound, sulfuric acid, ammonium bisulfate and mixtures of dicarboxylic acids (M5, of dicarboxylic acids and ammonium sulfate (M5AS, of two polyols, of glucose and ammonium nitrate, and of raffinose and M5AS. The results indicate that aqueous solutions of the investigated inorganic solutes show Tg values that are too low to be of atmospheric importance. In contrast, aqueous organic and multi-component solutions readily form glasses at low but atmospherically relevant temperatures (≤230 K. To apply the laboratory data to the atmospheric situation, the measured phase transition temperatures were transformed from a concentration to a water activity scale by extrapolating water activities determined between 252 K and 313 K to lower temperatures. The obtained state diagrams reveal that the higher the molar mass of the aqueous organic or multi-component solutes, the higher Tg of their respective solutions at a given water activity. To a lesser extent, Tg also depends on the hydrophilicity of the organic solutes. Therefore, aerosol particles containing larger (≳150 g mol−1 and

  19. Do atmospheric aerosols form glasses?

    Directory of Open Access Journals (Sweden)

    B. Zobrist

    2008-05-01

    Full Text Available A new process is presented by which water-soluble organics might influence ice nucleation, ice growth, chemical reactions and water uptake of aerosols in the upper troposphere: the formation of glassy aerosol particles. Glasses are disordered amorphous (non-crystalline solids that form when a liquid is cooled without crystallization until the viscosity increases exponentially and molecular diffusion practically ceases. The glass transition temperatures, Tg, homogeneous ice nucleation temperatures, Thom, and ice melting temperatures, Tm, of various aqueous inorganic, organic and multi-component solutions are investigated with a differential scanning calorimeter. The investigated solutes are: various polyols, glucose, raffinose, levoglucosan, an aromatic compound, sulfuric acid, ammonium bisulphate and mixtures of dicarboxylic acids (M5, of dicarboxylic acids and ammonium sulphate (M5AS, of two polyols, of glucose and ammonium nitrate, and of raffinose and M5AS. The results indicate that aqueous solutions of the investigated inorganic solutes show Tg-values that are too low to be of atmospheric importance. In contrast, aqueous organic and multi-component solutions readily form glasses at low but atmospherically relevant temperatures (≤230 K. To apply the laboratory data to the atmospheric situation, the measured phase transition temperatures were transformed from a concentration to a water activity scale by extrapolating water activities determined between 252 K and 313 K to lower temperatures. The obtained state diagrams reveal that the higher the molar mass of the aqueous organic or multi-component solutes, the higher Tg of their respective solutions at a given water activity. To a lesser extent, Tg also depends on the hydrophilicity of the organic solutes. Therefore, aerosol particles containing larger and more hydrophobic organic

  20. Ion Atmosphere Near Nucleic Acids

    Science.gov (United States)

    Mohanty, Udayan

    2015-03-01

    We will discuss all­atom structure based model that explicitly includes ionic effects, i.e., electrostatic interactions with explicit magnesium ions and implicit KCl that allow us to carry out explicit solvent molecular dynamics simulations of adenine riboswitch and SAM­I riboswitch. Our predictions for the excess ions around the riboswitch, and the magnesium­RNA interaction free energy will be compared with experimental data. We will provide upper and lower bounds for preferential interaction coefficient, a statistical mechanical quantity that is a measure of excess ion atmosphere around a polyelectrolyte. We will discuss the role of surface charge density of mobile ions from added salt in determining the counterion release entropy associated with chain collapse. Finally, the Poisson's ratio of oligomeric DNA will be determined. (Work done in collaboration with R. Hayes, J. Noel, P. Whitford, S. Hennelly, J. Onuchic, and K. Sanbonmatsu.) Work supported by fellowship from John Simon Guggenheim Memorial Foundation.

  1. Phosphine photochemistry in Saturn's atmosphere

    Science.gov (United States)

    Kaye, J. A.; Strobel, D. F.

    1983-01-01

    The phosphine photochemistry on Saturn is studied with a 1D photochemical model. The PH3 concentration is rapidly depleted with height (scale height 3.5 km) in the upper troposphere. Formation of P, a probable precursor of P4, (a potential red chromophore in the atmosphere), is highly improbable unless the rate constant for the recombination reaction PH + H2 + M yields PH3 + M is less than 10 to the -41st cm exp 6/molecule-squared sec. Coupling of PH3 and hydrocarbon photochemistry, specifically the C2H2 catalyzed photodissociation of CH, is important. Column production rates of the organophosphorus compounds CH3PH2 and HCP of 3 x 10 to the 8th/sq cm sec are predicted, with potentially observable column densities of greater than 1 x 10 to the 17th/sq cm.

  2. Helicopter response to atmospheric turbulence

    Science.gov (United States)

    Riaz, J.; Prasad, J. V. R.; Schrage, D. P.; Gaonkar, G. H.

    1992-01-01

    A new time-domain method for simulating cyclostationary turbulence as seen by a translating and rotating blade element has recently been developed for the case of one-dimensional spectral distribution. This paper extends the simulation method to the cases of two- and three-dimensional spectral distributions and presents validation results for the two-dimensional case. The statistics of an isolated rigid blade flapping response to turbulence are computed using a two-dimensional spectral representation of the von Karman turbulence model, and the results are compared with those obtained using the conventional space-fixed turbulence analysis. The new turbulence simulation method is used for predicting the Black Hawk helicopter response to atmospheric turbulence.

  3. VIRTUAL AND PHYSICAL ARCHITECTURAL ATMOSPHERE

    DEFF Research Database (Denmark)

    Hermund, Anders; Klint, Lars

    2016-01-01

    This study, of the similarities between the perception of architectural space experienced in physical space conditions and in Virtual Reality, intents to clarify to what extend subjective and objective attributes of architectural space can be conveyed through a direct use of Building Information...... Models in Virtual Reality. 60 test persons experienced a specific test space as either a physical or a virtual environment, while data from their experiences was collected through a quantitative/qualitative questionnaire. The overall conclusion, from this phase of the study, is that even a simple BIM...... model through HMD VR can convey rather precise information about both subjective and objective experiences of architectural space, ambience and atmosphere. Next phase of the study will include eye-tracking data from the two scenarios....

  4. Stochastic models for atmospheric dispersion

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2003-01-01

    Simple stochastic differential equation models have been applied by several researchers to describe the dispersion of tracer particles in the planetary atmospheric boundary layer and to form the basis for computer simulations of particle paths. To obtain the drift coefficient, empirical vertical...... positions close to the boundaries. Different rules have been suggested in the literature with justifications based on simulation studies. Herein the relevant stochastic differential equation model is formulated in a particular way. The formulation is based on the marginal transformation of the position...... dependent particle velocity into a position independent Gaussian velocity. Boundary conditions are obtained from Itos rule of stochastic differentiation. The model directly point at a canonical rule of reflection for the approximating random walk with finite time step. This reflection rule is different from...

  5. CONTRIBUTION FOR MINING ATMOSPHERE CALCULATION

    Directory of Open Access Journals (Sweden)

    Franica Trojanović

    1989-12-01

    Full Text Available Humid air is an unavoidable feature of mining atmosphere, which plays a significant role in defining the climate conditions as well as permitted circumstances for normal mining work. Saturated humid air prevents heat conduction from the human body by means of evaporation. Consequently, it is of primary interest in the mining practice to establish the relative air humidity either by means of direct or indirect methods. Percentage of water in the surrounding air may be determined in various procedures including tables, diagrams or particular calculations, where each technique has its specific advantages and disadvantages. Classical calculation is done according to Sprung's formula, in which case partial steam pressure should also be taken from the steam table. The new method without the use of diagram or tables, established on the functional relation of pressure and temperature on saturated line, is presented here for the first time (the paper is published in Croatian.

  6. Current submarine atmosphere control technology.

    Science.gov (United States)

    Mazurek, W

    1998-01-01

    Air purification in submarines was introduced towards the end of World War II and was limited to the use of soda lime for the removal of carbon dioxide and oxygen candles for the regeneration of oxygen. The next major advances came with the advent of nuclear-powered submarines. These included the development of regenerative and, sometimes, energy-intensive processes for comprehensive atmosphere revitalization. With the present development of conventional submarines using air-independent propulsion there is a requirement for air purification similar to that of the nuclear-powered submarines but it is constrained by limited power and space. Some progress has been made in the development of new technology and the adoption of air purification equipment used in the nuclear-powered submarines for this application.

  7. Atmospheric Neutrinos in Soudan 2

    Science.gov (United States)

    Goodman, M.; Soudan 2 Collaboration

    2001-08-01

    Neutrino interactions recorded in a 5.1 fiducial kiloton-year exposure of the Soudan-2 iron tracking calorimeter are analyzed for effects of neutrino oscillations. Using contained single track and single shower events, we update our measurement of the atmospheric / ratio-of-ratios and find . Assuming this anomalously low R-value is the result of flavor disappearance viat o oscillation, we select samples of charged current events which offer good resolution, event-by-event, for Ä reconstruction. Oscillation-weighted Monte Carlo events are fitted to these data events using a ¾ function summed over bins of log´Ä µ. The region allowed in the (× Ò¾ ¾ , ¡Ñ¾) plane at 90% CL is obtained using the Feldman-Cousins procedure: 1 DETECTOR; DATA EXPOSURE The Soudan-2 experiment will soon (July 2001) be completing the taking of data using its fine-grained iron tracking calorimeter of total mass 963 tons. This detector images nonrelativistic as well as relativistic charged particles produced in atmospheric neutrino reactions. It has operated underground at a depth of 2100 meters-water-equivalent on level 27 of the Soudan Mine State Park in northern Minnesota. The calorimeter's modular design enabled data-taking to commence in April 1989 when the detector was one quarter of its full size; assembly of the detector was completed during 1993. Data-taking continued with 85% live time, even though dynamite blasting has been underway nearby for the MINOS cavern excavation since Summer 1999. The total data exposure will be 5.8fiducial kiloton-years (kTy). Results presented here are based upon a 5.1 kTy exposure. The tracking calorimeter operates as a slow-drift (0.6 cm/ s) time projection chamber. Its tracking elements are meterlong plastic drift tubes which are placed into the corruga-

  8. Atmospheric oxidation of selected alcohols and esters

    Energy Technology Data Exchange (ETDEWEB)

    Becker, K.H.; Cavalli, F.

    2001-03-01

    The decision whether it is appropriate and beneficial for the environment to deploy specific oxygenated organic compounds as replacements for traditional solvent types requires a quantitative assessment of their potential atmospheric impacts including tropospheric ozone and other photooxidant formation. This involves developing chemical mechanisms for the gasphase atmospheric oxidation of the compounds which can be reliably used in models to predict their atmospheric reactivity under a variety of environmental conditions. Until this study, there was very little information available concerning the atmospheric fate of alcohols and esters. The objectives of this study were to measure the atmospheric reaction rates and to define atmospheric reaction mechanisms for the following selected oxygenated volatile organic compounds: the alcohols, 1-butanol and 1-pentanol, and the esters, methyl propionate and dimethyl succinate. The study has successfully addressed these objectives. (orig.)

  9. Time dependences of atmospheric Carbon dioxide fluxes

    CERN Document Server

    DeSalvo, Riccardo

    2014-01-01

    Understanding the lifetime of CO2 in the atmosphere is critical for predictions regarding future climate changes. A simple mass conservation analysis presented here generates tight estimations for the atmosphere's retention time constant. The analysis uses a leaky integrator model that combines the observed deficit (only less than 40% of CO2 produced from combustion of fossil fuels is actually retained in the atmosphere, while more than 60% is continuously shed) with the exponential growth of fossil fuel burning. It reveals a maximum characteristic time of less than 23 year for the transfer of atmospheric CO2 to a segregation sink. This time constant is further constrained by the rapid disappearance of 14C after the ban of atmospheric atomic bomb tests, which provides a lower limit of 18 years for this transfer. The study also generates evaluations of other CO2 fluxes, exchange time constants and volumes exchanged. Analysis of large harmonic oscillations of atmospheric CO2 concentration, often neglected in th...

  10. Clouds and Hazes in Exoplanet Atmospheres

    CERN Document Server

    Marley, Mark S; Cuzzi, Jeffrey N; Kitzmann, Daniel

    2013-01-01

    Clouds and hazes are commonplace in the atmospheres of solar system planets and are likely ubiquitous in the atmospheres of extrasolar planets as well. Clouds affect every aspect of a planetary atmosphere, from the transport of radiation, to atmospheric chemistry, to dynamics and they influence - if not control - aspects such as surface temperature and habitability. In this review we aim to provide an introduction to the role and properties of clouds in exoplanetary atmospheres. We consider the role clouds play in influencing the spectra of planets as well as their habitability and detectability. We briefly summarize how clouds are treated in terrestrial climate models and consider the far simpler approaches that have been taken so far to model exoplanet clouds, the evidence for which we also review. Since clouds play a major role in the atmospheres of certain classes of brown dwarfs we briefly discuss brown dwarf cloud modeling as well. We also review how the scattering and extinction efficiencies of cloud p...

  11. What we can learn from atmospheric neutrinos

    Science.gov (United States)

    Choubey, Sandhya

    2011-12-01

    Physics potential of future measurements of atmospheric neutrinos is explored. Observation of Δm212 driven sub-dominant effects and θ13 driven large matter effects in atmospheric neutrinos can be used to study the deviation of θ23 from maximality and its octant. Neutrino mass hierarchy can be determined extremely well due to the large matter effects. New physics can be constrained both in standard atmospheric neutrino experiments as well as in future neutrino telescopes.

  12. What we can learn from atmospheric neutrinos

    OpenAIRE

    2006-01-01

    Physics potential of future measurements of atmospheric neutrinos is explored. Observation of $\\Delta m^2_{21}$ driven sub-dominant effects and $\\theta_{13}$ driven large matter effects in atmospheric neutrinos can be used to study the deviation of $\\theta_{23}$ from maximality and its octant. Neutrino mass hierarchy can be determined extremely well due to the large matter effects. New physics can be constrained both in standard atmospheric neutrino experiments as well as in future neutrino t...

  13. What we can learn from atmospheric neutrinos

    CERN Document Server

    Choubey, S

    2011-01-01

    Physics potential of future measurements of atmospheric neutrinos is explored. Observation of $\\Delta m^2_{21}$ driven sub-dominant effects and $\\theta_{13}$ driven large matter effects in atmospheric neutrinos can be used to study the deviation of $\\theta_{23}$ from maximality and its octant. Neutrino mass hierarchy can be determined extremely well due to the large matter effects. New physics can be constrained both in standard atmospheric neutrino experiments as well as in future neutrino telescopes.

  14. On the atmospheric internal ship waves

    Institute of Scientific and Technical Information of China (English)

    桑建国

    1997-01-01

    The analytical solutions of the atmospheric internal ship waves induced by three-dimensional terrain are obtained by solving the atmospheric wave equation. The solutions show that the waves consist of the untrapped and trapped parts. The patterns of the diverging wave and transverse wave in the untrapped parts are mainly determined by the shape and orientation of the terrain. This kind of wave may transport the wave energy to the upper atmosphere. The patterns of trapped lee waves are decided by the atmospheric conditions such as stratification, mean wind speeds and wind shear.

  15. Inertial manifold of the atmospheric equations

    Institute of Scientific and Technical Information of China (English)

    李建平; 丑纪范

    1999-01-01

    For a class of nonlinear evolution equations, their global attractors are studied and the existence of their inertial manifolds is discussed using the truncated method. Then, on the basis of the properties of operators of the atmospheric equations, it is proved that the operator equation of the atmospheric motion with dissipation and external forcing belongs to the class of nonlinear evolution equations. Therefore, it is known that there exists an inertial manifold of the atmospheric equations if the spectral gap condition for the dissipation operator is satisfied. These results furnish a basis for further studying the dynamical properties of global attractor of the atmospheric equations and for designing better numerical scheme.

  16. SMEX02 Atmospheric Aerosol Optical Properties Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of observations of atmospheric parameters including spectral aerosol optical depths, precipitable water, sky radiance distributions and...

  17. Rugged Optical Atmospheric Humidity Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Trace species measurement on unmanned atmospheric research craft suitable for interplanetary travel is a demanding application for optical sensing techniques. Yet...

  18. Optical models of the molecular atmosphere

    Science.gov (United States)

    Zuev, V. E.; Makushkin, Y. S.; Mitsel, A. A.; Ponomarev, Y. N.; Rudenko, V. P.; Firsov, K. M.

    1986-01-01

    The use of optical and laser methods for performing atmospheric investigations has stimulated the development of the optical models of the atmosphere. The principles of constructing the optical models of molecular atmosphere for radiation with different spectral composition (wideband, narrowband, and monochromatic) are considered in the case of linear and nonlinear absorptions. The example of the development of a system which provides for the modeling of the processes of optical-wave energy transfer in the atmosphere is presented. Its physical foundations, structure, programming software, and functioning were considered.

  19. Atmospheric corrosion sensor based on strain measurement

    Science.gov (United States)

    Kasai, Naoya; Hiroki, Masatoshi; Yamada, Toshirou; Kihira, Hiroshi; Matsuoka, Kazumi; Kuriyama, Yukihisa; Okazaki, Shinji

    2017-01-01

    In this paper, an in situ atmospheric corrosion sensor based on strain measurement is discussed. The theoretical background for measuring the reduction in thickness of low carbon steel is also presented. Based on the theoretical considerations, a test piece and apparatus for an atmospheric corrosion sensor were designed. Furthermore, in a dry–wet cyclic accelerated exposure experiment, the measured strain indicated thinning of the test piece, although the corrosion product generated on the surface of the test piece affected the results. The atmospheric corrosion sensor would be effective for evaluating atmospheric corrosion of many types of infrastructure.

  20. The global atmospheric loading of dust aerosols

    Science.gov (United States)

    Kok, J. F.; Ridley, D. A.; Haustein, K.; Miller, R. L.; Zhao, C.

    2015-12-01

    Mineral dust is one of the most ubiquitous aerosols in the atmosphere, with important effects on human health and the climate system. But despite its importance, the global atmospheric loading of dust has remained uncertain, with model results spanning about a factor of five. Here we constrain the particle size-resolved atmospheric dust loading and global emission rate, using a novel theoretical framework that uses experimental constraints on the optical properties and size distribution of dust to eliminate climate model errors due to assumed dust properties. We find that most climate models underestimate the global atmospheric loading and emission rate of dust aerosols.

  1. Atmospheric neutrino flux calculation using the NRLMSISE00 atmospheric model

    CERN Document Server

    Honda, M; Kajita, T; Kasahara, K; Midorikawa, S

    2015-01-01

    In this paper, we extend the calculation of the atmospheric neutrino flux~\\cite{hkkm2004,hkkms2006,hkkm2011} to the sites in polar and tropical regions. In our earliest full 3D-calculation~\\cite{hkkm2004}, we used DPMJET-III~\\cite{dpm} for the hadronic interaction model above 5~GeV, and NUCRIN~\\cite{nucrin} below 5~GeV. We modified DPMJET-III as in Ref.~\\cite{hkkms2006} to reproduce the experimental muon spectra better, mainly using the data observed by BESS group~\\cite{BESSTeVpHemu}. In a recent work~\\cite{hkkm2011}, we introduced JAM interaction model for the low energy hadronic interactions. JAM is a nuclear interaction model developed with PHITS (Particle and Heavy-Ion Transport code System)~\\cite{phits}. In Ref.~\\cite{hkkm2011}, we could reproduce the observed muon flux at the low energies at balloon altitude with DPMJET-III above 32 GeV and JAM below that better than the combination of DPMJET-III above 5~GeV and NUCRIN below that. Besides the interaction model, we have also improved the calculation sche...

  2. Microwave diagnostics of atmospheric plasmas

    Science.gov (United States)

    Scott, David

    Plasma treatment of biological tissues has tremendous potential due to the wide range of applications. Most plasmas have gas temperatures which greatly exceed room temperature. These are often utilized in electro-surgery for cutting and coagulating tissue. Another type of plasma, referred to as cold atmospheric plasma, or CAP, is characterized by heavy particle temperatures which are at or near room temperature. Due to this lack of thermal effect, CAP may provide less invasive medical procedures. Additionally, CAP have been demonstrated to be effective at targeting cancer cells while minimizing damage to the surrounding tissue. A recently fabricated Microwave Electron Density Device (MEDD) utilizes microwave scattering on small atmospheric plasmas to determine the electron plasma density. The MEDD can be utilized on plasmas which range from a fraction of a millimeter to several centimeters at atmospheric pressure when traditional methods cannot be applied. Microwave interferometry fails due to the small size of the plasma relative to the microwave wavelength which leads to diffraction and negligible phase change; electrostatic probes introduce very strong perturbation and are associated with difficulties of application in strongly-collisional atmospheric conditions; and laser Thomson scattering is not sensitive enough to measure plasma densities less than 1012 cm-3. The first part of this dissertation provides an overview of two types of small atmospheric plasma objects namely CAPs and plasmas utilized in the electro-surgery. It then goes on to describe the fabrication, testing and calibration of the MEDD facility. The second part of this dissertation is focused on the application of the MEDD and other diagnostic techniques to both plasma objects. A series of plasma images that illustrate the temporal evolution of a discharge created by an argon electrosurgical device operating in the coagulation mode and its behavior was analyzed. The discharge of the argon

  3. Atmospheric radiative transfer simulation for atmospheric correction of remote sensing data

    Institute of Scientific and Technical Information of China (English)

    Yunfei Bao; Shengbo Chen

    2006-01-01

    The radiance leaving the earth-atmosphere system which can be sensed by a satellite borne radiometer is the sum of radiation emission from the earth surface and each atmospheric level that are transmitted to the top of the atmosphere. The radiation emission from the earth surface and the radiance of each atmospheric level can be separated from the radiance at the top the atmospheric level measured by a satellite borne radiometer. However, it is very difficult to measure the atmospheric radiance, especially the synchronous measurement with the satellite. Thus some atmospheric radiative transfer models have been developed to provide many options for modeling atmospheric radiation transport, such as LOWTRAN, MODTRAN, 6S, FASCODE, LBLRTM, SHARC, and SAMM. Meanwhile, these models can support the detailed detector system design, the optimization and evaluation of satellite mission parameters, and the data processing procedures. As an example, the newly atmospheric radiative transfer models, MODTRAN will be compared with other models after the atmospheric radiative transfer is described. And the atmospheric radiative transfer simulation procedures and their applications to atmospheric transmittance, retrieval of atmospheric elements, and surface parameters, will also be presented.

  4. Swell impact on wind stress and atmospheric mixing in a regional coupled atmosphere-wave model

    DEFF Research Database (Denmark)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik;

    2016-01-01

    Over the ocean, the atmospheric turbulence can be significantly affected by swell waves. Change in the atmospheric turbulence affects the wind stress and atmospheric mixing over swell waves. In this study, the influence of swell on atmospheric mixing and wind stress is introduced into an atmosphere......-wave-coupled regional climate model, separately and combined. The swell influence on atmospheric mixing is introduced into the atmospheric mixing length formula by adding a swell-induced contribution to the mixing. The swell influence on the wind stress under wind-following swell, moderate-range wind, and near......-neutral and unstable stratification conditions is introduced by changing the roughness length. Five year simulation results indicate that adding the swell influence on atmospheric mixing has limited influence, only slightly increasing the near-surface wind speed; in contrast, adding the swell influence on wind stress...

  5. Lookup tables to compute high energy cosmic ray induced atmospheric ionization and changes in atmospheric chemistry

    OpenAIRE

    Atri, Dimitra; Melott, Adrian L.; Thomas, Brian C

    2008-01-01

    A variety of events such as gamma-ray bursts and supernovae may expose the Earth to an increased flux of high-energy cosmic rays, with potentially important effects on the biosphere. Existing atmospheric chemistry software does not have the capability of incorporating the effects of substantial cosmic ray flux above 10 GeV . An atmospheric code, the NASA-Goddard Space Flight Center two-dimensional (latitude, altitude) time-dependent atmospheric model (NGSFC), is used to study atmospheric chem...

  6. Suntracker for atmospheric remote sensing

    Science.gov (United States)

    Hawat, Toufic-Michel; Camy-Peyret, Claude; Torguet, Roger J.

    1998-05-01

    A heliostat is designed and built to track the sun for optical remote sensing of the stratosphere from a balloon- borne pointed gondola. The tracking mechanism is controlled by two direct torque motors used to drive a single flat acquisition mirror. A horizontal turntable, rigidly attached to the azimuth drive, supports the elevation assembly. A position sensor receiving a small part of the solar beam reflected off the main acquisition mirror is used for the fine servo control. Using a CCD camera prepointing of the acquisition mirror is achieved when the sun is in the field of view of the heliostat. This system is coupled with a high-resolution (0.02-cm-1) Fourier transform IR spectrometer to retrieve stratospheric trace species concentration profiles. The suntracker directs the solar radiation in a stable direction along the spectrometer optical axis. The pointing precision is 1 arcmin from a stratospheric gondola, which has static and dynamic angular excursions up to 6 deg. The heliostat coupled to the Limb Profile Monitor of the Atmosphere instrument performs successfully on several balloon flights. The description, ground tests, and balloon flight results of the suntracker are presented.

  7. Atmospheric composition forecasting in Europe

    Directory of Open Access Journals (Sweden)

    L. Menut

    2010-01-01

    Full Text Available The atmospheric composition is a societal issue and, following new European directives, its forecast is now recommended to quantify the air quality. It concerns both gaseous and particles species, identified as potential problems for health. In Europe, numerical systems providing daily air quality forecasts are numerous and, mostly, operated by universities. Following recent European research projects (GEMS, PROMOTE, an organization of the air quality forecast is currently under development. But for the moment, many platforms exist, each of them with strengths and weaknesses. This overview paper presents all existing systems in Europe and try to identify the main remaining gaps in the air quality forecast knowledge. As modeling systems are now able to reasonably forecast gaseous species, and in a lesser extent aerosols, the future directions would concern the use of these systems with ensemble approaches and satellite data assimilation. If numerous improvements were recently done on emissions and chemistry knowledge, improvements are still needed especially concerning meteorology, which remains a weak point of forecast systems. Future directions will also concern the use of these forecast tools to better understand and quantify the air pollution impact on health.

  8. Jupiter's radiation belts and atmosphere

    Science.gov (United States)

    De Pater, I.; Dames, H. A. C.

    1979-01-01

    Maps and stripscans of the radio emission from Jupiter were made during the Pioneer 10 flyby in December 1973 at wavelengths of 6 cm, 21 cm, and 50 cm using the Westerbork telescope in the Netherlands. With this instrument the disk of the planet was resolved at 6 and 21 cm. The pictures are averaged over 15 deg of Jovian longitude. At 21 cm the stripscans clearly show the existence of a 'hot region' in the radiation belts at a System III longitude (1965.0) of 255 + or - 10 deg. Its flux is about 9% of the total nonthermal flux, and it has a volume emissivity enhanced by a factor of about 1.6 with respect to the general radiation belts. The temperature of the thermal disk at 21 cm appears to be 290 + or - 20 K. This is likely due to a high ammonia mixing ratio in the atmosphere, a factor of 4-5 larger than the expected solar value of 0.00015.

  9. Atmospheric guidance techniques and performance

    Science.gov (United States)

    Harpold, J. C.; Gavert, D. E.

    1982-01-01

    The Orbiter entry guidance system controls the Space Shuttle Orbiter from the initial atmospheric penetration point to the point at which an earth relative velocity of 2500 feet/second is reached. At the latter point, control of the Orbiter is transferred to the terminal area energy management system. The entry guidance system is based on the concept that the range to be flown during entry is a unique function of the drag deceleration profile flown throughout the entry. The range prediction during entry is based on analytic equations which are simple drag deceleration functions of earth relative velocity above Mach 10.5 and energy with respect to the earth below Mach 10.5. Flight through the entry corridor is accomplished by linking these simple drag deceleration functions together in series in order to define a drag deceleration reference profile. The results of the first three Space Shuttle missions have not only verified the entry guidance concept but have also demonstrated the stability of the guidance system.

  10. TEAM - Titan Exploration Atmospheric Microprobes

    Science.gov (United States)

    Nixon, Conor; Esper, Jaime; Aslam, Shahid; Quilligan, Gerald

    2016-10-01

    The astrobiological potential of Titan's surface hydrocarbon liquids and probable interior water ocean has led to its inclusion as a destination in NASA's "Ocean Worlds" initiative, and near-term investigation of these regions is a high-level scientific goal. TEAM is a novel initiative to investigate the lake and sea environs using multiple dropsondes -scientific probes derived from an existing cubesat bus architecture (CAPE - the Cubesat Application for Planetary Exploration) developed at NASA GSFC. Each 3U probe will parachute to the surface, making atmospheric structure and composition measurements during the descent, and photographing the surface - land, shoreline and seas - in detail. TEAM probes offer a low-cost, high-return means to explore multiple areas on Titan, yielding crucial data about the condensing chemicals, haze and cloud layers, winds, and surface features of the lakes and seas. These microprobes may be included on a near-term New Frontiers class mission to the Saturn system as additional payload, bringing increased scientific return and conducting reconnaissance for future landing zones. In this presentation we describe the probe architecture, baseline payload, flight profile and the unique engineering and science data that can be returned.

  11. Atmospheric mercury footprints of nations.

    Science.gov (United States)

    Liang, Sai; Wang, Yafei; Cinnirella, Sergio; Pirrone, Nicola

    2015-03-17

    The Minamata Convention was established to protect humans and the natural environment from the adverse effects of mercury emissions. A cogent assessment of mercury emissions is required to help implement the Minamata Convention. Here, we use an environmentally extended multi-regional input-output model to calculate atmospheric mercury footprints of nations based on upstream production (meaning direct emissions from the production activities of a nation), downstream production (meaning both direct and indirect emissions caused by the production activities of a nation), and consumption (meaning both direct and indirect emissions caused by final consumption of goods and services in a nation). Results show that nations function differently within global supply chains. Developed nations usually have larger consumption-based emissions than up- and downstream production-based emissions. India, South Korea, and Taiwan have larger downstream production-based emissions than their upstream production- and consumption-based emissions. Developed nations (e.g., United States, Japan, and Germany) are in part responsible for mercury emissions of developing nations (e.g., China, India, and Indonesia). Our findings indicate that global mercury abatement should focus on multiple stages of global supply chains. We propose three initiatives for global mercury abatement, comprising the establishment of mercury control technologies of upstream producers, productivity improvement of downstream producers, and behavior optimization of final consumers.

  12. Atmospheric Boundary Layers: Modeling and Parameterization

    NARCIS (Netherlands)

    Holtslag, A.A.M.

    2015-01-01

    In this contribution we deal with the representation of the atmospheric boundary layer (ABL) for modeling studies of weather, climate, and air quality. As such we review the major characteristics of the ABL, and summarize the basic parameterizations for the description of atmospheric turbulence and

  13. Atmospheric Science: It's More than Meteorology.

    Science.gov (United States)

    Smith, David R.; Krockover, Gerald H.

    1988-01-01

    Indicates that atmospheric science is not just forcasting the weather. Gives an overview of current topics in meteorology including ozone depletion, acid precipitation, winter cyclones, severe local storms, the greenhouse effect, wind shear and microbursts. Outlines the Atmospheric Sciences Education Program at Purdue University to produce…

  14. Venus Atmospheric Maneuverable Platform Science Mission

    Science.gov (United States)

    Polidan, Ronald S.; Lee, Gregory; Ross, Floyd; Sokol, Daniel; Bolisay, Linden

    2015-11-01

    Over the past several years, we have explored a possible new approach to Venus upper atmosphere exploration by applying recent Northrop (non-NASA) development programs and have come up with a new class of exploration vehicle: an atmospheric rover. We will discuss a possible suite of instruments and measurements to study the current climate through detailed characterization of cloud level atmosphere and to understand the processes that control climate on Earth-like planets.Our Venus atmospheric rover concept, the Venus Atmospheric Maneuverable Platform (VAMP), is a hypersonic entry vehicle with an ultra-low ballistic coefficient that transitions to a semi-buoyant air vehicle (AV) after entering the Venus atmosphere. Prior to entry, the AV fully deploys to enable lifting entry and eliminates the need for an aeroshell. The mass savings realized by eliminating the aeroshell allows VAMP to accommodate significantly more instruments compared to previous Venus in situ exploration missions. VAMP targets the global Venus atmosphere between 50-65 km altitudes and would be an ideal, stable platform for atmospheric and surface interaction measurements. We will present a straw man concept of VAMP, including its science instrument accommodation capability and platform’s physical characteristics (mass, power, wingspan, etc). We will discuss the various instrument options.VAMP’s subsonic flight regime starts at ~94 km and after performance of VAMP science.

  15. Simulating super earth atmospheres in the laboratory

    Science.gov (United States)

    Claudi, R.; Erculiani, M. S.; Galletta, G.; Billi, D.; Pace, E.; Schierano, D.; Giro, E.; D'Alessandro, M.

    2016-01-01

    Several space missions, such as JWST, TESS and the very recently proposed ARIEL, or ground-based experiments, as SPHERE and GPI, have been proposed to measure the atmospheric transmission, reflection and emission spectra of extrasolar planets. The planet atmosphere characteristics and possible biosignatures will be inferred by studying planetary spectra in order to identify the emission/absorption lines/bands from atmospheric molecules such as water (H2O), carbon monoxide (CO), methane (CH4), ammonia (NH3), etc. In particular, it is important to know in detail the optical characteristics of gases in the typical physical conditions of the planetary atmospheres and how these characteristics could be affected by radiation driven photochemical and biochemical reaction. The main aim of the project `Atmosphere in a Test Tube' is to provide insights on exoplanet atmosphere modification due to biological intervention. This can be achieved simulating planetary atmosphere at different pressure and temperature conditions under the effects of radiation sources, used as proxies of different bands of the stellar emission. We are tackling the characterization of extrasolar planet atmospheres by mean of innovative laboratory experiments described in this paper. The experiments are intended to reproduce the conditions on warm earths and super earths hosted by low-mass M dwarfs primaries with the aim to understand if a cyanobacteria population hosted on a Earth-like planet orbiting an M0 star is able to maintain its photosynthetic activity and produce traceable signatures.

  16. An Atmospheric Pressure Ping-Pong "Ballometer"

    Science.gov (United States)

    Kazachkov, Alexander; Kryuchkov, Dmitriy; Willis, Courtney; Moore, John C.

    2006-01-01

    Classroom experiments on atmospheric pressure focus largely on demonstrating its existence, often in a most impressive way. A series of amusing physics demonstrations is widely known and practiced by educators teaching the topic. However, measuring the value of atmospheric pressure(P[subscript atm]) is generally done in a rather mundane way,…

  17. Affective Atmospheres in the House of Usher

    DEFF Research Database (Denmark)

    Brink, Dennis Meyhoff

    2016-01-01

    Emotional intensities do not only pertain to the ‘inner life’ of individuals; they are also to be found, as the saying goes, ‘in the air,’ i.e. as shared atmospheres that envelope and affect us. Such affective atmospheres are omnipresent in Edgar Allan Poe’s short story “The Fall of the House of ...

  18. Energy, atmospheric chemistry, and global climate

    Science.gov (United States)

    Levine, Joel S.

    1991-01-01

    Global atmospheric changes due to ozone destruction and the greenhouse effect are discussed. The work of the Intergovernmental Panel on Climate Change is reviewed, including its judgements regarding global warming and its recommendations for improving predictive capability. The chemistry of ozone destruction and the global atmospheric budget of nitrous oxide are reviewed, and the global sources of nitrous oxide are described.

  19. Evolution of an Early Titan Atmosphere: Comment

    CERN Document Server

    Johnson, Robert E; Volkov, Alexey N

    2015-01-01

    Escape of an early atmosphere from Titan, during which time NH3 could be converted by photolysis into the present N2 dominated atmosphere, is an important problem in planetary science. Recently Gilliam and Lerman (2014) estimated escape driven by the surface temperature and pressure, which we show gave loss rates that are orders of magnitude too large. Their model, related to Jeans escape from an isothermal atmosphere, was used to show that escape driven only by surface heating would deplete the atmospheric inventory of N for a suggested Titan accretion temperature of ~355 K. Therefore, they concluded that the accretion temperature must be lower in order to retain the present Titan atmosphere. Here we show that the near surface atmospheric temperature is essentially irrelevant for determining the atmospheric loss rate from Titan and that escape is predominantly driven by solar heating of the upper atmosphere. We also give a rough estimate of the escape rate in the early solar system (~10^4 kg/s) consistent wi...

  20. Atmospheric oxygenation three billion years ago

    DEFF Research Database (Denmark)

    Crowe, Sean; Døssing, Lasse Nørbye; Beukes, Nicolas J.;

    2013-01-01

    It is widely assumedthat atmospheric oxygen concentrations remained persistently low (less than 1025 timespresent levels) for about the first 2 billion years of Earth’s history1. The first long-term oxygenation of the atmosphere is thought tohave taken place around2.3 billion years ago, during th...

  1. The global atmospheric budget of ethanol revisited

    Directory of Open Access Journals (Sweden)

    W. V. Kirstine

    2012-01-01

    Full Text Available Ethanol is an important biogenic volatile organic compound, which is increasingly used as a fuel for motor vehicles; therefore, an improved understanding of its atmospheric cycle is important. In this paper we use three sets of observational data, measured emissions of ethanol from living plants, measured concentrations of ethanol in the atmosphere and measured hydroxyl concentrations in the atmosphere (by methyl chloroform titration, to make two independent estimates related to the rate of cycling of ethanol through the atmosphere. In the first estimate, simple calculations give the emission rate of ethanol from living plants as 26 (range, 10–38 Tg yr−1. This contributes significantly to the total global ethanol source of 42 (range, 25–56 Tg yr−1. In the second estimate, the total losses of ethanol from the global atmosphere are 70 (range, 50–90 Tg yr−1, with about three-quarters of the ethanol removed by reaction with hydroxyl radicals in the gaseous and aqueous phases of the atmosphere, and the remainder lost through wet and dry deposition to land. These values of both the source of ethanol from living plants and the removal of atmospheric ethanol via oxidation by hydroxyl radicals (derived entirely from observations are significantly larger than those in recent literature. We suggest that a revision of the estimate of global ethanol emissions from plants to the atmosphere to a value comparable with this analysis is warranted.

  2. Investigation on Atmospheric Corrosiveness in Hainan Province

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    According to the results of four-year exposure tests for carbon steel samples in Hainan province, the influences of meteorological factors and Cl- on atmospheric corrosion were investigated. The feature of atmospheric corrosion in this area was summarized. A corrosive map for the area was drawn. The corrosion products on carbon steel at some typical places were analyzed by XRD and XPS.

  3. Atmospheric nitrogen compounds: Occurrence, composition and deposition

    DEFF Research Database (Denmark)

    Nielsen, T.; Pilegaard, K.; Egeløv, A.H.;

    1996-01-01

    Traffic in cities and on highways is an important contributor to NOy atmospheric pollution in open areas. In this situation both the concentration and composition of NOy compounds show a wide variation and are dependent on meteorological and atmospheric chemical conditions. The proportion of NOz...

  4. Performance Engineering in the Community Atmosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    Worley, P; Mirin, A; Drake, J; Sawyer, W

    2006-05-30

    The Community Atmosphere Model (CAM) is the atmospheric component of the Community Climate System Model (CCSM) and is the primary consumer of computer resources in typical CCSM simulations. Performance engineering has been an important aspect of CAM development throughout its existence. This paper briefly summarizes these efforts and their impacts over the past five years.

  5. Atmospheric Monitoring for the MAGIC Telescopes

    CERN Document Server

    Gaug, M; Dorner, D; Doro, M; Font, Ll; Fruck, C; Garczarczyk, M; Garrido, D; Hrupec, D; Hose, J; López-Oramas, A; Maneva, G; Martinez, M; Mirzoyan, R; Temnikov, P; Zanin, R

    2014-01-01

    The monitoring of the atmosphere is very relevant for Imaging Atmospheric Cherenkov Telescopes. Adverse weather conditions (strong wind, high humidity, etc.) may damage the telescopes and must therefore be monitored continuously to guarantee a safe operation, and the presence of clouds and aerosols affects the transmission of the Cherenkov light and consequently the performance of the telescopes. The ATmospheric CAlibration (ATCA) technical working group of the MAGIC collaboration aims to cover all aspects related to atmosphere monitoring and calibration. In this paper we give an overview of the ATCA goals and activities, which include the set-up and maintenance of appropriate instrumentation, proper analysis of its data, the realization of MC studies, and the correction of real data taken under non-optimal atmospheric conditions. The final goal is to reduce the systematic uncertainties in the determination of the $\\gamma$-ray flux and energy, and to increase the duty cycle of the telescopes by establishing o...

  6. Light scattering from exoplanet oceans and atmospheres

    CERN Document Server

    Zugger, Michael E; Williams, Darren M; Kane, Timothy J; Philbrick, C Russell

    2010-01-01

    Orbital variation in polarized and unpolarized reflected starlight from exoplanets could eventually be used to detect liquid water on planet surfaces. Exoplanets with rough surfaces, or those dominated by atmospheric Rayleigh scattering, should reach peak brightness in full phase, orbital longitude (OL) = 180 degrees, whereas ocean-covered planets with transparent atmospheres should reach peak brightness in crescent phase near OL = 30 degrees. Application of Fresnel theory to a planet with no atmosphere covered by a calm ocean predicts a peak polarization fraction of 1 at OL = 74 degrees; however, our model shows that clouds, wind-driven waves, aerosols, absorption, and Rayleigh scattering in the atmosphere and within the water column, dilute the polarization fraction and shift the peak to other OLs. Observing at longer wavelengths reduces the obfuscation of the water polarization signature by Rayleigh scattering but does not mitigate the other effects. Planets with thick Rayleigh scattering atmospheres reach...

  7. The global atmospheric electrical circuit and climate

    CERN Document Server

    Harrison, R G

    2004-01-01

    Evidence is emerging for physical links among clouds, global temperatures, the global atmospheric electrical circuit and cosmic ray ionisation. The global circuit extends throughout the atmosphere from the planetary surface to the lower layers of the ionosphere. Cosmic rays are the principal source of atmospheric ions away from the continental boundary layer: the ions formed permit a vertical conduction current to flow in the fair weather part of the global circuit. Through the (inverse) solar modulation of cosmic rays, the resulting columnar ionisation changes may allow the global circuit to convey a solar influence to meteorological phenomena of the lower atmosphere. Electrical effects on non-thunderstorm clouds have been proposed to occur via the ion-assisted formation of ultrafine aerosol, which can grow to sizes able to act as cloud condensation nuclei, or through the increased ice nucleation capability of charged aerosols. Even small atmospheric electrical modulations on the aerosol size distribution ca...

  8. Deviations from LTE in a stellar atmosphere

    Science.gov (United States)

    Kalkofen, W.; Klein, R. I.; Stein, R. F.

    1979-01-01

    Deviations for LTE are investigated in an atmosphere of hydrogen atoms with one bound level, satisfying the equations of radiative, hydrostatic, and statistical equilibrium. The departure coefficient and the kinetic temperature as functions of the frequency dependence of the radiative cross section are studied analytically and numerically. Near the outer boundary of the atmosphere, the departure coefficient is smaller than unity when the radiative cross section grows with frequency faster than with the square of frequency; it exceeds unity otherwise. Far from the boundary the departure coefficient tends to exceed unity for any frequency dependence of the radiative cross section. Overpopulation always implies that the kinetic temperature in the statistical-equilibrium atmosphere is higher than the temperature in the corresponding LTE atmosphere. Upper and lower bounds on the kinetic temperature are given for an atmosphere with deviations from LTE only in the optically shallow layers when the emergent intensity can be described by a radiation temperature.

  9. Exoplanetary Atmospheres - Chemistry, Formation Conditions, and Habitability

    CERN Document Server

    Madhusudhan, Nikku; Moses, Julianne I; Hu, Yongyun

    2016-01-01

    Characterizing the atmospheres of extrasolar planets is the new frontier in exoplanetary science. The last two decades of exoplanet discoveries have revealed that exoplanets are very common and extremely diverse in their orbital and bulk properties. We now enter a new era as we begin to investigate the chemical diversity of exoplanets, their atmospheric and interior processes, and their formation conditions. Recent developments in the field have led to unprecedented advancements in our understanding of atmospheric chemistry of exoplanets and the implications for their formation conditions. We review these developments in the present work. We review in detail the theory of atmospheric chemistry in all classes of exoplanets discovered to date, from highly irradiated gas giants, ice giants, and super-Earths, to directly imaged giant planets at large orbital separations. We then review the observational detections of chemical species in exoplanetary atmospheres of these various types using different methods, incl...

  10. Atmospheric tides in Earth-like planets

    CERN Document Server

    Auclair-Desrotour, Pierre; Mathis, Stéphane

    2016-01-01

    Atmospheric tides can strongly affect the rotational dynamics of planets. In the family of Earth-like planets, such as Venus, this physical mechanism coupled with solid tides makes the angular velocity evolve over long timescales and determines the equilibrium configurations of their spin. Contrary to the solid core, the atmosphere is submitted to both tidal gravitational potential and insolation flux coming from the star. The complex response of the gas is intrinsically linked to its physical properties. This dependence has to be characterized and quantified to study the large variety of extrasolar planetary systems. We develop a theoretical global model where radiative losses, which are predominant in slowly rotating atmospheres, are taken into account. We analytically compute the tidal perturbation of pressure, density, temperature and velocity field from which we deduce the expressions of atmospheric Love numbers and tidal torque exerted by the star. The dynamics of atmospheric tides depends on the freque...

  11. A Search for Magnesium in Europa's Atmosphere

    CERN Document Server

    Horst, Sarah M

    2013-01-01

    Europa's tenuous atmosphere results from sputtering of the surface. The trace element composition of its atmosphere is therefore related to the composition of Europa's surface. Magnesium salts are often invoked to explain Galileo Near Infrared Mapping Spectrometer spectra of Europa's surface, thus magnesium may be present in Europa's atmosphere. We have searched for magnesium emission in Hubble Space Telescope Faint Object Spectrograph archival spectra of Europa's atmosphere. Magnesium was not detected and we calculate an upper limit on the magnesium column abundance. This upper limit indicates that either Europa's surface is depleted in magnesium relative to sodium and potassium, or magnesium is not sputtered as efficiently resulting in a relative depletion in its atmosphere.

  12. Atmospheric Prebiotic Chemistry and Organic Hazes

    Science.gov (United States)

    Trainer, Melissa G.

    2012-01-01

    Earth's atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of pre biotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer - if formed - would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere.

  13. The STARTWAVE atmospheric water database

    Directory of Open Access Journals (Sweden)

    J. Morland

    2006-01-01

    Full Text Available The STARTWAVE (STudies in Atmospheric Radiative Transfer and Water Vapour Effects project aims to investigate the role which water vapour plays in the climate system, and in particular its interaction with radiation. Within this framework, an ongoing water vapour database project was set up which comprises integrated water vapour (IWV measurements made over the last ten years by ground-based microwave radiometers, Global Positioning System (GPS receivers and sun photometers located throughout Switzerland at altitudes between 330 and 3584 m. At Bern (46.95° N, 7.44° E tropospheric and stratospheric water vapour profiles are obtained on a regular basis and integrated liquid water, which is important for cloud characterisation, is also measured. Additional stratospheric water vapour profiles are obtained by an airborne microwave radiometer which observes large parts of the northern hemisphere during yearly flight campaigns. The database allows us to validate the various water vapour measurement techniques. Comparisons between IWV measured by the Payerne radiosonde with that measured at Bern by two microwave radiometers, GPS and sun photometer showed instrument biases within ±0.5 mm. The bias in GPS relative to sun photometer over the 2001 to 2004 period was –0.8 mm at Payerne (46.81° N, 6.94° E, 490 m, which lies in the Swiss plains north of the Alps, and +0.6 mm at Davos (46.81° N, 9.84° E, 1598 m, which is located within the Alps in the eastern part of Switzerland. At Locarno (46.18° N, 8.78° E, 366 m, which is located on the south side of the Alps, the bias is +1.9 mm. The sun photometer at Locarno was found to have a bias of –2.2 mm (13% of the mean annual IWV relative to the data from the closest radiosonde station at Milano. This result led to a yearly rotation of the sun photometer instruments between low and high altitude stations to improve the calibrations. In order to demonstrate the capabilites of the database for studying

  14. Pulsed atmospheric fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  15. Diurnal Forcing of Planetary Atmospheres

    Science.gov (United States)

    Houben, Howard C.

    1997-01-01

    Much progress has been made on calculations of the Martian seasonal water cycle using the Mars Climate Model developed for this purpose. Two papers, documenting the model and the water transport results obtained with it have been published in the Journal of Geophysical Research - Planets. An additional paper describing results related to the evolution of the seasonal water cycle as a result of orbital changes was published in Advances in Space Research. Since that time, further studies have concentrated on the consequences of the soil adsorption required to match the observed water cycle and its relation to the stability of ground ice and other potential water reservoirs. Earth-related studies have concentrated on incorporating an efficient and realistic microphysical model into the Ames Stratospheric General Circulation Model used to simulate the spread of the ML Pinatubo and other volcanic clouds in the stratosphere. In addition, visualizations of the simulations are being incorporated into a video describing the UARS mission. A paper describing the new stratospheric aerosol microphysics package (and its consequences for volcanic cloud evolution) will be submitted in the near future. The paper will discuss the relative importance of condensation and coagulation to early particle growth and the separation of the cloud by sedimentation of the larger particles. A more general paper which highlights the observation that particle number densities did not increase dramatically after the ML Pinatubo eruption is planned. Simulations of atmospheric transport will be extended to include studies of terrestrial tropospheric tracers using the Fifth-Generation Penn State/NCAR Mesoscale Model.

  16. Can mushrooms fix atmospheric nitrogen?

    Indian Academy of Sciences (India)

    H S Jayasinghearachchi; Gamini Seneviratne

    2004-09-01

    It is generally reported that fungi like Pleurotus spp. can fix nitrogen (N2). The way they do it is still not clear. The present study hypothesized that only associations of fungi and diazotrophs can fix N2. This was tested in vitro. Pleurotus ostreatus was inoculated with a bradyrhizobial strain nodulating soybean and P. ostreatus with no inoculation was maintained as a control. At maximum mycelial colonization by the bradyrhizobial strain and biofilm formation, the cultures were subjected to acetylene reduction assay (ARA). Another set of the cultures was evaluated for growth and nitrogen accumulation. Nitrogenase activity was present in the biofilm, but not when the fungus or the bradyrhizobial strain was alone. A significant reduction in mycelial dry weight and a significant increase in nitrogen concentration were observed in the inoculated cultures compared to the controls. The mycelial weight reduction could be attributed to C transfer from the fungus to the bradyrhizobial strain, because of high C cost of biological N2 fixation. This needs further investigations using 14C isotopic tracers. It is clear from the present study that mushrooms alone cannot fix atmospheric N2. But when they are in association with diazotrophs, nitrogenase activity is detected because of the diazotrophic N2 fixation. It is not the fungus that fixes N2 as reported earlier. Effective N2 fixing systems, such as the present one, may be used to increase protein content of mushrooms. Our study has implications for future identification of as yet unidentified N2 systems occurring in the environment.

  17. Atmospheric Entry Experiments at IRS

    Science.gov (United States)

    Auweter-Kurtz, M.; Endlich, P.; Herdrich, G.; Kurtz, H.; Laux, T.; Löhle, S.; Nazina, N.; Pidan, S.

    2002-01-01

    Entering the atmosphere of celestial bodies, spacecrafts encounter gases at velocities of several km/s, thereby being subjected to great heat loads. The thermal protection systems and the environment (plasma) have to be investigated by means of computational and ground facility based simulations. For more than a decade, plasma wind tunnels at IRS have been used for the investigation of TPS materials. Nevertheless, ground tests and computer simulations cannot re- place space flights completely. Particularly, entry mission phases encounter challenging problems, such as hypersonic aerothermodynamics. Concerning the TPS, radiation-cooled materials used for reuseable spacecrafts and ablator tech- nologies are of importance. Besides the mentioned technologies, there is the goal to manage guidance navigation, con- trol, landing technology and inflatable technologies such as ballutes that aim to keep vehicles in the atmosphere without landing. The requirement to save mass and energy for planned interplanetary missions such as Mars Society Balloon Mission, Mars Sample Return Mission, Mars Express or Venus Sample Return mission led to the need for manoeuvres like aerocapture, aero-breaking and hyperbolic entries. All three are characterized by very high kinetic vehicle energies to be dissipated by the manoeuvre. In this field flight data are rare. The importance of these manoeuvres and the need to increase the knowledge of required TPS designs and behavior during such mission phases point out the need of flight experiments. As result of the experience within the plasma diagnostic tool development and the plasma wind tunnel data base, flight experiments like the PYrometric RE-entry EXperiment PYREX were developed, fully qualified and successfully flown. Flight experiments such as the entry spectrometer RESPECT and PYREX on HOPE-X are in the conceptual phase. To increase knowledge in the scope of atmospheric manoeuvres and entries, data bases have to be created combining both

  18. SWiFT site atmospheric characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Christopher Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ennis, Brandon Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    Historical meteorological tall tower data are analyzed from the Texas Tech University 200 m tower to characterize the atmospheric trends of the Scaled Wind Farm Technologies (SWiFT) site. In this report the data are analyzed to reveal bulk atmospheric trends, temporal trends and correlations of atmospheric variables. Through this analysis for the SWiFT turbines the site International Electrotechnical Commission (IEC) classification is determined to be class III-C. Averages and distributions of atmospheric variables are shown, revealing large fluctuations and the importance of understanding the actual site trends as opposed to simply using averages. The site is significantly directional with the average wind speed from the south, and particularly so in summer and fall. Site temporal trends are analyzed from both seasonal (time of the year) to daily (hour of the day) perspectives. Atmospheric stability is seen to vary most with time of day and less with time of year. Turbulence intensity is highly correlated with stability, and typical daytime unstable conditions see double the level of turbulence intensity versus that experienced during the average stable night. Shear, veer and atmospheric stability correlations are shown, where shear and veer are both highest for stable atmospheric conditions. An analysis of the Texas Tech University tower anemometer measurements is performed which reveals the extent of the tower shadow effects and sonic tilt misalignment.

  19. Modeling the atmospheric chemistry of TICs

    Science.gov (United States)

    Henley, Michael V.; Burns, Douglas S.; Chynwat, Veeradej; Moore, William; Plitz, Angela; Rottmann, Shawn; Hearn, John

    2009-05-01

    An atmospheric chemistry model that describes the behavior and disposition of environmentally hazardous compounds discharged into the atmosphere was coupled with the transport and diffusion model, SCIPUFF. The atmospheric chemistry model was developed by reducing a detailed atmospheric chemistry mechanism to a simple empirical effective degradation rate term (keff) that is a function of important meteorological parameters such as solar flux, temperature, and cloud cover. Empirically derived keff functions that describe the degradation of target toxic industrial chemicals (TICs) were derived by statistically analyzing data generated from the detailed chemistry mechanism run over a wide range of (typical) atmospheric conditions. To assess and identify areas to improve the developed atmospheric chemistry model, sensitivity and uncertainty analyses were performed to (1) quantify the sensitivity of the model output (TIC concentrations) with respect to changes in the input parameters and (2) improve, where necessary, the quality of the input data based on sensitivity results. The model predictions were evaluated against experimental data. Chamber data were used to remove the complexities of dispersion in the atmosphere.

  20. [Current data on atmospheric pollutions].

    Science.gov (United States)

    Festy, B; Petit-Coviaux, F; Le Moullec, Y

    1991-01-01

    Atmospheric pollutions (AP) are very important for human health and ecological equilibrium. They may be natural or anthropogenic and in this later case they can appear outdoor or indoor. Urban air pollution is the most known form of AP. Its main sources are industries, individual and collective heating and now mainly automobile traffic in most cities. Classical AP indicators are SO2, particles, NOx, CO and Pb measured in networks. Important factors of AP are amounts of pollutants emitted and local climatic and meteorological characteristics. Health effects of AP peaks and of AP background levels are not well known. But generally, mean AP levels of SO2 and particles decreased in the last years in most towns as the consequence of collective actions on the three main sources of AP and on fuels, emission and immission levels; but more is wanted about motor-cars. Progress are necessary for limitation of three major ecological risks: "acid-rain" (SO2 and NOx derivatives, ozone,...) which participates in lake and forest attacks; "green house" effects whose air CO2 concentration increase is the main responsible, and stratospheric ozone depletion mainly due to freons (CFC); the consequences of these two last phenomena are not well known but ecological and health risk exist. Besides, indoor air pollution (IAP) is very important because we live more than 20 h a day indoor. IAP may be occupational (a lot of chemical or biological agents) or not. In the later case air pollutants are very various: CO, NOx and particles from heating or cooking, formaldehyde from wood glue, plywood or urea-formol foams, radon and derivatives in some granitic countries, odd jobs products, cosmetics, aero-allergens of chemical or biological origins, microbes,... Environmental tobacco smoke (ETS) is also an important pollutant complex. Risks of IAP are real or potential: acute risk is obvious for CO, aero-allergens, formaldehyde, NOx,...); irritations are produced by ETS, formaldehyde, solvants

  1. Spectroscopic detection and characterisation of planetary atmospheres

    Directory of Open Access Journals (Sweden)

    Collier Cameron A.

    2011-07-01

    Full Text Available Space based broadband infrared observations of close orbiting extrasolar giant planets at transit and secondary eclipse have proved a successful means of determining atmospheric spectral energy distributions and molecular composition. Here, a ground-based spectroscopic technique to detect and characterise planetary atmospheres is presented. Since the planet need not be transiting, this method enables a greater sample of systems to be studied. By modelling the planetary signature as a function of phase, high resolution spectroscopy has the potential to recover the signature of molecules in planetary atmospheres.

  2. OCCIMA: Optical Channel Characterization in Maritime Atmospheres

    Science.gov (United States)

    Hammel, Steve; Tsintikidis, Dimitri; deGrassie, John; Reinhardt, Colin; McBryde, Kevin; Hallenborg, Eric; Wayne, David; Gibson, Kristofor; Cauble, Galen; Ascencio, Ana; Rudiger, Joshua

    2015-05-01

    The Navy is actively developing diverse optical application areas, including high-energy laser weapons and free- space optical communications, which depend on an accurate and timely knowledge of the state of the atmospheric channel. The Optical Channel Characterization in Maritime Atmospheres (OCCIMA) project is a comprehensive program to coalesce and extend the current capability to characterize the maritime atmosphere for all optical and infrared wavelengths. The program goal is the development of a unified and validated analysis toolbox. The foundational design for this program coordinates the development of sensors, measurement protocols, analytical models, and basic physics necessary to fulfill this goal.

  3. Atmospheric Chemistry of Venus-like Exoplanets

    CERN Document Server

    Schaefer, Laura

    2010-01-01

    We use thermodynamic calculations to model atmospheric chemistry on terrestrial exoplanets that are hot enough for chemical equilibira between the atmosphere and lithosphere, as on Venus. The results of our calculations place constraints on abundances of spectroscopically observable gases, the surface temperature and pressure, and the mineralogy of the surface. These results will be useful in planning future observations of the atmospheres of terrestrial-sized exoplanets by current and proposed space observatories such as the Hubble Space Telescope (HST), Spitzer, James Webb Space Telescope (JWST), Terrestrial Planet Finder, and Darwin.

  4. Atmospheric pressure plasma for surface modification

    CERN Document Server

    Wolf, Rory A

    2012-01-01

    This Book's focus and intent is to impart an understanding of the practical application of atmospheric plasma for the advancement of a wide range of current and emerging technologies. The primary key feature of this book is the introduction of over thirteen years of practical experimental evidence of successful surface modifications by atmospheric plasma methods. It offers a handbook-based approach for leveraging and optimizing atmospheric plasma technologies which are currently in commercial use. It also offers a complete treatment of both basic plasma physics and industrial plasma process

  5. Atmospheric Chemistry in a Changing World

    Science.gov (United States)

    Brune, William H.

    The world is changing,and the atmosphere's composition is changing with it. Human activity is responsible for much of this. Global population growth and migration to urban centers, extensive biomass burning, the spread of fertilizer-intensive agribusiness, globalization of business and industry, rising standards of living in the developing world, and increased energy use fuels atmospheric change. If current practices continue, atmospheric increases are likely for the greenhouse gases carbon dioxide, methane, nitrous oxide; and for the chemically active gases nitric oxide, sulfur dioxide,and ammonia. Increases in global tropospheric ozone and aerosols are a distinct possibility.

  6. What we can learn from atmospheric neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Choubey, Sandhya, E-mail: sandhya@mri.ernet.in [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India)

    2011-12-15

    Physics potential of future measurements of atmospheric neutrinos is explored. Observation of {Delta}m{sub 21}{sup 2} driven sub-dominant effects and {theta}{sub 13} driven large matter effects in atmospheric neutrinos can be used to study the deviation of {theta}{sub 23} from maximality and its octant. Neutrino mass hierarchy can be determined extremely well due to the large matter effects. New physics can be constrained both in standard atmospheric neutrino experiments as well as in future neutrino telescopes.

  7. Long range predictability of atmospheric flows

    Directory of Open Access Journals (Sweden)

    R. Robert

    2001-01-01

    Full Text Available In the light of recent advances in 2D turbulence, we investigate the long range predictability problem of atmospheric flows. Using 2D Euler equations, we show that the full nonlinearity acting on a large number of degrees of freedom can, paradoxically, improve the predictability of the large scale motion, giving a picture opposite to the one largely popularized by Lorenz: a small local perturbation of the atmosphere will progressively gain larger and larger scales by nonlinear interaction and will finally cause large scale change in the atmospheric flow.

  8. Swell impact on wind stress and atmospheric mixing in a regional coupled atmosphere-wave model

    Science.gov (United States)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik; Guo Larsén, Xiaoli

    2016-07-01

    Over the ocean, the atmospheric turbulence can be significantly affected by swell waves. Change in the atmospheric turbulence affects the wind stress and atmospheric mixing over swell waves. In this study, the influence of swell on atmospheric mixing and wind stress is introduced into an atmosphere-wave-coupled regional climate model, separately and combined. The swell influence on atmospheric mixing is introduced into the atmospheric mixing length formula by adding a swell-induced contribution to the mixing. The swell influence on the wind stress under wind-following swell, moderate-range wind, and near-neutral and unstable stratification conditions is introduced by changing the roughness length. Five year simulation results indicate that adding the swell influence on atmospheric mixing has limited influence, only slightly increasing the near-surface wind speed; in contrast, adding the swell influence on wind stress reduces the near-surface wind speed. Introducing the wave influence roughness length has a larger influence than does adding the swell influence on mixing. Compared with measurements, adding the swell influence on both atmospheric mixing and wind stress gives the best model performance for the wind speed. The influence varies with wave characteristics for different sea basins. Swell occurs infrequently in the studied area, and one could expect more influence in high-swell-frequency areas (i.e., low-latitude ocean). We conclude that the influence of swell on atmospheric mixing and wind stress should be considered when developing climate models.

  9. Soil-vegetation-atmosphere transfer modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ikonen, J.P.; Sucksdorff, Y. [Finnish Environment Agency, Helsinki (Finland)

    1996-12-31

    In this study the soil/vegetation/atmosphere-model based on the formulation of Deardorff was refined to hour basis and applied to a field in Vihti. The effect of model parameters on model results (energy fluxes, temperatures) was also studied as well as the effect of atmospheric conditions. The estimation of atmospheric conditions on the soil-vegetation system as well as an estimation of the effect of vegetation parameters on the atmospheric climate was estimated. Areal surface fluxes, temperatures and moistures were also modelled for some river basins in southern Finland. Land-use and soil parameterisation was developed to include properties and yearly variation of all vegetation and soil types. One classification was selected to describe the hydrothermal properties of the soils. Evapotranspiration was verified against the water balance method

  10. The atmosphere during the younger dryas.

    Science.gov (United States)

    Mayewski, P A; Meeker, L D; Whitlow, S; Twickler, M S; Morrison, M C; Alley, R B; Bloomfield, P; Taylor, K

    1993-07-09

    One of the most dramatic climate change events observed in marine and ice core records is the Younger Dryas, a return to near-glacial conditions that punctuated the last deglaciation. High-resolution, continuous glaciochemical records, newly retrieved from central Greenland, record the chemical composition of the arctic atmosphere at this time. This record shows that both the onset and the termination of the Younger Dryas occurred within 10 to 20 years and that massive, frequent, and short-term (decadal or less) changes in atmospheric composition occurred throughout this event. Changes in atmospheric composition are attributable to changes in the size of the polar atmospheric cell and resultant changes in source regions and to the growth and decay of continental biogenic source regions.

  11. Ubiquity of bisphenol A in the atmosphere.

    Science.gov (United States)

    Fu, Pingqing; Kawamura, Kimitaka

    2010-10-01

    Bisphenol A (BPA) is a suspected endocrine disruptor in the environment. However, little is known about its distribution and transport in the atmosphere. Here, the concentrations of BPA in the atmospheric aerosols from urban, rural, marine, and the polar regions were measured using solvent extraction/derivatization and gas chromatography/mass spectrometry technique. The concentrations of BPA (1-17,400 pg m(-3)) ranged over 4 orders of magnitude in the world with a declining trend from the continent (except for the Antarctica) to remote sites. A positive correlation was found between BPA and 1,3,5-triphenylbenzene, a tracer for plastic burning, in urban regions, indicating that the open burning of plastics in domestic waste should be a significant emission source of atmospheric BPA. Our results suggest that the ubiquity of BPA in the atmosphere may raise a requirement for the evaluation of health effects of BPA in order to control its emission sources, for example, from plastic burning.

  12. Atmospheric influence of Earth's earliest sulfur cycle

    Science.gov (United States)

    Farquhar; Bao; Thiemens

    2000-08-01

    Mass-independent isotopic signatures for delta(33)S, delta(34)S, and delta(36)S from sulfide and sulfate in Precambrian rocks indicate that a change occurred in the sulfur cycle between 2090 and 2450 million years ago (Ma). Before 2450 Ma, the cycle was influenced by gas-phase atmospheric reactions. These atmospheric reactions also played a role in determining the oxidation state of sulfur, implying that atmospheric oxygen partial pressures were low and that the roles of oxidative weathering and of microbial oxidation and reduction of sulfur were minimal. Atmospheric fractionation processes should be considered in the use of sulfur isotopes to study the onset and consequences of microbial fractionation processes in Earth's early history.

  13. Atmospheric chemistry: The return of ethane

    Science.gov (United States)

    Hakola, Hannele; Hellén, Heidi

    2016-07-01

    Ethane emissions can lead to ozone pollution. Measurements at 49 sites show that long-declining atmospheric ethane concentrations started rising in 2010 in the Northern Hemisphere, largely due to greater oil and gas production in the USA.

  14. Optical Intensity Interferometry through Atmospheric Turbulence

    CERN Document Server

    Tan, Peng Kian; Kurtsiefer, Christian

    2015-01-01

    Conventional ground-based astronomical observations suffer from image distortion due to atmospheric turbulence. This can be minimized by choosing suitable geographic locations or adaptive optical techniques, and avoided altogether by using orbital platforms outside the atmosphere. One of the promises of optical intensity interferometry is its independence from atmospherically induced phase fluctuations. By performing narrowband spectral filtering on sunlight and conducting temporal intensity interferometry using actively quenched avalanche photon detectors (APDs), the Solar $g^{(2)}(\\tau)$ signature was directly measured. We observe an averaged photon bunching signal of $g^{(2)}(\\tau) = 1.693 \\pm 0.003$ from the Sun, consistently throughout the day despite fluctuating weather conditions, cloud cover and elevation angle. This demonstrates the robustness of the intensity interferometry technique against atmospheric turbulence and opto-mechanical instabilities, and the feasibility to implement measurement scheme...

  15. Optical intensity interferometry through atmospheric turbulence

    Science.gov (United States)

    Tan, P. K.; Chan, A. H.; Kurtsiefer, C.

    2016-04-01

    Conventional ground-based astronomical observations suffer from image distortion due to atmospheric turbulence. This can be minimized by choosing suitable geographic locations or adaptive optical techniques, and avoided altogether by using orbital platforms outside the atmosphere. One of the promises of optical intensity interferometry is its independence from atmospherically induced phase fluctuations. By performing narrow-band spectral filtering on sunlight and conducting temporal intensity interferometry using actively quenched avalanche photodiodes, the Solar g(2)(τ) signature was directly measured. We observe an averaged photon bunching signal of g(2)(τ) = 1.693 ± 0.003 from the Sun, consistently throughout the day despite fluctuating weather conditions, cloud cover and elevation angle. This demonstrates the robustness of the intensity interferometry technique against atmospheric turbulence and opto-mechanical instabilities, and the feasibility to implement measurement schemes with both large baselines and long integration times.

  16. DMSP SSMT/2 - Atmospheric Water Vapor Profiler

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SSM/T-2 sensor is a five channel, total power microwave radiometer with three channels situated symmetrically about the 183.31 GHz water vapor resonance line and...

  17. Atmospheric Nitrogen input to the Kattegat

    DEFF Research Database (Denmark)

    Asman, W.A.H.; Hertel, O.; Berkowicz, R.;

    1995-01-01

    An overview is given of the processes involved in the atmospheric deposition of nitrogen compounds. These processes are incorporated in an atmospheric transport model that is used to calculate the nitrogen input to the Kattegat, the sea area between Denmark and Sweden. The model results show...... that the total atmospheric nitrogen input to the Kattegat is approximately 960 kg N km(-2) yr(-1). The nitrogen input to the Kattegat is dominated by the wet depositions of NHx (42%) and NOy (30%). The contribution from the dry deposition of NHx is 17% and that of the dry deposition of NOy is 11......%. The contribution of the atmospheric input of nitrogen to the Kattegat is about 30% of the total input including the net transport from other sea areas, runoff etc....

  18. Lunar atmospheric composition results from Apollo 17

    Science.gov (United States)

    Hoffmann, J. H.; Hodges, R. R., Jr.; Johnson, F. S.; Evans, D. E.

    1973-01-01

    The Apollo 17 mass spectrometer has confirmed the existence of helium, neon, argon, and possibly molecular hydrogen in the lunar atmosphere. Helium and neon concentrations are in agreement with model predictions based on the solar wind as a source and their being noncondensable gases. Ar-40 and Ar-36 both exhibit a predawn enhancement which indicates that they are condensable gases on the nightside and are re-released into the atmosphere at the sunrise terminator. Hydrogen probably exists in the lunar atmosphere in the molecular rather than atomic state, having been released from the surface in the molecular form. Total nighttime gas concentration of known species in the lunar atmosphere is 200,000 molecules/cu cm.

  19. The stellar atmosphere simulation code Bifrost

    CERN Document Server

    Gudiksen, Boris V; Hansteen, Viggo H; Hayek, Wolfgang; Leenaarts, Jorrit; Martínez-Sykora, Juan

    2011-01-01

    Context: Numerical simulations of stellar convection and photospheres have been developed to the point where detailed shapes of observed spectral lines can be explained. Stellar atmospheres are very complex, and very different physical regimes are present in the convection zone, photosphere, chromosphere, transition region and corona. To understand the details of the atmosphere it is necessary to simulate the whole atmosphere since the different layers interact strongly. These physical regimes are very diverse and it takes a highly efficient massively parallel numerical code to solve the associated equations. Aims: The design, implementation and validation of the massively parallel numerical code Bifrost for simulating stellar atmospheres from the convection zone to the corona. Methods: The code is subjected to a number of validation tests, among them the Sod shock tube test, the Orzag-Tang colliding shock test, boundary condition tests and tests of how the code treats magnetic field advection, chromospheric ...

  20. Formulations of moist thermodynamics for atmospheric modelling

    CERN Document Server

    Marquet, Pascal

    2015-01-01

    Internal energy, enthalpy and entropy are the key quantities to study thermodynamic properties of the moist atmosphere, because they correspond to the First (internal energy and enthalpy) and Second (entropy) Laws of thermodynamics. The aim of this chapter is to search for analytical formulas for the specific values of enthalpy and entropy and for the moist-air mixture composing the atmosphere. The Third Law of thermodynamics leads to the definition of absolute reference values for thermal enthalpies and entropies of all atmospheric species. It is shown in this Chapter 22 that it is possible to define and compute a general moist-air entropy potential temperature, which is really an equivalent of the moist-air specific entropy in all circumstances (saturated, or not saturated). Similarly, it is shown that it is possible to define and compute the moist-air specific enthalpy, which is different from the thermal part of what is called Moist-Static-Energy in atmospheric studies.

  1. Atmospheric neutrinos and discovery of neutrino oscillations.

    Science.gov (United States)

    Kajita, Takaaki

    2010-01-01

    Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations.

  2. Atmosphere of Mars - Mariner IV models compared.

    Science.gov (United States)

    Eshleman, V. R.; Fjeldbo, G.; Fjeldbo, W. C.

    1966-01-01

    Mariner IV models of three Mars atmospheric layers analogous to terrestrial E, F-1 and F-2 layers, considering relative mass densities, temperatures, carbon dioxide photodissociation and ionization profile

  3. Fundamentals of Atmospheric Physics for Engineering

    CERN Document Server

    Cionco, Rodolfo G

    2012-01-01

    We present the proposal of an elective for engineering courses, designed to train professionals with a solid foundation in Physics of the Atmosphere interested in environmental and sustainability issues broadly. We propose four chapters that contain a variety of topics but strongly interrelated, which correspond to three main areas: nature of the atmosphere and meteorology relevant to contaminant transport, the dispersion of air pollutants and climate in general. We conclude that it is possible train engineers who understand the basic mechanisms that led to the current atmosphere, atmospheric processes related to local and global climate, the dispersion of air pollutants and key concepts such as solar activity, climatic change and climatic variability, even in one semester. It also discusses the relationship with other subjects and proposes and illustrates a method of course approval based on the performance of work directly applicable to engineering problems.

  4. Methane present in an extrasolar planet atmosphere

    CERN Document Server

    Swain, Mark R; Tinetti, Giovanna

    2008-01-01

    Molecules present in exoplanetary atmospheres are expected to strongly influence the atmospheric radiation balance, trace dynamical and chemical processes, and indicate the presence of disequilibrium effects. Since molecules have the potential to reveal the exoplanet atmospheric conditions and chemistry, searching for them is a high priority. The rotational-vibrational transition bands of water, carbon monoxide, and methane are anticipated to be the primary sources of non-continuum opacity in hot-Jovian planets. Since these bands overlap in wavelength, and the corresponding signatures from them are weak, decisive identification requires precision infrared spectroscopy. Here we report on a near-infrared transmission spectrum of the planet HD 189733b showing the presence of methane. Additionally, a resolved water-vapour band at 1.9 microns confirms the recent claim of water in this object. On thermochemical grounds, carbon-monoxide is expected to be abundant in the upper atmosphere of hot-Jovian exoplanets; thu...

  5. Chemistry of Planetary Atmospheres: Insights and Prospects

    Science.gov (United States)

    Yung, Yuk

    2015-11-01

    Using observations from the Mariners, Pioneers, Vikings, Voyagers, Pioneer Venus, Galileo, Venus Express, Curiosity, Cassini, New Horizons, and numerous observatories both in orbit of Earth and on the ground, I will give a survey of the major chemical processes that control the composition of planetary atmospheres. For the first time since the beginning of the space age, we understand the chemistry of planetary atmospheres ranging from the primitive atmospheres of the giant planets to the highly evolved atmospheres of terrestrial planets and small bodies. Our understanding can be distilled into three important ideas: (1) The stability of planetary atmospheres against escape of their constituents to space, (2) the role of equilibrium chemistry in determining the partitioning of chemical species, and (3) the role of disequilibrium chemistry, which produces drastic departures from equilibrium chemistry. To these three ideas we must also add a fourth: the role of biochemistry at Earth's surface, which makes its atmospheric chemistry unique in the cosmochemical environment. Only in the Earth's atmosphere do strong reducing and oxidizing species coexist to such a degree. For example, nitrogen species in the Earth's atmosphere span eight oxidation states from ammonia to nitric acid. Much of the Earth's atmospheric chemistry consists of reactions initiated by the degradation of biologically produced molecules. Life uses solar energy to drive chemical reactions that would otherwise not occur; it represents a kind of photochemistry that is special to Earth, at least within the Solar System. It remains to be seen how many worlds like Earth there are beyond the Solar System, especially as we are now exploring the exoplanets using Kepler, TESS, HST, Spitzer, soon to be launched missions such as JWST and WFIRST, and ground-based telescopes. The atmospheres of the Solar System provide a benchmark for studying exoplanets, which in turn serve to test and extend our current

  6. Atomic hydrogen distribution. [in Titan atmospheric model

    Science.gov (United States)

    Tabarie, N.

    1974-01-01

    Several possible H2 vertical distributions in Titan's atmosphere are considered with the constraint of 5 km-A a total quantity. Approximative calculations show that hydrogen distribution is quite sensitive to two other parameters of Titan's atmosphere: the temperature and the presence of other constituents. The escape fluxes of H and H2 are also estimated as well as the consequent distributions trapped in the Saturnian system.

  7. The atmospheric electric global circuit. [thunderstorm activity

    Science.gov (United States)

    Kasemir, H. W.

    1979-01-01

    The hypothesis that world thunderstorm activity represents the generator for the atmospheric electric current flow in the earth atmosphere between ground and the ionosphere is based on a close correlation between the magnitude and the diurnal variation of the supply current (thunderstorm generator current) and the load current (fair weather air-earth current density integrated over the earth surface). The advantages of using lightning survey satellites to furnish a base for accepting or rejecting the thunderstorm generator hypothesis are discussed.

  8. Atmospheric plasma processes for environmental applications

    OpenAIRE

    Shapoval, Volodymyr

    2012-01-01

    Plasma chemistry is a rapidly growing field which covers applications ranging from technological processing of materials, including biological tissues, to environmental remediation and energy production. The so called atmospheric plasma, produced by electric corona or dielectric barrier discharges in a gas at atmospheric pressure, is particularly attractive for the low costs and ease of operation and maintenance involved. The high concentrations of energetic and chemically active species (e.g...

  9. Photochemical processing of aqueous atmospheric brown carbon

    Directory of Open Access Journals (Sweden)

    R. Zhao

    2015-01-01

    Full Text Available Atmospheric Brown Carbon (BrC is a collective term for light absorbing organic compounds in the atmosphere. While the identification of BrC and its formation mechanisms is currently a central effort in the community, little is known about the atmospheric removal processes of aerosol BrC. As a result, we report a series of laboratory studies of photochemical processing of BrC in the aqueous phase, by direct photolysis and OH oxidation. Solutions of ammonium sulfate mixed with glyoxal (GLYAS or methylglyoxal (MGAS are used as surrogates for a class of secondary BrC mediated by imine intermediates. Three nitrophenol species, namely 4-nitrophenol, 5-nitroguaiacol and 4-nitrocatechol, were investigated as a class of water soluble BrC originating from biomass burning. Photochemical processing induced significant changes in the absorptive properties of BrC. The imine-mediated BrC solutions exhibited rapid photo-bleaching with both direct photolysis and OH oxidation, with atmospheric half-lives of minutes to a few hours. The nitrophenol species exhibited photo-enhancement in the visible range during direct photolysis and the onset of OH oxidation, but rapid photo-bleaching was induced by further OH exposure on an atmospheric timescale of an hour or less. To illustrate atmospheric relevance of this work, we also performed direct photolysis experiments on water soluble organic carbon extracted from biofuel combustion samples and observed rapid changes in optical properties of these samples as well. Overall, these experiments indicate that atmospheric models need to incorporate representations of atmospheric processing of BrC species to accurately model their radiative impacts.

  10. Photochemical processing of aqueous atmospheric brown carbon

    Directory of Open Access Journals (Sweden)

    R. Zhao

    2015-06-01

    Full Text Available Atmospheric brown carbon (BrC is a collective term for light absorbing organic compounds in the atmosphere. While the identification of BrC and its formation mechanisms is currently a central effort in the community, little is known about the atmospheric removal processes of aerosol BrC. As a result, we report on a series of laboratory studies of photochemical processing of BrC in the aqueous phase, by direct photolysis and OH oxidation. Solutions of ammonium sulfate mixed with glyoxal (GLYAS or methylglyoxal (MGAS are used as surrogates for a class of secondary BrC mediated by imine intermediates. Three nitrophenol species, namely 4-nitrophenol, 5-nitroguaiacol and 4-nitrocatechol, were investigated as a class of water-soluble BrC originating from biomass burning. Photochemical processing induced significant changes in the absorptive properties of BrC. The imine-mediated BrC solutions exhibited rapid photo-bleaching with both direct photolysis and OH oxidation, with atmospheric half-lives of minutes to a few hours. The nitrophenol species exhibited photo-enhancement in the visible range during direct photolysis and the onset of OH oxidation, but rapid photo-bleaching was induced by further OH exposure on an atmospheric timescale of an hour or less. To illustrate the atmospheric relevance of this work, we also performed direct photolysis experiments on water-soluble organic carbon extracted from biofuel combustion samples and observed rapid changes in the optical properties of these samples as well. Overall, these experiments indicate that atmospheric models need to incorporate representations of atmospheric processing of BrC species to accurately model their radiative impacts.

  11. Photochemical processing of aqueous atmospheric brown carbon

    Science.gov (United States)

    Zhao, R.; Lee, A. K. Y.; Huang, L.; Li, X.; Yang, F.; Abbatt, J. P. D.

    2015-06-01

    Atmospheric brown carbon (BrC) is a collective term for light absorbing organic compounds in the atmosphere. While the identification of BrC and its formation mechanisms is currently a central effort in the community, little is known about the atmospheric removal processes of aerosol BrC. As a result, we report on a series of laboratory studies of photochemical processing of BrC in the aqueous phase, by direct photolysis and OH oxidation. Solutions of ammonium sulfate mixed with glyoxal (GLYAS) or methylglyoxal (MGAS) are used as surrogates for a class of secondary BrC mediated by imine intermediates. Three nitrophenol species, namely 4-nitrophenol, 5-nitroguaiacol and 4-nitrocatechol, were investigated as a class of water-soluble BrC originating from biomass burning. Photochemical processing induced significant changes in the absorptive properties of BrC. The imine-mediated BrC solutions exhibited rapid photo-bleaching with both direct photolysis and OH oxidation, with atmospheric half-lives of minutes to a few hours. The nitrophenol species exhibited photo-enhancement in the visible range during direct photolysis and the onset of OH oxidation, but rapid photo-bleaching was induced by further OH exposure on an atmospheric timescale of an hour or less. To illustrate the atmospheric relevance of this work, we also performed direct photolysis experiments on water-soluble organic carbon extracted from biofuel combustion samples and observed rapid changes in the optical properties of these samples as well. Overall, these experiments indicate that atmospheric models need to incorporate representations of atmospheric processing of BrC species to accurately model their radiative impacts.

  12. Greenhouse effect due to atmospheric nitrous oxide

    Science.gov (United States)

    Yung, Y. L.; Wang, W. C.; Lacis, A. A.

    1976-01-01

    The greenhouse effect due to nitrous oxide in the present atmosphere is about 0.8 K. Increase in atmospheric N2O due to perturbation of the nitrogen cycle by man may lead to an increase in surface temperature as large as 0.5 K by 2025, or 1.0 K by 2100. Other climatic effects of N2O are briefly discussed.

  13. Atmospheric Hydrogen Scavenging: from Enzymes to Ecosystems

    OpenAIRE

    2014-01-01

    We have known for 40 years that soils can consume the trace amounts of molecular hydrogen (H2) found in the Earth's atmosphere. This process is predicted to be the most significant term in the global hydrogen cycle. However, the organisms and enzymes responsible for this process were only recently identified. Pure culture experiments demonstrated that several species of Actinobacteria, including streptomycetes and mycobacteria, can couple the oxidation of atmospheric H2 to the reduction of am...

  14. Effect of Atmospheric Conditions on LIBS Spectra

    Directory of Open Access Journals (Sweden)

    Andrew J. Effenberger

    2010-05-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS is typically performed at ambient Earth atmospheric conditions. However, interest in LIBS in other atmospheric conditions has increased in recent years, especially for use in space exploration (e.g., Mars and Lunar or to improve resolution for isotopic signatures. This review focuses on what has been reported about the performance of LIBS in reduced pressure environments as well as in various gases other than air.

  15. Controlled atmosphere bench-scale calorimetry revisited

    OpenAIRE

    Brohez, Sylvain; Fourneau, C.; Marlair, Guy; Breulet, Hervé

    2007-01-01

    International audience; The standard Cone Calorimeter has been designed with an "open configuration", allowing for testing of specimens through use of freely driven room air for combustion. For testing specimens in oxygen depleted atmospheres or in fuel rich combustion a modified apparatus working under controlled atmosphere can be used. To our Knowledge there is very few publications describing the use of such modified cone calorimeters and providing data regarding the effect of ventilation ...

  16. Atmospheric Correction for Satellite Ocean Color Radiometry

    Science.gov (United States)

    Mobley, Curtis D.; Werdell, Jeremy; Franz, Bryan; Ahmad, Ziauddin; Bailey, Sean

    2016-01-01

    This tutorial is an introduction to atmospheric correction in general and also documentation of the atmospheric correction algorithms currently implemented by the NASA Ocean Biology Processing Group (OBPG) for processing ocean color data from satellite-borne sensors such as MODIS and VIIRS. The intended audience is graduate students or others who are encountering this topic for the first time. The tutorial is in two parts. Part I discusses the generic atmospheric correction problem. The magnitude and nature of the problem are first illustrated with numerical results generated by a coupled ocean-atmosphere radiative transfer model. That code allow the various contributions (Rayleigh and aerosol path radiance, surface reflectance, water-leaving radiance, etc.) to the topof- the-atmosphere (TOA) radiance to be separated out. Particular attention is then paid to the definition, calculation, and interpretation of the so-called "exact normalized water-leaving radiance" and its equivalent reflectance. Part I ends with chapters on the calculation of direct and diffuse atmospheric transmittances, and on how vicarious calibration is performed. Part II then describes one by one the particular algorithms currently used by the OBPG to effect the various steps of the atmospheric correction process, viz. the corrections for absorption and scattering by gases and aerosols, Sun and sky reflectance by the sea surface and whitecaps, and finally corrections for sensor out-of-band response and polarization effects. One goal of the tutorial-guided by teaching needs- is to distill the results of dozens of papers published over several decades of research in atmospheric correction for ocean color remote sensing.

  17. Spectral Characteristics of Atmospheric Turbulence Model

    Institute of Scientific and Technical Information of China (English)

    GuojunXINShida; LIUShikouLIU; 等

    1996-01-01

    In this paper,KdV-Burgers equation can be regarded as the normal equation of atmospheric turbulence in the stable boundary layer.On the basis of the travelling wave analytic solution of KdV-Burgers equation,the turbulent spectrum is obtained.We observe that the behavior of the spectra is consistent with actual turbulent spectra of stable atmospheric boundary layer.

  18. 1997 Atmospheric Chemistry Colloquium for Emerging Senior Scientists

    Energy Technology Data Exchange (ETDEWEB)

    Paul H. Wine

    1998-11-23

    DOE's Atmospheric Chemistry Program is providing partial funding for the Atmospheric Chemistry Colloquium for Emerging Senior Scientists (ACCESS) and FY 1997 Gordon Research Conference in Atmospheric Chemistry

  19. Seasonal Evolution of Titan's Atmospheric Polar Vortices

    Science.gov (United States)

    Teanby, Nicholas A.; Irwin, P. G.; Nixon, C. A.; de Kok, R.; Vinatier, S.; Coustenis, A.; Sefton-Nash, E.; Calcutt, S. B.; Flasar, F. M.

    2013-10-01

    Titan is the largest satellite of Saturn and is the only moon in our solar system to have a significant atmosphere. Titan's middle-atmosphere circulation usually comprises a single hemisphere-to-hemisphere meridional circulation cell, with upwelling air in the summer hemisphere and subsiding air at the winter pole with an associated winter polar vortex. Titan has an axial tilt (obliquity) of 26.7degrees, so during its 29.5 Earth year annual cycle pronounced seasonal effects are expected as the relative solar insolation in each hemisphere changes. The most dramatic of these changes is predicted to be the reversal in global meridional circulation as the peak solar heating switches hemispheres after an equinox. Since northern spring equinox in mid-2009, Titan's atmosphere has demonstrated dramatic changes in temperature, composition, and aerosol distribution. These changes indicate major changes to the atmospheric circulation pattern have indeed occurred. Here we use nine years of Cassini/CIRS infrared spectra to determine the temperature and composition evolution of the atmosphere through northern-fall to northern-spring. Particularly dramatic changes are observed at the poles, where a new south polar hot-spot/vortex has been forming. The north polar vortex also appears to be weakening throughout this period. Furthermore, the meridional circulation reversal, predicted by numerical models, occurred a mere six months after equinox, showing that despite Titan's long annual cycle, rapid changes are possible. This gives us new insight into vortex formation processes and atmospheric dynamics.

  20. Marine atmospheric corrosion of carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Morcillo, M.; Alcantara, J.; Diaz, I.; Chico, B.; Simancas, J.; Fuente, D. de la

    2015-07-01

    Basic research on marine atmospheric corrosion of carbon steels is a relatively young scientific field and there continue to be great gaps in this area of knowledge. The presence of akaganeite in the corrosion products that form on steel when it is exposed to marine atmospheres leads to a notable increase in the corrosion rate. This work addresses the following issues: (a) environmental conditions necessary for akaganeite formation; (b) characterisation of akaganeite in the corrosion products formed; (c) corrosion mechanisms of carbon steel in marine atmospheres; (d) exfoliation of rust layers formed in highly aggressive marine atmospheres; (e) long-term corrosion rate prediction; and (f) behaviour of weathering steels. Field research has been carried out at Cabo Vilano wind farm (Camarinas, Galicia) in a wide range of atmospheric salinities and laboratory work involving the use of conventional atmospheric corrosion techniques and near-surface and bulk sensitive analytical techniques: scanning electron microscopy (SEM)/energy dispersive spectrometry (EDS), X-ray diffraction (XRD), Mossbauer spectroscopy and SEM/μRaman spectroscopy. (Author)

  1. Tests of Exoplanet Atmospheric Radiative Transfer Codes

    Science.gov (United States)

    Harrington, Joseph; Challener, Ryan; DeLarme, Emerson; Cubillos, Patricio; Blecic, Jasmina; Foster, Austin; Garland, Justin

    2016-10-01

    Atmospheric radiative transfer codes are used both to predict planetary spectra and in retrieval algorithms to interpret data. Observational plans, theoretical models, and scientific results thus depend on the correctness of these calculations. Yet, the calculations are complex and the codes implementing them are often written without modern software-verification techniques. In the process of writing our own code, we became aware of several others with artifacts of unknown origin and even outright errors in their spectra. We present a series of tests to verify atmospheric radiative-transfer codes. These include: simple, single-line line lists that, when combined with delta-function abundance profiles, should produce a broadened line that can be verified easily; isothermal atmospheres that should produce analytically-verifiable blackbody spectra at the input temperatures; and model atmospheres with a range of complexities that can be compared to the output of other codes. We apply the tests to our own code, Bayesian Atmospheric Radiative Transfer (BART) and to several other codes. The test suite is open-source software. We propose this test suite as a standard for verifying current and future radiative transfer codes, analogous to the Held-Suarez test for general circulation models. This work was supported by NASA Planetary Atmospheres grant NX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.

  2. Atmospheric Neutrinos in the MINOS Far Detector

    Energy Technology Data Exchange (ETDEWEB)

    Howcroft, Caius L.F.

    2004-12-01

    The phenomenon of flavour oscillations of neutrinos created in the atmosphere was first reported by the Super-Kamiokande collaboration in 1998 and since then has been confirmed by Soudan 2 and MACRO. The MINOS Far Detector is the first magnetized neutrino detector able to study atmospheric neutrino oscillations. Although it was designed to detect neutrinos from the NuMI beam, it provides a unique opportunity to measure the oscillation parameters for neutrinos and anti-neutrinos independently. The MINOS Far Detector was completed in August 2003 and since then has collected 2.52 kton-years of atmospheric data. Atmospheric neutrino interactions contained within the volume of the detector are separated from the dominant background from cosmic ray muons. Thirty seven events are selected with an estimated background contamination of less than 10%. Using the detector's magnetic field, 17 neutrino events and 6 anti-neutrino events are identified, 14 events have ambiguous charge. The neutrino oscillation parameters for {nu}{sub {mu}} and {bar {nu}}{sub {mu}} are studied using a maximum likelihood analysis. The measurement does not place constraining limits on the neutrino oscillation parameters due to the limited statistics of the data set analysed. However, this thesis represents the first observation of charge separated atmospheric neutrino interactions. It also details the techniques developed to perform atmospheric neutrino analyses in the MINOS Far Detector.

  3. Worldwide trend of atmospheric mercury since 1995

    Directory of Open Access Journals (Sweden)

    F. Slemr

    2011-01-01

    Full Text Available Concern about the adverse effects of mercury on human health and ecosystems has led to tightening emission controls since the mid 1980s. But the resulting mercury emissions reductions in many parts of the world are believed to be offset or even surpassed by the increasing emissions in rapidly industrializing countries. Consequently, concentrations of atmospheric mercury are expected to remain roughly constant. Here we show that the worldwide atmospheric mercury concentration have decreased by about 20 to 38% since 1996 as indicated by long term monitoring at stations in the Southern and Northern Hemispheres combined with intermittent measurements of latitudinal distribution over the Atlantic Ocean. The total reduction of the atmospheric mercury burden of this magnitude within 14 yrs is unprecedented among most of atmospheric trace gases and is at odds with the current mercury emission inventories with nearly constant emissions over the period. It suggests a major shift in the biogeochemical cycle of mercury including oceans and soil reservoirs. Decreasing reemissions from the legacy of historical mercury emissions are the most likely explanation for this decline since the hypothesis of an accelerated oxidation rate of elemental mercury in the atmosphere is not supported by the observed trends of other trace gases. Consequently, models of the atmospheric mercury cycle have to include soil and ocean mercury pools and their dynamics to be able to make projections of future trends.

  4. Galilean Satellite Atmospheres and Aurora in Eclipse

    Science.gov (United States)

    Retherford, Kurt

    Io, Europa, and Ganymede all demonstrate unique displays of auroral and atmospheric emis-sions, and all three routinely pass into Jupiter's shadow. Callisto on the other hand very rarely passes into eclipse by Jupiter, and no auroral emissions have been detected there to date. In eclipse, Io's dayside surface temperature is known to rapidly drop from 120 K to 90 K, which is sufficient to diminish the sublimation component of the atmosphere across most of the surface and possibly results in an atmosphere mostly made directly from volcanos. While surface sputtering by magnetospheric particles is likely the primary source of the icy satel-lite atmospheres for Ganymede and Europa, little observational evidence is available regarding the relative contribution of the smaller sublimation components and potential changes in icy surface temperatures near the sub-solar point in eclipse. Eclipse observations of auroral emis-sions generally have the ability to correlate changes in the atmosphere with changes in surface temperature and/or photochemistry. They also offer the practical advantage of little or no confusion from reflected sunlight. We will review the present auroral observations available for investigating the behavior of Galilean satellite atmospheres in eclipse.

  5. Atmospheric Neutrinos in the MINOS Far Detector

    Energy Technology Data Exchange (ETDEWEB)

    Howcroft, Caius Leo Frederick [Univ. of Cambridge (United Kingdom)

    2004-12-01

    The phenomenon of flavour oscillations of neutrinos created in the atmosphere was first reported by the Super-Kamiokande collaboration in 1998 and since then has been confirmed by Soudan 2 and MACRO. The MINOS Far Detector is the first magnetized neutrino detector able to study atmospheric neutrino oscillations. Although it was designed to detect neutrinos from the NuMI beam, it provides a unique opportunity to measure the oscillation parameters for neutrinos and anti-neutrinos independently. The MINOS Far Detector was completed in August 2003 and since then has collected 2.52 kton-years of atmospheric data. Atmospheric neutrino interactions contained within the volume of the detector are separated from the dominant background from cosmic ray muons. Thirty seven events are selected with an estimated background contamination of less than 10%. Using the detector's magnetic field, 17 neutrino events and 6 anti-neutrino events are identified, 14 events have ambiguous charge. The neutrino oscillation parameters for vμ and $\\bar{v}$μ are studied using a maximum likelihood analysis. The measurement does not place constraining limits on the neutrino oscillation parameters due to the limited statistics of the data set analysed. However, this thesis represents the first observation of charge separated atmospheric neutrino interactions. It also details the techniques developed to perform atmospheric neutrino analyses in the MINOS Far Detector.

  6. MAVEN Observations of Atmospheric Loss at Mars

    Science.gov (United States)

    Curry, Shannon; Luhmann, Janet; Jakosky, Bruce M.; Brain, David; LeBlanc, Francis; Modolo, Ronan; Halekas, Jasper S.; Schneider, Nicholas M.; Deighan, Justin; McFadden, James; Espley, Jared R.; Mitchell, David L.; Connerney, J. E. P.; Dong, Yaxue; Dong, Chuanfei; Ma, Yingjuan; Cohen, Ofer; Fränz, Markus; Holmström, Mats; Ramstad, Robin; Hara, Takuya; Lillis, Robert J.

    2016-06-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission has been making observations of the Martian upper atmosphere and its escape to space since November 2014. The subject of atmospheric loss at terrestrial planets is a subject of intense interest not only because of the implications for past and present water reservoirs, but also for its impacts on the habitability of a planet. Atmospheric escape may have been especially effective at Mars, relative to Earth or Venus, due to its smaller size as well as the lack of a global dynamo magnetic field. Not only is the atmosphere less gravitationally bound, but also the lack of global magnetic field allows the impinging solar wind to interact directly with the Martian atmosphere. When the upper atmosphere is exposed to the solar wind, planetary neutrals can be ionized and 'picked up' by the solar wind and swept away.Both neutral and ion escape have played significant roles the long term climate change of Mars, and the MAVEN mission was designed to directly measure both escaping planetary neutrals and ions with high energy, mass, and time resolution. We will present 1.5 years of observations of atmospheric loss at Mars over a variety of solar and solar wind conditions, including extreme space weather events. We will report the average ion escape rate and the spatial distribution of escaping ions as measured by MAVEN and place them in context both with previous measurements of ion loss by other spacecraft (e.g. Phobos 2 and Mars Express) and with estimates of neutral escape rates by MAVEN. We will then report on the measured variability in ion escape rates with different drivers (e.g. solar EUV, solar wind pressure, etc.) and the implications for the total ion escape from Mars over time. Additionally, we will also discuss the implications for atmospheric escape at exoplanets, particularly weakly magnetized planetary bodies orbiting M-dwarfs, and the dominant escape mechanisms that may drive atmospheric erosion in other

  7. Coupling approaches used in atmospheric entry models

    Science.gov (United States)

    Gritsevich, M. I.

    2012-09-01

    While a planet orbits the Sun, it is subject to impact by smaller objects, ranging from tiny dust particles and space debris to much larger asteroids and comets. Such collisions have taken place frequently over geological time and played an important role in the evolution of planets and the development of life on the Earth. Though the search for near-Earth objects addresses one of the main points of the Asteroid and Comet Hazard, one should not underestimate the useful information to be gleaned from smaller atmospheric encounters, known as meteors or fireballs. Not only do these events help determine the linkages between meteorites and their parent bodies; due to their relative regularity they provide a good statistical basis for analysis. For successful cases with found meteorites, the detailed atmospheric path record is an excellent tool to test and improve existing entry models assuring the robustness of their implementation. There are many more important scientific questions meteoroids help us to answer, among them: Where do these objects come from, what are their origins, physical properties and chemical composition? What are the shapes and bulk densities of the space objects which fully ablate in an atmosphere and do not reach the planetary surface? Which values are directly measured and which are initially assumed as input to various models? How to couple both fragmentation and ablation effects in the model, taking real size distribution of fragments into account? How to specify and speed up the recovery of a recently fallen meteorites, not letting weathering to affect samples too much? How big is the pre-atmospheric projectile to terminal body ratio in terms of their mass/volume? Which exact parameters beside initial mass define this ratio? More generally, how entering object affects Earth's atmosphere and (if applicable) Earth's surface? How to predict these impact consequences based on atmospheric trajectory data? How to describe atmospheric entry

  8. CHARACTERIZING TRANSITING EXOPLANET ATMOSPHERES WITH JWST

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Thomas P. [NASA Ames Research Center, Space Science and Astrobiology Division, M.S. 245-6, Moffett Field, CA 94035 (United States); Line, Michael R.; Montero, Cezar; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lustig-Yaeger, Jacob [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Luther, Kyle, E-mail: tom.greene@nasa.gov [Department of Physics, University of California, 366 LeConte Hall MC 7300, Berkeley, CA 94720 (United States)

    2016-01-20

    We explore how well spectra from the James Webb Space Telescope (JWST) will likely constrain bulk atmospheric properties of transiting exoplanets. We start by modeling the atmospheres of archetypal hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-Earth planets with atmospheres that are clear, cloudy, or of high mean molecular weight (HMMW). Next we simulate the λ = 1–11 μm transmission and emission spectra of these systems for several JWST instrument modes for single-transit or single-eclipse events. We then perform retrievals to determine how well temperatures and molecular mixing ratios (CH{sub 4}, CO, CO{sub 2}, H{sub 2}O, NH{sub 3}) can be constrained. We find that λ = 1–2.5 μm transmission spectra will often constrain the major molecular constituents of clear solar-composition atmospheres well. Cloudy or HMMW atmospheres will often require full 1–11 μm spectra for good constraints, and emission data may be more useful in cases of sufficiently high F{sub p} and high F{sub p}/F{sub *}. Strong temperature inversions in the solar-composition hot-Jupiter atmosphere should be detectable with 1–2.5+ μm emission spectra, and 1–5+ μm emission spectra will constrain the temperature–pressure profiles of warm planets. Transmission spectra over 1–5+ μm will constrain [Fe/H] values to better than 0.5 dex for the clear atmospheres of the hot and warm planets studied. Carbon-to-oxygen ratios can be constrained to better than a factor of 2 in some systems. We expect that these results will provide useful predictions of the scientific value of single-event JWST spectra until its on-orbit performance is known.

  9. The early atmosphere: a new picture.

    Science.gov (United States)

    Levine, J S

    1986-01-01

    Over the last several years, many of the fundamental ideas concerning the composition and chemical evolution of the Earth's early atmosphere have changed. While many aspects of this subject are clouded--either uncertain or unknown, a new picture is emerging. We are just beginning to understand how astronomical, geochemical, and atmospheric processes each contributed to the development of the gaseous envelope around the third planet from the sun some 4.6 billion years ago and how that envelope chemically evolved over the history of our planet. Simple compounds in that gaseous envelope, energized by atmospheric lightning and/or solar ultraviolet radiation, formed molecules of increasing complexity that eventually evolved into the first living systems on our planet. This process is called "chemical evolution" and immediately preceded biological evolution; once life developed and evolved, it began to alter the chemical composition of the atmosphere that provided the very essence of its creation. Photosynthetic organisms which have the ability to biochemically transform carbon dioxide and water to carbohydrates, which they use for food, produce large amounts of molecular oxygen (O2) as a by-product of the reaction. Atmospheric oxygen photochemically formed ozone, which absorbs ultraviolet radiation from the sun and shields the Earth's surface from this biologically lethal radiation. Once atmospheric ozone levels increased sufficiently, life could leave the safety of the oceans and go ashore for the first time. Throughout the history of our planet, there has been strong interaction between life and the atmosphere. Understanding our cosmic roots is particularly relevant as we embark on a search for life outside the Earth. At this very moment, several radio telescopes around the world are searching for extraterrestrial intelligence (SETI).

  10. Regularization for Atmospheric Temperature Retrieval Problems

    Science.gov (United States)

    Velez-Reyes, Miguel; Galarza-Galarza, Ruben

    1997-01-01

    Passive remote sensing of the atmosphere is used to determine the atmospheric state. A radiometer measures microwave emissions from earth's atmosphere and surface. The radiance measured by the radiometer is proportional to the brightness temperature. This brightness temperature can be used to estimate atmospheric parameters such as temperature and water vapor content. These quantities are of primary importance for different applications in meteorology, oceanography, and geophysical sciences. Depending on the range in the electromagnetic spectrum being measured by the radiometer and the atmospheric quantities to be estimated, the retrieval or inverse problem of determining atmospheric parameters from brightness temperature might be linear or nonlinear. In most applications, the retrieval problem requires the inversion of a Fredholm integral equation of the first kind making this an ill-posed problem. The numerical solution of the retrieval problem requires the transformation of the continuous problem into a discrete problem. The ill-posedness of the continuous problem translates into ill-conditioning or ill-posedness of the discrete problem. Regularization methods are used to convert the ill-posed problem into a well-posed one. In this paper, we present some results of our work in applying different regularization techniques to atmospheric temperature retrievals using brightness temperatures measured with the SSM/T-1 sensor. Simulation results are presented which show the potential of these techniques to improve temperature retrievals. In particular, no statistical assumptions are needed and the algorithms were capable of correctly estimating the temperature profile corner at the tropopause independent of the initial guess.

  11. Sub-photosphere to Solar Atmosphere Connection

    Science.gov (United States)

    Komm, Rudolf; De Moortel, Ineke; Fan, Yuhong; Ilonidis, Stathis; Steiner, Oskar

    2015-12-01

    Magnetic fields extend from the solar interior through the atmosphere. The formation and evolution of active regions can be studied by measuring subsurface flows with local helioseismology. The emergence of magnetic flux from the solar convection zone is associated with acoustic perturbation signatures. In near-surface layers, the average dynamics can be determined for emerging regions. MHD simulations of the emergence of a twisted flux tube show how magnetic twist and free energy are transported from the interior into the corona and the dynamic signatures associated with such transport in the photospheric and sub-photospheric layers. The subsurface twisted flux tube does not emerge into the corona as a whole in emerging active regions. Shear flows at the polarity inversion line and coherent vortical motions in the subsurface flux tubes are the major means by which twist is transported into the corona, leading to the formation of sigmoid-shaped coronal magnetic fields capable of driving solar eruptions. The transport of twist can be followed from the interior by using the kinetic helicity of subsurface flows as a proxy of magnetic helicity; this quantity holds great promise for improving the understanding of eruptive phenomena. Waves are not only vital for studying the link between the solar interior and the surface but for linking the photosphere with the corona as well. Acoustic waves that propagate from the surface into the magnetically structured, dynamic atmosphere undergo mode conversion and refraction. These effects enable atmospheric seismology to determine the topography of magnetic canopies in the solar atmosphere. Inclined magnetic fields lower the cut-off frequency so that low frequency waves can leak into the outer atmosphere. Recent high resolution, high cadence observations of waves and oscillations in the solar atmosphere, have lead to a renewed interest in the potential role of waves as a heating mechanism. In light of their potential contribution

  12. Atmospheric Composition Change: Climate-Chemistry Interactions

    Science.gov (United States)

    Isaksen, I.S.A.; Granier, C.; Myhre, G.; Bernsten, T. K.; Dalsoren, S. B.; Gauss, S.; Klimont, Z.; Benestad, R.; Bousquet, P.; Collins, W.; Cox, T.; Eyring, V.; Fowler, D.; Fuzzi, S.; Jockel, P.; Laj, P.; Lohmann, U.; Maione, M.; Monks, T.; Prevot, A. S. H.; Raes, F.; Richter, A.; Rognerud, B.; Schulz, M.; Shindell, D.; Stevenson, D. S.; Storelvmo, T.; Wang, W.-C.; vanWeele, M.; Wild, M.; Wuebbles, D.

    2011-01-01

    Chemically active climate compounds are either primary compounds such as methane (CH4), removed by oxidation in the atmosphere, or secondary compounds such as ozone (O3), sulfate and organic aerosols, formed and removed in the atmosphere. Man-induced climate-chemistry interaction is a two-way process: Emissions of pollutants change the atmospheric composition contributing to climate change through the aforementioned climate components, and climate change, through changes in temperature, dynamics, the hydrological cycle, atmospheric stability, and biosphere-atmosphere interactions, affects the atmospheric composition and oxidation processes in the troposphere. Here we present progress in our understanding of processes of importance for climate-chemistry interactions, and their contributions to changes in atmospheric composition and climate forcing. A key factor is the oxidation potential involving compounds such as O3 and the hydroxyl radical (OH). Reported studies represent both current and future changes. Reported results include new estimates of radiative forcing based on extensive model studies of chemically active climate compounds such as O3, and of particles inducing both direct and indirect effects. Through EU projects such as ACCENT, QUANTIFY, and the AEROCOM project, extensive studies on regional and sector-wise differences in the impact on atmospheric distribution are performed. Studies have shown that land-based emissions have a different effect on climate than ship and aircraft emissions, and different measures are needed to reduce the climate impact. Several areas where climate change can affect the tropospheric oxidation process and the chemical composition are identified. This can take place through enhanced stratospheric-tropospheric exchange of ozone, more frequent periods with stable conditions favouring pollution build up over industrial areas, enhanced temperature-induced biogenic emissions, methane releases from permafrost thawing, and enhanced

  13. The Mars atmosphere as seen from Curiosity

    Science.gov (United States)

    Mischna, Michael

    Study of the Mars atmosphere by the Mars Science Laboratory (MSL) has been ongoing since immediately after landing on August 6, 2012 (UTC) at the bottom of Gale Crater. The MSL Rover Environmental Monitoring Station (REMS) has been the primary payload for atmospheric monitoring, while additional observations from the ChemCam, Mastcam, Navcam and Sample Analysis at Mars (SAM) instruments have augmented our understanding of the local martian environment at Gale. The REMS instrument consists of six separate sensor types, observing air and ground temperature, near-surface winds, relative humidity, surface pressure and UV radiation. The standard cadence of REMS observations consists of five-minute observations of 1 Hz frequency at the top of each hour, augmented by several one-hour “extended blocks” each sol, also at 1 Hz frequency, together yielding one of the most richly diverse and detailed samplings of the martian atmosphere. Among the intriguing atmospheric phenomena observed during the first 359 sols of the mission is a substantially greater (˜12% of the diurnal mean) diurnal pressure cycle than found in previous surface measurements by Viking at a similar season (˜3-4%), likely due to the topography of the crater environment. Measurements of air and ground temperature by REMS are seen to reflect both changes in atmospheric opacity as well as transitions in the surface geology (and surface thermal properties) along the rover’s traverse. The REMS UV sensor has provided the first measurements of ultraviolet flux at the martian surface, and identified dust events that reduce solar insolation at the surface. The REMS RH sensor has observed a seasonal change in humidity in addition to the expected diurnal variations in relative humidity; however, no surface frost has been detected through the first 360 sols of the mission. With a weekly cadence, Navcam images the local zenith for purposes of tracking cloud motion and wind direction, and likewise observes the

  14. Atmospheric Lifetime of Fossil Fuel Carbon Dioxide

    Science.gov (United States)

    Archer, David; Eby, Michael; Brovkin, Victor; Ridgwell, Andy; Cao, Long; Mikolajewicz, Uwe; Caldeira, Ken; Matsumoto, Katsumi; Munhoven, Guy; Montenegro, Alvaro; Tokos, Kathy

    2009-05-01

    CO2 released from combustion of fossil fuels equilibrates among the various carbon reservoirs of the atmosphere, the ocean, and the terrestrial biosphere on timescales of a few centuries. However, a sizeable fraction of the CO2 remains in the atmosphere, awaiting a return to the solid earth by much slower weathering processes and deposition of CaCO3. Common measures of the atmospheric lifetime of CO2, including the e-folding time scale, disregard the long tail. Its neglect in the calculation of global warming potentials leads many to underestimate the longevity of anthropogenic global warming. Here, we review the past literature on the atmospheric lifetime of fossil fuel CO2 and its impact on climate, and we present initial results from a model intercomparison project on this topic. The models agree that 20-35% of the CO2 remains in the atmosphere after equilibration with the ocean (2-20 centuries). Neutralization by CaCO3 draws the airborne fraction down further on timescales of 3 to 7 kyr.

  15. Atmospheric oxygenation three billion years ago.

    Science.gov (United States)

    Crowe, Sean A; Døssing, Lasse N; Beukes, Nicolas J; Bau, Michael; Kruger, Stephanus J; Frei, Robert; Canfield, Donald E

    2013-09-26

    It is widely assumed that atmospheric oxygen concentrations remained persistently low (less than 10(-5) times present levels) for about the first 2 billion years of Earth's history. The first long-term oxygenation of the atmosphere is thought to have taken place around 2.3 billion years ago, during the Great Oxidation Event. Geochemical indications of transient atmospheric oxygenation, however, date back to 2.6-2.7 billion years ago. Here we examine the distribution of chromium isotopes and redox-sensitive metals in the approximately 3-billion-year-old Nsuze palaeosol and in the near-contemporaneous Ijzermyn iron formation from the Pongola Supergroup, South Africa. We find extensive mobilization of redox-sensitive elements through oxidative weathering. Furthermore, using our data we compute a best minimum estimate for atmospheric oxygen concentrations at that time of 3 × 10(-4) times present levels. Overall, our findings suggest that there were appreciable levels of atmospheric oxygen about 3 billion years ago, more than 600 million years before the Great Oxidation Event and some 300-400 million years earlier than previous indications for Earth surface oxygenation.

  16. Exoplanet's Atmospheres Characteristics vs. Exoplanet's Orbital Elements

    Science.gov (United States)

    Molaverdikhani, Karan

    2009-10-01

    400 years after Galileo Galilei was detected Jovian system, we know about 400 exoplanets in other stellar systems. But we identify just about their major properties like some of orbital elements, planet's radii or density. Also, there are many scientists who interested in searching for life or habitability on these planets. They are working in different ways such as planetary formation, planetary orbital stability or immigration, HabStars, composition of atmospheres, most probable zone in sky for exoplanets detection, etc. In this research we distinct and defined some main characteristics of terrestrial planet's atmospheres with surveying on solar system's planets and matching with current theorems on atmosphere formation. On the other hand, we were modeled Mars, Venus, Titan, single Hadley Earth and virtual Venus with different tilt angel (applying Global Circulation Modeling) to finding a critical limit on Polar Vortex formation in our last research. With extension this method on hypothetical terrestrial planets in constraint mass between 0.7 to 2.5 Earth's mass on Green Belt and applying host stars from 0.5 to 1.5 Sun's mass, we found some limitations on planet's atmosphere formation and estimation values of atmosphere's main characteristics.

  17. Characterizing transiting exoplanet atmospheres with JWST

    CERN Document Server

    Greene, Thomas P; Montero, Cezar; Fortney, Jonathan J; Lustig-Yeager, Jacob; Luther, Kyle

    2015-01-01

    We explore how well James Webb Space Telescope (JWST) spectra will likely constrain bulk atmospheric properties of transiting exoplanets. We start by modeling the atmospheres of archetypal hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-Earth planets with clear, cloudy, or high mean molecular weight atmospheres. Next we simulate the $\\lambda = 1 - 11$ $\\mu$m transmission and emission spectra of these systems for several JWST instrument modes for single transit and eclipse events. We then perform retrievals to determine how well temperatures and molecular mixing ratios (CH$_4$, CO, CO$_2$, H$_2$O, NH$_3$) can be constrained. We find that $\\lambda = 1 - 2.5$ $\\mu$m transmission spectra will often constrain the major molecular constituents of clear solar composition atmospheres well. Cloudy or high mean molecular weight atmospheres will often require full $1 - 11$ $\\mu$m spectra for good constraints, and emission data may be more useful in cases of sufficiently high $F_p$ and high $F_p/F_*$. Strong t...

  18. Atmospheric visibility estimation and image contrast calibration

    Science.gov (United States)

    Hermansson, Patrik; Edstam, Klas

    2016-10-01

    A method, referred to as contrast calibration, has been developed for transforming digital color photos of outdoor scenes from the atmospheric conditions, illumination and visibility, prevailing at the time of capturing the image to a corresponding image for other atmospheric conditions. A photo captured on a hazy day can, for instance, be converted to resemble a photo of the same scene for good visibility conditions. Converting digital color images to specified lightning and transmission conditions is useful for image based assessment of signature suppression solutions. The method uses "calibration objects" which are photographed at about the same time as the scene of interest. The calibration objects, which (indirectly) provide information on visibility and lightning conditions, consist of two flat boards, painted in different grayscale colors, and a commercial, neutral gray, reference card. Atmospheric extinction coefficient and sky intensity can be determined, in three wavelength bands, from image pixel values on the calibration objects and using this information the image can be converted to other atmospheric conditions. The image is transformed in contrast and color. For illustration, contrast calibration is applied to sample images of a scene acquired at different times. It is shown that contrast calibration of the images to the same reference values of extinction coefficient and sky intensity results in images that are more alike than the original images. It is also exemplified how images can be transformed to various other atmospheric weather conditions. Limitations of the method are discussed and possibilities for further development are suggested.

  19. Models of magnetized neutron star atmospheres

    CERN Document Server

    Suleimanov, V; Werner, K

    2009-01-01

    We present a new computer code for modeling magnetized neutron star atmospheres in a wide range of magnetic fields (10^{12} - 10^{15} G) and effective temperatures (3 \\times 10^5 - 10^7 K). The atmosphere is assumed to consist either of fully ionized electron-ion plasmas or of partially ionized hydrogen. Vacuum resonance and partial mode conversion are taken into account. Any inclination of the magnetic field relative to the stellar surface is allowed. We use modern opacities of fully or partially ionized plasmas in strong magnetic fields and solve the coupled radiative transfer equations for the normal electromagnetic modes in the plasma. Using this code, we study the possibilities to explain the soft X-ray spectra of isolated neutron stars by different atmosphere models. In particular, the outgoing spectrum using the "sandwich" model (thin atmosphere with a hydrogen layer above a helium layer) is constructed. Thin partially ionized hydrogen atmospheres with vacuum polarization are shown to be able to improv...

  20. LIMITS ON QUAOAR'S ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Wesley C.; Gwyn, Stephen; Kavelaars, J. J. [Herzberg Institute of Astrophysics, 5071 W. Saanich Rd. Victoria, BCV9E 2E7 (Canada); Trujillo, Chad; Stephens, Andrew W. [Gemini Observatory, Northern Operations Center, 670 N A' ohoku Place, Hilo, HI 96720 (United States); Gimeno, German [Gemini Observatory, Southern Operations Center, c/o AURA, Casilla 603, La Serena (Chile); Brown, Michael E., E-mail: wesley.fraser@nrc.ca [California Institute of Technology, Division of Geological and Planetary Sciences, 1200 E. California Blvd., Pasadena, CA 91101 (United States)

    2013-09-10

    Here we present high cadence photometry taken by the Acquisition Camera on Gemini South, of a close passage by the {approx}540 km radius Kuiper belt object, (50000) Quaoar, of a r' = 20.2 background star. Observations before and after the event show that the apparent impact parameter of the event was 0.''019 {+-} 0.''004, corresponding to a close approach of 580 {+-} 120 km to the center of Quaoar. No signatures of occultation by either Quaoar's limb or its potential atmosphere are detectable in the relative photometry of Quaoar and the target star, which were unresolved during closest approach. From this photometry we are able to put constraints on any potential atmosphere Quaoar might have. Using a Markov chain Monte Carlo and likelihood approach, we place pressure upper limits on sublimation supported, isothermal atmospheres of pure N{sub 2}, CO, and CH{sub 4}. For N{sub 2} and CO, the upper limit surface pressures are 1 and 0.7 {mu}bar, respectively. The surface temperature required for such low sublimation pressures is {approx}33 K, much lower than Quaoar's mean temperature of {approx}44 K measured by others. We conclude that Quaoar cannot have an isothermal N{sub 2} or CO atmosphere. We cannot eliminate the possibility of a CH{sub 4} atmosphere, but place upper surface pressure and mean temperature limits of {approx}138 nbar and {approx}44 K, respectively.

  1. Atmospheric nitrogen evolution on Earth and Venus

    Science.gov (United States)

    Wordsworth, R. D.

    2016-08-01

    Nitrogen is the most common element in Earth's atmosphere and also appears to be present in significant amounts in the mantle. However, its long-term cycling between these two reservoirs remains poorly understood. Here a range of biotic and abiotic mechanisms are evaluated that could have caused nitrogen exchange between Earth's surface and interior over time. In the Archean, biological nitrogen fixation was likely strongly limited by nutrient and/or electron acceptor constraints. Abiotic fixation of dinitrogen becomes efficient in strongly reducing atmospheres, but only once temperatures exceed around 1000 K. Hence if atmospheric N2 levels really were as low as they are today 3.0-3.5 Ga, the bulk of Earth's mantle nitrogen must have been emplaced in the Hadean, most likely at a time when the surface was molten. The elevated atmospheric N content on Venus compared to Earth can be explained abiotically by a water loss redox pump mechanism, where oxygen liberated from H2O photolysis and subsequent H loss to space oxidises the mantle, causing enhanced outgassing of nitrogen. This mechanism has implications for understanding the partitioning of other Venusian volatiles and atmospheric evolution on exoplanets.

  2. Absolute density measurements in the middle atmosphere

    Directory of Open Access Journals (Sweden)

    M. Rapp

    Full Text Available In the last ten years a total of 25 sounding rockets employing ionization gauges have been launched at high latitudes ( ~ 70° N to measure total atmospheric density and its small scale fluctuations in an altitude range between 70 and 110 km. While the determination of small scale fluctuations is unambiguous, the total density analysis has been complicated in the past by aerodynamical disturbances leading to densities inside the sensor which are enhanced compared to atmospheric values. Here, we present the results of both Monte Carlo simulations and wind tunnel measurements to quantify this aerodynamical effect. The comparison of the resulting ‘ram-factor’ profiles with empirically determined density ratios of ionization gauge measurements and falling sphere measurements provides excellent agreement. This demonstrates both the need, but also the possibility, to correct aerodynamical influences on measurements from sounding rockets. We have determined a total of 20 density profiles of the mesosphere-lower-thermosphere (MLT region. Grouping these profiles according to season, a listing of mean density profiles is included in the paper. A comparison with density profiles taken from the reference atmospheres CIRA86 and MSIS90 results in differences of up to 40%. This reflects that current reference atmospheres are a significant potential error source for the determination of mixing ratios of, for example, trace gas constituents in the MLT region.

    Key words. Middle atmosphere (composition and chemistry; pressure, density, and temperature; instruments and techniques

  3. Alternative pathway for atmospheric particles growth.

    Science.gov (United States)

    Monge, Maria Eugenia; Rosenørn, Thomas; Favez, Olivier; Müller, Markus; Adler, Gabriela; Abo Riziq, Ali; Rudich, Yinon; Herrmann, Hartmut; George, Christian; D'Anna, Barbara

    2012-05-01

    Credible climate change predictions require reliable fundamental scientific knowledge of the underlying processes. Despite extensive observational data accumulated to date, atmospheric aerosols still pose key uncertainties in the understanding of Earth's radiative balance due to direct interaction with radiation and because they modify clouds' properties. Specifically, major gaps exist in the understanding of the physicochemical pathways that lead to aerosol growth in the atmosphere and to changes in their properties while in the atmosphere. Traditionally, the driving forces for particle growth are attributed to condensation of low vapor pressure species following atmospheric oxidation of volatile compounds by gaseous oxidants. The current study presents experimental evidence of an unaccounted-for new photoinduced pathway for particle growth. We show that heterogeneous reactions activated by light can lead to fast uptake of noncondensable Volatile Organic Compounds (VOCs) at the surface of particles when only traces of a photosensitizer are present in the seed aerosol. Under such conditions, size and mass increase; changes in the chemical composition of the aerosol are also observed upon exposure to volatile organic compounds such as terpenes and near-UV irradiation. Experimentally determined growth rate values match field observations, suggesting that this photochemical process can provide a new, unaccounted-for pathway for atmospheric particle growth and should be considered by models.

  4. Atmospheric excitation of the Earth's rotation rate

    Science.gov (United States)

    Merriam, J. B.

    Modern techniques for the determination of the Earth's rotation rate: long-baseline interferometry, satellite laser ranging, and lunar laser ranging, now permit the orientation of the Earth to be determined with an accuracy of 5 cm, which corresponds to about 10-4 sec in Universal Time. This nearly order-of-magnitude improvement over what was available ten years ago makes it feasible to look at variations in the length-of-day on much shorter time-scales. At the same time, the requirements of operational weather forecasting have resulted in more detailed knowledge of the variations of the angular momentum of the atmosphere. The result has been a convincing demonstration over the last several years that virtually all of the random variations in the length-of-day, at periods between a few years and a day, are due to atmospheric variations. Geophysicists and meteorologists have both exploited this discovery. Removal of the atmospheric signal from the length-of-day, results in a data set in which other interesting phenomena of geophysical interest can be studied. Meteorologists have had some success in using the rotation data to deduce the angular momentum of the atmosphere at times in the past when sufficient global coverage was not available to do this directly. Outstanding problems are: the low frequency variations in atmospheric angular momentum, which the passage of time will correct, and the details of the mechanism by which angular momentum is exchanged with the mantle.

  5. Atmospheric footprint of the recent warming slowdown

    Science.gov (United States)

    Liu, Bo; Zhou, Tianjun

    2017-01-01

    Growing body of literature has developed to detect the role of ocean heat uptake and transport in the recent warming slowdown between 1998–2013 however, the atmospheric footprint of the slowdown in dynamical and physical processes remains unclear. Here, we divided recent decades into the recent hiatus period and the preceding warming period (1983–1998) to investigate the atmospheric footprint. We use a process-resolving analysis method to quantify the contributions of different processes to the total temperature changes. We show that the increasing rate of global mean tropospheric temperature was also reduced during the hiatus period. The decomposed trends due to physical processes, including surface albedo, water vapour, cloud, surface turbulent fluxes and atmospheric dynamics, reversed the patterns between the two periods. The changes in atmospheric heat transport are coupled with changes in the surface latent heat flux across the lower troposphere (below approximately 800 hPa) and with cloud-related processes in the upper troposphere (above approximately 600 hPa) and were underpinned by strengthening/weakening Hadley Circulation and Walker Circulation during the warming/hiatus period. This dynamical coupling experienced a phase transition between the two periods, reminding us of the importance of understanding the atmospheric footprint, which constitutes an essential part of internal climate variability.

  6. Inflatable Emergency Atmospheric-Entry Vehicles

    Science.gov (United States)

    Jones, Jack; Hall, Jeffrey; Wu, Jiunn Jeng

    2004-01-01

    In response to the loss of seven astronauts in the Space Shuttle Columbia disaster, large, lightweight, inflatable atmospheric- entry vehicles have been proposed as means of emergency descent and landing for persons who must abandon a spacecraft that is about to reenter the atmosphere and has been determined to be unable to land safely. Such a vehicle would act as an atmospheric decelerator at supersonic speed in the upper atmosphere, and a smaller, central astronaut pod could then separate at lower altitudes and parachute separately to Earth. Astronaut-rescue systems that have been considered previously have been massive, and the cost of designing them has exceeded the cost of fabrication of a space shuttle. In contrast, an inflatable emergency-landing vehicle according to the proposal would have a mass between 100 and 200 kg, could be stored in a volume of approximately 0.2 to 0.4 cu m, and could likely be designed and built much less expensively. When fully inflated, the escape vehicle behaves as a large balloon parachute, or ballute. Due to very low mass-per-surface area, a large radius, and a large coefficient of drag, ballutes decelerate at much higher altitudes and with much lower heating rates than the space shuttle. Although the space shuttle atmospheric reentry results in surface temperatures of about 1,600 C, ballutes can be designed for maximum temperatures below 600 C. This allows ballutes to be fabricated with lightweight ZYLON(Registered TradeMark) or polybenzoxazole (PBO), or equivalent.

  7. Loss rates of Europa's tenuous atmosphere

    Science.gov (United States)

    Lucchetti, Alice; Plainaki, Christina; Cremonese, Gabriele; Milillo, Anna; Cassidy, Timothy; Jia, Xianzhe; Shematovich, Valery

    2016-10-01

    Loss processes in Europa's tenuous atmosphere are dominated by plasma-neutral interactions. Based on the updated data of the plasma conditions in the vicinity of Europa (Bagenal et al. 2015), we provide estimations of the atmosphere loss rates for the H2O, O2 and H2 populations. Due to the high variability of the plasma proprieties, we perform our investigation for three sample plasma environment cases identified by Bagenal et al. as hot/low density, cold/high density, and an intermediate case. The role of charge-exchange interactions between atmospheric neutrals and three different plasma populations, i.e. magnetospheric, pickup, and ionospheric ions, is examined in detail. Our assumptions related to the pickup and to the ionospheric populations are based on the model by Sittler et al. (2013). We find that O2-O2+ charge-exchange is the fastest loss process for the most abundant atmospheric species O2, though this loss process has been neglected in previous atmospheric models. Using both the revised O2 column density obtained from the EGEON model (Plainaki et al., 2013) and the current loss rate estimates, we find that the upper limit for the volume integrated loss rate due to O2-O2+ charge exchange is in the range (13-51)×1026 s-1, depending on the moon's orbital phase and illumination conditions. The results of the current study are relevant to the investigation of Europa's interaction with Jupiter's magnetospheric plasma.

  8. Acoustic tomography in the atmospheric surface layer

    Directory of Open Access Journals (Sweden)

    A. Ziemann

    Full Text Available Acoustic tomography is presented as a technique for remote monitoring of meteorological quantities. This method and a special algorithm of analysis can directly produce area-averaged values of meteorological parameters. As a result consistent data will be obtained for validation of numerical atmospheric micro-scale models. Such a measuring system can complement conventional point measurements over different surfaces. The procedure of acoustic tomography uses the horizontal propagation of sound waves in the atmospheric surface layer. Therefore, to provide a general overview of sound propagation under various atmospheric conditions a two-dimensional ray-tracing model according to a modified version of Snell's law is used. The state of the crossed atmosphere can be estimated from measurements of acoustic travel time between sources and receivers at different points. Derivation of area-averaged values of the sound speed and furthermore of air temperature results from the inversion of travel time values for all acoustic paths. Thereby, the applied straight ray two-dimensional tomographic model using SIRT (simultaneous iterative reconstruction technique is characterised as a method with small computational requirements, satisfactory convergence and stability properties as well as simple handling, especially, during online evaluation.

    Key words. Meteorology and atmospheric dynamics (turbulence; instruments and techniques.

  9. The annual averaged atmospheric dispersion factor and deposition factor according to methods of atmospheric stability classification

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae Sun; Jeong, Hyo Joon; Kim, Eun Han; Han, Moon Hee; Hwang, Won Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-09-15

    This study analyzes the differences in the annual averaged atmospheric dispersion factor and ground deposition factor produced using two classification methods of atmospheric stability, which are based on a vertical temperature difference and the standard deviation of horizontal wind direction fluctuation. Daedeok and Wolsong nuclear sites were chosen for an assessment, and the meteorological data at 10 m were applied to the evaluation of atmospheric stability. The XOQDOQ software program was used to calculate atmospheric dispersion factors and ground deposition factors. The calculated distances were chosen at 400 m, 800 m, 1,200 m, 1,600 m, 2,400 m, and 3,200 m away from the radioactive material release points. All of the atmospheric dispersion factors generated using the atmospheric stability based on the vertical temperature difference were shown to be higher than those from the standard deviation of horizontal wind direction fluctuation. On the other hand, the ground deposition factors were shown to be same regardless of the classification method, as they were based on the graph obtained from empirical data presented in the Nuclear Regulatory Commission's Regulatory Guide 1.111, which is unrelated to the atmospheric stability for the ground level release. These results are based on the meteorological data collected over the course of one year at the specified sites; however, the classification method of atmospheric stability using the vertical temperature difference is expected to be more conservative.

  10. A white dwarf with an oxygen atmosphere

    Science.gov (United States)

    Kepler, S. O.; Koester, Detlev; Ourique, Gustavo

    2016-04-01

    Stars born with masses below around 10 solar masses end their lives as white dwarf stars. Their atmospheres are dominated by the lightest elements because gravitational diffusion brings the lightest element to the surface. We report the discovery of a white dwarf with an atmosphere completely dominated by oxygen, SDSS J124043.01+671034.68. After oxygen, the next most abundant elements in its atmosphere are neon and magnesium, but these are lower by a factor of ≥25 by number. The fact that no hydrogen or helium are observed is surprising. Oxygen, neon, and magnesium are the products of carbon burning, which occurs in stars at the high-mass end of pre-white dwarf formation. This star, a possible oxygen-neon white dwarf, will provide a rare observational test of the evolutionary paths toward white dwarfs.

  11. Atmospheric Pressure Plasma Process And Applications

    Energy Technology Data Exchange (ETDEWEB)

    Peter C. Kong; Myrtle

    2006-09-01

    This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those produced in high intensity arcs, plasma torches, or in high intensity, high frequency discharges. Although nonthermal plasmas are at room temperatures, they are extremely effective in producing activated species, e.g., free radicals and excited state atoms. Thus, both thermal and nonthermal atmosphericpressure plasmas are finding applications in a wide variety of industrial processes, e.g. waste destruction, material recovery, extractive metallurgy, powder synthesis, and energy conversion. A brief discussion of recent plasma technology research and development activities at the Idaho National Laboratory is included.

  12. Occultations for probing atmosphere and climate

    CERN Document Server

    Foelsche, Ulrich; Steiner, Andrea

    2004-01-01

    Use of occultation methodology for observing the Earth's atmosphere and climate has become so broad as to comprise solar, lunar, stellar, navigation and satellite­ crosslink occultation methods. The atmospheric parameters obtained extend from the fundamental variables temperature, density, pressure, water vapor, and ozone via a multitude of trace gas species to particulate species such as aerosols and cloud liquid water. Ionospheric electron density is sensed as well. The methods all share the key properties of self-calibration, high accuracy and vertical resolution, global coverage, and (if using radio signals) all-weather capability. Occultation data are thus of high value in a wide range of fields including climate monitoring and research, atmospheric physics and chemistry, operational meteorology, and other fields such as space weather and planetary science. This wide area of variants and uses of the occultation method has led to a diversi­ fication of the occultation-related scientific community into a...

  13. Atmospheric Brown Clouds- from science towards policy

    Directory of Open Access Journals (Sweden)

    Iyngararasan M.

    2010-12-01

    Full Text Available Atmospheric Brown Clouds (ABCs and its interaction with climate change is an emerging environmental issue. Studies demonstrate that ABCs and its interaction with build-up of greenhouse gases significantly affect the regional climate, glacial melting, hydrological cycle, agriculture and public health. For the next decades, the regional aerosol effects will continue to play a major role in environmental management as long as current strong sources of air pollution remain. An integrated multi-pollutant multi-sectoral approach for addressing atmospheric issues will result in optimum environmental and socioeconomic benefits. Regional intergovernmental networks have been established to address air pollution issues in different parts of the globe. These intergovernmental networks could be empowered to promote integrated approach for addressing the atmospheric environmental issues.

  14. Life and the evolution of Earth's atmosphere.

    Science.gov (United States)

    Kasting, James F; Siefert, Janet L

    2002-05-10

    Harvesting light to produce energy and oxygen (photosynthesis) is the signature of all land plants. This ability was co-opted from a precocious and ancient form of life known as cyanobacteria. Today these bacteria, as well as microscopic algae, supply oxygen to the atmosphere and churn out fixed nitrogen in Earth's vast oceans. Microorganisms may also have played a major role in atmosphere evolution before the rise of oxygen. Under the more dim light of a young sun cooler than today's, certain groups of anaerobic bacteria may have been pumping out large amounts of methane, thereby keeping the early climate warm and inviting. The evolution of Earth's atmosphere is linked tightly to the evolution of its biota.

  15. Asymmetry of atmospheric microstructure over synoptic scales

    Directory of Open Access Journals (Sweden)

    R. M. Worthington

    Full Text Available Distortions are often seen in the angular distribution of echo-power from VHF wind-profiling radars, suggesting that thin stable layers, within the air flow, are distorted and tilted from horizontal. In vertical shear of the horizontal wind, the distribution of the layer tilt angles becomes skewed. A case study using six days of VHF radar data and synoptic charts above western Europe indicates that this asymmetry of atmospheric microstructure can exist throughout the troposphere and lower stratosphere, above and below the jet wind maximum, over horizontal scales of thousands of kilometres.

    Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; synoptic-scale meteorology; turbulence.

  16. Evaporation of urea at atmospheric pressure.

    Science.gov (United States)

    Bernhard, Andreas M; Czekaj, Izabela; Elsener, Martin; Wokaun, Alexander; Kröcher, Oliver

    2011-03-31

    Aqueous urea solution is widely used as reducing agent in the selective catalytic reduction of NO(x) (SCR). Because reports of urea vapor at atmospheric pressure are rare, gaseous urea is usually neglected in computational models used for designing SCR systems. In this study, urea evaporation was investigated under flow reactor conditions, and a Fourier transform infrared (FTIR) spectrum of gaseous urea was recorded at atmospheric pressure for the first time. The spectrum was compared to literature data under vacuum conditions and with theoretical spectra of monomolecular and dimeric urea in the gas phase calculated with the density functional theory (DFT) method. Comparison of the spectra indicates that urea vapor is in the monomolecular form at atmospheric pressure. The measured vapor pressure of urea agrees with the thermodynamic data obtained under vacuum reported in the literature. Our results indicate that considering gaseous urea will improve the computational modeling of urea SCR systems.

  17. Cloud Computing with iPlant Atmosphere.

    Science.gov (United States)

    McKay, Sheldon J; Skidmore, Edwin J; LaRose, Christopher J; Mercer, Andre W; Noutsos, Christos

    2013-10-15

    Cloud Computing refers to distributed computing platforms that use virtualization software to provide easy access to physical computing infrastructure and data storage, typically administered through a Web interface. Cloud-based computing provides access to powerful servers, with specific software and virtual hardware configurations, while eliminating the initial capital cost of expensive computers and reducing the ongoing operating costs of system administration, maintenance contracts, power consumption, and cooling. This eliminates a significant barrier to entry into bioinformatics and high-performance computing for many researchers. This is especially true of free or modestly priced cloud computing services. The iPlant Collaborative offers a free cloud computing service, Atmosphere, which allows users to easily create and use instances on virtual servers preconfigured for their analytical needs. Atmosphere is a self-service, on-demand platform for scientific computing. This unit demonstrates how to set up, access and use cloud computing in Atmosphere.

  18. The Radiation Environment of Exoplanet Atmospheres

    Directory of Open Access Journals (Sweden)

    Jeffrey L. Linsky

    2014-10-01

    Full Text Available Exoplanets are born and evolve in the radiation and particle environment created by their host star. The host star’s optical and infrared radiation heats the exoplanet’s lower atmosphere and surface, while the ultraviolet, extreme ultraviolet and X-radiation control the photochemistry and mass loss from the exoplanet’s upper atmosphere. Stellar radiation, especially at the shorter wavelengths, changes dramatically as a host star evolves leading to changes in the planet’s atmosphere and habitability. This paper reviews the present state of our knowledge concerning the time-dependent radiation emitted by stars with convective zones, that is stars with spectral types F, G, K, and M, which comprise nearly all of the host stars of detected exoplanets.

  19. Regulation of atmospheric oxygen during the Proterozoic

    Science.gov (United States)

    Laakso, Thomas A.; Schrag, Daniel P.

    2014-02-01

    Many studies suggest that oxygen has remained near modern levels throughout the Phanerozoic, but was much less abundant from the “Great Oxygenation Event” around 2.4 Ga until the late Neoproterozoic around 600 Ma (Kump, 2008). Using a simple model, we show that the maintenance of atmospheric pO2 at ∼1% of present atmospheric levels (PAL) is inconsistent with modern biogeochemical cycling of carbon, sulfur and iron unless new feedbacks are included. Low oxygen conditions are stable in our model if the flux of phosphorus to the oceans was greatly reduced during the Proterozoic. We propose a mechanism to reduce this flux through the scavenging of phosphate ions with an “iron trap” driven by greater surface mobility of ferrous iron in a low pO2 world. Incorporating this feedback leads to two stable equilibria for atmospheric oxygen, the first quantitative hypothesis to explain both Proterozoic and Phanerozoic O2 concentrations.

  20. Dynamics of the Venus atmospheric superrotation

    Science.gov (United States)

    Takagi, Masahiro

    It has been shown by Takagi and Matsuda (2006, 2007) that the thermal tides excited at the cloud levels propagate downward to the ground, and induce mean flow in the opposite direction to the Venus rotation at about 0-10 km levels. Surface friction acting on this counter flow can provide the Venus atmosphere with net angular momentum required for its superrotation. By using a nonlinear dynamical model, it has been confirmed that this mechanism generates the atmospheric superrotation extending from the ground to 80 km, whose vertical structure is consistent with observations. However, a mean zonal component of the solar heating is excluded in this model. Numerical experiments with the mean zonal solar heating imply that dynamical effects of the mean meridional circulation cannot be neglected. It is also necessary to construct a radiation scheme suitable for the Venus atmosphere with enormous optical depth. We are currently working on these tasks.

  1. Atmospheric Chemistry of Micrometeoritic Organic Compounds

    Science.gov (United States)

    Kress, M. E.; Belle, C. L.; Pevyhouse, A. R.; Iraci, L. T.

    2011-01-01

    Micrometeorites approx.100 m in diameter deliver most of the Earth s annual accumulation of extraterrestrial material. These small particles are so strongly heated upon atmospheric entry that most of their volatile content is vaporized. Here we present preliminary results from two sets of experiments to investigate the fate of the organic fraction of micrometeorites. In the first set of experiments, 300 m particles of a CM carbonaceous chondrite were subject to flash pyrolysis, simulating atmospheric entry. In addition to CO and CO2, many organic compounds were released, including functionalized benzenes, hydrocarbons, and small polycyclic aromatic hydrocarbons. In the second set of experiments, we subjected two of these compounds to conditions that simulate the heterogeneous chemistry of Earth s upper atmosphere. We find evidence that meteor-derived compounds can follow reaction pathways leading to the formation of more complex organic compounds.

  2. Where are the atmospheric sciences going?

    Science.gov (United States)

    Bierly, Eugene W.

    The question of the direction of the atmospheric sciences is a difficult one, and it cannot be answered in a definitive way or with a high degree of certainty. I would like to try to give you my biased viewpoint on the situation in atmospheric sciences today, as far as the research aspect is concerned.The field of atmospheric sciences today is full to overflowing with top-notch scientific research programs. At the same time, funds for conducting this research are limited and much more difficult to obtain now than in previous years. To paraphrase the words of Charles Dickens in his Tale of Two Cities, “It is the best of times; it is the worst of times.”

  3. Regional atmospheric influence on the Chandler wobble

    Science.gov (United States)

    Zotov, L. V.; Bizouard, C.

    2015-03-01

    From the maps of regional contribution to atmospheric angular momentum (AAM) over the period 1948-2011 (NCEP/NCAR reanalysis data) time domain excitation in Chandler frequency band was extracted by Panteleev's filtering method. This permits us to investigate the evolution of the regional atmospheric influence on Chandler wobble. It appears that the temperate latitudes bring the strongest inputs. For pressure term they are limited to continents, and highlight the role of Europe. For the wind term they mostly result from ocean area, encompassing in particular North Atlantic. A quasi-20 year cycle is found in the regional patterns of the atmospheric excitation. The integrated AAM is finally compared with the geodetic excitation reconstructed from the observed polar motion.

  4. Dust cloud lightning in extraterrestrial atmospheres

    CERN Document Server

    Helling, Christiane; Diver, Declan; Witte, Soeren

    2012-01-01

    Lightning is present in all solar system planets which form clouds in their atmospheres. Cloud formation outside our solar system is possible in objects with much higher temperatures than on Earth or on Jupiter: Brown dwarfs and giant extrasolar gas planets form clouds made of mixed materials and a large spectrum of grain sizes. These clouds are globally neutral obeying dust-gas charge equilibrium which is, on short timescales, inconsistent with the observation of stochastic ionization events of the solar system planets. We argue that a significant volume of the clouds in brown dwarfs and extrasolar planets is susceptible to local discharge events and that the upper cloud layers are most suitable for powerful lightning-like discharge events. We discuss various sources of atmospheric ionisation, including thermal ionisation and a first estimate of ionisation by cosmic rays, and argue that we should expect thunderstorms also in the atmospheres of brown dwarfs and giant gas planets which contain mineral clouds.

  5. Stellar model atmospheres with magnetic line blanketing

    CERN Document Server

    Kochukhov, O; Shulyak, D

    2004-01-01

    Model atmospheres of A and B stars are computed taking into account magnetic line blanketing. These calculations are based on the new stellar model atmosphere code LLModels which implements direct treatment of the opacities due to the bound-bound transitions and ensures an accurate and detailed description of the line absorption. The anomalous Zeeman effect was calculated for the field strengths between 1 and 40 kG and a field vector perpendicular to the line of sight. The model structure, high-resolution energy distribution, photometric colors, metallic line spectra and the hydrogen Balmer line profiles are computed for magnetic stars with different metallicities and are discussed with respect to those of non-magnetic reference models. The magnetically enhanced line blanketing changes the atmospheric structure and leads to a redistribution of energy in the stellar spectrum. The most noticeable feature in the optical region is the appearance of the 5200 A depression. However, this effect is prominent only in ...

  6. Status and future of hydrodynamical model atmospheres

    CERN Document Server

    Ludwig, H G

    2004-01-01

    Since about 25 years ago work has been dedicated to the development of hydrodynamical model atmospheres for cool stars (of A to T spectral type). Despite their obviously sounder physical foundation in comparison with standard hydrostatic models, their general application has been rather limited. In order to understand why this is, and how to progress, we review the present status of hydrodynamical modelling of cool star atmospheres. The development efforts were and are motivated by the theoretical interest of understanding the dynamical processes operating in stellar atmospheres. To show the observational impact, we discuss examples in the fields of spectroscopy and stellar structure where hydrodynamical modelling provided results on a level qualitatively beyond standard models. We stress present modelling challenges, and highlight presently possible and future observations that would be particularly valuable in the interplay between model validation and interpretation of observables, to eventually widen the ...

  7. Atmospheric rivers: a mini-review

    Directory of Open Access Journals (Sweden)

    Luis eGimeno

    2014-03-01

    Full Text Available Atmospheric rivers (ARs are narrow regions responsible for the majority of the poleward water vapour transport across the midlatitudes. They are characterized by high water vapour content and strong low level winds, and form a part of the broader warm conveyor belt of extratropical cyclones. Although the meridional water vapour transport within ARs is critical for water resources, ARs can also cause disastrous floods especially when encountering mountainous terrain. They were labelled as atmospheric rivers in the 1990s, and have since become a well-studied feature of the midlatitude climate. We briefly review the conceptual model, the methods used to identify them, their main climatological characteristics, their impacts, the predictive ability of numerical weather prediction models, their relationship with large-scale ocean-atmosphere dynamics, possible changes under future climates, and some future challenges.

  8. CO2 Impacts on the Martian Atmosphere

    Science.gov (United States)

    Kelley, Michael; Bauer, James; Bodewits, Dennis; Farnham, Tony; Stevenson, Rachel; Yelle, Roger

    2014-09-01

    The dynamically new comet C/2013 A1 (Siding Spring) will pass Mars at the extremely close distance of 140,000 km on 2014 Oct 19. This encounter is unique---a record close approach to a planet with spacecraft that can observe its passage---and currently, all 5 Mars orbiters have plans to observe the comet and/or its effects on the planet. Gas from the comet's coma is expected to collide with the Martian atmosphere, altering the abundances of some species and producing significant heating, inflating the upper atmosphere. We propose DDT observations with Spitzer/IRAC to measure the comet's CO2+CO coma (observing window Oct 30 - Nov 20), to use these measurements to derive the coma's CO2 density at Mars during the closest approach, and to aid the interpretation of any observed effects or changes in the Martian atmosphere.

  9. Geophysical and atmospheric evolution of habitable planets.

    Science.gov (United States)

    Lammer, Helmut; Selsis, Frank; Chassefière, Eric; Breuer, Doris; Griessmeier, Jean-Mathias; Kulikov, Yuri N; Erkaev, Nikolai V; Khodachenko, Maxim L; Biernat, Helfried K; Leblanc, Francois; Kallio, Esa; Lundin, Richard; Westall, Frances; Bauer, Siegfried J; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Gröller, Hannes; Hanslmeier, Arnold; Hausleitner, Walter; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Leitzinger, Martin; Lichtenegger, Herbert I M; Liseau, René; Lunine, Jonathan; Motschmann, Uwe; Odert, Petra; Paresce, Francesco; Parnell, John; Penny, Alan; Quirrenbach, Andreas; Rauer, Heike; Röttgering, Huub; Schneider, Jean; Spohn, Tilman; Stadelmann, Anja; Stangl, Günter; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.

  10. Atmospheric Modeling Using Accelerometer Data During Mars Atmosphere and Volatile Evolution (MAVEN) Flight Operations

    Science.gov (United States)

    Tolson, Robert H.; Lugo, Rafael A.; Baird, Darren T.; Cianciolo, Alicia D.; Bougher, Stephen W.; Zurek, Richard M.

    2017-01-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft is a NASA orbiter designed to explore the Mars upper atmosphere, typically from 140 to 160 km altitude. In addition to the nominal science mission, MAVEN has performed several Deep Dip campaigns in which the orbit's closest point of approach, also called periapsis, was lowered to an altitude range of 115 to 135 km. MAVEN accelerometer data were used during mission operations to estimate atmospheric parameters such as density, scale height, along-track gradients, and wave structures. Density and scale height estimates were compared against those obtained from the Mars Global Reference Atmospheric Model and used to aid the MAVEN navigation team in planning maneuvers to raise and lower periapsis during Deep Dip operations. This paper describes the processes used to reconstruct atmosphere parameters from accelerometers data and presents the results of their comparison to model and navigation-derived values.

  11. Worldwide trend of atmospheric mercury since 1995

    Directory of Open Access Journals (Sweden)

    F. Slemr

    2011-05-01

    Full Text Available Concern about the adverse effects of mercury on human health and ecosystems has led to tightening emission controls since the mid 1980s. But the resulting mercury emissions reductions in many parts of the world are believed to be offset or even surpassed by the increasing emissions in rapidly industrializing countries. Consequently, concentrations of atmospheric mercury are expected to remain roughly constant. Here we show that the worldwide atmospheric mercury concentrations have decreased by about 20 to 38 % since 1996 as indicated by long-term monitoring at stations in the Southern and Northern Hemispheres combined with intermittent measurements of latitudinal distribution over the Atlantic Ocean. The total reduction of the atmospheric mercury burden of this magnitude within 14 years is unusually large among most atmospheric trace gases and is at odds with the current mercury emission inventories with nearly constant anthropogenic emissions over this period. This suggests a major shift in the biogeochemical cycle of mercury including oceans and soil reservoirs. Decreasing reemissions from the legacy of historical mercury emissions are the most likely explanation for this decline since the hypothesis of an accelerated oxidation rate of elemental mercury in the atmosphere is not supported by the observed trends of other trace gases. Acidification of oceans, climate change, excess nutrient input and pollution may also contribute by their impact on the biogeochemistry of ocean and soils. Consequently, models of the atmospheric mercury cycle have to include soil and ocean mercury pools and their dynamics to be able to make projections of future trends.

  12. Atmospheric dynamics of tidally synchronized extrasolar planets.

    Science.gov (United States)

    Cho, James Y-K

    2008-12-13

    Tidally synchronized planets present a new opportunity for enriching our understanding of atmospheric dynamics on planets. Subject to an unusual forcing arrangement (steady irradiation on the same side of the planet throughout its orbit), the dynamics on these planets may be unlike that on any of the Solar System planets. Characterizing the flow pattern and temperature distribution on the extrasolar planets is necessary for reliable interpretation of data currently being collected, as well as for guiding future observations. In this paper, several fundamental concepts from atmospheric dynamics, likely to be central for characterization, are discussed. Theoretical issues that need to be addressed in the near future are also highlighted.

  13. The atmospheric environment--an introduction.

    Science.gov (United States)

    Jendritzky, G

    1993-09-15

    The atmosphere is part of the environment with which the human organism is permanently confronted. Epidemiological research investigates the occurrence of effects on morbidity and mortality due to heat, cold, air pollution and changes in the weather. Concentrating on aspects of the environment relevant for medical questions, three major complexes of effects can be discriminated: the complex conditions of heat exchange, the direct biological effects of solar radiation, and air pollution. Biometeorological knowledge can serve to assess the atmospheric environment, and can also be of help in the field of preventive planning, to conserve and develop the climate as a natural resource with regard to man's health, well-being and performance.

  14. Energy Deposition Processes in Titan's Upper Atmosphere

    Science.gov (United States)

    Sittler, Edward C., Jr.; Bertucci, Cesar; Coates, Andrew; Cravens, Tom; Dandouras, Iannis; Shemansky, Don

    2008-01-01

    Most of Titan's atmospheric organic and nitrogen chemistry, aerosol formation, and atmospheric loss are driven from external energy sources such as Solar UV, Saturn's magnetosphere, solar wind and galactic cosmic rays. The Solar UV tends to dominate the energy input at lower altitudes of approximately 1100 km but which can extend down to approximately 400 km, while the plasma interaction from Saturn's magnetosphere, Saturn's magnetosheath or solar wind are more important at higher altitudes of approximately 1400 km, but the heavy ion plasma [O(+)] of approximately 2 keV and energetic ions [H(+)] of approximately 30 keV or higher from Saturn's magnetosphere can penetrate below 950km. Cosmic rays with energies of greater than 1 GeV can penetrate much deeper into Titan's atmosphere with most of its energy deposited at approximately 100 km altitude. The haze layer tends to dominate between 100 km and 300 km. The induced magnetic field from Titan's interaction with the external plasma can be very complex and will tend to channel the flow of energy into Titan's upper atmosphere. Cassini observations combined with advanced hybrid simulations of the plasma interaction with Titan's upper atmosphere show significant changes in the character of the interaction with Saturn local time at Titan's orbit where the magnetosphere displays large and systematic changes with local time. The external solar wind can also drive sub-storms within the magnetosphere which can then modify the magnetospheric interaction with Titan. Another important parameter is solar zenith angle (SZA) with respect to the co-rotation direction of the magnetospheric flow. Titan's interaction can contribute to atmospheric loss via pickup ion loss, scavenging of Titan's ionospheric plasma, loss of ionospheric plasma down its induced magnetotail via an ionospheric wind, and non-thermal loss of the atmosphere via heating and sputtering induced by the bombardment of magnetospheric keV ions and electrons. This

  15. Designing Affective Atmospheres on the Move

    DEFF Research Database (Denmark)

    Wind, Simon; Lanng, Ditte Bendix

    of atmosphere in mobilities design. Following the pragmatist stance that theories are tools to understand and intervene in the world around us. To do so it draws, on the one hand, on “affective atmospheres” in relation to mobilities research, as articulated by Bissel (2010) and Anderson (2009), and......, on the other hand, on design-related research into “urban ambiances”, as framed by Thibaud (2010). Through an exploration of everyday practices of networked mobilities from qualitative empirical material the paper argues for the potential to synthesise such streams of atmosphere research to develop...

  16. Magnetic reconnection in lower solar atmosphere

    Institute of Scientific and Technical Information of China (English)

    汪景琇

    1995-01-01

    Observations of vector magnetic field have provided the decisive constraint on the magnetic topology of solar active regions, thus offering an observational basis to identify various physical processes. Based on both magnetic field observations and theoretical discussions, it has been inferred that the magnetic flux cancellation, discovered from the line-of-sight magnetograms, reflects the interaction between magnetic loop systems and is most likely the slow magnetic reconnection in the lower solar atmosphere. This type of reconnections may affect the magnetic activities in the higher atmosphere by the way of transporting the magnetic energy and helicity and sometimes may cause fast reconnection in the corona, providing the necessary energy in solar flares.

  17. Reconstruction of Atmospheric Neutrinos in Antares

    CERN Document Server

    Heijboer, Aart

    2009-01-01

    In May 2008, the Antares neutrino telescope was completed at 2.5 km depth in the Mediterranean Sea; data taking has been going on since. A prerequisite for neutrino astronomy is an accurate reconstruction of the neutrino events, as well as a detailed understanding of the atmospheric muon and neutrino backgrounds. Several methods have been developed to confront the challenges of muon reconstruction in the sea water environment, which are posed by e.g. backgrounds due to radioactivity and bioluminescence. I will discuss the techniques that allowed Antares to confidently identify its first neutrino events, as well as recent results on the measurement of atmospheric neutrinos.

  18. Carbon Monoxide Affecting Planetary Atmospheric Chemistry

    Science.gov (United States)

    He, Chao; Horst, Sarah

    2016-10-01

    Atmospheric hazes are present in a range of solar system and extrasolar planetary atmospheres, and organic hazes, such as that in Titan's atmosphere, could be a source of prebiotic molecules.1 However, the chemistry occurring in planetary atmospheres and the resulting chemical structures are still not clear. Numerous experimental simulations2 have been carried out in the laboratory to understand the chemistry in N2/CH4 atmospheres, but very few simulations4 have included CO in their initial gas mixtures, which is an important component in many N2/CH4 atmospheres including Titan, Triton, and Pluto.3 Here we have conducted a series of atmosphere simulation experiments using AC glow discharge (cold plasma) as energy source to irradiate reactions in gas mixtures of CO, CH4, and N2 with a range of CO mixing ratios (from 0, 0.05%, 0.2%, 0.5%, 1%, 2.5%, to 5%) at low temperature (~100 K). Gas phase products are monitored during the reaction by quadrupole mass spectrometer (MS), and solid phase products are analyzed by solution-state nuclear magnetic resonance spectroscopy (NMR). MS results show that with the increase of CO in the initial gases, the production of nitrogenous organic molecules increases while the production of hydrogen molecules decreases in the gas phase. NMR measurements of the solid phase products show that with the increase of CO, hydrogen atoms bonded to nitrogen or oxygen in unsaturated structures increase while those bonded to saturated carbon decrease, which means more unsaturated species and less saturated species formed with the addition of CO. MS and NMR results demonstrate that the inclusion of CO affects the compositions of both gas and solid phase products, indicating that CO has an important impact on the chemistry occurring in our experiments and probably in planetary atmospheres.1. Hörst, S. M., et al. 2012, AsBio, 12, 8092. Cable, M. L., et al. 2012, Chem. Rev., 112, 18823. Lutz, B. L., et al. 1983, Sci, 220, 1374; Greaves, J. S., et al

  19. On the atmosphere of a moving body

    DEFF Research Database (Denmark)

    Pedersen, Johan Rønby; Aref, Hassan

    2010-01-01

    We explore whether a rigid body moving freely with no circulation around it in a two-dimensional ideal fluid can carry a fluid "atmosphere" with it in its motion. Somewhat surprisingly, the answer appears to be "yes." When the body is elongated and the motion is dominated by rotation, we...... demonstrate numerically that, indeed, regions of fluid follow the body in its motion. We see this as an example of the stability of Kolmogorov-Arnold-Moser tori. These observations of an atmosphere around a moving body with no circulation around it appear to be new. (C) 2010 American Institute of Physics...

  20. On the atmosphere of a moving body

    DEFF Research Database (Denmark)

    Pedersen, Johan Rønby; Aref, Hassan

    2010-01-01

    We have explored whether a rigid body moving freely with no circulation around it in a two-dimensional ideal fluid can carry a fluid ``atmosphere'' with it in its motion. Somewhat surprisingly, the answer appears to be ``yes''. When the body is elongated and the motion is dominated by rotation, we...... demonstrate numerically that, indeed, regions of fluid follow the body in its motion. Since there is a double-island structure for the case of pure rotation, as already found by Morton and Darwin many years ago, we see the existence of an atmosphere for the moving body as an example of the stability...

  1. A review of atmospheric aerosol measurements

    Science.gov (United States)

    McMurry, Peter H.

    Recent developments in atmospheric aerosol measurements are reviewed. The topics included complement those covered in the recent review by Chow (JAWMA 45: 320-382, 1995) which focuses on regulatory compliance measurements and filter measurements of particulate composition. This review focuses on measurements of aerosol integral properties (total number concentration, CCN concentration, optical coefficients, etc.), aerosol physical chemical properties (density, refractive index, equilibrium water content, etc.), measurements of aerosol size distributions, and measurements of size-resolved aerosol composition. Such measurements play an essential role in studies of secondary aerosol formation by atmospheric chemical transformations and enable one to quantify the contributions of various species to effects including light scattering/absorption, health effects, dry deposition, etc. Aerosol measurement evolved from an art to a science in the 1970s following the development of instrumentation to generate monodisperse calibration aerosols of known size, composition, and concentration. While such calibration tools permit precise assessments of instrument responses to known laboratory-generated aerosols, unquantifiable uncertainties remain even when carefully calibrated instruments are used for atmospheric measurements. This is because instrument responses typically depend on aerosol properties including composition, shape, density, etc., which, for atmospheric aerosols, may vary from particle-to-particle and are often unknown. More effort needs to be made to quantify measurement accuracies that can be achieved for realistic atmospheric sampling scenarios. The measurement of organic species in atmospheric particles requires substantial development. Atmospheric aerosols typically include hundreds of organic compounds, and only a small fraction (˜10%) of these can be identified by state-of-the-art analytical methodologies. Even the measurement of the total particulate organic

  2. Homeostatic tendencies of the earth's atmosphere

    Science.gov (United States)

    Lovelock, J. E.; Margulis, L.

    1974-01-01

    The concept is developed that the atmosphere of the earth flows in a closed system controlled by and for the biosphere. The environmental factors delimiting the biosphere are examined. It is found that neither oxygen nor pressure per se limit the distribution of life as a whole. Rather the major physical variables determining the distribution of organisms are solar radiation, temperature, water abundance, and the concentrations of hydrogen and other ions and elements. An attempt is made to model temperature and atmospheric composition of a lifeless earth.

  3. Detection of tracer materials in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, A.; Lovelock, J.E.

    1981-12-08

    As oxygen is an electron absorber it is desirable, when monitoring an atmospheric flow for the presence of tracer materials capable of detection in an electron capture detector, to remove the oxygen from the flow to the detector. The invention introduces a hydrogen supply directly into the atmospheric flow to allow the hydrogen to combine catalytically with the oxygen content of the flow to form water or water vapor. The thus formed water or water vapor is extracted from the flow proceeding to the detector. The reaction can occur within a palladium or palladium alloy conduit forming a part of the flow path to the detector.

  4. Highlights in the Study of Exoplanet Atmospheres

    CERN Document Server

    Burrows, Adam

    2014-01-01

    Exoplanets are now being discovered in profusion. However, to understand their character requires spectral models and data. These elements of remote sensing can yield temperatures, compositions, and even weather patterns, but only if significant improvements in both the parameter retrieval process and measurements are achieved. Despite heroic efforts to garner constraining data on exoplanet atmospheres and dynamics, reliable interpretation has oftimes lagged ambition. I summarize the most productive, and at times novel, methods employed to probe exoplanet atmospheres, highlight some of the most interesting results obtained, and suggest various broad theoretical topics in which further work could pay significant dividends.

  5. [Photosynthesis and oxygenation of the earth's atmosphere].

    Science.gov (United States)

    Kuznetsov, A P; Vinogradov, M E; Lappo, S S

    2002-01-01

    Based on the contemporary data concerning photosynthesis as a global biogeochemical mechanism of solar energy utilization and organic matter and oxygen production, the formation of photosynthesis in the Proterozoic is considered, as well as its role in transformation of the pre-Proterozoic oceanic hydrosphere and the Earth's atmosphere from a reduced to an oxidized state. Photosynthesis is considered the longest stage of organic world evolution. The problem of production of "excessive" oxygen is considered, which entered and is entering the atmosphere through the oceanic hydrosphere and determines the process of its organization.

  6. New atmospheric model of Epsilon Eridani

    Science.gov (United States)

    Vieytes, Mariela; Fontenla, Juan; Buccino, Andrea; Mauas, Pablo

    2016-05-01

    We present a new semi-empirical model of the atmosphere of the widely studied K-dwarf Epsilon Eridani (HD 22049). The model is build to reproduce the visible spectral observations from 3800 to 6800 Angstrom and the h and k Mg II lines profiles. The computations were carried out using the Solar-Stellar Radiation Physical Modeling (SSRPM) tools, which calculate non-LTE population for the most important species in the stellar atmosphere. We show a comparison between the synthetic and observed spectrum, obtaining a good agreement in all the studied spectral range.

  7. Reconciling dark matter, solar and atmospheric neutrinos

    CERN Document Server

    Peltoniemi, J T

    1993-01-01

    We present models that can reconcile the solar and atmospheric neutrino data with the existence of a hot dark matter component in the universe. This dark matter is a quasi-Dirac neutrino whose mass $m_{DM}$ arises at the one-loop level. The solar neutrino deficit is explained via nonadiabatic conversions of electron neutrino to a sterile neutrino and the atmospheric neutrino data via maximal muon neutrino to tau neutrino oscillations generated by higher order loop diagrams. For $m_{DM} \\sim 30$ eV the radiative neutrino decay can lead to photons that can ionize interstellar hydrogen. In one of the models one can have observable $\

  8. Highlights in the study of exoplanet atmospheres.

    Science.gov (United States)

    Burrows, Adam S

    2014-09-18

    Exoplanets are now being discovered in profusion. To understand their character, however, we require spectral models and data. These elements of remote sensing can yield temperatures, compositions and even weather patterns, but only if significant improvements in both the parameter retrieval process and measurements are made. Despite heroic efforts to garner constraining data on exoplanet atmospheres and dynamics, reliable interpretation has frequently lagged behind ambition. I summarize the most productive, and at times novel, methods used to probe exoplanet atmospheres; highlight some of the most interesting results obtained; and suggest various broad theoretical topics in which further work could pay significant dividends.

  9. Atmospheric lifetimes of selected fluorinated ether compounds

    DEFF Research Database (Denmark)

    Heathfield, A.E.; Anastasi, C.; Pagsberg, Palle Bjørn;

    1998-01-01

    Atmospheric lifetimes have been estimated for a selection of ethers, the latter representing a class of compounds being considered as replacements for chlorofluorocarbons. The estimates are based on laboratory measurements of rate constants for the reaction of the OH radical with the ethers......, and a comparison with the behaviour of methyl chloroform in the atmosphere. The lifetimes for the ethers ranged from a few hours to half a year, significantly lower than those of chlorofluorocarbons and other replacements being considered. (C) 1998 Elsevier Science Ltd. All rights reserved....

  10. A First Course in Atmospheric Thermodynamics

    Science.gov (United States)

    Chilson, Phillip

    2009-08-01

    It is not uncommon to find textbooks that have been written with the intention of catering to a broad spectrum of readers. Often, though not always, the result is a book appropriate for neither advanced nor beginning students. However, Grant Petty had a very specific target audience in mind when he wrote A First Course in Atmospheric Thermodynamics. The book is clearly gauged for atmospheric science and meteorology students who have had introductory courses in physics and calculus but who have not necessarily established a firm foundation in analytic problem solving.

  11. Variations for Pure Cu Melt Viscosity with Different Atmospheres

    Institute of Scientific and Technical Information of China (English)

    耿红霞; 耿浩然; 薛宪营; 郁可; 刘建同

    2003-01-01

    The viscosity of Cu melt is obtained to be in the ranges from 2.418 to 3.039mPa.s under vacuum atmosphere (2Pa), from 2.907 to 3.425mPa.s under nitrogen gas atmosphere and from 3.352 to 4.015mPa.s under argon gas atmosphere. The activation energy is estimated to be 0.224, 0.162 and 0.150eV for the vacuum atmosphere (2 Pa), nitrogen gas atmosphere and argon gas atmosphere, respectively. The results reflect the essential structural change in the Cu melt by using different atmospheres.

  12. Laboratory for Atmospheres 2008 Technical Highlights

    Science.gov (United States)

    Cote, Charles E.

    2009-01-01

    The 2008 Technical Highlights describes the efforts of all members of the Laboratory for Atmospheres. Their dedication to advancing Earth Science through conducting research, developing and running models, designing instruments, managing projects, running field campaigns, and numerous other activities, is highlighted in this report. The Laboratory for Atmospheres (Code 613) is part of the Earth Sciences Division (Code 610), formerly the Earth Sun Exploration Division, under the Sciences and Exploration Directorate (Code 600) based at NASA s Goddard Space Flight Center in Greenbelt, Maryland. In line with NASA s Exploration Initiative, the Laboratory executes a comprehensive research and technology development program dedicated to advancing knowledge and understanding of the atmospheres of Earth and other planets. The research program is aimed at understanding the influence of solar variability on the Earth s climate; predicting the weather and climate of Earth; understanding the structure, dynamics, and radiative properties of precipitation, clouds, and aerosols; understanding atmospheric chemistry, especially the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and advancing our understanding of physical properties of Earth s atmosphere. The research program identifies problems and requirements for atmospheric observations via satellite missions. Laboratory scientists conceive, design, develop, and implement ultraviolet, infrared, optical, radar, laser, and lidar technology for remote sensing of the atmosphere. Laboratory members conduct field measurements for satellite data calibration and validation, and carry out numerous modeling activities. These modeling activities include climate model simulations, modeling the chemistry and transport of trace species on regional-to-global scales, cloud-resolving models, and development of next-generation Earth system models. Interdisciplinary research is carried

  13. Sources and transformations of atmospheric aerosol particles

    Science.gov (United States)

    Cross, Eben Spencer

    Aerosol particles are an important component of the Earth-Atmosphere system because of their influence on the radiation budget both directly (through absorption and scattering) and indirectly (through cloud condensation nuclei (CCN) activity). The magnitude of the raditaive forcing attributed to the direct and indirect aerosol effects is highly uncertain, leading to large uncertainties in projections of global climate change. Real-time measurements of aerosol properties are a critical step toward constraining the uncertainties in current global climate modeling and understanding the influence that anthropogenic activities have on the climate. The objective of the work presented in this thesis is to gain a more complete understanding of the atmospheric transformations of aerosol particles and how such transformations influence the direct and indirect radiative effects of the particles. The work focuses on real-time measurements of aerosol particles made with the Aerodyne Aerosol Mass Spectrometer (AMS) developed in collaboration with the Boston College research group. A key feature of the work described is the development of a light scattering module for the AMS. Here we present the first results obtained with the integrated light scattering - AMS system. The unique and powerful capabilities of this new instrument combination are demonstrated through laboratory experiments and field deployments. Results from two field studies are presented: (1) The Northeast Air Quality Study (NEAQS), in the summer of 2004, conducted at Chebogue Point, Nova Scotia and (2) The Megacity Initiative: Local and Global Research Observations (MILAGRO) field campaign conducted in and around Mexico City, Mexico in March of 2006. Both field studies were designed to study the transformations that occur within pollution plumes as they are transported throughout the atmosphere. During the NEAQS campaign, the pollution plume from the Northeastern United States was intercepted as it was

  14. Detection of CO in Triton's atmosphere and the nature of surface-atmosphere interactions

    CERN Document Server

    Lellouch, E; Sicardy, B; Ferron, S; Käufl, H -U

    2010-01-01

    Triton possesses a thin atmosphere, primarily composed of nitrogen, sustained by the sublimation of surface ices. The goal is to determine the composition of Triton's atmosphere and to constrain the nature of surface-atmosphere interactions. We perform high-resolution spectroscopic observations in the 2.32-2.37 $\\mu$m range, using CRIRES at the VLT. From this first spectroscopic detection of Triton's atmosphere in the infrared, we report (i) the first observation of gaseous methane since its discovery in the ultraviolet by Voyager in 1989 and (ii) the first ever detection of gaseous CO in the satellite. The CO atmospheric abundance is remarkably similar to its surface abundance, and appears to be controlled by a thin, CO-enriched, surface veneer resulting from seasonal transport and/or atmospheric escape. The CH$_4$ partial pressure is several times larger than inferred from Voyager. This confirms that Triton's atmosphere is seasonally variable and is best interpreted by the warming of CH$_4$-rich icy grains ...

  15. Specific interaction between negative atmospheric ions and organic compounds in atmospheric pressure corona discharge ionization mass spectrometry.

    Science.gov (United States)

    Sekimoto, Kanako; Sakai, Mami; Takayama, Mitsuo

    2012-06-01

    The interaction between negative atmospheric ions and various types of organic compounds were investigated using atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. Atmospheric negative ions such as O(2)(-), HCO(3)(-), COO(-)(COOH), NO(2)(-), NO(3)(-), and NO(3)(-)(HNO(3)) having different proton affinities served as the reactant ions for analyte ionization in APCDI in negative-ion mode. The individual atmospheric ions specifically ionized aliphatic and aromatic compounds with various functional groups as atmospheric ion adducts and deprotonated analytes. The formation of the atmospheric ion adducts under certain discharge conditions is most likely attributable to the affinity between the analyte and atmospheric ion and the concentration of the atmospheric ion produced under these conditions. The deprotonated analytes, in contrast, were generated from the adducts of the atmospheric ions with higher proton affinity attributable to efficient proton abstraction from the analyte by the atmospheric ion.

  16. Escape of atmospheric gases from the Moon

    Indian Academy of Sciences (India)

    Da Dao-an; Yang Ya-tian

    2005-12-01

    The escape rate of atmospheric molecules on the Moon is calculated.Based on the assumption that the rates of emission and escape of gases attain equilibrium, the ratio of molecular number densities during day and night, 0/0, can be explained. The plausible emission rate of helium and radioactive elements present in the Moon has also been calculated.

  17. Detection of atmospheric muons with ALICE detectors

    Energy Technology Data Exchange (ETDEWEB)

    Alessandro, B. [Istituto Nazionale di Fisica Nucleare and Dep. di Fisica Universita di Torino, Torino (Italy); Cortes Maldonado, I. [Fac. Ciencias Fisico Mat. and Fac. Ciencias Electronica, Benemerita Universidad Autonoma de Puebla (Mexico); Cuautle, E. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (Mexico); Fernandez Tellez, A. [Fac. Ciencias Fisico Mat. and Fac. Ciencias Electronica, Benemerita Universidad Autonoma de Puebla (Mexico); Gomez Jimenez, R. [Dpto. de Fisica, Centro de Investigacion y Estudios Avanzados (Mexico); Gonzalez Santos, H. [Fac. Ciencias Fisico Mat. and Fac. Ciencias Electronica, Benemerita Universidad Autonoma de Puebla (Mexico); Herrera Corral, G. [Escuela de Fisica, Universidad Autonoma de Sinaloa, Culiacan, Sinaloa (Mexico); Leon, I. [Dpto. de Fisica, Centro de Investigacion y Estudios Avanzados (Mexico); Martinez, M.I.; Munoz Mata, J.L. [Fac. Ciencias Fisico Mat. and Fac. Ciencias Electronica, Benemerita Universidad Autonoma de Puebla (Mexico); Podesta, P. [Dpto. de Fisica, Centro de Investigacion y Estudios Avanzados (Mexico); Ramirez Reyes, A. [Escuela de Fisica, Universidad Autonoma de Sinaloa, Culiacan, Sinaloa (Mexico); Rodriguez Cahuantzi, M., E-mail: mrodrigu@mail.cern.c [Fac. Ciencias Fisico Mat. and Fac. Ciencias Electronica, Benemerita Universidad Autonoma de Puebla (Mexico); Sitta, M. [Universita Piemonte Orientale, Alessandria (Italy); Subieta, M. [Istituto Nazionale di Fisica Nucleare and Dep. di Fisica Universita di Torino, Torino (Italy); Tejeda Munoz, G.; Vargas, A.; Vergara, S. [Fac. Ciencias Fisico Mat. and Fac. Ciencias Electronica, Benemerita Universidad Autonoma de Puebla (Mexico)

    2010-05-21

    The calibration, alignment and commissioning of most of the ALICE (A Large Ion Collider Experiment at the CERN LHC) detectors have required a large amount of cosmic events during 2008. In particular two types of cosmic triggers have been implemented to record the atmospheric muons passing through ALICE. The first trigger, called ACORDE trigger, is performed by 60 scintillators located on the top of three sides of the large L3 magnet surrounding the central detectors, and selects atmospheric muons. The Silicon Pixel Detector (SPD) installed on the first two layers of the Inner Tracking System (ITS) gives the second trigger, called SPD trigger. This trigger selects mainly events with a single atmospheric muon crossing the SPD. Some particular events, in which the atmospheric muon interacts with the iron of the L3 magnet and creates a shower of particles crossing the SPD, are also selected. In this work the reconstruction of events with these two triggers will be presented. In particular, the performance of the ACORDE detector will be discussed by the analysis of multi-muon events. Some physical distributions are also shown.

  18. ATLID, ESA Atmospheric LIDAR Developement Status

    Science.gov (United States)

    Pereira do Carmo, João; Hélière, Arnaud; Le Hors, L.; Toulemont, Y.; Lefebvre, A.

    2016-06-01

    The ATmospheric LIDAR ATLID[1] is part of the payload of the Earth Cloud and Aerosol Explorer[2] (EarthCARE) satellite mission, the sixth Earth Explorer Mission of the European Space Agency (ESA) Living Planet Programme. EarthCARE is a joint collaborative satellite mission conducted between ESA and the National Space Development Agency of Japan (JAXA) that delivers the Cloud Profiling Radar (CPR) instrument. The payload consists of four instruments on the same platform with the common goal to provide a picture of the 3D-dimensional spatial and the temporal structure of the radiative flux field at the top of atmosphere, within the atmosphere and at the Earth's surface. This paper is presenting an updated status of the development of the ATLID instrument and its subsystem design. The instrument has recently completed its detailed design, and most of its subsystems are already under manufacturing of their Flight Model (FM) parts and running specific qualification activities. Clouds and aerosols are currently one of the biggest uncertainties in our understanding of the atmospheric conditions that drive the climate system. A better modelling of the relationship between clouds, aerosols and radiation is therefore amongst the highest priorities in climate research and weather prediction.

  19. International arctic systems for observing the atmosphere

    DEFF Research Database (Denmark)

    Uttal, Taneil; Starkweather, Sandra; Drummond, James R.;

    2016-01-01

    IASOA activities and partnerships were initiated as a part of the 2007-2009 International Polar Year (IPY) and are expected to continue for many decades as a legacy program. The IASOA focus is on coordinating intensive measurements of the Arctic atmosphere collected in the U.S., Canada, Russia, N...

  20. Photosynthesis in Hydrogen-Dominated Atmospheres

    Directory of Open Access Journals (Sweden)

    William Bains

    2014-11-01

    Full Text Available The diversity of extrasolar planets discovered in the last decade shows that we should not be constrained to look for life in environments similar to early or present-day Earth. Super-Earth exoplanets are being discovered with increasing frequency, and some will be able to retain a stable, hydrogen-dominated atmosphere. We explore the possibilities for photosynthesis on a rocky planet with a thin H2-dominated atmosphere. If a rocky, H2-dominated planet harbors life, then that life is likely to convert atmospheric carbon into methane. Outgassing may also build an atmosphere in which methane is the principal carbon species. We describe the possible chemical routes for photosynthesis starting from methane and show that less energy and lower energy photons could drive CH4-based photosynthesis as compared with CO2-based photosynthesis. We find that a by-product biosignature gas is likely to be H2, which is not distinct from the hydrogen already present in the environment. Ammonia is a potential biosignature gas of hydrogenic photosynthesis that is unlikely to be generated abiologically. We suggest that the evolution of methane-based photosynthesis is at least as likely as the evolution of anoxygenic photosynthesis on Earth and may support the evolution of complex life.

  1. Land-Atmosphere Coupling Investigated Across Scales

    Science.gov (United States)

    Logan, K. E.; Brunsell, N. A.

    2014-12-01

    Investigations of land-atmosphere coupling have shown that surface conditions can influence local boundary layer development and precipitation likelihood across local to regional scales from subdaily to seasonal time scales. Observational techniques utilized for land-atmosphere coupling metrics vary greatly in spatial and temporal scale. When assessing metrics derived across a variety of resolutions, it is important to consider the influence of spatial and temporal resolution on the observations and model output. This study analyzes a recently-developed coupling metric across a variety of spatio-temporal resolutions. High frequency, small footprint eddy covariance tower data and lower frequency, lower resolution MODIS satellite products are both used to quantify a time series of the metric of coupling strength. The time series are decomposed using wavelet analysis, and spectra are investigated in order to determine the temporal scales associated with strong coupling and to consider how coupling strength varies with the scale of observation. In addition, the underlying atmospheric and surface properties are investigated to assess the relative contribution to the overall coupling between the land-atmosphere interface. As soil moisture memory can play a large role in coupling strength, extreme dry and wet conditions are categorized and investigated separately to see how the dynamics of coupling on a local and a regional scale may cause feedbacks promoting continued wet conditions or exacerbating drought.

  2. Atmospheric Pb levels over Mount Qomolangma region

    Institute of Scientific and Technical Information of China (English)

    Renjian Zhang; Zhenxing Shen; Han Zou

    2009-01-01

    The Pb spectral concentration of atmospheric aerosol samples observed over Mount Qomolangma site (28°11'33"N, 86°49'59"E, 4950 m ASL) in 2002 was 13.3 ng/m3, about 4.5 times higher than that in 2000. The Pb spectral distribution showed three peaks, located at <0.25 μm, 0.5-1 μm, and 4-8 μm in diameters. The peaks for <0.25 μm and 0.25-0.5 μm may be due to long-distant transport, while that for 4-8 μm probably results from local floating dust. The atmospheric Pb concentration over Mount Qomolangma was lower than that of South Pole, most of the urban areas, and desert areas in the northem hemisphere. The enrichment factors for fine and coarse particles of atmospheric Pb in 2002 over Mount Qomolangma were 413.2 and 62.6, respectively, in support of the slight atmospheric pollution with Pb over the Qinghai-Tibetan Plateau.

  3. Atmospheric oxidation of carbon disulfide (CS2)

    Science.gov (United States)

    Zeng, Zhe; Altarawneh, Mohammednoor; Dlugogorski, Bogdan Z.

    2017-02-01

    This contribution investigates primary steps governing the OH-initiated atmospheric oxidation of CS2. Our approach comprises high-level density functional theory calculation of energies and optimisation of molecular structures as well as RRKM-ME analysis for estimating pressure-dependent reaction rate constants. We find the overall reaction OH + CS2 → OCS + SH too slow to account for the formation of the reported experimental products. The initial reaction of OH with CS2 proceeds to produce an S-adduct, SCS(OH). Species-formation history for the system OH + CS2 indicates that, the S-adduct represents the most plausible product with a barrier-less addition process and a stability amounting to 48.5 kJ/mol, in reference to the separated reactants. This adduct then undergoes a bimolecular reaction with atmospheric O2 yielding OCS and HOSO, rather than dissociating back into its separated reactants. We also find that further atmospheric oxidation of the C-adduct (if formed) yields two of the major experimental products namely OCS and SO2. The kinetic analysis provided in this study explains the atmospheric fate of reduced sulfur species, an important S-bearing group in the global cycle of sulfur.

  4. Submillimeter Planetary Atmospheric Chemistry Exploration Sounder

    Science.gov (United States)

    Schlecht, Erich T.; Allen, Mark A.; Gill, John J.; Choonsup, Lee; Lin, Robert H.; Sin, Seth; Mehdi, Imran; Siegel, Peter H.; Maestrini, Alain

    2013-01-01

    Planetary Atmospheric Chemistry Exploration Sounder (SPACES), a high-sensitivity laboratory breadboard for a spectrometer targeted at orbital planetary atmospheric analysis. The frequency range is 520 to 590 GHz, with a target noise temperature sensitivity of 2,500 K for detecting water, sulfur compounds, carbon compounds, and other atmospheric constituents. SPACES is a prototype for a powerful tool for the exploration of the chemistry and dynamics of any planetary atmosphere. It is fundamentally a single-pixel receiver for spectral signals emitted by the relevant constituents, intended to be fed by a fixed or movable telescope/antenna. Its front-end sensor translates the received signal down to the 100-MHz range where it can be digitized and the data transferred to a spectrum analyzer for processing, spectrum generation, and accumulation. The individual microwave and submillimeter wave components (mixers, LO high-powered amplifiers, and multipliers) of SPACES were developed in cooperation with other programs, although with this type of instrument in mind. Compared to previous planetary and Earth science instruments, its broad bandwidth (approx. =.13%) and rapid tunability (approx. =.10 ms) are new developments only made possible recently by the advancement in submillimeter circuit design and processing at JPL.

  5. Atmospheric Data Package for the Composite Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Napier, Bruce A.; Ramsdell, James V.

    2005-09-01

    The purpose of this data package is to summarize our conceptual understanding of atmospheric transport and deposition, describe how this understanding will be simplified for numerical simulation as part of the Composite Analysis (i.e., implementation model), and finally to provide the input parameters needed for the simulations.

  6. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  7. First Super-Earth Atmosphere Analysed

    Science.gov (United States)

    2010-12-01

    The atmosphere around a super-Earth exoplanet has been analysed for the first time by an international team of astronomers using ESO's Very Large Telescope. The planet, which is known as GJ 1214b, was studied as it passed in front of its parent star and some of the starlight passed through the planet's atmosphere. We now know that the atmosphere is either mostly water in the form of steam or is dominated by thick clouds or hazes. The results will appear in the 2 December 2010 issue of the journal Nature. The planet GJ 1214b was confirmed in 2009 using the HARPS instrument on ESO's 3.6-metre telescope in Chile (eso0950) [1]. Initial findings suggested that this planet had an atmosphere, which has now been confirmed and studied in detail by an international team of astronomers, led by Jacob Bean (Harvard-Smithsonian Center for Astrophysics), using the FORS instrument on ESO's Very Large Telescope. "This is the first super-Earth to have its atmosphere analysed. We've reached a real milestone on the road toward characterising these worlds," said Bean. GJ 1214b has a radius of about 2.6 times that of the Earth and is about 6.5 times as massive, putting it squarely into the class of exoplanets known as super-Earths. Its host star lies about 40 light-years from Earth in the constellation of Ophiuchus (the Serpent Bearer). It is a faint star [2], but it is also small, which means that the size of the planet is large compared to the stellar disc, making it relatively easy to study [3]. The planet travels across the disc of its parent star once every 38 hours as it orbits at a distance of only two million kilometres: about seventy times closer than the Earth orbits the Sun. To study the atmosphere, the team observed the light coming from the star as the planet passed in front of it [4]. During these transits, some of the starlight passes through the planet's atmosphere and, depending on the chemical composition and weather on the planet, specific wavelengths of light are

  8. Martian Atmospheric Pressure Static Charge Elimination Tool

    Science.gov (United States)

    Johansen, Michael R.

    2014-01-01

    A Martian pressure static charge elimination tool is currently in development in the Electrostatics and Surface Physics Laboratory (ESPL) at NASA's Kennedy Space Center. In standard Earth atmosphere conditions, static charge can be neutralized from an insulating surface using air ionizers. These air ionizers generate ions through corona breakdown. The Martian atmosphere is 7 Torr of mostly carbon dioxide, which makes it inherently difficult to use similar methods as those used for standard atmosphere static elimination tools. An initial prototype has been developed to show feasibility of static charge elimination at low pressure, using corona discharge. A needle point and thin wire loop are used as the corona generating electrodes. A photo of the test apparatus is shown below. Positive and negative high voltage pulses are sent to the needle point. This creates positive and negative ions that can be used for static charge neutralization. In a preliminary test, a floating metal plate was charged to approximately 600 volts under Martian atmospheric conditions. The static elimination tool was enabled and the voltage on the metal plate dropped rapidly to -100 volts. This test data is displayed below. Optimization is necessary to improve the electrostatic balance of the static elimination tool.

  9. Atmospheric aerosol light scattering and polarization peculiarities

    CERN Document Server

    Patlashenko, Zh I

    2015-01-01

    This paper considers environmental problems of natural and anthropogenic atmospheric aerosol pollution and its global and regional monitoring. Efficient aerosol investigations may be achieved by spectropolarimetric measurements. Specifically second and fourth Stokes parameters spectral dependencies carry information on averaged refraction and absorption indexes and on particles size distribution functions characteristics.

  10. Upper atmospheric rotation rate from orbit analysis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The rotation speed Λ of the upper atmosphere,mainly at heights of 180-360 km,was evaluated from the changes in orbital inclinations of GFZ. The results indicate that the value of Λ(in rev/d) decreases from 1.2 at 360 km to 0.9 at 180 km.

  11. The low energy atmospheric antiproton albedo

    Science.gov (United States)

    Cole, J. B.; Ormes, J. F.

    1989-01-01

    The flux of albedo antiprotons in the 100-1000 MeV kinetic energy range produced by the cosmic ray primaries in the atmosphere is calculated. It is shown that this is not a significant background to measurements of the low energy anti-proton cosmic ray flux.

  12. Atmospheric energy for subsurface life on Mars?

    Science.gov (United States)

    Weiss, B. P.; Yung, Y. L.; Nealson, K. H.

    2000-01-01

    The location and density of biologically useful energy sources on Mars will limit the biomass, spatial distribution, and organism size of any biota. Subsurface Martian organisms could be supplied with a large energy flux from the oxidation of photochemically produced atmospheric H(2) and CO diffusing into the regolith. However, surface abundance measurements of these gases demonstrate that no more than a few percent of this available flux is actually being consumed, suggesting that biological activity driven by atmospheric H(2) and CO is limited in the top few hundred meters of the subsurface. This is significant because the available but unused energy is extremely large: for organisms at 30-m depth, it is 2,000 times previous estimates of hydrothermal and chemical weathering energy and far exceeds the energy derivable from other atmospheric gases. This also implies that the apparent scarcity of life on Mars is not attributable to lack of energy. Instead, the availability of liquid water may be a more important factor limiting biological activity because the photochemical energy flux can only penetrate to 100- to 1,000-m depth, where most H(2)O is probably frozen. Because both atmospheric and Viking lander soil data provide little evidence for biological activity, the detection of short-lived trace gases will probably be a better indicator of any extant Martian life.

  13. Analyses of Aircraft Responses to Atmospheric Turbulence

    NARCIS (Netherlands)

    Van Staveren, W.H.J.J.

    2003-01-01

    The response of aircraft to stochastic atmospheric turbulence plays an important role in aircraft-design (load calculations), Flight Control System (FCS) design and flight-simulation (handling qualities research and pilot training). In order to simulate these aircraft responses, an accurate mathemat

  14. Modelling stable atmospheric boundary layers over snow

    NARCIS (Netherlands)

    Sterk, H.A.M.

    2015-01-01

    Thesis entitled: Modelling Stable Atmospheric Boundary Layers over Snow H.A.M. Sterk Wageningen, 29th of April, 2015 Summary The emphasis of this thesis is on the understanding and forecasting of the Stable Boundary Layer (SBL) over snow-covered surfaces. SBLs typically form at night and in polar re

  15. Atmospheric hydrogen scavenging: from enzymes to ecosystems.

    Science.gov (United States)

    Greening, Chris; Constant, Philippe; Hards, Kiel; Morales, Sergio E; Oakeshott, John G; Russell, Robyn J; Taylor, Matthew C; Berney, Michael; Conrad, Ralf; Cook, Gregory M

    2015-02-01

    We have known for 40 years that soils can consume the trace amounts of molecular hydrogen (H2) found in the Earth’s atmosphere.This process is predicted to be the most significant term in the global hydrogen cycle. However, the organisms and enzymes responsible for this process were only recently identified. Pure culture experiments demonstrated that several species of Actinobacteria, including streptomycetes and mycobacteria, can couple the oxidation of atmospheric H2 to the reduction of ambient O2. A combination of genetic, biochemical, and phenotypic studies suggest that these organisms primarily use this fuel source to sustain electron input into the respiratory chain during energy starvation. This process is mediated by a specialized enzyme, the group 5 [NiFe]-hydrogenase, which is unusual for its high affinity, oxygen insensitivity, and thermostability. Atmospheric hydrogen scavenging is a particularly dependable mode of energy generation, given both the ubiquity of the substrate and the stress tolerance of its catalyst. This minireview summarizes the recent progress in understanding how and why certain organisms scavenge atmospheric H2. In addition, it provides insight into the wider significance of hydrogen scavenging in global H2 cycling and soil microbial ecology.

  16. Carbonyl sulfide (OCS) in the Archean atmosphere

    DEFF Research Database (Denmark)

    Ueno, Yuichiro; Danielache, Sebastian Oscar; Johnson, Matthew Stanley;

    2009-01-01

    ] and calculated isotope fractionation factor of SO2 photolysis as a function of wavelength. Using these results, we show that the estimated fractionation factors give mass independent distributions and are highly sensitive to the atmospheric concentrations of O2, O3, CO2, H2O, CS2, NH4, N2O, H2S, OCS and SO2...

  17. Atmospheric nitrogen evolution on Earth and Venus

    CERN Document Server

    Wordsworth, R D

    2016-01-01

    Nitrogen is the most common element in Earth's atmosphere and also appears to be present in significant amounts in the mantle. However, its long-term cycling between these two reservoirs remains poorly understood. Here a range of biotic and abiotic mechanisms are evaluated that could have caused nitrogen exchange between Earth's surface and interior over time. In the Archean, biological nitrogen fixation was likely strongly limited by nutrient and/or electron acceptor constraints. Abiotic fixation of dinitrogen becomes efficient in strongly reducing atmospheres, but only once temperatures exceed around 1000 K. Hence if atmospheric N2 levels really were as low as they are today 3.0 - 3.5 Ga, the bulk of Earth's mantle nitrogen must have been emplaced in the Hadean, most likely at a time when the surface was molten. The elevated atmospheric N content on Venus compared to Earth can be explained abiotically by a water loss redox pump mechanism, where oxygen liberated from H2O photolysis and subsequent H loss to s...

  18. Atmospheric Ion-induced Aerosol Nucleation

    Science.gov (United States)

    Curtius, J.; Lovejoy, E. R.; Froyd, K. D.

    2006-08-01

    Ion-induced nucleation has been suggested to be a potentially important mechanism for atmospheric aerosol formation. Ions are formed in the background atmosphere by galactic cosmic rays. A possible connection between galactic cosmic rays and cloudiness has been However, the predictions of current atmospheric nucleation models are highly uncertain because the models are usually based on the liquid drop model that estimates cluster thermodynamics based on bulk properties (e.g., liquid drop density and surface tension). Sulfuric acid (H2SO4) and water are assumed to be the most important nucleating agents in the free troposphere. Measurements of the molecular thermodynamics for the growth and evaporation of cluster ions containing H2SO4 and H2O were performed using a temperature-controlled laminar flow reactor coupled to a linear quadrupole mass spectrometer as well as a temperature-controlled ion trap mass spectrometer. The measurements were complemented by quantum chemical calculations of the cluster ion structures. The analysis yielded a complete set of H2SO4 and H2O binding thermodynamics extending from molecular cluster ions to the bulk, based on experimental thermodynamics for the small clusters. The data were incorporated into a kinetic aerosol model to yield quantitative predictions of the rate of ion-induced nucleation for atmospheric conditions. The model predicts that the negative ion-H2SO4-H2O nucleation mechanism is an efficient source of new particles in the middle and upper troposphere.

  19. Atmospheric degradation mechanism of organic sulfur compounds

    Energy Technology Data Exchange (ETDEWEB)

    Benter, T.; Arsene, C.

    2002-02-01

    In the present work a detailed product study has been performed on the OH radical initiated oxidation of dimethyl sulphide and dimethyl sulphoxide, under different conditions of temperature, partial pressure of oxygen and NO{sub x} concentration, in order to better define the degradation mechanism of the above compounds under conditions which prevail in the atmosphere. (orig.)

  20. Dioxin in the atmosphere of Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Vikelsoee, J.; Hovmand, M.F.; Andersen, Helle V.; Bossi, R.; Johansen, Elsebeth; Chrillesen, M.A.

    2006-03-15

    Occurrence and geographical distribution of dioxin was investigated in air and deposition at selected locations in Denmark, three forest sites in the background area, a city site in Copenhagen and a village site. At two sites simultaneously determination of dioxins concentrations in the ambient atmosphere and bulk precipitation were carried out during a period of three years. (au)

  1. Lidar measured vertical atmospheric scattering profiles

    NARCIS (Netherlands)

    Kunz, G.J.

    1985-01-01

    The vertical structure of the atmosphere, which is of invaluable interest to meteorologists, geo-physicists and environmental researchers, can be measured with LIDAR. A method has been proposed and applied to invert lidar signals from vertical soundings to height resolved scattering coefficients. In

  2. Helium in atmospheres of binary stars

    Energy Technology Data Exchange (ETDEWEB)

    Leushin, V.V. (Rostovskij-na-Donu Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Fiziki)

    The helium abundances were obtained for 25 bright components of binary stars by model atmosphere analysis. The helium abundance for binary stars that lie on the main sequence are larger in the average than in single normal stars. The stars on the Hertzsppung - russel diagram lie at a larger distance from the zero age line than those with normal helium abundance.

  3. Atmospheric Extenction in Solar Tower Plants

    OpenAIRE

    2014-01-01

    Atmospheric attenuation of solar energy between heliostat and receiver in a solar tower plant can vary strongly with site and time - How strong can this loss be? - Which instruments can be used to measure this loss? - How can one connect accessible meteorological parameters with this loss? - Influence on output and design of Tower plants

  4. Numerical simulations of the solar atmosphere

    NARCIS (Netherlands)

    Leenaarts, J.

    2007-01-01

    In this thesis several aspects of the solar atmosphere are investigated using numerical simulations. Simulations and observations of reversed solar granulation are compared. It is concluded that reversed granulation is a hydrodynamical process and is a consequence of convection reversal. Images are

  5. Atmospheric production rate of {sup 36}Cl

    Energy Technology Data Exchange (ETDEWEB)

    Parrat, Y.; Hajdas, W.; Baltensperger, U.; Synal, H.A.; Kubik, P.W.; Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Suter, M. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Using experimental cross sections, a new calculation of the atmospheric production rate of {sup 36}Cl was carried out. A mean production rate of 20 atoms m{sup -2}s{sup -1} was obtained, which is lower than mean {sup 36}Cl deposition rates. (author) 2 figs., 7 refs.

  6. Biopreservation in modified atmosphere packaged vegetables.

    NARCIS (Netherlands)

    Bennik, M.H.J.

    1997-01-01

    Recent trends in food preservation are the use of mild preservation techniques, such as modified atmosphere (MA) packaging and refrigeration, to prolong the shelflife of foods without affecting the fresh character of the product. This has resulted in the development of a new generation of chill stor

  7. Hydrodynamic models of a Cepheid atmosphere

    Science.gov (United States)

    Karp, A. H.

    1975-01-01

    Instead of computing a large number of coarsely zoned hydrodynamic models covering the entire atmospheric instability strip, the author computed a single model as well as computer limitations allow. The implicit hydrodynamic code of Kutter and Sparks was modified to include radiative transfer effects in optically thin zones.

  8. Photosynthesis in Hydrogen-Dominated Atmospheres

    Science.gov (United States)

    Bains, William; Seager, Sara; Zsom, Andras

    2014-01-01

    The diversity of extrasolar planets discovered in the last decade shows that we should not be constrained to look for life in environments similar to early or present-day Earth. Super-Earth exoplanets are being discovered with increasing frequency, and some will be able to retain a stable, hydrogen-dominated atmosphere. We explore the possibilities for photosynthesis on a rocky planet with a thin H2-dominated atmosphere. If a rocky, H2-dominated planet harbors life, then that life is likely to convert atmospheric carbon into methane. Outgassing may also build an atmosphere in which methane is the principal carbon species. We describe the possible chemical routes for photosynthesis starting from methane and show that less energy and lower energy photons could drive CH4-based photosynthesis as compared with CO2-based photosynthesis. We find that a by-product biosignature gas is likely to be H2, which is not distinct from the hydrogen already present in the environment. Ammonia is a potential biosignature gas of hydrogenic photosynthesis that is unlikely to be generated abiologically. We suggest that the evolution of methane-based photosynthesis is at least as likely as the evolution of anoxygenic photosynthesis on Earth and may support the evolution of complex life. PMID:25411926

  9. Toxicity of atmospheric aerosols on marine phytoplankton

    Science.gov (United States)

    Paytan, A.; Mackey, K.R.M.; Chen, Y.; Lima, I.D.; Doney, S.C.; Mahowald, N.; Labiosa, R.; Post, A.F.

    2009-01-01

    Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus.We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere-ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia.

  10. Lightning driven EMP in the upper atmosphere

    Science.gov (United States)

    Rowland, H. L.; Fernsler, R. F.; Huba, J. D.; Bernhardt, P. A.

    1995-01-01

    Large lightning discharges can drive electromagnetic pulses (EMP) that cause breakdown of the neutral atmosphere between 80 and 95 km leading to order of magnitude increases in the plasma density. The increase in the plasma density leads to increased reflection and absorption, and limits the pulse strength that propagates higher into the ionosphere.

  11. ATLID, ESA Atmospheric LIDAR Developement Status

    Directory of Open Access Journals (Sweden)

    do Carmo João Pereira

    2016-01-01

    Full Text Available The ATmospheric LIDAR ATLID[1] is part of the payload of the Earth Cloud and Aerosol Explorer[2] (EarthCARE satellite mission, the sixth Earth Explorer Mission of the European Space Agency (ESA Living Planet Programme. EarthCARE is a joint collaborative satellite mission conducted between ESA and the National Space Development Agency of Japan (JAXA that delivers the Cloud Profiling Radar (CPR instrument. The payload consists of four instruments on the same platform with the common goal to provide a picture of the 3D-dimensional spatial and the temporal structure of the radiative flux field at the top of atmosphere, within the atmosphere and at the Earth’s surface. This paper is presenting an updated status of the development of the ATLID instrument and its subsystem design. The instrument has recently completed its detailed design, and most of its subsystems are already under manufacturing of their Flight Model (FM parts and running specific qualification activities. Clouds and aerosols are currently one of the biggest uncertainties in our understanding of the atmospheric conditions that drive the climate system. A better modelling of the relationship between clouds, aerosols and radiation is therefore amongst the highest priorities in climate research and weather prediction.

  12. The Social Weaving of a Reading Atmosphere

    Science.gov (United States)

    Sequeiros, Paula

    2011-01-01

    This paper discusses how public library readers in Almeida Garrett, Porto, create a reading atmosphere, focusing on meanings associated with aural conditions. Through a qualitative, single case study, ethnographic and interview techniques were applied. Readers' actual practices and discourses, through a theoretical sample, and those of managers,…

  13. Coupled atmosphere-wildland fire modelling

    Directory of Open Access Journals (Sweden)

    Jacques Henri Balbi

    2009-10-01

    Full Text Available Simulating the interaction between fire and atmosphere is critical to the estimation of the rate of spread of the fire. Wildfire’s convection (i.e., entire plume can modify the local meteorology throughout the atmospheric boundary layer and consequently affect the fire propagation speed and behaviour. In this study, we use for the first time the Méso-NH meso-scale numerical model coupled to the point functional ForeFire simplified physical front-tracking wildfire model to investigate the differences introduced by the atmospheric feedback in propagation speed and behaviour. Both numerical models have been developed as research tools for operational models and are currently used to forecast localized extreme events. These models have been selected because they can be run coupled and support decisions in wildfire management in France and Europe. The main originalities of this combination reside in the fact that Méso-NH is run in a Large Eddy Simulation (LES configuration and that the rate of spread model used in ForeFire provides a physical formulation to take into account the effect of wind and slope. Simulations of typical experimental configurations show that the numerical atmospheric model is able to reproduce plausible convective effects of the heat produced by the fire. Numerical results are comparable to estimated values for fire-induced winds and present behaviour similar to other existing numerical approaches.

  14. Atmospheric pressure femtosecond laser imaging mass spectrometry

    Science.gov (United States)

    Coello, Yves; Gunaratne, Tissa C.; Dantus, Marcos

    2009-02-01

    We present a novel imaging mass spectrometry technique that uses femtosecond laser pulses to directly ionize the sample. The method offers significant advantages over current techniques by eliminating the need of a laser-absorbing sample matrix, being suitable for atmospheric pressure sampling, and by providing 10μm resolution, as demonstrated here with a chemical image of vegetable cell walls.

  15. Atmospheric science: Pacific trade wind intensifier

    Science.gov (United States)

    Collier, Mark

    2016-08-01

    The unprecedented recent intensification of the Pacific trade winds cannot simply be explained by natural variability alone. Now research finds that the more local influence of sulfate aerosols of human and volcanic origin play a significant role, in addition to the Pacific's coupling to the Atlantic Ocean via the 'atmospheric bridge'.

  16. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    Energy Technology Data Exchange (ETDEWEB)

    Kaspi, Yohai [Department of Earth and Planetary Sciences, Weizmann Institute of Science, 234 Herzl st., 76100, Rehovot (Israel); Showman, Adam P., E-mail: yohai.kaspi@weizmann.ac.il [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, 1629 University Blvd., Tucson, AZ 85721 (United States)

    2015-05-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate.

  17. Atmospheric deposition of organic carbon via precipitation

    Science.gov (United States)

    Iavorivska, Lidiia; Boyer, Elizabeth W.; DeWalle, David R.

    2016-12-01

    Atmospheric deposition is the major pathway for removal of organic carbon (OC) from the atmosphere, affecting both atmospheric and landscape processes. Transfers of OC from the atmosphere to land occur as wet deposition (via precipitation) and as dry deposition (via surface settling of particles and gases). Despite current understanding of the significance of organic carbon inputs with precipitation to carbon budgets, transfers of organic matter between the atmosphere and land are not explicitly included in most carbon cycle models due to limited data, highlighting the need for further information. Studies regarding the abundance of OC in precipitation are relatively sparse, in part due to the fact that concentrations of organics in precipitation and their associated rates of atmospheric deposition are not routinely measured as a part of major deposition monitoring networks. Here, we provide a new data synthesis from 83 contemporary studies published in the peer reviewed literature where organic matter in precipitation was measured around the world. We compiled data regarding the concentrations of organic carbon in precipitation and associated rates of atmospheric deposition of organic carbon. We calculated summary statistics in a common set of units, providing insights into the magnitude and regional variability of OC in precipitation. A land to ocean gradient is evident in OC concentrations, with marine sites generally showing lower values than continental sites. Our synthesis highlights gaps in the data and challenges for data intercomparison. There is a need to concentrate sampling efforts in areas where anthropogenic OC emissions are on the rise (Asia, South America), as well as in remote sites suggesting background conditions, especially in Southern Hemisphere. It is also important to acquire more data for marine rainwater at various distances from the coast in order to assess a magnitude of carbon transfer between the land and the ocean. Our integration of

  18. Recent developments of atmospheric research in Ukraine

    Science.gov (United States)

    Milinevsky, G. P.; Danylevsky, V. O.; Grytsai, A. V.; Evtushevsky, O. M.; Kravchenko, V. O., Bovchaliuk, A. P.; Bovchaliuk, V. P.; Sosonkin, M. G.; Goloub, Ph.; Savitska, L. Y.; Udodov, E. V.; Voytenko, V. P.

    2012-11-01

    In recent years the Joint Laboratory of Atmospheric Optics and Aerosols of Ukraine has been carrying out atmospheric research in cooperation with international program of climate change studies. Our current research is aimed at studying aerosol and ozone in the Earth's atmosphere, because these constituents have a substantial influence on climate. In Ukraine, atmospheric aerosol remote sensing in the PHOTONS/AERONET network has been carried out since 2006 in Sevastopol and 2008 in Kyiv. For this research, sunphotometers CIMEL CE318 have been used. A mobile AERONET station has been developed, which consists of CE318N and portable Microtops II sunphotometers, as well as two self-designed experimental portable sunphotometer models and an ozonometer for aerosol and ozone study. The team's findings on aerosol spectral optical thickness, as well as optical and physical properties of aerosol particles (single-scattering albedo, distribution of particles by sizes, Ångström exponent), are discussed in the paper. In 2010, upon the establishment of the new regional atmospheric research station Nr.498 Kyiv-Goloseyev, the team commenced with measurements of the total column density and vertical distribution of ozone, using the Dobson D040 spectrophotometer, in the framework of the Global Atmosphere Watch Program of WMO. The station has also been equipped with a Vaisala automatic weather station, a surface ozone 49i analyzer, and an experimental complex for monitoring secondary space rays. The aerosol and ozone measurements have been continuously submitted to data centres of AERONET (http://aeronet.gsfc.nasa.gov/) and WMO (www.woudc.org/data/). For aerosol and ozone research, the data from satellite sources (POLDER, MODIS, OMI, and SCIAMACHY) have also been analysed. The work on a proposal to design, build, and launch the space radiometer/polarimeter for global monitoring of atmospheric aerosols has commenced recently. This instrument should have the capability of

  19. Attributing Atmospheric Methane to Anthropogenic Emission Sources.

    Science.gov (United States)

    Allen, David

    2016-07-19

    Methane is a greenhouse gas, and increases in atmospheric methane concentration over the past 250 years have driven increased radiative forcing of the atmosphere. Increases in atmospheric methane concentration since 1750 account for approximately 17% of increases in radiative forcing of the atmosphere, and that percentage increases by approximately a factor of 2 if the effects of the greenhouse gases produced by the atmospheric reactions of methane are included in the assessment. Because of the role of methane emissions in radiative forcing of the atmosphere, the identification and quantification of sources of methane emissions is receiving increased scientific attention. Methane emission sources include biogenic, geogenic, and anthropogenic sources; the largest anthropogenic sources are natural gas and petroleum systems, enteric fermentation (livestock), landfills, coal mining, and manure management. While these source categories are well-known, there is significant uncertainty in the relative magnitudes of methane emissions from the various source categories. Further, the overall magnitude of methane emissions from all anthropogenic sources is actively debated, with estimates based on source sampling extrapolated to regional or national scale ("bottom-up analyses") differing from estimates that infer emissions based on ambient data ("top-down analyses") by 50% or more. To address the important problem of attribution of methane to specific sources, a variety of new analytical methods are being employed, including high time resolution and highly sensitive measurements of methane, methane isotopes, and other chemical species frequently associated with methane emissions, such as ethane. This Account describes the use of some of these emerging measurements, in both top-down and bottom-up methane emission studies. In addition, this Account describes how data from these new analytical methods can be used in conjunction with chemical mass balance (CMB) methods for source

  20. Temperature Swings in a Hot Jupiter's Atmosphere

    Science.gov (United States)

    Kohler, Susanna

    2016-04-01

    Weather variations in the atmosphere of a planet on a highly eccentric orbit are naturally expected to be extreme. Now, a study has directly measured the wild changes in the atmosphere of a highly eccentric hot Jupiter as it passes close to its host star.Diagram of the HD 80606 system. The inset images labeled AH show the temperature distribution of the planet at different stages as it swings around its star. [de Wit et al. 2016]Eccentric OpportunityFor a hot Jupiter a gas giant that orbits close to its host star the exoplanet HD 80606 b exhibits a fairly unusual path. Rather than having a circularized orbit, HD 80606 b travels on an extremely elliptic 111-day orbit, with an eccentricity of e ~ 0.93. Since the amount of flux HD 80606 b receives from its host varies by a factor of ~850 over the course of its orbit, it stands to reason that this planet must have extreme weather swings!Now a team of scientists led by Julien de Wit (Massachusetts Institute of Technology) has reanalyzed old observations of HD 80606 and obtained new ones using the Spitzer Space Telescope. The longer observing time and new data analysis techniques allowed the team to gain new insights into how the exoplanets atmosphere responds to changes in the stellar flux it receives during its orbit.Extreme VariationsBy measuring the infrared light coming from HD 80606, de Wit and collaborators modeled the planets temperature during 80 hours of its closest approach to its host star. This period of time included the ~20 hours in which most of the planets temperature change is expected to occur, as it approaches to a distance a mere 6 stellar radii from its host.The authors find that the layer of the atmosphere probed by Spitzer heats rapidly from 500K to 1400K (thats ~440F to a scalding 2000+F!) as the planet approaches periastron.The atmosphere then cools similarly quickly as the planet heads away from the star once more.Relative infrared brightness of HD 80606 b at 4.5 and 8 m. The dip marks where

  1. Estimate Total Number of the Earth Atmospheric Particle with Standard Atmosphere Model

    Institute of Scientific and Technical Information of China (English)

    GAO Chong-Yi

    2001-01-01

    The total number of atmospheric particle (AP) is an important datum for planetary science and geoscience.Estimating entire AP number is also a familiar question in general physics.With standard atmosphere model,considering the number difference of AP caused by rough and uneven in the earth surface below,the sum of dry clean atmosphere particle is 1.06962 × 1044.So the whole number of AP including water vapor is 1.0740 × 1044.The rough estimation for the total number of AP on other planets (or satellites) in condensed state is also discussed on the base of it.

  2. STUDYING ATMOSPHERE-DOMINATED HOT JUPITER KEPLER PHASE CURVES: EVIDENCE THAT INHOMOGENEOUS ATMOSPHERIC REFLECTION IS COMMON

    Energy Technology Data Exchange (ETDEWEB)

    Shporer, Avi; Hu, Renyu [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2015-10-15

    We identify three Kepler transiting planets, Kepler-7b, Kepler-12b, and Kepler-41b, whose orbital phase-folded light curves are dominated by planetary atmospheric processes including thermal emission and reflected light, while the impact of non-atmospheric (i.e., gravitational) processes, including beaming (Doppler boosting) and tidal ellipsoidal distortion, is negligible. Therefore, those systems allow a direct view of their atmospheres without being hampered by the approximations used in the inclusion of both atmospheric and non-atmospheric processes when modeling the phase-curve shape. We present here the analysis of Kepler-12b and Kepler-41b atmosphere based on their Kepler phase curve, while the analysis of Kepler-7b was already presented elsewhere. The model we used efficiently computes reflection and thermal emission contributions to the phase curve, including inhomogeneous atmospheric reflection due to longitudinally varying cloud coverage. We confirm Kepler-12b and Kepler-41b show a westward phase shift between the brightest region on the planetary surface and the substellar point, similar to Kepler-7b. We find that reflective clouds located on the west side of the substellar point can explain the phase shift. The existence of inhomogeneous atmospheric reflection in all three of our targets, selected due to their atmosphere-dominated Kepler phase curve, suggests this phenomenon is common. Therefore, it is also likely to be present in planetary phase curves that do not allow a direct view of the planetary atmosphere as they contain additional orbital processes. We discuss the implications of a bright-spot shift on the analysis of phase curves where both atmospheric and gravitational processes appear, including the mass discrepancy seen in some cases between the companion’s mass derived from the beaming and ellipsoidal photometric amplitudes. Finally, we discuss the potential detection of non-transiting but otherwise similar planets, whose mass is too

  3. Fluid Atmospheres of Cool White Dwarfs

    Science.gov (United States)

    Kowalski, P.

    2004-05-01

    We investigate quantitatively for the first time the dense fluid effects in the surface layers of very cool white dwarf stars. In general, the gas is so tenuous in stellar atmospheres that non-ideal gas effects are negligible. One important exception are the atmospheres of cool white dwarfs, especially those rich in helium, where temperature varies from 1000K to 10000K, the densities reach values as large as 2 \\ g/cm3, and pressure is as high as 1 \\ Mbar. Under such conditions, the atmosphere is no longer an ideal gas, but must be treated as a dense fluid. New physical effects occur. Helium atoms become strongly correlated and refraction effects are present. Opacity sources, such as He- free-free absorption, require different treatment from diluted gases. The refractive index departs from unity and can be as large as 1.35. We present the first solution of the radiative transfer in refractive atmospheres of cool white dwarfs. The importance of total internal reflection is discussed. We find that through the constraint of the radiative equilibrium, the total internal reflection warms the white dwarf atmosphere in optically thin surface regions. Strong curvature of rays results in a much weakened limb darkening effect. This preliminary result suggests that dense fluid effects may have a significant impact on studies of very cool white dwarf stars. This research was supported by NSF grant AST97-31438, NASA grant NAG5-8906, and by the United States Department of Energy under contract W-7405-ENG-36.

  4. Atmospheric Gaseous Plasma with Large Dimensions

    Science.gov (United States)

    Korenev, Sergey

    2012-10-01

    The forming of atmospheric plasma with large dimensions using electrical discharge typically uses the Dielectric Barrier Discharge (DBD). The study of atmospheric DBD was shown some problems related to homogeneous volume plasma. The volume of this plasma determines by cross section and gas gap between electrode and dielectric. The using of electron beam for volume ionization of air molecules by CW relativistic electron beams was shown the high efficiency of this process [1, 2]. The main advantage of this approach consists in the ionization of gas molecules by electrons in longitudinal direction determines by their kinetic energy. A novel method for forming of atmospheric homogeneous plasma with large volume dimensions using ionization of gas molecules by pulsed non-relativistic electron beams is presented in the paper. The results of computer modeling for delivered doses of electron beams in gases and ionization are discussed. The structure of experimental bench with plasma diagnostics is considered. The preliminary results of forming atmospheric plasma with ionization gas molecules by pulsed nanosecond non-relativistic electron beam are given. The analysis of potential applications for atmospheric volume plasma is presented. Reference: [1] S. Korenev. ``The ionization of air by scanning relativistic high power CW electron beam,'' 2002 IEEE International Conference on Plasma Science. May 2002, Alberta, Canada. [2] S. Korenev, I. Korenev. ``The propagation of high power CW scanning electron beam in air.'' BEAMS 2002: 14th International Conference on High-Power Particle Beams, Albuquerque, New Mexico (USA), June 2002, AIP Conference Proceedings Vol. 650(1), pp. 373-376. December 17.

  5. The Atmospheric Fate of Organic Nitrogen Compounds

    Science.gov (United States)

    Borduas, Nadine

    Organic nitrogen compounds are present in our atmosphere from biogenic and anthropogenic sources and have impacts on air quality and climate. Due to recent advances in instrumentation, these compounds are being detected in the gas and particle phases, raising questions as to their source, processing and sinks in the environment. With their recently identified role as contributors to aerosol formation and growth, their novel large scale use as solvents in carbon capture and storage (CCS) technology and their emissions from cigarette smoke, it is now important to address the gaps in our understanding of the fate of organic nitrogen. Experimentally and theoretically, I studied the chemical atmospheric fate of specific organic nitrogen compounds in the amine, amide and isocyanate families, yielding information that can be used in chemical transport models to assess the fate of this emerging class of atmospheric molecules. I performed kinetic laboratory studies in a smog chamber to measure the room temperature rate coefficient for reaction with the hydroxyl radical of monoethanolamine, nicotine, and five different amides. I employed online-mass spectrometry techniques to quantify the oxidation products. I found that amines react quickly with OH radicals with lifetimes of a few hours under sunlit conditions, producing amides as oxidation products. My studies on amides revealed that they have much longer lifetimes in the atmosphere, ranging from a few hours to a week. Photo-oxidation of amides produces isocyanates and I investigated these mechanisms in detail using ab initio calculations. Furthermore, I experimentally measured isocyanic acid's Henry's Law constant as well as its hydrolysis rate constants to better understand its sinks in the atmosphere. Finally, I re-examined the structure-activity relationship (SAR) of organic nitrogen molecules for improved model parameterizations.

  6. Assimilating atmosphere reanalysis in coupled data assimilation

    Science.gov (United States)

    Liu, Huaran; Lu, Feiyu; Liu, Zhengyu; Liu, Yun; Zhang, Shaoqing

    2016-06-01

    This paper tests the idea of substituting the atmospheric observations with atmospheric reanalysis when setting up a coupled data assimilation system. The paper focuses on the quantification of the effects on the oceanic analysis resulted from this substitution and designs four different assimilation schemes for such a substitution. A coupled Lorenz96 system is constructed and an ensemble Kalman filter is adopted. The atmospheric reanalysis and oceanic observations are assimilated into the system and the analysis quality is compared to a benchmark experiment where both atmospheric and oceanic observations are assimilated. Four schemes are designed for assimilating the reanalysis and they differ in the generation of the perturbed observation ensemble and the representation of the error covariance matrix. The results show that when the reanalysis is assimilated directly as independent observations, the root-mean-square error increase of oceanic analysis relative to the benchmark is less than 16% in the perfect model framework; in the biased model case, the increase is less than 22%. This result is robust with sufficient ensemble size and reasonable atmospheric observation quality (e.g., frequency, noisiness, and density). If the observation is overly noisy, infrequent, sparse, or the ensemble size is insufficiently small, the analysis deterioration caused by the substitution is less severe since the analysis quality of the benchmark also deteriorates significantly due to worse observations and undersampling. The results from different assimilation schemes highlight the importance of two factors: accurate representation of the error covariance of the reanalysis and the temporal coherence along each ensemble member, which are crucial for the analysis quality of the substitution experiment.

  7. Paranoid atmospheres: Psychiatric knowledge and delusional realities

    Directory of Open Access Journals (Sweden)

    Schlimme Jann E

    2009-09-01

    Full Text Available Abstract In this paper I investigate the topic of paranoid atmospheres. This subject is especially of interest with respect to persons who are deluded, and also, I will demonstrate, sheds light upon the psychiatrist's "gaze" and knowledge of delusions. In my argument I will follow a path initially outlined by Karl Jaspers (1883-1969: modern psychiatric diagnosis of delusions is a diagnosis of form and not content. Jaspers' emphasis on the form of delusions enables psychiatrists to be self-critical about their professional knowledge and, consequently, prevent the development of dogmatic attitudes. In accord with Jaspers, my argument will focus on the basic structure of delusions and highlight the difference between delusional realities and non-delusional realities, a difference that follows from the possibility of self-criticism of one's own conscious and explicit convictions. I will demonstrate the importance of self-criticism with regard to paranoid atmospheres and also to psychiatric knowledge. In this manner, an understanding of delusions as lived experience will be developed, which argues that an escalation of the influence of delusional convictions, resulting in a profoundly paranoid atmosphere, is most problematic for the deluded person. To acknowledge this insight mirrors the need for a self-critique of psychiatric discourse, encourages an empathic and respectful relationship between professionals and deluded patients, and enables deluded persons to restrict their paranoid atmosphere. It is the main conclusion of my paper that a deluded person cannot do (with respect to his delusional convictions what a psychiatrist must do (with respect to his psychiatric knowledge and his own existential convictions in order to prevent a profoundly paranoid atmosphere in their relationship: be self-critical.

  8. Atmospheric Constraints on Landing Site Selection

    Science.gov (United States)

    Kass, David M.; Schofield, J. T.

    2001-01-01

    The Martian atmosphere is a significant part of the environment that the Mars Exploration Rovers (MER) will encounter. As such, it imposes important constraints on where the rovers can and cannot land. Unfortunately, as there are no meteorological instruments on the rovers, there is little atmospheric science that can be accomplished, and no scientific preference for landing sites. The atmosphere constrains landing site selection in two main areas, the entry descent and landing (EDL) process and the survivability of the rovers on the surface. EDL is influenced by the density profile and boundary layer winds (up to altitudes of 5 to 10 km). Surface survivability involves atmospheric dust, temperatures and winds. During EDL, the atmosphere is used to slow the lander down, both ballistically and on the parachute. This limits the maximum elevation of the landing site to -1.3 km below the MOLA reference aeroid. The landers need to encounter a sufficiently dense atmosphere to be able to stop, and the deeper the landing site, the more column integrated atmosphere the lander can pass through before reaching the surface. The current limit was determined both by a desire to be able to reach the hematite region and by a set of atmosphere models we developed for EDL simulations. These are based on Thermal Emission Spectrometer (TES) atmospheric profile measurements, Ames Mars General Circulation Model (MGCM) results, and the 1-D Ames GCM radiative/convective model by J. Murphy. The latter is used for the near surface diurnal cycle. The current version of our model encompasses representative latitude bands, but we intend to make specific models for the final candidate landing sites to insure that they fall within the general envelope. The second constraint imposed on potential landing sites through the EDL process is the near surface wind. The wind in the lower approximately 5 km determines the horizontal velocity that the landers have when they land. Due to the mechanics of

  9. Condensation: Passenger Not Driver in Atmospheric Thermodynamics

    Directory of Open Access Journals (Sweden)

    Jack Denur

    2016-11-01

    Full Text Available The second law of thermodynamics states that processes yielding work or at least capable of yielding work are thermodynamically spontaneous, and that those costing work are thermodynamically nonspontaneous. Whether a process yields or costs heat is irrelevant. Condensation of water vapor yields work and hence is thermodynamically spontaneous only in a supersaturated atmosphere; in an unsaturated atmosphere it costs work and hence is thermodynamically nonspontaneous. Far more of Earth’s atmosphere is unsaturated than supersaturated; based on this alone evaporation is far more often work-yielding and hence thermodynamically spontaneous than condensation in Earth’s atmosphere—despite condensation always yielding heat and evaporation always costing heat. Furthermore, establishment of the unstable or at best metastable condition of supersaturation, and its maintenance in the face of condensation that would wipe it out, is always work-costing and hence thermodynamically nonspontaneous in Earth’s atmosphere or anywhere else. The work required to enable supersaturation is most usually provided at the expense of temperature differences that enable cooling to below the dew point. In the case of most interest to us, convective weather systems and storms, it is provided at the expense of vertical temperature gradients exceeding the moist adiabatic. Thus, ultimately, condensation is a work-costing and hence thermodynamically nonspontaneous process even in supersaturated regions of Earth’s or any other atmosphere. While heat engines in general can in principle extract all of the work represented by any temperature difference until it is totally neutralized to isothermality, convective weather systems and storms in particular cannot. They can extract only the work represented by partial neutralization of super-moist-adiabatic lapse rates to moist-adiabaticity. Super-moist-adiabatic lapse rates are required to enable convection of saturated air

  10. Wet precipitation scavenging of soluble atmospheric trace gases due to chemical absorption in inhomogeneous atmosphere

    Science.gov (United States)

    Elperin, Tov; Fominykh, Andrew; Krasovitov, Boris

    2017-02-01

    We analyze the effects of irreversible chemical reactions of the first and higher orders and aqueous-phase dissociation reactions on the rate of trace gas scavenging by rain in the atmosphere with non-uniform concentration and temperature. We employ an one-dimensional model of precipitation scavenging of chemically active soluble gaseous pollutants that is valid for small gradients of temperature and concentration in the atmosphere. It is demonstrated that transient altitudinal distribution of concentration under the influence of rain is determined by the partial hyperbolic differential equation of the first order. Scavenging coefficients are calculated for wet removal of chlorine, nitrogen dioxide and sulfur dioxide for the exponential and linear initial altitudinal distributions of trace gases concentration in the atmosphere and linear and uniform altitudinal temperature distributions. Theoretical predictions of the dependence of the magnitude of the scavenging coefficient on rain intensity for sulfur dioxide are in a good agreement with the available atmospheric measurements.

  11. Atmospheric dynamics of terrestrial exoplanets over a wide range of orbital and atmospheric parameters

    CERN Document Server

    Kaspi, Yohai

    2014-01-01

    The recent discoveries of terrestrial exoplanets and super Earths extending over a broad range of orbital and physical parameters suggests that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone---including transitions to Snowball-like states and runaway-greenhouse feedbacks---depend on the equator-to-pole temperature differences, pattern of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model (GCM) including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, planetary mass,...

  12. Investigation of the influence of atmospheric stability and turbulence on land-atmosphere exchange

    Science.gov (United States)

    Osibanjo, O.; Holmes, H.

    2015-12-01

    Surface energy fluxes are exchanged between the surface of the earth and the atmosphere and impact weather, climate, and air quality. The radiation from the sun triggers the surface-atmosphere interaction during the day as heat is transmitted to the surface and the surface heats the air directly above generating wind (i.e., thermal turbulence) that transports heat, moisture, and momentum in the atmospheric boundary layer (ABL). This process is impacted by greenhouse gasses (i.e., water vapor, carbon dioxide and other trace gases) that absorb heat emitted by the earth's surface. The concentrations of atmospheric greenhouse gasses are increasing leading to changes in ABL dynamics as a result of the changing surface energy balance. The ABL processes are important to characterize because they are difficult to parameterize in global and regional scale atmospheric models. Empirical data can be collected using eddy covariance micrometeorological methods to measure turbulent fluxes (e.g., sensible heat, moisture, and CO2) and quantify the exchange between the surface and the atmosphere. The objective of this work is to calculate surface fluxes using observational data collected during one week in September 2014 from a monitoring site in Echo, Oregon. The site is located in the Columbia Basin with rolling terrain, irrigated farmland, and over 100 wind turbines. The 10m tower was placed in a small valley depression to isolate nighttime cold air pools. This work will present observations of momentum, sensible heat, moisture, and carbon dioxide fluxes from data collected at a sampling frequency of 10Hz at four heights. Atmospheric stability is determined using Monin-Obukov length and flux Richardson number, and the impact of stability on surface-atmosphere exchange is investigated. This work will provide a better understanding of surface fluxes and mixing, particularly during stable ABL periods, and the results can be used to compare with numerical models.

  13. ESA's atmospheric composition and dynamics mission

    Science.gov (United States)

    Fehr, Thorsten; Laur, Henri; Hoersch, Bianca; Ingmann, Paul; Wehr, Tobias; Langen, Joerg; Veihelmann, Ben

    For almost 15 years, ESA is providing atmospheric chemistry and composition information to the user community. In 1995, this commitment started with the GOME instrument on-board ERS-2. This mission was continued and extended with the GOMOS, MIPAS and SCIAMACHY instruments on-board of ENVISAT launched in 2002. ESA is prepared to continue Envisat through 2013 in the frame of the mission extension. To respond to GMES requirements, ESA develops the Sentinel 5 Precursor mission to be launched in 2014, to continue and improve the European measurement capabilities initiated with GOME and SCIAMACHY, and continued with EUMETSAT's GOME-2 and the Dutch OMI instrument on the NASA Aura platform. In addition the Sentinel 4 and 5 missions are prepared, further improving the monitoring capabilities with geostationary observation capabilities and continuing the Low Earth Orbit Sentinel 5 Precursor well beyond 2025. At the same time, ESA is preparing two atmospheric Earth Explorer Missions. With ADM-Aeolus, a novel lidar system for the retrieval of wind speed vectors from space is being developed and planned to be launched in 2012. EarthCARE will investigate the Clouds-Aerosol-radiation-interaction with a lidar, cloud radar (provided by JAXA), multi-spectral imager and broad band radiometric instruments collocated on one platform. A major goal is the development of synergistic retrievals exploiting information from different sensors in one algorithm. The mission is planned to start in 2014. In parallel the Phase A studies for the ESA Earth Explorer 7 are ongoing. One of the three candidate missions is PREMIER, an infrared limb-imaging spectrometer and millimetre-wave limb-sounder planned to be launched in 2016. In addition the call of ideas for the Earth Explorer 8 has been published and the corresponding Letters of Intend have been received, including a number of proposals for mission in the atmospheric composition and dynamics domain. At the same time, the access to ESA Third

  14. Atmospheric Profiling Snthetic observation System(APSOS) - a system for whole atmosphere, purpose and preliminary observation

    Science.gov (United States)

    Lu, Daren; Pan, Weilin; Wang, Yinan

    2016-07-01

    To understand the vertical coupling processes between the troposphere, stratosphere, mesosphere and lower thermosphere with high vertical resolution and temporal resolution, an observation system consisted of multi-lidars, a W-band Doppler radar, and a THz spectrometer has been developing starting from 2012. This system is developed to observer the multiple atmospheric parameters, include high clouds, aerosols, CO2, SO2, NO2, water vapor, ozone, atmospheric temperature and wind, sodium atomic layer, in different height ranges, with vertical resolution of tens to hundreds meters and temporal resolution of several to tens minutes. In addition, the simultaneous observation with high cloud radar will enhance the ability of quantitative retrieval of middle and upper atmospheric observation with combined retrieval of cloud micro-physical characteristics and other atmospheric parameters above the cloud layer. As the cirrus cloud occupied about 50% of earth coverage, this ability will increase the whole atmosphere observation ability obviously. During last 5 years. We have finished each unit of the system and have revealed their targets separately. Temperature profile has been observed from 30 to 110 km, ozone up to 50 km, etc. In spring of 2016, we will have preliminary integrated observation in Eastern China, the Huainan Observatory of the Institute of Atmospheric Physics, CAS. In the end of 2016, the system will be implemented at Yangbajing Cosmic Ray Observatory, CAS, near Lasa, Tibetan Plateau. Some preliminary results from Huainan observation will be presented in this presentation. This project is founded by NSFC.

  15. Exact results in modeling planetary atmospheres-II. Semi-gray atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Rutily, B. [Universite de Lyon, F-69003 Lyon (France); Universite Lyon 1, Observatoire de Lyon, 9 avenue Charles Andre, F-69230 Saint-Genis-Laval (France); CNRS, UMR 5574, Centre de Recherche Astrophysique de Lyon (France); Ecole Normale Superieure de Lyon, F-69007 Lyon (France); Chevallier, L. [Observatoire de Paris-Meudon, Laboratoire LUTH, 5 Place Jules Janssen, 92195 Meudon cedex (France); Pelkowski, J. [Institut fuer Atmosphaere und Umwelt, J.W. Goethe Universitaet Frankfurt, Campus Riedberg, Altenhaferallee 1, D-60438 Frankfurt a.M. (Germany)], E-mail: Pelkowski@meteor.uni-frankfurt.de; Bergeat, J. [Universite de Lyon, F-69003 Lyon (France); Universite Lyon 1, Observatoire de Lyon, 9 avenue Charles Andre, F-69230 Saint-Genis-Laval (France); CNRS, UMR 5574, Centre de Recherche Astrophysique de Lyon (France); Ecole Normale Superieure de Lyon, F-69007 Lyon (France)

    2008-01-15

    We solve the radiative transfer equation for a semi-gray planetary atmosphere in radiative equilibrium, in an attempt to define an entirely analytical non-gray model atmosphere of finite optical thickness. The salient feature of the model is that the incident solar radiation is partitioned between two adjacent spectral domains-the 'visible' and the 'infrared'-in each of which the atmosphere's (effective) opacity is assumed to be independent of frequency (the semi-gray assumption). We envisage a plane-parallel atmosphere illuminated by a beam of parallel radiation and bounded below by a partially reflecting and emitting ground. The former emits infrared radiation, induced by the absorption of radiation both visible and infrared, deriving from the external irradiation as well as from the emission of the planet's surface layer. For an atmosphere with given single-scattering albedos and optical thicknesses in both the visible and infrared domains, we compute the temperature at every depth of the atmosphere, as well as the ground's temperature.

  16. Dispersion of effluents in the atmosphere; Dispersion des effluents dans l`atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This conference day was organized by the `convection` section of the French association of thermal engineers with the support of the environment and energy mastery agency (ADEME). This book of proceedings contains 10 papers entitled: `physical modeling of atmospheric dispersion in wind tunnels. Some industrial examples`; `modeling of the noxious effects of a fire on the environment of an industrial site: importance of thermal engineering related hypotheses`; `atmospheric diffusion of a noxious cloud: fast evaluation method of safety areas around refrigerating installations that use ammonia`; `modeling of atmospheric flows in urban areas in order to study the dispersion of pollutants`; `use of a dispersion parameter to characterize the evolution of a diffusion process downstream of a linear source of passive contaminant placed inside a turbulent boundary layer`; `elements of reflexion around the development of an analytical methodology applied to the elaboration of measurement strategies of air quality in ambient and outdoor atmospheres around industrial sites`; `state-of-the-art about treatment techniques for VOC-rich gaseous effluents`; `characteristics of the time variation of the atmospheric pollution in the Paris region and visualization of its space distribution`; `mass-spectrometry for the measurement of atmospheric pollutants`; `volume variations in natural convection turbulence`. (J.S.)

  17. Atmospheric dispersion effects in weak lensing measurements

    CERN Document Server

    Plazas, Andrés A

    2012-01-01

    The wavelength dependence of atmospheric refraction causes elongation of finite-bandwidth images along the elevation vector, which produces spurious signals in weak gravitational lensing shear measurements unless this atmospheric dispersion is calibrated and removed to high precision. Because astrometric solutions and point spread function (PSF) characteristics are typically calibrated from stellar images, differences between the reference stars' spectra and the galaxies' spectra will leave residual errors in both the astrometric positions ($\\Delta{\\bar{R}}$) and in the second moment (width) of the wavelength-averaged PSF ($\\Delta{v}$) for galaxies. We estimate the level of $\\Delta{V}$ that will induce spurious weak lensing signals in PSF-corrected galaxy shapes that exceed the statistical errors of the {\\em Dark Energy Survey (DES)} and the {\\em Large Synoptic Survey Telescope (LSST)} cosmic-shear experiments. We also estimate the $\\Delta{\\bar{R}}$ signals that will produce unacceptable spurious distortions ...

  18. Atmospheric neutrino oscillations for earth tomography

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Walter

    2016-04-05

    Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can measure the lower mantle density of the earth with a precision at the level of a few percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.

  19. Compensation for atmospheric effects in LANDSAT data

    Science.gov (United States)

    Lambeck, P. F.; Potter, J. F. (Principal Investigator)

    1979-01-01

    Preprocessing algorithms were developed to remove or reduce the variations in multispectral data caused by variations in Sun angle and by changes in the atmospheric aerosol and water vapor levels. The two most significant algorithms developed by using mathematical models to define interrelations between the required multiplicative and additive correction factors so that just a few statistical characteristics of a LANDSAT distribution model would be sufficient to drive the mathematical model and to calculate the preprocessing corrections are examined. These are the atmospheric correction (ATCOR) computer program and the XSTAR haze correction algorithm. Neither the ATCOR nor the XSTAR algorithm provides an explicit compensation for the effects of changing LANDSAT view angle. Development efforts are underway to address this aspect of the preprocessing problem.

  20. Atmospheric type modes in laser fusion targets

    Science.gov (United States)

    Scannapieco, A. J.

    1981-09-01

    The fluid stability of laser-fusion targets is considered as a stability problem of a pseudo-planetary atmosphere. Three atmospheric type modes are studied; acoustic, gravity, and Lamb modes. The changing character (i.e., growing, oscillatory, or growing-oscillatory) of each is investigated as a function of the density-gradient scale length H of the fluid. A growing class of modes is found which is distinct from the gravity (i.e., Taylor) mode if a gradient in entropy exists in the fluid. These modes are shown to be overstable Lamb modes. Also, the gravity mode is only stable for a distinct band of values of H. These values, at which the density and Lamb modes change character, are derived from the dispersion relation for the modes. Finally, the consequences for laser targets are discussed.

  1. Propagation of Microwaves Thought Atmospheric Environment

    Directory of Open Access Journals (Sweden)

    Miroslav Kocifaj

    2004-01-01

    Full Text Available Wireless microwave systems tend to have high availability figures, but at the expense of the ability to operate at higher data rates. A quality of free space communication depends on atmospheric conditions. It is shown that microwave attenuation reacts sensitively on changes of changes of hydrometeor size distribution. However, a signal transmission is also significantly affected by both, refractive index and shape of hydrometeors. Non-spherical particles attenuate radiation at frequencies higher than about 200 GHz more effectively than volume equivalent spheres. On the other hand, the non-spherical ice phase hydrometeors form weakly attenuating media at v < 150 GHz. The quality of microwave signal transmission thought icy cloud is therefore much better as when the communication path is realized through rainy atmosphere (the particle sizes are assumed to be the same in both cases.

  2. Clustering of Aerosols in Atmospheric Turbulent Flow

    CERN Document Server

    Elperin, T; L'vov, V; Liberman, M A; Rogachevskii, I

    2007-01-01

    A mechanism of formation of small-scale inhomogeneities in spatial distributions of aerosols and droplets associated with clustering instability in the atmospheric turbulent flow is discussed. The particle clustering is a consequence of a spontaneous breakdown of their homogeneous space distribution due to the clustering instability, and is caused by a combined effect of the particle inertia and a finite correlation time of the turbulent velocity field. In this paper a theoretical approach proposed in Phys. Rev. E 66, 036302 (2002) is further developed and applied to investigate the mechanisms of formation of small-scale aerosol inhomogeneities in the atmospheric turbulent flow. The theory of the particle clustering instability is extended to the case when the particle Stokes time is larger than the Kolmogorov time scale, but is much smaller than the correlation time at the integral scale of turbulence. We determined the criterion of the clustering instability for the Stokes number larger than 1. We discussed...

  3. Reconciling atmospheric temperatures in the early Archean

    DEFF Research Database (Denmark)

    Pope, Emily Catherine; Bird, Dennis K.; Rosing, Minik Thorleif

    the oxygen isotope record of chemical sediments and ancient ocean crust, chemical equilibria amongst primary phases in banded iron formations (BIFs), sedimentary features indicative of temperate or glacial environments, and paleosol indicators of atmospheric CO2. Further, we explore the extent to which......Average surface temperatures of Earth in the Archean remain unresolved despite decades of diverse approaches to the problem. As in the present, early Earth climates were complex systems dependent on many variables. With few constraints on such variables, climate models must be relatively simplistic...... hydrogen isotopes contribute to the geologic record as a signal for glaciations, continental growth and atmospheric methane levels. Oceanic serpentinites and subduction-related volcanic and hydrothermal environments obtain their hydrogen isotope signature from seawater, and thus may be used to calculate...

  4. From atmospheric awareness to active materiality

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2013-01-01

    surroundings, where the environmental qualities are implicit and conditions and phenomena are bound together in a reciprocal dependence. Therefore, material is neither seen as an isolated element, nor as mere substance expressing tectonic character. Transcending its generative potential and focusing on its...... of continuous and complex interferences revealed through our perception. Therefore, to design considering an atmospheric approach means to focus on how the space is going to appear, to be experienced or to be felt. What immediately follows this assumption is, then, the exploration of works and design processes...... with an attempt to trace associations and draw out design protocols, focusing on ways in which atmosphere can be consciously generated or manipulated. The aim is thus to examine ‘the atmospheric’ as a spatial quality, an experiential property as well as a sensory background and materiality as one...

  5. Atmospheric Neutrino Oscillations for Earth Tomography

    CERN Document Server

    Winter, Walter

    2015-01-01

    Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can robustly measure the lower mantle density of the earth with a precision at the level of 4-5 percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.

  6. 5th International Conference on Atmospheric Electricity

    CERN Document Server

    Reiter, Reinhold; Landsberg, Helmut

    1976-01-01

    These Proceedings are published to give a full account of the Fifth International Conference on Atmospheric Electricity held in September 1974 in Garmisch-Partenkirchen in the Bavarian Alps in Germany. Traditionally, the Proceedings of these Conferences have served as reference books updating the textbooks and monographs on Atmospheric Electricity. As treated by these Conferences, Atmos­ pheric Electricity covers all aspects of this science, including the processes and problems which reach out into the Earth's environment as well as analogous processes on other planets and on the Moon. A history of these Conferences, an account of their purpose, and an outline of the scope and the preparation is to be found at the end of these Proceedings. There, also the Business Meetings of the involved organizations are mentioned. The Proceedings closely follow the original program and are accordingly organized into "Sessions". The papers printed in each "Session" in this book are the ones which were accepted for the sess...

  7. Performance of the STACEE Atmospheric Cherenkov Telescope

    CERN Document Server

    Williams, D A; Boone, L M; Chantell, M C; Conner, Z; Covault, C E; Dragovan, M; Fortin, P; Gingrich, D M; Gregorich, D T; Hanna, D S; Mohanty, G B; Mukherjee, R; Ong, R A; Oser, S M; Ragan, K; Scalzo, R A; Schütte, D R; Theoret, C G; Tümer, T O; Vincent, F; Zweerink, J A

    2000-01-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is located at the National Solar Thermal Test Facility of Sandia National Laboratories in Albuquerque, New Mexico, USA. The field of solar tracking mirrors (heliostats) around a central receiver tower is used to direct Cherenkov light from atmospheric showers onto secondary mirrors on the tower, which in turn image the light onto cameras of photomultiplier tubes. The STACEE Collaboration has previously reported a detection of the Crab Nebula with approximately 7 standard deviation significance, using 32 heliostats (STACEE-32). This result demonstrates both the viability of the technique and the suitability of the site. We are in the process of completing an upgrade to 48 heliostats (STACEE-48) en route to an eventual configuration using 64 heliostats (STACEE-64) in early 2001. In this paper, we summarize the results obtained on the sensitivity of STACEE-32 and our expectations for STACEE-48 and STACEE-64.

  8. Iron abundance in the atmosphere of Arcturus

    CERN Document Server

    Sheminova, V A

    2015-01-01

    Abundance of iron in the atmosphere of Arcturus has been determined from the profiles or regions of the profiles of the weak lines sensitive to iron abundance. The selected lines of Fe I and Fe II were synthesized with the MARCS theoretical models of the atmosphere. From the observed profiles of lines available with a high spectral resolution in the atlas by Hinkle and Wallace (2005), the values of the iron abundance $A = 6.95 \\pm 0.03$ and the radial-tangential macroturbulent velocity $5.6 \\pm 0.2$ km/s were obtained for Arcturus. The same physical quantities were found for the Sun as a star; they are $7.42 \\pm 0.02$ and $3.4 \\pm 0.3$ km/s, respectively. For Arcturus, the iron abundance relative to the solar one was determined with the differential method as [Fe/H] $=-0.48 \\pm 0.02$.

  9. Parallel computing in atmospheric chemistry models

    Energy Technology Data Exchange (ETDEWEB)

    Rotman, D. [Lawrence Livermore National Lab., CA (United States). Atmospheric Sciences Div.

    1996-02-01

    Studies of atmospheric chemistry are of high scientific interest, involve computations that are complex and intense, and require enormous amounts of I/O. Current supercomputer computational capabilities are limiting the studies of stratospheric and tropospheric chemistry and will certainly not be able to handle the upcoming coupled chemistry/climate models. To enable such calculations, the authors have developed a computing framework that allows computations on a wide range of computational platforms, including massively parallel machines. Because of the fast paced changes in this field, the modeling framework and scientific modules have been developed to be highly portable and efficient. Here, the authors present the important features of the framework and focus on the atmospheric chemistry module, named IMPACT, and its capabilities. Applications of IMPACT to aircraft studies will be presented.

  10. CH in stellar atmospheres: an extensive linelist

    CERN Document Server

    Masseron, T; Van Eck, S; Colin, R; Daoutidis, I; Godefroid, M; Coheur, P F; Bernath, P; Jorissen, A; Christlieb, N

    2014-01-01

    The advent of high-resolution spectrographs and detailed stellar atmosphere modelling has strengthened the need for accurate molecular data. Carbon-enhanced metal-poor (CEMP) stars spectra are interesting objects with which to study transitions from the CH molecule. We combine programs for spectral analysis of molecules and stellar-radiative transfer codes to build an extensive CH linelist, including predissociation broadening as well as newly identified levels. We show examples of strong predissociation CH lines in CEMP stars, and we stress the important role played by the CH features in the Bond-Neff feature depressing the spectra of barium stars by as much as 0.2 magnitudes in the $\\lambda=$3000 -- 5500 \\AA\\ range. Because of the extreme thermodynamic conditions prevailing in stellar atmospheres (compared to the laboratory), molecular transitions with high energy levels can be observed. Stellar spectra can thus be used to constrain and improve molecular data.

  11. Polarized Scattering and Biosignatures in Exoplanetary Atmospheres

    CERN Document Server

    Berdyugina, S V

    2016-01-01

    Polarized scattering in planetary atmospheres is computed in the context of exoplanets. The problem of polarized radiative transfer is solved for a general case of absorption and scattering, while Rayleigh and Mie polarized scattering are considered as most relevant examples. We show that (1) relative contributions of single and multiple scattering depend on the stellar irradiation and opacities in the planetary atmosphere; (2) cloud (particle) physical parameters can be deduced from the wavelength-dependent measurements of the continuum polarization and from a differential analysis of molecular band absorption; (3) polarized scattering in molecular bands increases the reliability of their detections in exoplanets; (4) photosynthetic life can be detected on other planets in visible polarized spectra with high sensitivity. These examples demonstrate the power of spectropolarimetry for exoplanetary research and for searching for life in the universe.

  12. Spectra as Windows into Exoplanet Atmospheres

    CERN Document Server

    Burrows, Adam

    2013-01-01

    Understanding a planet's atmosphere is a necessary condition for understanding not only the planet itself, but also its formation, structure, evolution, and habitability, This puts a premium on obtaining spectra, and developing credible interpretative tools with which to retrieve vital planetary information. However, for exoplanets these twin goals are far from being realized. In this paper, I provide a personal perspective on exoplanet theory and remote sensing via photometry and low-resolution spectroscopy. Though not a review in any sense, this paper highlights the limitations in our knowledge of compositions, thermal profiles, and the effects of stellar irradiation, focussing on, but not restricted to, transiting giant planets. I suggest that the true function of the recent past of exoplanet atmospheric research has been not to constrain planet properties for all time, but to train a new generation of scientists that, by rapid trial and error, is fast establishing a solid future foundation for a robust sc...

  13. Moon influence on equatorial atmospheric angular momentum

    Science.gov (United States)

    Bizouard, Christian; Zotov, Leonid; Sidorenkov, Nikolay

    2014-05-01

    The variation of the equatorial atmospheric angular momentum function, coordinated with respect to a star-fixed system, is investigated in relation with the lunar tide. We isolate the rapid fluctuations, below 30 days, where Moon motion has a possible influence. First we notice that pressure term and wind term are almost proportional, by contrast to celestial seasonal band (S1). This would mean that, in this frequency band, the torque of the atmosphere on the solid Earth mostly results from the equatorial bulge. Spectrum reveals sharp lunar tidal peaks at 13.66 days (O1 diurnal tide in the terrestrial frame) and 13.63 days, reflecting the Moon influence on meridional circulation. We also observe powerful episodic fluctuations between 5 and 8 days (up to 10 mas), possibly resulting from non linear effect of the O1 tide, or tidal waves 2Q1 (6.86 days) and σ1 (7.095 days).

  14. Enforced Development Of The Earth's Atmosphere

    CERN Document Server

    Iudin, M

    2010-01-01

    We review some basic issues of the life-prescribed development of the Earth's system and the Earth's atmosphere and discourse the unity of Earth's type of life in physical and transcendental divisions. In physical division, we exemplify and substantiate the origin of atmospheric phenomena in the metabolic pathways acquired by the Earth's life forms. We are especially concerned with emergence of pro-life superficial environments under elaboration of the energy transformations. Analysis of the coupling phenomena of elaborated ozone-oxygen transformation and Arctic bromine explosion is provided. Sensing is a foundation of life and the Earth's life. We offer our explanation of human-like perception, reasoning and creativity. We suggest a number of propositions about association of transcendental and physical divisions and the purpose of existence. The study relates to the tradition of natural philosophy which it follows. The paper is suitable for the popular reading.

  15. Evidence For Oscillation Of Atmospheric Neutrinos

    CERN Document Server

    Fukuda, Y; Ichihara, E; Inoue, K; Ishihara, K; Ishino, H; Itow, Y; Kajita, T; Kameda, J; Kasuga, S; Kobayashi, K; Kobayashi, Y; Koshio, Y; Miura, M; Nakahata, M; Nakayama, S; Okada, A; Okumura, K; Sakurai, N; Shiozawa, M; Suzuki, Y; Takeuchi, Y; Totsuka, Y; Yamada, S; Earl, M A; Habig, A; Kearns, E T; Messier, M D; Scholberg, K; Stone, J L; Sulak, Lawrence R; Walter, C W; Goldhaber, M; Barszczak, T; Casper, David William; Gajewski, W; Halverson, P G; Hsu, J; Kropp, W R; Price, L R; Reines, F; Smy, M B; Sobel, H W; Vagins, M R; Ganezer, K S; Keig, W E; Ellsworth, R W; Tasaka, S; Flanagan, J W; Kibayashi, A; Learned, J G; Matsuno, S; Stenger, Victor J; Takemori, D; Ishii, T; Kanzaki, J I; Kobayashi, T; Mine, S; Nakamura, K; Nishikawa, K; Oyama, Y; Sakai, A; Sakuda, M; Sasaki, O; Echigo, S; Kohama, M; Suzuki, A T; Haines, T J; Blaufuss, E; Kim, B K; Sanford, R; Svoboda, R; Chen, M L; Conner, Z; Goodman, J A; Sullivan, G W; Hill, J; Jung, C K; Martens, K; Mauger, C; McGrew, C; Sharkey, E; Viren, B M; Yanagisawa, C; Doki, W; Miyano, K; Okazawa, H; Saji, C; Takahata, M; Nagashima, Y; Takita, M; Yamaguchi, T; Yoshida, M; Kim, S B; Etoh, M; Fujita, K; Hasegawa, A; Hasegawa, T; Hatakeyama, S; Iwamoto, T; Koga, M; Maruyama, T; Ogawa, H; Shirai, J; Suzuki, A; Tsushima, F; Koshiba, M; Nemoto, M; Nishijima, K; Futagami, T; Hayato, Y; Kanaya, Y; Kaneyuki, K; Watanabe, Y; Kielczewska, D; Doyle, R A; George, J S; Stachyra, A L; Wai, L L; Wilkes, R J; Young, K K

    1998-01-01

    We present an analysis of atmospheric neutrino data from a 33.0 kiloton-year (535-day) exposure of the Super-Kamiokande detector. The data exhibit a zenith angle dependent deficit of muon neutrinos which is inconsistent with expectations based on calculations of the atmospheric neutrino flux. Experimental biases and uncertainties in the prediction of neutrino fluxes and cross sections are unable to explain our observation. The data are consistent, however, with two-flavor nu_mu nu_tau oscillations with sin^2(2theta)>0.82 and 5x10^-4 < delta m^2 < 6x10^-3 eV^2 at 90% confidence level.

  16. Biological modulation of the earth's atmosphere

    Science.gov (United States)

    Margulis, L.; Lovelock, J. E.

    1974-01-01

    Review of the evidence that the earth's atmosphere is regulated by life on the surface so that the probability of growth of the entire biosphere is maximized. Acidity, gas composition including oxygen level, and ambient temperature are enormously important determinants for the distribution of life. The earth's atmosphere deviates greatly from that of the other terrestrial planets in particular with respect to acidity, composition, redox potential and temperature history as predicted from solar luminosity. These deviations from predicted steady state conditions have apparently persisted over millions of years. These anomalies may be evidence for a complex planet-wide homeostasis that is the product of natural selection. Possible homeostatic mechanisms that may be further investigated by both theoretical and experimental methods are suggested.

  17. Street canyon ventilation and atmospheric turbulence

    Science.gov (United States)

    Salizzoni, P.; Soulhac, L.; Mejean, P.

    Operational models for pollutant dispersion in urban areas require an estimate of the turbulent transfer between the street canyons and the overlying atmospheric flow. To date, the mechanisms that govern this process remain poorly understood. We have studied the mass exchange between a street canyon and the atmospheric flow above it by means of wind tunnel experiments. Fluid velocities were measured with a Particle Image Velocimetry system and passive scalar concentrations were measured using a Flame Ionisation Detector. The mass-transfer velocity between the canyon and the external flow has been estimated by measuring the cavity wash-out time. A two-box model, used to estimate the transfer velocity for varying dynamical conditions of the external flow, has been used to interpret the experimental data. This study sheds new light on the mechanisms which drive the ventilation of a street canyon and illustrates the influence of the external turbulence on the transfer process.

  18. Aeronomy of the current Martian atmosphere

    Science.gov (United States)

    Barth, C. A.; Stewart, A. I. F.; Bougher, S. W.; Hunten, D. M.; Bauer, S. J.; Nagy, A. F.

    1992-01-01

    The thermal structure of the Martian atmosphere, which varies diurnally, seasonally and episodically, is discussed. The atomic oxygen airglow at 1304 A is used to determine the density of atomic oxygen, and the 1216-A Lyman-alpha line is used to calculate the density of atomic hydrogen and, when coupled with the temperature measurement, the escape flux of atomic hydrogen. The most intense airglow is the IR atmospheric band of O2 at 1.27 micron that results from the photodissociation of ozone. The escape mechanism for atomic hydrogen is thermal, or Jeans, escape, while the atomic oxygen escape is caused by a nonthermal process, namely, the dissociative recombination of O2(+). The ratio of deuterium to hydrogen is enriched by a factor of 6. Three-dimensional models of the Mars thermospheric circulation show that planetary rotation has a significant effect on the wind, composition, and temperature structure.

  19. Martian Atmospheric and Ionospheric plasma Escape

    Science.gov (United States)

    Lundin, Rickard

    2016-04-01

    Solar forcing is responsible for the heating, ionization, photochemistry, and erosion processes in the upper atmosphere throughout the lifetime of the terrestrial planets. Of the four terrestrial planets, the Earth is the only one with a fully developed biosphere, while our kin Venus and Mars have evolved into arid inhabitable planets. As for Mars, there are ample evidences for an early Noachian, water rich period on Mars. The question is, what made Mars evolve so differently compared to the Earth? Various hydrosphere and atmospheric evolution scenarios for Mars have been forwarded based on surface morphology, chemical composition, simulations, semi-empiric (in-situ data) models, and the long-term evolution of the Sun. Progress has been made, but the case is still open regarding the changes that led to the present arid surface and tenuous atmosphere at Mars. This presentation addresses the long-term variability of the Sun, the solar forcing impact on the Martian atmosphere, and its interaction with the space environment - an electromagnetic wave and particle interaction with the upper atmosphere that has implications for its photochemistry, composition, and energization that governs thermal and non-thermal escape. Non-thermal escape implies an electromagnetic upward energization of planetary ions and molecules to velocities above escape velocity, a process governed by a combination of solar EUV radiation (ionization), and energy and momentum transfer by the solar wind. The ion escape issue dates back to the early Soviet and US-missions to Mars, but the first more accurate estimates of escape rates came with the Phobos-2 mission in 1989. Better-quality ion composition measurement results of atmospheric/ionospheric ion escape from Mars, obtained from ESA Mars Express (MEX) instruments, have improved our understanding of the ion escape mechanism. With the NASA MAVEN spacecraft orbiting Mars since Sept. 2014, dual in-situ measurement with plasma instruments are now

  20. Coupled Human-Atmosphere-System Thinking

    Science.gov (United States)

    Schmale, Julia; Chabay, Ilan

    2014-05-01

    With the discovery of fire, humankind started changing the composition of the atmosphere. Beginning with the industrial revolution, this has led to significant environmental problems, mainly air pollution and climate change. While climate change has been recognized as one key challenge of the Anthropocene, air pollution contributes to the top causes of global premature mortality. Air pollution also plays a key role in contamination of ecosystems and bio-magnification of toxins along food chains. Even though emissions leading to air pollution and climate change often originate from the same sources, they are generally perceived and regulated separately. Climate change impacts are global and hence are tackled at an international level. Conversely, air pollution has local to regional impacts and is thus a matter of national or regional legislation. This legislative and policy divide is generally useful, since full integration could lead, for example, to detrimental delays in action against air pollution through protracted international climate negotiations. However, the separation obscures the fact that almost any kind of human activity leads to the simultaneous emission of air pollutants, toxins and long-lived greenhouse gases. The atmosphere functions as a "dump" for human generated gaseous waste, which is then dispersed and transformed, partly chemically and partly micro-physically, perturbing natural processes in the atmosphere and leading to manifold impacts. In addition, air pollutants affect the Earth's radiative balance directly and indirectly, hence affecting climate change, while a changing climate in turn affects air pollution. Current policies often neglect these linkages and favor mitigation in one arena, which sometimes has detrimental effects on the other. One example is domestic wood burning, which though nearly carbon neutral, deteriorates air quality. Moreover, the design of appliances, machinery, or infrastructure generally does not attempt to

  1. Wave heating of the solar atmosphere.

    Science.gov (United States)

    Arregui, Iñigo

    2015-05-28

    Magnetic waves are a relevant component in the dynamics of the solar atmosphere. Their significance has increased because of their potential as a remote diagnostic tool and their presumed contribution to plasma heating processes. We discuss our current understanding of coronal heating by magnetic waves, based on recent observational evidence and theoretical advances. The discussion starts with a selection of observational discoveries that have brought magnetic waves to the forefront of the coronal heating discussion. Then, our theoretical understanding of the nature and properties of the observed waves and the physical processes that have been proposed to explain observations are described. Particular attention is given to the sequence of processes that link observed wave characteristics with concealed energy transport, dissipation and heat conversion. We conclude with a commentary on how the combination of theory and observations should help us to understand and quantify magnetic wave heating of the solar atmosphere.

  2. Global Atmospheric Models for Cosmic Ray Detectors

    CERN Document Server

    Will, Martin

    2014-01-01

    The knowledge of atmospheric parameters -- such as temperature, pressure, and humidity -- is very important for a proper reconstruction of air showers, especially with the fluorescence technique. The Global Data Assimilation System (GDAS) provides altitude-dependent profiles of these state variables of the atmosphere and several more. Every three hours, a new data set on 23 constant pressure level plus an additional surface values is available for the entire globe. These GDAS data are now used in the standard air shower reconstruction of the Pierre Auger Observatory. The validity of the data was verified by comparisons with monthly models that were averaged from on-site meteorological radio soundings and weather station measurements obtained at the Observatory in Malarg\\"ue. Comparisons of reconstructions using the GDAS data and the monthly models are also presented. Since GDAS is a global model, the data can potentially be used for other cosmic and gamma ray detectors. Several studies were already performed ...

  3. Atmospheric transmission for cesium DPAL using TDLAS

    Science.gov (United States)

    Rice, Christopher A.; Perram, Glen P.

    2012-03-01

    The cesium (Cs) Diode Pumped Alkali Laser (DPAL) operates near 894 nm, in the vicinity of atmospheric water vapor absorption lines. An open-path Tunable Diode Laser Absorption (TDLAS) system composed of narrow band (~300 kHz) diode laser fiber coupled to a 12" Ritchey-Chrétien transmit telescope has been used to study the atmospheric transmission characteristics of Cs DPALs over extended paths. The ruggedized system has been field deployed and tested for propagation distances of greater than 1 km. By scanning the diode laser across many free spectral ranges, many rotational absorption features are observed. Absolute laser frequency is monitored with a High Finesse wavemeter to an accuracy of less than 10 MHz. Phase sensitive detection is employed with an absorbance of less than 1% observable under field conditions.

  4. Spectra as windows into exoplanet atmospheres.

    Science.gov (United States)

    Burrows, Adam S

    2014-09-01

    Understanding a planet's atmosphere is a necessary condition for understanding not only the planet itself, but also its formation, structure, evolution, and habitability. This requirement puts a premium on obtaining spectra and developing credible interpretative tools with which to retrieve vital planetary information. However, for exoplanets, these twin goals are far from being realized. In this paper, I provide a personal perspective on exoplanet theory and remote sensing via photometry and low-resolution spectroscopy. Although not a review in any sense, this paper highlights the limitations in our knowledge of compositions, thermal profiles, and the effects of stellar irradiation, focusing on, but not restricted to, transiting giant planets. I suggest that the true function of the recent past of exoplanet atmospheric research has been not to constrain planet properties for all time, but to train a new generation of scientists who, by rapid trial and error, are fast establishing a solid future foundation for a robust science of exoplanets.

  5. Performance of the STACEE Atmospheric Cherenkov Telescope

    Science.gov (United States)

    Williams, D. A.; Bhattacharya, D.; Boone, L. M.; Chantell, M. C.; Conner, Z.; Covault, C. E.; Dragovan, M.; Fortin, P.; Gingrich, D.; Gregorich, D. T.; Hanna, D. S.; Mohanty, G.; Mukherjee, R.; Ong, R. A.; Oser, S.; Ragan, K.; Scalzo, R. A.; Schuette, D. R.; Théoret, C. G.; Tümer, T. O.; Vincent, F.; Zweerink, J. A.

    2001-04-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is located at the National Solar Thermal Test Facility of Sandia National Laboratories in Albuquerque, New Mexico, USA. The field of solar tracking mirrors (heliostats) around a central receiver tower is used to direct Cherenkov light from atmospheric showers onto secondary mirrors on the tower, which in turn image the light onto cameras of photomultiplier tubes. The STACEE Collaboration has previously reported a detection of the Crab Nebula with approximately 7 standard deviation significance, using 32 heliostats (STACEE-32). This result demonstrates both the viability of the technique and the suitability of the site. We are in the process of completing an upgrade to 48 heliostats (STACEE-48) en route to an eventual configuration using 64 heliostats (STACEE-64) in early 2001. In this paper, we summarize the results obtained on the sensitivity of STACEE-32 and our expectations for STACEE-48 and STACEE-64. .

  6. Adsorption of Atmospheric Gases on Pu Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A J; Holliday, K S; Stanford, J A; Grant, W K; Erler, R G; Allen, P G; McLean, W; Roussel, P

    2012-03-29

    Surface adsorption represents a competition between collision and scattering processes that depend on surface energy, surface structure and temperature. The surface reactivity of the actinides can add additional complexity due to radiological dissociation of the gas and electronic structure. Here we elucidate the chemical bonding of gas molecules adsorbed on Pu metal and oxide surfaces. Atmospheric gas reactions were studied at 190 and 300 K using x-ray photoelectron spectroscopy. Evolution of the Pu 4f and O 1s core-level states were studied as a function of gas dose rates to generate a set of Langmuir isotherms. Results show that the initial gas dose forms Pu{sub 2}O{sub 3} on the Pu metal surface followed by the formation of PuO{sub 2} resulting in a layered oxide structure. This work represents the first steps in determining the activation energy for adsorption of various atmospheric gases on Pu.

  7. Origin of Hawking Radiation: Firewall or Atmosphere?

    CERN Document Server

    Kim, Wontae

    2016-01-01

    The Unruh vacuum not admitting any outgoing flux at the horizon implies that the origin of the outgoing Hawking radiation would be the atmosphere of a near-horizon quantum region without resort to the firewall; however, the existence of the firewall of superplanckian excitations at the horizon might be supported by the infinite Tolman temperature of the infinitely blueshifted Hawking temperature at the horizon. Using an exactly soluble model, we show that the firewall necessarily emerges out of the Unruh vacuum such that the Tolman temperature in the Unruh vacuum is divergent in essence due to the infinitely blueshifted negative ingoing flux crossing the horizon rather than the outgoing flux. It is also shown that the outgoing Hawking radiation in the Unruh vacuum indeed originates from the atmosphere, not just at the horizon, which is of no relevance to the infinite blueshift. Consequently, we find that the firewall induced from the infinite Tolman temperature and the Hawking radiation coming from the atmosp...

  8. Atmospheric neutrino oscillations for Earth tomography

    Science.gov (United States)

    Winter, Walter

    2016-07-01

    Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can measure the lower mantle density of the earth with a precision at the level of a few percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.

  9. Measurement of atmospheric neutrino oscillations with PINGU

    Energy Technology Data Exchange (ETDEWEB)

    Krings, Kai; Coenders, Stefan; Euler, Sebastian; Vehring, Markus; Wallraff, Marius; Wiebusch, Christopher [RWTH Aachen Univ. (Germany). III. Physikalisches Inst.; Collaboration: IceCube-Collaboration

    2013-07-01

    With IceCube's low-energy extension DeepCore it is possible to study atmospheric neutrino oscillations in the energy range between 10 GeV and 100 GeV. Current analyses are sensitive to the first minimum of the survival probability of atmospheric muon neutrinos at about 25 GeV for vertically upgoing neutrinos. For the 'Precision IceCube Next Generation Upgrade' (PINGU) it is planned to install additional strings with a denser spacing inside the DeepCore volume. By this, PINGU will lower the neutrino energy threshold to a few GeV. In this talk it is investigated how the accuracy of the measurement of the oscillation parameters θ{sub 23} and Δm{sub 32} can be improved by PINGU with respect to DeepCore.

  10. Seasonal Predictability in a Model Atmosphere.

    Science.gov (United States)

    Lin, Hai

    2001-07-01

    The predictability of atmospheric mean-seasonal conditions in the absence of externally varying forcing is examined. A perfect-model approach is adopted, in which a global T21 three-level quasigeostrophic atmospheric model is integrated over 21 000 days to obtain a reference atmospheric orbit. The model is driven by a time-independent forcing, so that the only source of time variability is the internal dynamics. The forcing is set to perpetual winter conditions in the Northern Hemisphere (NH) and perpetual summer in the Southern Hemisphere.A significant temporal variability in the NH 90-day mean states is observed. The component of that variability associated with the higher-frequency motions, or climate noise, is estimated using a method developed by Madden. In the polar region, and to a lesser extent in the midlatitudes, the temporal variance of the winter means is significantly greater than the climate noise, suggesting some potential predictability in those regions.Forecast experiments are performed to see whether the presence of variance in the 90-day mean states that is in excess of the climate noise leads to some skill in the prediction of these states. Ensemble forecast experiments with nine members starting from slightly different initial conditions are performed for 200 different 90-day means along the reference atmospheric orbit. The serial correlation between the ensemble means and the reference orbit shows that there is skill in the 90-day mean predictions. The skill is concentrated in those regions of the NH that have the largest variance in excess of the climate noise. An EOF analysis shows that nearly all the predictive skill in the seasonal means is associated with one mode of variability with a strong axisymmetric component.

  11. Atmospheric cloud physics thermal systems analysis

    Science.gov (United States)

    1977-01-01

    Engineering analyses performed on the Atmospheric Cloud Physics (ACPL) Science Simulator expansion chamber and associated thermal control/conditioning system are reported. Analyses were made to develop a verified thermal model and to perform parametric thermal investigations to evaluate systems performance characteristics. Thermal network representations of solid components and the complete fluid conditioning system were solved simultaneously using the Systems Improved Numerical Differencing Analyzer (SINDA) computer program.

  12. Analyses of Aircraft Responses to Atmospheric Turbulence

    OpenAIRE

    Van Staveren, W.H.J.J.

    2003-01-01

    The response of aircraft to stochastic atmospheric turbulence plays an important role in aircraft-design (load calculations), Flight Control System (FCS) design and flight-simulation (handling qualities research and pilot training). In order to simulate these aircraft responses, an accurate mathematical model is required. Two classical models will be discussed in this thesis, that is the Delft University of Technology (DUT) model and the Four Point Aircraft (FPA) model. Although they are well...

  13. Atmospheric environment for ASTP (SA-210) launch

    Science.gov (United States)

    Johnson, D. L.

    1976-01-01

    A summary is presented of selected atmospheric conditions observed near ASTP/SA-210 launch time on July 15, 1975, at Kennedy Space Center, Florida. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), density, index of refraction, and wind/wind shear aloft are included. A final meteorological data tape for the ASTP launch, consisting of wind and thermodynamic parameters versus altitude, has been constructed.

  14. Computational solution of atmospheric chemistry problems

    Science.gov (United States)

    Jafri, J.; Ake, R. L.

    1986-01-01

    Extensive studies were performed on problems of interest in atmospheric chemistry. In addition to several minor projects, four major projects were performed and described (theoretical studies of ground and low-lying excited states of ClO2; ground and excited state potential energy surfaces of the methyl peroxy radical; electronic states ot the FO radical; and theoretical studies S02 (H2O) (sub n)).

  15. Possible Solar Influence On Atmospheric Electric Field

    CERN Document Server

    Sikka, P; Murty, A S R; Murty, B V R; Sikka, Poonam; Murty, Bh.V. Ramana; Murty, A S Ramachandra

    1998-01-01

    A cell dynamical system model for the troposphere - ionosphere coupling is proposed . Vertical mass exchange in the troposphere-ionosphere-magnetosphere takes place through a chain of eddy systems. Any perturbation in the troposphere would be transmitted to ionosphere and vice versa. A global perturbation in ionosphere, as the one caused by solar variability, is transmitted to troposphere influencing weather systems/geomagnetic/atmospheric electrification processes.

  16. Exposure of lambs to atmospheric ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, J.G.; Curtis, S.E.; Lewis, J.M.; Hinds, F.C.; Simon, J.

    1976-01-01

    Two trials were conducted to determine the effects of chronic exposure to atmospheric ammonia at a concentration of 75 ppm on weight gain and efficiency of feed conversion by lambs. Lambs were weighed and then randomly allotted to four dynamic air-pollutant exposure chambers. Initial weights (mean +/- SE) of lambs were 22.1 +/- .46 kg and 27.5 +/- 1.54 kg for trials 1 and 2, respectively (n=12 in both trials). Lambs in two chambers (controls) were maintained in an atmosphere of filtered room air. Lambs in the other two chambers (NH/sub 3/ -exposed) were exposed to an atmosphere of filtered air plus atmospheric ammonia at a concentration of 75 ppm. Exposure period was 28 days in both trials. Feed and water were available at all times. Lamb weight gain and feed disappearance were determined weekly. Upon termination of each trial, one lamb was randomly selected from each chamber, sacrificed, and gross and histopathologic structural changes noted. Weight gain and efficiency of feed conversion data for the two trials were combined for statistical analysis. Control lambs gained on the average .09 kg/day (.28 vs .19) more (P<.01) and consumed on the average .68 kg of feed (4.53 vs 5.21) less per kilogram of weight gain (P<.10) than did NH/sub 3/-exposed lambs. Ammonia-exposed lambs in both trials showed profuse lacrimation, severe coughing and sneezing, and profuse nasal discharge, which was bloody in some instances. Gross and histopathologic findings appeared to be qualitatively similar between treatments, but more pronounced in NH/sub 3/-exposed lambs.

  17. A theoretical model of atmospheric ozone depletion

    Science.gov (United States)

    Midya, S. K.; Jana, P. K.; Lahiri, T.

    1994-01-01

    A critical study on different ozone depletion and formation processes has been made and following important results are obtained: (i) From analysis it is shown that O3 concentration will decrease very minutely with time for normal atmosphere when [O], [O2] and UV-radiation remain constant. (ii) An empirical equation is established theoretically between the variation of ozone concentration and time. (iii) Special ozone depletion processes are responsible for the dramatic decrease of O3-concentration at Antarctica.

  18. Aircraft Wake Vortex Deformation in Turbulent Atmosphere

    OpenAIRE

    Hennemann, Ingo; Holzaepfel, Frank

    2007-01-01

    Large-scale distortion of aircraft wake vortices appears to play a crucial role for aircraft safety during approach and landing. Vortex distortion is investigated based on large eddy simulations of wake vortex evolution in a turbulent atmosphere. A vortex identification method is developed that can be adapted to the vortex scales of interest. Based on the identified vortex center tracks, a statistics of vortex curvature radii is established. This statistics constitutes the basis for understan...

  19. "Explosively growing" vortices of unstably stratified atmosphere

    Science.gov (United States)

    Onishchenko, O. G.; Horton, W.; Pokhotelov, O. A.; Fedun, V.

    2016-10-01

    A new type of "explosively growing" vortex structure is investigated theoretically in the framework of ideal fluid hydrodynamics. It is shown that vortex structures may arise in convectively unstable atmospheric layers containing background vorticity. From an exact analytical vortex solution the vertical vorticity structure and toroidal speed are derived and analyzed. The assumption that vorticity is constant with height leads to a solution that grows explosively when the flow is inviscid. The results shown are in agreement with observations and laboratory experiments

  20. Influence of CO on Titan atmospheric reactivity

    Science.gov (United States)

    Fleury, B.; Carrasco, N.; Gautier, T.; Mahjoub, A.; He, J.; Szopa, C.; Hadamcik, E.; Buch, A.; Cernogora, G.

    2014-08-01

    The atmosphere of Titan is mainly composed of N2 and CH4 which are the source of various CxHyNz photochemical volatiles products. Laboratory simulations of the Titan’s atmospheric reactivity were mainly interested in the study of the complex organic chemistry which leads to the formation of analogues of Titan’s aerosols, called tholins. These studies were mainly interested in the reactivity of the N2/CH4 gaseous mixture and with the primary products of reactions without oxygen. However, the atmosphere of Titan also contains oxygenated volatile species. The most abundant one to have been detected is CO with a concentration about 50 ppmv. The work presented here is an experimental simulation devoted to estimate the influence of CO on the Titan’s atmospheric reactivity. With this aim, CO is introduced in a standard N2/CH4 mixture at different mixing ratio up to 4.5%. The kinetics of the methane consumption is monitored with in situ mass spectrometry and the compositions of the gaseous phase and tholins produced in the reactor are characterized ex situ with GC-MS and elemental analysis. This work shows that CO modifies the composition of the gas phase with the detection of oxygenated compounds: CO2 and N2O. The presence of CO also drastically decreases the production rate of tholins, involving also a perturbation on the methane kinetics. Tholins are produced in lower global amounts, but their sizes are found to be significantly larger than without CO. The oxygen incorporation in tholins is found to be efficient, with an oxygen content of the same order of magnitude as the amount of CO in the initial gas mixture.

  1. Trapping atmospheric CO2 with gold.

    Science.gov (United States)

    Collado, Alba; Gómez-Suárez, Adrián; Webb, Paul B; Kruger, Hedi; Bühl, Michael; Cordes, David B; Slawin, Alexandra M Z; Nolan, Steven P

    2014-10-07

    The ability of gold-hydroxides to fix CO2 is reported. [Au(IPr)(OH)] and [{Au(IPr)}2(μ-OH)][BF4] react with atmospheric CO2 to form the trigold carbonate complex [{Au(IPr)}3(μ(3)-CO3)][BF4]. Reactivity studies revealed that this complex behaves as two basic and one cationic Au centres, and that it is catalytically active. DFT calculations and kinetic experiments have been carried out.

  2. The Atmosphere as Laboratory: Aeronomy by Astronomy

    Science.gov (United States)

    Slanger, T. G.; Cosby, P. C.; Huestis, D. L.

    2002-01-01

    Astronomical sky spectra, which are byproducts of long-slit observations with echelle spectrographs on large telescopes, provide a unique platform for studying the optical emissions of excited molecules and atoms in the terrestrial atmosphere that can greatly extend present knowledge based on laboratory spectra. This paper summarizes some of the advances that have been made in our understanding of the lower electronic states of O2 and other species from the sky spectra and from direct observations of the Venus nightglow.

  3. Modification of combustion aerosols in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Weingartner, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-07-01

    Combustion aerosols particles are released on large scale into the atmosphere in the industrialized regions as well as in the tropics (by wood fires). The particles are subjected to various aging processes which depend on the size, morphology, and chemical composition of the particles. The interaction of combustion particles with sunlight and humidity as well as adsorption and desorption of volatile material to or from the particles considerably changes their physical and chemical properties and thus their residence time in the atmosphere. This is of importance because combustion particles are known to have a variety of health effects on people. Moreover, atmospheric aerosol particles have an influence on climate, directly through the reflection and absorption of solar radiation and indirectly through modifying the optical properties and lifetime of clouds. In a first step, a field experiment was carried out to study the sources and characteristics of combustion aerosols that are emitted from vehicles in a road tunnel. It was found that most of the fine particles were tail pipe emissions of diesel powered vehicles. The calculation shows that on an average these vehicles emit about 300 mg fine particulate matter per driven kilometer. This emission factor is at least 100 times higher than the mean emission factor estimated for gasoline powered vehicles. Furthermore, it is found that during their residence time in the tunnel, the particles undergo significant changes: The particles change towards a more compact structure. The conclusion is reached that this is mainly due to adsorption of volatile material from the gas phase to the particle surface. In the atmosphere, the life cycle as well as the radiative and chemical properties of an aerosol particle is strongly dependent on its response to humidity. Therefore the hygroscopic behavior of combustion particles emitted from single sources (i.e. from a gasoline and a diesel engine) were studied in laboratory experiments.

  4. Diagnostics from a 1-D atmospheric column

    Energy Technology Data Exchange (ETDEWEB)

    Flatley, J.M.; Mace, G. [Pennsylvania State Univ., University Park, PA (United States)

    1996-04-01

    Various diagnostics were computed from an array of radiosondes during an intensive field operation arranged by the Atmospheric Radiation Measurement Program. The network data was centered around the site at Lamont, Oklahoma. The apparent heat source and apparent moisture sink were computed and compared to the kinematic vertical velocity for both real data and the mesoscale analysis and prediction system. Three different case studies of various weathe regimes were examined.

  5. Solar activity forcing of the middle atmosphere

    Directory of Open Access Journals (Sweden)

    K. Mohanakumar

    Full Text Available Studies on the influence of solar activity in 11-year cycle on middle atmospheric thermodynamic parameters, such as temperature, pressure and density, and zonal and meridional wind components over three meteorological rocket launching stations, located in the tropics (Thumba, mid-latitude (Volgograd and high-latitude (Heiss Island regions of the northern hemisphere have been carried out. The temperature in all the three regions showed a negative response in the stratosphere and positive association in the mesosphere with the changes in solar activity. The temperature decreases by 2–3% from its mean value in the stratosphere and increases by 4–6% in the mesosphere for an increase in 100 units of solar radio flux. Atmospheric pressure is found to be more sensitive to solar changes. An average solar maximum condition enhances the pressure in the stratosphere by 5% and in the upper mesosphere by 16–18% compared to the respective mean values. Density also showed strong association with the changes in solar activity. Increase in the solar radio flux tends to strengthen winter westerlies in the upper stratosphere over the mid-latitude and summer easterlies in the middle stratosphere over tropics. Larger variability in the zonal wind is noted near stratopause height. Results obtained from the study indicate that there is an external force exerted on the Earth's atmosphere during the period of high solar activity. These results can be incorporated for further studies on the dynamics of the middle atmosphere in association with the changes in solar activity.

  6. SOIR and NOMAD: Characterization of Planetary Atmospheres

    Science.gov (United States)

    Robert, S.; Chamberlain, S.; Mahieux, A.; Thomas, I.; Wilquet, V.; Vandaele, A. C.

    2014-06-01

    The Belgian Institute for Space Aeronomy is involved in the Venus Express mission (VeX), launched in 2006 and in the ExoMars Trace Gas Orbiter mission (TGO), due for launch in 2016. BISA is responsible for one instrument in each mission, SOIR onboard VeX and NOMAD onboard TGO respectively. The SOIR instrument onboard Venus Express allows observations of trace gases in the Venus atmosphere, at the terminator for both the morning and evening sides of the planet and for almost all latitudes. It has been designed to measure spectra in the IR region (2.2 - 4.3 µm) of the Venus atmosphere using the solar occultation technique1. This method derives unique information on the vertical composition and structure of the mesosphere and lower thermosphere2,3,4,5. It is unique in terms of spectral coverage and spectral resolution (0.15 cm-1), and is ideally designed to probe the Venus atmosphere for CO2 as well as trace gases, such as H2O, CO, HCl and HF. SOIR is capable of (1) providing vertical information on a broad series of species, such as CO2, CO, H2O, HCl, HF, SO26 and aerosols 7, covering the so far sparsely known region located above the clouds, (2) contributing to a better understanding of the dynamics and stability of the atmosphere by delivering total density and kinetic temperature profiles at the terminator, an up-to-now still unchartered region, and (3) detecting weak absorption bands of rare CO2 isotopologues8, due to the sensitivity of SOIR, the high concentration of CO2 on Venus and the long absorption paths sounded during solar occultations.

  7. Land-atmosphere interaction across multiple scales

    Science.gov (United States)

    Baker, I. T.; Dazlich, D. A.; Harper, A. B.; Branson, M. D.; Randall, D. A.; Denning, A.

    2013-12-01

    New modeling frameworks are bypassing parameterization limitations in Climate models (GCMs) via the inclusion of Cloud Resolving Models (CRMs) within GCM gridcells. The GCM sends advective forcing to the CRM, which provides heating and drying in return. This so-called ';MultiModeling Framework', or MMF, has been shown to have emergent properties, especially in simulations of the Madden-Julian Oscillation. However, to date the representation of land-atmosphere interaction within the MMF has been primitive; multiple cloud-resolving atmospheric columns are generally coupled to a single land; heterogeneity in surface radiation, temperature and moisture is not communicated to the atmosphere. We investigate the influence of spatial scale on surface-atmosphere interaction at a site in Tropical Brazil and at a grassland site in the United States. At the coarsest scale, a single-column GCM gridcell (termed an SCM) using parameterized clouds is coupled to a single land instance, as is done in a traditional GCM. Moving downward in scale, the same SCM is coupled to a CRM, itself coupled to a single land instance, as is done currently in MMFs such as the Community Earth System Model (CESM). Finally, we couple the SCM to a CRM with fully distributed instances of the land model. We find substantial differences across scale representations. Compared to the traditional SCM, both single- and multiple-land SCMs show reduced rainfall. Bowen ratio is increased in both CRM simulations as compared to the SCM, as cloud-free CRM elements result in higher grid-averaged temperature and resultant sensible heat flux. This warmer/drier tendency suppresses the carbon flux. Surface heterogeneity alters seasonal and diurnal cycles in precipitation and carbon flux as well. We find that heterogeneity in the land surface, and its interaction with the CRM, imparts organization to the GCM in a manner that has not previously been possible.

  8. Unified treatment of lifting atmospheric entry

    Science.gov (United States)

    Nachtsheim, P. R.; Lehman, L. L.

    1980-01-01

    This paper presents a unified treatment of the effect of lift on peak acceleration during atmospheric entry. Earlier studies were restricted to different regimes because of approximations invoked to solve the same transcendental equation. This paper shows the connection between the earlier studies by employing a general expression for the peak acceleration and obtains solutions to the transcendental equation without invoking the earlier approximations. Results are presented and compared with earlier studies where appropriate.

  9. Quantifying the global atmospheric power budget

    CERN Document Server

    Makarieva, Anastassia M; Nefiodov, Andrei V; Sheil, Douglas; Nobre, Antonio Donato; Li, Bai-Lian

    2016-01-01

    Starting from the definition of mechanical work for an ideal gas, we present a novel derivation linking global wind power to measurable atmospheric parameters. The resulting expression distinguishes three components: the kinetic power associated with horizontal motion, the kinetic power associated with vertical motion and the gravitational power of precipitation. We discuss the caveats associated with integration of material derivatives in the presence of phase transitions and how these affect published analyses of global atmospheric power. Using the MERRA database for the years 2009-2015 (three hourly data on the 1.25$^{\\rm o} \\times$ 1.25$^{\\rm o}$ grid at 42 pressure levels) we estimate total atmospheric power at 3.1 W m$^{-2}$ and kinetic power at 2.6 W m$^{-2}$. The difference between the two (0.5 W m$^{-2}$) is about half the independently estimated gravitational power of precipitation (1 W m$^{-2}$). We explain how this discrepancy arises from the limited spatial and temporal resolution of the database...

  10. Lifetimes of atmospheric species: Integrating environmental impacts

    Science.gov (United States)

    Prather, Michael J.

    2002-11-01

    The environmental damage caused by atmospheric pollutants is proportional to the duration of their effects. The global impacts of greenhouse gases (as measured by global warming potential) and ozone depleting substances (as measured by ozone depletion potential) have traditionally been calculated using the atmospheric lifetime of the source gas as a quantitative measure of the impact's duration, assuming that the gas quickly reaches a steady-state pattern which decays exponentially according to the lifetime. This assumed behavior obviously does not match the true rise and fall of impacts, particularly secondary ones like ozone depletion, that can be seen in numerical integrations or chemical mode decomposition. Here, the modes decomposition is used to prove that: (a) the steady-state pattern of impacts caused by specified emissions, multiplied by (b) the steady-state lifetime of the source gas for that emission pattern, is exactly equal to (c) the integral of all impacts - independent of the number and atmospheric residence times of secondary impacts.

  11. Containment atmosphere response to external sprays

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.; Almenas, K. [Univ. of Maryland, College Park, MD (United States)

    1995-09-01

    The application of external sprays to a containment steel shell can be an effective energy removal method and has been proposed in the passive AP-600 design. Reduction of the steel shell temperature in contact with the containment atmosphere enhances both heat and mass transfer driving forces. Large scale experimental data in this area is scarce, therefore the measurements obtained from the E series tests conducted at the German HDR facility deserve special attention. These long term tests simulated various severe accident conditions, including external spraying of the hemispherical steel shell. This investigation focuses upon the integral response of the HDR containment atmosphere during spray periods and upon methods by which lumped parameter system codes, like CONTAIN, model the underlying condensation phenomena. Increases in spray water flowrates above a minimum value were ineffective at improving containment pressure reduction since the limiting resistance for energy transfer lies in the noncondensable-vapor boundary layer at the inner condensing surface. The spray created an unstable condition by cooling the upper layers of a heated atmosphere and thus inducing global natural circulation flows in the facility and subsequently, abrupt changes in lighter-than-air noncondensable (J{sub 2}/He) concentrations. Modeling results using the CONTAIN code are outlined and code limitations are delineated.

  12. Hard Carbon Films Deposited under Various Atmospheres

    Science.gov (United States)

    Wei, M.-K.; Chen, S.-C.; Wu, T. C.; Lee, Sanboh

    1998-03-01

    Using a carbon target ablated with an XeCl-excimer laser under various gas atmospheres at different pressures, hard carbon was deposited on silicon, iron and tungsten carbide substrates. The hardness, friction coefficient, and wear rate of the film against steel are better than pure substrate material, respectively, so that it has potential to be used as a protective coating for micromechanical elements. The influences of gas pressure, gas atmosphere, and power density of laser irradiation on the thermal stability of film were analyzed by means of Raman-spectroscope, time-of-flight method, and optical emission spectrum. It was found that the film deposited under higher pressure has less diamond-like character. The film deposited under rest gas or argon atmosphere was very unstable and looked like a little graphite-like character. The film deposited at high vacuum (10-5 mbar rest gas) was the most stable and looked like the most diamond-like character. The film deposited at higher power density was more diamond-like than that at lower power density.

  13. Simulating rainbows in their atmospheric environment.

    Science.gov (United States)

    David Gedzelman, Stanley

    2008-12-01

    Light and color of geometric optics rainbows are simulated in their atmospheric environment. Sunlight passes through a molecular atmosphere with ozone and an aerosol layer near the ground to strike a cuboidal rain shaft below an overhanging cuboidal cloud. The rainbows are treated as singly scattered sunbeams that are depleted as they pass through the atmosphere and rain shaft. They appear in a setting illuminated by scattered light from behind the observer, from the background beyond the rain shaft, and from the rain shaft. In dark backgrounds the primary and secondary bows first become visible when the optical thickness of rain shafts tau(R) congruent with 0.0003 and tau(R) congruent with 0.003, respectively. The bows are brightest and most colorful for 0.1

  14. Graphene Membranes for Atmospheric Pressure Photoelectron Spectroscopy.

    Science.gov (United States)

    Weatherup, Robert S; Eren, Baran; Hao, Yibo; Bluhm, Hendrik; Salmeron, Miquel B

    2016-05-05

    Atmospheric pressure X-ray photoelectron spectroscopy (XPS) is demonstrated using single-layer graphene membranes as photoelectron-transparent barriers that sustain pressure differences in excess of 6 orders of magnitude. The graphene serves as a support for catalyst nanoparticles under atmospheric pressure reaction conditions (up to 1.5 bar), where XPS allows the oxidation state of Cu nanoparticles and gas phase species to be simultaneously probed. We thereby observe that the Cu(2+) oxidation state is stable in O2 (1 bar) but is spontaneously reduced under vacuum. We further demonstrate the detection of various gas-phase species (Ar, CO, CO2, N2, O2) in the pressure range 10-1500 mbar including species with low photoionization cross sections (He, H2). Pressure-dependent changes in the apparent binding energies of gas-phase species are observed, attributable to changes in work function of the metal-coated grids supporting the graphene. We expect atmospheric pressure XPS based on this graphene membrane approach to be a valuable tool for studying nanoparticle catalysis.

  15. Convection in Condensible-rich Atmospheres

    Science.gov (United States)

    Ding, F.; Pierrehumbert, R. T.

    2016-05-01

    Condensible substances are nearly ubiquitous in planetary atmospheres. For the most familiar case—water vapor in Earth’s present climate—the condensible gas is dilute, in the sense that its concentration is everywhere small relative to the noncondensible background gases. A wide variety of important planetary climate problems involve nondilute condensible substances. These include planets near or undergoing a water vapor runaway and planets near the outer edge of the conventional habitable zone, for which CO2 is the condensible. Standard representations of convection in climate models rely on several approximations appropriate only to the dilute limit, while nondilute convection differs in fundamental ways from dilute convection. In this paper, a simple parameterization of convection valid in the nondilute as well as dilute limits is derived and used to discuss the basic character of nondilute convection. The energy conservation properties of the scheme are discussed in detail and are verified in radiative-convective simulations. As a further illustration of the behavior of the scheme, results for a runaway greenhouse atmosphere for both steady instellation and seasonally varying instellation corresponding to a highly eccentric orbit are presented. The latter case illustrates that the high thermal inertia associated with latent heat in nondilute atmospheres can damp out the effects of even extreme seasonal forcing.

  16. Extraction of Freshwater and Energy from Atmosphere

    CERN Document Server

    Bolonkin, Alexander

    2007-01-01

    Author offers and researches a new, cheap method for the extraction of freshwater from the Earth atmosphere. The suggected method is fundamentally dictinct from all existing methods that extract freshwater from air. All other industrial methods extract water from a saline water source (in most cases from seawater). This new method may be used at any point in the Earth except Polar Zones. It does not require long-distance freshwater transportation. If seawater is not utilized for increasing its productivity, this inexpensive new method is very environment-friendly. The author method has two working versions: (1) the first variant the warm (hot) atmospheric air is lifted by the inflatable tube in a high altitude and atmospheric steam is condenced into freswater: (2) in the second version, the warm air is pumped 20-30 meters under the sea-surface. In the first version, wind and solar heating of air are used for causing air flow. In version (2) wind and propeller are used for causing air movment. The first method...

  17. Laser beam propagation in atmospheric turbulence

    Science.gov (United States)

    Murty, S. S. R.

    1979-01-01

    The optical effects of atmospheric turbulence on the propagation of low power laser beams are reviewed in this paper. The optical effects are produced by the temperature fluctuations which result in fluctuations of the refractive index of air. The commonly-used models of index-of-refraction fluctuations are presented. Laser beams experience fluctuations of beam size, beam position, and intensity distribution within the beam due to refractive turbulence. Some of the observed effects are qualitatively explained by treating the turbulent atmosphere as a collection of moving gaseous lenses of various sizes. Analytical results and experimental verifications of the variance, covariance and probability distribution of intensity fluctuations in weak turbulence are presented. For stronger turbulence, a saturation of the optical scintillations is observed. The saturation of scintillations involves a progressive break-up of the beam into multiple patches; the beam loses some of its lateral coherence. Heterodyne systems operating in a turbulent atmosphere experience a loss of heterodyne signal due to the destruction of coherence.

  18. Potential Biosignatures in Super-Earth Atmospheres

    CERN Document Server

    Rauer, H; Paris, P v; Cabrera, J; Godolt, M; Grenfell, J L; Belu, A; Selsis, F; Hedelt, P; Schreier, F

    2011-01-01

    Atmospheric temperature and mixing ratio profiles of terrestrial planets vary with the spectral energy flux distribution for different types of M-dwarf stars and the planetary gravity. We investigate the resulting effects on the spectral appearance of molecular absorption bands, that are relevant as indicators for potential planetary habitability during primary and secondary eclipse for transiting terrestrial planets with Earth-like biomass emissions. Atmospheric profiles are computed using a plane-parallel, 1D climate model coupled with a chemistry model. We then calculate simulated spectra using a line-by-line radiative transfer model. We find that emission spectra during secondary eclipse show increasing absorption of methane, water and ozone for planets orbiting quiet M0-M3 dwarfs and the active M-type star AD Leo compared to solar type central stars. However, for planets orbiting very cool and quiet M dwarfs (M4 to M7), increasing temperatures in the mid-atmosphere lead to reduced absorption signals, mak...

  19. Atmospheric Capture On Mars (and Processing)

    Science.gov (United States)

    Muscatello, Tony

    2017-01-01

    The ultimate destination of NASA's human exploration program is Mars. In Situ Resource Utilization (ISRU) is a key technology required to enable such missions, as first proposed by Prof. Robert Ash in 1976. This presentation will review progress in the systems required to produce rocket propellant, oxygen, and other consumables on Mars using the carbon dioxide atmosphere and other potential resources. For many years, NASA, commercial companies, and academia have been developing, and demonstrating techniques to capture and purify Martian atmospheric gases for their utilization for the production of hydrocarbons, oxygen, and water in ISRU systems. Other gases will be required to be separated from Martian atmospheric gases to provide pure CO2 for processing elements. Significant progress has been demonstrated in CO2 collection via adsorption by molecular sieves, freezing, and direct compression. Early stage work in adsorption in Ionic Liquids followed by electrolysis to oxygen is also underway. In addition, other Martian gases, such as nitrogen and argon, occur in concentrations high enough to be useful as buffer gas and could be captured as well. Gas separation requirements include, but are not limited to the selective separation of: (1) methane and water from unreacted carbon oxides (CO2-CO) and hydrogen typical of a Sabatier-type process, (2) carbon oxides and water from unreacted hydrogen from a Reverse Water-Gas Shift process, and (3) carbon oxides from oxygen from a trash/waste processing reaction.

  20. Molecular Dications in Planetary Atmospheric Escape

    Directory of Open Access Journals (Sweden)

    Stefano Falcinelli

    2016-08-01

    Full Text Available Fundamental properties of multiply charged molecular ions, such as energetics, structure, stability, lifetime and fragmentation dynamics, are relevant to understand and model the behavior of gaseous plasmas as well as ionosphere and astrophysical environments. Experimental determinations of the Kinetic Energy Released (KER for ions originating from dissociations reactions, induced by Coulomb explosion of doubly charged molecular ions (molecular dications produced by double photoionization of CO2, N2O and C2H2 molecules of interest in planetary atmospheres, are reported. The KER measurement as a function of the ultraviolet (UV photon energy in the range of 28–65 eV was extracted from the electron-ion-ion coincidence spectra obtained by using tunable synchrotron radiation coupled with ion imaging techniques at the ELETTRA Synchrotron Light Laboratory Trieste, Italy. These experiments, coupled with a computational analysis based on a Monte Carlo trajectory simulation, allow assessing the probability of escape for simple ionic species in the upper atmosphere of Mars, Venus and Titan. The measured KER in the case of H+, C+, CH+, CH2+, N+, O+, CO+, N2+ and NO+ fragment ions range between 1.0 and 5.5 eV, being large enough to allow these ionic species to participate in the atmospheric escape from such planets into space. In the case of Mars, we suggest a possible explanation for the observed behavior of the O+ and CO22+ ion density profiles.

  1. Characterizing Transiting Planet Atmospheres through 2025

    CERN Document Server

    Cowan, N B; Angerhausen, D; Batalha, N E; Clampin, M; Colon, K; Crossfield, I J M; Fortney, J J; Gaudi, B S; Harrington, J; Iro, N; Lillie, C F; Linsky, J L; Lopez-Morales, M; Mandell, A M; Stevenson, K B; SAG-X, on behalf of ExoPAG

    2015-01-01

    [Abridged] We have only been able to comprehensively characterize the atmospheres of a handful of transiting planets, because most orbit faint stars. TESS will discover transiting planets orbiting the brightest stars, enabling, in principle, an atmospheric survey of 10^2 to 10^3 bright hot Jupiters and warm sub-Neptunes. Uniform observations of such a statistically significant sample would provide leverage to understand---and learn from---the diversity of short-period planets. We argue that the best way to maximize the scientific returns of TESS is with a follow-up space mission consisting of a ~1 m telescope with an optical--NIR spectrograph: it could measure molecular absorption for non-terrestrial planets, as well as eclipses and phase variations for the hottest jovians. Such a mission could observe up to 10^3 transits per year, thus enabling it to survey a large fraction of the bright (J<11) TESS planets. JWST could be used to perform detailed atmospheric characterization of the most interesting transi...

  2. Impact of biomass burning on the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Dignon, J.

    1993-03-01

    Fire has played an important part in biogeochemical cycling throughout most of the history of our planet. Ice core studies have been very beneficial in paleoclimate studies and constraining the budgets of biogeochemical cycles through the past 160,000 years of the Vostok ice core. Although to date there has been no way of determining cause and effect, concentration of greenhouse gases directly correlates with temperature in ice core analyses. Recent ice core studies on Greenland have shown that significant climate change can be very rapid on the order of a decade. This chapter addresses the coupled evolution of our planet`s atmospheric composition and biomass burning. Special attention is paid to the chemical and climatic impacts of biomass burning on the atmosphere throughout the last century, specifically looking at the cycles of carbon, nitrogen, and sulfur. Information from ice core measurements may be useful in understanding the history of fire and its historic affect on the composition of the atmosphere and climate.

  3. Origin of Hawking radiation: firewall or atmosphere?

    Science.gov (United States)

    Kim, Wontae

    2017-02-01

    The Unruh vacuum not admitting any outgoing flux at the horizon implies that the origin of the outgoing Hawking radiation is the atmosphere of a near-horizon quantum region without resort to the firewall; however, the existence of the firewall of superplanckian excitations at the horizon can be supported by the infinite Tolman temperature at the horizon. In an exactly soluble model, we explicitly show that the firewall necessarily emerges out of the Unruh vacuum so that the Tolman temperature in the Unruh vacuum is divergent in essence due to the infinitely blueshifted negative ingoing flux crossing the horizon rather than the outgoing flux. We also show that the outgoing Hawking radiation in the Unruh vacuum indeed originates from the atmosphere, not just at the horizon, which is of no relevance to the infinite blueshift. Consequently, the firewall from the infinite Tolman temperature and the Hawking radiation from the atmosphere turn out to be compatible, once we waive the claim that the Hawking radiation in the Unruh vacuum originates from the infinitely blueshifted outgoing excitations at the horizon.

  4. The attenuation of atmospheric Cerenkov photons

    CERN Document Server

    Daniel, M K

    2003-01-01

    Whilst the atmosphere places a limit on the successful applications of many branches of astronomy, it becomes an invaluable tool for the detection of very high energy gamma-rays. This thesis is concerned with reducing the systematic uncertainties inherent to using the atmosphere as a detector of very high energy radiation. The interaction processes important to high energy particles are met in the first chapter. The second chapter explores how these interaction processes are responsible for generating observable Cerenkov radiation that can be detected by ground based telescopes. A description of one of these atmospheric Cerenkov telescopes, the University of Durham Mark 6 telescope, is given in chapter 3. A timing analysis was performed on data obtained with this telescope of the high mass X-ray binary Centaurus X-3 and the findings are given in chapter 5. The result of the test for orbital modulation of the VHE gamma-ray signal has implications for the possible site of VHE gamma-ray emission in this system a...

  5. Atmospheric Aerosol Chemistry Analyzer: Demonstration of feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Mroz, E.J.; Olivares, J.; Kok, G.

    1996-04-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project objective was to demonstrate the technical feasibility of an Atmospheric Aerosol Chemistry Analyzer (AACA) that will provide a continuous, real-time analysis of the elemental (major, minor and trace) composition of atmospheric aerosols. The AACA concept is based on sampling the atmospheric aerosol through a wet cyclone scrubber that produces an aqueous suspension of the particles. This suspension can then be analyzed for elemental composition by ICP/MS or collected for subsequent analysis by other methods. The key technical challenge was to develop a wet cyclone aerosol sampler suitable for respirable particles found in ambient aerosols. We adapted an ultrasonic nebulizer to a conventional, commercially available, cyclone aerosol sampler and completed collection efficiency tests for the unit, which was shown to efficiently collect particles as small as 0.2 microns. We have completed the necessary basic research and have demonstrated the feasibility of the AACA concept.

  6. Atmospheric neutrino oscillations with IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Andreas [TU Muenchen (Germany); Collaboration: IceCube-Collaboration

    2012-07-01

    IceCube is a cubic kilometer scale neutrino telescope completed in December 2010 optimized for neutrino energies on the TeV to PeV scale. With its more densely instrumented DeepCore subarray in the center, the performance in the 10 GeV to 1 TeV energy range has been improved significantly. We present the status of an analysis using IceCube and DeepCore in the 79-string configuration which operated from May 2010 until May 2011. In this configuration it is expected to be sensitive to standard neutrino oscillations by atmospheric muon neutrino disappearance with a maximum effect around 30 GeV and for vertically upgoing events. An atmospheric neutrino event sample is extracted from DeepCore data in the energy range 15 GeV-150 GeV. Higher energetic atmospheric neutrinos detected by IceCube serve as a control sample for which no oscillation effects are expected.

  7. Estimating atmospheric mercury concentrations with lichens.

    Science.gov (United States)

    Vannini, Andrea; Nicolardi, Valentina; Bargagli, Roberto; Loppi, Stefano

    2014-01-01

    The uptake kinetics of elemental gaseous Hg (Hg(0)) in three species of epiphytic lichens (Pseudevernia furfuracea, Evernia prunastri, and Xanthoria parietina) were investigated under four different Hg concentrations (10, 15, 30, and 45 μg/m(3)) and three different temperatures (10, 20, and 30 °C) with the aim of evaluating the lichen efficiency for Hg(0) accumulation and their potential use in the estimate of atmospheric concentrations of this metal in the field. The results showed that under our experimental conditions the lichens accumulated Hg according to exposure time and that the metal is not released back to the atmosphere after Hg(0) was removed from the air (clearance). Pseudevernia furfuracea showed the highest Hg accumulation capacity and Evernia prunastri showed the lowest, but in these species the metal uptake kinetics was affected by temperature. Xanthoria parietina showed an intermediate metal accumulation capacity and a Hg accumulation rate independent of temperature (in the range 10-30 °C). The use of first-order kinetics equations for Hg uptake in X. parietina and available field data on Hg bioaccumulation in this species allowed reliable estimates of atmospheric Hg concentrations in the environment.

  8. Mars' atmosphere: Earth's sister and statistical twin

    Science.gov (United States)

    Chen, Wilbur; Lovejoy, Shaun; Muller, Jan-Peter

    2016-04-01

    Satellite-based Martian re-analyses have allowed unprecedented comparisons between our atmosphere and that of our sister planet, underlining various similarities and differences in their respective dynamics. Yet by focusing on large scale structures and deterministic mechanisms they have improved our understanding of the dynamics only over fairly narrow ranges of (near) planetary scales. However, the Reynolds numbers of the flows on both planets are larger than 1011 and dissipation only occurs at centimetric (Mars) or millimetric scales (Earth) so that over most of their scale ranges, the dynamics are fully turbulent. In this presentation, we therefore examine the high level, statistical, turbulent laws for the temperature, horizontal wind and surface pressure, finding that Earth and Mars have virtually identical statistical exponents: their statistics are very similar over wide ranges. Therefore, it would seem that with the exception of certain aspects of the largest scales (such as the role of dust in atmospheric heating on Mars, or of water in its various phases on Earth), that the nonlinear dynamics are very similar. We argue that this is a prediction of the classical laws of turbulence when extended to planetary scales, and that it supports our use of turbulent laws on both planetary atmospheres.

  9. Photochemical aerosols in warm exoplanetary atmospheres

    Science.gov (United States)

    Imanaka, Hiroshi; Smith, Mark A.; McKay, Christopher P.; Cruikshank, Dale P.; Marley, Mark S.

    2016-10-01

    Recent transit observations of exoplanets have demonstrated the possibility of a wide prevalence of haze/cloud layers at high altitudes. Hydrocarbon photochemical haze could be the candidate for such haze particles on warm sub-Neptunes, but the lack of evidence for methane poses a puzzle for such hydrocarbon photochemical haze. The CH4/CO ratios in planetary atmospheres vary substantially from their temperature and dynamics. We have conducted a series of laboratory simulations to investigate how atmospheric compositions, specifically CH4/CO ratios, affect the haze production rates and their optical properties. The mass production rates in the H2-CH4-CO gas mixtures are rather insensitive to the CH4/CO ratios larger than at 0.3. Significant formation of solid material is observed in a H2-CO gas mixture even without CH4. The complex refractive indices of the aerosol analogue from the H2-CO gas mixture show strong absorption at the visible/near-IR wavelengths. These experimental facts imply that substantial carbonaceous aerosols may be generated in warm H2-CO-CH4 exoplanetary atmospheres, and that it might be responsible for the observed dark albedos at the visible wavelengths.

  10. A new contribution to the conventional atmospheric neutrino flux

    CERN Document Server

    Gaisser, Thomas K

    2014-01-01

    Atmospheric neutrinos are an important background to astrophysical neutrino searches, and are also of considerable interest in their own right. This paper points out that the contribution to conventional atmospheric $\

  11. Some characteristics of the atmosphere during an adiabatic process

    Institute of Scientific and Technical Information of China (English)

    GAO Li; LI Jianping; REN Hongli

    2006-01-01

    Some important characteristics of the atmosphere during an adiabatic process are investigated, which include the invariability of atmospheric entropy range and local surface potential temperature, the conservation of the atmospheric mass intervened between any isentropic surface and the ground, and the isentropic surface intersecting with the ground. The analysis shows that the atmospheric reference state (ARS) for investigation on available potential energy (APE) should be defined objectively as the state which could be approached from the existing atmosphere by adiabatic adjustment, and be related to initial atmospheric state before adjustment. For the initial atmosphere state at any time, its corresponding ARS is different from the one at another time. Based on the above-mentioned conclusions,the reference state proposed by Lorenz cannot be obtained physically, so a new conception, the conditional minimum total potential energy, is put forward in order to objectively investigate atmospheric APE.

  12. Experimental and Numerical Studies of Atmosphere Water Interactions

    KAUST Repository

    Bou-Zeid, Elie

    2011-07-04

    Understanding and quantifying the interaction of the atmosphere with underlying water surfaces is of great importance for a wide range of scientific fields such as water resources management, climate studies of ocean-atmosphere exchange, and regional weat

  13. NOAA/NCEP Global Forecast System (GFS) Atmospheric Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — U.S. National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) numerical weather...

  14. Carnegie Institution Atmospheric-Electricity and Meteorological Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Department of Terrestrial Magnetism at the Carnegie Institute of Science conducted observations of atmospheric electricity and magnetic storms. In addition to...

  15. Integrated Assessment of Ecosystem Effects of Atmospheric Deposition

    Science.gov (United States)

    Ecosystems obtain a portion of their nutrients from the atmosphere. Following the Industrial Revolution, however, human activities have accelerated biogeochemical cycles, greatly enhancing the transport of substances among the atmosphere, water, soil, and living things. The atmos...

  16. 77 FR 33443 - National Oceanic and Atmospheric Administration

    Science.gov (United States)

    2012-06-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Pacific Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA),...

  17. The Atmospheric Chemistry of Methyl Chavicol (Estragole)

    Science.gov (United States)

    Bloss, W. J.; Alam, M. S.; Rickard, A. R.; Hamilton, J. F.; Pereira, K. F.; Camredon, M.; Munoz, A.; Vazquez, M.; Alacreu, P.; Rodenas, M.; Vera, T.

    2012-12-01

    The oxidation of volatile organic compounds (VOCs) leads to formation of ozone and secondary organic aerosols (SOA), with consequences for health, air quality, crop yields, atmospheric chemistry and radiative transfer. It is estimated that ca. 90 % of VOC emissions to the atmosphere originate from biogenic sources (BVOC); such emissions may increase under future climates. Recent field observations have identified Methyl Chavicol ("MC" hereafter, also known as Estragole; 1-allyl-4-methoxybenzene, C10H12O) as a major BVOC above pine forests in the USA [Bouvier-Brown et al., 2009], and within an oil palm plantation in Malaysian Borneo, where it was found that MC could represent the highest single floral contribution of reactive carbon to the atmosphere [Misztal et al., 2010]. Palm oil cultivation, and hence emissions of MC, may be expected to increase with societal food and biofuel demand. We present the results of a series of simulation chamber experiments to assess the atmospheric fate of MC. Experiments were performed in the EUPHORE (European Photoreactor) facility in Valencia, Spain (200 m3 outdoor smog chamber), investigating the degradation of MC by reaction with OH, O3 and NO3. An extensive range of measurement instrumentation was used to monitor precursor and product formation, including stable species (FTIR, PTR-MS, GC-FID and GC-MS), radical intermediates (LIF), inorganic components (NOx, O3, HONO (LOPAP and aerosol production (SMPS) and composition (PILS and filters; analysed offline by LC-MS and FTICR-MS). Experiments were conducted at a range of NOx:VOC ratios, and in the presence and absence of radical (OH) scavenger compounds. This chamber dataset is used to determine the rate constants for reaction of MC with OH, O3 and NO3, the ozonolysis radical yields, and identify the primary degradation products for each initiation route, alongside the aerosol mass yields. Aerosol composition measurements are analysed to identify markers for MC contributions to

  18. Planetary Atmospheres and Evolution of Complex Life

    Science.gov (United States)

    Catling, D.

    2014-04-01

    Let us define "complex life" as actively mobile organisms exceeding tens of centimeter size scale with specialized, differentiated anatomy comparable to advanced metazoans. Such organisms on any planet will need considerable energy for growth and metabolism, and an atmosphere is likely to play a key role. The history of life on Earth suggests that there were at least two major hurdles to overcome before complex life developed. The first was biological. Large, three-dimensional multicellular animals and plants are made only of eukaryotic cells, which are the only type that can develop into a large, diverse range of cell types unlike the cells of microbes. Exactly how eukaryotes allow 3D multicellularity and how they originated are matters of debate. But the internal structure and bigger and more modular genomes of eukaryotes are important factors. The second obstacle for complex life was having sufficient free, diatomic oxygen (O2). Aerobic metabolism provides about an order of magnitude more energy for a given intake of food than anaerobic metabolism, so anaerobes don't grow multicellular beyond filaments because of prohibitive growth efficiencies. A precursor to a 2.4 Ga rise of oxygen was the evolution of water-splitting, oxygen-producing photosynthesis. But although the atmosphere became oxidizing at 2.4 Ga, sufficient atmospheric O2 did not occur until about 0.6 Ga. Earth-system factors were involved including planetary outgassing (as affected by size and composition), hydrogen escape, and processing of organic carbon. An atmosphere rich in O2 provides the largest feasible energy source per electron transfer in the Periodic Table, which suggests that O2 would be important for complex life on exoplanets. But plentiful O2 is unusual in a planetary atmosphere because O2 is easily consumed in chemical reactions with reducing gases or surface materials. Even with aerobic metabolism, the partial pressure of O2 (pO2) must exceed ~10^3 Pa to allow organisms that rely

  19. Atmospheric pressure does not influence acute diverticular disease

    OpenAIRE

    Velayos, Benito; Pons-Renedo, Fernando; Feranández-Salazar, Luis; Muñoz, María Fe; Olmo, Lourdes del; Almaraz Gómez, Ana; Beltrán de Heredia, Juan; Hernández-González, José Manuel

    2013-01-01

    Producción Científica The article offers information on a study which examines the influence of atmospheric pressure on the development of acute diverticular disease. The value of atmospheric pressure and its daily trends in 2012 was collected to prove whether atmospheric pressure influence this disease by raising intra-diverticular pressure in days with higher atmospheric pressure. The study involved patients with acute diverticulitis who underwent computed tomography.

  20. Atmospheric Pressure Plasma Processing for Polymer Adhesion: A Review

    DEFF Research Database (Denmark)

    Kusano, Yukihiro

    2014-01-01

    Atmospheric pressure plasma processing has attracted significant interests over decades due to its usefulness and a variety of applications. Adhesion improvement of polymer surfaces is among the most important applications of atmospheric pressure plasma treatment. Reflecting recent significant...... development of the atmospheric pressure plasma processing, this work presents its fundamental aspects, applications, and characterization techniques relevant to adhesion....