WorldWideScience

Sample records for atmosphere-surface exchange processes

  1. Air/surface exchange processes of mercury and their linkage to atmospheric pools

    International Nuclear Information System (INIS)

    Bahlmann, Enno; Ebinghaus, Ralf

    2001-01-01

    The atmospheric mercury cycle is strongly linked to the terrestrial, aquatic and biologic cycle of mercury via air/surface exchange processes. In order to quantify mercury fluxes from and to the atmosphere to predict local and regional source contributions the methods for flux measurements as well as the physicochemical factors controlling air/surface exchange processes must be assessed. We will describe methods for the determination of mercury and mercury species in ambient air which are basic for investigation of air/surface exchange processes. Further on we will describe approaches for studying the physicochemical factors controlling this processes by using a new laboratory flux measurement system. (author)

  2. Atmosphere-soil-vegetation model including CO2 exchange processes: SOLVEG2

    International Nuclear Information System (INIS)

    Nagai, Haruyasu

    2004-11-01

    A new atmosphere-soil-vegetation model named SOLVEG2 (SOLVEG version 2) was developed to study the heat, water, and CO 2 exchanges between the atmosphere and land-surface. The model consists of one-dimensional multilayer sub-models for the atmosphere, soil, and vegetation. It also includes sophisticated processes for solar and long-wave radiation transmission in vegetation canopy and CO 2 exchanges among the atmosphere, soil, and vegetation. Although the model usually simulates only vertical variation of variables in the surface-layer atmosphere, soil, and vegetation canopy by using meteorological data as top boundary conditions, it can be used by coupling with a three-dimensional atmosphere model. In this paper, details of SOLVEG2, which includes the function of coupling with atmosphere model MM5, are described. (author)

  3. Exchange Processes in the Atmospheric Boundary Layer Over Mountainous Terrain

    Directory of Open Access Journals (Sweden)

    Stefano Serafin

    2018-03-01

    Full Text Available The exchange of heat, momentum, and mass in the atmosphere over mountainous terrain is controlled by synoptic-scale dynamics, thermally driven mesoscale circulations, and turbulence. This article reviews the key challenges relevant to the understanding of exchange processes in the mountain boundary layer and outlines possible research priorities for the future. The review describes the limitations of the experimental study of turbulent exchange over complex terrain, the impact of slope and valley breezes on the structure of the convective boundary layer, and the role of intermittent mixing and wave–turbulence interaction in the stable boundary layer. The interplay between exchange processes at different spatial scales is discussed in depth, emphasizing the role of elevated and ground-based stable layers in controlling multi-scale interactions in the atmosphere over and near mountains. Implications of the current understanding of exchange processes over mountains towards the improvement of numerical weather prediction and climate models are discussed, considering in particular the representation of surface boundary conditions, the parameterization of sub-grid-scale exchange, and the development of stochastic perturbation schemes.

  4. Surface - atmosphere exchange of ammonia over grazed pasture

    NARCIS (Netherlands)

    Plantaz, M.A.H.G.

    1998-01-01

    This thesis deals with the exchange of ammonia between the atmosphere and grazed pasture in an area of intensive livestock breeding. The term exchange is used because gaseous ammonia can be taken up (dry deposition) as well as released (emission) by this type of surface.
    Ammonia exchange

  5. Global observations and modeling of atmosphere-surface exchange of elemental mercury: a critical review

    Science.gov (United States)

    Zhu, Wei; Lin, Che-Jen; Wang, Xun; Sommar, Jonas; Fu, Xuewu; Feng, Xinbin

    2016-04-01

    Reliable quantification of air-surface fluxes of elemental Hg vapor (Hg0) is crucial for understanding mercury (Hg) global biogeochemical cycles. There have been extensive measurements and modeling efforts devoted to estimating the exchange fluxes between the atmosphere and various surfaces (e.g., soil, canopies, water, snow, etc.) in the past three decades. However, large uncertainties remain due to the complexity of Hg0 bidirectional exchange, limitations of flux quantification techniques and challenges in model parameterization. In this study, we provide a critical review on the state of science in the atmosphere-surface exchange of Hg0. Specifically, the advancement of flux quantification techniques, mechanisms in driving the air-surface Hg exchange and modeling efforts are presented. Due to the semi-volatile nature of Hg0 and redox transformation of Hg in environmental media, Hg deposition and evasion are influenced by multiple environmental variables including seasonality, vegetative coverage and its life cycle, temperature, light, moisture, atmospheric turbulence and the presence of reactants (e.g., O3, radicals, etc.). However, the effects of these processes on flux have not been fundamentally and quantitatively determined, which limits the accuracy of flux modeling. We compile an up-to-date global observational flux database and discuss the implication of flux data on the global Hg budget. Mean Hg0 fluxes obtained by micrometeorological measurements do not appear to be significantly greater than the fluxes measured by dynamic flux chamber methods over unpolluted surfaces (p = 0.16, one-tailed, Mann-Whitney U test). The spatiotemporal coverage of existing Hg0 flux measurements is highly heterogeneous with large data gaps existing in multiple continents (Africa, South Asia, Middle East, South America and Australia). The magnitude of the evasion flux is strongly enhanced by human activities, particularly at contaminated sites. Hg0 flux observations in East

  6. Investigation of the influence of atmospheric stability and turbulence on land-atmosphere exchange

    Science.gov (United States)

    Osibanjo, O.; Holmes, H.

    2015-12-01

    Surface energy fluxes are exchanged between the surface of the earth and the atmosphere and impact weather, climate, and air quality. The radiation from the sun triggers the surface-atmosphere interaction during the day as heat is transmitted to the surface and the surface heats the air directly above generating wind (i.e., thermal turbulence) that transports heat, moisture, and momentum in the atmospheric boundary layer (ABL). This process is impacted by greenhouse gasses (i.e., water vapor, carbon dioxide and other trace gases) that absorb heat emitted by the earth's surface. The concentrations of atmospheric greenhouse gasses are increasing leading to changes in ABL dynamics as a result of the changing surface energy balance. The ABL processes are important to characterize because they are difficult to parameterize in global and regional scale atmospheric models. Empirical data can be collected using eddy covariance micrometeorological methods to measure turbulent fluxes (e.g., sensible heat, moisture, and CO2) and quantify the exchange between the surface and the atmosphere. The objective of this work is to calculate surface fluxes using observational data collected during one week in September 2014 from a monitoring site in Echo, Oregon. The site is located in the Columbia Basin with rolling terrain, irrigated farmland, and over 100 wind turbines. The 10m tower was placed in a small valley depression to isolate nighttime cold air pools. This work will present observations of momentum, sensible heat, moisture, and carbon dioxide fluxes from data collected at a sampling frequency of 10Hz at four heights. Atmospheric stability is determined using Monin-Obukov length and flux Richardson number, and the impact of stability on surface-atmosphere exchange is investigated. This work will provide a better understanding of surface fluxes and mixing, particularly during stable ABL periods, and the results can be used to compare with numerical models.

  7. Investigation of ammonia air-surface exchange processes in a ...

    Science.gov (United States)

    Recent assessments of atmospheric deposition in North America note the increasing importance of reduced (NHx = NH3 + NH4+) forms of nitrogen (N) relative to oxidized forms. This shift in in the composition of inorganic nitrogen deposition has both ecological and policy implications. Deposition budgets developed from inferential models applied at the landscape scale, as well as regional and global chemical transport models, indicate that NH3 dry deposition contributes a significant portion of inorganic N deposition in many areas. However, the bidirectional NH3 flux algorithms employed in these models have not been extensively evaluated for North American conditions (e.g, atmospheric chemistry, meteorology, biogeochemistry). Further understanding of the processes controlling NH3 air-surface exchange in natural systems is critically needed. Based on preliminary results from the Southern Appalachian Nitrogen Deposition Study (SANDS), this presentation examines processes of NH3 air-surface exchange in a deciduous montane forest at the Coweeta Hydrologic Laboratory in western North Carolina. A combination of measurements and modeling are used to investigate net fluxes of NH3 above the forest and sources and sinks of NH3 within the canopy and forest floor. Measurements of biogeochemical NH4+ pools are used to characterize emission potential and NH3 compensation points of canopy foliage (i.e., green vegetation), leaf litter, and soil and their relation to NH3 fluxes

  8. Back-exchange: a novel approach to quantifying oxygen diffusion and surface exchange in ambient atmospheres.

    Science.gov (United States)

    Cooper, Samuel J; Niania, Mathew; Hoffmann, Franca; Kilner, John A

    2017-05-17

    A novel two-step Isotopic Exchange (IE) technique has been developed to investigate the influence of oxygen containing components of ambient air (such as H 2 O and CO 2 ) on the effective surface exchange coefficient (k*) of a common mixed ionic electronic conductor material. The two step 'back-exchange' technique was used to introduce a tracer diffusion profile, which was subsequently measured using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). The isotopic fraction of oxygen in a dense sample as a function of distance from the surface, before and after the second exchange step, could then be used to determine the surface exchange coefficient in each atmosphere. A new analytical solution was found to the diffusion equation in a semi-infinite domain with a variable surface exchange boundary, for the special case where D* and k* are constant for all exchange steps. This solution validated the results of a numerical, Crank-Nicolson type finite-difference simulation, which was used to extract the parameters from the experimental data. When modelling electrodes, D* and k* are important input parameters, which significantly impact performance. In this study La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ (LSCF6428) was investigated and it was found that the rate of exchange was increased by around 250% in ambient air compared to high purity oxygen at the same pO 2 . The three experiments performed in this study were used to validate the back-exchange approach and show its utility.

  9. Exchange processes between a coniferous forest and the atmosphere

    NARCIS (Netherlands)

    Bosveld, F.C.

    1999-01-01

    This thesis deals with the research question: which processes are relevant in controlling the exchange fluxes between the forest and the atmosphere and how can this control be quantified? Answering this question is relevant for research in the fields of air pollution, weather and climate

  10. A review of measurement and modelling results of particle atmosphere-surface exchange

    DEFF Research Database (Denmark)

    Pryor, Sara; Gallagher, M.; Sievering, H.

    2008-01-01

    Atmosphere-surface exchange represents one mechanism by which atmospheric particle mass and number size distributions are modified. Deposition velocities (upsilon(d)) exhibit a pronounced dependence on surface type, due in part to turbulence structure (as manifest in friction velocity), with minima...... agreement between models and observations is found over less-rough surfaces though those data also imply substantially higher surface collection efficiencies than were originally proposed and are manifest in current models. We review theorized dependencies for particle fluxes, describe and critique model...... of approximately 0.01 and 0.2 cm s(-1) over grasslands and 0.1-1 cm s(-1) over forests. However, as noted over 20 yr ago, observations over forests generally do not support the pronounced minimum of deposition velocity (upsilon(d)) for particle diameters of 0.1-2 mu m as manifest in theoretical predictions. Closer...

  11. Atmosphere-surface interactions over polar oceans and heterogeneous surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Vihma, T.

    1995-12-31

    Processes of interaction between the atmospheric boundary layer and the planetary surface have been studied with special emphasis on polar ocean surfaces: the open ocean, leads, polynyas and sea ice. The local exchange of momentum, heat and moisture has been studied experimentally both in the Weddell Sea and in the Greenland Sea. Exchange processes over heterogeneous surfaces are addressed by modelling studies. Over a homogeneous surface, the local turbulent fluxes can be reasonably well estimated using an iterative flux-profile scheme based on the Monin-Obukhov similarity theory. In the Greenland Sea, the near-surface air temperature and the generally small turbulent fluxes over the open ocean were affected by the sea surface temperature fronts. Over the sea ice cover in the Weddell Sea, the turbulent sensible heat flux was generally downwards, and together with an upward oceanic heat flux through the ice it compensated the heat loss from the surface via long-wave radiation. The wind dominated on time scales of days, while the current became important on longer time scales. The drift dynamics showed apparent spatial differences between the eastern and western regions, as well as between the Antarctic Circumpolar Current and the rest of the Weddell Sea. Inertial motion was present in regions of low ice concentration. The surface heterogeneity, arising e.g. from roughness or temperature distribution, poses a problem for the parameterization of surface exchange processes in large-scale models. In the case of neutral flow over a heterogeneous terrain, an effective roughness length can be used to parameterize the roughness effects

  12. Atmosphere-surface interactions over polar oceans and heterogeneous surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Vihma, T

    1996-12-31

    Processes of interaction between the atmospheric boundary layer and the planetary surface have been studied with special emphasis on polar ocean surfaces: the open ocean, leads, polynyas and sea ice. The local exchange of momentum, heat and moisture has been studied experimentally both in the Weddell Sea and in the Greenland Sea. Exchange processes over heterogeneous surfaces are addressed by modelling studies. Over a homogeneous surface, the local turbulent fluxes can be reasonably well estimated using an iterative flux-profile scheme based on the Monin-Obukhov similarity theory. In the Greenland Sea, the near-surface air temperature and the generally small turbulent fluxes over the open ocean were affected by the sea surface temperature fronts. Over the sea ice cover in the Weddell Sea, the turbulent sensible heat flux was generally downwards, and together with an upward oceanic heat flux through the ice it compensated the heat loss from the surface via long-wave radiation. The wind dominated on time scales of days, while the current became important on longer time scales. The drift dynamics showed apparent spatial differences between the eastern and western regions, as well as between the Antarctic Circumpolar Current and the rest of the Weddell Sea. Inertial motion was present in regions of low ice concentration. The surface heterogeneity, arising e.g. from roughness or temperature distribution, poses a problem for the parameterization of surface exchange processes in large-scale models. In the case of neutral flow over a heterogeneous terrain, an effective roughness length can be used to parameterize the roughness effects

  13. [Characteristics of mercury exchange flux between soil and atmosphere under the snow retention and snow melting control].

    Science.gov (United States)

    Zhang, Gang; Wang, Ning; Ai, Jian-Chao; Zhang, Lei; Yang, Jing; Liu, Zi-Qi

    2013-02-01

    Jiapigou gold mine, located in the upper Songhua River, was once the largest mine in China due to gold output, where gold extraction with algamation was widely applied to extract gold resulting in severe mercury pollution to ambient environmental medium. In order to study the characteristics of mercury exchange flux between soil (snow) and atmosphere under the snow retention and snow melting control, sampling sites were selected in equal distances along the slope which is situated in the typical hill-valley terrain unit. Mercury exchange flux between soil (snow) and atmosphere was determined with the method of dynamic flux chamber and in all sampling sites the atmosphere concentration from 0 to 150 cm near to the earth in the vertical direction was measured. Furthermore, the impact factors including synchronous meteorology, the surface characteristics under the snow retention and snow melting control and the mercury concentration in vertical direction were also investigated. The results are as follows: During the period of snow retention and melting the air mercury tends to gather towards valley bottom along the slope and an obvious deposit tendency process was found from air to the earth's surface under the control of thermal inversion due to the underlying surface of cold source (snow surface). However, during the period of snow melting, mercury exchange flux between the soil and atmosphere on the surface of the earth with the snow being melted demonstrates alternative deposit and release processes. As for the earth with snow covered, the deposit level of mercury exchange flux between soil and atmosphere is lower than that during the period of snow retention. The relationship between mercury exchange flux and impact factors shows that in snow retention there is a remarkable negative linear correlation between mercury exchange flux and air mercury concentration as well as between the former and the air temperature. In addition, in snow melting mercury exchange

  14. Surface Modification and Surface - Subsurface Exchange Processes on Europa

    Science.gov (United States)

    Phillips, C. B.; Molaro, J.; Hand, K. P.

    2017-12-01

    The surface of Jupiter's moon Europa is modified by exogenic processes such as sputtering, gardening, radiolysis, sulfur ion implantation, and thermal processing, as well as endogenic processes including tidal shaking, mass wasting, and the effects of subsurface tectonic and perhaps cryovolcanic activity. New materials are created or deposited on the surface (radiolysis, micrometeorite impacts, sulfur ion implantation, cryovolcanic plume deposits), modified in place (thermal segregation, sintering), transported either vertically or horizontally (sputtering, gardening, mass wasting, tectonic and cryovolcanic activity), or lost from Europa completely (sputtering, plumes, larger impacts). Some of these processes vary spatially, as visible in Europa's leading-trailing hemisphere brightness asymmetry. Endogenic geologic processes also vary spatially, depending on terrain type. The surface can be classified into general landform categories that include tectonic features (ridges, bands, cracks); disrupted "chaos-type" terrain (chaos blocks, matrix, domes, pits, spots); and impact craters (simple, complex, multi-ring). The spatial distribution of these terrain types is relatively random, with some differences in apex-antiapex cratering rates and latitudinal variation in chaos vs. tectonic features. In this work, we extrapolate surface processes and rates from the top meter of the surface in conjunction with global estimates of transport and resurfacing rates. We combine near-surface modification with an estimate of surface-subsurface (and vice versa) transport rates for various geologic terrains based on an average of proposed formation mechanisms, and a spatial distribution of each landform type over Europa's surface area. Understanding the rates and mass balance for each of these processes, as well as their spatial and temporal variability, allows us to estimate surface - subsurface exchange rates over the average surface age ( 50myr) of Europa. Quantifying the timescale

  15. Advances in understanding, models and parameterizations of biosphere-atmosphere ammonia exchange

    Science.gov (United States)

    Flechard, C. R.; Massad, R.-S.; Loubet, B.; Personne, E.; Simpson, D.; Bash, J. O.; Cooter, E. J.; Nemitz, E.; Sutton, M. A.

    2013-07-01

    Atmospheric ammonia (NH3) dominates global emissions of total reactive nitrogen (Nr), while emissions from agricultural production systems contribute about two-thirds of global NH3 emissions; the remaining third emanates from oceans, natural vegetation, humans, wild animals and biomass burning. On land, NH3 emitted from the various sources eventually returns to the biosphere by dry deposition to sink areas, predominantly semi-natural vegetation, and by wet and dry deposition as ammonium (NH4+) to all surfaces. However, the land/atmosphere exchange of gaseous NH3 is in fact bi-directional over unfertilized as well as fertilized ecosystems, with periods and areas of emission and deposition alternating in time (diurnal, seasonal) and space (patchwork landscapes). The exchange is controlled by a range of environmental factors, including meteorology, surface layer turbulence, thermodynamics, air and surface heterogeneous-phase chemistry, canopy geometry, plant development stage, leaf age, organic matter decomposition, soil microbial turnover, and, in agricultural systems, by fertilizer application rate, fertilizer type, soil type, crop type, and agricultural management practices. We review the range of processes controlling NH3 emission and uptake in the different parts of the soil-canopy-atmosphere continuum, with NH3 emission potentials defined at the substrate and leaf levels by different [NH4+] / [H+] ratios (Γ). Surface/atmosphere exchange models for NH3 are necessary to compute the temporal and spatial patterns of emissions and deposition at the soil, plant, field, landscape, regional and global scales, in order to assess the multiple environmental impacts of airborne and deposited NH3 and NH4+. Models of soil/vegetation/atmosphere NH3 exchange are reviewed from the substrate and leaf scales to the global scale. They range from simple steady-state, "big leaf" canopy resistance models, to dynamic, multi-layer, multi-process, multi-chemical species schemes

  16. Advances in understanding, models and parameterizations of biosphere-atmosphere ammonia exchange

    Directory of Open Access Journals (Sweden)

    C. R. Flechard

    2013-07-01

    Full Text Available Atmospheric ammonia (NH3 dominates global emissions of total reactive nitrogen (Nr, while emissions from agricultural production systems contribute about two-thirds of global NH3 emissions; the remaining third emanates from oceans, natural vegetation, humans, wild animals and biomass burning. On land, NH3 emitted from the various sources eventually returns to the biosphere by dry deposition to sink areas, predominantly semi-natural vegetation, and by wet and dry deposition as ammonium (NH4+ to all surfaces. However, the land/atmosphere exchange of gaseous NH3 is in fact bi-directional over unfertilized as well as fertilized ecosystems, with periods and areas of emission and deposition alternating in time (diurnal, seasonal and space (patchwork landscapes. The exchange is controlled by a range of environmental factors, including meteorology, surface layer turbulence, thermodynamics, air and surface heterogeneous-phase chemistry, canopy geometry, plant development stage, leaf age, organic matter decomposition, soil microbial turnover, and, in agricultural systems, by fertilizer application rate, fertilizer type, soil type, crop type, and agricultural management practices. We review the range of processes controlling NH3 emission and uptake in the different parts of the soil-canopy-atmosphere continuum, with NH3 emission potentials defined at the substrate and leaf levels by different [NH4+] / [H+] ratios (Γ. Surface/atmosphere exchange models for NH3 are necessary to compute the temporal and spatial patterns of emissions and deposition at the soil, plant, field, landscape, regional and global scales, in order to assess the multiple environmental impacts of airborne and deposited NH3 and NH4+. Models of soil/vegetation/atmosphere NH3 exchange are reviewed from the substrate and leaf scales to the global scale. They range from simple steady-state, "big leaf" canopy resistance models, to dynamic, multi-layer, multi-process, multi

  17. The theory of the interaction of atmospheric aerosol with underlying surface

    International Nuclear Information System (INIS)

    Buikov, M.V.

    1993-01-01

    The interaction of wind with underlying surfaces through resuspension makes a great contribution to the total amount of atmospheric aerosols. The dry deposition process results in cleaning of the atmosphere and contamination of near-surface air layers of soil and vegetation. This paper examines the theory leading to an exact solution of the problem of turbulent transportation of pollution taking into account resuspension and dry-deposition. This may be useful for the interpretation of observational data and for the improvement of calculation methods to describe aerosol exchange at surfaces in air. (author)

  18. Advances in understanding, models and parameterisations of biosphere-atmosphere ammonia exchange

    Science.gov (United States)

    Flechard, C. R.; Massad, R.-S.; Loubet, B.; Personne, E.; Simpson, D.; Bash, J. O.; Cooter, E. J.; Nemitz, E.; Sutton, M. A.

    2013-03-01

    Atmospheric ammonia (NH3) dominates global emissions of total reactive nitrogen (Nr), while emissions from agricultural production systems contribute about two thirds of global NH3 emissions; the remaining third emanates from oceans, natural vegetation, humans, wild animals and biomass burning. On land, NH3 emitted from the various sources eventually returns to the biosphere by dry deposition to sink areas, predominantly semi-natural vegetation, and by wet and dry deposition as ammonium (NH4+) to all surfaces. However, the land/atmosphere exchange of gaseous NH3 is in fact bi-directional over unfertilized as well as fertilized ecosystems, with periods and areas of emission and deposition alternating in time (diurnal, seasonal) and space (patchwork landscapes). The exchange is controlled by a range of environmental factors, including meteorology, surface layer turbulence, thermodynamics, air and surface heterogeneous-phase chemistry, canopy geometry, plant development stage, leaf age, organic matter decomposition, soil microbial turnover, and, in agricultural systems, by fertilizer application rate, fertilizer type, soil type, crop type, and agricultural management practices. We review the range of processes controlling NH3 emission and uptake in the different parts of the soil-canopy-atmosphere continuum, with NH3 emission potentials defined at the substrate and leaf levels by different [NH4+] / [H+] ratios (Γ). Surface/atmosphere exchange models for NH3 are necessary to compute the temporal and spatial patterns of emissions and deposition at the soil, plant, field, landscape, regional and global scales, in order to assess the multiple environmental impacts of air-borne and deposited NH3 and NH4+. Models of soil/vegetation/atmosphereem NH3 exchange are reviewed from the substrate and leaf scales to the global scale. They range from simple steady-state, "big leaf" canopy resistance models, to dynamic, multi-layer, multi-process, multi

  19. The Chemistry of Atmosphere-Forest Exchange (CAFE Model – Part 2: Application to BEARPEX-2007 observations

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2011-02-01

    Full Text Available In a companion paper, we introduced the Chemistry of Atmosphere-Forest Exchange (CAFE model, a vertically-resolved 1-D chemical transport model designed to probe the details of near-surface reactive gas exchange. Here, we apply CAFE to noontime observations from the 2007 Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX-2007. In this work we evaluate the CAFE modeling approach, demonstrate the significance of in-canopy chemistry for forest-atmosphere exchange and identify key shortcomings in the current understanding of intra-canopy processes.

    CAFE generally reproduces BEARPEX-2007 observations but requires an enhanced radical recycling mechanism to overcome a factor of 6 underestimate of hydroxyl (OH concentrations observed during a warm (~29 °C period. Modeled fluxes of acyl peroxy nitrates (APN are quite sensitive to gradients in chemical production and loss, demonstrating that chemistry may perturb forest-atmosphere exchange even when the chemical timescale is long relative to the canopy mixing timescale. The model underestimates peroxy acetyl nitrate (PAN fluxes by 50% and the exchange velocity by nearly a factor of three under warmer conditions, suggesting that near-surface APN sinks are underestimated relative to the sources. Nitric acid typically dominates gross dry N deposition at this site, though other reactive nitrogen (NOy species can comprise up to 28% of the N deposition budget under cooler conditions. Upward NO2 fluxes cause the net above-canopy NOy flux to be ~30% lower than the gross depositional flux. CAFE under-predicts ozone fluxes and exchange velocities by ~20%. Large uncertainty in the parameterization of cuticular and ground deposition precludes conclusive attribution of non-stomatal fluxes to chemistry or surface uptake. Model-measurement comparisons of vertical concentration gradients for several emitted species suggests that the lower canopy airspace may be

  20. Processes of ammonia air–surface exchange in a fertilized Zea mays canopy

    Directory of Open Access Journals (Sweden)

    E. Nemitz

    2013-02-01

    Full Text Available Recent incorporation of coupled soil biogeochemical and bi-directional NH3 air–surface exchange algorithms into regional air quality models holds promise for further reducing uncertainty in estimates of NH3 emissions from fertilized soils. While this represents a significant advancement over previous approaches, the evaluation and improvement of such modeling systems for fertilized crops requires process-level field measurements over extended periods of time that capture the range of soil, vegetation, and atmospheric conditions that drive short-term (i.e., post-fertilization and total growing season NH3 fluxes. This study examines the processes of NH3 air–surface exchange in a fertilized corn (Zea mays canopy over the majority of a growing season to characterize soil emissions after fertilization and investigate soil–canopy interactions. Micrometeorological flux measurements above the canopy, measurements of soil, leaf apoplast and dew/guttation chemistry, and a combination of in-canopy measurements, inverse source/sink, and resistance modeling were employed. Over a period of approximately 10 weeks following fertilization, daily mean and median net canopy-scale fluxes yielded cumulative total N losses of 8.4% and 6.1%, respectively, of the 134 kg N ha−1 surface applied to the soil as urea ammonium nitrate (UAN. During the first month after fertilization, daily mean emission fluxes were positively correlated with soil temperature and soil volumetric water. Diurnally, maximum hourly average fluxes of ≈ 700 ng N m−2 s−1 occurred near mid-day, coincident with the daily maximum in friction velocity. Net emission was still observed 5 to 10 weeks after fertilization, although mid-day peak fluxes had declined to ≈ 125 ng N m−2 s−1. A key finding of the surface chemistry measurements was the observation of high pH (7.0–8.5 in leaf dew/guttation, which reduced the ability of the canopy to recapture soil emissions during wet periods

  1. Aspects on interactions between mid- to high latitude atmospheric circulation and some surface processes

    International Nuclear Information System (INIS)

    Byrkjedal, Oeyvind

    2006-01-01

    degree of meridional circulation. The current general circulation models, including several of those used by the IPCC, show considerable disagreement in simulating present day high latitude climate. This is of major concern and reduces the confidence in future model projections of high latitude climate. To investigate how turbulent vertical exchange processes in the Arctic boundary layer is represented by the climate models a simulation with high vertical resolution in the lower part of the atmosphere is performed. This reveals that the coarse vertical resolution commonly employed in the climate models are unable to reproduce important exchange processes in the Arctic boundary layer. In the case of our model this results in a warm bias over the Arctic Ocean. By increasing the vertical resolution we achieve a better representation of vertical turbulent exchange processes with the result of reproducing more realistic surface fluxes and surface air temperatures. The thesis is based on three papers (author)

  2. Gas exchange between the forest and the atmosphere

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.

    1985-01-01

    Forest gas exchange is discussed in terms of the processes that control the rate of exchange with the atmosphere. Examples are presented to show how vegetative uptake control is varied for gases with different characteristics. The prediction of uptake for large areas and over long periods of time is discussed in terms of quantitative models of the gas exchange processes. Finally, remote sensing is suggested as a means of obtaining the parameters needed to make the model predictions. 46 refs., 6 figs

  3. Evaluation of a Regional Atmospheric Model Using Measurements of Surface Heat Exchange Processes from a Site in Antarctica

    NARCIS (Netherlands)

    Lipzig, N.P.M. van; Meijgaard, E. van; Oerlemans, J.

    1999-01-01

    A regional atmospheric climate model with a horizontal grid spacing of 55 km has been used to simulate the Antarctic atmosphere during an austral summer period. ECMWF reanalyses were used to force the atmospheric prognostic variables from the lateral boundaries. Sea surface temperatures and the sea

  4. On the CO2 exchange between the atmosphere and the biosphere: the role of synoptic and mesoscale processes

    International Nuclear Information System (INIS)

    Chan, Douglas; Higuchi, Kaz; Shashkov, Alexander; Worthy, Douglas; Liu, Jane; Chen Jing; Yuen Chiu Wai

    2004-01-01

    Estimating global carbon fluxes by inverting atmospheric CO 2 through the use of atmospheric transport models has shown the importance of the covariance between biospheric fluxes and atmospheric transport on the carbon budget. This covariance or coupling occurs on many time scales. This study examines the coupling of the biosphere and the atmosphere on the meso- and synoptic scales using a coupled atmosphere-biosphere regional model covering Canada. The results are compared with surface and light aircraft measurement campaigns at two boreal forest sites in Canada. Associated with cold and warm frontal features, the model results showed that the biospheric fluxes are strongly coupled to the atmosphere through radiative forcing. The presence of cloud near frontal regions usually results in reduced photosynthetic uptake, producing CO 2 concentration gradients across the frontal regions on the order of 10 parts per million (ppm). Away from the frontal region, the biosphere is coupled to the mesoscale variations in similar ways, resulting in mesoscale variations in CO 2 concentrations of about 5 ppm. The CO 2 field is also coupled strongly to the atmospheric dynamics. In the presence of frontal circulation, the CO 2 near the surface can be transported to the mid to upper troposphere. Mesoscale circulation also plays a significant part in transporting the CO 2 from the planetary boundary layer (PBL) to the mid-troposphere. In the absence of significant mesoscale or synoptic scale circulation, the CO 2 in the PBL has minimal exchange with the free troposphere, leading to strong gradients across the top of the PBL. We speculate that the ubiquity of the common synoptic and mesoscale processes in the atmosphere may contribute significantly to the rectifier effect and hence CO 2 inversion calculations

  5. Planetary Surface-Atmosphere Interactions

    Science.gov (United States)

    Merrison, J. P.; Bak, E.; Finster, K.; Gunnlaugsson, H. P.; Holstein-Rathlou, C.; Knak Jensen, S.; Nørnberg, P.

    2013-09-01

    Planetary bodies having an accessible solid surface and significant atmosphere, such as Earth, Mars, Venus, Titan, share common phenomenology. Specifically wind induced transport of surface materials, subsequent erosion, the generation and transport of solid aerosols which leads both to chemical and electrostatic interaction with the atmosphere. How these processes affect the evolution of the atmosphere and surface will be discussed in the context of general planetology and the latest laboratory studies will be presented.

  6. Efficient gas exchange between a boreal river and the atmosphere

    Science.gov (United States)

    Huotari, Jussi; Haapanala, Sami; Pumpanen, Jukka; Vesala, Timo; Ojala, Anne

    2013-11-01

    largest uncertainties in accurately resolving the role of rivers and streams in carbon cycling stem from difficulties in determining gas exchange between water and the atmosphere. So far, estimates for river-atmosphere gas exchange have lacked direct ecosystem-scale flux measurements not disturbing gas exchange across the air-water interface. We conducted the first direct riverine gas exchange measurements with eddy covariance in tandem with continuous surface water CO2 measurements in a large boreal river for 30 days. Our measured gas transfer velocity was, on average, 20.8 cm h-1, which is clearly higher than the model estimates based on river channel morphology and water velocity, whereas our floating chambers gave comparable values at 17.3 cm h-1. These results demonstrate that present estimates for riverine CO2 emissions are very likely too low. This result is also relevant to any other gases emitted, as their diffusive exchange rates are similarly proportional to gas transfer velocity.

  7. Surface roughening of ground fused silica processed by atmospheric inductively coupled plasma

    International Nuclear Information System (INIS)

    Xin, Qiang; Li, Na; Wang, Jun; Wang, Bo; Li, Guo; Ding, Fei; Jin, Huiliang

    2015-01-01

    Highlights: • The morphology evolution of ground fused silica, processed by atmospheric plasma, was investigated experimentally. • The roughness development results from opening and coalescing of the plasma-etched cracks. • The shapes of grain-like etched pits are the results of the adjacent cracks coalescing with one another. • The descent of the pits density is due to some smaller etched pits that are swallowed up by larger pits. • Leading role in surface smoothing is laterally etching away the side walls of the intersecting pits. - Abstract: Subsurface damage (SSD) is a defect that is inevitably induced during mechanical processes, such as grinding and polishing. This defect dramatically reduces the mechanical strength and the laser damage thresholds of optical elements. Compared with traditional mechanical machining, atmospheric pressure plasma processing (APPP) is a relatively novel technology that induces almost no SSD during the processing of silica-based optical materials. In this paper, a form of APPP, inductively coupled plasma (ICP), is used to process fused silica substrates with fluorocarbon precursor under atmospheric pressure. The surface morphology evolution of ICP-processed substrates was observed and characterized by confocal laser scanning microscope (CLSM), field emission scanning electron microscope (SEM), and atomic force microscopy (AFM). The results show that the roughness evolves with the etching depth, and the roughness evolution is a single-peaked curve. This curve results from the opening and the coalescing of surface cracks and fractures. The coalescence procedure of these microstructures was simulated with two common etched pits on a polished fused silica surface. Understanding the roughness evolution of plasma-processed surface might be helpful in optimizing the optical fabrication chain that contains APPP

  8. Surface roughening of ground fused silica processed by atmospheric inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Qiang; Li, Na; Wang, Jun; Wang, Bo, E-mail: bradywang@hit.edu.cn; Li, Guo; Ding, Fei; Jin, Huiliang

    2015-06-30

    Highlights: • The morphology evolution of ground fused silica, processed by atmospheric plasma, was investigated experimentally. • The roughness development results from opening and coalescing of the plasma-etched cracks. • The shapes of grain-like etched pits are the results of the adjacent cracks coalescing with one another. • The descent of the pits density is due to some smaller etched pits that are swallowed up by larger pits. • Leading role in surface smoothing is laterally etching away the side walls of the intersecting pits. - Abstract: Subsurface damage (SSD) is a defect that is inevitably induced during mechanical processes, such as grinding and polishing. This defect dramatically reduces the mechanical strength and the laser damage thresholds of optical elements. Compared with traditional mechanical machining, atmospheric pressure plasma processing (APPP) is a relatively novel technology that induces almost no SSD during the processing of silica-based optical materials. In this paper, a form of APPP, inductively coupled plasma (ICP), is used to process fused silica substrates with fluorocarbon precursor under atmospheric pressure. The surface morphology evolution of ICP-processed substrates was observed and characterized by confocal laser scanning microscope (CLSM), field emission scanning electron microscope (SEM), and atomic force microscopy (AFM). The results show that the roughness evolves with the etching depth, and the roughness evolution is a single-peaked curve. This curve results from the opening and the coalescing of surface cracks and fractures. The coalescence procedure of these microstructures was simulated with two common etched pits on a polished fused silica surface. Understanding the roughness evolution of plasma-processed surface might be helpful in optimizing the optical fabrication chain that contains APPP.

  9. Simulating forest productivity and surface-atmosphere carbon exchange in the BOREAS study region

    Energy Technology Data Exchange (ETDEWEB)

    Kimball, J.S.; Thornton, P.E.; White, M.A.; Running, S.W. [Montana Univ., Missoula, MT (United States). School of Forestry

    1997-12-31

    Studies have shown that the boreal forest region is in danger of experiencing significant warming and drying in response to increases in atmospheric CO{sub 2} concentration and other greenhouse gases. Since the boreal forest region contains 16-24 per cent of the world`s soil carbon, warming in this region could result in a rapid, large-scale displacement and redistribution of boreal forest, enhanced release of CO{sub 2} to the atmosphere, and an intensification of global warming. A study was conducted in which a process-based, general ecosystem model (BIOME-BGC) was used to simulate daily gross primary production, maintenance and heterotrophic respiration, net primary production and net ecosystem carbon exchange of boreal aspen, jack pine and black spruce. The objective was to integrate point measurements across multiple spatial and temporal scales using process level models of the boreal forest water, energy and biogeochemical cycles. Climate characteristics that control simulated carbon fluxes were also studied. Results showed that trees with large daily evapotranspiration rates and those situated on sandy soils with low water holding capacities were especially vulnerable to increased temperature and drought conditions. Trees subject to frequent water stress during the growing season, particularly older trees that exhibit low photosynthetic and high respiration rates, were on the margin between being annual net sources or sinks for atmospheric carbon. 71 refs., 3 tabs., 5 figs.

  10. Soil-atmosphere trace gas exchange in semiarid and arid zones.

    Science.gov (United States)

    Galbally, Ian E; Kirstine, Wayne V; Meyer, C P Mick; Wang, Ying Ping

    2008-01-01

    A review is presented on trace gas exchange of CH4, CO, N2O, and NOx arising from agriculture and natural sources in the world's semiarid and arid zones due to soil processes. These gases are important contributors to the radiative forcing and the chemistry of the atmosphere. Quantitative information is summarized from the available studies. Between 5 and 40% of the global soil-atmosphere exchange for these gases (CH4, CO, N2O, and NOx) may occur in semiarid and arid zones, but for each of these gases there are fewer than a dozen studies to support the individual estimates, and these are from a limited number of locations. Significant differences in the biophysical and chemical processes controlling these trace gas exchanges are identified through the comparison of semiarid and arid zones with the moist temperate or wet/dry savanna land regions. Therefore, there is a poorly quantified understanding of the contribution of these regions to the global trace gas cycles and atmospheric chemistry. More importantly, there is a poor understanding of the feedback between these exchanges, global change, and regional land use and air pollution issues. A set of research issues is presented.

  11. Particle dry deposition to water surfaces: Processes and consequences

    DEFF Research Database (Denmark)

    Pryor, S.C.; Barthelmie, R.J.

    2000-01-01

    flux to coastal waters, atmosphere-surface exchange represents a significant component of the total flux and may be particularly critical during the summertime when both the riverine input and ambient nutrient concentrations are often at a minimum. In this chapter, we present an overview...... of the physical and chemical processes which dictate the quantity (and direction) of atmosphere-surface fluxes of trace chemicals to (and above) water surfaces with particular emphasis on the role of particles. Dry deposition (transfer to the surface in the absence of precipitation) of particles is determined...... efforts to simulate and measure fluxes close to the coastline. These arise in part from the complexity of atmospheric flow in this region where energy and chemical fluxes are highly inhomogeneous in space and time and thermally generated atmospheric circulations are commonplace. (C) 2000 Elsevier Science...

  12. How intensive agriculture affects surface-atmosphere exchange of nitrogen and carbon compounds over peatland

    Science.gov (United States)

    Bruemmer, C.; Richter, U.; Schrader, F.; Hurkuck, M.; Kutsch, W. L.

    2016-12-01

    Mid-latitude peatlands are often exposed to high atmospheric nitrogen deposition when located in close vicinity to agricultural land. As the impacts of altered deposition rates on nitrogen-limited ecosystems are poorly understood, we investigated the surface-atmosphere exchange of several nitrogen and carbon compounds using multiple high-resolution measurement techniques and modeling. Our study site was a protected semi-natural bog ecosystem. Local wind regime and land use in the adjacent area clearly regulated whether total reactive nitrogen (∑Nr) concentrations were ammonia (NH3) or NOx-dominated. Eddy-covariance measurements of NH3 and ∑Nr revealed concentration, temperature and surface wetness-dependent deposition rates. Intermittent periods of NH3 and ∑Nr emission likely attributed to surface water re-emission and soil efflux, respectively, were found, thereby indicating nitrogen oversaturation in this originally N-limited ecosystem. Annual dry plus wet deposition resulted in 20 to 25 kg N ha-1 depending on method and model used, which translated into a four- to fivefold exceedance of the ecosystem-specific critical load. As the bog site had likely been exposed to the observed atmospheric nitrogen burden over several decades, a shift in grass species' composition towards a higher number of nitrophilous plants was already visible. Three years of CO2 eddy flux measurements showed that the site was a small net sink in the range of 33 to 268 g CO2 m-2 yr-1. Methane emissions of 32 g CO2-eq were found to partly offset the sequestered carbon through CO2. Our study demonstrates the applicability of novel micrometeorological measurement techniques in biogeochemical sciences and stresses the importance of monitoring long-term changes in vulnerable ecosystems under anthropogenic pressure and climate change.

  13. Exploring Scintillometry in the Stable Atmospheric Surface Layer

    NARCIS (Netherlands)

    Hartogensis, O.K.

    2006-01-01

    The main objective of this thesis is to investigate observation methods of heat and momentum exchange and key variables that characterise turbulence in the atmospheric stable surface layer (SSL), a layer defined as the lower part of the stable boundary layer (SBL) where surface fluxes do not change

  14. Method of processing spent ion exchange resins

    International Nuclear Information System (INIS)

    Mori, Kazuhide; Tamada, Shin; Kikuchi, Makoto; Matsuda, Masami; Aoyama, Yoshiyuki.

    1985-01-01

    Purpose: To decrease the amount of radioactive spent ion exchange resins generated from nuclear power plants, etc and process them into stable inorganic compounds through heat decomposition. Method: Spent ion exchange resins are heat-decomposed in an inert atmosphere to selectively decompose only ion exchange groups in the preceeding step while high molecular skeltons are completely heat-decomposed in an oxidizing atmosphere in the succeeding step. In this way, gaseous sulfur oxides and nitrogen oxides are generated in the preceeding step, while gaseous carbon dioxide and hydrogen requiring no discharge gas procession are generated in the succeeding step. Accordingly, the amount of discharged gases requiring procession can significantly be reduced, as well as the residues can be converted into stable inorganic compounds. Further, if transition metals are ionically adsorbed as the catalyst to the ion exchange resins, the ion exchange groups are decomposed at 130 - 300 0 C, while the high molecular skeltons are thermally decomposed at 240 - 300 0 C. Thus, the temperature for the heat decomposition can be lowered to prevent the degradation of the reactor materials. (Kawakami, Y.)

  15. The Effect of Thermal Convection on Earth-Atmosphere CO2 Gas Exchange in Aggregated Soil

    Science.gov (United States)

    Ganot, Y.; Weisbrod, N.; Dragila, M. I.

    2011-12-01

    Gas transport in soils and surface-atmosphere gas exchange are important processes that affect different aspects of soil science such as soil aeration, nutrient bio-availability, sorption kinetics, soil and groundwater pollution and soil remediation. Diffusion and convection are the two main mechanisms that affect gas transport, fate and emissions in the soils and in the upper vadose zone. In this work we studied CO2 soil-atmosphere gas exchange under both day-time and night-time conditions, focusing on the impact of thermal convection (TCV) during the night. Experiments were performed in a climate-controlled laboratory. One meter long columns were packed with matrix of different grain size (sand, gravel and soil aggregates). Air with 2000 ppm CO2 was injected into the bottom of the columns and CO2 concentration within the columns was continuously monitored by an Infra Red Gas Analyzer. Two scenarios were compared for each soil: (1) isothermal conditions, representing day time conditions; and (2) thermal gradient conditions, i.e., atmosphere colder than the soil, representing night time conditions. Our results show that under isothermal conditions, diffusion is the major mechanism for surface-atmosphere gas exchange for all grain sizes; while under night time conditions the prevailing mechanism is dependent on the air permeability of the matrix: for sand and gravel it is diffusion, and for soil aggregates it is TCV. Calculated CO2 flux for the soil aggregates column shows that the TCV flux was three orders of magnitude higher than the diffusive flux.

  16. New insights into proton surface mobility processes in PEMFC catalysts using isotopic exchange methods.

    Science.gov (United States)

    Ferreira-Aparicio, Paloma

    2009-09-01

    The surface chemistry and the adsorption/desorption/exchange behavior of a proton-exchange membrane fuel cell catalyst are analyzed as a case study for the development of tailor-made support materials of enhanced performance and stability. By using H2, D2, and CO as probe molecules, the relevance of some surface functional groups of the catalyst support on several diffusion processes taking place during the adsorption is shown. Sulfonic groups associated with the vulcanized carbon black surface have been detected by means of spectroscopic techniques (X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy) and by analysis of the desorbed products during temperature-programmed desorption tests by mass spectrometry. Such hydrophilic species have been observed to favor proton surface mobility and exchange with Pt-adsorbed deuterium even in the presence of adsorbed CO. This behavior is relevant both for the proper characterization of these kinds of catalysts using adsorption probes and for the design of new surface-modified carbon supports, enabling alternative proton-transfer pathways throughout the catalytic layers toward the membrane.

  17. Atmospheric turbulence and diffusion research

    International Nuclear Information System (INIS)

    Hosker, R.P. Jr.

    1993-01-01

    The Atmospheric Turbulence and Diffusion Division (well known in the atmospheric dispersion community as the Atmospheric Turbulence and Diffusion Laboratory, ATDL) is one of several field facilities of NOAAs Air Resources Laboratory, headquartered in Silver Spring, Maryland. The laboratory conducts research on matters of atmospheric diffusion and turbulent exchange, concerning air quality. ATDD focuses attention on the physics of the lower atmosphere, with special emphasis on the processes contributing to atmospheric transport, dispersion, deposition, and air-surface exchange, and on the development of predictive capabilities using the results of this research. Research is directed toward issues of national and global importance related to the missions of DOE, to DOE's Oak Ridge Field Office, and to NOAA. The program is divided into four major projects: plume transport and diffusion in the planetary boundary layer, complex topography, canopy micrometeorology, and air-surface exchange

  18. Atmospheric Ozone And Its Biosphere - Atmosphere Exchange In A Mangrove Forest Ecosystem A Case Study From Sundarbans NE Coast Of India

    Directory of Open Access Journals (Sweden)

    Manab Kumar Dutta

    2015-01-01

    Full Text Available ABSTRACT Temporal variation of atmospheric O3 and its biosphere atmosphere exchange were monitored in the Sundarbans mangrove forest from January 2011 to December 2011 on bimonthly basis. O3 mixing ratios at 10 m and 20 m heights over the forest atmosphere ranged between 14.66 1.88 to 37.90 0.91 and 19.32 6.27 to 39.80 10.13 ppbv respectively having maximal premonsoon and minimal monsoon periods. Average daytime O3 mixing ratio was 1.69 times higher than nighttime indicates significant photo chemical production of O3 in forest atmosphere. Annual averaged O3 mixing ratio in 10 m height was 13.2 lower than 20 m height induces exchange of O3 across mangrove biosphere atmosphere interface depending upon micrometeorological conditions of the forest ecosystem. Annual average biosphere atmosphere O3 exchange flux in this mangrove forest environment was 0.441 g m-2 s-1. Extrapolating the value for entire forest surface area the mangrove ecosystem acts as a sink of 58.4GgO3 annually indicating significant contribution of Sundarbans mangroves towards regional atmospheric O3 budget as well as climate change.

  19. The exchange of acetaldehyde between plants and the atmosphere: Stable carbon isotope and flux measurements

    Science.gov (United States)

    Jardine, Kolby Jeremiah

    The exchange of acetaldehyde between plant canopies and the atmosphere may significantly influence regional atmospheric chemistry and plant metabolism. While plants are known to both produce and consume acetaldehyde, the exchange of this compound with forested ecosystems is complicated by physical, biological, and chemical processes that range from being poorly understood to completely unknown. This precludes a quantitative understanding of acetaldehyde exchange rates between the atmosphere and the biosphere. In this study, the processes controlling the exchange of acetaldehyde with plant canopies was investigated using concentration, flux, and natural abundance 13C measurements of gas phase acetaldehyde from individual plants, soils, and entire ecosystems. Although previously only considered important in anoxic tissues, it was discovered that acetaldehyde is produced and consumed in leaves through ethanolic fermentation coupled to the pyruvate dehydrogenase bypass system under normal aerobic conditions. These coupled pathways determine the acetaldehyde compensation point, a major factor controlling its exchange with the atmosphere. Carbon isotope analysis suggests a new pathway for acetaldehyde production from plants under stress involving the peroxidation of membrane fatty acids. This pathway may be a major source of acetaldehyde to the atmosphere from plants under biotic and abiotic stresses. Plant stomata were found to be the dominant pathway for the exchange of acetaldehyde with the atmosphere with stomatal conductance influencing both emission and uptake fluxes. In addition, increasing temperature and solar radiation was found to increase the compensation point by increasing the rates of acetaldehyde production relative to consumption. Under ambient conditions, bare soil was neutral to the exchange of acetaldehyde while senescing and decaying leaves were found to be strong source of acetaldehyde to the atmosphere due to increased decomposition processes and

  20. Global observations and modeling of atmosphere–surface exchange of elemental mercury: a critical review

    Directory of Open Access Journals (Sweden)

    W. Zhu

    2016-04-01

    Full Text Available Reliable quantification of air–surface fluxes of elemental Hg vapor (Hg0 is crucial for understanding mercury (Hg global biogeochemical cycles. There have been extensive measurements and modeling efforts devoted to estimating the exchange fluxes between the atmosphere and various surfaces (e.g., soil, canopies, water, snow, etc. in the past three decades. However, large uncertainties remain due to the complexity of Hg0 bidirectional exchange, limitations of flux quantification techniques and challenges in model parameterization. In this study, we provide a critical review on the state of science in the atmosphere–surface exchange of Hg0. Specifically, the advancement of flux quantification techniques, mechanisms in driving the air–surface Hg exchange and modeling efforts are presented. Due to the semi-volatile nature of Hg0 and redox transformation of Hg in environmental media, Hg deposition and evasion are influenced by multiple environmental variables including seasonality, vegetative coverage and its life cycle, temperature, light, moisture, atmospheric turbulence and the presence of reactants (e.g., O3, radicals, etc.. However, the effects of these processes on flux have not been fundamentally and quantitatively determined, which limits the accuracy of flux modeling. We compile an up-to-date global observational flux database and discuss the implication of flux data on the global Hg budget. Mean Hg0 fluxes obtained by micrometeorological measurements do not appear to be significantly greater than the fluxes measured by dynamic flux chamber methods over unpolluted surfaces (p = 0.16, one-tailed, Mann–Whitney U test. The spatiotemporal coverage of existing Hg0 flux measurements is highly heterogeneous with large data gaps existing in multiple continents (Africa, South Asia, Middle East, South America and Australia. The magnitude of the evasion flux is strongly enhanced by human activities, particularly at contaminated sites. Hg0

  1. Pu Anion Exchange Process Intensification

    International Nuclear Information System (INIS)

    Taylor-Pashow, Kathryn M. L.

    2017-01-01

    This research is focused on improving the efficiency of the anion exchange process for purifying plutonium. While initially focused on plutonium, the technology could also be applied to other ion-exchange processes. Work in FY17 focused on the improvement and optimization of porous foam columns that were initially developed in FY16. These foam columns were surface functionalized with poly(4-vinylpyridine) (PVP) to provide the Pu specific anion-exchange sites. Two different polymerization methods were explored for maximizing the surface functionalization with the PVP. The open-celled polymeric foams have large open pores and large surface areas available for sorption. The fluid passes through the large open pores of this material, allowing convection to be the dominant mechanism by which mass transport takes place. These materials generally have very low densities, open-celled structures with high cell interconnectivity, small cell sizes, uniform cell size distributions, and high structural integrity. These porous foam columns provide advantages over the typical porous resin beads by eliminating the slow diffusion through resin beads, making the anion-exchange sites easily accessible on the foam surfaces. The best performing samples exceeded the Pu capacity of the commercially available resin, and also offered the advantage of sharper elution profiles, resulting in a more concentrated product, with less loss of material to the dilute heads and tails cuts. An alternate approach to improving the efficiency of this process was also explored through the development of a microchannel array system for performing the anion exchange.

  2. Pu Anion Exchange Process Intensification

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-06

    This research is focused on improving the efficiency of the anion exchange process for purifying plutonium. While initially focused on plutonium, the technology could also be applied to other ion-exchange processes. Work in FY17 focused on the improvement and optimization of porous foam columns that were initially developed in FY16. These foam columns were surface functionalized with poly(4-vinylpyridine) (PVP) to provide the Pu specific anion-exchange sites. Two different polymerization methods were explored for maximizing the surface functionalization with the PVP. The open-celled polymeric foams have large open pores and large surface areas available for sorption. The fluid passes through the large open pores of this material, allowing convection to be the dominant mechanism by which mass transport takes place. These materials generally have very low densities, open-celled structures with high cell interconnectivity, small cell sizes, uniform cell size distributions, and high structural integrity. These porous foam columns provide advantages over the typical porous resin beads by eliminating the slow diffusion through resin beads, making the anion-exchange sites easily accessible on the foam surfaces. The best performing samples exceeded the Pu capacity of the commercially available resin, and also offered the advantage of sharper elution profiles, resulting in a more concentrated product, with less loss of material to the dilute heads and tails cuts. An alternate approach to improving the efficiency of this process was also explored through the development of a microchannel array system for performing the anion exchange.

  3. ROLE OF LEAF SURFACE WATER IN THE BI-DIRECTIONAL AMMONIA EXCHANGE BETWEEN THE ATMOSPHERE AND TERRESTRIAL BIOSPHERE

    Science.gov (United States)

    A field experiment was conducted to study the ammonia exchange between plants and the atmosphere in a soybean field in Duplin County, North Carolina during the summer of 2002. Measurements indicate that the net canopy-scale ammonia exchange is bi-directional and has a significant...

  4. Surface-atmospheric water cycle at Gale crater through multi-year MSL/REMS observations

    Science.gov (United States)

    Harri, A. M.; Genzer, M.; McConnochie, T. H.; Savijarvi, H. I.; Smith, M. D.; Martinez, G.; de la Torre Juarez, M.; Haberle, R. M.; Polkko, J.; Gomez-Elvira, J.; Renno, N. O.; Kemppinen, O.; Paton, M.; Richardson, M. I.; Newman, C. E.; Siili, T. T.; Mäkinen, T.

    2017-12-01

    The Mars Science laboratory (MSL) has been successfully operating for almost three Martian years. That includes an unprecedented long time series of atmospheric observations by the REMS instrument performing measurements of atmospheric pressure, relative humidity (REMS-H), temperature of the air, ground temperature, UV and wind speed and direction. The REMS-H relative humidity device is based on polymeric capacitive humidity sensors developed by Vaisala Inc. and it makes use of three (3) humidity sensor heads. The humidity device is mounted on the REMS boom providing ventilation with the ambient atmosphere through a filter protecting the device from airborne dust. The REMS-H humidity instrument has created an unprecedented data record of more than two full Martian. REMS-H measured the relative humidity and temperature at 1.6 m height for a period of 5 minutes every hour as part of the MSL/REMS instrument package. We focus on describing the annual in situ water cycle with the REMS-H instrument data for the period of almost three Martian years. The results will be constrained through comparison with independent indirect observations and through modeling efforts. We inferred the hourly atmospheric VMR from the REMS-H observations and compared these VMR measurements with predictions of VMR from our 1D column Martian atmospheric model and regolith to investigate the local water cycle, exchange processes and the local climate in Gale Crater. The strong diurnal variation suggests there are surface-atmosphere exchange processes at Gale Crater during all seasons, which depletes moisture to the ground in the evening and nighttime and release the moisture back to the atmosphere during the daytime. On the other hand, these processes do not seem to result in significant water deposition on the ground. Hence, our modelling results presumably indicate that adsorption processes take place during the nighttime and desorption during the daytime. Other processes, e.g. convective

  5. Stepping towards new parameterizations for non-canonical atmospheric surface-layer conditions

    Science.gov (United States)

    Calaf, M.; Margairaz, F.; Pardyjak, E.

    2017-12-01

    Representing land-atmosphere exchange processes as a lower boundary condition remains a challenge. This is partially a result of the fact that land-surface heterogeneity exists at all spatial scales and its variability does not "average" out with decreasing scales. Such variability need not rapidly blend away from the boundary thereby impacting the near-surface region of the atmosphere. Traditionally, momentum and energy fluxes linking the land surface to the flow in NWP models have been parameterized using atmospheric surface layer (ASL) similarity theory. There is ample evidence that such representation is acceptable for stationary and planar-homogeneous flows in the absence of subsidence. However, heterogeneity remains a ubiquitous feature eliciting appreciable deviations when using ASL similarity theory, especially in scalars such moisture and air temperature whose blending is less efficient when compared to momentum. The focus of this project is to quantify the effect of surface thermal heterogeneity with scales Ο(1/10) the height of the atmospheric boundary layer and characterized by uniform roughness. Such near-canonical cases describe inhomogeneous scalar transport in an otherwise planar homogeneous flow when thermal stratification is weak or absent. In this work we present a large-eddy simulation study that characterizes the effect of surface thermal heterogeneities on the atmospheric flow using the concept of dispersive fluxes. Results illustrate a regime in which the flow is mostly driven by the surface thermal heterogeneities, in which the contribution of the dispersive fluxes can account for up to 40% of the total sensible heat flux. Results also illustrate an alternative regime in which the effect of the surface thermal heterogeneities is quickly blended, and the dispersive fluxes provide instead a quantification of the flow spatial heterogeneities produced by coherent turbulent structures result of the surface shear stress. A threshold flow

  6. The vertical distribution of climate forcings and feedbacks from the surface to top of atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Previdi, Michael [Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY (United States); Liepert, Beate G. [NorthWest Research Associates, Redmond, WA (United States)

    2012-08-15

    The radiative forcings and feedbacks that determine Earth's climate sensitivity are typically defined at the top-of-atmosphere (TOA) or tropopause, yet climate sensitivity itself refers to a change in temperature at the surface. In this paper, we describe how TOA radiative perturbations translate into surface temperature changes. It is shown using first principles that radiation changes at the TOA can be equated with the change in energy stored by the oceans and land surface. This ocean and land heat uptake in turn involves an adjustment of the surface radiative and non-radiative energy fluxes, with the latter being comprised of the turbulent exchange of latent and sensible heat between the surface and atmosphere. We employ the radiative kernel technique to decompose TOA radiative feedbacks in the IPCC Fourth Assessment Report climate models into components associated with changes in radiative heating of the atmosphere and of the surface. (We consider the equilibrium response of atmosphere-mixed layer ocean models subjected to an instantaneous doubling of atmospheric CO{sub 2}). It is shown that most feedbacks, i.e., the temperature, water vapor and cloud feedbacks, (as well as CO{sub 2} forcing) affect primarily the turbulent energy exchange at the surface rather than the radiative energy exchange. Specifically, the temperature feedback increases the surface turbulent (radiative) energy loss by 2.87 W m{sup -2} K{sup -1} (0.60 W m{sup -2} K{sup -1}) in the multimodel mean; the water vapor feedback decreases the surface turbulent energy loss by 1.07 W m{sup -2} K{sup -1} and increases the surface radiative heating by 0.89 W m{sup -2} K{sup -1}; and the cloud feedback decreases both the turbulent energy loss and the radiative heating at the surface by 0.43 and 0.24 W m{sup -2} K{sup -1}, respectively. Since changes to the surface turbulent energy exchange are dominated in the global mean sense by changes in surface evaporation, these results serve to highlight

  7. Seasonal atmospheric deposition and air-sea gas exchange of polycyclic aromatic hydrocarbons over the Yangtze River Estuary, East China Sea: Implications for source-sink processes

    Science.gov (United States)

    Jiang, Yuqing; Lin, Tian; Wu, Zilan; Li, Yuanyuan; Li, Zhongxia; Guo, Zhigang; Yao, Xiaohong

    2018-04-01

    In this work, air samples and surface seawater samples covering four seasons from March 2014 to January 2015 were collected from a background receptor site in the YRE to explore the seasonal fluxes of air-sea gas exchange and dry and wet deposition of 15 polycyclic aromatic hydrocarbons (PAHs) and their source-sink processes at the air-sea interface. The average dry and wet deposition fluxes of 15 PAHs were estimated as 879 ± 1393 ng m-2 d-1 and 755 ± 545 ng m-2 d-1, respectively. Gaseous PAH release from seawater to the atmosphere averaged 3114 ± 1999 ng m-2 d-1 in a year round. The air-sea gas exchange of PAHs was the dominant process at the air-sea interface in the YRE as the magnitude of volatilization flux of PAHs exceeded that of total dry and wet deposition. The gas PAH exchange flux was dominated by three-ring PAHs, with the highest value in summer and lowest in winter, indicating a marked seasonal variation owing to differences in Henry's law constants associated with temperature, as well as wind speed and gaseous-dissolved gradient among seasons. Based on the simplified mass balance estimation, a net 11 tons y-1 of PAHs (mainly three-ring PAHs) were volatilized from seawater to the atmosphere in a ∼20,000 km2 area in the YRE. Other than the year-round Yangtze River input and ocean ship emissions, the selective release of low-molecular-weight PAHs from bottom sediments in winter due to resuspension triggered by the East Asian winter monsoon is another potential source of PAHs. This work suggests that the source-sink processes of PAHs at the air-sea interface in the YRE play a crucial role in regional cycling of PAHs.

  8. An Overview of the Regional Experiments for Land-atmosphere Exchanges 2012 (REFLEX 2012) Campaign

    Science.gov (United States)

    Timmermans, Wim J.; van der Tol, Christiaan; Timmermans, Joris; Ucer, Murat; Chen, Xuelong; Alonso, Luis; Moreno, Jose; Carrara, Arnaud; Lopez, Ramon; de la Cruz Tercero, Fernando; Corcoles, Horacio L.; de Miguel, Eduardo; Sanchez, Jose A. G.; Pérez, Irene; Franch, Belen; Munoz, Juan-Carlos J.; Skokovic, Drazen; Sobrino, Jose; Soria, Guillem; MacArthur, Alasdair; Vescovo, Loris; Reusen, Ils; Andreu, Ana; Burkart, Andreas; Cilia, Chiara; Contreras, Sergio; Corbari, Chiara; Calleja, Javier F.; Guzinski, Radoslaw; Hellmann, Christine; Herrmann, Ittai; Kerr, Gregoire; Lazar, Adina-Laura; Leutner, Benjamin; Mendiguren, Gorka; Nasilowska, Sylwia; Nieto, Hector; Pachego-Labrador, Javier; Pulanekar, Survana; Raj, Rahul; Schikling, Anke; Siegmann, Bastian; von Bueren, Stefanie; Su, Zhongbo (Bob)

    2015-12-01

    The REFLEX 2012 campaign was initiated as part of a training course on the organization of an airborne campaign to support advancement of the understanding of land-atmosphere interaction processes. This article describes the campaign, its objectives and observations, remote as well as in situ. The observations took place at the experimental Las Tiesas farm in an agricultural area in the south of Spain. During the period of ten days, measurements were made to capture the main processes controlling the local and regional land-atmosphere exchanges. Apart from multi-temporal, multi-directional and multi-spatial space-borne and airborne observations, measurements of the local meteorology, energy fluxes, soil temperature profiles, soil moisture profiles, surface temperature, canopy structure as well as leaf-level measurements were carried out. Additional thermo-dynamical monitoring took place at selected sites. After presenting the different types of measurements, some examples are given to illustrate the potential of the observations made.

  9. Simulating forest productivity and surface-atmosphere carbon exchange in the BOREAS study region.

    Science.gov (United States)

    Kimball, John S.; Thornton, Peter E.; White, Mike A.; Running, Steven W.

    1997-01-01

    A process-based, general ecosystem model (BIOME-BGC) was used to simulate daily gross primary production, maintenance and heterotrophic respiration, net primary production and net ecosystem carbon exchange of boreal aspen, jack pine and black spruce stands. Model simulations of daily net carbon exchange of the ecosystem (NEE) explained 51.7% (SE = 1.32 g C m(-2) day(-1)) of the variance in daily NEE derived from stand eddy flux measurements of CO(2) during 1994. Differences between measured and simulated results were attributed to several factors including difficulties associated with measuring nighttime CO(2) fluxes and model assumptions of site homogeneity. However, comparisons between simulations and field data improved markedly at coarser time-scales. Model simulations explained 66.1% (SE = 0.97 g C m(-2) day(-1)) of the variance in measured NEE when 5-day means of daily results were compared. Annual simulations of aboveground net primary production ranged from 0.6-2.4 Mg C ha(-1) year(-1) and were concurrent with results derived from tree increment core measurements and allometric equations. Model simulations showed that all of the sites were net sinks (0.1-4.1 Mg C ha(-1) year(-1)) of atmospheric carbon for 1994. Older conifer stands showed narrow margins between uptake of carbon by net photosynthesis and carbon release through respiration. Younger stands were more productive than older stands, primarily because of lower maintenance respiration costs. However, all sites appeared to be less productive than temperate forests. Productivity simulations were strongly linked to stand morphology and site conditions. Old jack pine and aspen stands showed decreased productivity in response to simulated low soil water contents near the end of the 1994 growing season. Compared with the aspen stand, the jack pine stand appeared better adapted to conserve soil water through lower daily evapotranspiration losses but also exhibited a narrower margin between daily net

  10. New method for model coupling using Stampi. Application to the coupling of atmosphere model (MM5) and land-surface model (SOLVEG)

    International Nuclear Information System (INIS)

    Nagai, Haruyasu

    2003-12-01

    A new method to couple atmosphere and land-surface models using the message passing interface (MPI) was proposed to develop an atmosphere-land model for studies on heat, water, and material exchanges around the land surface. A non-hydrostatic atmospheric dynamic model of Pennsylvania State University and National Center for Atmospheric Research (PUS/NCAR-MM5) and a detailed land surface model (SOLVEG) including the surface-layer atmosphere, soil, and vegetation developed at Japan Atomic Energy Research Institute (JAERI) are used as the atmosphere and land-surface models, respectively. Concerning the MPI, a message passing library named Stampi developed at JAERI that can be used between different parallel computers is used. The models are coupled by exchanging calculation results by using MPI on their independent parallel calculations. The modifications for this model coupling are easy, simply adding some modules for data exchanges to each model code without changing each model's original structure. Moreover, this coupling method is flexible and allows the use of independent time step and grid interval for each model. (author)

  11. Ecological Controls on Land-Atmosphere Exchange

    Science.gov (United States)

    Goulden, M. L.; Litvak, M. E.; Winston, G.; Miller, S. D.; Read, E.; Elliot, R.

    2002-12-01

    We have been using long-term eddy covariance to investigate the patterns of energy and CO2 exchange between the atmosphere and a freshwater marsh in California, and also between the atmosphere and a series of boreal forest stands in Manitoba, Canada. Most researchers believe that ecological phenomenon, such as plant herbivore interactions and interspecific differences in plant life-history strategy, are relatively unimportant in determining the interannual and landscape patterns of Land-Atmosphere exchange. However, we have found that interactions between plants and herbivores exert a large control on the interannual patterns of energy and CO2 exchange in the freshwater marsh, and that interspecific differences in plant strategy are critical for understanding the landscape scale patterns of energy and CO2 exchange in the boreal forest. Despite a relatively constant climate and flooding regime at the California marsh, annual Carbon balance varied by 6 tC ha-1 or more from year to year. These deviations were caused in part by variation in herbivory by rodents and insects. Likewise, peak CO2 uptake by boreal forest stands recovering from fire differed less than expected, with a 4-year-old stand assimilating CO2 at rates comparable to that by middle aged stands, and faster than that by old stands. These patterns reflect differences in the life history strategies of the dominant plants, with the youngest stands dominated by fast growing ruderals, the middle aged stands dominated by fast growing competitive species, and the old stands dominated by slow growing stress tolerant species.

  12. Laser Processed Condensing Heat Exchanger Technology Development

    Science.gov (United States)

    Hansen, Scott; Wright, Sarah; Wallace, Sarah; Hamilton, Tanner; Dennis, Alexander; Zuhlke, Craig; Roth, Nick; Sanders, John

    2017-01-01

    The reliance on non-permanent coatings in Condensing Heat Exchanger (CHX) designs is a significant technical issue to be solved before long-duration spaceflight can occur. Therefore, high reliability CHXs have been identified by the Evolvable Mars Campaign (EMC) as critical technologies needed to move beyond low earth orbit. The Laser Processed Condensing Heat Exchanger project aims to solve these problems through the use of femtosecond laser processed surfaces, which have unique wetting properties and potentially exhibit anti-microbial growth properties. These surfaces were investigated to identify if they would be suitable candidates for a replacement CHX surface. Among the areas researched in this project include microbial growth testing, siloxane flow testing in which laser processed surfaces were exposed to siloxanes in an air stream, and manufacturability.

  13. Groundwater–Surface Water Exchange

    DEFF Research Database (Denmark)

    Karan, Sachin

    The exchange of groundwater-surface water has been invetigated in the western part of Denmark. Holtum AA provides the framework for all the performed investigations. Several methods are used, primarily eld based measurements ombined with numerical models to achieve insight to the governing...... processes of interaction between groundwater and surface water. By using heat as a tracer it has been possible to use temperature directly as calibrationtargets in a groundwater and heat transport model. Thus, it is possible to use heat investigate the change in groundwater discharge in dynamic conditions...... by using simple temperature devices along a stream to delineate the areas of interest in regard to GW{SW exchange. Thus, at several locations in a stream a temperature data logger was placed in the water column and right at the streambed-water interface. By looking at the correlation of streambed...

  14. Surface-atmosphere exchange of ammonia over peatland using QCL-based eddy-covariance measurements and inferential modeling

    DEFF Research Database (Denmark)

    Zöll, Undine; Brümmer, Christian; Schrader, Frederik

    2016-01-01

    Recent advances in laser spectrometry offer new opportunities to investigate ecosystem-atmosphere exchange of environmentally relevant trace gases. In this study, we demonstrate the applicability of a quantum cascade laser (QCL) absorption spectrometer to continuously measure ammonia concentratio...

  15. Continuous processing of polymers in repetitively pulsed atmospheric pressure discharges with moving surfaces and gas flow

    Energy Technology Data Exchange (ETDEWEB)

    Bhoj, Ananth N [Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801 (United States); Kushner, Mark J [Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011 (United States)

    2007-11-21

    Atmospheric pressure corona discharges are industrially employed to treat large areas of commodity polymer sheets by creating new surface functional groups. The most common processes use oxygen containing discharges to affix oxygen to hydrocarbon polymers, thereby increasing their surface energy and wettability. The process is typically continuous and is carried out in a web configuration with film speeds of tens to hundreds of cm s{sup -1}. The densities and relative abundances of functional groups depend on the gas composition, gas flow rate and residence time of the polymer in the discharge zone which ultimately determine the magnitude and mole fractions of reactive fluxes to the surface. In this paper, results are discussed from a two-dimensional computational investigation of the atmospheric pressure plasma functionalization of a moving polypropylene sheet in repetitively pulsed He/O{sub 2}/H{sub 2}O discharges. O and OH typically initiate surface processing by hydrogen abstraction. These species are regenerated during every plasma pulse but are also largely consumed during the inter-pulse period. Longer-lived species such as O{sub 3} accumulate over many pulses and convect downstream with the gas flow. Optimizing the interplay between local rapid reactions, such as H abstraction which occurs dominantly in the discharge zone, and non-local slower processes, such as surface-surface reactions, may enable the customization of the relative abundance of surface functional groups.

  16. Continuous processing of polymers in repetitively pulsed atmospheric pressure discharges with moving surfaces and gas flow

    International Nuclear Information System (INIS)

    Bhoj, Ananth N; Kushner, Mark J

    2007-01-01

    Atmospheric pressure corona discharges are industrially employed to treat large areas of commodity polymer sheets by creating new surface functional groups. The most common processes use oxygen containing discharges to affix oxygen to hydrocarbon polymers, thereby increasing their surface energy and wettability. The process is typically continuous and is carried out in a web configuration with film speeds of tens to hundreds of cm s -1 . The densities and relative abundances of functional groups depend on the gas composition, gas flow rate and residence time of the polymer in the discharge zone which ultimately determine the magnitude and mole fractions of reactive fluxes to the surface. In this paper, results are discussed from a two-dimensional computational investigation of the atmospheric pressure plasma functionalization of a moving polypropylene sheet in repetitively pulsed He/O 2 /H 2 O discharges. O and OH typically initiate surface processing by hydrogen abstraction. These species are regenerated during every plasma pulse but are also largely consumed during the inter-pulse period. Longer-lived species such as O 3 accumulate over many pulses and convect downstream with the gas flow. Optimizing the interplay between local rapid reactions, such as H abstraction which occurs dominantly in the discharge zone, and non-local slower processes, such as surface-surface reactions, may enable the customization of the relative abundance of surface functional groups

  17. Ecosystem-atmosphere exchange of carbon in a heathland under future climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bang Selsted, M

    2010-07-15

    Global change is a reality. Atmospheric CO{sub 2} levels are rising as well as mean global temperature and precipitation patterns are changing. These three environmental factors have separately and in combination effect on ecosystem processes. Terrestrial ecosystems hold large amounts of carbon, why understanding plant and soil responses to such changes are necessary, as ecosystems potentially can ameliorate or accelerate global change. To predict the feedback of ecosystems to the atmospheric CO{sub 2} concentrations experiments imitating global change effects are therefore an important tool. This work on ecosystem-atmosphere exchange of carbon in a heathland under future climatic conditions, shows that extended summer drought in combination with elevated temperature will ensure permanent dryer soil conditions, which decreases carbon turnover, while elevated atmospheric CO{sub 2} concentrations will increase carbon turnover. In the full future climate scenario, carbon turnover is over all expected to increase and the heathland to become a source of atmospheric CO{sub 2}. The methodology of static chamber CO{sub 2} flux measurements and applying the technology in a FACE (free air CO{sub 2} enrichment) facility is a challenge. Fluxes of CO{sub 2} from soil to atmosphere depend on a physical equilibrium between those two medias, why it is important to keep the CO{sub 2} gradient between soil and atmosphere unchanged during measurement. Uptake to plants via photosynthesis depends on a physiological process, which depends strongly on the atmospheric CO{sub 2} concentration. Photosynthesis and respiration run in parallel during measurements of net ecosystem exchange, and these measurements should therefore be performed with care to both the atmospheric CO{sub 2} concentration and the CO{sub 2} soil-atmosphere gradient. (author)

  18. The Chemistry of Atmosphere-Forest Exchange (CAFE Model – Part 1: Model description and characterization

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2011-01-01

    Full Text Available We present the Chemistry of Atmosphere-Forest Exchange (CAFE model, a vertically-resolved 1-D chemical transport model designed to probe the details of near-surface reactive gas exchange. CAFE integrates all key processes, including turbulent diffusion, emission, deposition and chemistry, throughout the forest canopy and mixed layer. CAFE utilizes the Master Chemical Mechanism (MCM and is the first model of its kind to incorporate a suite of reactions for the oxidation of monoterpenes and sesquiterpenes, providing a more comprehensive description of the oxidative chemistry occurring within and above the forest. We use CAFE to simulate a young Ponderosa pine forest in the Sierra Nevada, CA. Utilizing meteorological constraints from the BEARPEX-2007 field campaign, we assess the sensitivity of modeled fluxes to parameterizations of diffusion, laminar sublayer resistance and radiation extinction. To characterize the general chemical environment of this forest, we also present modeled mixing ratio profiles of biogenic hydrocarbons, hydrogen oxides and reactive nitrogen. The vertical profiles of these species demonstrate a range of structures and gradients that reflect the interplay of physical and chemical processes within the forest canopy, which can influence net exchange.

  19. Air–snow exchange of nitrate: a modelling approach to investigate physicochemical processes in surface snow at Dome C, Antarctica

    Directory of Open Access Journals (Sweden)

    J. Bock

    2016-10-01

    Full Text Available Snowpack is a multiphase (photochemical reactor that strongly influences the air composition in polar and snow-covered regions. Snowpack plays a special role in the nitrogen cycle, as it has been shown that nitrate undergoes numerous recycling stages (including photolysis in the snow before being permanently buried in the ice. However, the current understanding of these physicochemical processes remains very poor. Several modelling studies have attempted to reproduce (photochemical reactions inside snow grains, but these have relied on strong assumptions to characterise snow reactive properties, which are not well defined. Air–snow exchange processes such as adsorption, solid-state diffusion, or co-condensation also affect snow chemical composition. Here, we present a physically based model of these processes for nitrate. Using as input a 1-year-long time series of atmospheric nitrate concentration measured at Dome C, Antarctica, our model reproduces with good agreement the nitrate measurements in the surface snow. By investigating the relative importance of the main exchange processes, this study shows that, on the one hand, the combination of bulk diffusion and co-condensation allows a good reproduction of the measurements (correlation coefficient r = 0.95, with a correct amplitude and timing of summer peak concentration of nitrate in snow. During winter, nitrate concentration in surface snow is mainly driven by thermodynamic equilibrium, whilst the peak observed in summer is explained by the kinetic process of co-condensation. On the other hand, the adsorption of nitric acid on the surface of the snow grains, constrained by an already existing parameterisation for the isotherm, fails to fit the observed variations. During winter and spring, the modelled concentration of adsorbed nitrate is respectively 2.5 and 8.3-fold higher than the measured one. A strong diurnal variation driven by the temperature cycle and a peak occurring in early

  20. Seasonal atmospheric deposition and air-sea gaseous exchange of polycyclic aromatic hydrocarbons over the Yangtze River Estuary, East China Sea: Implication for the source-sink processes

    Science.gov (United States)

    Jiang, Y.; Guo, Z.

    2017-12-01

    As the home of the largest port in the world, the Yangtze River Estuary (YRE) in the East China Sea (ECS) is adjacent to the largest economic zone in China with more than 10% of Chinese population and provides one-fifth of national GDP. The YRE is under the path of contaminated East Asian continental outflow. These make the YRE unique for the pollutant biogeochemical cycling in the world. In this work, 94 pairs of air samples and 20 surface seawater samples covering four seasons were collected from a remote receptor site in the YRE from March 2014 to January 2015, in order to explore the seasonal fluxes of air-sea gaseous exchange and atmospheric dry and wet deposition of 15 polycyclic aromatic hydrocarbons (PAHs) and their source-sink processes at the air-sea interface. The average dry and wet deposition fluxes of 15 PAHs were estimated as 879 ± 1393 ng m-2 d-1 and 755 ± 545 ng m-2 d-1, respectively. The gaseous PAHs were released from seawater to atmosphere during the whole year with an average of 3039 ± 2030 ng m-2 d-1. The gaseous exchange of PAHs was referred as the dominant process at the air-sea interface in the YRE as the magnitude of volatilization flux of PAHs exceeded that of the total dry and wet deposition. The gaseous PAH exchange flux was dominated by 3-ring PAHs, with the highest value in summer while lowest in winter, depicting a strong seasonal variation due to temperature, wind speed and air-sea concentration gradient difference among seasons. Based on the simplified mass balance estimation, net 9.6 tons/y of PAHs was volatilized from seawater to atmosphere with an area of approximately 20000 km2 in the YRE. Apart from Yangtze River input and ocean ship emissions in the entire year, the selective release of low molecular weight PAHs from sediments in winter due to re-suspension triggered by the East Asian winter monsoon could be another possible source for dissolved PAHs. This work suggests that the source-sink processes of PAHs at air

  1. The CarbonTracker Data Assimilation System for CO2 and δ13C (CTDAS-C13 v1.0): retrieving information on land-atmosphere exchange processes

    Science.gov (United States)

    van der Velde, Ivar R.; Miller, John B.; van der Molen, Michiel K.; Tans, Pieter P.; Vaughn, Bruce H.; White, James W. C.; Schaefer, Kevin; Peters, Wouter

    2018-01-01

    To improve our understanding of the global carbon balance and its representation in terrestrial biosphere models, we present here a first dual-species application of the CarbonTracker Data Assimilation System (CTDAS). The system's modular design allows for assimilating multiple atmospheric trace gases simultaneously to infer exchange fluxes at the Earth surface. In the prototype discussed here, we interpret signals recorded in observed carbon dioxide (CO2) along with observed ratios of its stable isotopologues 13CO2/12CO2 (δ13C). The latter is in particular a valuable tracer to untangle CO2 exchange from land and oceans. Potentially, it can also be used as a proxy for continent-wide drought stress in plants, largely because the ratio of 13CO2 and 12CO2 molecules removed from the atmosphere by plants is dependent on moisture conditions.The dual-species CTDAS system varies the net exchange fluxes of both 13CO2 and CO2 in ocean and terrestrial biosphere models to create an ensemble of 13CO2 and CO2 fluxes that propagates through an atmospheric transport model. Based on differences between observed and simulated 13CO2 and CO2 mole fractions (and thus δ13C) our Bayesian minimization approach solves for weekly adjustments to both net fluxes and isotopic terrestrial discrimination that minimizes the difference between observed and estimated mole fractions.With this system, we are able to estimate changes in terrestrial δ13C exchange on seasonal and continental scales in the Northern Hemisphere where the observational network is most dense. Our results indicate a decrease in stomatal conductance on a continent-wide scale during a severe drought. These changes could only be detected after applying combined atmospheric CO2 and δ13C constraints as done in this work. The additional constraints on surface CO2 exchange from δ13C observations neither affected the estimated carbon fluxes nor compromised our ability to match observed CO2 variations. The prototype presented

  2. Air-Sea Momentum and Enthalpy Exchange in Coupled Atmosphere-Wave-Ocean Modeling of Tropical Cyclones

    Science.gov (United States)

    Curcic, M.; Chen, S. S.

    2016-02-01

    The atmosphere and ocean are coupled through momentum, enthalpy, and mass fluxes. Accurate representation of these fluxes in a wide range of weather and climate conditions is one of major challenges in prediction models. Their current parameterizations are based on sparse observations in low-to-moderate winds and are not suited for high wind conditions such as tropical cyclones (TCs) and winter storms. In this study, we use the Unified Wave INterface - Coupled Model (UWIN-CM), a high resolution, fully-coupled atmosphere-wave-ocean model, to better understand the role of ocean surface waves in mediating air-sea momentum and enthalpy exchange in TCs. In particular, we focus on the explicit treatment of wave growth and dissipation for calculating atmospheric and oceanic stress, and its role in upper ocean mixing and surface cooling in the wake of the storm. Wind-wave misalignment and local wave disequilibrium result in difference between atmospheric and oceanic stress being largest on the left side of the storm. We find that explicit wave calculation in the coupled model reduces momentum transfer into the ocean by more than 10% on average, resulting in reduced cooling in TC's wake and subsequent weakening of the storm. We also investigate the impacts of sea surface temperature and upper ocean parameterization on air-sea enthalpy fluxes in the fully coupled model. High-resolution UWIN-CM simulations of TCs with various intensities and structure are conducted in this study to better understand the complex TC-ocean interaction and improve the representation of air-sea coupling processes in coupled prediction models.

  3. Observational study of atmospheric surface layer and coastal weather in northern Qatar

    Science.gov (United States)

    Samanta, Dhrubajyoti; Sadr, Reza

    2016-04-01

    Atmospheric surface layer is the interaction medium between atmosphere and Earth's surface. Better understanding of its turbulence nature is essential in characterizing the local weather, climate variability and modeling of turbulent exchange processes. The importance of Middle East region, with its unique geographical, economical and weather condition is well recognized. However, high quality micrometeorological observational studies are rare in this region. Here we show experimental results from micrometeorological observations from an experimental site in the coastal region of Qatar during August-December 2015. Measurements of winds are obtained from three sonic anemometers installed on a 9 m tower placed at Al Ghariyah beach in northern Qatar (26.08 °N, 51.36 °E). Different surface layer characteristics is analyzed and compared with earlier studies in equivalent weather conditions. Monthly statistics of wind speed, wind direction, temperature, humidity and heat index are made from concurrent observations from sonic anemometer and weather station to explore variations with surface layer characteristics. The results also highlights potential impact of sea breeze circulation on local weather and atmospheric turbulence. The observed daily maximum temperature and heat index during morning period may be related to sea breeze circulations. Along with the operational micrometeorological observation system, a camera system and ultrasonic wave measurement system are installed recently in the site to study coastline development and nearshore wave dynamics. Overall, the complete observational set up is going to provide new insights about nearshore wind dynamics and wind-wave interaction in Qatar.

  4. Ecosystem-atmosphere exchange of carbon in a heathland under future climatic conditions

    DEFF Research Database (Denmark)

    Selsted, Merete Bang

    understanding plant and soil responses to such changes are necessary, as ecosystems potentially can ameliorate or accelerate global change. To predict the feedback of ecosystems to the atmospheric CO2 concentrations experiments imitating global change effects are therefore an important tool. This work....... Fluxes of CO2 from soil to atmosphere depend on a physical equilibrium between those two medias, why it is important to keep the CO2 gradient between soil and atmosphere unchanged during measurement. Uptake to plants via photosynthesis depends on a physiological process, which depends strongly...... on the atmospheric CO2 concentration. Photosynthesis and respiration run in parallel during measurements of net ecosystem exchange, and these measurements should therefore be performed with care to both the atmospheric CO2 concentration and the CO2 soil-atmosphere gradient....

  5. The CarbonTracker Data Assimilation System for CO2 and δ13C (CTDAS-C13 v1.0: retrieving information on land–atmosphere exchange processes

    Directory of Open Access Journals (Sweden)

    I. R. van der Velde

    2018-01-01

    Full Text Available To improve our understanding of the global carbon balance and its representation in terrestrial biosphere models, we present here a first dual-species application of the CarbonTracker Data Assimilation System (CTDAS. The system's modular design allows for assimilating multiple atmospheric trace gases simultaneously to infer exchange fluxes at the Earth surface. In the prototype discussed here, we interpret signals recorded in observed carbon dioxide (CO2 along with observed ratios of its stable isotopologues 13CO2∕12CO2 (δ13C. The latter is in particular a valuable tracer to untangle CO2 exchange from land and oceans. Potentially, it can also be used as a proxy for continent-wide drought stress in plants, largely because the ratio of 13CO2 and 12CO2 molecules removed from the atmosphere by plants is dependent on moisture conditions.The dual-species CTDAS system varies the net exchange fluxes of both 13CO2 and CO2 in ocean and terrestrial biosphere models to create an ensemble of 13CO2 and CO2 fluxes that propagates through an atmospheric transport model. Based on differences between observed and simulated 13CO2 and CO2 mole fractions (and thus δ13C our Bayesian minimization approach solves for weekly adjustments to both net fluxes and isotopic terrestrial discrimination that minimizes the difference between observed and estimated mole fractions.With this system, we are able to estimate changes in terrestrial δ13C exchange on seasonal and continental scales in the Northern Hemisphere where the observational network is most dense. Our results indicate a decrease in stomatal conductance on a continent-wide scale during a severe drought. These changes could only be detected after applying combined atmospheric CO2 and δ13C constraints as done in this work. The additional constraints on surface CO2 exchange from δ13C observations neither affected the estimated carbon fluxes nor compromised our ability to match observed CO2 variations

  6. Developing multi-tracer approaches to constrain the parameterisation of leaf and soil CO2 and H2O exchange in land surface models

    Science.gov (United States)

    Ogée, Jerome; Wehr, Richard; Commane, Roisin; Launois, Thomas; Meredith, Laura; Munger, Bill; Nelson, David; Saleska, Scott; Zahniser, Mark; Wofsy, Steve; Wingate, Lisa

    2016-04-01

    The net flux of carbon dioxide between the land surface and the atmosphere is dominated by photosynthesis and soil respiration, two of the largest gross CO2 fluxes in the carbon cycle. More robust estimates of these gross fluxes could be obtained from the atmospheric budgets of other valuable tracers, such as carbonyl sulfide (COS) or the carbon and oxygen isotope compositions (δ13C and δ18O) of atmospheric CO2. Over the past decades, the global atmospheric flask network has measured the inter-annual and intra-annual variations in the concentrations of these tracers. However, knowledge gaps and a lack of high-resolution multi-tracer ecosystem-scale measurements have hindered the development of process-based models that can simulate the behaviour of each tracer in response to environmental drivers. We present novel datasets of net ecosystem COS, 13CO2 and CO18O exchange and vertical profile data collected over 3 consecutive growing seasons (2011-2013) at the Harvard forest flux site. We then used the process-based model MuSICA (multi-layer Simulator of the Interactions between vegetation Canopy and the Atmosphere) to include the transport, reaction, diffusion and production of each tracer within the forest and exchanged with the atmosphere. Model simulations over the three years captured well the impact of diurnally and seasonally varying environmental conditions on the net ecosystem exchange of each tracer. The model also captured well the dynamic vertical features of tracer behaviour within the canopy. This unique dataset and model sensitivity analysis highlights the benefit in the collection of multi-tracer high-resolution field datasets and the developement of multi-tracer land surface models to provide valuable constraints on photosynthesis and respiration across scales in the near future.

  7. A Controlled Environment System For Measuring Plant-Atmosphere Gas Exchange

    Science.gov (United States)

    James M. Brown

    1975-01-01

    Describes an inexpensive, efficient system for measuring plant-atmosphere gas exchange. Designed to measure transpiration from potted tree seedlings, it is readily adaptable for measuring other gas exchanges or gas exchange by plant parts. Light level, air and root temperature can be precisely controlled at minimum cost.

  8. HTO deposition by vapor exchange between atmosphere and soil

    International Nuclear Information System (INIS)

    Bunnenberg, C.

    1989-01-01

    HTO deposition to soils occurs by vapor exchange between atmosphere and soil-air, when the concentration gradient is directed downwards, and it is principally independent from simultaneous transport of H 2 O. In relatively dry top soil, which is frequently the case, as it tries to attain equilibrium with the air humidity, HTO diffuses into deeper soil driven by the same mechanisms that caused the deposition process. The resulting HTO profile is depending on the atmospheric supply and the soil physical conditions, and it is the source for further tritium pathways, namely root uptake by plants and reemission from soil back into the ground-level air. Simulation experiments with soil columns exposed to HTO labeled atmospheres have proved the theoretical expectation that under certain boundary conditions the HTO profile can be described by an error function. The key parameter is the effective diffusion coefficient, which in turn is a function of the sorption characteristics of the particular soil. (orig.) [de

  9. Fine modeling of energy exchanges between buildings and urban atmosphere

    International Nuclear Information System (INIS)

    Daviau-Pellegrin, Noelie

    2016-01-01

    This thesis work is about the effect of buildings on the urban atmosphere and more precisely the energetic exchanges that take place between these two systems. In order to model more finely the thermal effects of buildings on the atmospheric flows in simulations run under the CFD software Code-Saturne, we proceed to couple this tool with the building model BuildSysPro. This library is run under Dymola and can generate matrices describing the building thermal properties that can be used outside this software. In order to carry out the coupling, we use these matrices in a code that allows the building thermal calculations and the CFD to exchange their results. After a review about the physical phenomena and the existing models, we explain the interactions between the atmosphere and the urban elements, especially buildings. The latter can impact the air flows dynamically, as they act as obstacles, and thermally, through their surface temperatures. At first, we analyse the data obtained from the measurement campaign EM2PAU that we use in order to validate the coupled model. EM2PAU was carried out in Nantes in 2011 and represents a canyon street with two rows of four containers. Its distinctive feature lies in the simultaneous measurements of the air and wall temperatures as well as the wind speeds with anemometers located on a 10 m-high mast for the reference wind and on six locations in the canyon. This aims for studying the thermal influence of buildings on the air flows. Then the numerical simulations of the air flows in EM2PAU is carried out with different methods that allow us to calculate or impose the surface temperature we use for each of the container walls. The first method consists in imposing their temperatures from the measurements. For each wall, we set the temperature to the surface temperature that was measured during the EM2PAU campaign. The second method involves imposing the outdoor air temperature that was measured at a given time to all the

  10. Impulse exchange at the surface of the ocean and the fractal dimension of drifter trajectories

    Directory of Open Access Journals (Sweden)

    D. M. Summers

    2002-01-01

    Full Text Available An impulse-based model is developed to represent a coupling between turbulent flow in the atmosphere and turbulent flow in the ocean. In particular, it is argued that the atmosphere flowing horizontally over the ocean surface generates a velocity fluctuation field in the latter's near-surface flow. The mechanism for this can be understood kinematically in terms of an exchange of tangentially-oriented fluid impulse at the air-sea interface. We represent this exchange numerically through the creation of Lagrangian elements of impulse density. An indication of the efficacy of such a model would lie in its ability to predict the observed fractal dimension of lateral trajectories of submerged floats set adrift in the ocean. To this end, we examine the geometry of lateral tracer-paths determined from the present model.

  11. A Parameterization for Land-Atmosphere-Cloud Exchange (PLACE): Documentation and Testing of a Detailed Process Model of the Partly Cloudy Boundary Layer over Heterogeneous Land.

    Science.gov (United States)

    Wetzel, Peter J.; Boone, Aaron

    1995-07-01

    This paper presents a general description of, and demonstrates the capabilities of, the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE). The PLACE model is a detailed process model of the partly cloudy atmospheric boundary layer and underlying heterogeneous land surfaces. In its development, particular attention has been given to three of the model's subprocesses: the prediction of boundary layer cloud amount, the treatment of surface and soil subgrid heterogeneity, and the liquid water budget. The model includes a three-parameter nonprecipitating cumulus model that feeds back to the surface and boundary layer through radiative effects. Surface heterogeneity in the PLACE model is treated both statistically and by resolving explicit subgrid patches. The model maintains a vertical column of liquid water that is divided into seven reservoirs, from the surface interception store down to bedrock.Five single-day demonstration cases are presented, in which the PLACE model was initialized, run, and compared to field observations from four diverse sites. The model is shown to predict cloud amount well in these while predicting the surface fluxes with similar accuracy. A slight tendency to underpredict boundary layer depth is noted in all cases.Sensitivity tests were also run using anemometer-level forcing provided by the Project for Inter-comparison of Land-surface Parameterization Schemes (PILPS). The purpose is to demonstrate the relative impact of heterogeneity of surface parameters on the predicted annual mean surface fluxes. Significant sensitivity to subgrid variability of certain parameters is demonstrated, particularly to parameters related to soil moisture. A major result is that the PLACE-computed impact of total (homogeneous) deforestation of a rain forest is comparable in magnitude to the effect of imposing heterogeneity of certain surface variables, and is similarly comparable to the overall variance among the other PILPS participant models. Were

  12. Decomposing Shortwave Top-of-Atmosphere Radiative Flux Variability in Terms of Surface and Atmospheric Contributions Using CERES Observations

    Science.gov (United States)

    Loeb, N. G.; Wong, T.; Wang, H.

    2017-12-01

    Earth's climate is determined by the exchange of radiant energy between the Sun, Earth and space. The absorbed solar radiation (ASR) fuels the climate system, providing the energy required for atmospheric and oceanic motions, while the system cools by emitting outgoing longwave (LW) radiation to space. A central objective of the Clouds and the Earth's Radiant Energy System (CERES) is to produce a long-term global climate data record of Earth's radiation budget along with the associated atmospheric and surface properties that influence it. CERES data products utilize a number of data sources, including broadband radiometers measuring incoming and reflected solar radiation and OLR, polar orbiting and geostationary spectral imagers, meteorological, aerosol and ozone assimilation data, and snow/sea-ice maps based on microwave radiometer data. Here we use simple diagnostic model of Earth's albedo and CERES Energy Balanced and Filled (EBAF) Ed4.0 data for March 2000-February 2016 to quantify interannual variations in SW TOA flux associated with surface albedo and atmospheric reflectance and transmittance variations. Surface albedo variations account for cloud properties over the Arctic Ocean.

  13. Moist Orographic Convection: Physical Mechanisms and Links to Surface-Exchange Processes

    Directory of Open Access Journals (Sweden)

    Daniel J. Kirshbaum

    2018-02-01

    Full Text Available This paper reviews the current understanding of moist orographic convection and its regulation by surface-exchange processes. Such convection tends to develop when and where moist instability coincides with sufficient terrain-induced ascent to locally overcome convective inhibition. The terrain-induced ascent can be owing to mechanical (airflow over or around an obstacle and/or thermal (differential heating over sloping terrain forcing. For the former, the location of convective initiation depends on the dynamical flow regime. In “unblocked” flows that ascend the barrier, the convection tends to initiate over the windward slopes, while in “blocked” flows that detour around the barrier, the convection tends to initiate upstream and/or downstream of the high terrain where impinging flows split and rejoin, respectively. Processes that destabilize the upstream flow for mechanically forced moist convection include large-scale moistening and ascent, positive surface sensible and latent heat fluxes, and differential advection in baroclinic zones. For thermally forced flows, convective initiation is driven by thermally direct circulations with sharp updrafts over or downwind of the mountain crest (daytime or foot (nighttime. Along with the larger-scale background flow, local evapotranspiration and transport of moisture, as well as thermodynamic heterogeneities over the complex terrain, regulate moist instability in such events. Longstanding limitations in the quantitative understanding of related processes, including both convective preconditioning and initiation, must be overcome to improve the prediction of this convection, and its collective effects, in weather and climate models.

  14. Long-range atmospheric transport of persistent organic pollutants, I: description of surface-atmosphere exchange modules and implementation in EUROS.

    NARCIS (Netherlands)

    Jacobs, C.M.J.; Pul, van W.A.J.

    1996-01-01

    Concerns a description of a model for the exchange of gaseous Persistent Organic Pollutants (POP) at land and sea surfaces and its application in the Eulerian air pollution transport model EUROS. Sample simulations of the net deposition of lindane over Europe are discussed. For non-emission areas

  15. Composition, Chemistry, and Climate of the Atmosphere. 2: Mean properties of the atmosphere

    Science.gov (United States)

    Singh, Hanwant B. (Editor); Salstein, David A.

    1994-01-01

    The atmosphere can be defined as the relatively thin gaseous envelope surrounding the entire planet Earth. It possesses a number of properties related to its physical state and chemical composition, and it undergoes a variety of internal processes and external interactions that can either maintain or alter these properties. Whereas descriptions of the atmosphere's chemical properties form much of the remaining chapters of this book, the present chapter will highlight the atmosphere's gases, and these define its temperature structure. In contrast, the larger-scale motions comprise the winds, the global organization of which is often referred to as the general circulation. The framework of the dynamical and thermodynamical laws, including the three principles of conversation of mass, momentum, and energy, are fundamental in describing both the internal processes of the atmosphere and its external interactions. The atmosphere is not a closed system, because it exchanges all three of these internally conservative quantities across the atmosphere's boundary below and receives input from regions outside it. Thus surface fluxes of moisture, momentum, and heat occur to and from the underlying ocean and land. The atmosphere exchanges very little mass and momentum with space, though it absorbs directly a portion of the solar radiational energy received from above.

  16. HTO deposition through gas exchange between soil and atmosphere

    International Nuclear Information System (INIS)

    Feinhals, J.

    1988-06-01

    Theoretical considerations show that the ratio of HTO/H 2 O molecules, i.e. the specific activity, is not the same in atmospheric humidity and moisture absorption but differs by the so-called specific activity coefficient k. On this basis a computer model (ATHOS) was developed which allowed the calculation of both the surface contamination of the soil due to the gas exchange with a contaminated atmosphere and the depth-specific distribution of the soil acitvity. On the one hand the equations base on a modified Philip-de Vries theory, and on the other hand on a large number of soil column experiments which served the examination of the influence of parameters of microclimate and soil physics on the absorption and diffusion of tritiated water vapour under simulated conditions Above all the individual capability of each soil type to absorb moisture must be taken into consideration in connection with the HTO transfer. In this context theoretical and experimental examinations were carried out indicating a practice-related possibility to determine the soil-specific absorption capability. (orig./DG) [de

  17. Relating surface chemistry and oxygen surface exchange in LnBaCo2O(5+δ) air electrodes.

    Science.gov (United States)

    Téllez, Helena; Druce, John; Kilner, John A; Ishihara, Tatsumi

    2015-01-01

    The surface and near-surface chemical composition of electroceramic materials often shows significant deviations from that of the bulk. In particular, layered materials, such as cation-ordered LnBaCo2O(5+δ) perovskites (Ln = lanthanide), undergo surface and sub-surface restructuring due to the segregation of the divalent alkaline-earth cation. These processes can take place during synthesis and processing steps (e.g. deposition, sintering or annealing), as well as at temperatures relevant for the operation of these materials as air electrodes in solid oxide fuel cells and electrolysers. Furthermore, the surface segregation in these double perovskites shows fast kinetics, starting at temperatures as low as 400 °C over short periods of time and leading to a decrease in the transition metal surface coverage exposed to the gas phase. In this work, we use a combination of stable isotope tracer labeling and surface-sensitive ion beam techniques to study the oxygen transport properties and their relationship with the surface chemistry in ordered LnBaCo2O(5+δ) perovskites. Time-of-Flight Secondary-Ion Mass Spectrometry (ToF-SIMS) combined with (18)O isotope exchange was used to determine the oxygen tracer diffusion (D*) and surface exchange (k*) coefficients. Furthermore, Low Energy Ion Scattering (LEIS) was used for the analysis of the surface and near surface chemistry as it provides information from the first mono-atomic layer of the materials. In this way, we could relate the compositional modifications (e.g. cation segregation) taking place at the electrochemically-active surface during the exchange at high temperatures and the oxygen transport properties in double perovskite electrode materials to further our understanding of the mechanism of the surface exchange process.

  18. Improvement of a land surface model for accurate prediction of surface energy and water balances

    International Nuclear Information System (INIS)

    Katata, Genki

    2009-02-01

    In order to predict energy and water balances between the biosphere and atmosphere accurately, sophisticated schemes to calculate evaporation and adsorption processes in the soil and cloud (fog) water deposition on vegetation were implemented in the one-dimensional atmosphere-soil-vegetation model including CO 2 exchange process (SOLVEG2). Performance tests in arid areas showed that the above schemes have a significant effect on surface energy and water balances. The framework of the above schemes incorporated in the SOLVEG2 and instruction for running the model are documented. With further modifications of the model to implement the carbon exchanges between the vegetation and soil, deposition processes of materials on the land surface, vegetation stress-growth-dynamics etc., the model is suited to evaluate an effect of environmental loads to ecosystems by atmospheric pollutants and radioactive substances under climate changes such as global warming and drought. (author)

  19. Exchange of NO2 between spruces and the atmosphere is dominated by deposition

    Science.gov (United States)

    Breuninger, C.; Meixner, F. X.; Kesselmeier, J.

    2009-04-01

    The chemical budget of troposheric ozone is largely determined by the concentration of NOx (NO and NO2), which is in remote areas related to biological activities of soils and vegetation. The atmospheric concentration of NO2 is strongly influenced by the bi-directional exchange between the atmosphere and plants. The exchange depends on stomatal compensations points in close relation to the NO2 concentrations in ambient air. It is accepted that NO2 uptake by plants represents a large NO2 sink, but the magnitude is still unidentified. A better knowledge of compensation point values for the bi-directional NO2 exchange is a matter of recent discussions, as accurate estimates would help to reliably classify vegetation types. In close relation to our previous studies of Betula pendula, Fagus sylvatica, Quercus ilex und Pinus sylvestris we investigated a further representative of conifers, Picea abies, under field and laboratory conditions. The measurements were part of the DFG joined project EGER (ExchanGE processes in mountainous Regions). We used dynamic chambers and a sensitive and highly specific NO-NO2-Analysator. CO¬2 and H2O exchange were measured simultaneously to assess physiological comparative parameters such as photosynthesis, transpiration and stomatal conductance. Additionally O3 concentrations were recorded, to detect and estimate chemical reactions within the chamber. During the measurements the NO2 exchange was obviously dominated by deposition and depended on stomatal conductance.

  20. Out of Thin Air: Microbial Utilization of Atmospheric Gaseous Organics in the Surface Ocean

    KAUST Repository

    Arrieta, J M; Duarte, Carlos M.; Sala, M. Montserrat; Dachs, Jordi

    2016-01-01

    Volatile and semi-volatile gas-phase organic carbon (GOC) is a largely neglected component of the global carbon cycle, with poorly resolved pools and fluxes of natural and anthropogenic GOC in the biosphere. Substantial amounts of atmospheric GOC are exchanged with the surface ocean, and subsequent utilization of specific GOC compounds by surface ocean microbial communities has been demonstrated. Yet, the final fate of the bulk of the atmospheric GOC entering the surface ocean is unknown. Our data show experimental evidence of efficient use of atmospheric GOC by marine prokaryotes at different locations in the NE Subtropical Atlantic, the Arctic Ocean and the Mediterranean Sea. We estimate that between 2 and 27% of the prokaryotic carbon demand was supported by GOC with a major fraction of GOC inputs being consumed within the mixed layer. The role of the atmosphere as a key vector of organic carbon subsidizing marine microbial metabolism is a novel link yet to be incorporated into the microbial ecology of the surface ocean as well as into the global carbon budget.

  1. Out of Thin Air: Microbial Utilization of Atmospheric Gaseous Organics in the Surface Ocean.

    Science.gov (United States)

    Arrieta, Jesús M; Duarte, Carlos M; Sala, M Montserrat; Dachs, Jordi

    2015-01-01

    Volatile and semi-volatile gas-phase organic carbon (GOC) is a largely neglected component of the global carbon cycle, with poorly resolved pools and fluxes of natural and anthropogenic GOC in the biosphere. Substantial amounts of atmospheric GOC are exchanged with the surface ocean, and subsequent utilization of specific GOC compounds by surface ocean microbial communities has been demonstrated. Yet, the final fate of the bulk of the atmospheric GOC entering the surface ocean is unknown. Our data show experimental evidence of efficient use of atmospheric GOC by marine prokaryotes at different locations in the NE Subtropical Atlantic, the Arctic Ocean and the Mediterranean Sea. We estimate that between 2 and 27% of the prokaryotic carbon demand was supported by GOC with a major fraction of GOC inputs being consumed within the mixed layer. The role of the atmosphere as a key vector of organic carbon subsidizing marine microbial metabolism is a novel link yet to be incorporated into the microbial ecology of the surface ocean as well as into the global carbon budget.

  2. Out of thin air: Microbial utilization of atmospheric gaseous organics in the surface ocean

    Directory of Open Access Journals (Sweden)

    Jesus M Arrieta

    2016-01-01

    Full Text Available Volatile and semi-volatile gas-phase organic carbon (GOC is a largely neglected component of the global carbon cycle, with poorly resolved pools and fluxes of natural and anthropogenic GOC in the biosphere. Substantial amounts of atmospheric GOC are exchanged with the surface ocean, and subsequent utilization of specific GOC compounds by surface ocean microbial communities has been demonstrated. Yet, the final fate of the bulk of the atmospheric GOC entering the surface ocean is unknown. Our data show experimental evidence of efficient use of atmospheric GOC by marine prokaryotes at different locations in the NE Subtropical Atlantic, the Arctic Ocean and the Mediterranean Sea. We estimate that between 2 to 27% of the prokaryotic carbon demand was supported by GOC with a major fraction of GOC inputs being consumed within the mixed layer. The role of the atmosphere as a key vector of organic carbon subsidising marine microbial metabolism is a novel link yet to be incorporated into the microbial ecology of the surface ocean as well as into the global carbon budget.

  3. Out of Thin Air: Microbial Utilization of Atmospheric Gaseous Organics in the Surface Ocean

    KAUST Repository

    Arrieta, Jesus

    2016-01-20

    Volatile and semi-volatile gas-phase organic carbon (GOC) is a largely neglected component of the global carbon cycle, with poorly resolved pools and fluxes of natural and anthropogenic GOC in the biosphere. Substantial amounts of atmospheric GOC are exchanged with the surface ocean, and subsequent utilization of specific GOC compounds by surface ocean microbial communities has been demonstrated. Yet, the final fate of the bulk of the atmospheric GOC entering the surface ocean is unknown. Our data show experimental evidence of efficient use of atmospheric GOC by marine prokaryotes at different locations in the NE Subtropical Atlantic, the Arctic Ocean and the Mediterranean Sea. We estimate that between 2 and 27% of the prokaryotic carbon demand was supported by GOC with a major fraction of GOC inputs being consumed within the mixed layer. The role of the atmosphere as a key vector of organic carbon subsidizing marine microbial metabolism is a novel link yet to be incorporated into the microbial ecology of the surface ocean as well as into the global carbon budget.

  4. Numerical simulation of small-scale mixing processes in the upper ocean and atmospheric boundary layer

    International Nuclear Information System (INIS)

    Druzhinin, O; Troitskaya, Yu; Zilitinkevich, S

    2016-01-01

    The processes of turbulent mixing and momentum and heat exchange occur in the upper ocean at depths up to several dozens of meters and in the atmospheric boundary layer within interval of millimeters to dozens of meters and can not be resolved by known large- scale climate models. Thus small-scale processes need to be parameterized with respect to large scale fields. This parameterization involves the so-called bulk coefficients which relate turbulent fluxes with large-scale fields gradients. The bulk coefficients are dependent on the properties of the small-scale mixing processes which are affected by the upper-ocean stratification and characteristics of surface and internal waves. These dependencies are not well understood at present and need to be clarified. We employ Direct Numerical Simulation (DNS) as a research tool which resolves all relevant flow scales and does not require closure assumptions typical of Large-Eddy and Reynolds Averaged Navier-Stokes simulations (LES and RANS). Thus DNS provides a solid ground for correct parameterization of small-scale mixing processes and also can be used for improving LES and RANS closure models. In particular, we discuss the problems of the interaction between small-scale turbulence and internal gravity waves propagating in the pycnocline in the upper ocean as well as the impact of surface waves on the properties of atmospheric boundary layer over wavy water surface. (paper)

  5. Exploration of Venus' Deep Atmosphere and Surface Environment

    Science.gov (United States)

    Glaze, L. S.; Amato, M.; Garvin, J. B.; Johnson, N. M.

    2017-01-01

    Venus formed in the same part of our solar system as Earth, apparently from similar materials. Although both planets are about the same size, their differences are profound. Venus and Earth experienced vastly different evolutionary pathways resulting in unexplained differences in atmospheric composition and dynamics, as well as in geophysical processes of the planetary surfaces and interiors. Understanding when and why the evolutionary pathways of Venus and Earth diverged is key to understanding how terrestrial planets form and how their atmospheres and surfaces evolve. Measurements made in situ, within the near-surface or surface environment, are critical to addressing unanswered questions. We have made substantial progress modernizing and maturing pressure vessel technologies to enable science operations in the high temperature and pressure near-surface/surfaceenvironment of Venus.

  6. Microclimatic models. Estimation of components of the energy balance over land surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Heikinheimo, M; Venaelaeinen, A; Tourula, T [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1997-12-31

    Climates at regional scale are strongly dependent on the interaction between atmosphere and its lower boundary, the oceans and the land surface mosaic. Land surfaces influence climate through their albedo, and the aerodynamic roughness, the processes of the biosphere and many soil hydrological properties; all these factors vary considerably geographically. Land surfaces receive a certain portion of the solar irradiance depending on the cloudiness, atmospheric transparency and surface albedo. Short-wave solar irradiance is the source of the heat energy exchange at the earth`s surface and also regulates many biological processes, e.g. photosynthesis. Methods for estimating solar irradiance, atmospheric transparency and surface albedo were reviewed during the course of this project. The solar energy at earth`s surface is consumed for heating the soil and the lower atmosphere. Where moisture is available, evaporation is one of the key components of the surface energy balance, because the conversion of liquid water into water vapour consumes heat. The evaporation process was studied by carrying out field experiments and testing parameterisation for a cultivated agricultural surface and for lakes. The micrometeorological study over lakes was carried out as part of the international `Northern Hemisphere Climatic Processes Experiment` (NOPEX/BAHC) in Sweden. These studies have been aimed at a better understanding of the energy exchange processes of the earth`s surface-atmosphere boundary for a more accurate and realistic parameterisation of the land surface in atmospheric models

  7. Microclimatic models. Estimation of components of the energy balance over land surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Heikinheimo, M.; Venaelaeinen, A.; Tourula, T. [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1996-12-31

    Climates at regional scale are strongly dependent on the interaction between atmosphere and its lower boundary, the oceans and the land surface mosaic. Land surfaces influence climate through their albedo, and the aerodynamic roughness, the processes of the biosphere and many soil hydrological properties; all these factors vary considerably geographically. Land surfaces receive a certain portion of the solar irradiance depending on the cloudiness, atmospheric transparency and surface albedo. Short-wave solar irradiance is the source of the heat energy exchange at the earth`s surface and also regulates many biological processes, e.g. photosynthesis. Methods for estimating solar irradiance, atmospheric transparency and surface albedo were reviewed during the course of this project. The solar energy at earth`s surface is consumed for heating the soil and the lower atmosphere. Where moisture is available, evaporation is one of the key components of the surface energy balance, because the conversion of liquid water into water vapour consumes heat. The evaporation process was studied by carrying out field experiments and testing parameterisation for a cultivated agricultural surface and for lakes. The micrometeorological study over lakes was carried out as part of the international `Northern Hemisphere Climatic Processes Experiment` (NOPEX/BAHC) in Sweden. These studies have been aimed at a better understanding of the energy exchange processes of the earth`s surface-atmosphere boundary for a more accurate and realistic parameterisation of the land surface in atmospheric models

  8. Ecosystem-atmosphere exchange of carbon in a heathland under future climatic conditions

    DEFF Research Database (Denmark)

    Selsted, Merete Bang

    on ecosystem-atmosphere exchange of carbon in a heathland under future climatic conditions, shows that extended summer drought in combination with elevated temperature will ensure permanent dryer soil conditions, which decreases carbon turnover, while elevated atmospheric CO2 concentrations will increase...... carbon turnover. In the full future climate scenario, carbon turnover is over all expected to increase and the heathland to become a source of atmospheric CO2. The methodology of static chamber CO2 flux measurements and applying the technology in a FACE (free air CO2 enrichment) facility is a challenge...... on the atmospheric CO2 concentration. Photosynthesis and respiration run in parallel during measurements of net ecosystem exchange, and these measurements should therefore be performed with care to both the atmospheric CO2 concentration and the CO2 soil-atmosphere gradient....

  9. Surface renewal analysis for estimating turbulent surface fluxes

    International Nuclear Information System (INIS)

    Castellvi, F.

    2009-01-01

    A decade ago, the need for a long-term surface monitoring was recognized to better understand the soil-vegetation-atmosphere scalar exchange and interaction processes. the AmeriFlux concept emerged in the IGBP workshop (La Thuile, IT, 1995). Continuous acquisition of surface fluxes for different species such as temperature, water vapour, CO x , halocarbon, ozone, etc.,) and momentum allows determination of the influence of local (canopy) exchanges, fossil fuel emission, large-scale biotic exchange on ambient concentrations which are crucial to take decisions for protecting natural environments and water resources, to develop new perspective for modern agriculture and forest management and to better understand the global climate change. (Author)

  10. Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system

    Science.gov (United States)

    Katul, Gabriel G.; Oren, Ram; Manzoni, Stefano; Higgins, Chad; Parlange, Marc B.

    2012-09-01

    The role of evapotranspiration (ET) in the global, continental, regional, and local water cycles is reviewed. Elevated atmospheric CO2, air temperature, vapor pressure deficit (D), turbulent transport, radiative transfer, and reduced soil moisture all impact biotic and abiotic processes controlling ET that must be extrapolated to large scales. Suggesting a blueprint to achieve this link is the main compass of this review. Leaf-scale transpiration (fe) as governed by the plant biochemical demand for CO2 is first considered. When this biochemical demand is combined with mass transfer formulations, the problem remains mathematically intractable, requiring additional assumptions. A mathematical "closure" that assumes stomatal aperture is autonomously regulated so as to maximize the leaf carbon gain while minimizing water loss is proposed, which leads to analytical expressions for leaf-scale transpiration. This formulation predicts well the effects of elevated atmospheric CO2 and increases in D on fe. The case of soil moisture stress is then considered using extensive gas exchange measurements collected in drought studies. Upscaling the fe to the canopy is then discussed at multiple time scales. The impact of limited soil water availability within the rooting zone on the upscaled ET as well as some plant strategies to cope with prolonged soil moisture stress are briefly presented. Moving further up in direction and scale, the soil-plant system is then embedded within the atmospheric boundary layer, where the influence of soil moisture on rainfall is outlined. The review concludes by discussing outstanding challenges and how to tackle them by means of novel theoretical, numerical, and experimental approaches.

  11. Novel exchange mechanisms in the surface diffusion of oxides

    International Nuclear Information System (INIS)

    Harris, Duncan J; Lavrentiev, Mikhail Yu; Harding, John H; Allan, Neil L; Purton, John A

    2004-01-01

    We use temperature-accelerated dynamics to show the importance of exchange mechanisms in surface diffusion and growth of simple oxides. Such mechanisms can dominate transport processes both on terraces and steps for both homoepitaxial and heteroepitaxial growth. We suggest that the mixing inevitable when an exchange mechanism is present must be considered when attempts are made to grow sharp interfaces in oxide nanostructures. (letter to the editor)

  12. Eddy covariance measurement of the spatial heterogeneity of surface energy exchanges over Heron Reef, Great Barrier Reef, Australia

    Science.gov (United States)

    MacKellar, M.; McGowan, H. A.; Phinn, S. R.

    2011-12-01

    Coral reefs cover 2.8 to 6.0 x 105 km2 of the Earth's surface and are warm, shallow regions that are believed to contribute enhanced sensible and latent heat to the atmosphere, relative to the surrounding ocean. To predict the impact of climate variability on coral reefs and their weather and climate including cloud, winds, rainfall patterns and cyclone genesis, accurate parameterisation of air-sea energy exchanges over coral reefs is essential. This is also important for the parameterisation and validation of regional to global scale forecast models to improve prediction of tropical and sub-tropical marine and coastal weather. Eddy covariance measurements of air-sea fluxes over coral reefs are rare due to the complexities of installing instrumentation over shallow, tidal water. Consequently, measurements of radiation and turbulent flux data for coral reefs have been captured remotely (satellite data) or via single measurement sites downwind of coral reefs (e.g. terrestrial or shipboard instrumentation). The resolution of such measurements and those that have been made at single locations on reefs may not capture the spatial heterogeneity of surface-atmosphere energy exchanges due to the different geomorphic and biological zones on coral reefs. Accordingly, the heterogeneity of coral reefs with regard to substrate, benthic communities and hydrodynamic processes are not considered in the characterization of the surface radiation energy flux transfers across the water-atmosphere interface. In this paper we present a unique dataset of concurrent in situ eddy covariance measurements made on instrumented pontoons of the surface energy balance over different geomorphic zones of a coral reef (shallow reef flat, shallow and deep lagoons). Significant differences in radiation transfers and air-sea turbulent flux exchanges over the reef were highlighted, with higher Bowen ratios over the shallow reef flat. Increasing wind speed was shown to increase flux divergence between

  13. Processes of Ammonia Air-Surface Exchange in a Fertilized Zea Mays Canopy

    Science.gov (United States)

    Recent incorporation of coupled soil biogeochemical and bi-directional NH3 air-surface exchange algorithms into regional air quality models holds promise for further reducing uncertainty in estimates of NH3 emissions from fertilized soils. While this advancement represents a sig...

  14. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues.

    Science.gov (United States)

    Scholtz, M T; Bidleman, T F

    2007-05-01

    In the first part of this paper, a simple coupled dynamic soil-atmosphere model for studying the gaseous exchange of pesticide soil residues with the atmosphere is described and evaluated by comparing model results with published measurements of pesticide concentrations in air and soil. In Part II, the model is used to study the concentration profiles of pesticide residues in both undisturbed and annually tilled agricultural soils. Future trends are estimated for the measured air and soil concentrations of lindane and six highly persistent pesticides (toxaphene, p,p'-DDE, dieldrin, cis- and trans-chlordane and trans-nonachlor) over a twenty-year period due to volatilization and leaching into the deeper soil. Wet deposition and particle associated pesticide deposition (that increase soil residue concentrations) and soil erosion, degradation in the soil (other than for lindane) and run-off in precipitation are not considered in this study. Estimates of the rain deposition fluxes are reported that show that, other than for lindane, net volatilization fluxes greatly exceed rain deposition fluxes. The model shows that the persistent pesticides studied are highly immobile in soil and that loss of these highly persistent residues from the soil is by volatilization rather than leaching into the deeper soil. The soil residue levels of these six pesticides are currently sources of net volatilization to the atmosphere and will remain so for many years. The maximum rate of volatilization from the soil was simulated by setting the atmospheric background concentration to zero; these simulations show that the rates of volatilization will not be significantly increased since soil resistance rather than the atmospheric concentration controls the volatilization rates. Annual tilling of the soils increases the volatilization loss to the atmosphere. Nonetheless, the model predicts that, if only air-soil exchange is considered, more than 76% of current persistent pesticide residues

  15. Nanocapillary Atmospheric Pressure Plasma Jet: A Tool for Ultrafine Maskless Surface Modification at Atmospheric Pressure.

    Science.gov (United States)

    Motrescu, Iuliana; Nagatsu, Masaaki

    2016-05-18

    With respect to microsized surface functionalization techniques we proposed the use of a maskless, versatile, simple tool, represented by a nano- or microcapillary atmospheric pressure plasma jet for producing microsized controlled etching, chemical vapor deposition, and chemical modification patterns on polymeric surfaces. In this work we show the possibility of size-controlled surface amination, and we discuss it as a function of different processing parameters. Moreover, we prove the successful connection of labeled sugar chains on the functionalized microscale patterns, indicating the possibility to use ultrafine capillary atmospheric pressure plasma jets as versatile tools for biosensing, tissue engineering, and related biomedical applications.

  16. North America's net terrestrial CO2 exchange with the atmosphere 1990-2009

    Science.gov (United States)

    King, A. W.; Andres, R. J.; Davis, K. J.; Hafer, M.; Hayes, D. J.; Huntzinger, D. N.; de Jong, B.; Kurz, W. A.; McGuire, A. D.; Vargas, R.; Wei, Y.; West, T. O.; Woodall, C. W.

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land-atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990-2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from -890 to -280 Tg C yr-1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, "best" estimates (i.e., measures of central tendency) are -472 ± 281 Tg C yr-1 based on the mean and standard deviation of the distribution and -360 Tg C yr-1 (with an interquartile range of -496 to -337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990-2009 equal to 1720 Tg C yr-1 and assuming the estimate of -472 Tg C yr-1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was 1720:472, or nearly 4:1.

  17. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    Science.gov (United States)

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ.

  18. Contribution of thermal infrared images on the understanding of the subsurface/atmosphere exchanges on Earth.

    Science.gov (United States)

    Lopez, Teodolina; Antoine, Raphaël; Baratoux, David; Rabinowicz, Michel

    2017-04-01

    High temporal resolution of space-based thermal infrared images (METEOSAT, MODIS) and the development of field thermal cameras have permitted the development of thermal remote sensing in Earth Sciences. Thermal images are influenced by many factors such as atmosphere, solar radiation, topography and physico-chemical properties of the surface. However, considering these limitations, we have discovered that thermal images can be used in order to better understand subsurface hydrology. In order to reduce as much as possible the impact of these perturbing factors, our approach combine 1) field observations and 2) numerical modelling of surface/subsurface thermal processes. Thermal images of the Piton de la Fournaise volcano (Réunion Island), acquired by hand, show that the Formica Leo inactive scoria cone and some fractures close to the Bory-Dolomieu caldera are always warmer, inducing a thermal difference with the surrounding of at least 5°C and a Self-Potential anomaly [1, 2]. Topography cannot explain this thermal behaviour, but Piton de la Fournaise is known as highly permeable. This fact allows the development of an air convection within the whole permeable structure volcanic edifice [2]. Cold air enters the base of the volcano, and exits warmer upslope, as the air is warmed by the geothermal flow [1,2]. Then, we have decided to understand the interaction between subsurface hydrogeological flows and the humidity in the atmosphere. In the Lake Chad basin, regions on both sides of Lake Chad present a different thermal behaviour during the diurnal cycle and between seasons [3]. We propose that this thermal behaviour can only be explained by lateral variations of the surface permeability that directly impact the process of evaporation/condensation cycle. These studies bring new highlights on the understanding of the exchanges between subsurface and the atmosphere, as the presence of a very permeable media and/or variations of the surface permeability may enhance or

  19. PHYSICAL EXCHANGES AT THE AIR-SEA INTERFACE UK-SOLAS Field Measurements

    NARCIS (Netherlands)

    Brooks, Ian M.; Yelland, Margaret J.; Upstill-Goddard, Robert C.; Nightingale, Philip D.; Archer, Steve; d'Asaro, Ericic; Beale, Rachael; Beatty, Cory; Blomquist, Byron; Bloom, A. Anthony; Brooks, Barbara J.; Cluderay, John; Coles, David; Dacey, John; DeGrandpre, Michael; Dixon, Jo; Drennan, William M.; Gabriele, Joseph; Goldson, Laura; Hardman-Mountford, Nick; Hill, Martin K.; Horn, Matt; Hsueh, Ping-Chang; Huebert, Barry; de Leeuw, Gerrit; Leighton, Timothy G.; Liddicoat, Malcolm; Lingard, Justin J. N.; McNeil, Craig; McQuaid, James B.; Moat, Ben I.; Moore, Gerald; Neill, Craig; Norris, Sarah J.; O'Doherty, Simon; Pascal, Robin W.; Prytherch, John; Rebozo, Mike; Sahlee, Erik; Salter, Matt; Schuster, Ute; Skjelvan, Ingunn; Slagter, Hans; Smith, Michael H.; Smith, Paul D.; Srokosz, Meric; Stephens, John A.; Taylor, Peter K.; Telszewski, Maciej; Walsh, Roisin; Ward, Brian; Woolf, David K.; Young, Dickon; Zemmelink, Henk

    As part of the U. K. contribution to the international Surface Ocean-Lower Atmosphere Study, a series of three related projects-DOGEE, SEASAW, and HiWASE-undertook experimental studies of the processes controlling the physical exchange of gases and sea spray aerosol at the sea surface. The studies

  20. Reviews and syntheses: An empirical spatiotemporal description of the global surface-atmosphere carbon fluxes: opportunities and data limitations

    Science.gov (United States)

    Zscheischler, Jakob; Mahecha, Miguel D.; Avitabile, Valerio; Calle, Leonardo; Carvalhais, Nuno; Ciais, Philippe; Gans, Fabian; Gruber, Nicolas; Hartmann, Jens; Herold, Martin; Ichii, Kazuhito; Jung, Martin; Landschützer, Peter; Laruelle, Goulven G.; Lauerwald, Ronny; Papale, Dario; Peylin, Philippe; Poulter, Benjamin; Ray, Deepak; Regnier, Pierre; Rödenbeck, Christian; Roman-Cuesta, Rosa M.; Schwalm, Christopher; Tramontana, Gianluca; Tyukavina, Alexandra; Valentini, Riccardo; van der Werf, Guido; West, Tristram O.; Wolf, Julie E.; Reichstein, Markus

    2017-08-01

    Understanding the global carbon (C) cycle is of crucial importance to map current and future climate dynamics relative to global environmental change. A full characterization of C cycling requires detailed information on spatiotemporal patterns of surface-atmosphere fluxes. However, relevant C cycle observations are highly variable in their coverage and reporting standards. Especially problematic is the lack of integration of the carbon dioxide (CO2) exchange of the ocean, inland freshwaters and the land surface with the atmosphere. Here we adopt a data-driven approach to synthesize a wide range of observation-based spatially explicit surface-atmosphere CO2 fluxes from 2001 to 2010, to identify the state of today's observational opportunities and data limitations. The considered fluxes include net exchange of open oceans, continental shelves, estuaries, rivers, and lakes, as well as CO2 fluxes related to net ecosystem productivity, fire emissions, loss of tropical aboveground C, harvested wood and crops, as well as fossil fuel and cement emissions. Spatially explicit CO2 fluxes are obtained through geostatistical and/or remote-sensing-based upscaling, thereby minimizing biophysical or biogeochemical assumptions encoded in process-based models. We estimate a bottom-up net C exchange (NCE) between the surface (land, ocean, and coastal areas) and the atmosphere. Though we provide also global estimates, the primary goal of this study is to identify key uncertainties and observational shortcomings that need to be prioritized in the expansion of in situ observatories. Uncertainties for NCE and its components are derived using resampling. In many regions, our NCE estimates agree well with independent estimates from other sources such as process-based models and atmospheric inversions. This holds for Europe (mean ± 1 SD: 0.8 ± 0.1 PgC yr-1, positive numbers are sources to the atmosphere), Russia (0.1 ± 0.4 PgC yr-1), East Asia (1.6 ± 0.3 PgC yr-1), South Asia (0.3 ± 0

  1. Improvement of thermal exchange between feedstock and effluent in a hydrocarbon processing unit under hydrogen atmosphere by partial recycling of the product

    Energy Technology Data Exchange (ETDEWEB)

    Orieux, A.

    1990-01-19

    Heat exchange is improved in light naphta hydroisomerization and catalytic reforming by recirculation of a part of the product in the thermal exchange zone at a temperature higher than the dew point of the effluent under hydrogen atmosphere and preferentially as a temperature lower than the temperature of the recycled product.

  2. Atmospheric Pressure Plasma Processing for Polymer Adhesion: A Review

    DEFF Research Database (Denmark)

    Kusano, Yukihiro

    2014-01-01

    Atmospheric pressure plasma processing has attracted significant interests over decades due to its usefulness and a variety of applications. Adhesion improvement of polymer surfaces is among the most important applications of atmospheric pressure plasma treatment. Reflecting recent significant de...

  3. Atmospheric pressure photo ionization hydrogen/deuterium exchange mass spectrometry--a method to differentiate isomers by mass spectrometry.

    Science.gov (United States)

    Ahmed, Arif; Kim, Sunghwan

    2013-12-01

    In this report, a method for in-source hydrogen/deuterium (H/D) exchange at atmospheric pressure is reported. The method was named atmospheric pressure photo ionization hydrogen/deuterium exchange mass spectrometry (APPI HDX MS). H/D exchange was performed by mixing samples dissolved in toluene with CH3OD solvent and analyzing the mixture using atmospheric pressure photo ionization mass spectrometry (APPI-MS). The APPI HDX spectra obtained with contact times between the analyte solution and methanol-OD (CH3OD) of atmospheric pressure. H/D exchange can be performed in any laboratory with a mass spectrometer and a commercial APPI source. Using this method, multiple H/D exchanges of aromatic hydrogen and/or H/D exchange of active hydrogen were observed. These results demonstrated that H/D exchange can be used to distinguish between isomers containing primary, secondary, and tertiary amines, as well as pyridine and pyrrole functional groups.

  4. Turbulent transport in the atmospheric surface layer

    Energy Technology Data Exchange (ETDEWEB)

    Tagesson, Torbern [Dept. of Physical Geography and Ecosystem Science, Lund Univ., Lund (Sweden)

    2012-04-15

    In the modelling of transport and accumulation of the radioactive isotope carbon-14 (C-14) in the case of a potential release from a future repository of radioactive waste, it is important to describe the transport of the isotope in the atmosphere. This report aims to describe the turbulent transport within the lower part of the atmosphere; the inertial surface layer and the roughness sublayer. Transport in the inertial surface layer is dependent on several factors, whereof some can be neglected under certain circumstances. Under steady state conditions, fully developed turbulent conditions, in flat and horizontal homogeneous areas, it is possible to apply an eddy diffusivity approach for estimating vertical transport of C. The eddy diffusivity model assumes that there is proportionality between the vertical gradient and the transport of C. The eddy diffusivity is depending on the atmospheric turbulence, which is affected by the interaction between mean wind and friction of the ground surface and of the sensible heat flux in the atmosphere. In this report, it is described how eddy diffusivity of the inertial surface layer can be estimated from 3-d wind measurements and measurements of sensible heat fluxes. It is also described how to estimate the eddy diffusivity in the inertial surface layer from profile measurements of temperature and wind speed. Close to the canopy, wind and C profiles are influenced by effects of the surface roughness; this section of the atmosphere is called the roughness sublayer. Its height is up to {approx}3 times the height of the plant canopy. When the mean wind interacts with the canopy, turbulence is not only produced by shear stress and buoyancy, it is additionally created by wakes, which are formed behind the plants. Turbulence is higher than it would be over a flat surface, and the turbulent transport is hereby more efficient. Above the plant canopy, but still within the roughness sublayer, a function that compensates for the effect

  5. Turbulent transport in the atmospheric surface layer

    International Nuclear Information System (INIS)

    Tagesson, Torbern

    2012-04-01

    In the modelling of transport and accumulation of the radioactive isotope carbon-14 (C-14) in the case of a potential release from a future repository of radioactive waste, it is important to describe the transport of the isotope in the atmosphere. This report aims to describe the turbulent transport within the lower part of the atmosphere; the inertial surface layer and the roughness sublayer. Transport in the inertial surface layer is dependent on several factors, whereof some can be neglected under certain circumstances. Under steady state conditions, fully developed turbulent conditions, in flat and horizontal homogeneous areas, it is possible to apply an eddy diffusivity approach for estimating vertical transport of C. The eddy diffusivity model assumes that there is proportionality between the vertical gradient and the transport of C. The eddy diffusivity is depending on the atmospheric turbulence, which is affected by the interaction between mean wind and friction of the ground surface and of the sensible heat flux in the atmosphere. In this report, it is described how eddy diffusivity of the inertial surface layer can be estimated from 3-d wind measurements and measurements of sensible heat fluxes. It is also described how to estimate the eddy diffusivity in the inertial surface layer from profile measurements of temperature and wind speed. Close to the canopy, wind and C profiles are influenced by effects of the surface roughness; this section of the atmosphere is called the roughness sublayer. Its height is up to ∼3 times the height of the plant canopy. When the mean wind interacts with the canopy, turbulence is not only produced by shear stress and buoyancy, it is additionally created by wakes, which are formed behind the plants. Turbulence is higher than it would be over a flat surface, and the turbulent transport is hereby more efficient. Above the plant canopy, but still within the roughness sublayer, a function that compensates for the effect of

  6. Exchange of carbonyl sulfide (OCS) between soils and atmosphere under various CO2 concentrations

    Science.gov (United States)

    Bunk, Rüdiger; Behrendt, Thomas; Yi, Zhigang; Andreae, Meinrat O.; Kesselmeier, Jürgen

    2017-06-01

    A new continuous integrated cavity output spectroscopy analyzer and an automated soil chamber system were used to investigate the exchange processes of carbonyl sulfide (OCS) between soils and the atmosphere under laboratory conditions. The exchange patterns of OCS between soils and the atmosphere were found to be highly dependent on soil moisture and ambient CO2 concentration. With increasing soil moisture, OCS exchange ranged from emission under dry conditions to an uptake within an optimum moisture range, followed again by emission at high soil moisture. Elevated CO2 was found to have a significant impact on the exchange rate and direction as tested with several soils. There is a clear tendency toward a release of OCS at higher CO2 levels (up to 7600 ppm), which are typical for the upper few centimeters within soils. At high soil moisture, the release of OCS increased sharply. Measurements after chloroform vapor application show that there is a biotic component to the observed OCS exchange. Furthermore, soil treatment with the fungi inhibitor nystatin showed that fungi might be the dominant OCS consumers in the soils we examined. We discuss the influence of soil moisture and elevated CO2 on the OCS exchange as a change in the activity of microbial communities. Physical factors such as diffusivity that are governed by soil moisture also play a role. Comparing KM values of the enzymes to projected soil water CO2 concentrations showed that competitive inhibition is unlikely for carbonic anhydrase and PEPCO but might occur for RubisCO at higher CO2 concentrations.

  7. Simulating carbon exchange using a regional atmospheric model coupled to an advanced land-surface model

    Directory of Open Access Journals (Sweden)

    H. W. Ter Maat

    2010-08-01

    Full Text Available This paper is a case study to investigate what the main controlling factors are that determine atmospheric carbon dioxide content for a region in the centre of The Netherlands. We use the Regional Atmospheric Modelling System (RAMS, coupled with a land surface scheme simulating carbon, heat and momentum fluxes (SWAPS-C, and including also submodels for urban and marine fluxes, which in principle should include the dominant mechanisms and should be able to capture the relevant dynamics of the system. To validate the model, observations are used that were taken during an intensive observational campaign in central Netherlands in summer 2002. These include flux-tower observations and aircraft observations of vertical profiles and spatial fluxes of various variables.

    The simulations performed with the coupled regional model (RAMS-SWAPS-C are in good qualitative agreement with the observations. The station validation of the model demonstrates that the incoming shortwave radiation and surface fluxes of water and CO2 are well simulated. The comparison against aircraft data shows that the regional meteorology (i.e. wind, temperature is captured well by the model. Comparing spatially explicitly simulated fluxes with aircraft observed fluxes we conclude that in general latent heat fluxes are underestimated by the model compared to the observations but that the latter exhibit large variability within all flights. Sensitivity experiments demonstrate the relevance of the urban emissions of carbon dioxide for the carbon balance in this particular region. The same tests also show the relation between uncertainties in surface fluxes and those in atmospheric concentrations.

  8. Atmospheric deposition of methanol over the Atlantic Ocean

    Science.gov (United States)

    Yang, Mingxi; Nightingale, Philip D.; Beale, Rachael; Liss, Peter S.; Blomquist, Byron; Fairall, Christopher

    2013-01-01

    In the troposphere, methanol (CH3OH) is present ubiquitously and second in abundance among organic gases after methane. In the surface ocean, methanol represents a supply of energy and carbon for marine microbes. Here we report direct measurements of air–sea methanol transfer along a ∼10,000-km north–south transect of the Atlantic. The flux of methanol was consistently from the atmosphere to the ocean. Constrained by the aerodynamic limit and measured rate of air–sea sensible heat exchange, methanol transfer resembles a one-way depositional process, which suggests dissolved methanol concentrations near the water surface that are lower than what were measured at ∼5 m depth, for reasons currently unknown. We estimate the global oceanic uptake of methanol and examine the lifetimes of this compound in the lower atmosphere and upper ocean with respect to gas exchange. We also constrain the molecular diffusional resistance above the ocean surface—an important term for improving air–sea gas exchange models. PMID:24277830

  9. How important is getting the land surface energy exchange correct in WRF for wind energy forecasting?

    Science.gov (United States)

    Wharton, S.; Simpson, M.; Osuna, J. L.; Newman, J. F.; Biraud, S.

    2013-12-01

    Wind power forecasting is plagued with difficulties in accurately predicting the occurrence and intensity of atmospheric conditions at the heights spanned by industrial-scale turbines (~ 40 to 200 m above ground level). Better simulation of the relevant physics would enable operational practices such as integration of large fractions of wind power into power grids, scheduling maintenance on wind energy facilities, and deciding design criteria based on complex loads for next-generation turbines and siting. Accurately simulating the surface energy processes in numerical models may be critically important for wind energy forecasting as energy exchange at the surface strongly drives atmospheric mixing (i.e., stability) in the lower layers of the planetary boundary layer (PBL), which in turn largely determines wind shear and turbulence at heights found in the turbine rotor-disk. We hypothesize that simulating accurate a surface-atmosphere energy coupling should lead to more accurate predictions of wind speed and turbulence at heights within the turbine rotor-disk. Here, we tested 10 different land surface model configurations in the Weather Research and Forecasting (WRF) model including Noah, Noah-MP, SSiB, Pleim-Xiu, RUC, and others to evaluate (1) the accuracy of simulated surface energy fluxes to flux tower measurements, (2) the accuracy of forecasted wind speeds to observations at rotor-disk heights, and (3) the sensitivity of forecasting hub-height rotor disk wind speed to the choice of land surface model. WRF was run for four, two-week periods covering both summer and winter periods over the Southern Great Plains ARM site in Oklahoma. Continuous measurements of surface energy fluxes and lidar-based wind speed, direction and turbulence were also available. The SGP ARM site provided an ideal location for this evaluation as it centrally located in the wind-rich Great Plains and multi-MW wind farms are rapidly expanding in the area. We found significant differences in

  10. Land–Atmosphere Exchange of Water and Heat in the Arid Mountainous Grasslands of Central Asia during the Growing Season

    Directory of Open Access Journals (Sweden)

    Xiaotao Huang

    2017-09-01

    Full Text Available Arid grassland ecosystems are widely distributed across Central Asia. However, there is a lack of research and observations of the land–atmosphere exchange of water and heat in the arid grasslands in this region, particularly over complex surfaces. In this study, systematic observations were conducted from 2013 to 2015 using an HL20 Bowen ratio and TDR300 and WatchDog1400 systems to determine the characteristics of these processes during the growing season (April–October of the arid mountainous grasslands of this region. (1 The latent heat flux (Le was lower than the sensible heat flux (He overall, and a small transient decrease in Le was observed before its daytime maximum; daily comparative variations in both fluxes were closely related to vegetation growth. (2 Evapotranspiration (ET showed substantial variation across different years, seasons and months, and monthly variations in ET were closely related to vegetation growth. Water condensation (Q was low and relatively stable. Relatively high levels of soil water were measured in spring followed by a decreasing trend. The land–atmosphere exchange of water and heat during the growing season in this region was closely associated with phenology, available precipitation and terrain. This study provides data support for the scientific management of arid mountainous grasslands.

  11. O3 and NOx Exchange

    NARCIS (Netherlands)

    Loubet, B.; Castell, J.F.; Laville, P.; Personne, E.; Tuzet, A.; Ammann, C.; Emberson, L.; Ganzeveld, L.; Kowalski, A.S.; Merbold, L.; Stella, P.; Tuovinen, J.P.

    2015-01-01

    This discussion was based on the background document “Review on modelling atmosphere-biosphere exchange of Ozone and Nitrogen oxides”, which reviews the processes contributing to biosphere-atmosphere exchange of O3 and NOx, including stomatal and non-stomatal exchange of O3 and NO, NO2.

  12. A terrestrial ecosystem model (SOLVEG) coupled with atmospheric gas and aerosol exchange processes

    International Nuclear Information System (INIS)

    Katata, Genki; Ota, Masakazu

    2017-01-01

    In order to predict the impact of atmospheric pollutants (gases and aerosols) to the terrestrial ecosystem, new schemes for calculating the processes of dry deposition of gases and aerosols, and water and carbon cycles in terrestrial ecosystems were implemented in the one-dimensional atmosphere-SOiL-VEGetation model, SOLVEG. We made performance tests at various vegetation areas to validate the newly developed schemes. In this report, the detail in each modeled process is described with an instruction how to use the modified SOLVEG. The framework of 'terrestrial ecosystem model' was developed for investigation of a change in water, energy, and carbon cycles associated with global warming and air pollution and its impact on terrestrial ecosystems. (author)

  13. On heat and moisture exchanges between the sea surface and the atmosphere during the medalpex

    International Nuclear Information System (INIS)

    Colacino, M.; Purini, R.

    1988-01-01

    Data collected by a buoy, moored in the Ligurian Sea about 27 nautical miles off the coast during the period 1 March-31 May, 1982, are analysed. The buoy was equipped by the Institute for Naval Automation (IAN) of the Italian National Research Council (CNR) during the Mediterrenean Alpine Experiment (Medalpex), join program of the Alpine Experiment (Alpex). Exchanges of heat and mass across the air-sea interface are computed from the collected data and comparisons with existing values are made. The resulting agreement confirms the strong interaction between the sea and the atmosphere in some peculiar situation, and lends weight to the oceanographic hypotesis for the statistical occurrence of deeping of orographic cyclones in the Liguro-Provencal basin

  14. A Study on Decontamination Process Using Atmospheric Pressure Plasma

    International Nuclear Information System (INIS)

    Kim, Yong Soo; Jeon, Sang Hwan; Jin, Dong Sik; Park, Dong Min

    2010-05-01

    Radioactive decontamination process using atmospheric pressure plasma which can be operated parallel with low vacuum cold plasma processing is studied. Two types of cold plasma torches were designed and manufactured. One of them is the cylindrical type applicable to the treatment of three-dimensional surfaces. The other is the rectangular type for the treatment of flat and large surface areas. Ar palsam was unstable but using He as a carrier gas, discharge condition was improved. Besides filtering module using pre, medium, charcoal, and HEPA filter was designed and manufactured. More intensive study for developing filtering system will be followed. Atmospheric pressure plasma decontamination process can be used to the equipment and facility wall decontamination

  15. Exchange of moisture between atmosphere and ground regarding tritium transfer

    International Nuclear Information System (INIS)

    Bunnenberg, C.

    1980-09-01

    Two measuring equipment have been developed in the framework of this study which fulfill important conditions to avoid microclimatic interferences during measurement by using site-specific ground samples and embedding these in the ground surface. The beta-absorption lysimeter allows the detection of a minimum deposit height of 0.001 mm in a 1 mm sample layer. The conductivity moisture probe is to measure the moisture diffusion within the first 80 mm of the upper ground with a vertical spacial resolution of 2 mm. It is possible to measure a minimum water content increase of 0.02 wt% per 2 mm ground layer using this probe. The influences of single microclimatic parameter on condensation and evaporation were investigated and a transport equation was developed. Investigations in the Negev proved the application ability of the measuring equipment. The application of the transport equation showed very good agreement with the measured values. When the ground surface starts to cool in the afternoon, there is a countercurrent moisture transport from the atmosphere and the deeper ground layers which lead to a higher water content in the upper ground layer. At about 50 mm depth there is an overlapping layer of the two moisture flows which remains almost constant over the 24 h cycle. This exchange zone of atmospheric humidity and ground water must be paid great attention with regard to HTO transfer. (orig./HP) [de

  16. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker

    NARCIS (Netherlands)

    Peters, W.; Jacobson, A.R.; Sweeney, C.; Andrews, A.E.; Conway, T.J.; Masarie, K.; Miller, J.B.; Bruhwiler, L.M.P.; Petron, G.; Hirsch, A.I.; Worthy, D.E.J.; Werf, van der G.R.; Randerson, J.T.; Wennberg, P.O.; Krol, M.C.; Tans, P.P.

    2007-01-01

    We present an estimate of net CO2 exchange between the terrestrial biosphere and the atmosphere across North America for every week in the period 2000 through 2005. This estimate is derived from a set of 28,000 CO2 mole fraction observations in the global atmosphere that are fed into a

  17. Zhamanshin astrobleme provides evidence for carbonaceous chondrite and post-impact exchange between ejecta and Earth's atmosphere.

    Science.gov (United States)

    Magna, Tomáš; Žák, Karel; Pack, Andreas; Moynier, Frédéric; Mougel, Bérengère; Peters, Stefan; Skála, Roman; Jonášová, Šárka; Mizera, Jiří; Řanda, Zdeněk

    2017-08-09

    Chemical fingerprints of impacts are usually compromised by extreme conditions in the impact plume, and the contribution of projectile matter to impactites does not often exceed a fraction of per cent. Here we use chromium and oxygen isotopes to identify the impactor and impact-plume processes for Zhamanshin astrobleme, Kazakhstan. ε 54 Cr values up to 1.54 in irghizites, part of the fallback ejecta, represent the 54 Cr-rich extremity of the Solar System range and suggest a CI-like chondrite impactor. Δ 17 O values as low as -0.22‰ in irghizites, however, are incompatible with a CI-like impactor. We suggest that the observed 17 O depletion in irghizites relative to the terrestrial range is caused by partial isotope exchange with atmospheric oxygen (Δ 17 O = -0.47‰) following material ejection. In contrast, combined Δ 17 O-ε 54 Cr data for central European tektites (distal ejecta) fall into the terrestrial range and neither impactor fingerprint nor oxygen isotope exchange with the atmosphere are indicated.Identifying the original impactor from craters remains challenging. Here, the authors use chromium and oxygen isotopes to indicate that the Zhamanshin astrobleme impactor was a carbonaceous chrondrite by demonstrating that depleted 17O values are due to exchange with atmospheric oxygen.

  18. Challenges in quantifying biosphere-atmosphere exchange of nitrogen species

    DEFF Research Database (Denmark)

    Sutton, M.A.; Nemitz, E.; Erisman, J.W.

    2007-01-01

    Recent research in nitrogen exchange with the atmosphere has separated research communities according to N form. The integrated perspective needed to quantify the net effect of N on greenhouse-gas balance is being addressed by the NitroEurope Integrated Project (NEU). Recent advances have depende...

  19. Thermodynamic analysis on theoretical models of cycle combined heat exchange process: The reversible heat exchange process

    International Nuclear Information System (INIS)

    Zhang, Chenghu; Li, Yaping

    2017-01-01

    Concept of reversible heat exchange process as the theoretical model of the cycle combined heat exchanger could be useful to determine thermodynamics characteristics and the limitation values in the isolated heat exchange system. In this study, the classification of the reversible heat exchange processes is presented, and with the numerical method, medium temperature variation tendency and the useful work production and usage in the whole process are investigated by the construction and solution of the mathematical descriptions. Various values of medium inlet temperatures and heat capacity ratio are considered to analyze the effects of process parameters on the outlet temperature lift/drop. The maximum process work transferred from the Carnot cycle region to the reverse cycle region is also researched. Moreover, influence of the separating point between different sub-processes on temperature variation profile and the process work production are analyzed. In addition, the heat-exchange-enhancement-factor is defined to study the enhancement effect of the application of the idealized process in the isolated heat exchange system, and the variation degree of this factor with process parameters change is obtained. The research results of this paper can be a theoretical guidance to construct the cycle combined heat exchange process in the practical system. - Highlights: • A theoretical model of Cycle combined heat exchange process is proposed. • The classification of reversible heat exchange process are presented. • Effects of Inlet temperatures and heat capacity ratio on process are analyzed. • Process work transmission through the whole process is studied. • Heat-exchange-enhancement-factor can be a criteria to express the application effect of the idealized process.

  20. Modelling atmospheric transport of α-hexachlorocyclohexane in the Northern Hemispherewith a 3-D dynamical model: DEHM-POP

    Directory of Open Access Journals (Sweden)

    K. M. Hansen

    2004-01-01

    Full Text Available The Danish Eulerian Hemispheric Model (DEHM is a 3-D dynamical atmospheric transport model originally developed to describe the atmospheric transport of sulphur into the Arctic. A new version of the model, DEHM-POP, developed to study the atmospheric transport and environmental fate of persistent organic pollutants (POPs is presented. During environmental cycling, POPs can be deposited and re-emitted several times before reaching a final destination. A description of the exchange processes between the land/ocean surfaces and the atmosphere is included in the model to account for this multi-hop transport. The α-isomer of the pesticide hexachlorocyclohexane (α-HCH is used as tracer in the model development. The structure of the model and processes included are described in detail. The results from a model simulation showing the atmospheric transport for the years 1991 to 1998 are presented and evaluated against measurements. The annual averaged atmospheric concentration of α-HCH for the 1990s is well described by the model; however, the shorter-term average concentration for most of the stations is not well captured. This indicates that the present simple surface description needs to be refined to get a better description of the air-surface exchange processes of POPs.

  1. Modelling atmospheric transport of α-hexachlorocyclohexane in the Northern Hemispherewith a 3-D dynamical model: DEHM-POP

    Science.gov (United States)

    Hansen, K. M.; Christensen, J. H.; Brandt, J.; Frohn, L. M.; Geels, C.

    2004-07-01

    The Danish Eulerian Hemispheric Model (DEHM) is a 3-D dynamical atmospheric transport model originally developed to describe the atmospheric transport of sulphur into the Arctic. A new version of the model, DEHM-POP, developed to study the atmospheric transport and environmental fate of persistent organic pollutants (POPs) is presented. During environmental cycling, POPs can be deposited and re-emitted several times before reaching a final destination. A description of the exchange processes between the land/ocean surfaces and the atmosphere is included in the model to account for this multi-hop transport. The α-isomer of the pesticide hexachlorocyclohexane (α-HCH) is used as tracer in the model development. The structure of the model and processes included are described in detail. The results from a model simulation showing the atmospheric transport for the years 1991 to 1998 are presented and evaluated against measurements. The annual averaged atmospheric concentration of α-HCH for the 1990s is well described by the model; however, the shorter-term average concentration for most of the stations is not well captured. This indicates that the present simple surface description needs to be refined to get a better description of the air-surface exchange processes of POPs.

  2. Effects on the atmosphere of a major nuclear exchange

    International Nuclear Information System (INIS)

    1985-01-01

    The Committee on the Atmospheric Effects of Nuclear Explosions addressed the following charge: (1) determine the manner in which the atmosphere of the earth would be modified by a major exchange of nuclear weapons and, insofar as the current state of knowledge and understanding permits, give a quantitative description of the more important of the changes; and (2) recommend research and exploratory work appropriate to a better understanding of the question. Recent calculations by different investigators suggest that the climatic effects from a major nuclear exchange could be large in scale. Although there are enormous uncertainties involved in the calculations, the committee believes that long-term climatic effects with severe implications for the biosphere could occur, and these effects should be included in any analysis of the consequences of nuclear war. The estimates are necessarily rough and can only be used as a general indication of the seriousness of what might occur

  3. Production of activated carbon by using pyrolysis process in an ammonia atmosphere

    Science.gov (United States)

    Indayaningsih, N.; Destyorini, F.; Purawiardi, R. I.; Insiyanda, D. R.; Widodo, H.

    2017-04-01

    Activated carbon is materials that have wide applications, including supercapacitor materials, absorbent in chemical industry, and absorbent material in the chemical industry. This study has carried out for the manufacturing of activated carbon from inexpensive materials through efficient processes. Carbon material was made from coconut fibers through pyrolysis process at temperature of 650, 700, 750 and 800°C. Aim of this study was to obtain carbon material that has a large surface area. Pyrolysis process is carried out in an inert atmosphere (N2 gas) at a temperature of 450°C for 30 minutes, followed by pyrolysis process in an ammonia atmosphere at 800°C for 2 hours. The pyrolysis results showed that the etching process in ammonia is occurred; as it obtained some greater surface area when compared with the pyrolisis process in an atmosphere by inert gas only. The resulted activated carbon also showed to have good properties in surface area and total pore volume.

  4. Full Coupling Between the Atmosphere, Surface, and Subsurface for Integrated Hydrologic Simulation

    Science.gov (United States)

    Davison, Jason Hamilton; Hwang, Hyoun-Tae; Sudicky, Edward A.; Mallia, Derek V.; Lin, John C.

    2018-01-01

    An ever increasing community of earth system modelers is incorporating new physical processes into numerical models. This trend is facilitated by advancements in computational resources, improvements in simulation skill, and the desire to build numerical simulators that represent the water cycle with greater fidelity. In this quest to develop a state-of-the-art water cycle model, we coupled HydroGeoSphere (HGS), a 3-D control-volume finite element surface and variably saturated subsurface flow model that includes evapotranspiration processes, to the Weather Research and Forecasting (WRF) Model, a 3-D finite difference nonhydrostatic mesoscale atmospheric model. The two-way coupled model, referred to as HGS-WRF, exchanges the actual evapotranspiration fluxes and soil saturations calculated by HGS to WRF; conversely, the potential evapotranspiration and precipitation fluxes from WRF are passed to HGS. The flexible HGS-WRF coupling method allows for unique meshes used by each model, while maintaining mass and energy conservation between the domains. Furthermore, the HGS-WRF coupling implements a subtime stepping algorithm to minimize computational expense. As a demonstration of HGS-WRF's capabilities, we applied it to the California Basin and found a strong connection between the depth to the groundwater table and the latent heat fluxes across the land surface.

  5. Radiative heat exchange between surfaces

    International Nuclear Information System (INIS)

    Yener, Y.; Yuncu, H.

    1987-01-01

    The geometrical features of radiative heat exchange between surfaces are discussed first by developing various radiation shape factor relations. The governing equations for enclosures with diffusely emitting and diffusely reflecting surfaces, as well as the equations for enclosures with gray surfaces having specular component of reflectivity are introduced next. Finally, a simplified model for enclosures with isothermal surfaces under the assumption of uniform radiosity over the surfaces is discussed, and various working relations for different conditions are presented

  6. Simulation of the Onset of the Southeast Asian Monsoon during 1997 and 1998: The Impact of Surface Processes

    Science.gov (United States)

    Wang, Yansen; Tao, W.-K.; Lau, K.-M.; Wetzel, Peter J.

    2004-01-01

    The onset of the southeast Asian monsoon during 1997 and 1998 was simulated by coupling a mesoscale atmospheric model (MM5) and a detailed, land surface model, PLACE (the Parameterization for Land-Atmosphere-Cloud Exchange). The rainfall results from the simulations were compared with observed satellite data from the TRMM (Tropical Rainfall Measuring Mission) TMI (TRMM Microwave Imager) and GPCP (Global Precipitation Climatology Project). The control simulation with the PLACE land surface model and variable sea surface temperature captured the basic signatures of the monsoon onset processes and associated rainfall statistics. Sensitivity tests indicated that simulations were sigmficantly improved by including the PLACE land surface model. The mechanism by which the land surface processes affect the moisture transport and the convection during the onset of the southeast Asian monsoon were analyzed. The results indicated that land surface processes played an important role in modifying the low-level wind field over two major branches of the circulation: the southwest low-level flow over the Indo-china peninsula and the northern, cold frontal intrusion from southern China. The surface sensible and latent heat fluxes modified the low-level temperature distribution and gradient, and therefore the low-level wind due to the thermal wind effect. The more realistic forcing of the sensible and latent heat fluxes from the detailed, land surface model improved the low-level wind simulation apd associated moisture transport and convection.

  7. Simulating carbon exchange using a regional atmospheric model coupled to an advanced land-surface model

    International Nuclear Information System (INIS)

    Ter Maat, H.W.; Hutjes, R.W.A.; Miglietta, F.; Gioli, B.; Bosveld, F.C.; Vermeulen, A.T.; Fritsch, H.

    2010-08-01

    This paper is a case study to investigate what the main controlling factors are that determine atmospheric carbon dioxide content for a region in the centre of The Netherlands. We use the Regional Atmospheric Modelling System (RAMS), coupled with a land surface scheme simulating carbon, heat and momentum fluxes (SWAPS-C), and including also submodels for urban and marine fluxes, which in principle should include the dominant mechanisms and should be able to capture the relevant dynamics of the system. To validate the model, observations are used that were taken during an intensive observational campaign in central Netherlands in summer 2002. These include flux-tower observations and aircraft observations of vertical profiles and spatial fluxes of various variables.

  8. Symmetric Atom–Atom and Ion–Atom Processes in Stellar Atmospheres

    Directory of Open Access Journals (Sweden)

    Vladimir A. Srećković

    2017-12-01

    Full Text Available We present the results of the influence of two groups of collisional processes (atom–atom and ion–atom on the optical and kinetic properties of weakly ionized stellar atmospheres layers. The first type includes radiative processes of the photodissociation/association and radiative charge exchange, the second one the chemi-ionisation/recombination processes with participation of only hydrogen and helium atoms and ions. The quantitative estimation of the rate coefficients of the mentioned processes were made. The effect of the radiative processes is estimated by comparing their intensities with those of the known concurrent processes in application to the solar photosphere and to the photospheres of DB white dwarfs. The investigated chemi-ionisation/recombination processes are considered from the viewpoint of their influence on the populations of the excited states of the hydrogen atom (the Sun and an M-type red dwarf and helium atom (DB white dwarfs. The effect of these processes on the populations of the excited states of the hydrogen atom has been studied using the general stellar atmosphere code, which generates the model. The presented results demonstrate the undoubted influence of the considered radiative and chemi- ionisation/recombination processes on the optical properties and on the kinetics of the weakly ionized layers in stellar atmospheres.

  9. Processes analysis of ocean-atmosphere interaction in Colombian marine areas

    International Nuclear Information System (INIS)

    Melo, Jeimmy; Pabon Caicedo, Jose Daniel

    2002-01-01

    This document shows the importance to understanding the processes of interaction ocean-atmosphere by means of the knowledge of the behavior of the physical and biological processes in the Colombian marine areas. For such aim, it was studied the production of the pigment concentration (chlorophyll-a) by means the state of the sea surface temperature and the atmospheric dynamics for year 2001

  10. Comparison of energy fluxes at the land surface-atmosphere interface in an Alpine valley as simulated with different models

    Directory of Open Access Journals (Sweden)

    G. Grossi

    2003-01-01

    Full Text Available Within the framework of a research project coupling meteorological and hydrological models in mountainous areas a distributed Snow-Soil-Vegetation-Atmosphere Transfer model was developed and applied to simulate the energy fluxes at the land surfaceatmosphere interface in an Alpine valley (Toce Valley - North Italy during selected flood events in the last decade. Energy fluxes simulated by the distributed energy transfer model were compared with those simulated by a limited area meteorological model for the event of June 1997 and the differences in the spatial and temporal distribution. The Snow/Soil-Vegetation-Atmosphere Transfer model was also applied to simulate the energy fluxes at the land surface-atmosphere interface for a single cell, assumed to be representative of the Siberia site (Toce Valley, where a micro-meteorological station was installed and operated for 2.5 months in autumn 1999. The Siberia site is very close to the Nosere site, where a standard meteorological station was measuring precipitation, air temperature and humidity, global and net radiation and wind speed during the same special observing period. Data recorded by the standard meteorological station were used to force the energy transfer model and simulate the point energy fluxes at the Siberia site, while turbulent fluxes observed at the Siberia site were used to derive the latent heat flux from the energy balance equation. Finally, the hourly evapotranspiration flux computed by this procedure was compared to the evapotranspiration flux simulated by the energy transfer model. Keywords: energy exchange processes, land surface-atmosphere interactions, turbulent fluxes

  11. Surface defect chemistry and oxygen exchange kinetics in La2-xCaxNiO4+δ

    Science.gov (United States)

    Tropin, E. S.; Ananyev, M. V.; Farlenkov, A. S.; Khodimchuk, A. V.; Berenov, A. V.; Fetisov, A. V.; Eremin, V. A.; Kolchugin, A. A.

    2018-06-01

    Surface oxygen exchange kinetics and diffusion in La2-xCaxNiO4+δ (x = 0; 0.1; 0.3) have been studied by the isotope exchange method with gas phase equilibration in the temperature range of 600-800 °C and oxygen pressure range 0.13-2.5 kPa. Despite an enhanced electrical conductivity of La2-xCaxNiO4+δ theirs oxygen surface exchange (k*) and oxygen tracer diffusion (D*) coefficients were significantly lower in comparison with La2NiO4+δ. The rates of the elementary stages of oxygen exchange have been calculated. Upon Ca doping the change of the rate-determining stage was observed. The surface of the oxides was found to be inhomogeneous towards oxygen exchange process according to the recently developed model. The reasons of such inhomogeneity are discussed as well as Ca influence on the surface defect chemistry and oxygen surface exchange and diffusivity.

  12. Steam condensation process in a power production cycle and heat exchanger for it

    International Nuclear Information System (INIS)

    Tondeur, Gerard; Andro, Jean; Marjollet, Jacques; Pouderoux, Pierre.

    1982-01-01

    Steam condensation process in a power production cycle by expansion in turbines, characterized by the fact that this condensation is performed by the vaporization of a coolant with a vaporization temperature at atmospheric pressure lower than that of water, and that the vaporized coolant fluid is expanded in a turbine and then condensed by heat exchange with cold water being heated, while the liquefied coolant is recompressed and used for heat exchange with the steam to be condensed [fr

  13. Global Validation of MODIS Atmospheric Profile-Derived Near-Surface Air Temperature and Dew Point Estimates

    Science.gov (United States)

    Famiglietti, C.; Fisher, J.; Halverson, G. H.

    2017-12-01

    This study validates a method of remote sensing near-surface meteorology that vertically interpolates MODIS atmospheric profiles to surface pressure level. The extraction of air temperature and dew point observations at a two-meter reference height from 2001 to 2014 yields global moderate- to fine-resolution near-surface temperature distributions that are compared to geographically and temporally corresponding measurements from 114 ground meteorological stations distributed worldwide. This analysis is the first robust, large-scale validation of the MODIS-derived near-surface air temperature and dew point estimates, both of which serve as key inputs in models of energy, water, and carbon exchange between the land surface and the atmosphere. Results show strong linear correlations between remotely sensed and in-situ near-surface air temperature measurements (R2 = 0.89), as well as between dew point observations (R2 = 0.77). Performance is relatively uniform across climate zones. The extension of mean climate-wise percent errors to the entire remote sensing dataset allows for the determination of MODIS air temperature and dew point uncertainties on a global scale.

  14. A Method of Retrieving BRDF from Surface-Reflected Radiance Using Decoupling of Atmospheric Radiative Transfer and Surface Reflection

    Directory of Open Access Journals (Sweden)

    Alexander Radkevich

    2018-04-01

    Full Text Available Bi-directional reflection distribution function (BRDF defines anisotropy of the surface reflection. It is required to specify the boundary condition for radiative transfer (RT modeling used in aerosol retrievals, cloud retrievals, atmospheric modeling, and other applications. Ground based measurements of reflected radiance draw increasing attention as a source of information about anisotropy of surface reflection. Derivation of BRDF from surface radiance requires atmospheric correction. This study develops a new method of retrieving BRDF on its whole domain, making it immediately suitable for further atmospheric RT modeling applications. The method is based on the integral equation relating surface-reflected radiance, BRDF, and solutions of two auxiliary atmosphere-only RT problems. The method requires kernel-based BRDF. The weights of the kernels are obtained with a quickly converging iterative procedure. RT modeling has to be done only one time before the start of iterative process.

  15. Atmospheric deposition and air-sea gas exchange fluxes of DDT and HCH in the Yangtze River Estuary, East China Sea

    Science.gov (United States)

    Li, Zhongxia; Lin, Tian; Li, Yuanyuan; Jiang, Yuqing; Guo, Zhigang

    2017-07-01

    The Yangtze River Estuary (YRE) is strongly influenced by the Yangtze River and lies on the pathway of the East Asian Monsoon. This study examined atmospheric deposition and air-sea gas exchange fluxes of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) to determine whether the YRE is a sink or source of selected pesticides at the air-water interface under the influences of river input and atmospheric transport. The air-sea gas exchange of DDT was characterized by net volatilization with a marked difference in its fluxes between summer (140 ng/m2/d) and the other three seasons (12 ng/m2/d), possibly due to the high surface seawater temperatures and larger riverine input in summer. However, there was no obvious seasonal variation in the atmospheric HCH deposition, and the air-sea gas exchange reached equilibrium because of low HCH levels in the air and seawater after the long-term banning of HCH and the degradation. The gas exchange flux of HCH was comparable to the dry and wet deposition fluxes at the air-water interface. This suggests that the influences from the Yangtze River input and East Asian continental outflow on the fate of HCH in the YRE were limited. The gas exchange flux of DDT was about fivefold higher than the total dry and wet deposition fluxes. DDT residues in agricultural soil transported by enhanced riverine runoff were responsible for sustaining such a high net volatilization in summer. Moreover, our results indicated that there were fresh sources of DDT from the local environment to sustain net volatilization throughout the year.

  16. Nanomaterials-Enhanced Electrically Switched Ion Exchange Process for Water Treatment

    International Nuclear Information System (INIS)

    Lin, Yuehe; Choi, Daiwon; Wang, Jun; Bontha, Jagannadha R.

    2009-01-01

    The objective of our work is to develop an electrically switched ion exchange (ESIX) system based on conducting polymer/carbon nanotube (CNT) nanocomposites as a new and cost-effective approach for removal of radioactive cesium, chromate, and perchlorate from contaminated groundwater. The ESIX technology combines ion exchange and electrochemistry to provide a selective, reversible method for the removal of target species from wastewater. In this technique, an electroactive ion exchange layer is deposited on a conducting substrate, and ion uptake and elution are controlled directly by modulation of the potential of the layer. ESIX offers the advantages of highly-efficient use of electrical energy combined with no secondary waste generation. Recently, we have improved upon the ESIX process by modifying the conducting substrate with carbon nanotubes prior to the deposition of the electroactive ion exchanger. The nanomaterial-based electroactive ion exchange technology will remove cesium-137, chromate, and perchlorate rapidly from wastewater. The high porosity and high surface area of the electroactive ion exchange nanocomposites results in high loading capacity and minimize interferences for non-target species. Since the ion adsorption/desorption is controlled electrically without generating a secondary waste, this electrically active ion exchange process is a green process technology that will greatly reduce operating costs

  17. North America's net terrestrial CO2 exchange with the atmosphere 1990–2009

    Science.gov (United States)

    King, A.W.; Andres, R.J.; Davis, K.J.; Hafer, M.; Hayes, D.J.; Huntzinger, Deborah N.; de Jong, Bernardus; Kurz, W.A.; McGuire, A. David; Vargas, Rodrigo I.; Wei, Y.; West, Tristram O.; Woodall, Christopher W.

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land–atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990–2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from −890 to −280 Tg C yr−1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, "best" estimates (i.e., measures of central tendency) are −472 ± 281 Tg C yr−1 based on the mean and standard deviation of the distribution and −360 Tg C yr−1 (with an interquartile range of −496 to −337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990–2009 equal to 1720 Tg C yr−1 and assuming the estimate of −472 Tg C yr−1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was

  18. Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: A review.

    Science.gov (United States)

    Dimitrakellis, Panagiotis; Gogolides, Evangelos

    2018-04-01

    Hydrophobic surfaces are often used to reduce wetting of surfaces by water. In particular, superhydrophobic surfaces are highly desired for several applications due to their exceptional properties such as self-cleaning, anti-icing, anti-friction and others. Such surfaces can be prepared via numerous methods including plasma technology, a dry technique with low environmental impact. Atmospheric pressure plasma (APP) has recently attracted significant attention as lower-cost alternative to low-pressure plasmas, and as a candidate for continuous rather than batch processing. Although there are many reviews on water-repellent surfaces, and a few reviews on APP technology, there are hardly any review works on APP processing for hydrophobic and superhydrohobic surface fabrication, a topic of high importance in nanotechnology and interface science. Herein, we critically review the advances on hydrophobic and superhydrophobic surface fabrication using APP technology, trying also to give some perspectives in the field. After a short introduction to superhydrophobicity of nanostructured surfaces and to APPs we focus this review on three different aspects: (1) The atmospheric plasma reactor technology used for fabrication of (super)hydrophobic surfaces. (2) The APP process for hydrophobic surface preparation. The hydrophobic surface preparation processes are categorized methodologically as: a) activation, b) grafting, c) polymerization, d) roughening and hydrophobization. Each category includes subcategories related to different precursors used. (3) One of the most important sections of this review concerns superhydrophobic surfaces fabricated using APP. These are methodologically characterized as follows: a) single step processes where micro-nano textured topography and low surface energy coating are created at the same time, or b) multiple step processes, where these steps occur sequentially in or out of the plasma. We end the review with some perspectives in the field. We

  19. Method of relative comparison of the thermohydraulic efficiency of heat exchange intensification in channels of heat-exchange surfaces

    International Nuclear Information System (INIS)

    Dubrovskij, E.V.; Vasil'ev, V.Ya.

    2002-01-01

    One introduces a technique to compare relatively thermohydraulic efficiency of heat transfer intensification in channels of heat exchange surfaces of any design types. It is shown that one should compare thermohydraulic efficiency of heat exchange intensification as to the thermal power of heat exchangers and pressure losses in channels with turbulators and in polished channels of heat exchange surfaces on the basis of dimensions of heat exchangers, their heat exchange surfaces and at similar (as to Re numbers) modes of coolant flow [ru

  20. Thermodynamic limits set relevant constraints to the soil-plant-atmosphere system and to optimality in terrestrial vegetation

    Science.gov (United States)

    Kleidon, Axel; Renner, Maik

    2016-04-01

    The soil-plant-atmosphere system is a complex system that is strongly shaped by interactions between the physical environment and vegetation. This complexity appears to demand equally as complex models to fully capture the dynamics of the coupled system. What we describe here is an alternative approach that is based on thermodynamics and which allows for comparatively simple formulations free of empirical parameters by assuming that the system is so complex that its emergent dynamics are only constrained by the thermodynamics of the system. This approach specifically makes use of the second law of thermodynamics, a fundamental physical law that is typically not being considered in Earth system science. Its relevance to land surface processes is that it fundamentally sets a direction as well as limits to energy conversions and associated rates of mass exchange, but it requires us to formulate land surface processes as thermodynamic processes that are driven by energy conversions. We describe an application of this approach to the surface energy balance partitioning at the diurnal scale. In this application the turbulent heat fluxes of sensible and latent heat are described as the result of a convective heat engine that is driven by solar radiative heating of the surface and that operates at its thermodynamic limit. The predicted fluxes from this approach compare very well to observations at several sites. This suggests that the turbulent exchange fluxes between the surface and the atmosphere operate at their thermodynamic limit, so that thermodynamics imposes a relevant constraint to the land surface-atmosphere system. Yet, thermodynamic limits do not entirely determine the soil-plant-atmosphere system because vegetation affects these limits, for instance by affecting the magnitude of surface heating by absorption of solar radiation in the canopy layer. These effects are likely to make the conditions at the land surface more favorable for photosynthetic activity

  1. Use of Atmospheric-Pressure Plasma Jet for Polymer Surface Modification: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Kuettner, Lindsey A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-16

    Atmospheric-pressure plasma jets (APPJs) are playing an increasingly important role in materials processing procedures. Plasma treatment is a useful tool to modify surface properties of materials, especially polymers. Plasma reacts with polymer surfaces in numerous ways thus the type of process gas and plasma conditions must be explored for chosen substrates and materials to maximize desired properties. This report discusses plasma treatments and looks further into atmospheric-pressure plasma jets and the effects of gases and plasma conditions. Following the short literature review, a general overview of the future work and research at Los Alamos National Laboratory (LANL) is discussed.

  2. Collagen proteins exchange O with demineralisation and gelatinisation reagents and also with atmospheric moisture.

    Science.gov (United States)

    von Holstein, Isabella; von Tersch, Matthew; Coutu, Ashley N; Penkman, Kirsty E H; Makarewicz, Cheryl A; Collins, Matthew J

    2018-01-23

    The oxygen isotope composition of collagen proteins is a potential indicator of adult residential location, useful for provenancing in ecology, archaeology and forensics. In acidic solution, proteins can exchange O from carboxylic acid moieties with reagent O. This study investigated whether this exchange occurs during demineralisation and gelatinisation preparation of bone/ivory collagen. EDTA and HCl demineralisation or gelatinisation reagents were made up in waters with different δ 18 O values, and were used to extract collagen from four skeletal tissue samples. Aliquots of extracted collagen were exposed to two different atmospheric waters, at 120°C and ambient temperature, and subsequently dried in a vacuum oven at 40°C or by freeze drying. Sample δ 18 O values were measured by HT/EA pyrolysis-IRMS using a zero-blank autosampler. Collagen samples exchanged O with both reagent waters and atmospheric water, which altered sample δ 18 O values. Exchange with reagent waters occurred in all extraction methods, but was greater at lower pH. Damage to the collagen samples during extraction increased O exchange. The nature of exchange of O with atmospheric water depended on the temperature of exposure: kinetic fractionation of O was identified at 120°C but not at ambient temperature. Exchange was difficult to quantify due to high variability of δ 18 O value between experimental replicates. Studies of δ 18 O values in collagen proteins should avoid extraction methods using acid solutions. This article is protected by copyright. All rights reserved.

  3. Speciated particle dry deposition to the sea surface: Results from ASEPS '97

    DEFF Research Database (Denmark)

    Pryor, S.C.; Barthelmie, R.J.; Geernaert, L.L.S.

    1999-01-01

    on Precipitation Scavenging and Atmosphere-Surface Exchange Processes. AMS, Richland, Washington, USA, 12pp.) model to calculate size-segregated dry deposition of particle inorganic nitrogen compounds to the western Baltic during the late Spring of 1997 based on data collected as part of the Air-Sea Exchange...

  4. Characteristics of Atmosphere-Ocean CO2 Exchange due to Typhoon Activities over the East Asian Region

    Science.gov (United States)

    Lee, G.; Cho, C. H.; Lim, D. H.; Sun, M.; Lee, J.; Byun, Y. H.; Lee, J.

    2014-12-01

    Although the oceans are generally known as a net carbon sink in global sense, it is expected that CO₂release from oceans can occur locally depending on specific weather. This study addresses investigation of change in CO2 exchange between atmosphere and ocean due to typhoon activities, using "Carbon Tracker-Asia (CTA)". The CTA has constructed and managed at National Institute of Meteorological Research(NIMR) based on Carbon Tracker developed by NOAA. In order to examine effect of typhoon on change in air-sea CO2 exchange, we selected several cases which typhoon approached to Korean peninsula in the summertime and their tracks are similar to each other. Also, we analyzed difference between CO2 flux along typhoon tracks and other adjacent region not to be directly affected by typhoon in these cases. There is a difference in ocean fluxes around 15 gC/m²yr over strong typhoon areas compared to other areas. This difference varied with the wind speeds, the correlation coefficient between the ocean and the wind flux was found 0.7. Changes in carbon flux to affect the concentration of CO₂ in the atmosphere near surface instantly.

  5. Surface chemical changes of atmospheric pressure plasma treated rabbit fibres important for felting process

    Energy Technology Data Exchange (ETDEWEB)

    Štěpánová, Vlasta, E-mail: vstepanova@mail.muni.cz [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Slavíček, Pavel; Stupavská, Monika; Jurmanová, Jana [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Černák, Mirko [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 842 48 Bratislava (Slovakia)

    2015-11-15

    Graphical abstract: - Highlights: • Rabbit fibres plasma treatment is an effective method for fibres modification. • Atmospheric pressure plasma treatment is able to affect fibres properties. • Surface changes on fibres after plasma treatment were analysed via SEM, ATR-FTIR, XPS. • Significant increase of fibres wettability after plasma treatment was observed. • Plasma treatment at atmospheric pressure can replace the chemical treatment of fibres. - Abstract: We introduce the atmospheric pressure plasma treatment as a suitable procedure for in-line industrial application of rabbit fibres pre-treatment. Changes of rabbit fibre properties due to the plasma treatment were studied in order to develop new technology of plasma-based treatment before felting. Diffuse Coplanar Surface Barrier Discharge (DCSBD) in ambient air at atmospheric pressure was used for plasma treatment. Scanning electron microscopy was used for determination of the fibres morphology before and after plasma treatment. X-ray photoelectron spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy were used for evaluation of reactive groups. The concentration of carbon decreased and conversely the concentration of nitrogen and oxygen increased after plasma treatment. Aging effect of plasma treated fibres was also investigated. Using Washburn method the significant increase of fibres wettability was observed after plasma treatment. New approach of pre-treatment of fibres before felting using plasma was developed. Plasma treatment of fibres at atmospheric pressure can replace the chemical method which consists of application of strong acids on fibres.

  6. A continuous-flow denuder for the measurement of ambient concentrations and surface-exchange fluxes of ammonia

    Science.gov (United States)

    Wyers, G. P.; Otjes, R. P.; Slanina, J.

    A new diffusion denuder is described for the continuous measurement of atmospheric ammonia. Ammonia is collected in an absorption solution in a rotating denuder, separated from interfering compounds by diffusion through a semi-permeable membrane and detected by conductometry. The method is free from interferences by other atmospheric gases, with the exception of volatile amines. The detection limit is 6 ng m -3 for a 30-min integration time. This compact instrument is fully automated and suited for routine deployment in field studies. The precision is sufficiently high for micrometeorological studies of air-surface exchange of ammonia.

  7. Characterization of the exchange of PBDEs in a subtropical paddy field of China: A significant inputs of PBDEs via air–foliage exchange

    International Nuclear Information System (INIS)

    Wang, Yan; Wang, Shaorui; Xu, Yue; Luo, Chunling; Li, Jun; Zhang, Gan

    2015-01-01

    Rice and the distinctive cultivation practices employed in rice growth can significantly influence the environmental fate of polybrominated diphenyl ethers (PBDEs) in a paddy field. We studied variations in PBDE concentrations in multiple compartments of a paddy field in the suburban area of Guangzhou, South China, including air, soil, water, and rice tissues. The input/output fluxes of air–surface and air–foliage exchange, atmospheric deposition and water input during different rice growth stages were measured simultaneously. Air–foliage and air–water diffusion exchanges were the key processes controlling inputs and outputs of PBDEs in paddy fields, respectively, whereas atmospheric deposition dominated inputs of higher brominated PBDEs. The high input of PBDEs via air–foliage exchange suggested that vegetation can significantly increase the air-to-field transport of PBDEs in ecosystems. The annual input of PBDEs in all paddy fields in Guangdong Province was estimated to be 22.1 kg. - Highlights: • PBDE concentrations in multiple compartments of a suburban paddy field were measured. • Air–water exchange was the key process controlling PBDE output in paddy fields. • Air–foliage exchange dominated the inputs of PBDEs in paddy fields. • Annual PBDE input in paddy fields in Guangdong Province was calculated to be 22 kg. - Air–foliage exchange is the most dominant inputs of PBDEs in the subtropical paddy fields

  8. Investigating Small-Scale Air–Sea Exchange Processes via Thermography

    Directory of Open Access Journals (Sweden)

    Jakob Kunz

    2018-03-01

    Full Text Available The exchange of trace gases such as carbon dioxide or methane between the atmosphere and the ocean plays a key role for the climate system. However, the investigation of air–sea gas exchange rates lacks fast and accurate measurement techniques that can also be used in the field, e.g., onboard a ship on the ocean. A promising way to overcome this deficiency is to use heat as a proxy tracer for gas transfer. Heat transfer rates across the aqueous boundary layer of the air–water interface can be measured via thermography with unprecedented temporal and spatial resolution in the order of minutes and meters, respectively. Either passive or active measurement schemes can be applied. Passive approaches rely on temperature differences across the water surface, which are caused naturally by radiative and evaporative cooling of the water surface. Active measurement schemes force an artificial heat flux through the aqueous boundary layer by means of heating a patch at the water surface with an appropriate heat source, such as a CO2 laser. The choice of the excitation signal is crucial. It is beneficial to apply periodic heat flux densities with different excitation frequencies. In this way, the air–water interface can be probed for its response in terms of temperature amplitude and phase shift between excitation signal and temperature response. This concept from linear system theory is also well established in the field of non-destructive material testing, where it is known as lock-in thermography. This article gives a short introduction into air–sea gas exchange, before it presents an overview of different thermographic measurement techniques used in wind-wave facilities and at sea starting with early implementations. The article closes with a novel multifrequency excitation scheme for even faster measurements.

  9. Research on Land Surface Thermal-Hydrologic Exchange in Southern China under Future Climate and Land Cover Scenarios

    Directory of Open Access Journals (Sweden)

    Jianwu Yan

    2013-01-01

    Full Text Available Climate change inevitably leads to changes in hydrothermal circulation. However, thermal-hydrologic exchanging caused by land cover change has also undergone ineligible changes. Therefore, studying the comprehensive effects of climate and land cover changes on land surface water and heat exchanges enables us to well understand the formation mechanism of regional climate and predict climate change with fewer uncertainties. This study investigated the land surface thermal-hydrologic exchange across southern China for the next 40 years using a land surface model (ecosystem-atmosphere simulation scheme (EASS. Our findings are summarized as follows. (i Spatiotemporal variation patterns of sensible heat flux (H and evapotranspiration (ET under the land cover scenarios (A2a or B2a and climate change scenario (A1B are unanimous. (ii Both H and ET take on a single peak pattern, and the peak occurs in June or July. (iii Based on the regional interannual variability analysis, H displays a downward trend (10% and ET presents an increasing trend (15%. (iv The annual average H and ET would, respectively, increase and decrease by about 10% when woodland converts to the cultivated land. Through this study, we recognize that land surface water and heat exchanges are affected greatly by the future climate change as well as land cover change.

  10. Radon gas-exchange rate through the interface sea atmosphere in the coast

    International Nuclear Information System (INIS)

    Duenas, C.; Fernandez, M.C.; Perez Martinez, M.

    1985-01-01

    The Rn gas exchange velocity through the interface sea atmosphere has been estimated. Our measurements have been made in a sampler station located in Malaga bay, obtaining a mean value of 0.45 m/d. The corresponding magnitude of the thickness of boundary layer is 316μ. Experimental results are discussed. No clear relationship can be found between the gas exchange rate and wind speed. (author)

  11. Modelling atmospheric transport of persistent organic pollutants in the Northern Hemisphere with a 3-D dynamical model: DEHM-POP

    Science.gov (United States)

    Hansen, K. M.; Christensen, J. H.; Brandt, J.; Frohn, L. M.; Geels, C.

    2004-03-01

    The Danish Eulerian Hemispheric Model (DEHM) is a 3-D dynamical atmospheric transport model originally developed to describe the atmospheric transport of sulphur into the Arctic. A new version of the model, DEHM-POP, developed to study the atmospheric transport and environmental fate of persistent organic pollutants (POPs) is presented. During environmental cycling, POPs can be deposited and re-emitted several times before reaching a final destination. A description of the exchange processes between the land/ocean surfaces and the atmosphere is included in the model to account for this multi-hop transport. The α-isomer of the pesticide hexachlorocyclohexane (α-HCH) is used as tracer in the model development. The structure of the model and processes included are described in detail. The results from a model simulation showing the atmospheric transport for the years 1991 to 1998 are presented and evaluated against measurements. The annual averaged atmospheric concentration of α-HCH for the 1990s is well described by the model; however, the shorter-term average concentration for most of the stations is not well captured. This indicates that the present simple surface description needs to be refined to get a better description of the air-surface exchange proceses of POPs.

  12. Long-term Impacts of Hurricane Wilma on Land Surface-Atmosphere Exchanges

    Science.gov (United States)

    Fuentes, J. D.; Dowell, K. K.; Engel, V. C.; Smith, T. J.

    2008-05-01

    In October 2005, Hurricane Wilma made landfall along the mangrove forests of western Everglades National Park, Florida, USA. Damage from the storm varied with distance from landfall and included widespread mortality and extensive defoliation. Large sediment deposition events were recorded in the interior marshes, with erosion taking place along the coastal margins. Wilma made landfall near a 30 m flux tower where eddy-covariance measurements of ecosystem-level carbon and energy fluxes started in 2003. Repairs to the structure were completed in 2006, enabling comparisons of surface fluxes before and after the storm. One year after the hurricane, both the average and daily integrated CO2 fluxes are consistently lower than the pre-storm values. The storm's impact on standing live biomass and the slow recovery of leaf area appear to have resulted in decreased photosynthetic uptake capacity. Nighttime respiratory CO2 fluxes above the canopy are unchanged from pre-storm values. During some periods, daily integrated fluxes show the forest as a net source of CO2 to the atmosphere. Soil CO2 fluxes are not measured directly, but daytime soil temperatures and vertical heat fluxes have shown consistently higher values after the storm. Nighttime soil temperatures values have been slightly lower. These stronger diurnal soil temperature fluctuations indicate enhanced radiative fluxes at the soil surface, possibly as a result of the reduced leaf area. The increases in daytime soil temperatures are presumably leading to higher below-ground respiration rates and, along with the reduced photosynthetic capacity, contributing to the lower net CO2 assimilation rates. This hypothesis is supported by nearby measurements of declining surface elevations of the organic soils which have been correlated with mangrove mortality in impacted areas. Both sensible and latent heat fluxes above the canopy are found to be reduced following the hurricane, and soil heat storage is higher. Together

  13. Global land-atmosphere coupling associated with cold climate processes

    Science.gov (United States)

    Dutra, Emanuel

    This dissertation constitutes an assessment of the role of cold processes, associated with snow cover, in controlling the land-atmosphere coupling. The work was based on model simulations, including offline simulations with the land surface model HTESSEL, and coupled atmosphere simulations with the EC-EARTH climate model. A revised snow scheme was developed and tested in HTESSEL and EC-EARTH. The snow scheme is currently operational at the European Centre for Medium-Range Weather Forecasts integrated forecast system, and in the default configuration of EC-EARTH. The improved representation of the snowpack dynamics in HTESSEL resulted in improvements in the near surface temperature simulations of EC-EARTH. The new snow scheme development was complemented with the option of multi-layer version that showed its potential in modeling thick snowpacks. A key process was the snow thermal insulation that led to significant improvements of the surface water and energy balance components. Similar findings were observed when coupling the snow scheme to lake ice, where lake ice duration was significantly improved. An assessment on the snow cover sensitivity to horizontal resolution, parameterizations and atmospheric forcing within HTESSEL highlighted the role of the atmospheric forcing accuracy and snowpack parameterizations in detriment of horizontal resolution over flat regions. A set of experiments with and without free snow evolution was carried out with EC-EARTH to assess the impact of the interannual variability of snow cover on near surface and soil temperatures. It was found that snow cover interannual variability explained up to 60% of the total interannual variability of near surface temperature over snow covered regions. Although these findings are model dependent, the results showed consistency with previously published work. Furthermore, the detailed validation of the snow dynamics simulations in HTESSEL and EC-EARTH guarantees consistency of the results.

  14. Surface Propensity of Atmospherically Relevant Amino Acids Studied by XPS.

    Science.gov (United States)

    Mocellin, Alexandra; Gomes, Anderson Herbert de Abreu; Araújo, Oscar Cardoso; de Brito, Arnaldo Naves; Björneholm, Olle

    2017-04-27

    Amino acids constitute an important fraction of the water-soluble organic nitrogen (WSON) compounds in aerosols and are involved in many processes in the atmosphere. In this work, we applied X-ray photoelectron spectroscopy (XPS) to study aqueous solutions of four amino acids, glycine, alanine, valine, and methionine, in their zwitterionic forms. We found that amino acids with hydrophilic side chains and smaller size, GLY and ALA, tend to stay in the bulk of the liquid, while the hydrophobic and bigger amino acids, VAL and MET, are found to concentrate more on the surface. We found experimental evidence that the amino acids have preferential orientation relative to the surface, with the hydrophobic side chain being closer to the surface than the hydrophilic carboxylate group. The observed amino acid surface propensity has implications in atmospheric science as the surface interactions play a central role in cloud droplet formation, and they should be considered in climate models.

  15. Land-Surface-Atmosphere Coupling in Observations and Models

    Directory of Open Access Journals (Sweden)

    Alan K Betts

    2009-07-01

    Full Text Available The diurnal cycle and the daily mean at the land-surface result from the coupling of many physical processes. The framework of this review is largely conceptual; looking for relationships and information in the coupling of processes in models and observations. Starting from the surface energy balance, the role of the surface and cloud albedos in the shortwave and longwave fluxes is discussed. A long-wave radiative scaling of the diurnal temperature range and the night-time boundary layer is summarized. Several aspects of the local surface energy partition are presented: the role of soilwater availability and clouds; vector methods for understanding mixed layer evolution, and the coupling between surface and boundary layer that determines the lifting condensation level. Moving to larger scales, evaporation-precipitation feedback in models is discussed; and the coupling of column water vapor, clouds and precipitation to vertical motion and moisture convergence over the Amazon. The final topic is a comparison of the ratio of surface shortwave cloud forcing to the diabatic precipitation forcing of the atmosphere in ERA-40 with observations.

  16. Modeling land-surface/atmosphere dynamics for CHAMMP

    International Nuclear Information System (INIS)

    Gutowski, W.J. Jr.

    1993-01-01

    Project progress is described on a DOE CHAMP project to model the land-surface/atmosphere coupling in a heterogeneous environment. This work is a collaboration between scientists at Iowa State University and the University of New Hampshire. Work has proceeded in two areas: baseline model coupling and data base development for model validation. The core model elements (land model, atmosphere model) have been ported to the Principal Investigator's computing system and baseline coupling has commenced. The initial target data base is the set of observations from the FIFE field campaign, which is in the process of being acquired. For the remainder of the project period, additional data from the region surrounding the FIFE site and from other field campaigns will be acquired to determine how to best extrapolate results from the initial target region to the rest of the globe. In addition, variants of the coupled model will be used to perform experiments examining resolution requirements and coupling strategies for land-atmosphere coupling in a heterogeneous environment

  17. Surface processing and ageing behavior of silk fabrics treated with atmospheric-pressure plasma for pigment-based ink-jet printing

    Science.gov (United States)

    Zhang, Chunming; Wang, Libing; Yu, Miao; Qu, Lijun; Men, Yajing; Zhang, Xiangwu

    2018-03-01

    Pigment inkjet printing has highlighted the advantages of cost-effective, short production cycle and environment-friendly. However, patterns directly printed with pigment inks usually have low color yields and blurry images which are caused by bleeding phenomenon. This work presents an atmospheric-pressure plasma method for improving the pigment-based ink-jet printing performance of silk fabrics. The effects of surface changes induced are discussed, with data derived from morphological study by atomic force microscopy (AFM), chemical analysis using X-ray photoelectron spectroscopy (XPS) and contact angle measurement. Ink-jet printing experiments were conducted to study the influence of measured changes on anti-bleeding property and color strength of treated and original samples. The ageing experiment indicates that the modified silk fabrics should be printed within 24 h after plasma processing for maximum color yields. This study explores an effective approach for the atmospheric-pressure plasma, which can provide its significant use in improving the surface properties and ink-jet printing performance of fabrics.

  18. Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

    2011-04-01

    The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. The intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding.

  19. Influence of the soil-atmosphere exchange on the hydric profile induced in soil-structure system

    Directory of Open Access Journals (Sweden)

    A. Al Qadad

    2012-06-01

    Full Text Available Soil-atmosphere exchange leads to a moisture change in the soil. This can cause major damage to engineering structures due to the soil expansion and shrinkage. The soil-atmosphere exchange is related to several parameters, in particular the soil characteristics and climate conditions. The presence of an engineering structure causes a variation of the hydraulic profile in the soil, which can lead to heterogeneous soil movement and consequently to structural damage. This paper presents a coupled numerical model based on the consideration of both water flow in unsaturated soils and soil-atmosphere exchange. After the validation of the model, the paper presents its use for the analysis of the influence of the presence of structures on moisture change induced under climatic conditions recorded in a semi-arid region. Analysis shows that the presence of the structure leads to important change in the moisture distribution, in particular in the vicinity of the structure.

  20. Measuring and modeling changes in land-atmosphere exchanges and hydrologic response in forests undergoing insect-driven mortality

    Science.gov (United States)

    Gochis, D. J.; Brooks, P. D.; Harpold, A. A.; Ewers, B. E.; Pendall, E.; Barnard, H. R.; Reed, D.; Harley, P. C.; Hu, J.; Biederman, J.

    2010-12-01

    Given the magnitude and spatial extent of recent forest mortality in the western U.S. there is a pressing need to improve representation of such influences on the exchange of energy, water, biogeochemical and momentum fluxes in land-atmosphere parameterizations coupled to weather and climate models. In this talk we present observational data and model results from a new study aimed at improving understanding the impacts of mountain pine beetle-induced forest mortality in the central Rocky Mountains. Baseline observations and model runs from undisturbed lodgepole pine forest conditions are developed as references against which new observations and model runs from infested stands are compared. We will specifically look at the structure and evolution of sub-canopy energy exchange variables such as shortwave and longwave radiation and sub-canopy turbulence as well as sub-canopy precipitation, sapflow fluxes, canopy-scale fluxes and soil moisture and temperature. In this manner we seek to lay the ground work for evaluating the recent generation of land surface model changes aimed at representing insect-related forest dynamics in the CLM-C/N and Noah land surface models.

  1. Atmospheric pressure plasma jet's characterization and surface wettability driven by neon transformer

    Science.gov (United States)

    Elfa, R. R.; Nafarizal, N.; Ahmad, M. K.; Sahdan, M. Z.; Soon, C. F.

    2017-03-01

    Atmospheric pressure plasma driven by Neon transformer power supply argon is presented in this paper. Atmospheric pressure plasma system has attracted researcher interest over low pressure plasma as it provides a flexibility process, cost-efficient, portable device and vacuum-free device. Besides, another golden key of this system is the wide promising application in the field of work cover from industrial and engineering to medical. However, there are still numbers of fundamental investigation that are necessary such as device configuration, gas configuration and its effect. Dielectric barrier discharge which is also known as atmospheric pressure plasma discharge is created when there is gas ionization process occur which enhance the movement of atom and electron and provide energetic particles. These energetic particles can provide modification and cleaning property to the sample surface due to the bombardment of the high reactive ion and radicals to the sample surface. In order to develop atmospheric pressure plasma discharge, a high voltage and high frequency power supply is needed. In this work, we used a neon transformer power supply as the power supply. The flow of the Ar is feed into 10 mm cylinder quartz tube with different treatment time in order to investigate the effect of the plasma discharge. The analysis of each treatment time is presented by optical emission spectroscopy (OES) and water contact angle (WCA) measurement. The increase of gas treatment time shows increases intensity of reactive Ar and reduces the angle of water droplets in water contact angle. Treatment time of 20 s microslide glass surface shows that the plasma needle discharges have modified the sample surface from hydrophilic surface to superhydrophilic surface. Thus, this leads to another interesting application in reducing sample surface adhesion to optimize productivity in the industry of paintings, semiconductor and more.

  2. Regional Atmospheric CO2 Inversion Reveals Seasonal and Geographic Differences in Amazon Net Biome Exchange

    Science.gov (United States)

    Alden, Caroline B.; Miller, John B.; Gatti, Luciana V.; Gloor, Manuel M.; Guan, Kaiyu; Michalak, Anna M.; van der Laan-Luijkx, Ingrid; Touma, Danielle; Andrews, Arlyn; Basso, Luana G.; hide

    2016-01-01

    Understanding tropical rainforest carbon exchange and its response to heat and drought is critical for quantifying the effects of climate change on tropical ecosystems, including global climate carbon feedbacks. Of particular importance for the global carbon budget is net biome exchange of CO2 with the atmosphere (NBE), which represents nonfire carbon fluxes into and out of biomass and soils. Subannual and sub-Basin Amazon NBE estimates have relied heavily on process-based biosphere models, despite lack of model agreement with plot-scale observations. We present a new analysis of airborne measurements that reveals monthly, regional-scale (Approx.1-8 x 10(exp -6) km2) NBE variations. We develop a regional atmospheric CO2 inversion that provides the first analysis of geographic and temporal variability in Amazon biosphere-atmosphere carbon exchange and that is minimally influenced by biosphere model-based first guesses of seasonal and annual mean fluxes. We find little evidence for a clear seasonal cycle in Amazon NBE but do find NBE sensitivity to aberrations from long-term mean climate. In particular, we observe increased NBE (more carbon emitted to the atmosphere) associated with heat and drought in 2010, and correlations between wet season NBE and precipitation (negative correlation) and temperature (positive correlation). In the eastern Amazon, pulses of increased NBE persisted through 2011, suggesting legacy effects of 2010 heat and drought. We also identify regional differences in postdrought NBE that appear related to long-term water availability. We examine satellite proxies and find evidence for higher gross primary productivity (GPP) during a pulse of increased carbon uptake in 2011, and lower GPP during a period of increased NBE in the 2010 dry season drought, but links between GPP and NBE changes are not conclusive. These results provide novel evidence of NBE sensitivity to short-term temperature and moisture extremes in the Amazon, where monthly and sub

  3. Mercury Exchange at the Air-Water-Soil Interface: An Overview of Methods

    Directory of Open Access Journals (Sweden)

    Fengman Fang

    2002-01-01

    Full Text Available An attempt is made to assess the present knowledge about the methods of determining mercury (Hg exchange at the air-water-soil interface during the past 20 years. Methods determining processes of wet and dry removal/deposition of atmospheric Hg to aquatic and terrestrial ecosystems, as well as methods determining Hg emission fluxes to the atmosphere from natural surfaces (soil and water are discussed. On the basis of the impressive advances that have been made in the areas relating to Hg exchange among air-soil-water interfaces, we analyzed existing problems and shortcomings in our current knowledge. In addition, some important fields worth further research are discussed and proposed.

  4. Surface-Atmosphere Connections on Titan: A New Window into Terrestrial Hydroclimate

    Science.gov (United States)

    Faulk, Sean

    This dissertation investigates the coupling between the large-scale atmospheric circulation and surface processes on Titan, with a particular focus on methane precipitation and its influence on surface geomorphology and hydrology. As the only body in the Solar System with an active hydrologic cycle other than Earth, Titan presents a valuable laboratory for studying principles of hydroclimate on terrestrial planets. Idealized general circulation models (GCMs) are used here to test hypotheses regarding Titan's surface-atmosphere connections. First, an Earth-like GCM simulated over a range of rotation rates is used to evaluate the effect of rotation rate on seasonal monsoon behavior. Slower rotation rates result in poleward migration of summer rain, indicating a large-scale atmospheric control on Titan's observed dichotomy of dry low latitudes and moist high latitudes. Second, a Titan GCM benchmarked against observations is used to analyze the magnitudes and frequencies of extreme methane rainstorms as simulated by the model. Regional patterns in these extreme events correlate well with observed geomorphic features, with the most extreme rainstorms occurring in mid-latitude regions associated with high alluvial fan concentrations. Finally, a planetary surface hydrology scheme is developed and incorporated into a Titan GCM to evaluate the roles of surface flow, subsurface flow, infiltration, and groundmethane evaporation in Titan's climate. The model reproduces Titan's observed surface liquid and cloud distributions, and reaches an equilibrium state with limited interhemispheric transport where atmospheric transport is approximately balanced by subsurface transport. The equilibrium state suggests that Titan's current hemispheric surface liquid asymmetry, favoring methane accumulation in the north, is stable in the modern climate.

  5. Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations

    NARCIS (Netherlands)

    Peters, W.; Krol, M. C.; van der Werf, G. R.; Houweling, S.; Jones, C. D.; Hughes, J.; Schaefer, K.; Masarie, K. A.; Jacobson, A. R.; Miller, J. B.; Cho, C. H.; Ramonet, M.; Schmidt, M.; Ciattaglia, L.; Apadula, F.; Heltai, D.; Meinhardt, F.; di Sarra, A. G.; Piacentino, S.; Sferlazzo, D.; Aalto, T.; Hatakka, J.; StröM, J.; Haszpra, L.; Meijer, H. A J; van Der Laan, S.; Neubert, R. E M; Jordan, A.; Rodó, X.; Morguí, J. A.; Vermeulen, A. T.; Popa, Maria Elena; Rozanski, K.; Zimnoch, M.; Manning, A. C.; Leuenberger, M.; Uglietti, C.; Dolman, A. J.; Ciais, P.; Heimann, M.; Tans, P.

    2010-01-01

    We present an estimate of net ecosystem exchange (NEE) of CO2 in Europe for the years 2001-2007. It is derived with a data assimilation that uses a large set of atmospheric CO2 mole fraction observations (∼70 000) to guide relatively simple descriptions of terrestrial and oceanic net exchange, while

  6. Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations

    NARCIS (Netherlands)

    Peters, W.; Krol, M.C.; Werf, van der G.R.; Houweling, S.; Jones, C.D.; Hughes, J.; Schaefer, K.; Masarie, K.A.

    2010-01-01

    We present an estimate of net ecosystem exchange (NEE) of CO2 in Europe for the years 2001–2007. It is derived with a data assimilation that uses a large set of atmospheric CO2 mole fraction observations (~70 000) to guide relatively simple descriptions of terrestrial and oceanic net exchange, while

  7. the Martian atmospheric boundary layer

    DEFF Research Database (Denmark)

    Petrosyan, A.; Galperin, B.; Larsen, Søren Ejling

    2011-01-01

    . This portion of the atmosphere is extremely important, both scientifically and operationally, because it is the region within which surface lander spacecraft must operate and also determines exchanges of heat, momentum, dust, water, and other tracers between surface and subsurface reservoirs and the free...

  8. Global land-atmosphere coupling associated with cold climate processes

    OpenAIRE

    Dutra, Emanuel, 1983-

    2011-01-01

    Tese de doutoramento, Ciências Geofísicas e da Geoinformação (Meteorologia), Universidade de Lisboa, Faculdade de Ciências, 2011 This dissertation constitutes an assessment of the role of cold processes, associated with snow cover, in controlling the land-atmosphere coupling. The work was based on model simulations, including offline simulations with the land surface model HTESSEL, and coupled atmosphere simulations with the EC-EARTH climate model. A revised snow scheme was developed and t...

  9. Higher stability in forest-atmosphere exchange observed in a structurally diverse forest.

    Science.gov (United States)

    Tamrakar, R.; Rayment, M.; Moyano, F.; Herbst, M.; Mund, M.; Knohl, A.

    2016-12-01

    We tested the hypothesis that structurally diverse forests have greater stability on exchange processes with the atmosphere compared to forests with less diverse structure. In a case study, we assessed how net ecosystem exchange (NEE) and normalized maximum assimilation (Amax) varied over time in two forests in Germany based on 11 years of continuous eddy flux measurements. The two sites differ in structure as well as in species composition: one (Hainich) is an unmanaged, uneven-aged and heterogeneous mixed beech forest (65% beech), the other (Leinefelde) is a managed, even-aged and homogeneous pure beech stand. The two selected forests are of similar mean ages (about 130 years old) and exposed to similar air temperatures and vapour pressure deficits. Even though Hainich (the unmanaged forest) received higher rainfall (720 ± 134 mm vs 599±166 mm), the soil water availability showed no significant difference between both sites. Based on detailed biomass inventory, trees in Hainich are well distributed in all diameter at breast height (dbh) classes (10 to 90cm dbh) whereas in Leinefelde (the managed forest) trees are mostly confined to dbh classes of 40 to 55 cm. Our results showed a strong difference in inter-annual variability of NEE, which was lower in the unmanaged than in the managed site (coefficient of variation (CV) of 0.13 and 0.27, respectively). The lowest NEE was observed in both sites in 2004, a mast year and a year after the strong summer drought of 2003. The variation in the inter-annual normalized maximum assimilation (Amax) was lower in Hainich (standard deviation of 2.5 compared to 3.9 µmol m-2 s-1). Also, the seasonal course of Amax differed between the two forests which could explain why the mixed forest was more affected by the late summer drought of 2003, despite showing a more conservative carbon budget than the pure stand in the long term. The interannual anomaly in Amax was correlated with fruit production, the latter being larger in

  10. Comparison of mesoscale model and tower measurements of surface fluxes during Winter Icing and Storms Program/Atmospheric Radiation Measurement 91

    International Nuclear Information System (INIS)

    Oncley, S.P.; Dudhia, J.

    1994-01-01

    This study is an evaluation of the ability of the Pennsylvania State University/National Center for Atmospheric Research (NCAR) mesoscale model (MM4) to determine surface fluxes to see if measured fluxes should be assimilated into model runs. Fluxes were compared from a high-resolution (5 km grid spacing) MM4 run during one day of the Winter Icing and Storms Programs/Atmospheric Radiation Measurement (WISP/ARM) experiment (over NE Colorado in winter 1991) with direct flux measurements made from a tower over a representative site by a three-dimensional sonic anemometer and fast response temperature and humidity sensors. This tower was part of the NCAR Atmosphere-Surface Turbulent Exchange Research (ASTER) facility. Also, mean values were compared to check whether any differences were due to the model parameterization or model variables

  11. Improved adhesion of Ag NPs to the polyethylene terephthalate surface via atmospheric plasma treatment and surface functionalization

    Science.gov (United States)

    Shen, Tao; Liu, Yong; Zhu, Yan; Yang, De-Quan; Sacher, Edward

    2017-07-01

    Ag nanoparticles (NPs) have been widely applied, as important antibacterial materials, on textile and polymer surfaces. However, their adhesion to nonreactive polymer surfaces is generally too weak for many applications. Here, we propose a two-step process, atmospheric plasma treatment followed by a surface chemical modification process, which enhances their adhesion to polyethylene terephthalate (PET) surfaces. We found that, compared to either plasma treatments or surface chemical functionalizations, alone, this combination greatly enhanced their adhesion. The plasma treatment resulted in an increase of active sites (sbnd OH, sbnd CHdbnd O and COOH) at the PET surface, permitting increased bonding to 3-aminopropyltriethoxysilane (APTES), whose sbnd NH2 groups were then able to form a bonding complex with the Ag NPs.

  12. Ion-Exchange Processes and Mechanisms in Glasses

    International Nuclear Information System (INIS)

    McGrail, B.P.; Icenhower, J.P.; Darab, J.G.; Shuh, D.K.; Baer, D.R.; Shutthanandan, V.; Thevuthasan, S.; Engelhard, M.H.; Steele, J.L.; Rodriguez, E.A.; Liu, P.; Ivanov, K.E.; Booth, C.H.; Nachimuthu, P.

    2001-01-01

    Leaching of alkalis from glass is widely recognized as an important mechanism in the initial stages of glass-water interactions. Pioneering experimental studies [1-3] nearly thirty-five years ago established that alkali (designated as M + ) are lost to solution more rapidly than network-forming cations. The overall chemical reaction describing the process can be written as: (triple b ond)Si-O-M + H + → (triple b ond)Si-OH + M + (1) or (triple b ond)Si-O-M + H 3 O + → (triple b ond)Si-OH + M + + H 2 O. (2) Doremus and coworkers [4-7] fashioned a quantitative model where M + ions in the glass are exchanged for counter-diffusing H 3 O + or H + . Subsequent investigations [8], which have relied heavily on reaction layer analysis, recognized the role of H 2 O molecules in the alkali-exchange process, without minimizing the importance of charged hydrogen species. Beginning in the 1980s, however, interest in M + -H + exchange reactions in silicate glasses diminished considerably because important experimental observations showed that network hydrolysis and dissolution rates were principally controlled by the chemical potential difference between the glass and solution (chemical affinity) [9]. For nuclear waste glasses, formation of alteration products or secondary phases that remove important elements from solution, particularly Si, was found to have very large impacts on glass dissolution rates [10,11]. Consequently, recent work on glass/water interactions has focused on understanding this process and incorporating it into models [12]. The ion-exchange process has been largely ignored because it has been thought to be a short duration, secondary or tertiary process that had little or no bearing on long-term corrosion or radionuclide release rates from glasses [13]. The only significant effect identified in the literature that is attributed to alkali ion exchange is an increase in solution pH in static laboratory tests conducted at high surface area-to-volume ratios

  13. Mesoscale modelling of atmospheric CO2 across Denmark

    DEFF Research Database (Denmark)

    Lansø, Anne Sofie

    2016-01-01

    of the simulated atmospheric CO2 across Denmark was, in particular, affected by the Danish terrestrial surface exchanges and its temporal variability. This study urges all future modelling studies of air–sea CO2 to include short-term variability in pCO2. To capture the full heterogeneity of the surface exchanges......It is scientifically well-established that the increase of atmospheric CO2 affects the entire globe and will lead to higher surface temperatures. Although anthropogenic CO2is emitted straight into the atmosphere, it does not all contribute to the existing atmospheric CO2 reservoir. Approximately 29......% is taken up by the global oceans, due to under-saturation of CO2 in the surface waters, while another 33 % is taken up by the terrestrial biosphere, via photosynthesis. In order to estimate the effects of increasing anthropogenic emissions of CO2 more accurately in the future, it is essential to understand...

  14. Beneficial Effect of Surface Decorations on the Surface Exchange of Lanthanum Strontium Ferrite and Dual Phase Composites

    DEFF Research Database (Denmark)

    Ovtar, Simona; Søgaard, Martin; Song, Jia

    2016-01-01

    . These perovskites possess a mixed ionic and electronic conductivity (MIEC), which can be highly beneficial for the processes on oxygen electrode surfaces. The oxygen transport through a MIEC is determined by the rate of the oxygen exchange over the gas-solid interface and the diffusivity of oxide ions and electrons...

  15. Measurements of gaseous mercury exchanges at the sediment-water, water-atmosphere and sediment-atmosphere interfaces of a tidal environment (Arcachon Bay, France).

    Science.gov (United States)

    Bouchet, Sylvain; Tessier, Emmanuel; Monperrus, Mathilde; Bridou, Romain; Clavier, Jacques; Thouzeau, Gerard; Amouroux, David

    2011-05-01

    The elemental mercury evasion from non-impacted natural areas is of significant importance in the global Hg cycle due to their large spatial coverage. Intertidal areas represent a dynamic environment promoting the transformations of Hg species and their subsequent redistribution. A major challenge remains in providing reliable data on Hg species variability and fluxes under typical transient tidal conditions found in such environment. Field experiments were thus carried out to allow the assessment and comparison of the magnitude of the gaseous Hg fluxes at the three interfaces, sediment-water, sediment-atmosphere and water-atmosphere of a mesotidal temperate lagoon (Arcachon Bay, Aquitaine, France) over three distinct seasonal conditions. The fluxes between the sediment-water and the sediment-atmosphere interfaces were directly evaluated with field flux chambers, respectively static or dynamic. Water-atmosphere fluxes were evaluated from ambient concentrations using a gas exchange model. The fluxes at the sediment-water interface ranged from -5.0 to 5.1 ng m(-2) h(-1) and appeared mainly controlled by diffusion. The occurrence of macrophytic covers (i.e.Zostera noltii sp.) enhanced the fluxes under light radiations. The first direct measurements of sediment-atmosphere fluxes are reported here. The exchanges were more intense and variable than the two other interfaces, ranging between -78 and 40 ng m(-2) h(-1) and were mostly driven by the overlying atmospheric Hg concentrations and superficial sediment temperature. The exchanges between the water column and the atmosphere, computed as a function of wind speed and gaseous mercury saturation ranged from 0.4 to 14.5 ng m(-2) h(-1). The flux intensities recorded over the intertidal sediments periodically exposed to the atmosphere were roughly 2 to 3 times higher than the fluxes of the other interfaces. The evasion of elemental mercury from emerged intertidal sediments is probably a significant pathway for Hg evasion in

  16. Experimental and Numerical Studies of Atmosphere Water Interactions

    KAUST Repository

    Bou-Zeid, Elie

    2011-07-04

    Understanding and quantifying the interaction of the atmosphere with underlying water surfaces is of great importance for a wide range of scientific fields such as water resources management, climate studies of ocean-atmosphere exchange, and regional weat

  17. Assessment of a surface-layer parameterization scheme in an atmospheric model for varying meteorological conditions

    Directory of Open Access Journals (Sweden)

    T. J. Anurose

    2014-06-01

    Full Text Available The performance of a surface-layer parameterization scheme in a high-resolution regional model (HRM is carried out by comparing the model-simulated sensible heat flux (H with the concurrent in situ measurements recorded at Thiruvananthapuram (8.5° N, 76.9° E, a coastal station in India. With a view to examining the role of atmospheric stability in conjunction with the roughness lengths in the determination of heat exchange coefficient (CH and H for varying meteorological conditions, the model simulations are repeated by assigning different values to the ratio of momentum and thermal roughness lengths (i.e. z0m/z0h in three distinct configurations of the surface-layer scheme designed for the present study. These three configurations resulted in differential behaviour for the varying meteorological conditions, which is attributed to the sensitivity of CH to the bulk Richardson number (RiB under extremely unstable, near-neutral and stable stratification of the atmosphere.

  18. Method for atmospheric pressure reactive atom plasma processing for surface modification

    Science.gov (United States)

    Carr, Jeffrey W [Livermore, CA

    2009-09-22

    Reactive atom plasma processing can be used to shape, polish, planarize and clean the surfaces of difficult materials with minimal subsurface damage. The apparatus and methods use a plasma torch, such as a conventional ICP torch. The workpiece and plasma torch are moved with respect to each other, whether by translating and/or rotating the workpiece, the plasma, or both. The plasma discharge from the torch can be used to shape, planarize, polish, and/or clean the surface of the workpiece, as well as to thin the workpiece. The processing may cause minimal or no damage to the workpiece underneath the surface, and may involve removing material from the surface of the workpiece.

  19. Parameterization of atmosphere-surface exchange of CO2 over sea ice

    DEFF Research Database (Denmark)

    Sørensen, L. L.; Jensen, B.; Glud, Ronnie N.

    2014-01-01

    are discussed. We found the flux to be small during the late winter with fluxes in both directions. Not surprisingly we find that the resistance across the surface controls the fluxes and detailed knowledge of the brine volume and carbon chemistry within the brines as well as knowledge of snow cover and carbon...... chemistry in the ice are essential to estimate the partial pressure of pCO2 and CO2 flux. Further investigations of surface structure and snow cover and driving parameters such as heat flux, radiation, ice temperature and brine processes are required to adequately parameterize the surface resistance....

  20. Surface ozone concentrations in Europe: Links with the regional-scale atmospheric circulation

    Science.gov (United States)

    Davies, T. D.; Kelly, P. M.; Low, P. S.; Pierce, C. E.

    1992-06-01

    Daily surface ozone observations from 1978 (1976 for some analyses) to 1988 for Bottesford (United Kingdom), Cabauw, Kloosterburen (The Netherlands), Hohenpeissenberg, Neuglobsow, Hamburg, and Arkona (Germany) are used to analyze links between surface ozone variations and the atmospheric circulation. A daily Europe-wide synoptic classification highlights marked differences between surface ozone/meteorology relationships in summer and winter. These relationships are characterized by correlations between daily surface ozone concentrations at each station and a local subregional surface pressure gradient (a wind speed index). Although there are geographical variations, which are explicable in terms of regional climatology, there are distinct annual cycles. In summer, the surface ozone/wind speed relationship exhibits the expected negative sign; however, in winter, the relationship is, in the main, strongly positive, especially at those stations which are more influenced by the vigorous westerlies. Spring and autumn exhibit negative, positive, or transitional (between summer and winter) behavior, depending on geographical position. It is suggested that these relationships reflect the importance of vertical exchange from the free troposphere to the surface in the nonsummer months. Composite surface pressure patterns and surface pressure anomaly (from the long-term mean) patterns associated with high surface ozone concentrations on daily and seasonal time scales are consistent with the surface ozone/wind speed relationships. Moreover, they demonstrate that high surface ozone concentrations, in a climatological time frame, can be associated with mean surface pressure patterns which have a synoptic reality and are robust. Such an approach may be useful in interpreting past variations in surface ozone and may help to isolate the effect of human activity. It is also possible that assessments can be made of the effect of projected future changes in the atmospheric circulation

  1. Apparatus and process for deuterium exchange

    International Nuclear Information System (INIS)

    Ergenc, M.S.

    1976-01-01

    The deuterium exchange plant is combined with an absorption refrigeration plant in order to improve the exchange process and to produce refrigeration. The refrigeration plant has a throttling means for expanding and cooling a portion of the liquid exchange medium separated in the exchange plant as well as an evaporator, in which the said liquid exchange medium is brought into heat exchange with a cold consumer device, absorption means for forming a solution of the used exchange medium and fresh water and a pump for pumping the solution into the exchange plant

  2. Ion exchange process: History, evolution and applications

    International Nuclear Information System (INIS)

    Mazzoldi, P.; Carturan, S.; Sada, C.; Quaranta, A.; Sglavo, V.M.

    2013-01-01

    The aim of this paper is to present a review on some aspects and applications of ion exchange process in glasses, ferroelectric and polymers in the fields of optics, nanotechnology, gas sensors and chemical strengthening. The formation of nanoparticles in ion-exchanged glasses, as effect of ion or laser irradiation, is discussed. A discussion on the potentialities of ion exchange process in comparison to ion implantation in optical devices and nanotechnology is also introduced. Analytical techniques applied to the study of the ion exchange process are illustrated. The studies of ion exchange process in “Natural materials” constitute the content of a specific paragraph, for applications in water cleaning. Some initial considerations on the “old age” of this technique are introduced.

  3. Composition of atmospheric precipitation. I. Sampling technique. Use of ion exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Egner, H; Eriksson, E; Emanuelsson, A

    1947-01-01

    In order to investigate the composition of atmospheric precipitations in Sweden, a technique using ion exchange resins has been developed. The possibilities of nitrate reduction, and ammonia losses, when the precipitation is collected in zinc gauges is stressed. Glass funnels are used, and they are effectively protected from bird droppings. The ion exchange resins so far available are quite serviceable but show some deficiencies as to stability, and activity in alkaline solutions. New resins, which are not yet available, seem to offer definite advantages.

  4. Atmospheric-Pressure Plasma Jet Surface Treatment for Use in Improving Adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Kuettner, Lindsey Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-06

    Atmospheric-pressure plasma jets (APPJs) are a method of plasma treatment that plays an important role in material processing and modifying surface properties of materials, especially polymers. Gas plasmas react with polymer surfaces in numerous ways such as oxidation, radical formation, degradation, and promotion of cross-linking. Because of this, gas and plasma conditions can be explored for chosen processes to maximize desired properties. The purpose of this study is to investigate plasma parameters in order to modify surface properties for improved adhesion between aluminum and epoxy substrates using two types of adhesives. The background, results to date, and future work will be discussed.

  5. B33C-0612: Evaluation of Simulated Biospheric Carbon Dioxide Fluxes and Atmospheric Concentrations Using Global in Situ Observations

    Science.gov (United States)

    Philip, Sajeev; Johnson, Matthew S.; Potter, Christopher S.; Genovese, Vanessa

    2016-01-01

    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emission sources and biospheric sources/sinks. Global biospheric fluxes of CO2 are controlled by complex processes facilitating the exchange of carbon between terrestrial ecosystems and the atmosphere. These processes which play a key role in these terrestrial ecosystem-atmosphere carbon exchanges are currently not fully understood, resulting in large uncertainties in the quantification of biospheric CO2 fluxes. Current models with these inherent deficiencies have difficulties simulating the global carbon cycle with high accuracy. We are developing a new modeling platform, GEOS-Chem-CASA by integrating the year-specific NASA-CASA (National Aeronautics and Space Administration - Carnegie Ames Stanford Approach) biosphere model with the GEOS-Chem (Goddard Earth Observation System-Chemistry) chemical transport model to improve the simulation of atmosphere-terrestrial ecosystem carbon exchange. We use NASA-CASA to explicitly represent the exchange of CO2 between terrestrial ecosystem and atmosphere by replacing the baseline GEOS-Chem land net CO2 flux and forest biomass burning CO2 emissions. We will present the estimation and evaluation of these "bottom-up" land CO2 fluxes, simulated atmospheric mixing ratios, and forest disturbance changes over the last decade. In addition, we will present our initial comparison of atmospheric column-mean dry air mole fraction of CO2 predicted by the model and those retrieved from NASA's OCO-2 (Orbiting Carbon Observatory-2) satellite instrument and model-predicted surface CO2 mixing ratios with global in situ observations. This evaluation is the first step necessary for our future work planned to constrain the estimates of biospheric carbon fluxes through "top-down" inverse modeling, which will improve our understanding of the processes controlling atmosphere-terrestrial ecosystem greenhouse gas exchanges, especially over regions which lack in

  6. Atmospheric-pressure plasma activation and surface characterization on polyethylene membrane separator

    Science.gov (United States)

    Tseng, Yu-Chien; Li, Hsiao-Ling; Huang, Chun

    2017-01-01

    The surface hydrophilic activation of a polyethylene membrane separator was achieved using an atmospheric-pressure plasma jet. The surface of the atmospheric-pressure-plasma-treated membrane separator was found to be highly hydrophilic realized by adjusting the plasma power input. The variations in membrane separator chemical structure were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Chemical analysis showed newly formed carbonyl-containing groups and high surface concentrations of oxygen-containing species on the atmospheric-pressure-plasma-treated polymeric separator surface. It also showed that surface hydrophilicity primarily increased from the polar component after atmospheric-pressure plasma treatment. The surface and pore structures of the polyethylene membrane separator were examined by scanning electron microscopy, revealing a slight alteration in the pore structure. As a result of the incorporation of polar functionalities by atmospheric-pressure plasma activation, the electrolyte uptake and electrochemical impedance of the atmospheric-pressure-plasma-treated membrane separator improved. The investigational results show that the separator surface can be controlled by atmospheric-pressure plasma surface treatment to tailor the hydrophilicity and enhance the electrochemical performance of lithium ion batteries.

  7. Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

    2011-12-01

    The U.S. Department of Energy selected the high temperature gas-cooled reactor as the basis for the Next Generation Nuclear Plant (NGNP). The NGNP will demonstrate the use of nuclear power for electricity, hydrogen production, and process heat applications. The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. An intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding. This report describes the preliminary results of a scoping study that evaluated the diffusion welding process parameters and the resultant mechanical properties of diffusion welded joints using Alloy 800H. The long-term goal of the program is to progress towards demonstration of small heat exchanger unit cells fabricated with diffusion welds. Demonstration through mechanical testing of the unit cells will support American Society of Mechanical Engineers rules and standards development, reduce technical risk, and provide proof of concept for heat exchanger fabrication methods needed to deploy heat exchangers in several potential NGNP configurations.1 Researchers also evaluated the usefulness of modern thermodynamic and diffusion computational tools (Thermo-Calc and Dictra) in optimizing the parameters for diffusion welding of Alloy 800H. The modeling efforts suggested a temperature of 1150 C for 1 hour with an applied pressure of 5 MPa using 15 {micro}m nickel foil as joint filler to reduce chromium oxidation on the welded surfaces. Good agreement between modeled and experimentally determined concentration gradients was achieved

  8. Marine Atmospheric Surface Layer and Its Application to Electromagnetic Wave Propagation

    Science.gov (United States)

    Wang, Q.

    2015-12-01

    An important application of the atmospheric surface layer research is to characterize the near surface vertical gradients in temperature and humidity in order to predict radar and radio communication conditions in the environment. In this presentation, we will give an overview of a new research initiative funded under the Office of Naval Research (ONR) Multi-University Research Initiative (MURI): the Coupled Air-Sea Processes and EM Ducting Research (CASPER). The objective is to fully characterize the marine atmospheric boundary layer (MABL) as an electromagnetic (EM) propagation environment with the emphasis of spatial and temporal heterogeneities and surface wave/swell effects, both of which contravene the underlying assumptions of Monin-Obukhov Similarity Theory (MOST) used in coupled environmental forecast models. Furthermore, coastal variability in the inversion atop the MABL presents a challenge to forecast models and also causes practical issues in EM prediction models. These issues are the target of investigation of CASPER. CASPER measurement component includes two major field campaigns: CASPER-East (2015 Duck, NC) and CASPER-West (2018 southern California). This presentation will show the extensive measurements to be made during the CASPER -East field campaign with the focus on the marine atmospheric surface layer measurements with two research vessels, two research aircraft, surface flux buoy, wave gliders, ocean gliders, tethered balloons, and rawinsondes. Unlike previous research on the marine surface layer with the focus on surface fluxes and surface flux parameterization, CASPER field campaigns also emphasize of the surface layer profiles and the validation of the surface layer flux-profile relationship originally derived over land surfaces. Results from CASPER pilot experiment and preliminary results from CASPER-East field campaign will be discussed.

  9. Simulating dynamics of {delta}{sup 13}C of CO{sub 2} in the planetary boundary layer a boreal forest region: covariation between surface fluxes and atmospheric mixing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baozhang; Chen, Jing M. [Univ. of Toronto, ON (Canada). Dept. of Geography; Tans, Pieter P. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Earth System Research Lab.; Huang, Lin [Environment Canada, Toronto, ON (Canada). Atmospheric Science and Technology Directorate

    2006-11-15

    Stable isotopes of CO{sub 2} contain unique information on the biological and physical processes that exchange CO{sub 2} between terrestrial ecosystems and the atmosphere. Ecosystem exchange of carbon isotopes with the atmosphere is correlated diurnally and seasonally with the planetary boundary layer (PBL) dynamics. The strength of this kind of covariation affects the vertical gradient of {delta}{sup 13}C and thus the global {delta}{sup 13}C distribution pattern. We need to understand the various processes involved in transport/diffusion of carbon isotope ratio in the PBL and between the PBL and the biosphere and the troposphere. In this study, we employ a one-dimensional vertical diffusion/transport atmospheric model (VDS), coupled to an ecosystem isotope model (BEPS-EASS) to simulate dynamics of {sup 13}CO{sub 2} in the PBL over a boreal forest region in the vicinity of the Fraserdale (FRD) tower (49 deg 52 min 29.9 sec N, 81 deg 34 min 12.3 sec W) in northern Ontario, Canada. The data from intensive campaigns during the growing season in 1999 at this site are used for model validation in the surface layer. The model performance, overall, is satisfactory in simulating the measured data over the whole course of the growing season. We examine the interaction of the biosphere and the atmosphere through the PBL with respect to {delta}{sup 13}C on diurnal and seasonal scales. The simulated annual mean vertical gradient of {delta}{sup 13}C in the PBL in the vicinity of the FRD tower was about 0.025% in 1999. The {delta}{sup 13}C vertical gradient exhibited strong diurnal (29%) and seasonal (71%) variations that do not exactly mimic those of CO{sub 2}. Most of the vertical gradient (96.5% {+-}) resulted from covariation between ecosystem exchange of carbon isotopes and the PBL dynamics, while the rest (3.5%{+-}) was contributed by isotopic disequilibrium between respiration and photosynthesis. This disequilibrium effect on {delta}{sup 13}C of CO{sub 2} dynamics in PBL

  10. Simulating dynamics of (delta){sup 13}C of CO{sub 2} in the planetary boundary layer a boreal forest region: covariation between surface fluxes and atmospheric mixing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baozhang; Chen, Jing M. [Univ. of Toronto, ON (Canada). Dept. of Geography; Tans, Pieter P. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Earth System Research Lab.; Huang, Lin [Environment Canada, Toronto, ON (Canada). Atmospheric Science and Technology Directorate

    2006-11-15

    Stable isotopes of CO{sub 2} contain unique information on the biological and physical processes that exchange CO{sub 2} between terrestrial ecosystems and the atmosphere. Ecosystem exchange of carbon isotopes with the atmosphere is correlated diurnally and seasonally with the planetary boundary layer (PBL) dynamics. The strength of this kind of covariation affects the vertical gradient of (delta){sup 13}C and thus the global (delta){sup 13}C distribution pattern. We need to understand the various processes involved in transport/diffusion of carbon isotope ratio in the PBL and between the PBL and the biosphere and the troposphere. In this study, we employ a one-dimensional vertical diffusion/transport atmospheric model (VDS), coupled to an ecosystem isotope model (BEPS-EASS) to simulate dynamics of {sup 13}CO{sub 2} in the PBL over a boreal forest region in the vicinity of the Fraserdale (FRD) tower (49 deg 52 min 29.9 sec N, 81 deg 34 min 12.3 sec W) in northern Ontario, Canada. The data from intensive campaigns during the growing season in 1999 at this site are used for model validation in the surface layer. The model performance, overall, is satisfactory in simulating the measured data over the whole course of the growing season. We examine the interaction of the biosphere and the atmosphere through the PBL with respect to (delta){sup 13}C on diurnal and seasonal scales. The simulated annual mean vertical gradient of (delta){sup 13}C in the PBL in the vicinity of the FRD tower was about 0.025% in 1999. The (delta){sup 13}C vertical gradient exhibited strong diurnal (29%) and seasonal (71%) variations that do not exactly mimic those of CO{sub 2}. Most of the vertical gradient (96.5% {+-}) resulted from covariation between ecosystem exchange of carbon isotopes and the PBL dynamics, while the rest (3.5%{+-}) was contributed by isotopic disequilibrium between respiration and photosynthesis. This disequilibrium effect on (delta){sup 13}C of CO{sub 2} dynamics in PBL

  11. Improving estimations of greenhouse gas transfer velocities by atmosphere-ocean couplers in Earth-System and regional models

    Science.gov (United States)

    Vieira, V. M. N. C. S.; Sahlée, E.; Jurus, P.; Clementi, E.; Pettersson, H.; Mateus, M.

    2015-09-01

    Earth-System and regional models, forecasting climate change and its impacts, simulate atmosphere-ocean gas exchanges using classical yet too simple generalizations relying on wind speed as the sole mediator while neglecting factors as sea-surface agitation, atmospheric stability, current drag with the bottom, rain and surfactants. These were proved fundamental for accurate estimates, particularly in the coastal ocean, where a significant part of the atmosphere-ocean greenhouse gas exchanges occurs. We include several of these factors in a customizable algorithm proposed for the basis of novel couplers of the atmospheric and oceanographic model components. We tested performances with measured and simulated data from the European coastal ocean, having found our algorithm to forecast greenhouse gas exchanges largely different from the forecasted by the generalization currently in use. Our algorithm allows calculus vectorization and parallel processing, improving computational speed roughly 12× in a single cpu core, an essential feature for Earth-System models applications.

  12. Pluto's surface composition and atmosphere

    Science.gov (United States)

    Young, L. A.; Gladstone, R.; Summers, M. E.; Strobel, D. F.; Kammer, J.; Hinson, D. P.; Grundy, W. M.; Cruikshank, D. P.; Protopapa, S.; Schmitt, B.; Stern, A.; Weaver, H. A., Jr.; Olkin, C.; Ennico Smith, K.

    2017-12-01

    New Horizons studied Pluto's N2-dominated neutral atmosphere through radio (at 4.2 cm with the REX radio experiment), solar and stellar occultations and airglow (at 52-187 nm with the Alice ultraviolet spectrograph), and imaging (with the LORRI and MVIC visible-wavelength cameras). It studied the plasma environment and solar wind interaction with in situ instruments (PEPPSI and SWAP). Contemporaneous observations of Pluto's atmosphere from Earth included a ground-based stellar occultation and ALMA observations of gaseous CO and HCN. Joint analysis of these datasets reveal a variable boundary layer; a stable lower atmosphere; radiative heating and cooling; haze production and hydrocarbon chemistry; diffusive equilibrium; and slower-than-expected escape. New Horizons studied Pluto's surface composition with the LEISA near-infrared spectral imager from 1.25 to 2.5 micron. Additional compositional information at higher spatial resolution came from the MVIC 4-channel color imager, which included a channel centered at 0.89 micron specifically designed to detect solid CH4. These instruments allow mapping of the volatiles N2, CO, and CH4, the surface expression of the H2O bedrock, and the dark, reddish material presumed to be tholins. These observations reveal a large equatorial basin (informally named Sptunik Planitia), filled with N2 ice with minor amounts of CO and CH4, surrounded by hills of CH4 and H2O ice. Broadly speaking, composition outside of Sptunik Planitia follows latitudinal banding, with dark, mainly volatile free terrains near the equator, with N2, CO, and CH4 at mid-northern latitudes, and mainly CH4 at high northern latitudes. Deviations from these broad trends are seen, and point to complex surface-atmosphere interactions at diurnal, seasonal, perennial, and million-year timescales.

  13. Estimating the Mean Circulation and Water Exchange of the Gulf of Suez-Red Sea via a Validated One-Way Atmospheric-Hydrodynamic Coupled Model

    Science.gov (United States)

    Eladawy, Ahmed; Shaltout, Mohamed; Sousa, Magda Catarina; Dias, João Miguel; Nadaoka, Kazuo

    2018-05-01

    The Gulf of Suez, Northern Islands protected area, and Hurghada zone are experiencing mega developments in all sectors including tourism, industry, and logistics. The need for moderately accurate near-shore hydrodynamic models is increasing to support the sustainable development of this oceanic area. This can be accomplished by following a nesting approach including the downscaling of global atmospheric and oceanic models into local models using higher resolution datasets. This work aims to present the development of a one-way coupling between atmospheric and hydrodynamic models for the Gulf of Suez (GOS) to understand the local oceanic characteristics and processes. The Regional Climate Model system (RegCM4) is used to simulate moderate resolution atmospheric features and its results are used to force a local dedicated application of Delft3D model. The results indicate that the predicted water level, water temperature, and evaporation accurately follow in situ measurements, remotely sensed data, and re-analysis data. The results suggest that the annual sea surface temperature is averaged at 23 °C, while the annual average of evaporation rates equals 8.02 mm/day. The study suggests that the water level displays a marked seasonal and spatial variation. Moreover, the water balance in the Gulf of Suez was controlled by the difference between inflows and outflows through the Straits of Gubal and by the net precipitation. In addition, the water balance indicated a net loss of approximately 3.9 × 10-3 m of water during 2013. Moreover, the exchange through the Straits of Gubal showed a two-way exchange with a net inflow of 0.0007 Sv, where the outflow dominated in the surface layer along the western coast and the inflow dominated in the lower layers along the middle of the Straits. To conclude, the one-way coupling modeling technique proved to be a reliable tool for studying local features of the GOS region.

  14. An overview of surface radiance and biology studies in FIFE

    Science.gov (United States)

    Blad, B. L.; Schimel, D. S.

    1992-01-01

    The use of satellite data to study and to understand energy and mass exchanges between the land surface and the atmosphere requires information about various biological processes and how various reflected or emitted spectral radiances are influenced by or manifested in these processes. To obtain such information, studies were conducted by the First ISLSCP Field Experiment (FIFE) surface radiances and biology (SRB) group using surface, near-surface, helicopter, and aircraft measurements. The two primary objectives of this group were to relate radiative fluxes to biophysical parameters and physiological processes and to assess how various management treatments affect important biological processes. This overview paper summarizes the results obtained by various SRB teams working in nine different areas: (1) measurements of bidirectional reflectance and estimation of hemispherical albedo; (2) evaluation of spatial and seasonal variability reflectance and vegetation indices; (3) determination of surface and radiational factors and their effects on vegetation indices and photosynthetically active radiation relationships; (4) use of surface temperatures to estimate sensible heat flux; (5) controls over photosynthesis and respiration at small scales; (6) soil surface CO2 fluxes and grassland carbon budget; (7) landscape variations in controls over gas exchange and energy partitioning; (8) radiometric response of prairie to management and topography; and (9) determination of nitrogen gas exchanges in a tallgrass prairie.

  15. An overview of surface radiance and biology studies in FIFE

    Science.gov (United States)

    Blad, B. L.; Schimel, D. S.

    1992-11-01

    The use of satellite data to study and to understand energy and mass exchanges between the land surface and the atmosphere requires information about various biological processes and how various reflected or emitted spectral radiances are influenced by or manifested in these processes. To obtain such information, studies were conducted by the First ISLSCP Field Experiment (FIFE) surface radiances and biology (SRB) group using surface, near-surface, helicopter, and aircraft measurements. The two primary objectives of this group were to relate radiative fluxes to biophysical parameters and physiological processes and to assess how various management treatments affect important biological processes. This overview paper summarizes the results obtained by various SRB teams working in nine different areas: (1) measurement of bidirectional reflectance and estimation of hemispherical albedo; (2) evaluation of spatial and seasonal variability of spectral reflectance and vegetation indices; (3) determination of surface and radiational factors and their effects on vegetation indices and PAR relationships; (4) use of surface temperatures to estimate sensible heat flux; (5) controls over photosynthesis and respiration at small scales; (6) soil surface CO2 fluxes and grassland carbon budget; (7) landscape variations in controls over gas exchange and energy partitioning; (8) radiometric response of prairie to management and topography; and (9) determination of nitrogen gas exchanges in a tallgrass prairie.

  16. Deposits on heat exchanging surfaces, causes in the bleaching process and countermeasures; Belaeggningar paa vaermevaexlare, orsaker i blekprocessen och aatgaerder

    Energy Technology Data Exchange (ETDEWEB)

    Bjurstroem, Henrik [AaF-Energi och Miljoe AB, Stockholm (Sweden); Staahl, Charlotte; Widell, Lars [AaF-Celpap AB, Stockholm (Sweden)

    2003-06-01

    Energy conservation in process industry implies to a large extent recovery of heat (or cold) from a process stream and its utilization for another process stream. The savings of energy that can be achieved depend on the process streams, but also on the efficiency of the heat exchange. A small driving temperature difference is a condition for an extensive recovery and a satisfactory preservation of its quality, i.e. its temperature. As process streams contain compounds or components that can precipitate and form deposits on heat exchanging surfaces, the recovery of heat is degraded. In the pulp and paper industry, two trends combine to increase the extent of fouling: a larger degree of closure for the process and a change in pH-profile caused by a switch to elementary chlorine free bleaching. In this study, the occurrence of deposits has been investigated for the mills that produce mechanical pulp and for the fiber line in mills producing chemical pulp. Deposits on the evaporator surfaces are treated in a parallel study. Except for some plants, deposits are not an important problem today. That does not mean that there has not been any problem or that problems will not occur. The origin of deposits lies in the chemistry of the process, but deposits have consequences for the thermal energy management. A list of possible actions in order to avoid deposits or to mitigate their consequences has been dressed in this report. They should be considered with the following order of priority: avoiding that the compounds that may form deposits enter at all the process, section 6.1; avoiding that these compounds form a deposit once they have entered the process, section 6.2; cleaning if nothing else helps or costs too much, section 6.3. Some of these methods are well known or are conventional changes in the processes. Some of these methods are less well proven or less well documented. In a longer time perspective, the kidney technology that is being developed could contribute to

  17. Solving for the Surface: An Automated Approach to THEMIS Atmospheric Correction

    Science.gov (United States)

    Ryan, A. J.; Salvatore, M. R.; Smith, R.; Edwards, C. S.; Christensen, P. R.

    2013-12-01

    Here we present the initial results of an automated atmospheric correction algorithm for the Thermal Emission Imaging System (THEMIS) instrument, whereby high spectral resolution Thermal Emission Spectrometer (TES) data are queried to generate numerous atmospheric opacity values for each THEMIS infrared image. While the pioneering methods of Bandfield et al. [2004] also used TES spectra to atmospherically correct THEMIS data, the algorithm presented here is a significant improvement because of the reduced dependency on user-defined inputs for individual images. Additionally, this technique is particularly useful for correcting THEMIS images that have captured a range of atmospheric conditions and/or surface elevations, issues that have been difficult to correct for using previous techniques. Thermal infrared observations of the Martian surface can be used to determine the spatial distribution and relative abundance of many common rock-forming minerals. This information is essential to understanding the planet's geologic and climatic history. However, the Martian atmosphere also has absorptions in the thermal infrared which complicate the interpretation of infrared measurements obtained from orbit. TES has sufficient spectral resolution (143 bands at 10 cm-1 sampling) to linearly unmix and remove atmospheric spectral end-members from the acquired spectra. THEMIS has the benefit of higher spatial resolution (~100 m/pixel vs. 3x5 km/TES-pixel) but has lower spectral resolution (8 surface sensitive spectral bands). As such, it is not possible to isolate the surface component by unmixing the atmospheric contribution from the THEMIS spectra, as is done with TES. Bandfield et al. [2004] developed a technique using atmospherically corrected TES spectra as tie-points for constant radiance offset correction and surface emissivity retrieval. This technique is the primary method used to correct THEMIS but is highly susceptible to inconsistent results if great care in the

  18. Methodology to obtain exchange properties of the calcite surface-Application to major and trace elements: Ca(II), HCO3-, and Zn(II)

    International Nuclear Information System (INIS)

    Tertre, E.; Beaucaire, C.; Juery, A.; Ly, J.; Tertre, E.; Beaucaire, C.; Juery, A.; Ly, J.

    2010-01-01

    Sorption of inorganic elements onto carbonate minerals has been intensively described in the literature by two reaction steps: (1) a first one rapid and completed within a few hours and (2) a second one slower, eventually irreversible, and occurring at a constant rate. The first step is often attributed to an ion-exchange process, but its reversibility is rarely investigated. Consequently, discrimination of the global sorption phenomenon into two different mechanisms is not always justified. In this study, we investigated, by batch experiments, both sorption and desorption of Ca(II), HCO 3 - , and Zn(II), radiolabeled with isotopes 45 Ca(II), H 14 CO 3 - , and 65 Zn(II), respectively, onto synthetic pure calcite. Solutions were pre-equilibrated with atmospheric p(CO 2 ) and saturated with respect to calcite. Therefore, our purpose was to: (1) obtain experimental distribution coefficients of major elements (Ca(II) and HCO 3 - ) and a trace element (Zn(II)) onto calcite from sorption and desorption experiments, (2) test the validity of a first-occurring ion-exchange process generally noted in the literature, by calculating distribution coefficients for the 'sole' exchange process, and (3) quantify the amounts of Ca(II), HCO 3 - , and Zn(II) sorbed on the calcite surface by the sole 'exchange process' and compare them with surface crystallochemical data. Ca(II) or HCO 3 - sorption experimental data suggest that a significant fraction of these two elements was sorbed irreversibly onto or in the calcite. By using a method based on isotopic ratios, the Ca(II) or HCO 3 - concentrations, which are reversibly adsorbed on the calcite, have been quantified. These concentrations are respectively estimated at 4. 0 ± 2. 0 * 10 -4 and 7. 0 ± 1. 5 * 10 -4 mol/kg. The obtained Ca(II) surface concentration value is one order of magnitude lower than the one obtained from isotopic measurement by former authors [Geochim. Cosmochim. Acta 55 (1991) 1549; Geochim. Cosmochim. Acta 51

  19. New Constraints on Terrestrial Surface-Atmosphere Fluxes of Gaseous Elemental Mercury Using a Global Database.

    Science.gov (United States)

    Agnan, Yannick; Le Dantec, Théo; Moore, Christopher W; Edwards, Grant C; Obrist, Daniel

    2016-01-19

    Despite 30 years of study, gaseous elemental mercury (Hg(0)) exchange magnitude and controls between terrestrial surfaces and the atmosphere still remain uncertain. We compiled data from 132 studies, including 1290 reported fluxes from more than 200,000 individual measurements, into a database to statistically examine flux magnitudes and controls. We found that fluxes were unevenly distributed, both spatially and temporally, with strong biases toward Hg-enriched sites, daytime and summertime measurements. Fluxes at Hg-enriched sites were positively correlated with substrate concentrations, but this was absent at background sites. Median fluxes over litter- and snow-covered soils were lower than over bare soils, and chamber measurements showed higher emission compared to micrometeorological measurements. Due to low spatial extent, estimated emissions from Hg-enriched areas (217 Mg·a(-1)) were lower than previous estimates. Globally, areas with enhanced atmospheric Hg(0) levels (particularly East Asia) showed an emerging importance of Hg(0) emissions accounting for half of the total global emissions estimated at 607 Mg·a(-1), although with a large uncertainty range (-513 to 1353 Mg·a(-1) [range of 37.5th and 62.5th percentiles]). The largest uncertainties in Hg(0) fluxes stem from forests (-513 to 1353 Mg·a(-1) [range of 37.5th and 62.5th percentiles]), largely driven by a shortage of whole-ecosystem fluxes and uncertain contributions of leaf-atmosphere exchanges, questioning to what degree ecosystems are net sinks or sources of atmospheric Hg(0).

  20. Atmospheric turbulence triggers pronounced diel pattern in karst carbonate geochemistry

    Science.gov (United States)

    Roland, M.; Serrano-Ortiz, P.; Kowalski, A. S.; Goddéris, Y.; Sánchez-Cañete, E. P.; Ciais, P.; Domingo, F.; Cuezva, S.; Sanchez-Moral, S.; Longdoz, B.; Yakir, D.; Van Grieken, R.; Schott, J.; Cardell, C.; Janssens, I. A.

    2013-07-01

    CO2 exchange between terrestrial ecosystems and the atmosphere is key to understanding the feedbacks between climate change and the land surface. In regions with carbonaceous parent material, CO2 exchange patterns occur that cannot be explained by biological processes, such as disproportionate outgassing during the daytime or nighttime CO2 uptake during periods when all vegetation is senescent. Neither of these phenomena can be attributed to carbonate weathering reactions, since their CO2 exchange rates are too small. Soil ventilation induced by high atmospheric turbulence is found to explain atypical CO2 exchange between carbonaceous systems and the atmosphere. However, by strongly altering subsurface CO2 concentrations, ventilation can be expected to influence carbonate weathering rates. By imposing ventilation-driven CO2 outgassing in a carbonate weathering model, we show here that carbonate geochemistry is accelerated and does play a surprisingly large role in the observed CO2 exchange pattern of a semi-arid ecosystem. We found that by rapidly depleting soil CO2 during the daytime, ventilation disturbs soil carbonate equilibria and therefore strongly magnifies daytime carbonate precipitation and associated CO2 production. At night, ventilation ceases and the depleted CO2 concentrations increase steadily. Dissolution of carbonate is now enhanced, which consumes CO2 and largely compensates for the enhanced daytime carbonate precipitation. This is why only a relatively small effect on global carbonate weathering rates is to be expected. On the short term, however, ventilation has a drastic effect on synoptic carbonate weathering rates, resulting in a pronounced diel pattern that exacerbates the non-biological behavior of soil-atmosphere CO2 exchanges in dry regions with carbonate soils.

  1. A Useful Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data

    Science.gov (United States)

    Rivalland, Vincent; Tardy, Benjamin; Huc, Mireille; Hagolle, Olivier; Marcq, Sébastien; Boulet, Gilles

    2016-04-01

    Land Surface temperature (LST) is a critical variable for studying the energy and water budgets at the Earth surface, and is a key component of many aspects of climate research and services. The Landsat program jointly carried out by NASA and USGS has been providing thermal infrared data for 40 years, but no associated LST product has been yet routinely proposed to community. To derive LST values, radiances measured at sensor-level need to be corrected for the atmospheric absorption, the atmospheric emission and the surface emissivity effect. Until now, existing LST products have been generated with multi channel methods such as the Temperature/Emissivity Separation (TES) adapted to ASTER data or the generalized split-window algorithm adapted to MODIS multispectral data. Those approaches are ill-adapted to the Landsat mono-window data specificity. The atmospheric correction methodology usually used for Landsat data requires detailed information about the state of the atmosphere. This information may be obtained from radio-sounding or model atmospheric reanalysis and is supplied to a radiative transfer model in order to estimate atmospheric parameters for a given coordinate. In this work, we present a new automatic tool dedicated to Landsat thermal data correction which improves the common atmospheric correction methodology by introducing the spatial dimension in the process. The python tool developed during this study, named LANDARTs for LANDsat Automatic Retrieval of surface Temperature, is fully automatic and provides atmospheric corrections for a whole Landsat tile. Vertical atmospheric conditions are downloaded from the ERA Interim dataset from ECMWF meteorological organization which provides them at 0.125 degrees resolution, at a global scale and with a 6-hour-time step. The atmospheric correction parameters are estimated on the atmospheric grid using the commercial software MODTRAN, then interpolated to 30m resolution. We detail the processing steps

  2. A Kolmogorov-Brutsaert Structure Function Model for Evaporation from a Rough Surface into a Turbulent Atmosphere

    Science.gov (United States)

    Katul, Gabriel; Liu, Heping

    2017-04-01

    In his 1881 acceptance letter of the Rumford Medal, Gibbs declared that "One of the principal objects of theoretical research is to find the point of view from which the subject appears in the greatest simplicity". Guided by this quotation, the subject of evaporation into the atmosphere from rough surfaces by turbulence offered in a 1965 study by Brutsaert is re-examined. Brutsaert proposed a model that predicted mean evaporation rate E from rough surfaces to scale with the 3/4 power-law of the friction velocity (u∗) and the square-root of molecular diffusivity (Dm) for water vapor. This result was supported by a large corpus of experiments and spawned a number of studies on inter-facial transfer of scalars, evaporation from porous media at single and multiple pore scales, bulk evaporation from bare soil surfaces, as well as isotopic fractionation in hydrological applications. It also correctly foreshadowed the much discussed 1/4 'universal' scaling of liquid transfer coefficients of sparingly soluble gases in air-sea exchange studies. In arriving at these results, a number of assumptions were made regarding the surface renewal rate describing the contact durations between eddies and the evaporating surface, the diffusional mass process from the surface into eddies, and the cascade of turbulent kinetic energy sustaining the eddy renewal process itself. The anzats explored here is that E ˜√Dm-u∗3/4 is a direct outcome of the Kolmogorov scaling for inertial subrange eddies modified to include viscous-cutoff thereby by-passing the need for a surface renewal assumption. It is demonstrated that Brutsaert's model for E may be more general than its original derivation assumed. Extensions to canopy surfaces as well as other scalars with different molecular Schmidt numbers are also featured.

  3. Kinetics of the homogeneous exchange of alpha-lactalbumin adsorbed on titanium oxide surface.

    Science.gov (United States)

    Bentaleb, A; Haïkel, Y; Voegel, J C; Schaaf, P

    1998-06-05

    The homogeneous exchange process whereby alpha-lactalbumine molecules adsorbed on hydrophilic titanium oxide particles are replaced by alpha-lactalbumine molecules in solution has been investigated by means of a 125I radio-labeling technique, alpha-lactalbumine is a compact and highly negatively charged protein, making this study complementary to previous work devoted to the general understanding of the exchange mechanisms of adsorbed proteins on solid surfaces. The isotherm of alpha-lactalbumine exhibits bimodal adsorption shape, and the exchange process whereby adsorbed proteins are replaced by new incoming ones from the bulk solution has been studied at both the upper and the lower plateau of the isotherm. In the upper plateau the exchange process was found to be of first order with respect to the bulk molecules, and the release rate constant was equal to 0.914 L. mol-1.s-1. This behavior is identical to what has been observed with other proteinic systems. In the lower plateau domain, in contrast, the protein release process is independent of the concentration of proteins in the bulk, but the release rates are higher than the pure desorption rates. This constitutes, to our knowledge, a behavior that never before has been observed and that remains to be explained.

  4. Changing surface-atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland

    Science.gov (United States)

    Charalampidis, C.; van As, D.; Box, J. E.; van den Broeke, M. R.; Colgan, W. T.; Doyle, S. H.; Hubbard, A. L.; MacFerrin, M.; Machguth, H.; Smeets, C. J. P. P.

    2015-11-01

    We present 5 years (2009-2013) of automatic weather station measurements from the lower accumulation area (1840 m a.s.l. - above sea level) of the Greenland ice sheet in the Kangerlussuaq region. Here, the summers of 2010 and 2012 were both exceptionally warm, but only 2012 resulted in a strongly negative surface mass budget (SMB) and surface meltwater run-off. The observed run-off was due to a large ice fraction in the upper 10 m of firn that prevented meltwater from percolating to available pore volume below. Analysis reveals an anomalously low 2012 summer-averaged albedo of 0.71 (typically ~ 0.78), as meltwater was present at the ice sheet surface. Consequently, during the 2012 melt season, the ice sheet surface absorbed 28 % (213 MJ m-2) more solar radiation than the average of all other years. A surface energy balance model is used to evaluate the seasonal and interannual variability of all surface energy fluxes. The model reproduces the observed melt rates as well as the SMB for each season. A sensitivity analysis reveals that 71 % of the additional solar radiation in 2012 was used for melt, corresponding to 36 % (0.64 m) of the 2012 surface lowering. The remaining 64 % (1.14 m) of surface lowering resulted from high atmospheric temperatures, up to a +2.6 °C daily average, indicating that 2012 would have been a negative SMB year at this site even without the melt-albedo feedback. Longer time series of SMB, regional temperature, and remotely sensed albedo (MODIS) show that 2012 was the first strongly negative SMB year, with the lowest albedo, at this elevation on record. The warm conditions of recent years have resulted in enhanced melt and reduction of the refreezing capacity in the lower accumulation area. If high temperatures continue, the current lower accumulation area will turn into a region with superimposed ice in coming years.

  5. Electrolytic plasma processing of steel surfaces

    International Nuclear Information System (INIS)

    Bejar, M.A; Araya, R.N; Baeza, B

    2006-01-01

    The thermo-chemical treatments of steels with plasma is normally carried out in low-pressure ionized gaseous atmospheres. Among the treatments used most often are: nitruration, carburization and boronized. A plasma can also generate at atmospheric pressure. One way to produce it is with an electrochemical cell that works at a relatively high inter-electrode voltage and under conditions of heavy gas generation. This type of plasma is known as electrolytic plasma. This work studies the feasibility of using electrolytic plasma for the surface processing of steels. Two processes were selected: boronized and nitruration., for the hardening of two types of steel: one with low carbon (1020) and one with low alloy (4140). In the case of the nitruration, the 1020 steel was first aluminized. The electrolytes were aqueous solutions of borax for the boronizing and urea for the nitruration. The electrolytic plasmas were classified qualitatively, in relation with their luminosity by low, medium and high intensity. The boronizing was carried out with low intensity plasmas for a period of one hour. The nitruration was performed with plasmas of different intensities and for period of a few minutes to half an hour. The test pieces processed by electrolytic plasma were characterized by micro-hardness tests and X-ray diffraction. The maximum surface hardnesses obtained for the 1020 and 4140 steels were the following: 300 and 700 HV for the boronizing, and 1650 and 1200 HV for the nitruration, respectively. The utilization of an electrolytic plasma permits the surface processing of steels, noticeably increasing their hardness. With this type of plasma some thermo-chemical surface treatments can be done very rapidly as well (CW)

  6. Exoplanet atmospheres physical processes

    CERN Document Server

    Seager, Sara

    2010-01-01

    Over the past twenty years, astronomers have identified hundreds of extrasolar planets--planets orbiting stars other than the sun. Recent research in this burgeoning field has made it possible to observe and measure the atmospheres of these exoplanets. This is the first textbook to describe the basic physical processes--including radiative transfer, molecular absorption, and chemical processes--common to all planetary atmospheres, as well as the transit, eclipse, and thermal phase variation observations that are unique to exoplanets. In each chapter, Sara Seager offers a conceptual introduction, examples that combine the relevant physics equations with real data, and exercises. Topics range from foundational knowledge, such as the origin of atmospheric composition and planetary spectra, to more advanced concepts, such as solutions to the radiative transfer equation, polarization, and molecular and condensate opacities. Since planets vary widely in their atmospheric properties, Seager emphasizes the major p...

  7. Atmospheric pressure plasmas for surface modification of flexible and printed electronic devices: A review

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyong Nam; Lee, Seung Min; Mishra, Anurag [Department of Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Yeom, Geun Young, E-mail: gyyeom@skku.edu [Department of Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2016-01-01

    Recently, non-equilibrium atmospheric pressure plasma, especially those operated at low gas temperatures, have become a topic of great interest for the processing of flexible and printed electronic devices due to several benefits such as the reduction of process and reactor costs, the employment of easy-to-handle apparatuses and the easier integration into continuous production lines. In this review, several types of typical atmospheric pressure plasma sources have been addressed, and the processes including surface treatment, texturing and sintering for application to flexible and printed electronic devices have been discussed.

  8. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations Part I: Surface fluxes

    Directory of Open Access Journals (Sweden)

    P. Josse

    1999-04-01

    Full Text Available A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer

  9. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations Part I: Surface fluxes

    Directory of Open Access Journals (Sweden)

    H. Giordani

    Full Text Available A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer

  10. Influence of atmospheric pressure plasma treatment on surface properties of PBO fiber

    International Nuclear Information System (INIS)

    Zhang Ruiyun; Pan Xianlin; Jiang Muwen; Peng Shujing; Qiu Yiping

    2012-01-01

    Highlights: ► PBO fibers were treated with atmospheric pressure plasmas. ► When 1% of oxygen was added to the plasma, IFSS increased 130%. ► Increased moisture regain could enhance plasma treatment effect on improving IFSS with long treatment time. - Abstract: In order to improve the interfacial adhesion property between PBO fiber and epoxy, the surface modification effects of PBO fiber treated by atmospheric pressure plasma jet (APPJ) in different time, atmosphere and moisture regain (MR) were investigated. The fiber surface morphology, functional groups, surface wettability for control and plasma treated samples were analyzed by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements, respectively. Meanwhile, the fiber interfacial shear strength (IFSS), representing adhesion property in epoxy, was tested using micro-bond pull-out test, and single fiber tensile strength was also tested to evaluate the mechanical performance loss of fibers caused by plasma treatment. The results indicated that the fiber surface was etched during the plasma treatments, the fiber surface wettability and the IFSS between fiber and epoxy had much improvement due to the increasing of surface energy after plasma treatment, the contact angle decreased with the treatment time increasing, and the IFSS was improved by about 130%. The processing atmosphere could influence IFSS significantly, and moisture regains (MR) of fibers also played a positive role on improving IFSS but not so markedly. XPS analysis showed that the oxygen content on fiber surface increased after treatment, and C=O, O-C=O groups were introduced on fiber surface. On the other hand, the observed loss of fiber tensile strength caused by plasma treatment was not so remarkable to affect the overall performance of composite materials.

  11. Studying biosphere-atmosphere exchange of CO2 through Carbon-13 stable isotopes

    NARCIS (Netherlands)

    Velde, van der I.R.

    2015-01-01

    Summary Thesis ‘Studying biosphere-atmosphere exchange of CO2 through

    carbon-13 stable isotopes’

    Ivar van der Velde

    Making predictions of future climate is difficult, mainly due to large uncertainties in the carbon cycle. The rate at which carbon is stored in the oceans and

  12. Noble Gas Surface Flux Simulations And Atmospheric Transport

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, Charles R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sun, Yunwei [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-30

    Signatures from underground nuclear explosions or UNEs are strongly influenced by the containment regime surrounding them. The degree of gas leakage from the detonation cavity to the surface obviously affects the magnitude of surface fluxes of radioxenon that might be detected during the course of a Comprehensive Test Ban Treaty On-Site Inspection. In turn, the magnitude of surface fluxes will influence the downwind detectability of the radioxenon atmospheric signature from the event. Less obvious is the influence that leakage rates have on the evolution of radioxenon isotopes in the cavity or the downwind radioisotopic measurements that might be made. The objective of this letter report is to summarize our attempt to better understand how containment conditions affect both the detection and interpretation of radioxenon signatures obtained from sampling at the ground surface near an event as well as at greater distances in the atmosphere. In the discussion that follows, we make no attempt to consider other sources of radioactive noble gases such as natural backgrounds or atmospheric contamination and, for simplicity, only focus on detonation-produced radioxenon gases. Summarizing our simulations, they show that the decay of radioxenon isotopes (e.g., Xe-133, Xe-131m, Xe-133m and Xe-135) and their migration to the surface following a UNE means that the possibility of detecting these gases exists within a window of opportunity. In some cases, seeps or venting of detonation gases may allow significant quantities to reach the surface and be released into the atmosphere immediately following a UNE. In other release scenarios – the ones we consider here – hours to days may be required for gases to reach the surface at detectable levels. These release models are most likely more characteristic of “fully contained” events that lack prompt venting, but which still leak gas slowly across the surface for periods of months.

  13. Surface preparation for high purity alumina ceramics enabling direct brazing in hydrogen atmospheres

    Science.gov (United States)

    Cadden, Charles H.; Yang, Nancy Yuan Chi; Hosking, Floyd M.

    2001-01-01

    The present invention relates to a method for preparing the surface of a high purity alumina ceramic or sapphire specimen that enables direct brazing in a hydrogen atmosphere using an active braze alloy. The present invention also relates to a method for directly brazing a high purity alumina ceramic or sapphire specimen to a ceramic or metal member using this method of surface preparation, and to articles produced by this brazing method. The presence of silicon, in the form of a SiO.sub.2 -containing surface layer, can more than double the tensile bond strength in alumina ceramic joints brazed in a hydrogen atmosphere using an active Au-16Ni-0.75 Mo-1.75V filler metal. A thin silicon coating applied by PVD processing can, after air firing, produce a semi-continuous coverage of the alumina surface with a SiO.sub.2 film. Room temperature tensile strength was found to be proportional to the fraction of air fired surface covered by silicon-containing films. Similarly, the ratio of substrate fracture versus interface separation was also related to the amount of surface silicon present prior to brazing. This process can replace the need to perform a "moly-manganese" metallization step.

  14. Research on Heat Exchange Process in Aircraft Air Conditioning System

    Science.gov (United States)

    Chichindaev, A. V.

    2017-11-01

    Using of heat-exchanger-condenser in the air conditioning system of the airplane Tu-204 (Boeing, Airbus, Superjet 100, MS-21, etc.) for cooling the compressed air by the cold air with negative temperature exiting the turbine results in a number of operational problems. Mainly it’s frosting of the heat exchange surface, which is the cause of live-section channels frosting, resistance increasing and airflow in the system decreasing. The purpose of this work is to analyse the known freeze-up-fighting methods for heat-exchanger-condenser, description of the features of anti-icing protection and offering solutions to this problem. For the problem of optimizing the design of heat exchangers in this work used generalized criterion that describes the ratio of thermal resistances of cold and hot sections, which include: the ratio of the initial values of heat transfer agents flow state; heat exchange surface finning coefficients; factors which describes the ratio of operating parameters and finning area. By controlling the ratio of the thermal resistances can be obtained the desired temperature of the heat exchange surface, which would prevent freezing. The work presents the results of a numerical study of the effect of different combinations of regime and geometrical factors changes on reduction of the heat-exchanger-condenser freezing surface area, including using of variable ratio of thermal resistances.

  15. Surface conductivity dependent dynamic behaviour of an ultrafine atmospheric pressure plasma jet for microscale surface processing

    Energy Technology Data Exchange (ETDEWEB)

    Abuzairi, Tomy [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424 (Indonesia); Okada, Mitsuru [Department of Engineering, Shizuoka University, Hamamatsu 432-8561 (Japan); Bhattacharjee, Sudeep [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India); Nagatsu, Masaaki, E-mail: nagatsu.masaaki@shizuoka.ac.jp [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Engineering, Shizuoka University, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8561 (Japan)

    2016-12-30

    Highlights: • Spatio-temporal behaviors of capillary APPJs are studied for various substrates. • Plasma irradiation area depended on the substrate conductivity and permittivity. • Surface irradiation area was significantly broadened in polymer-like substrate. • Effect of applying a substrate bias on the APPJ irradiation area was investigated. - Abstract: An experimental study on the dynamic behaviour of microcapillary atmospheric pressure plasma jets (APPJs) with 5 μm tip size for surfaces of different conductivity is reported. Electrical and spatio-temporal characteristics of the APPJs are monitored using high voltage probe, current monitor and high speed intensified charge couple device camera. From these experimental results, we presented a simple model to understand the electrical discharge characteristics of the capillary APPJs with double electrodes, and estimated the velocity of the ionization fronts in the jet and the electron density to be 3.5–4.2 km/s and 2–7 × 10{sup 17} m{sup −3}. By analyzing the dynamics of the microcapillary APPJs for different substrate materials, it was found that the surface irradiation area strongly depended on the substrate conductivity and permittivity, especially in the case of polymer-like substrate, surface irradiation area was significantly broadened probably due to the repelling behaviour of the plasma jets from the accumulated electrical charges on the polymer surface. The effect of applying a substrate bias in the range from −900 V to +900 V on the plasma irradiation onto the substrates was also investigated. From the knowledge of the present results, it is helpful for choosing the substrate materials for microscale surface modification.

  16. Surface conductivity dependent dynamic behaviour of an ultrafine atmospheric pressure plasma jet for microscale surface processing

    International Nuclear Information System (INIS)

    Abuzairi, Tomy; Okada, Mitsuru; Bhattacharjee, Sudeep; Nagatsu, Masaaki

    2016-01-01

    Highlights: • Spatio-temporal behaviors of capillary APPJs are studied for various substrates. • Plasma irradiation area depended on the substrate conductivity and permittivity. • Surface irradiation area was significantly broadened in polymer-like substrate. • Effect of applying a substrate bias on the APPJ irradiation area was investigated. - Abstract: An experimental study on the dynamic behaviour of microcapillary atmospheric pressure plasma jets (APPJs) with 5 μm tip size for surfaces of different conductivity is reported. Electrical and spatio-temporal characteristics of the APPJs are monitored using high voltage probe, current monitor and high speed intensified charge couple device camera. From these experimental results, we presented a simple model to understand the electrical discharge characteristics of the capillary APPJs with double electrodes, and estimated the velocity of the ionization fronts in the jet and the electron density to be 3.5–4.2 km/s and 2–7 × 10"1"7 m"−"3. By analyzing the dynamics of the microcapillary APPJs for different substrate materials, it was found that the surface irradiation area strongly depended on the substrate conductivity and permittivity, especially in the case of polymer-like substrate, surface irradiation area was significantly broadened probably due to the repelling behaviour of the plasma jets from the accumulated electrical charges on the polymer surface. The effect of applying a substrate bias in the range from −900 V to +900 V on the plasma irradiation onto the substrates was also investigated. From the knowledge of the present results, it is helpful for choosing the substrate materials for microscale surface modification.

  17. Light reflection from a rough liquid surface including wind-wave effects in a scattering atmosphere

    International Nuclear Information System (INIS)

    Salinas, Santo V.; Liew, S.C.

    2007-01-01

    Visible and near-IR images of the ocean surface, taken from remote satellites, often contain important information of near-surface or sub-surface processes, which occur on, or over the ocean. Remote measurements of near surface winds, sea surface temperature and salinity, ocean color and underwater bathymetry, all, one way or another, depend on how well we understand sea surface roughness. However, in order to extract useful information from our remote measurements, we need to construct accurate models of the transfer of solar radiation inside the atmosphere as well as, its reflection from the sea surface. To approach this problem, we numerically solve the radiative transfer equation (RTE) by implementing a model for the atmosphere-ocean system. A one-dimensional atmospheric radiation model is solved via the widely known doubling and adding method and the ocean body is treated as a boundary condition to the problem. The ocean surface is modeled as a rough liquid surface which includes wind interaction and wave states, such as wave age. The model can have possible applications to the retrieval of wind and wave states, such as wave age, near a Sun glint region

  18. Seasonal features of atmospheric surface-layer characteristics over a tropical coastal station in Southern India

    International Nuclear Information System (INIS)

    Hari Prasad, K.B.R.R.; Srinivas, C.V.; Baskaran, R.; Venkatraman, B.

    2016-01-01

    Dispersion of air-borne effluents occurs in the atmospheric boundary layer (ABL) where turbulence is the main physical processes. In the surface layer of ABL, the mechanical (shear) generation of turbulence exceeds the buoyant generation or consumption of turbulence. In this layer, under steady state and horizontally homogeneous conditions various forces in the governing equation can be neglected and one can apply Monin-Obukhov Similarity Theory (MOST) to estimate the turbulent fluxes and other surface layer variables. Understanding the turbulent characteristics of the surface layer is vital for modeling of turbulent diffusion in regional numerical weather and pollution dispersion models. The objective of this study is to verify the validity of the MOST at the coastal site Kalpakkam under various atmospheric stability conditions with respect to different seasons for modeling atmospheric dispersion of radioactive effluents

  19. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    and the material surface, and thus many reactive species generated in the plasma can reach the surface before inactivated, and be efficiently utilized for surface modification. In the present work polyester plates are treated using a dielectric barrier discharge (DBD) and a gliding arc at atmospheric pressure......Atmospheric pressure plasma treatment can be highly enhanced by simultaneous high-power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above approximately 140 dB can reduce the thickness of a boundary gas layer between the plasma...... irradiation, the water contact angle dropped markedly, and tended to decrease furthermore at higher power. The ultrasonic irradiation during the plasma treatment consistently improved the wettability. Oxygen containing polar functional groups were introduced at the surface by the plasma treatment...

  20. Surface modification of polylactic acid films by atmospheric pressure plasma treatment

    Science.gov (United States)

    Kudryavtseva, V. L.; Zhuravlev, M. V.; Tverdokhlebov, S. I.

    2017-09-01

    A new approach for the modification of polylactic acid (PLA) materials using atmospheric pressure plasma (APP) is described. PLA films plasma exposure time was 20, 60, 120 s. The surface morphology and wettability of the obtained PLA films were investigated by atomic force microscopy (AFM) and the sitting drop method. The atmospheric pressure plasma increased the roughness and surface energy of PLA film. The wettability of PLA has been improved with the application of an atmospheric plasma surface treatment. It was shown that it is possible to obtain PLA films with various surface relief and tunable wettability. Additionally, we demonstrated that the use of cold atmospheric pressure plasma for surface activation allows for the immobilization of bioactive compounds like hyaluronic acid (HA) on the surface of obtained films. It was shown that composite PLA-HA films have an increased long-term hydrophilicity of the films surface.

  1. Acoustic tomography in the atmospheric surface layer

    Directory of Open Access Journals (Sweden)

    A. Ziemann

    Full Text Available Acoustic tomography is presented as a technique for remote monitoring of meteorological quantities. This method and a special algorithm of analysis can directly produce area-averaged values of meteorological parameters. As a result consistent data will be obtained for validation of numerical atmospheric micro-scale models. Such a measuring system can complement conventional point measurements over different surfaces. The procedure of acoustic tomography uses the horizontal propagation of sound waves in the atmospheric surface layer. Therefore, to provide a general overview of sound propagation under various atmospheric conditions a two-dimensional ray-tracing model according to a modified version of Snell's law is used. The state of the crossed atmosphere can be estimated from measurements of acoustic travel time between sources and receivers at different points. Derivation of area-averaged values of the sound speed and furthermore of air temperature results from the inversion of travel time values for all acoustic paths. Thereby, the applied straight ray two-dimensional tomographic model using SIRT (simultaneous iterative reconstruction technique is characterised as a method with small computational requirements, satisfactory convergence and stability properties as well as simple handling, especially, during online evaluation.

    Key words. Meteorology and atmospheric dynamics (turbulence; instruments and techniques.

  2. Transition from reversible to irreversible magnetic exchange-spring processes in antiferromagnetically exchange-coupled hard/soft/hard trilayer structures

    International Nuclear Information System (INIS)

    Wang Xiguang; Guo Guanghua; Zhang Guangfu

    2011-01-01

    The demagnetization processes of antiferromagnetically exchange-coupled hard/soft/hard trilayer structures have been studied based on the discrete one-dimensional atomic chain model and the linear partial domain-wall model. It is found that, when the magnetic anisotropy of soft layer is taken into account, the changes of the soft layer thickness and the interfacial exchange coupling strength may lead a transition of demagnetization process in soft layer from the reversible to the irreversible magnetic exchange-spring process. For the trilayer structures with very thin soft layer, the demagnetization process exhibits typical reversible exchange-spring behavior. However, as the thickness of soft layer is increased, there is a crossover point t c , after which the process becomes irreversible. Similarly, there is also a critical interfacial exchange coupling constant A sh c , above which the exchange-spring process is reversible. When A sh sh c , the irreversible exchange-spring process is achieved. The phase diagram of reversible and irreversible exchange-spring processes is mapped in the plane of the interfacial exchange coupling A sh and soft layer thickness N s . - Research highlights: → A differing magnetic exchange-spring process is found in antiferromagnetically exchange-coupled hard/soft/hard trilayers if the magnetic anisotropy of the soft layers is taken into account. → The change of the soft layer thickness may lead to a transition of demagnetization process in soft layer from the reversible to the irreversible exchange-spring process. → The change of the soft-hard interfacial exchange coupling strength may lead a transition of demagnetization process in soft layer from the reversible to the irreversible exchange-spring process. → The phase diagram of reversible and irreversible exchange-spring processes is mapped in the plane of the interfacial exchange coupling and soft layer thickness.

  3. A top-down approach of surface carbonyl sulfide exchange by a Mediterranean oak forest ecosystem in southern France

    Science.gov (United States)

    Belviso, Sauveur; Reiter, Ilja Marco; Loubet, Benjamin; Gros, Valérie; Lathière, Juliette; Montagne, David; Delmotte, Marc; Ramonet, Michel; Kalogridis, Cerise; Lebegue, Benjamin; Bonnaire, Nicolas; Kazan, Victor; Gauquelin, Thierry; Fernandez, Catherine; Genty, Bernard

    2016-12-01

    The role that soil, foliage, and atmospheric dynamics have on surface carbonyl sulfide (OCS) exchange in a Mediterranean forest ecosystem in southern France (the Oak Observatory at the Observatoire de Haute Provence, O3HP) was investigated in June of 2012 and 2013 with essentially a top-down approach. Atmospheric data suggest that the site is appropriate for estimating gross primary production (GPP) directly from eddy covariance measurements of OCS fluxes, but it is less adequate for scaling net ecosystem exchange (NEE) to GPP from observations of vertical gradients of OCS relative to CO2 during the daytime. Firstly, OCS and carbon dioxide (CO2) diurnal variations and vertical gradients show no net exchange of OCS at night when the carbon fluxes are dominated by ecosystem respiration. This contrasts with other oak woodland ecosystems of a Mediterranean climate, where nocturnal uptake of OCS by soil and/or vegetation has been observed. Since temperature, water, and organic carbon content of soil at the O3HP should favor the uptake of OCS, the lack of nocturnal net uptake would indicate that its gross consumption in soil is compensated for by emission processes that remain to be characterized. Secondly, the uptake of OCS during the photosynthetic period was characterized in two different ways. We measured ozone (O3) deposition velocities and estimated the partitioning of O3 deposition between stomatal and non-stomatal pathways before the start of a joint survey of OCS and O3 surface concentrations. We observed an increasing trend in the relative importance of the stomatal pathway during the morning hours and synchronous steep drops of mixing ratios of OCS (amplitude in the range of 60-100 ppt) and O3 (amplitude in the range of 15-30 ppb) after sunrise and before the break up of the nocturnal boundary layer. The uptake of OCS by plants was also characterized from vertical profiles. However, the time window for calculation of the ecosystem relative uptake (ERU) of OCS

  4. Nocturnal surface ozone enhancement over Portugal during winter: Influence of different atmospheric conditions

    KAUST Repository

    Kulkarni, Pavan S.

    2016-09-24

    Four distinct nocturnal surface ozone (NSO) enhancement events were observed, with NSO concentration exceeding 80μg/m3, at multiple ozone (O3) monitoring stations (32 sites) in January, November and December between year 2000–2010, in Portugal. The reasonable explanation for the observed bimodal pattern of surface ozone with enhanced NSO concentration during nighttime has to be transport processes, as the surface ozone production ceases at nighttime. Simultaneous measurements of O3 at multiple stations during the study period in Portugal suggest that horizontal advection alone cannot explain the observed NSO enhancement. Thus, detailed analysis of the atmospheric conditions, simulated with the Weather Research and Forecasting (WRF) model, were performed to evaluate the atmospheric mechanisms responsible for NSO enhancement in the region. Simulations revealed that each event occurred as a result of one or the combination of different atmospheric processes such as, passage of a cold front followed by a subsidence zone; passage of a moving surface trough, with associated strong horizontal wind speed and vertical shear; combination of vertical and horizontal transport at the synoptic scale; formation of a low level jet with associated vertical mixing below the jet stream. The study confirmed that large-scale flow pattern resulting in enhanced vertical mixing in the nocturnal boundary layer, plays a key role in the NSO enhancement events, which frequently occur over Portugal during winter months. © 2016 Elsevier Ltd

  5. Nocturnal surface ozone enhancement over Portugal during winter: Influence of different atmospheric conditions

    KAUST Repository

    Kulkarni, Pavan S.; Dasari, Hari Prasad; Sharma, Ashish; Bortoli, D.; Salgado, Rui; Silva, A.M.

    2016-01-01

    Four distinct nocturnal surface ozone (NSO) enhancement events were observed, with NSO concentration exceeding 80μg/m3, at multiple ozone (O3) monitoring stations (32 sites) in January, November and December between year 2000–2010, in Portugal. The reasonable explanation for the observed bimodal pattern of surface ozone with enhanced NSO concentration during nighttime has to be transport processes, as the surface ozone production ceases at nighttime. Simultaneous measurements of O3 at multiple stations during the study period in Portugal suggest that horizontal advection alone cannot explain the observed NSO enhancement. Thus, detailed analysis of the atmospheric conditions, simulated with the Weather Research and Forecasting (WRF) model, were performed to evaluate the atmospheric mechanisms responsible for NSO enhancement in the region. Simulations revealed that each event occurred as a result of one or the combination of different atmospheric processes such as, passage of a cold front followed by a subsidence zone; passage of a moving surface trough, with associated strong horizontal wind speed and vertical shear; combination of vertical and horizontal transport at the synoptic scale; formation of a low level jet with associated vertical mixing below the jet stream. The study confirmed that large-scale flow pattern resulting in enhanced vertical mixing in the nocturnal boundary layer, plays a key role in the NSO enhancement events, which frequently occur over Portugal during winter months. © 2016 Elsevier Ltd

  6. Development of Electrically Switched Ion Exchange Process for Selective Ion Separations

    International Nuclear Information System (INIS)

    Rassat, Scot D.; Sukamto, Johanes H.; Orth, Rick J.; Lilga, Michael A.; Hallen, Richard T.

    1999-01-01

    The electrically switched ion exchange (ESIX) process, being developed at Pacific Northwest National Laboratory, provides an alternative separation method to selectively remove ions from process and waste streams. In the ESIX process, in which an electroactive ion exchange film is deposited onto a high surface area electrode, uptake and elution are controlled directly by modulating the electrochemical potential of the film. This paper addresses engineering issues necessary to fully develop ESIX for specific industrial alkali cation separation challenges. The cycling and chemical stability and alkali cation selectivity of nickel hexacyanoferrate (NiHCF) electroactive films were investigated. The selectivity of NiHCF was determined using cyclic voltammetry and a quartz crystal microbalance to quantify ion uptake in the film. Separation factors indicated a high selectivity for cesium and a moderate selectivity for potassium in high sodium content solutions. A NiHCF film with improved redox cycling and chemical stability in a simulated pulp mill process stream, a targeted application for ESIX, was also prepared and tested

  7. Application of Atmospheric Pressure Photoionization H/D-exchange Mass Spectrometry for Speciation of Sulfur-containing Compounds.

    Science.gov (United States)

    Acter, Thamina; Kim, Donghwi; Ahmed, Arif; Ha, Ji-Hyoung; Kim, Sunghwan

    2017-08-01

    Herein we report the observation of atmospheric pressure in-source hydrogen-deuterium exchange (HDX) of thiol group for the first time. The HDX for thiol group was optimized for positive atmospheric pressure photoionization (APPI) mass spectrometry (MS). The optimized HDX-MS was applied for 31 model compounds (thiols, thiophenes, and sulfides) to demonstrate that exchanged peaks were observed only for thiols. The optimized method has been successfully applied to the isolated fractions of sulfur-rich oil samples. The exchange of one and two thiol hydrogens with deuterium was observed in the thiol fraction; no HDX was observed in the other fractions. Thus, the results presented in this study demonstrate that the HDX-MS method using APPI ionization source can be effective for speciation of sulfur compounds. This method has the potential to be used to access corrosion problems caused by thiol-containing compounds. Graphical Abstract ᅟ.

  8. First-order exchange coefficient coupling for simulating surface water-groundwater interactions: Parameter sensitivity and consistency with a physics-based approach

    Science.gov (United States)

    Ebel, B.A.; Mirus, B.B.; Heppner, C.S.; VanderKwaak, J.E.; Loague, K.

    2009-01-01

    Distributed hydrologic models capable of simulating fully-coupled surface water and groundwater flow are increasingly used to examine problems in the hydrologic sciences. Several techniques are currently available to couple the surface and subsurface; the two most frequently employed approaches are first-order exchange coefficients (a.k.a., the surface conductance method) and enforced continuity of pressure and flux at the surface-subsurface boundary condition. The effort reported here examines the parameter sensitivity of simulated hydrologic response for the first-order exchange coefficients at a well-characterized field site using the fully coupled Integrated Hydrology Model (InHM). This investigation demonstrates that the first-order exchange coefficients can be selected such that the simulated hydrologic response is insensitive to the parameter choice, while simulation time is considerably reduced. Alternatively, the ability to choose a first-order exchange coefficient that intentionally decouples the surface and subsurface facilitates concept-development simulations to examine real-world situations where the surface-subsurface exchange is impaired. While the parameters comprising the first-order exchange coefficient cannot be directly estimated or measured, the insensitivity of the simulated flow system to these parameters (when chosen appropriately) combined with the ability to mimic actual physical processes suggests that the first-order exchange coefficient approach can be consistent with a physics-based framework. Copyright ?? 2009 John Wiley & Sons, Ltd.

  9. Loss of Water to Space from Mars: Processes and Implications

    Science.gov (United States)

    Kass, D. M.

    2001-12-01

    most of the water on Mars is likely to be in the form of ice, it is presumably further fractionated by ~ 0.8 due to ice/water vapor interactions. This yields an effective D/H enrichment of ~ 7 for reservoirs in equilibrium with the atmosphere. From a loss to space point of view, Martian water can be divided into three reservoirs. The first is the thin, 10 pr-\\micron, atmospheric water. The second is a global exchangeable reservoir in long term isotopic equilibrium with the atmosphere. This probably encompasses the polar caps, ice in polar layered deposits and any other near surface ice or adsorbed water. The third, more speculative, reservoir is a non-exchanging reservoir (a deep sub-surface cryosphere). In addition, due to the small size of the atmospheric reservoir, difficulty in isotopically equilibrating it with the entire exchangeable reservoir, and the relatively rapid H2 loss rate, there is also an intermediate exchangeable reservoir of ~ 4~mm. This is probably either a surface layer on the polar caps or near surface ice deposits. By assuming an initial terrestrial D/H ratio for Martian water (based on condritic meteorites) and a loss to space of ~ 50~m (based on the total O loss), the size of the exchangeable reservoir can be estimated. Two conceptual models are possible, depending on whether or not the non-exchangeable reservoir replenishes the exchangeable one. Quantitatively, the two models yield almost identical reservoir sizes, ~ 9~m (about the size of the northern polar cap). If, due to slow rate of isotopic diffusion in ice, the exchangeable reservoir actually has the same isotopic enrichment as the atmosphere, it would contain ~ 12~m of water.

  10. Improved adhesion of Ag NPs to the polyethylene terephthalate surface via atmospheric plasma treatment and surface functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Tao [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 253 Xuefu Rd, Kunming, Yunnan, 650093 (China); Liu, Yong [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 253 Xuefu Rd, Kunming, Yunnan, 650093 (China); Solmont Technology Wuxi Co., Ltd. 228 Linghu Blvd. Tianan Tech Park, A1-602, Xinwu District, Wuxi, Jiangsu 214135 (China); Zhu, Yan, E-mail: zhuyan@kmust.edu.cn [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 253 Xuefu Rd, Kunming, Yunnan, 650093 (China); Yang, De-Quan, E-mail: dequan.yang@gmail.com [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 253 Xuefu Rd, Kunming, Yunnan, 650093 (China); Solmont Technology Wuxi Co., Ltd. 228 Linghu Blvd. Tianan Tech Park, A1-602, Xinwu District, Wuxi, Jiangsu 214135 (China); Sacher, Edward [Regroupement Québécois de Matériaux de Pointe, Department of Engineering Physics, École Polytechnique de Montréal, Case Postale 6079, succursale Centre-Ville, Montréal, Québec H3C 3A7 (Canada)

    2017-07-31

    Highlights: • A two-step process has been developed to enhance the adhesion of immobilized Ag NPs to the PET surface. • The method is simple, easy to use and low-cost for mass production. • The increased density of active sites (−OH, −CH=O and COOH) at the PET surface, after plasma treatment, permits increased reaction with 3-aminopropyltriethoxysilane (APTES). • The presence of APTES with high surface density permits −NH{sub 2}-Ag complex formation, increasing the adhesion of the Ag NPs. - Abstract: Ag nanoparticles (NPs) have been widely applied, as important antibacterial materials, on textile and polymer surfaces. However, their adhesion to nonreactive polymer surfaces is generally too weak for many applications. Here, we propose a two-step process, atmospheric plasma treatment followed by a surface chemical modification process, which enhances their adhesion to polyethylene terephthalate (PET) surfaces. We found that, compared to either plasma treatments or surface chemical functionalizations, alone, this combination greatly enhanced their adhesion. The plasma treatment resulted in an increase of active sites (−OH, −CH=O and COOH) at the PET surface, permitting increased bonding to 3-aminopropyltriethoxysilane (APTES), whose −NH{sub 2} groups were then able to form a bonding complex with the Ag NPs.

  11. Progress in Understanding Land-Surface-Atmosphere Coupling from LBA Research

    Directory of Open Access Journals (Sweden)

    Alan K Betts

    2010-06-01

    Full Text Available LBA research has deepened our understanding of the role of soil water storage, clouds and aerosols in land-atmosphere coupling. We show how the reformulation of cloud forcing in terms of an effective cloud albedo per unit area of surface gives a useful measure of the role of clouds in the surface energy budget over the Amazon. We show that the diurnal temperature range has a quasi-linear relation to the daily mean longwave cooling; and to effective cloud albedo because of the tight coupling between the near-surface climate, the boundary layer and the cloud field. The coupling of surface and atmospheric processes is critical to the seasonal cycle: deep forest rooting systems make water available throughout the year, whereas in the dry season the shortwave cloud forcing is reduced by regional scale subsidence, so that more light is available for photosynthesis. At sites with an annual precipitation above 1900 mm and a dry season length less than 4 months, evaporation rates increased in the dry season, coincident with increased radiation. In contrast, ecosystems with precipitation less than 1700 mm and a longer dry season showed clear evidence of reduced evaporation in the dry season coming from water stress. In all these sites, the seasonal variation of the effective cloud albedo is a major factor in determining the surface available energy. Dry season fires add substantial aerosol to the atmosphere. Aerosol scattering and absorption both reduce the total downward surface radiative flux, but increase the diffuse/direct flux ratio, which increases photosynthetic efficiency. Convective plumes produced by fires enhance the vertical transport of aerosols over the Amazon, and effectively inject smoke aerosol and gases directly into the middle troposphere with substantial impacts on mid- tropospheric dispersion. In the rainy season in Rondônia, convection in low-level westerly flows with low aerosol content resembles oceanic convection with

  12. The Atmospheric Chemistry and Canopy Exchange Simulation System (ACCESS: model description and application to a temperate deciduous forest canopy

    Directory of Open Access Journals (Sweden)

    R. D. Saylor

    2013-01-01

    Full Text Available Forest canopies are primary emission sources of biogenic volatile organic compounds (BVOCs and have the potential to significantly influence the formation and distribution of secondary organic aerosol (SOA mass. Biogenically-derived SOA formed as a result of emissions from the widespread forests across the globe may affect air quality in populated areas, degrade atmospheric visibility, and affect climate through direct and indirect forcings. In an effort to better understand the formation of SOA mass from forest emissions, a 1-D column model of the multiphase physical and chemical processes occurring within and just above a vegetative canopy is being developed. An initial, gas-phase-only version of this model, the Atmospheric Chemistry and Canopy Exchange Simulation System (ACCESS, includes processes accounting for the emission of BVOCs from the canopy, turbulent vertical transport within and above the canopy and throughout the height of the planetary boundary layer (PBL, near-explicit representation of chemical transformations, mixing with the background atmosphere and bi-directional exchange between the atmosphere and canopy and the atmosphere and forest floor. The model formulation of ACCESS is described in detail and results are presented for an initial application of the modeling system to Walker Branch Watershed, an isoprene-emission-dominated forest canopy in the southeastern United States which has been the focal point for previous chemical and micrometeorological studies. Model results of isoprene profiles and fluxes are found to be consistent with previous measurements made at the simulated site and with other measurements made in and above mixed deciduous forests in the southeastern United States. Sensitivity experiments are presented which explore how canopy concentrations and fluxes of gas-phase precursors of SOA are affected by background anthropogenic nitrogen oxides (NOx. Results from these experiments suggest that the

  13. Oxygen exchange at gas/oxide interfaces: how the apparent activation energy of the surface exchange coefficient depends on the kinetic regime.

    Science.gov (United States)

    Fielitz, Peter; Borchardt, Günter

    2016-08-10

    In the dedicated literature the oxygen surface exchange coefficient KO and the equilibrium oxygen exchange rate [Fraktur R] are considered to be directly proportional to each other regardless of the experimental circumstances. Recent experimental observations, however, contradict the consequences of this assumption. Most surprising is the finding that the apparent activation energy of KO depends dramatically on the kinetic regime in which it has been determined, i.e. surface exchange controlled vs. mixed or diffusion controlled. This work demonstrates how the diffusion boundary condition at the gas/solid interface inevitably entails a correlation between the oxygen surface exchange coefficient KO and the oxygen self-diffusion coefficient DO in the bulk ("on top" of the correlation between KO and [Fraktur R] for the pure surface exchange regime). The model can thus quantitatively explain the range of apparent activation energies measured in the different regimes: in the surface exchange regime the apparent activation energy only contains the contribution of the equilibrium exchange rate, whereas in the mixed or in the diffusion controlled regime the contribution of the oxygen self-diffusivity has also to be taken into account, which may yield significantly higher apparent activation energies and simultaneously quantifies the correlation KO ∝ DO(1/2) observed for a large number of oxides in the mixed or diffusion controlled regime, respectively.

  14. Land Surface Process and Air Quality Research and Applications at MSFC

    Science.gov (United States)

    Quattrochi, Dale; Khan, Maudood

    2007-01-01

    This viewgraph presentation provides an overview of land surface process and air quality research at MSFC including atmospheric modeling and ongoing research whose objective is to undertake a comprehensive spatiotemporal analysis of the effects of accurate land surface characterization on atmospheric modeling results, and public health applications. Land use maps as well as 10 meter air temperature, surface wind, PBL mean difference heights, NOx, ozone, and O3+NO2 plots as well as spatial growth model outputs are included. Emissions and general air quality modeling are also discussed.

  15. Surface treatment of polyethylene terephthalate film using atmospheric pressure glow discharge in air

    International Nuclear Information System (INIS)

    Fang Zhi; Qiu Yuchang; Wang Hui

    2004-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in polymer surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of Polyethylene terephthalate (PET) film surface for improving hydrophilicity using the non-thermal plasma generated by atmospheric pressure glow discharge (APGD) in air is conducted. The discharge characteristics of APGD are shown by measurement of their electrical discharge parameters and observation of light-emission phenomena, and the surface properties of PET before and after the APGD treatment are studied using contact angle measurement, x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It is found that the APGD is homogeneous and stable in the whole gas gap, which differs from the commonly filamentary dielectric barrier discharge (DBD). A short time (several seconds) APGD treatment can modify the surface characteristics of PET film markedly and uniformly. After 10 s APGD treatment, the surface oxygen content of PET surface increases to 39%, and the water contact angle decreases to 19 degree, respectively. (authors)

  16. Inter-annual variabilities in biogeophysical feedback of terrestrial ecosystem to atmosphere using a land surface model

    Science.gov (United States)

    Seo, C.; Hong, S.; Jeong, H. M.; Jeon, J.

    2017-12-01

    Biogeophysical processes of terrestrial ecosystem such as water vapor and energy flux are the key features to understand ecological feedback to atmospheric processes and thus role of terrestrial ecosystem in climate system. For example, it has been recently known that the ecological feedback through water vapor and energy flux results in regulating regional weathers and climates which is one of the fundamental functions of terrestrial ecosystem. In regional scale, water vapor flux has been known to give negative feedback to atmospheric warming, while energy flux from the surface has been known to positive feedback. In this study, we explored the inter-annual variabilities in these two biogeophysical features to see how the climate regulating functions of terrestrial ecosystem have been changed with climate change. We selected a land surface model involving vegetation dynamics that is forced by atmospheric data from NASA including precipitation, temperature, wind, surface pressure, humidity, and incoming radiations. From the land surface model, we simulated 60-year water vapor and energy fluxes from 1961 to 2010, and calculates feedbacks of terrestrial ecosystem as in radiation amount into atmosphere. Then, we analyzed the inter-annual variabilities in the feedbacks. The results showed that some mid-latitude areas showing very high variabilities in precipitation showed higher positive feedback and/or lower negative feedback. These results suggest deterioration of the biogeophyisical factor of climate regulating function over those regions.

  17. Simulation of influence of some climatic factors on radiocarbon concentration in the Earth atmosphere

    International Nuclear Information System (INIS)

    Akhmetkereev, S.Kh.; Dergachev, V.A.

    1981-01-01

    The effect of different climatic factors on radiocarbon concentration in the Earth atmosphere is analyzed by modelling the exchange radiocarbon system. It is supposed that the exchange system consists of four reservoirs: long-lived surface vegetation and its remnants, the atmosphere, surface layer of the World ocean. It is shown that the variations of the ocean temperature and the variations in CO 2 amount in the atmosphere connected with it do not affect the atmosphere radiocarbon concentration. Variations in the square of sea ice on the time scale of >=1000 years could bring about variations in the 14 C concentration with the amplitude up to 1%. 14 C concentration in the atmosphere in the icing maximum 18 thousands of years ago was 7% higher than present concentration [ru

  18. Rejuvenation processes applied to 'poisoned' anion exchangers in uranium processing

    International Nuclear Information System (INIS)

    Gilmore, A.J.

    1979-11-01

    The removal of 'poisons' from anion exchangers in uranium processing of Canadian radioactive ores is commonly called rejuvenation or regeneration. The cost of the ion exchange recovery of uranium is adversely affected by a decrease in the capacity and efficiency of the anion exchangers, due to their being 'poisoned' by silica, elemental sulphur, molybdenum and tetrathionates. These 'poisons' have a high affinity for the anion exchangers, are adsorbed in preference to the uranyl complex, and do not desorb with the reagents used normally in the uranyl desorption phase. The frequency of rejuvenation and the reagents required for rejuvenation are determined by the severity of the 'poisoning' accumulated by the exchanger in contact with the uranium leach liquor. Caustic soda (NaOH) at approximately equal to 18 cents/lb is commonly used to remove uranium anion exchangers of tetrathionate ((S 4 0 6 )/-/-) 'poisons'. A potential saving in operating cost would be of consequence if other reagents, e.g. sodium carbonate (Na 2 CO 3 ) at approximately equal to 3.6 cents/lb or calcium hydroxide (Ca(OH) 2 ) at approximately equal to 1.9 cents/lb, were effective in removing (S 4 0 6 )/-/-) from a 'poisoned' exchanger. A rejuvenation process for a test program was adopted after a perusal of the literature

  19. In situ spectroscopy of ligand exchange reactions at the surface of colloidal gold and silver nanoparticles

    International Nuclear Information System (INIS)

    Dinkel, Rebecca; Peukert, Wolfgang; Braunschweig, Björn

    2017-01-01

    Gold and silver nanoparticles with their tunable optical and electronic properties are of great interest for a wide range of applications. Often the ligands at the surface of the nanoparticles have to be exchanged in a second step after particle formation in order to obtain a desired surface functionalization. For many techniques, this process is not accessible in situ . In this review, we present second-harmonic scattering (SHS) as an inherently surface sensitive and label-free optical technique to probe the ligand exchange at the surface of colloidal gold and silver nanoparticles in situ and in real time. First, a brief introduction to SHS and basic features of the SHS of nanoparticles are given. After that, we demonstrate how the SHS intensity decrease can be correlated to the thiol coverage which allows for the determination of the Gibbs free energy of adsorption and the surface coverage. (topical review)

  20. Atmospheric deposition and canopy exchange processes in alpine forest ecosystems (northern Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Balestrini, R. [Water Research Institute, Brugherio (Italy); Tagliaferri, A. [Regional Forestry Board (Italy)

    2001-07-01

    Throughfall and bulk precipitation chemistry were studied for five years (June 1994-May 1999) at two high elevation forest sites (Val Gerola and Val Masino) which were known to differ in terms of tree health, as assessed by live crown condition. The ion concentration of bulk precipitation samples did not differ significantly between sites, except for Mg{sup 2+}, while the throughfall concentrations differed in the measured values of H{sup +}, N-NO{sub 3}{sup -}, Cl{sup -}, Na{sup +}, K{sup +}, DOC and weak organic acids. The results of the application of the canopy exchange model indicated a higher contribution from the dry deposition of N-NO{sub 3}{sup -}, N-NH{sub 4}{sup +} and H{sup +} at Val Gerola, where the damage symptoms were more evident. In addition, the canopy leaching of Ca{sup 2+}, K{sup +} and weak organic acids were 47%, 21% and 27% higher at Val Gerola than at Val Masino. Annual SO{sub 4}{sup 2-} deposition fluxes (21.3kg ha{sup -1}yr{sup -1} at Val Masino and 23.6kgha{sup -1}yr{sup -1} at Val Gerola) were similar to those reported for moderately polluted European and U.S. sites. Annual N loads were 13.6 and 13.1kgha{sup -1}yr{sup -1} in the bulk input, and 15.0 and 18.0kgha{sup -1}yr{sup -1} in throughfall inputs, at Val Masino and Val Gerola, respectively. The contribution of the organic fraction to the total N atmospheric deposition load is significant, constituting 17% of the bulk flux and 40% of the throughfall flux. Measured nitrogen loads exceed the critical nutrient loads by several kgNha{sup -1} at both stations. In particular the nitrogen throughfall load at Val Gerola was about 3 times higher than the critical values. (author)

  1. Reflectance of Antarctic surfaces from multispectral radiometers: The correction of atmospheric effects

    International Nuclear Information System (INIS)

    Zibordi, G.; Maracci, G.

    1993-01-01

    Monitoring reflectance of polar icecaps has relevance in climate studies. In fact, climate changes produce variations in the morphology of ice and snow covers, which are detectable as surface reflectance change. Surface reflectance can be retrieved from remotely sensed data. However, absolute values independent of atmospheric turbidity and surface altitude can only be obtained after removing masking effects of the atmosphere. An atmospheric correction model, accounting for surface and sensor altitudes above sea level, is described and validated through data detected over Antarctic surfaces with a Barnes Modular Multispectral Radiometer having bands overlapping those of the Landsat Thematic Mapper. The model is also applied in a sensitivity analysis to investigate error induced in reflectance obtained from satellite data by indeterminacy in optical parameters of atmospheric constituents. Results show that indeterminacy in the atmospheric water vapor optical thickness is the main source of nonaccuracy in the retrieval of surface reflectance from data remotely sensed over Antarctic regions

  2. Uncertainty quantification of surface-water/groundwater exchange estimates in large wetland systems using Python

    Science.gov (United States)

    Hughes, J. D.; Metz, P. A.

    2014-12-01

    Most watershed studies include observation-based water budget analyses to develop first-order estimates of significant flow terms. Surface-water/groundwater (SWGW) exchange is typically assumed to be equal to the residual of the sum of inflows and outflows in a watershed. These estimates of SWGW exchange, however, are highly uncertain as a result of the propagation of uncertainty inherent in the calculation or processing of the other terms of the water budget, such as stage-area-volume relations, and uncertainties associated with land-cover based evapotranspiration (ET) rate estimates. Furthermore, the uncertainty of estimated SWGW exchanges can be magnified in large wetland systems that transition from dry to wet during wet periods. Although it is well understood that observation-based estimates of SWGW exchange are uncertain it is uncommon for the uncertainty of these estimates to be directly quantified. High-level programming languages like Python can greatly reduce the effort required to (1) quantify the uncertainty of estimated SWGW exchange in large wetland systems and (2) evaluate how different approaches for partitioning land-cover data in a watershed may affect the water-budget uncertainty. We have used Python with the Numpy, Scipy.stats, and pyDOE packages to implement an unconstrained Monte Carlo approach with Latin Hypercube sampling to quantify the uncertainty of monthly estimates of SWGW exchange in the Floral City watershed of the Tsala Apopka wetland system in west-central Florida, USA. Possible sources of uncertainty in the water budget analysis include rainfall, ET, canal discharge, and land/bathymetric surface elevations. Each of these input variables was assigned a probability distribution based on observation error or spanning the range of probable values. The Monte Carlo integration process exposes the uncertainties in land-cover based ET rate estimates as the dominant contributor to the uncertainty in SWGW exchange estimates. We will discuss

  3. Screening models for releases of radionuclides to atmosphere, surface water, and ground -- Work sheets

    International Nuclear Information System (INIS)

    1996-01-01

    Three levels of screening for the atmospheric transport pathways and two levels for surface water are presented. The ground has only one screening level. Level 1 is the simplest approach and incorporates a high degree of conservatism. The estimate of the effective dose for this level assumes a concentration based upon the radionuclide concentration at the point of emission to the environment, i.e., at the stack for atmospheric emissions, at the end of the effluent pipe for liquid effluent releases, and at a well because of the buried radioactive material. Levels 2 and 3 are presented for atmospheric releases, and Level 2 for surface water releases only and are more detailed and correspondingly less conservative. Level 2 screening accounts for dispersion in the atmosphere and in surface waters and combines all recognized pathways into the screening factor. For the atmospheric pathway, Level 3 screening includes more definitive pathways analysis. Should the user be found in compliance on the basis of Level 1 screening, no further calculations are required. If the user fails Level 1, the user proceeds to the next level and checks for compliance. This process is repeated until the user passes screening (is in compliance) or no further screening levels exist. If the user fails the final level, professional assistance should be obtained in environmental radiological assessment. Work sheets are designed to lead the user through screening in a step-by-step manner until compliance is demonstrated or it is determined that more sophisticated methods or expertise are needed. Flow diagrams are provided as a guide to identify key steps in the screening process

  4. Design of common heat exchanger network for batch processes

    International Nuclear Information System (INIS)

    Anastasovski, Aleksandar

    2014-01-01

    Heat integration of energy streams is very important for the efficient energy recovery in production systems. Pinch technology is a very useful tool for heat integration and maximizing energy efficiency. Creating of heat exchangers network as a common solution for systems in batch mode that will be applicable in all existing time slices is very difficult. This paper suggests a new methodology for design of common heat exchanger network for batch processes. Heat exchanger network designs were created for all determined repeatable and non-repeatable time periods – time slices. They are the basis for creating the common heat exchanger network. The common heat exchanger network as solution, satisfies all heat-transfer needs for each time period and for every existing combination of selected streams in the production process. This methodology use split of some heat exchangers into two or more heat exchange units or heat exchange zones. The reason for that is the multipurpose use of heat exchangers between different pairs of streams in different time periods. Splitting of large heat exchangers would maximize the total heat transfer usage of heat exchange units. Final solution contains heat exchangers with the minimum heat load as well as the minimum need of heat transfer area. The solution is applicable for all determined time periods and all existing stream combinations. - Highlights: •Methodology for design of energy efficient systems in batch processes. •Common Heat Exchanger Network solution based on designs with Pinch technology. •Multipurpose use of heat exchangers in batch processes

  5. Atmospheric effect on the ground-based measurements of broadband surface albedo

    Directory of Open Access Journals (Sweden)

    T. Manninen

    2012-11-01

    Full Text Available Ground-based pyranometer measurements of the (clear-sky broadband surface albedo are affected by the atmospheric conditions (mainly by aerosol particles, water vapour and ozone. A new semi-empirical method for estimating the magnitude of the effect of atmospheric conditions on surface albedo measurements in clear-sky conditions is presented. Global and reflected radiation and/or aerosol optical depth (AOD at two wavelengths are needed to apply the method. Depending on the aerosol optical depth and the solar zenith angle values, the effect can be as large as 20%. For the cases we tested using data from the Cabauw atmospheric test site in the Netherlands, the atmosphere caused typically up to 5% overestimation of surface albedo with respect to corresponding black-sky surface albedo values.

  6. Exchange of nitrogen dioxide (NO2) between plants and the atmosphere under laboratory and field conditions

    Science.gov (United States)

    Breuninger, C.; Meixner, F. X.; Thielmann, A.; Kuhn, U.; Dindorf, T.; Kesselmeier, J.

    2012-04-01

    Nitric oxide (NO), nitrogen dioxide (NO2), often denoted as nitrogen oxides (NOx), and ozone (O3) are considered as most important compounds in atmospheric chemistry. In remote areas NOx concentration is related to biological activities of soils and vegetation. The emitted NOx will not entirely be subject of long range transport through the atmosphere. Aside oxidation of NO2 by the OH radical (forming HNO3), a considerable part of it is removed from the atmosphere through the uptake of NO2 by plants. The exchange depends on stomatal activity and on NO2 concentrations in ambient air. It is known that NO2 uptake by plants represents a large NO2 sink, but the magnitude and the NO2 compensation point concentration are still under discussion. Our dynamic chamber system allows exchange measurements of NO2 under field conditions (uncontrolled) as well as studies under controlled laboratory conditions including fumigation experiments. For NO2 detection we used a highly NO2 specific blue light converter (photolytic converter) with subsequent chemiluminescence analysis of the generated NO. Furthermore, as the exchange of NO2 is a complex interaction of transport, chemistry and plant physiology, in our field experiments we determined fluxes of NO, NO2, O3, CO2 and H2O. For a better knowledge of compensation point values for the bi-directional NO2 exchange we investigated a primary representative of conifers, Picea abies, under field and laboratory conditions, and re-analyzed older field data of the deciduous tree Quercus robur.

  7. Monitoring and modelling of biosphere/atmosphere exchange of gases and aerosols in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Erisman, Jan Willem [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands)]. E-mail: erisman@ecn.nl; Vermeulen, Alex [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands); Hensen, Arjan [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands); Flechard, Chris [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands); Daemmgen, Ulrich [Federal Agricultural Research Centre, Institute of Agroecology, D-38116 Braunschweig, (Germany); Fowler, David [CEH, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Sutton, Mark [CEH, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Gruenhage, Ludger [Institute for Plant Ecology, Justus-Liebig-University, D-35392 Giessen (Germany); Tuovinen, Juha-Pekka [Finnish Meteorological Institute, FIN-00810 Helsinki (Finland)

    2005-02-01

    Monitoring and modelling of deposition of air pollutants is essential to develop and evaluate policies to abate the effects related to air pollution and to determine the losses of pollutants from the atmosphere. Techniques for monitoring wet deposition fluxes are widely applied. A recent intercomparison experiment, however, showed that the uncertainty in wet deposition is relatively high, up to 40%, apart from the fact that most samplers are biased because of a dry deposition contribution. Wet deposition amounts to about 80% of the total deposition in Europe with a range of 10-90% and uncertainty should therefore be decreased. During recent years the monitoring of dry deposition has become possible. Three sites have been operational for 5 years. The data are useful for model development, but also for model evaluation and monitoring of progress in policy. Data show a decline in SO{sub 2} dry deposition, whereas nitrogen deposition remained constant. Furthermore, surface affinities for pollutants changed leading to changes in deposition. Deposition models have been further developed and tested with dry deposition measurements and total deposition measurements on forests as derived from throughfall data. The comparison is reasonable given the measurement uncertainties. Progress in ozone surface exchange modelling and monitoring shows that stomatal uptake can be quantified with reasonable accuracy, but external surface uptake yields highest uncertainty. - Monitoring and modelling of the deposition of sulphur and nitrogen components and the exposure of ozone has gained much progress through the research within BIATEX.

  8. Efficiency of Al2O3 supported palladium sorbents in the process of hydrogen isotope exchange

    International Nuclear Information System (INIS)

    Andreev, B.M.; Perevezentsev, A.N.; Yasenkov, V.I.

    1981-01-01

    It is found that in the hydrogen-palladium system while applying the metal to aluminium oxide a considerable increase of the heterogeneous hydrogen isotopic exchange rate is observed due to the increase of its specific surface at 167-298 K temperatures and 350-500 Torr hydrogen pressures. It is shown that in the process of thermal treatment of the supported palladium sorbent resulting in reconstruction of the carrier porous structure, as well as in increasing the metal crystal size, the change of the stage, limiting the isotopic exchange process, occurs. The values of the rate and energy of activation of the hydrogen isotopic exchange are presented [ru

  9. Clays as mineral dust aerosol: An integrated approach to studying climate, atmospheric chemistry, and biogeochemical effects of atmospheric clay minerals in an undergraduate research laboratory

    Science.gov (United States)

    Hatch, C. D.; Crane, C. C.; Harris, K. J.; Thompson, C. E.; Miles, M. K.; Weingold, R. M.; Bucuti, T.

    2011-12-01

    Entrained mineral dust aerosol accounts for 45% of the global annual atmospheric aerosol load and can have a significant influence on important environmental issues, including climate, atmospheric chemistry, cloud formation, biogeochemical processes, visibility, and human health. 70% of all mineral aerosol mass originating from Africa consists of layered aluminosilicates, including illite, kaolinite, and montmorillonite clays. Clay minerals are a largely neglected component of mineral aerosol, yet they have unique physiochemical properties, including a high reactive surface area, large cation exchange capacities, small particle sizes, and a relatively large capacity to take up adsorbed water, resulting in expansion of clay layers (and a larger reactive surface area for heterogeneous interactions) in some cases. An integrated laboratory research approach has been implemented at Hendrix College, a Primarily Undergraduate Institution, in which undergraduate students are involved in independent and interdisciplinary research projects that relate the chemical aging processes (heterogeneous chemistry) of clay minerals as a major component of mineral aerosol to their effects on climate (water adsorption), atmospheric chemistry (trace gas uptake), and biogeochemistry (iron dissolution and phytoplankton biomarker studies). Preliminary results and future directions will be reported.

  10. Surface cleaning of metal wire by atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Nakamura, T.; Buttapeng, C.; Furuya, S.; Harada, N.

    2009-01-01

    In this study, the possible application of atmospheric pressure dielectric barrier discharge plasma for the annealing of metallic wire is examined and presented. The main purpose of the current study is to examine the surface cleaning effect for a cylindrical object by atmospheric pressure plasma. The experimental setup consists of a gas tank, plasma reactor, and power supply with control panel. The gas assists in the generation of plasma. Copper wire was used as an experimental cylindrical object. This copper wire was irradiated with the plasma, and the cleaning effect was confirmed. The result showed that it is possible to remove the tarnish which exists on the copper wire surface. The experiment reveals that atmospheric pressure plasma is usable for the surface cleaning of metal wire. However, it is necessary to examine the method for preventing oxidization of the copper wire.

  11. Evaluation of Scaling Approaches for the Oceanic Dissipation Rate of Turbulent Kinetic Energy in the Surface Ocean

    Science.gov (United States)

    Esters, L. T.; Ward, B.; Sutherland, G.; Ten Doeschate, A.; Landwehr, S.; Bell, T. G.; Christensen, K. H.

    2016-02-01

    The air-sea exchange of heat, gas and momentum plays an important role for the Earth's weather and global climate. The exchange processes between ocean and atmosphere are influenced by the prevailing surface ocean dynamics. This surface ocean is a highly turbulent region where there is enhanced production of turbulent kinetic energy (TKE). The dissipation rate of TKE (ɛ) in the surface ocean is an important process for governing the depth of both the mixing and mixed layers, which are important length-scales for many aspects of ocean research. However, there exist very limited observations of ɛ under open ocean conditions and consequently our understanding of how to model the dissipation profile is very limited. The approaches to model profiles of ɛ that exist, differ by orders of magnitude depending on their underlying theoretical assumption and included physical processes. Therefore, scaling ɛ is not straight forward and requires open ocean measurements of ɛ to validate the respective scaling laws. This validated scaling of ɛ, is for example required to produce accurate mixed layer depths in global climate models. Errors in the depth of the ocean surface boundary layer can lead to biases in sea surface temperature. Here, we present open ocean measurements of ɛ from the Air-Sea Interaction Profiler (ASIP) collected during several cruises in different ocean basins. ASIP is an autonomous upwardly rising microstructure profiler allowing undisturbed profiling up to the ocean surface. These direct measurements of ɛ under various types of atmospheric and oceanic conditions along with measurements of atmospheric fluxes and wave conditions allow us to make a unique assessment of several scaling approaches based on wind, wave and buoyancy forcing. This will allow us to best assess the most appropriate ɛ-based parameterisation for air-sea exchange.

  12. Safety aspects in a chemical exchange process plant

    International Nuclear Information System (INIS)

    Sharma, B.K.

    2016-01-01

    Based on a chemical exchange process involving solid liquid exchange, studies have been undertaken to enrich 10 B isotope of boron using ion exchange chromatography in which a strong base anion exchange resin in hydroxyl form is equilibrated with boric acid solution in presence of mannitol (a complexing reagent to boric acid) to enhance the acidity and hence the isotopic exchange separation factor for 10 B = 11 B exchange reaction. Using the electrochemical techniques such as pH-metry and conductimetry, the choice of a suitable complexing reagent was made amongst ethylene glycol, propylene glycol, dextrose and mannitol for cost-effective separation of isotopes of boron and monitoring of band movements using these electrochemical techniques. The optimum conditions for the regeneration of strong base anion exchange resins of type-I and type-II were determined for cost-effective separation of isotopes of boron by ion exchange chromatography. The possibility of using unspent alkali content of the effluent was also exploited. Removal of carbonate impurity from Rayon grade caustic lye (used as regenerant after dilution) and recycling of Ba(OH) 2 was studied to avoid waste disposal problems. This process is an industrially viable process. The various safety aspects followed during operation of this plant are described in this paper. (author)

  13. Assessment of model estimates of land-atmosphere CO2 exchange across northern Eurasia

    Science.gov (United States)

    Rawlins, M.A.; McGuire, A.D.; Kimball, J.S.; Dass, P.; Lawrence, D.; Burke, E.; Chen, X.; Delire, C.; Koven, C.; MacDougall, A.; Peng, S.; Rinke, A.; Saito, K.; Zhang, W.; Alkama, R.; Bohn, T. J.; Ciais, P.; Decharme, B.; Gouttevin, I.; Hajima, T.; Ji, D.; Krinner, G.; Lettenmaier, D.P.; Miller, P.; Moore, J.C.; Smith, B.; Sueyoshi, T.

    2015-01-01

    A warming climate is altering land-atmosphere exchanges of carbon, with a potential for increased vegetation productivity as well as the mobilization of permafrost soil carbon stores. Here we investigate land-atmosphere carbon dioxide (CO2) cycling through analysis of net ecosystem productivity (NEP) and its component fluxes of gross primary productivity (GPP) and ecosystem respiration (ER) and soil carbon residence time, simulated by a set of land surface models (LSMs) over a region spanning the drainage basin of Northern Eurasia. The retrospective simulations cover the period 1960–2009 at 0.5° resolution, which is a scale common among many global carbon and climate model simulations. Model performance benchmarks were drawn from comparisons against both observed CO2 fluxes derived from site-based eddy covariance measurements as well as regional-scale GPP estimates based on satellite remote-sensing data. The site-based comparisons depict a tendency for overestimates in GPP and ER for several of the models, particularly at the two sites to the south. For several models the spatial pattern in GPP explains less than half the variance in the MODIS MOD17 GPP product. Across the models NEP increases by as little as 0.01 to as much as 0.79 g C m−2 yr−2, equivalent to 3 to 340 % of the respective model means, over the analysis period. For the multimodel average the increase is 135 % of the mean from the first to last 10 years of record (1960–1969 vs. 2000–2009), with a weakening CO2 sink over the latter decades. Vegetation net primary productivity increased by 8 to 30 % from the first to last 10 years, contributing to soil carbon storage gains. The range in regional mean NEP among the group is twice the multimodel mean, indicative of the uncertainty in CO2 sink strength. The models simulate that inputs to the soil carbon pool exceeded losses, resulting in a net soil carbon gain amid a decrease in residence time. Our analysis points to improvements in model

  14. Atmospheric-Pressure Plasma Cleaning of Contaminated Surfaces

    International Nuclear Information System (INIS)

    Hicks, Robert F.; Herrmann, Hans W.

    2003-01-01

    The objective of this work is to demonstrate a practical, atmospheric pressure plasma tool for the surface decontamination of radioactive waste. Decontamination of radioactive materials that have accumulated on the surfaces of equipment and structures is a challenging and costly undertaking for the US Department of Energy. Our technology shows great potential for accelerating this clean up effort

  15. Are atmospheric surface layer flows ergodic?

    Science.gov (United States)

    Higgins, Chad W.; Katul, Gabriel G.; Froidevaux, Martin; Simeonov, Valentin; Parlange, Marc B.

    2013-06-01

    The transposition of atmospheric turbulence statistics from the time domain, as conventionally sampled in field experiments, is explained by the so-called ergodic hypothesis. In micrometeorology, this hypothesis assumes that the time average of a measured flow variable represents an ensemble of independent realizations from similar meteorological states and boundary conditions. That is, the averaging duration must be sufficiently long to include a large number of independent realizations of the sampled flow variable so as to represent the ensemble. While the validity of the ergodic hypothesis for turbulence has been confirmed in laboratory experiments, and numerical simulations for idealized conditions, evidence for its validity in the atmospheric surface layer (ASL), especially for nonideal conditions, continues to defy experimental efforts. There is some urgency to make progress on this problem given the proliferation of tall tower scalar concentration networks aimed at constraining climate models yet are impacted by nonideal conditions at the land surface. Recent advancements in water vapor concentration lidar measurements that simultaneously sample spatial and temporal series in the ASL are used to investigate the validity of the ergodic hypothesis for the first time. It is shown that ergodicity is valid in a strict sense above uniform surfaces away from abrupt surface transitions. Surprisingly, ergodicity may be used to infer the ensemble concentration statistics of a composite grass-lake system using only water vapor concentration measurements collected above the sharp transition delineating the lake from the grass surface.

  16. Thermal-hydraulic performance of the finned surface of a compact heat exchanger

    International Nuclear Information System (INIS)

    Errasti Cabrera, Michel

    2015-01-01

    In this work the thermal-hydraulic behavior of the finned surface of a compact heat exchanger is obtained in tube-fin configuration corrugated (wavy). Through numerical simulation are determined average values ​​of intensification of heat transfer and pressure loss in the inter-channel finned. The objective is to characterize the surface to use as a reference, to make comparisons with other heat exchange surfaces enhanced using traditional techniques combined with more current, such as vortex generators. The study is conducted in laminar flow, with Reynolds numbers below 1000. In the working model compact exchanger tubes and corrugated fins (wavy) heat is described, and the results of the coefficient of overall heat transfer and the pressure drop are explained from the local characteristics of the velocity field and temperature inside the heat exchanger. (Full text)

  17. Investigation of Titan's surface and atmosphere photometric functions using the Cassini/VIMS instrument

    Science.gov (United States)

    Cornet, Thomas; Altobelli, Nicolas; Rodriguez, Sébastien; Maltagliati, Luca; Le Mouélic, Stéphane; Sotin, Christophe; Brown, Robert; Barnes, Jason; Buratti, Bonnie; Baines, Kevin; Clark, Roger; Nicholson, Phillip

    2015-04-01

    After 106 flybys spread over 10 years, the Cassini Visual and Infrared Mapping Spectrometer (VIMS) instrument acquired 33151 hyperspectral cubes pointing at the surface of Titan on the dayside. Despite this huge amount of data available for surface studies, and due to the strong influence of the atmosphere (methane absorption and haze scattering), Titan's surface is only visible with VIMS in 7 spectral atmospheric windows centred at 0.93, 1.08, 1.27, 1.59, 2.01, 2.7-2.8 and 5 microns. Atmospheric scattering and absorption effects dominate Titan's spectrum at wavelengths shorter than 3 microns, while the 5 micron window, almost insensitive to the haze scattering, only presents a reduced atmospheric absorption contribution to the signal recorded by VIMS. In all cases, the recorded I/F represents an apparent albedo, which depends on the atmospheric contributions and the surface photometry at each wavelength. We therefore aim to determine real albedo values for Titan's surface by finding photometric functions for the surface and the atmosphere that could be used as a basis for empirical corrections or Radiative Transfer calculations. After updating the navigation of the VIMS archive, we decomposed the entire VIMS data set into a MySQL relational database gathering the viewing geometry, location, time (season) and I/F (for pure atmosphere and surface-atmosphere images) for each pixel of the 33151 individual VIMS cubes. We then isolated all the VIMS pixels where Titan's surface has been repeatedly imaged at low phase angles (< 20 degrees) in order to characterize phase curves for the surface at 5 microns and for the atmosphere. Among these, the T88 flyby appears noteworthy, with a "Emergence-Phase Function (EPF)"-type observation: 25 cubes acquired during the same flyby, over the same area (close to Tortola Facula, in relatively dark terrains), at a constant incidence and with varying emergence and phase (from 0 to 60 degrees) angles. The data clearly exhibit an increase

  18. Global changes and the air-sea exchange of chemicals

    International Nuclear Information System (INIS)

    1991-01-01

    Present and potential future changes to the global environment have important implications for marine pollution and for the air-sea exchange of both anthropogenic and natural substances. This report addresses three issues related to the potential impact of global change on the air-sea exchange of chemicals: Global change and the air-sea transfer of the nutrients nitrogen and iron. Global change and the air-sea exchange of gases. Oceanic responses to radiative and oxidative changes in the atmosphere. The deposition of atmospheric anthropogenic nitrogen has probably increased biological productivity in coastal regions along many continental margins. Atmospheric deposition of new nitrogen may also have increased productivity somewhat in mid-ocean regions. The projected future increases of nitrogen oxide emissions from Asia, Africa and South America will provide significant increases in the rate of deposition of oxidized nitrogen to the central North Pacific, the equatorial Atlantic, and the equatorial and central South Indian Oceans. Atmospheric iron may be an important nutrient in certain open regions. Future changes will likely occur if there are changing patterns of aridity and wind speed as a result of climate change. The most important future effects on surface ocean p CO2 will likely be caused by changes in ocean circulation. The pH of the ocean would decrease by ∼0.3 units for a doubling of p CO2 , reducing the capacity of the ocean to take up CO 2 . There is increasing evidence that dimethyl sulfide from the ocean is a source of cloud condensation nuclei and thus a factor controlling cloud albedo. By 2060 in the southern hemisphere reduction in total column stratospheric ozone from recent levels could reach 2 to 5% in the tropics, 10% at mid latitudes, and over 20% at 60 deg C. S. In this same time frame increases in ground-level effective UV-B radiation could reach 5%, 26% and 66%, at low, mid, and high latitudes in the southern hemisphere. Changes in

  19. Heterogeneously catalyzed deuterium separation processes: Hydrogen-water exchange studies at elevated temperatures and pressures

    International Nuclear Information System (INIS)

    Halliday, J.D.; Rolston, J.H.; Au, J.C.; Den Hartog, J.; Tremblay, R.R.

    1985-01-01

    New processes for the separation of hydrogen isotopes are required to produce heavy water for CANDU nuclear reactors and to extract tritium formed in the moderator during reactor operation. Wetproofed platinum catalysts capable of promoting rapid exchange of isotopes between countercurrent flows of hydrogen and liquid water in packed columns have been developed at CRNL over the past 15 years. These catalysts provide a catalystic surface for the gas phase exchange reaction H/sub 2/O/sub (v)/ + HD/sub (g)/ ↔ HDO/sub (v)/ + H/sub 2(g)/ as well as a large liquid surface for the liquid phase isotope transfer reaction HDO/sub (v)/ + H/sub 2/O/sub (iota)/↔HDO/sub (iota)/+H/sub 2/O/sub (v)/. Any economic stand-alone heavy water separation process, based on bithermal hydrogen-water exchange over wetproofed platinum catalysts, requires rapid overall exchange of isotopes between two phases at two temperatures. Catalysts developed for cold tower operation at 25-60 0 C are now being tested in a laboratory scale stainless steel trickle bed reactor for performance and stability at simulated hot tower conditions, 150 0 C and 2.0 MPa pressure. Catalytically active layers containing platinum supported on carbon or crystalline silica and wetproofed with Teflon have been prepared on ceramic spheres and stainless steel screening and tested in both random and ordered bed columns

  20. Challenges in quantifying biosphere-atmosphere exchange of nitrogen species

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, M.A. [Centre for Ecology and Hydrology (CEH), Edinburgh Research Station, Bush Estate, Penicuik, EH26 0QB (United Kingdom)], E-mail: ms@ceh.ac.uk; Nemitz, E. [Centre for Ecology and Hydrology (CEH), Edinburgh Research Station, Bush Estate, Penicuik, EH26 0QB (United Kingdom); Erisman, J.W. [ECN, Clean Fossil Fuels, PO Box 1, 1755 ZG Petten (Netherlands); Beier, C. [Riso National Laboratory, PO Box 49, DK-4000 Roskilde (Denmark); Bahl, K. Butterbach [Institute of Meteorology and Climate Research, Atmos. Environ. Research (IMK-IFU), Research Centre Karlsruhe GmbH, Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen (Germany); Cellier, P. [INRA Unite Mixte de Recherche, 78850 Thiverval-Grignon (France); Vries, W. de [Alterra, Green World Research, PO Box 47, 6700 AA Wageningen (Netherlands); Cotrufo, F. [Dip. Scienze Ambientali, Seconda Universita degli Studi di Napoli, via Vivaldi 43, 81100 Caserta (Italy); Skiba, U.; Di Marco, C.; Jones, S. [Centre for Ecology and Hydrology (CEH), Edinburgh Research Station, Bush Estate, Penicuik, EH26 0QB (United Kingdom); Laville, P.; Soussana, J.F.; Loubet, B. [INRA Unite Mixte de Recherche, 78850 Thiverval-Grignon (France); Twigg, M.; Famulari, D. [Centre for Ecology and Hydrology (CEH), Edinburgh Research Station, Bush Estate, Penicuik, EH26 0QB (United Kingdom); Whitehead, J.; Gallagher, M.W. [School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL (United Kingdom); Neftel, A.; Flechard, C.R. [Agroscope FAL Reckenholz, Federal Research Station for Agroecology and Agriculture, PO Box, CH 8046 Zurich (Switzerland)] (and others)

    2007-11-15

    Recent research in nitrogen exchange with the atmosphere has separated research communities according to N form. The integrated perspective needed to quantify the net effect of N on greenhouse-gas balance is being addressed by the NitroEurope Integrated Project (NEU). Recent advances have depended on improved methodologies, while ongoing challenges include gas-aerosol interactions, organic nitrogen and N{sub 2} fluxes. The NEU strategy applies a 3-tier Flux Network together with a Manipulation Network of global-change experiments, linked by common protocols to facilitate model application. Substantial progress has been made in modelling N fluxes, especially for N{sub 2}O, NO and bi-directional NH{sub 3} exchange. Landscape analysis represents an emerging challenge to address the spatial interactions between farms, fields, ecosystems, catchments and air dispersion/deposition. European up-scaling of N fluxes is highly uncertain and a key priority is for better data on agricultural practices. Finally, attention is needed to develop N flux verification procedures to assess compliance with international protocols. - Current N research is separated by form; the challenge is to link N components, scales and issues.

  1. Arctic summertime measurements of ammonia in the near-surface atmosphere

    Science.gov (United States)

    Moravek, A.; Murphy, J. G.; Wentworth, G.; Croft, B.; Martin, R.

    2016-12-01

    Measurements of gas-phase ammonia (NH3) in the summertime Arctic are rare, despite the impact NH3 can have on new particle formation rates and nitrogen deposition. The presence of NH3 can also increase the ratio of particulate-phase ammonium (NH4+) to non-sea salt sulphate (nss-SO42-) which decreases particle acidity. Known regional sources of NH3in the Arctic summertime include migratory seabird colonies and northern wildfires, whereas the Arctic Ocean is a net sink. In the summer of 2016, high time resolution measurements were collected in the Arctic to improve our understanding of the sources, sinks and impacts of ammonia in this remote region. A four week study was conducted at Alert, Canada (82.5º N, 62.3 º W) from June 23 to July 19, 2016 to examine the magnitude and sources of NH3 and SO42-. The Ambient Ion Monitor-Ion Chromatography system (AIM-IC) provided on-line, hourly averaged measurements of NH3, NH4+, SO42- and Na+. Measurements of NH3 ranged between 50 and 700 pptv (campaign mean of 240 pptv), consistent with previous studies in the summertime Arctic boundary layer. Levels of NH4+ and nss-SO42- were near or below detection limits ( 20 ng m-3) for the majority of the study. Tundra and lake samples were collected to investigate whether these could be important local sources of NH3 at Alert. These surface samples were analyzed for NH4+, pH and temperature and a compensation point (χ) for each sample was calculated to determine if these surface reservoirs can act as net NH3 sources. Precipitation samples were also collected throughout the study to better constrain our understanding of wet NH4+deposition in the summertime Arctic. From mid-July through August, 2016, NH3 was measured continuously using a laser spectroscopy technique onboard the Canadian Coast Guard Ship Amundsen in the eastern Arctic Ocean. Ocean-atmosphere exchange of NH3 was quantified using measurements of sea surface marine NH4+ concentrations. In addition, wet deposition of

  2. Exchange energy of inhomogenous electron gas near a metal surface

    International Nuclear Information System (INIS)

    Miglio, L.; Tosi, M.P.; March, N.H.

    1980-12-01

    Using the first-order density matrix of an infinite-barrier model of a metal surface, the exchange energy density can be evaluated exactly as a function of distance z from the barrier. This result is compared with the local approximation -3/4e 2 (3/π)sup(1/3) rhosup(4/3)(z) where rho is the electron density in the model. The local approximation is demonstrated to be quantitatively accurate at all z. The integrated surface exchange energy is given to within 3% by the local theory. (author)

  3. Natural radium and radon tracers to quantify water exchange and movement in reservoirs

    Science.gov (United States)

    Smith, Christopher G.; Baskaran, Mark

    2011-01-01

    Radon and radium isotopes are routinely used to quantify exchange rates between different hydrologic reservoirs. Since their recognition as oceanic tracers in the 1960s, both radon and radium have been used to examine processes such as air-sea exchange, deep oceanic mixing, benthic inputs, and many others. Recently, the application of radon-222 and the radium-quartet (223,224,226,228Ra) as coastal tracers has seen a revelation with the growing interest in coastal groundwater dynamics. The enrichment of these isotopes in benthic fluids including groundwater makes both radium and radon ideal tracers of coastal benthic processes (e.g. submarine groundwater discharge). In this chapter we review traditional and recent advances in the application of radon and radium isotopes to understand mixing and exchange between various hydrologic reservoirs, specifically: (1) atmosphere and ocean, (2) deep and shallow oceanic water masses, (3) coastal groundwater/benthic pore waters and surface ocean, and (4) aquifer-lakes. While the isotopes themselves and their distribution in the environment provide qualitative information about the exchange processes, it is mixing/exchange and transport models for these isotopes that provide specific quantitative information about these processes. Brief introductions of these models and mixing parameters are provided for both historical and more recent studies.

  4. Fair weather atmospheric electricity

    International Nuclear Information System (INIS)

    Harrison, R G

    2011-01-01

    Not long after Franklin's iconic studies, an atmospheric electric field was discovered in 'fair weather' regions, well away from thunderstorms. The origin of the fair weather field was sought by Lord Kelvin, through development of electrostatic instrumentation and early data logging techniques, but was ultimately explained through the global circuit model of C.T.R. Wilson. In Wilson's model, charge exchanged by disturbed weather electrifies the ionosphere, and returns via a small vertical current density in fair weather regions. New insights into the relevance of fair weather atmospheric electricity to terrestrial and planetary atmospheres are now emerging. For example, there is a possible role of the global circuit current density in atmospheric processes, such as cloud formation. Beyond natural atmospheric processes, a novel practical application is the use of early atmospheric electrostatic investigations to provide quantitative information on past urban air pollution.

  5. SURFACE ENERGY BALANCE OVER ORANGE ORCHARD USING SURFACE RENEWAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo

    2009-12-01

    Full Text Available Reliable estimation of surface sensible and latent heat flux is the most important process to appraise energy and mass exchange among atmosphere and biosphere. In this study the surface energy fluxes were measured over an irrigated orange orchard during 2005-2008 monitoring periods using a Surface Renewal- Energy Balance approach. The experimental area is located in a representative orchard growing area of eastern Sicily (Italy. The performance of Surface Renewal (SR analysis for estimating sensible heat flux (H was analysed and evaluated in terms of correlation with H fluxes from the eddy covariance (EC method. Study revealed that the mean available energy (RN- G and latent heat flux (LE were of about 300 W m-2 and 237 W m-2, respectively, during dry periods and unstable-case atmospheric conditions. The estimated crop coefficient Kc values for the orchard crop averaged close to 0.80, which is considerably higher than previous FAO studies that found the value to be 0.65 for citrus with 70% of ground cover. The intercepted photosynthetically active radiation (LI PAR by the crop was measured and relationships between LAI and crop coefficient (Kc were established.

  6. Optimal model of radiocarbon residence time in exchange reservoir

    International Nuclear Information System (INIS)

    Dergachev, V.A.

    1977-01-01

    Radiocarbon content variations in the earth atmosphere were studied using a mathematical model. The so-called exchange reservoir was considered consisting of layers, and the radiocarbon exchange rate at the interfaces between these layers was supposed to be constant. The process of 14 C mixing and exchange in a dynamic system is described by a system of nonhomogeneous 1st order differential equations. The model also accounts for the change in rate of radiocarbon formation in the earth atmosphere due to cosmic and geophysical effects (solar activity, solar cycle, etc.). (J.P.)

  7. Triton: Scattering models and surface/atmosphere constraints

    International Nuclear Information System (INIS)

    Thompson, W.R.

    1989-01-01

    Modeling of Triton's spectrum indicates a bright scattering layer of optical depth τ≅3 overlying an optically deep layer of CH 4 with high absorption and little scattering. UV absorption in the spectrum indicates τ≅0.3 of red-yellow haze, although some color may also arise from complex organics partially visible on the surface. An analysis of this and other (spectro)photometric evidence indicates that Triton most likely has a bright surface, which was partially visible in 1977-1980. Geometric albedo p=0.62 +0.18 -0.12 , radius r = 1480 ± 180 km, and temperature T = 48 ± 6 K. With scattering optical depths of 0.3-3 and ∼1-10 mb of N 2 , a Mars-like atmospheric density and surface visibility pertain. Imaging with the 0.62μm CH 4 filter of the Voyager 2 wide angle camera could show ∼20% contrast between the average surface and clean exposures of CH 4 ice (which is not limited to the polar caps). Low far-infrared atmospheric opacity will in principle allow the detection of thermal gradients in the surface caused by optically transmitting but infrared opaque CH 4 and N 2 ice

  8. Projecting Soil Feedbacks to Atmospheric CO2 Following Erosion and Deposition on Centennial Timescales in Two Contrasting Forests: A Study of Critical Zone-Atmosphere Exchange

    Science.gov (United States)

    Billings, S. A.; Richter, D., Jr.; Ziegler, S. E.; Prestegaard, K. L.

    2016-12-01

    For almost 20 y there has been a growing recognition that erosion and associated lateral movement of SOC does not necessarily result in a net CO2 source from terrestrial sources to the atmosphere. Eroded SOC may undergo mineralization to CO2 at a more rapid pace than it would have in situ, but the eroding ecosystem continues to generate SOC at a potentially modified rate, and the eroding profile may also experience changing SOC mineralization rates. No one knows how these process rates may change upon erosion. Years ago, we introduced a model that computes the influence of erosion on biosphere-atmosphere CO2 exchange for any profile of interest. The model permits the user to test how assumptions of changing SOC production and mineralization can influence the degree to which erosion induces a net CO2 sink or source. Here we present an analogous model depicting how deposition of eroded SOC also can result in altered biosphere-atmosphere CO2 exchange. We employ both models to investigate how erosion and deposition in two contrasting forested regions may influence regional C budgets. Runoff-induced erosion in a boreal forest occurs at low rates, but removes C-rich, organic material; anthropogenically-enhanced erosion in a warm temperate forest removed both O- and mineral-rich A-horizons. Model runs (100 y) suggest that even though the great volume of mineral soil eroded from the temperate forest was relatively low-SOC, high erosion rates prompted greater potential for erosion to serve as a net CO2 sink compared to the boreal forest where C-rich material was lost but erosion rates remained low. The models further suggest that changes in SOC production and mineralization at eroding sites in both forest types are a greater influence on CO2 source or sink strength than analogous changes at depositional sites. The fate of eroded material and the influence of erosion and deposition on SOC dynamics remain knowledge gaps critical for projecting atmospheric CO2.

  9. Untangling surface oxygen exchange effects in YBa2Cu3O6+x thin films by electrical conductivity relaxation.

    Science.gov (United States)

    Cayado, P; Sánchez-Valdés, C F; Stangl, A; Coll, M; Roura, P; Palau, A; Puig, T; Obradors, X

    2017-05-31

    The kinetics of oxygen incorporation (in-diffusion process) and excorporation (out-diffusion process), in YBa 2 Cu 3 O 6+x (YBCO) epitaxial thin films prepared using the chemical solution deposition (CSD) methodology by the trifluoroacetate route, was investigated by electrical conductivity relaxation measurements. We show that the oxygenation kinetics of YBCO films is limited by the surface exchange process of oxygen molecules prior to bulk diffusion into the films. The analysis of the temperature and oxygen partial pressure influence on the oxygenation kinetics has drawn a consistent picture of the oxygen surface exchange process enabling us to define the most likely rate determining step. We have also established a strategy to accelerate the oxygenation kinetics at low temperatures based on the catalytic influence of Ag coatings thus allowing us to decrease the oxygenation temperature in the YBCO thin films.

  10. Atmospheric pressure plasma cleaning of contamination surfaces. 1997 mid-year progress report

    International Nuclear Information System (INIS)

    Hicks, R.; Selwyn, G.S.

    1997-01-01

    'Goals of the project are to (1) identify the key physics and chemistry underlying the use of high pressure plasmas for etching removal of actinides and actinide surrogates; and (2) identify key surface reactions and plasma physics necessary for optimization of the atmospheric pressure plasma jet. Technical description of the work decommissioning of transuranic waste (TRU) into low-level radioactive waste (LLW) represents the largest cleanup cost associated with the nuclear weapons complex. This work is directed towards developing a low-cost plasma technology capable of converting TRU into LLW, based upon highly selective plasma etching of plutonium and other actinides from contaminated surfaces. In this way, only the actinide material is removed, leaving the surface less contaminated. The plasma etches actinide material by producing a volatile halide compound, which may be efficiently trapped using filters. To achieve practical, low-cost operation of a plasma capable of etching actinide materials, the authors have developed a y-mode, resonant-cavity, atmospheric pressure plasma jet (APPJ). In contrast to conventional, low pressure plasmas, the APPJ produces a purely-chemical effluent free of ions, and so achieves very high selectivity and produces negligible damage to the surface. Since the jet operates outside a chamber, many nuclear wastes may be treated including machinery, duct-work, concrete and other building materials. In some cases, it may be necessary to first remove paint from contaminated surfaces using a plasma selective for that surface, then to switch to the actinide etching chemistry for removal of actinide contamination. The goal of this work is to develop the underlying science required for maturation of this technology and to establish early version engineering prototypes. Accomplishments to Date The authors have made significant progress in this program. The work conducted jointly at Los Alamos and at UCLA. This has been facilitated by exchange

  11. Atmospheric pressure plasma cleaning of contamination surfaces. 1997 mid-year progress report

    Energy Technology Data Exchange (ETDEWEB)

    Selwyn, G.S. [Los Alamos National Lab., NM (US); Hicks, R. [Univ. of California, Los Angeles, CA (US)

    1997-06-01

    'Goals of the project are to (1) identify the key physics and chemistry underlying the use of high pressure plasmas for etching removal of actinides and actinide surrogates; and (2) identify key surface reactions and plasma physics necessary for optimization of the atmospheric pressure plasma jet. Technical description of the work decommissioning of transuranic waste (TRU) into low-level radioactive waste (LLW) represents the largest cleanup cost associated with the nuclear weapons complex. This work is directed towards developing a low-cost plasma technology capable of converting TRU into LLW, based upon highly selective plasma etching of plutonium and other actinides from contaminated surfaces. In this way, only the actinide material is removed, leaving the surface less contaminated. The plasma etches actinide material by producing a volatile halide compound, which may be efficiently trapped using filters. To achieve practical, low-cost operation of a plasma capable of etching actinide materials, the authors have developed a y-mode, resonant-cavity, atmospheric pressure plasma jet (APPJ). In contrast to conventional, low pressure plasmas, the APPJ produces a purely-chemical effluent free of ions, and so achieves very high selectivity and produces negligible damage to the surface. Since the jet operates outside a chamber, many nuclear wastes may be treated including machinery, duct-work, concrete and other building materials. In some cases, it may be necessary to first remove paint from contaminated surfaces using a plasma selective for that surface, then to switch to the actinide etching chemistry for removal of actinide contamination. The goal of this work is to develop the underlying science required for maturation of this technology and to establish early version engineering prototypes. Accomplishments to Date The authors have made significant progress in this program. The work conducted jointly at Los Alamos and at UCLA. This has been facilitated by

  12. Exchange of deuterium with hydrogen of zeolite catalyst surface

    International Nuclear Information System (INIS)

    Minachev, Kh.M.; Dmitriev, R.V.; Penchev, V.; Kanazirev, V.; Minchev, Kh.; Kasimov, Ch.K.; Bylgarska Akademiya na Naukite, Sofia. Inst. za Obshta i Organichna Khimiya; AN Azerbajdzhanskoj SSR, Baku. Inst. Neftekhimicheskikh Protsessov)

    1981-01-01

    Isotope heteromolecular exchange of hydrogen on the reduced nickel-containing zeolites takes places at the temperatures above 100 deg and it is controlled by activated hydrogen transfer from metal particles on the substrate surface. High-temperature redox treatment of nickel-containing zeolites results in the formation of large nickel crystallites on zeolite external faces. The rest part of nickel remains in zeolite pores and conditions a high promoting effect in the exchange reaction. Catalytic activity of reduced zeolites NiCaNaY in toluene disproportionation increases considerably only in the cases when nickel is introduced into zeolite by means of ion exchange. Close spatial location of nickel particles and OH groups promotes the procedure of both isotope exchange and disproportionation of toluene [ru

  13. Group IV nanocrystals with ion-exchangeable surface ligands and methods of making the same

    Science.gov (United States)

    Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.; Anderson, Nicholas C.; Beard, Matthew C.; Neale, Nathan R.

    2018-01-09

    Methods are described that include reacting a starting nanocrystal that includes a starting nanocrystal core and a covalently bound surface species to create an ion-exchangeable (IE) nanocrystal that includes a surface charge and a first ion-exchangeable (IE) surface ligand ionically bound to the surface charge, where the starting nanocrystal core includes a group IV element.

  14. Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations

    NARCIS (Netherlands)

    Peters, W.; Krol, M; van der Werf, G. R.; Houweling, S.; Jones, C. D.; Hughes, J.; Schaefer, K.; Masarie, K. A.; Jacobson, A. R.; Miller, J. B.; Cho, C. H.; Ramonet, M.; Schmidt, M.; Ciattaglia, L.; Apadula, F.; Helta, D.; Meinhardt, F.; di Sarra, A. G.; Piacentino, S.; Sferlazzo, D.; Aalto, T.; Hatakka, J.; Strom, J.; Haszpra, L.; Meijer, H. A. J.; van der Laan, S.; Neubert, R. E. M.; Jordan, A.; Rodo, X.; Morgui, J. -A.; Vermeulen, A. T.; Popa, E.; Rozanski, K.; Zimnoch, M.; Manning, A. C.; Leuenberger, M.; Uglietti, C.; Dolman, A. J.; Ciais, P.; Heimann, M.; Tans, P. P.; Heltai, D.; Ström, J.

    We present an estimate of net ecosystem exchange (NEE) of CO(2) in Europe for the years 2001-2007. It is derived with a data assimilation that uses a large set of atmospheric CO(2) mole fraction observations (similar to 70 000) to guide relatively simple descriptions of terrestrial and oceanic net

  15. Effects of shrub and tree cover increase on the near-surface atmosphere in northern Fennoscandia

    Directory of Open Access Journals (Sweden)

    J. H. Rydsaa

    2017-09-01

    Full Text Available Increased shrub and tree cover in high latitudes is a widely observed response to climate change that can lead to positive feedbacks to the regional climate. In this study we evaluate the sensitivity of the near-surface atmosphere to a potential increase in shrub and tree cover in the northern Fennoscandia region. We have applied the Weather Research and Forecasting (WRF model with the Noah-UA land surface module in evaluating biophysical effects of increased shrub cover on the near-surface atmosphere at a fine resolution (5.4 km  ×  5.4 km. Perturbation experiments are performed in which we prescribe a gradual increase in taller vegetation in the alpine shrub and tree cover according to empirically established bioclimatic zones within the study region. We focus on the spring and summer atmospheric response. To evaluate the sensitivity of the atmospheric response to inter-annual variability in climate, simulations were conducted for two contrasting years, one warm and one cold. We find that shrub and tree cover increase leads to a general increase in near-surface temperatures, with the highest influence seen during the snowmelt season and a more moderate effect during summer. We find that the warming effect is stronger in taller vegetation types, with more complex canopies leading to decreases in the surface albedo. Counteracting effects include increased evapotranspiration, which can lead to increased cloud cover, precipitation, and snow cover. We find that the strength of the atmospheric feedback is sensitive to snow cover variations and to a lesser extent to summer temperatures. Our results show that the positive feedback to high-latitude warming induced by increased shrub and tree cover is a robust feature across inter-annual differences in meteorological conditions and will likely play an important role in land–atmosphere feedback processes in the future.

  16. Spume Drops: Their Potential Role in Air-Sea Gas Exchange

    Science.gov (United States)

    Monahan, Edward C.; Staniec, Allison; Vlahos, Penny

    2017-12-01

    After summarizing the time scales defining the change of the physical properties of spume and other droplets cast up from the sea surface, the time scales governing drop-atmosphere gas exchange are compared. Following a broad review of the spume drop production functions described in the literature, a subset of these functions is selected via objective criteria, to represent typical, upper bound, and lower bound production functions. Three complementary mechanisms driving spume-atmosphere gas exchange are described, and one is then used to estimate the relative importance, over a broad range of wind speeds, of this spume drop mechanism compared to the conventional, diffusional, sea surface mechanism in air-sea gas exchange. While remaining uncertainties in the wind dependence of the spume drop production flux, and in the immediate sea surface gas flux, preclude a definitive conclusion, the findings of this study strongly suggest that, at high wind speeds (>20 m s-1 for dimethyl sulfide and >30 m s-1 for gases such a carbon dioxide), spume drops do make a significant contribution to air-sea gas exchange.Plain Language SummaryThis paper evaluates the existing spume drop generation functions available to date and selects a reasonable upper, lower and mid range function that are reasonable for use in air sea exchange models. Based on these the contribution of spume drops to overall air sea gas exchange at different wind speeds is then evaluated to determine the % contribution of spume. Generally below 20ms-1 spume drops contribute <1% of gas exchange but may account for a significant amount of gas exchange at higher wind speeds.

  17. Rate of Isotope Exchange Reaction Between Tritiated Water in a Gas Phase and Water on the Surface of Piping Materials

    International Nuclear Information System (INIS)

    Nakashio, Nobuyuki; Yamaguchi, Junya; Kobayashi, Ryusuke; Nishikawa, Masabumi

    2001-01-01

    The system effect of tritium arises from the interaction of tritium in the gas phase with water on the surface of piping materials. It has been reported that the system effect can be quantified by applying the serial reactor model to the piping system and that adsorption and isotope exchange reactions play the main roles in the trapping of tritium. The isotope exchange reaction that occurs when the chemical form of tritium in the gas phase is in the molecular form, i.e., HT or T 2 , has been named isotope exchange reaction 1, and that which occurs when tritium in the gas phase is in water form, i.e., HTO or T 2 O, has been named isotope exchange reaction 2.The rate of isotope exchange reaction 2 is experimentally quantified, and the rate is observed to be about one-third of the rate of adsorption. The trapping and release behavior of tritium from the piping surface due to isotope exchange reaction 2 is also discussed. It is certified that swamping of water vapor to process gas is effective to release tritium from the surface contaminated with tritium

  18. Methanol exchange dynamics between a temperate cropland soil and the atmosphere

    Science.gov (United States)

    Bachy, A.; Aubinet, M.; Amelynck, C.; Schoon, N.; Bodson, B.; Moureaux, C.; Delaplace, P.; De Ligne, A.; Heinesch, B.

    2018-03-01

    Soil methanol (CH3OH) exchange is often considered as several orders of magnitude smaller than plant methanol exchange. However, for some ecosystems, it is significant in regard with plant exchange and worth thus better consideration. Our study sought to gain a better understanding of soil exchange. Methanol flux was measured at the ecosystem scale on a bare agricultural soil over two contrasted periods using the disjunct eddy covariance by mass scanning technique. A proton-transfer-reaction mass spectrometer was used for the methanol ambient mixing ratio measurements. Bi-directional exchange dynamics were observed. Methanol emission occurred under dry and warm conditions and correlated best with soil surface temperature, whereas methanol uptake occurred under wet and mild conditions and correlated well with the methanol ambient concentration. After having tested a physical adsorption-desorption model and by confronting our data with the literature, we propose that the exchange was ruled by both a physical adsorption/desorption mechanism and by a methanol source, which still needs to be identified. The soil emission decreased when the vegetation developed. The reasons for the decrease still need to be determined. Overall, the dynamics observed at our site were similar to those reported by other studies for both cropland and forest ecosystems. The mechanism proposed in our work can thus be possibly applied to other sites or ecosystems. In addition, the methanol exchange rate was in the upper range of the exchange rates reported by other soil studies, suggesting that cropland soils are more important methanol exchangers than those in other ecosystems and should therefore be further investigated.

  19. An instrument to measure turbulent eddy fluxes in the atmosphere of Mars

    Science.gov (United States)

    S. Rafkin; D. Banfield; R. Dissly; J. Silver; A. Stanton; E. Wilkinson; W. Massman; J. Ham

    2012-01-01

    Turbulent eddies in the planetary boundary layer of the terrestrial planet atmospheres are the primary mechanism by which energy, momentum, gasses, and aerosols are exchanged between the surface and the atmosphere [1]. The importance of eddies has long been recognized by the Earth atmospheric science community, and turbulent theory for Earth has a long history with a...

  20. Air-sea heat exchange, an element of the water cycle

    Science.gov (United States)

    Chahine, M. T.

    1984-01-01

    The distribution and variation of water vapor, clouds and precipitation are examined. Principal driving forces for these distributions are energy exchange and evaporation at the air-sea interface, which are also important elements of air-sea interaction studies. The overall aim of air-sea interaction studies is to quantitatively determine mass, momentum and energy fluxes, with the goal of understanding the mechanisms controlling them. The results of general circulation simulations indicate that the atmosphere in mid-latitudes responds to changes in the oceanic surface conditions in the tropics. This correlation reflects the strong interaction between tropical and mid-latitude conditions caused by the transport of heat and momentum from the tropics. Studies of air-sea exchanges involve a large number of physica, chemical and dynamical processes including heat flux, radiation, sea-surface temperature, precipitation, winds and ocean currents. The fluxes of latent heat are studied and the potential use of satellite data in determining them evaluated. Alternative ways of inferring heat fluxes will be considered.

  1. Thermal Diffusion Processes in Metal-Tip-Surface Interactions: Contact Formation and Adatom Mobility

    DEFF Research Database (Denmark)

    Sørensen, Mads Reinholdt; Jacobsen, Karsten Wedel; Jonsson, Hannes

    1996-01-01

    and the surface can occur by a sequence of atomic hop and exchange processes which become active on a millisecond time scale when the tip is about 3-5 Angstrom from the surface. Adatoms on the surface are stabilized by the presence of the tip and energy barriers for diffusion processes in the region under the tip......We have carried out computer simulations to identify and characterize various thermally activated atomic scale processes that can play an important role in room temperature experiments where a metal tip is brought close to a metal surface. We find that contact formation between the tip...

  2. Use of Unmanned Aerial Systems to Study Atmospheric Processes During Sea Ice Freeze Up

    Science.gov (United States)

    de Boer, G.; Lawrence, D.; Weibel, D.; Borenstein, S.; Bendure, A.; Solomon, A.; Intrieri, J. M.

    2017-12-01

    In October 2016, a team of scientists deployed to Oliktok Point, Alaska to make atmospheric measurements as part of the Evaluation of Routine Atmospheric Sounding measurements using Unmanned Systems (ERASMUS) and Inaugural Campaigns for ARM Research using Unmanned Systems (ICARUS) campaigns. The deployment included operations using the University of Colorado DataHawk2 UAS. The DataHawk2 was configured to make measurements of atmospheric thermodynamics, wind and surface temperature, providing information on lower tropospheric thermodynamic structure, turbulent surface fluxes, and surface temperature. During this campaign, the team experienced a variety of weather regimes and witnessed the development of near shore sea ice. In this presentation, we will give an overview of the measurements obtained during this time and how they were used to better understand freeze up processes in this coastal environment. Additionally, we will provide insight into how these platforms are being used for evaluation of a fully-coupled sea ice forecast model operated by NOAA's Physical Sciences Division.

  3. Competing reactions of selected atmospheric gases on Fe3O4 nanoparticles surfaces.

    Science.gov (United States)

    Eltouny, N; Ariya, Parisa A

    2014-11-14

    Heterogeneous reactions on atmospheric aerosol surfaces are increasingly considered important in understanding aerosol-cloud nucleation and climate change. To understand potential reactions in polluted atmospheres, the co-adsorption of NO2 and toluene to magnetite (Fe3O4i.e. FeO·Fe2O3) nanoparticles at ambient conditions was investigated for the first time. The surface area, size distribution, and morphology of Fe3O4 nanoparticles were characterized by BET method and high-resolution transmission electron microscopy. Adsorption isotherms, collected by gas chromatography with flame ionization detection, showed that the presence of NO2 decreased the adsorption of toluene. The analyses of the surface chemical composition of Fe3O4 by X-ray photoelectron spectroscopy (XPS) reveal that, upon the addition of NO2, the surface is oxidized and a contribution at 532.5 ± 0.4 eV in the O1s spectrum appears, showing that NO2 likely competes with toluene by dissociating on Fe(2+) sites and forming NO3(-). Different competing effects were observed for oxidized Fe3O4; oxidation occurred when exposed solely to NO2, whereas, the mixture of toluene and NO2 resulted in a reduction of the surface i.e. increased Fe(2+)/Fe(3+). Analyses by time of flight secondary ion mass spectrometry further suggest toluene reacts with Fe(3+) sites forming oxygenated organics. Our results indicate that on reduced magnetite, NO2 is more reactive and competes with toluene; in contrast, on oxidized Fe3O4, toluene is more reactive. Because magnetite can assume a range of oxidation ratios in the environment, different competing interactions between pollutants like NO2 and toluene could influence atmospheric processes, namely, the formation of Fe(2+) and the formation of atmospheric oxidants.

  4. Recent Discoveries and Future Challenges in Atmospheric Organic Chemistry.

    Science.gov (United States)

    Glasius, Marianne; Goldstein, Allen H

    2016-03-15

    Earth's atmosphere contains a multitude of organic compounds, which differ by orders of magnitude regarding fundamental properties such as volatility, reactivity, and propensity to form cloud droplets, affecting their impact on global climate and human health. Despite recent major research efforts and advances, there are still substantial gaps in understanding of atmospheric organic chemistry, hampering efforts to understand, model, and mitigate environmental problems such as aerosol formation in both polluted urban and more pristine regions. The analytical toolbox available for chemists to study atmospheric organic components has expanded considerably during the past decade, opening new windows into speciation, time resolution and detection of reactive and semivolatile compounds at low concentrations. This has provided unprecedented opportunities, but also unveiled new scientific challenges. Specific groundbreaking examples include the role of epoxides in aerosol formation especially from isoprene, the importance of highly oxidized, reactive organics in air-surface processes (whether atmosphere-biosphere exchange or aerosols), as well as the extent of interactions of anthropogenic and biogenic emissions and the resulting impact on atmospheric organic chemistry.

  5. Theoretical study of charge exchange, ionization and electron loss processes, relevant to controlled thermonuclear research

    International Nuclear Information System (INIS)

    Janev, R.

    1981-03-01

    The following processes have been studied: a) Single and double charge exchange in low, medium and high energy collisions of atoms with multiply charged ions; b) Excitation and ionization processes in low, medium and high energy collisions between multiply charged ions and atoms; c) Ion-ion recombination and ion-pair formation collision processes between hydrogen and alkali atoms (ions); d) Resonant and Auger processes in slow collisions of atomic particles with solid surfaces (including surfaces covered by a sub-monoatomic layer). Processes a) and b) are important for the ''impurity problem'' of magnetically confined tokamak plasmas, whereas processes c) and d) for the production and transport of intense neutral beams for plasma heating

  6. Plant Uptake of Atmospheric Carbonyl Sulfide in Coast Redwood Forests

    Science.gov (United States)

    Campbell, J. E.; Whelan, M. E.; Berry, J. A.; Hilton, T. W.; Zumkehr, A.; Stinecipher, J.; Lu, Y.; Kornfeld, A.; Seibt, U.; Dawson, T. E.; Montzka, S. A.; Baker, I. T.; Kulkarni, S.; Wang, Y.; Herndon, S. C.; Zahniser, M. S.; Commane, R.; Loik, M. E.

    2017-12-01

    The future resilience of coast redwoods (Sequoia sempervirens) is now of critical concern due to the detection of a 33% decline in California coastal fog over the 20th century. However, ecosystem-scale measurements of photosynthesis and stomatal conductance are challenging in coast redwood forests, making it difficult to anticipate the impacts of future changes in fog. To address this methodological problem, we explore coastal variations in atmospheric carbonyl sulfide (COS or OCS), which could potentially be used as a tracer of these ecosystem processes. We conducted atmospheric flask campaigns in coast redwood sites, sampling at surface heights and in the canopy ( 70 m), at the University of California Landels-Hill Big Creek Reserve and Big Basin State Park. We simulated COS atmosphere-biosphere exchange with a high-resolution 3-D model to interpret these data. Flask measurements indicated a persistent daytime drawdown between the coast and the downwind forest (45 ± 6 ppt COS) that is consistent with the expected relationship between COS plant uptake, stomatal conductance, and gross primary production. Other sources and sinks of COS that could introduce noise to the COS tracer technique (soils, anthropogenic activity, nocturnal plant uptake, and surface hydrolysis on leaves) are likely to be small relative to daytime COS plant uptake. These results suggest that COS measurements may be useful for making ecosystem-scale estimates of carbon, water, and energy exchange in coast redwood forests.

  7. On the vertical exchange of heat, mass and momentum over complex, mountainous terrain

    Directory of Open Access Journals (Sweden)

    Mathias Walter Rotach

    2015-12-01

    Full Text Available The role of the atmospheric boundary layer (ABL in the atmosphere-climate system is the exchange of heat, mass and momentum between ‘the earth’s surface’ and the atmosphere. Traditionally, it is understood that turbulent transport is responsible for this exchange and hence the understanding and physical description of the turbulence structure of the boundary layer is key to assess the effectiveness of earth-atmosphere exchange. This understanding is rooted in the (implicit assumption of a scale separation or spectral gap between turbulence and mean atmospheric motions, which in turn leads to the assumption of a horizontally homogeneous and flat (HHF surface as a reference, for which both physical understanding and model parameterizations have successfully been developed over the years. Over mountainous terrain, however, the ABL is generically inhomogeneous due to both thermal (radiative and dynamic forcing. This inhomogeneity leads to meso-scale and even sub-meso-scale flows such as slope and valley winds or wake effects. It is argued here that these (submeso-scale motions can significantly contribute to the vertical structure of the boundary layer and hence vertical exchange of heat and mass between the surface and the atmosphere. If model grid resolution is not high enough the latter will have to be parameterized (in a similar fashion as gravity wave drag parameterizations take into account the momentum transport due to gravity waves in large-scale models. In this contribution we summarize the available evidence of the contribution of (submeso-scale motions to vertical exchange in mountainous terrain from observational and numerical modeling studies. In particular, a number of recent simulation studies using idealized topography will be summarized and put into perspective – so as to identify possible limitations and areas of necessary future research.

  8. Surface modification for biomedical purposes utilizing dielectric barrier discharges at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Gessner, Cordula; Bartels, Volker; Betker, Tanja; Matucha, Ulrike; Penache, Cristina; Klages, Claus-Peter

    2004-07-01

    Using dielectric barrier discharges (DBD) at atmospheric pressure, glass or polymer surfaces were equipped with epoxide groups or amino groups by plasma deposition from suitable monomers or - in case of polymers - DBD treatment in nitrogen-containing gases. Functional group densities have been estimated using absorption and fluorescence measurements or by X-ray photoelectron spectroscopy. Amino group densities are comparable or even larger than those of aminosilylated surfaces. Fluorescence-labeled streptavidin has been used to investigate the binding capacity of surfaces equipped with covalently bound biotin molecules, starting either from epoxide or from amino groups. As an example of a Plasma Printing process, the generation of an array amino-functionalized spots, 400-{mu}m in diameter on a polymer surface by local deposition from aminopropyl-trimethoxysilane is demonstrated.

  9. Atmospheric weighting functions and surface partial derivatives for remote sensing of scattering planetary atmospheres in thermal spectral region: general adjoint approach

    International Nuclear Information System (INIS)

    Ustinov, Eugene A.

    2005-01-01

    An approach to formulation of inversion algorithms for remote sensing in the thermal spectral region in the case of a scattering planetary atmosphere, based on the adjoint equation of radiative transfer (Ustinov (JQSRT 68 (2001) 195; JQSRT 73 (2002) 29); referred to as Papers 1 and 2, respectively, in the main text), is applied to the general case of retrievals of atmospheric and surface parameters for the scattering atmosphere with nadir viewing geometry. Analytic expressions for corresponding weighting functions for atmospheric parameters and partial derivatives for surface parameters are derived. The case of pure atmospheric absorption with a scattering underlying surface is considered and convergence to results obtained for the non-scattering atmospheres (Ustinov (JQSRT 74 (2002) 683), referred to as Paper 3 in the main text) is demonstrated

  10. A process-level attribution of the annual cycle of surface temperature over the Maritime Continent

    Science.gov (United States)

    Li, Yana; Yang, Song; Deng, Yi; Hu, Xiaoming; Cai, Ming

    2017-12-01

    The annual cycle of the surface temperature over the Maritime Continent (MC) is characterized by two periods of rapid warming in March-April and September-October, respectively, and a period of rapid cooling in June-July. Based upon an analysis of energy balance within individual atmosphere-surface columns, the seasonal variations of surface temperature in the MC are partitioned into partial temperature changes associated with various radiative and non-radiative (dynamical) processes. The seasonal variations in direct solar forcing and surface latent heat flux show the largest positive contributions to the annual cycle of MC surface temperature while the changes in oceanic dynamics (including ocean heat content change) work against the temperature changes related to the annual cycle. The rapid warming in March-April is mainly a result of the changes in atmospheric quick processes and ocean-atmosphere coupling such as water vapor, surface latent heat flux, clouds, and atmospheric dynamics while the contributions from direct solar forcing and oceanic dynamics are negative. This feature is in contrast to that associated with the warming in September-October, which is driven mainly by the changes in solar forcing with a certain amount of contributions from water vapor and latent heat flux change. More contribution from atmospheric quick processes and ocean-atmosphere coupling in March-April coincides with the sudden northward movement of deep convection belt, while less contribution from these quick processes and coupling is accompanied with the convection belt slowly moving southward. The main contributors to the rapid cooling in June-July are the same as those to the rapid warming in March-April, and the cooling is also negatively contributed by direct solar forcing and oceanic dynamics. The changes in water vapor in all three periods contribute positively to the change in total temperature and they are associated with the change in the location of the center of

  11. Preparation of Two-Layer Anion-Exchange Poly(ethersulfone Based Membrane: Effect of Surface Modification

    Directory of Open Access Journals (Sweden)

    Lucie Zarybnicka

    2016-01-01

    Full Text Available The present work deals with the surface modification of a commercial microfiltration poly(ethersulfone membrane by graft polymerization technique. Poly(styrene-co-divinylbenzene-co-4-vinylbenzylchloride surface layer was covalently attached onto the poly(ethersulfone support layer to improve the membrane electrochemical properties. Followed by amination, a two-layer anion-exchange membrane was prepared. The effect of surface layer treatment using the extraction in various solvents on membrane morphological and electrochemical characteristics was studied. The membranes were tested from the point of view of water content, ion-exchange capacity, specific resistance, permselectivity, FT-IR spectroscopy, and SEM analysis. It was found that the two-layer anion-exchange membranes after the extraction using tetrahydrofuran or toluene exhibited smooth and porous surface layer, which resulted in improved ion-exchange capacity, electrical resistance, and permselectivity of the membranes.

  12. Surface Modification of Polyethylene Films using Atmospheric

    African Journals Online (AJOL)

    Dr A.B.Ahmed

    An atmospheric-pressure plasma jet (APPJ) is used to increase the wettability of ... contact angle between the water droplet and the polymer surface. The polymer films used in this ... W of RF power from the generator. The distance between ...

  13. Impact of the surface roughness of AISI 316L stainless steel on biofilm adhesion in a seawater-cooled tubular heat exchanger-condenser.

    Science.gov (United States)

    García, Sergio; Trueba, Alfredo; Vega, Luis M; Madariaga, Ernesto

    2016-11-01

    The present study evaluated biofilm growth in AISI 316L stainless steel tubes for seawater-cooled exchanger-condensers that had four different arithmetic mean surface roughness values ranging from 0.14 μm to 1.2 μm. The results of fluid frictional resistance and heat transfer resistance regarding biofilm formation in the roughest surface showed increases of 28.2% and 19.1% respectively, compared with the smoothest surface. The biofilm thickness taken at the end of the experiment showed variations of up to 74% between the smoothest and roughest surfaces. The thermal efficiency of the heat transfer process in the tube with the roughest surface was 17.4% greater than that in the tube with the smoothest surface. The results suggest that the finish of the inner surfaces of the tubes in heat exchanger-condensers is critical for improving energy efficiency and avoiding biofilm adhesion. This may be utilised to reduce biofilm adhesion and growth in the design of heat exchanger-condensers.

  14. Effect of process parameters on surface oxides on chromium-alloyed steel powder during sintering

    International Nuclear Information System (INIS)

    Chasoglou, D.; Hryha, E.; Nyborg, L.

    2013-01-01

    The use of chromium in the PM steel industry today puts high demands on the choice and control of the atmosphere during the sintering process due to its high affinity to oxygen. Particular attention is required in order to control the surface chemistry of the powder which in turn is the key factor for the successful sintering and production of PM parts. Different atmosphere compositions, heating rates and green densities were employed while performing sintering trials on water atomized steel powder pre-alloyed with 3 wt.% Cr in order to evaluate the effect on surface chemical reactions. Fracture surfaces of sintered samples were examined using high resolution scanning electron microscopy combined with X-ray microanalysis. The investigation was complemented with thermogravimetric (TG) studies. Reaction products in particulate form containing strong-oxide forming elements such as Cr, Si and Mn were formed during sintering for all conditions. Processing in vacuum results in intensive inter-particle neck development during the heating stage and consequently in the excessive enclosure of surface oxide which is reflected in less good final mechanical properties. Enhanced oxide reduction was observed in samples processed in hydrogen-containing atmospheres independent of the actual content in the range of 3–10 vol.%. An optimum heating rate was required for balancing reduction/oxidation processes. A simple model for the enclosure and growth of oxide inclusions during the sinter-neck development is proposed. The obtained results show that significant reduction of the oxygen content can be achieved by adjusting the atmosphere purity/composition. - Highlights: ► A local atmosphere microclimate is very important for sintering of PM steels. ► High risk of surface oxide enclosure between 800 and 1000 °C. ► Coalescence and agglomeration of enclosed oxides take place during sintering. ► The effect of different process parameters on the oxide reduction is examined. ► A

  15. Innovative UVC light (185 nm) and radio-frequency-plasma pretreatment of Nylon surfaces at atmospheric pressure and their implications in photocatalytic processes.

    Science.gov (United States)

    Mejía, M I; Marín, J M; Restrepo, G; Pulgarín, C; Mielczarski, E; Mielczarski, J; Stolitchnov, I; Kiwi, J

    2009-10-01

    Innovative pretreatment by UVC light (185 nm) and by radio-frequency (RF) plasma at atmospheric pressure to functionalize the Nylon surface, increasing its bondability toward TiO(2), is reported in this study. In the case of UVC light pretreatment in air, the molar absorption coefficient of O(2)/N(2) at 185 nm is very low and the air in the chamber absorbs very little light from the UVC source before reaching the Nylon sample. Nylon fabrics under RF plasma were also functionalized at atmospheric pressure because of the marked heating effect introduced in the Nylon by the RF plasma. This effect leads to intermolecular bond breaking and oxygenated surface groups in the topmost Nylon layers. Both pretreatments enhanced significantly the photocatalytic discoloration of the red-wine stain in Nylon-TiO(2) compared with samples without pretreatment. The UVC and RF methods in the absence of vacuum imply a considerable cost reduction to functionalize textile surfaces, suggesting a potential industrial application. Red-wine-stain discoloration under simulated sunlight was monitored quantitatively by diffuse-reflectance spectroscopy and by CO(2) evolution. X-ray photoelectron spectroscopy (XPS) was used to monitor the changes of the C, N, and S species on the Nylon topmost layers during the discoloration process. Significant changes in the XPS spectra of Ti 2p peaks were observed during discoloration of the wine spots. Wine stains attenuated the signal of the Ti 2p (458.4 eV) peak in the Nylon-TiO(2)-stained wine sample at time zero (from now on, the time before the discoloration process). Furthermore, a decrease of the wine-related O 1s signal at 529.7 eV and N 1s signal at 399.5 eV was observed during the discoloration process, indicating an efficient catalytic decomposition of the wine pigment on Nylon-TiO(2). X-ray diffraction detected the formation of anatase on the Nylon fibers. High-resolution transmission electron microscopy shows the formation of anatase particles

  16. Modeling dynamic exchange of gaseous elemental mercury at polar sunrise.

    Science.gov (United States)

    Dastoor, Ashu P; Davignon, Didier; Theys, Nicolas; Van Roozendael, Michel; Steffen, Alexandra; Ariya, Parisa A

    2008-07-15

    At polar sunrise, gaseous elemental mercury (GEM) undergoes an exceptional dynamic exchange in the air and at the snow surface during which GEM can be rapidly removed from the atmosphere (the so-called atmospheric mercury depletion events (AMDEs)) as well as re-emitted from the snow within a few hours to days in the Polar Regions. Although high concentrations of total mercury in snow following AMDEs is well documented, there is very little data available on the redox transformation processes of mercury in the snow and the fluxes of mercury at the air/snow interface. Therefore, the net gain of mercury in the Polar Regions as a result of AMDEs is still an open question. We developed a new version of the global mercury model, GRAHM, which includes for the first time bidirectional surface exchange of GEM in Polar Regions in spring and summer by developing schemes for mercury halogen oxidation, deposition, and re-emission. Also for the first time, GOME satellite data-derived boundary layer concentrations of BrO have been used in a global mercury model for representation of halogen mercury chemistry. Comparison of model simulated and measured atmospheric concentrations of GEM at Alert, Canada, for 3 years (2002-2004) shows the model's capability in simulating the rapid cycling of mercury during and after AMDEs. Brooks et al. (1) measured mercury deposition, reemission, and net surface gain fluxes of mercury at Barrow, AK, during an intensive measurement campaign for a 2 week period in spring (March 25 to April 7, 2003). They reported 1.7, 1.0 +/- 0.2, and 0.7 +/- 0.2 microg m(-2) deposition, re-emission, and net surface gain, respectively. Using the optimal configuration of the model, we estimated 1.8 microg m(-2) deposition, 1.0 microg m(-2) re-emission, and 0.8 microg m(-2) net surface gain of mercury for the same time period at Barrow. The estimated net annual accumulation of mercury within the Arctic Circle north of 66.5 degrees is approximately 174 t with +/-7 t of

  17. Modelling land surface - atmosphere interactions

    DEFF Research Database (Denmark)

    Rasmussen, Søren Højmark

    representation of groundwater in the hydrological model is found to important and this imply resolving the small river valleys. Because, the important shallow groundwater is found in the river valleys. If the model does not represent the shallow groundwater then the area mean surface flux calculation......The study is investigates modelling of land surfaceatmosphere interactions in context of fully coupled climatehydrological model. With a special focus of under what condition a fully coupled model system is needed. Regional climate model inter-comparison projects as ENSEMBLES have shown bias...... by the hydrological model is found to be insensitive to model resolution. Furthermore, this study highlights the effect of bias precipitation by regional climate model and it implications for hydrological modelling....

  18. The impact of the 2015-2016 El Niño-Southern Oscillation (ENSO) event on greenhouse gas exchange and surface energy budget in an Indonesian oil palm plantation

    Science.gov (United States)

    Stiegler, Christian; Meijide, Ana; June, Tania; Knohl, Alexander

    2017-04-01

    The 2015-2016 El Niño-Southern Oscillation (ENSO) event was one of the strongest observed in the last 20 years. Oil palm plantations cover a large fraction of tropical lowlands in Southeast Asia but despite their growing areal extent, measurements and observations of greenhouse gas exchange and surface energy balance are still scarce. In addition, the effects of extreme events such as ENSO on carbon sequestration and the partitioning of surface energy balance components are widely unknown. In this study, we use micrometeorological measurements located in commercial oil palm plantations in the Jambi province (Sumatra, Indonesia) to assess the impact of the 2015-2016 ENSO event and severe forest fires on greenhouse gas exchange and surface energy budget. Continuous measurements are in operation since July 2013 and we assess turbulent fluxes of carbon dioxide (CO2), water vapour and sensible heat using the eddy covariance technique before, during and after the 2015-2016 ENSO event. In the beginning of the ENSO event, the area experienced a strong drought with decreasing soil moisture, increasing air and surface temperatures, and strong atmospheric vapour pressure deficit. During the peak of the drought from August to October 2015, hundreds of forest fires in the area resulted in strong smoke production, decreasing incoming solar radiation by 35% compared to pre-ENSO values and diffuse radiation became almost the sole shortwave radiation flux. During the beginning of the drought, carbon uptake of the oil palm plantation was around 2.1 gC m-2 d-1 and initially increased by 50% due to clear-sky conditions and high incoming photosynthetically active radiation (PAR) but increasing density of smoke turned the oil palm plantation into a source of carbon. The turbulent heat fluxes experienced an increase in sensible heat fluxes due to drought conditions at the cost of latent heat fluxes resulting in an increase in the midday Bowen-ratio from 0.17 to 0.40. Strong smoke

  19. Poster 29. Modelling of ion exchange processes in ultrapure water

    International Nuclear Information System (INIS)

    Berg, A.; Torstenfelt, B.; Fejes, P.; Foutch, G.L.

    1992-01-01

    The ion exchange process of the Reactor Water Clean-up (RWCU) system has been studied to better use the maximum possible exchange capacity of the ion exchange resin. Laboratory data have been correlated with computer simulations of the ion exchange process. Data were correlated using a mixed-bed ion exchange model for ultralow ionic concentrations developed at Oklahoma State University. Experimental results of the ion exchange column operation in the concentration range of 10 -3 M boric acid is compared with the simulated performance predicted by the computer model. The model is found to agree reasonably well with the data. (author)

  20. Atmospheric deposition of inorganic nitrogen in Spanish forests of Quercus ilex measured with ion-exchange resins and conventional collectors

    Science.gov (United States)

    Héctor García-Gomez; Sheila Izquieta-Rojano; Laura Aguillaume; Ignacio González-Fernández; Fernando Valiño; David Elustondo; Jesús M. Santamaría; Anna Àvila; Mark E. Fenn; Rocío Alonso

    2016-01-01

    Atmospheric nitrogen deposition is one of the main threats for biodiversity and ecosystem functioning. Measurement techniques like ion-exchange resin collectors (IECs), which are less expensive and time-consuming than conventional methods, are gaining relevance in the study of atmospheric deposition and are recommended to expand monitoring networks. In the present work...

  1. Device for processing regenerative wastes of ion exchange resin

    International Nuclear Information System (INIS)

    Kuroda, Osamu; Ebara, Katsuya; Shindo, Toshikazu; Takahashi, Sankichi

    1986-01-01

    Purpose: To facilitate the operation and maintenance of a processing device by dividing radioactive wastes produced in the regenerative process of ion exchange resin into a regenerated usable recovery liquid and wastes. Constitution: Sulfuric acid is recovered by a diffusion dialysis method from wastes containing sulfuric acid that are generated in the regenerative process of cation-exchange resin and also caustic soda is recovered by the diffusion dialysis method from wastes containing caustic soda that are generated in the regenerative process of anion-exchange resin. The sulfuric acid and caustic soda thus recovered are used for the regeneration of ion-exchange resin. A concentrator is provided for concentrating the sulfuric acid and caustic soda water solution to concentration suitable for the regeneration of these ion-exchange resins. Also provided is a recovery device for recovering water generated from the concentrator. This device is of so simple a constitution that its operation and maintenance can be performed very easily, thereby greatly reducing the quantity of waste liquid required to be stored in drums. (Takahashi, M.)

  2. Atmospheric Diabatic Heating in Different Weather States and the General Circulation

    Science.gov (United States)

    Rossow, William B.; Zhang, Yuanchong; Tselioudis, George

    2016-01-01

    Analysis of multiple global satellite products identifies distinctive weather states of the atmosphere from the mesoscale pattern of cloud properties and quantifies the associated diabatic heating/cooling by radiative flux divergence, precipitation, and surface sensible heat flux. The results show that the forcing for the atmospheric general circulation is a very dynamic process, varying strongly at weather space-time scales, comprising relatively infrequent, strong heating events by ''stormy'' weather and more nearly continuous, weak cooling by ''fair'' weather. Such behavior undercuts the value of analyses of time-averaged energy exchanges in observations or numerical models. It is proposed that an analysis of the joint time-related variations of the global weather states and the general circulation on weather space-time scales might be used to establish useful ''feedback like'' relationships between cloud processes and the large-scale circulation.

  3. Surface- vs Diffusion-Limited Mechanisms of Anion Exchange in CsPbBr3 Nanocrystal Cubes Revealed through Kinetic Studies.

    Science.gov (United States)

    Koscher, Brent A; Bronstein, Noah D; Olshansky, Jacob H; Bekenstein, Yehonadav; Alivisatos, A Paul

    2016-09-21

    Ion-exchange transformations allow access to nanocrystalline materials with compositions that are inaccessible via direct synthetic routes. However, additional mechanistic insight into the processes that govern these reactions is needed. We present evidence for the presence of two distinct mechanisms of exchange during anion exchange in CsPbX3 nanocrystals (NCs), ranging in size from 6.5 to 11.5 nm, for transformations from CsPbBr3 to CsPbCl3 or CsPbI3. These NCs exhibit bright luminescence throughout the exchange, allowing their optical properties to be observed in real time, in situ. The iodine exchange presents surface-reaction-limited exchanges allowing all anionic sites within the NC to appear chemically identical, whereas the chlorine exchange presents diffusion-limited exchanges proceeding through a more complicated exchange mechanism. Our results represent the first steps toward developing a microkinetic description of the anion exchange, with implications not only for understanding the lead halide perovskites but also for nanoscale ion exchange in general.

  4. The impact of the 2015-2016 El Niño-Southern Oscillation (ENSO) event on greenhouse gas exchange and surface energy budget in an Indonesian oil palm plantation

    Science.gov (United States)

    Stiegler, C.; Meijide, A.; June, T.; Knohl, A.

    2016-12-01

    Oil palm plantations cover a large fraction of tropical lowlands in Southeast Asia. However, despite their growing areal extent, measurements and observations of greenhouse gas exchange and surface energy balance are still scarce. In addition, the effects of extreme events such as El Niño-Southern Oscillation (ENSO) on carbon sequestration and the partitioning of surface energy balance components are widely unknown. In this study, we use micrometeorological measurements located in commercial oil palm plantations in the Jambi province (Sumatra, Indonesia) to assess the impact of the 2015-2016 ENSO event on greenhouse gas exchange and surface energy budget. Measurements are in operation since July 2013 and we assess continuously turbulent fluxes of carbon dioxide (CO2), water vapour and sensible heat using the eddy covariance technique before, during and after the 2015-2016 ENSO event. The full surface energy budget is completed by measurements of radiative components, ground heat fluxes, and soil thermal and hydrological properties. The study is part of a large interdisciplinary project focussing on the ecological and socioeconomic functions of lowland rainforest transformation systems (EFForTS). During the ENSO event, the area experienced a strong drought with decreasing soil moisture and increasing air and surface temperatures. During the peak in September and October 2015, hundreds of fires in the area resulted in strong smoke production decreasing incoming solar radiation and increasing the diffuse fraction. Compared to regular years, the carbon uptake of the oil palm plantation decreased during the ENSO event. The turbulent heat fluxes experienced an increase in sensible heat fluxes due to drought conditions at the cost of latent heat fluxes resulting in an increase in the Bowen-ratio. Overall, the ENSO event resulted in a major anomaly of exchange processes between the oil palm plantation and the atmosphere.

  5. Radioisotope Stirling Engine Powered Airship for Atmospheric and Surface Exploration of Titan

    Science.gov (United States)

    Colozza, Anthony J.; Cataldo, Robert L.

    2014-01-01

    The feasibility of an advanced Stirling radioisotope generator (ASRG) powered airship for the near surface exploration of Titan was evaluated. The analysis did not consider the complete mission only the operation of the airship within the atmosphere of Titan. The baseline airship utilized two ASRG systems with a total of four general-purpose heat source (GPHS) blocks. Hydrogen gas was used to provide lift. The ASRG systems, airship electronics and controls and the science payload were contained in a payload enclosure. This enclosure was separated into two sections, one for the ASRG systems and the other for the electronics and payload. Each section operated at atmospheric pressure but at different temperatures. The propulsion system consisted of an electric motor driving a propeller. An analysis was set up to size the airship that could operate near the surface of Titan based on the available power from the ASRGs. The atmospheric conditions on Titan were modeled and used in the analysis. The analysis was an iterative process between sizing the airship to carry a specified payload and the power required to operate the electronics, payload and cooling system as well as provide power to the propulsion system to overcome the drag on the airship. A baseline configuration was determined that could meet the power requirements and operate near the Titan surface. From this baseline design additional trades were made to see how other factors affected the design such as the flight altitude and payload mass and volume.

  6. Time-resolved PIV measurements of the atmospheric boundary layer over wind-driven surface waves

    Science.gov (United States)

    Markfort, Corey; Stegmeir, Matt

    2017-11-01

    Complex interactions at the air-water interface result in two-way coupling between wind-driven surface waves and the atmospheric boundary layer (ABL). Turbulence generated at the surface plays an important role in aquatic ecology and biogeochemistry, exchange of gases such as oxygen and carbon dioxide, and it is important for the transfer of energy and controlling evaporation. Energy transferred from the ABL promotes the generation and maintenance of waves. A fraction of the energy is transferred to the surface mixed layer through the generation of turbulence. Energy is also transferred back to the ABL by waves. There is a need to quantify the details of the coupled boundary layers of the air-water system to better understand how turbulence plays a role in the interactions. We employ time-resolved PIV to measure the detailed structure of the air and water boundary layers under varying wind and wave conditions in the newly developed IIHR Boundary-Layer Wind-Wave Tunnel. The facility combines a 30-m long recirculating water channel with an open-return boundary layer wind tunnel. A thick turbulent boundary layer is developed in the 1 m high air channel, over the water surface, allowing for the study of boundary layer turbulence interacting with a wind-driven wave field.

  7. Feedback mechanisms between snow and atmospheric mercury: Results and observations from field campaigns on the Antarctic plateau.

    Science.gov (United States)

    Spolaor, Andrea; Angot, Hélène; Roman, Marco; Dommergue, Aurélien; Scarchilli, Claudio; Vardè, Massimiliano; Del Guasta, Massimo; Pedeli, Xanthi; Varin, Cristiano; Sprovieri, Francesca; Magand, Olivier; Legrand, Michel; Barbante, Carlo; Cairns, Warren R L

    2018-04-01

    The Antarctic Plateau snowpack is an important environment for the mercury geochemical cycle. We have extensively characterized and compared the changes in surface snow and atmospheric mercury concentrations that occur at Dome C. Three summer sampling campaigns were conducted between 2013 and 2016. The three campaigns had different meteorological conditions that significantly affected mercury deposition processes and its abundance in surface snow. In the absence of snow deposition events, the surface mercury concentration remained stable with narrow oscillations, while an increase in precipitation results in a higher mercury variability. The Hg concentrations detected confirm that snowfall can act as a mercury atmospheric scavenger. A high temporal resolution sampling experiment showed that surface concentration changes are connected with the diurnal solar radiation cycle. Mercury in surface snow is highly dynamic and it could decrease by up to 90% within 4/6 h. A negative relationship between surface snow mercury and atmospheric concentrations has been detected suggesting a mutual dynamic exchange between these two environments. Mercury concentrations were also compared with the Br concentrations in surface and deeper snow, results suggest that Br could have an active role in Hg deposition, particularly when air masses are from coastal areas. This research presents new information on the presence of Hg in surface and deeper snow layers, improving our understanding of atmospheric Hg deposition to the snow surface and the possible role of re-emission on the atmospheric Hg concentration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Universal model for water costs of gas exchange by animals and plants

    OpenAIRE

    Woods, H. Arthur; Smith, Jennifer N.

    2010-01-01

    For terrestrial animals and plants, a fundamental cost of living is water vapor lost to the atmosphere during exchange of metabolic gases. Here, by bringing together previously developed models for specific taxa, we integrate properties common to all terrestrial gas exchangers into a universal model of water loss. The model predicts that water loss scales to gas exchange with an exponent of 1 and that the amount of water lost per unit of gas exchanged depends on several factors: the surface t...

  9. Three-dimensional modeling of radiative and convective exchanges in the urban atmosphere

    International Nuclear Information System (INIS)

    Qu, Yongfeng

    2011-01-01

    In many micro-meteorological studies, building resolving models usually assume a neutral atmosphere. Nevertheless, urban radiative transfers play an important role because of their influence on the energy budget. In order to take into account atmospheric radiation and the thermal effects of the buildings in simulations of atmospheric flow and pollutant dispersion in urban areas, we have developed a three-dimensional (3D) atmospheric radiative scheme, in the atmospheric module of the Computational Fluid Dynamics model Code-Saturne. The radiative scheme was previously validated with idealized cases, using as a first step, a constant 3D wind field. In this work, the full coupling of the radiative and thermal schemes with the dynamical model is evaluated. The aim of the first part is to validate the full coupling with the measurements of the simple geometry from the 'Mock Urban Setting Test' (MUST) experiment. The second part discusses two different approaches to model the radiative exchanges in urban area with a comparison between Code-Saturne and SOLENE. The third part applies the full coupling scheme to show the contribution of the radiative transfer model on the airflow pattern in low wind speed conditions in a 3D urban canopy. In the last part we use the radiative-dynamics coupling to simulate a real urban environment and validate the modeling approach with field measurements from the 'Canopy and Aerosol Particles Interactions in Toulouse Urban Layer' (CAPITOUL). (author) [fr

  10. Global changes and the air-sea exchange of chemicals. Reports and studies. No. 48

    Energy Technology Data Exchange (ETDEWEB)

    GESAMP-IMO/FAO/UNESCO/WMO/WHO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Pollution

    1992-12-31

    Present and future changes to global environment have implications for marine pollution and for air-sea exchange of both anthropogenic and natural substances. This report addresses 3 issues related to potential impact of global change on air-sea exchange of chemicals: Global change and air-sea transfer of nutrients nitrogen and iron. Global change and air-sea exchange of gases. Oceanic responses to radiative and oxidative changes in atmosphere. Deposition of atmospheric anthropogenic nitrogen has probably increased bio- productivity in coastal regions along continental margins. Atmospheric deposition of new nitrogen may also have increased productivity somewhat in mid-ocean regions. Projected future increases of N oxide emissions from Asia, Africa and South America will increase the rate of deposition of oxidized nitrogen to central North Pacific, equatorial Atlantic, and equatorial and central South Indian Oceans. Atmospheric iron may be an important nutrient in certain open regions. Future changes will likely occur from changed aridity and wind speed as a result of climate change. The most important future effects on surface ocean p{sub CO2} will likely be caused by changes in ocean circulation. The pH of ocean would decrease by {approx}0.3 units for a doubling of p{sub CO2}, reducing the capacity of the ocean to take up CO{sub 2}. There is evidence that dimethyl sulfide from ocean is a source of cloud condensation nuclei and thus a factor controlling cloud albedo. By 2060 in the southern hemisphere reduction in total column stratospheric ozone from recent levels could reach 2 to 5% in the tropics, 10% at mid latitudes, and over 20% at 60 deg C. S. Increases in ground-level effective UV-B radiation could also reach 5%, 26% and 66%, at low, mid, and high latitudes in southern hemisphere. Changes in photochemical processes in the surface waters of the ocean could also happen.

  11. Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness

    Science.gov (United States)

    Andrzejczyk, Rafał; Muszyński, Tomasz

    2016-12-01

    The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.

  12. First experimental results on the kinetic processes in a surface-wave-sustained argon discharge at atmospheric pressure

    International Nuclear Information System (INIS)

    Calzada, M.D.; Gamero, A.; Sola, A.

    1995-01-01

    This communication presents an advance of the results of an experimental study of the kinetic processes in a surface-wave-sustained argon discharge at atmospheric pressure. We utilize the study developed by Fujimoto on the population and depopulation processes of the excited levels of atoms and ions. This theory has been applied by S. Daviaud and A. Hirabayashi to explain the kinetic processes in helium plasma at low pressure. Fujimoto has studied the ionization and recombination mechanisms of the plasma under various conditions and its relation to the population density distributions. This study establishes, for an hydrogenic ion with a core charge z, different zones in the atomic system (level map). Each zone is characterized by the dominant mechanisms of the population and depopulation of their excited levels, A level is characterized for the effective principal quantum number p, where p = z (E H /|E p |) 1/2 , E H is the hydrogen ionization energy and |E p | is the energy required to ionize the atom from the level considered. The population of each level p can be expressed in terms of the parameter b(p) defined as n(p)/n SB (p), n(p) and n SB (p) being the actual population and the Saha-Boltzmann equilibrium population of the level, respectively. Figure I shows the population and depopulation processes of a level p, which are both collisional and radiative that are characterized by their respective coefficients

  13. Atmospheric pollution. From processes to modelling

    International Nuclear Information System (INIS)

    Sportisse, B.

    2008-01-01

    Air quality, greenhouse effect, ozone hole, chemical or nuclear accidents.. All these phenomena are tightly linked to the chemical composition of atmosphere and to the atmospheric dispersion of pollutants. This book aims at supplying the main elements of understanding of 'atmospheric pollutions': stakes, physical processes involved, role of scientific expertise in decision making. Content: 1 - classifications and scales: chemical composition of the atmosphere, vertical structure, time scales (transport, residence); 2 - matter/light interaction: notions of radiative transfer, application to the Earth's atmosphere; 3 - some elements about the atmospheric boundary layer: notion of scales in meteorology, atmospheric boundary layer (ABL), thermal stratification and stability, description of ABL turbulence, elements of atmospheric dynamics, some elements about the urban climate; 4 - notions of atmospheric chemistry: characteristics, ozone stratospheric chemistry, ozone tropospheric chemistry, brief introduction to indoor air quality; 5 - aerosols, clouds and rains: aerosols and particulates, aerosols and clouds, acid rains and leaching; 6 - towards numerical simulation: equation of reactive dispersion, numerical methods for chemistry-transport models, numerical resolution of the general equation of aerosols dynamics (GDE), modern simulation chains, perspectives. (J.S.)

  14. Quantifying Hyporheic Exchanges in a Large Scale River Reach Using Coupled 3-D Surface and Subsurface Computational Fluid Dynamics Simulations.

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Glenn Edward; Bao, J; Huang, M; Hou, Z; Perkins, W; Harding, S; Titzler, S; Ren, H; Thorne, P; Suffield, S; Murray, C; Zachara, J

    2017-03-01

    Hyporheic exchange is a critical mechanism shaping hydrological and biogeochemical processes along a river corridor. Recent studies on quantifying the hyporheic exchange were mostly limited to local scales due to field inaccessibility, computational demand, and complexity of geomorphology and subsurface geology. Surface flow conditions and subsurface physical properties are well known factors on modulating the hyporheic exchange, but quantitative understanding of their impacts on the strength and direction of hyporheic exchanges at reach scales is absent. In this study, a high resolution computational fluid dynamics (CFD) model that couples surface and subsurface flow and transport is employed to simulate hyporheic exchanges in a 7-km long reach along the main-stem of the Columbia River. Assuming that the hyporheic exchange does not affect surface water flow conditions due to its negligible magnitude compared to the volume and velocity of river water, we developed a one-way coupled surface and subsurface water flow model using the commercial CFD software STAR-CCM+. The model integrates the Reynolds-averaged Navier-Stokes (RANS) equation solver with a realizable κ-ε two-layer turbulence model, a two-layer all y+ wall treatment, and the volume of fluid (VOF) method, and is used to simulate hyporheic exchanges by tracking the free water-air interface as well as flow in the river and the subsurface porous media. The model is validated against measurements from acoustic Doppler current profiler (ADCP) in the stream water and hyporheic fluxes derived from a set of temperature profilers installed across the riverbed. The validated model is then employed to systematically investigate how hyporheic exchanges are influenced by surface water fluid dynamics strongly regulated by upstream dam operations, as well as subsurface structures (e.g. thickness of riverbed and subsurface formation layers) and hydrogeological properties (e.g. permeability). The results

  15. Acoustic-gravity waves generated by atmospheric and near-surface sources

    Science.gov (United States)

    Kunitsyn, Viacheslav E.; Kholodov, Alexander S.; Krysanov, Boris Yu.; Andreeva, Elena S.; Nesterov, Ivan A.; Vorontsov, Artem M.

    2013-04-01

    Numerical simulation of the acoustic-gravity waves (AGW) generated by long-period oscillations of the Earth's (oceanic) surface, earthquakes, explosions, thermal heating, seiches, and tsunami is carried out. Wavelike disturbances are quite frequent phenomena in the atmosphere and ionosphere. These events can be caused by the impacts from space and atmosphere, by oscillations of the Earth'as surface and other near-surface events. These wavelike phenomena in the atmosphere and ionosphere appear as the alternating areas of enhanced and depleted density (in the atmosphere) or electron concentration (in the ionosphere). In the paper, AGW with typical frequencies of a few hertz - millihertz are analyzed. AGW are often observed after the atmospheric perturbations, during the earthquakes, and some time (a few days to hours) in advance of the earthquakes. Numerical simulation of the generation of AGW by long-period oscillations of the Earth's and oceanic surface, earthquakes, explosions, thermal heating, seiches, and tsunami is carried out. The AGW generated by the near-surface phenomena within a few hertz-millihertz frequency range build up at the mid-atmospheric and ionospheric altitudes, where they assume their typical spatial scales of the order of a few hundred kilometers. Oscillations of the ionospheric plasma within a few hertz-millihertz frequency range generate electromagnetic waves with corresponding frequencies as well as travelling ionospheric irregularities (TIDs). Such structures can be successfully monitored using satellite radio tomography (RT) techniques. For the purposes of RT diagnostics, 150/400 MHz transmissions from low-orbiting navigational satellites flying in polar orbits at the altitudes of about 1000 km as well as 1.2-1.5 GHz signals form high-orbiting (orbital altitudes about 20000 km) navigation systems like GPS/GLONASS are used. The results of experimental studies on generation of wavelike disturbances by particle precipitation are presented

  16. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness.

    Science.gov (United States)

    Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi

    2017-06-12

    Four field experiments based on Pulsed Coherent Doppler Lidar with different surface roughness have been carried out in 2013-2015 to study the turbulent wind field in the vicinity of operating wind turbine in the onshore and offshore wind parks. The turbulence characteristics in ambient atmosphere and wake area was analyzed using transverse structure function based on Plane Position Indicator scanning mode. An automatic wake processing procedure was developed to determine the wake velocity deficit by considering the effect of ambient velocity disturbance and wake meandering with the mean wind direction. It is found that the turbine wake obviously enhances the atmospheric turbulence mixing, and the difference in the correlation of turbulence parameters under different surface roughness is significant. The dependence of wake parameters including the wake velocity deficit and wake length on wind velocity and turbulence intensity are analyzed and compared with other studies, which validates the empirical model and simulation of a turbine wake for various atmosphere conditions.

  17. The Effect of Bond Albedo on Venus' Atmospheric and Surface Temperatures

    Science.gov (United States)

    Bullock, M. A.; Limaye, S. S.; Grinspoon, D. H.; Way, M.

    2017-12-01

    In spite of Venus' high planetary albedo, sufficient solar energy reaches the surface to drive a powerful greenhouse effect. The surface temperature is three times higher than it would be without an atmosphere. However, the details of the energy balance within Venus' atmosphere are poorly understood. Half of the solar energy absorbed within the clouds, where most of the solar energy is absorbed, is due to an unknown agent. One of the challenges of modeling Venus' atmosphere has been to account for all the sources of opacity sufficient to generate a globally averaged surface temperature of 735 K, when only 2% of the incoming solar energy is deposited at the surface. The wavelength and spherically integrated albedo, or Bond albedo, has typically been cited as between 0.7 and 0.82 (Colin 1983). Yet, recent photometry of Venus at extended phase angles between 2 and 179° indicate a Bond albedo of 0.90 (Mallama et al., 2006). The authors note an increase in cloud top brightness at phase angles fixed. Figure 1b (right). Venus surface temperature as Bond Albedo changes. Radiative-convective equilibrium models predict the correct globally averaged surface temperature at a=0.81. Calculations here show that a Bond albedo of a=0.9 would yield a surface temperature of 666.4 K, about 70 K too low, unless there is additional thermal absorption within the atmosphere that is not understood. Colin, L.,, Venus, University of Arizona Press, Tucson, 1983, pp 10-26. Mallama, A., et al., 2006. Icarus. 182, 10-22.

  18. Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden-Popper phases?

    Science.gov (United States)

    Tomkiewicz, Alex C; Tamimi, Mazin A; Huq, Ashfia; McIntosh, Steven

    2015-01-01

    The possible link between oxygen surface exchange rate and bulk oxygen anion diffusivity in mixed ionic and electronic conducting oxides is a topic of great interest and debate. While a large body of experimental evidence and theoretical analyses support a link, observed differences between bulk and surface composition of these materials are hard to reconcile with this observation. This is further compounded by potential problems with simultaneous measurement of both parameters. Here we utilize separate techniques, in situ neutron diffraction and pulsed isotopic surface exchange, to examine bulk ion mobility and surface oxygen exchange rates of three Ruddlesden-Popper phases, general form A(n-1)A(2)'B(n)O(3n+1), A(n-1)A(2)'B(n)X(3n+1); LaSrCo(0.5)Fe(0.5)O(4-δ) (n = 1), La(0.3)Sr(2.7)CoFeO(7-δ) (n = 2) and LaSr3Co(1.5)Fe(1.5)O(10-δ) (n = 3). These measurements are complemented by surface composition determination via high sensitivity-low energy ion scattering. We observe a correlation between bulk ion mobility and surface exchange rate between materials. The surface exchange rates vary by more than one order of magnitude with high anion mobility in the bulk of an oxygen vacancy-rich n = 2 Ruddlesden-Popper material correlating with rapid oxygen exchange. This is in contrast with the similar surface exchange rates which we may expect due to similar surface compositions across all three samples. We conclude that experimental limitations lead to inherent convolution of surface and bulk rates, and that surface exchange steps are not likely to be rate limiting in oxygen incorporation.

  19. Study on Modification of NaX Zeolites: The Cobalt (II-Exchange Kinetics and Surface Property Changes under Thermal Treatment

    Directory of Open Access Journals (Sweden)

    Hoai-Lam Tran

    2016-01-01

    Full Text Available The cobalt (II ion-exchange process followed the Freundlich and Langmuir adsorption models as well as the pseudo-second-order kinetic model. The cobalt-exchanged contents increased when the initial Co(NO32 solution concentration increased up to 0.14 mol L−1 at the optimal pH of 6.05. The N2 adsorption isotherms are mixed types I/II isotherms and H3 type hysteresis. Both the micropore and mesopore adsorptions occurred during the adsorption process. The modification, which is both the cobalt (II exchange and thermal treatment, significantly improved the surface properties of NaX zeolites. Accordingly, the optimal temperature range is 500 to 600°C for a thermal treatment. This is consistent with the results of XRD analysis.

  20. Acetone and Water on TiO(110): H/D Exchange

    International Nuclear Information System (INIS)

    Henderson, Michael A.

    2005-01-01

    Isotopic H/D exchange between coadsorbed acetone and water on the TiO(110) surface was examined using temperature programmed desorption (TPD) as a function of coverage and two surface pretreatments (oxidation and reduction). Coadsorbed acetone and water interact repulsively on reduced TiO(110) based on results from the companion paper to this study, with water exerting a greater influence in destabilizing acetone and acetone having only a nominal influence on water. Despite the repulsive interaction between these coadsorbates, about 0.02 ML of a 1 ML d6-acetone on the reduced surface exhibits H/D exchange with coadsorbed water, with the exchange occurring exclusively in the high temperature region of the d?-acetone TPD spectrum at ∼340 K. The effect was confirmed with combinations of d?-acetone and D?O. The extent of exchange decreased on the reduced surface with water coverages above ∼0.3 ML due to the ability of water to displace coadsorbed acetone from first layer sites to the multilayer. In contrast, the extent of exchange increased by a factor of 3 when the surface was pre-oxidized prior to coadsorption. In this case, there was no evidence for the negative influence of high water coverages on the extent of H/D exchange. Comparison of the TPD spectra from the exchange products (either d?- or d?-acetone depending on the coadsorption pairing) suggests that, in addition to the 340 K exchange process seen on the reduced surface, a second exchange process was observed on the oxidized surface at ∼390 K. In both cases (oxidized and reduced), desorption of the H/D exchange products appeared to be reaction limited and to involve the influence of OH/OD groups (or water formed during recombinative desorption of OH/OD groups) instead of molecularly adsorbed water. The 340 K exchange process is assigned to reaction at step sites and the 390 K exchange process is attributed to the influence of oxygen adatoms deposited during surface oxidation. The H/D exchange

  1. Functionalization of polymer powders for SLS-processes using an atmospheric plasma jet in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sachs, Marius; Schmitt, Adeliene; Schmidt, Jochen; Peukert, Wolfgang; Wirth, Karl-Ernst [Institute of Particle Technology, Friedrich-Alexander-University Erlangen-Nuremberg (Germany)

    2015-05-22

    Recently additive manufacturing processes such as selective laser sintering (SLS) of polymers have gained more importance for industrial applications [1]. Tailor-made modification of polymers is essential in order to make these processes more efficient and to cover the industrial demands. The so far used polymer materials show weak performance regarding the mechanical stability of processed parts. To overcome this limitation, a new route to functionalize the surface of commercially available polymer particles (PA12; PE-HD; PP) using an atmospheric plasma jet in combination with a fluidized bed reactor has been investigated. Consequently, an improvement of adhesion and wettability [2] of the polymer surface without restraining the bulk properties of the powder is achieved. The atmospheric plasma jet process can provide reactive species at moderate temperatures which are suitable for polymer material. The functionalization of the polymer powders improves the quality of the devices build in a SLS-process.

  2. Surface preparation process of a uranium titanium alloy, in particular for chemical nickel plating

    International Nuclear Information System (INIS)

    Henri, A.; Lefevre, D.; Massicot, P.

    1987-01-01

    In this process the uranium alloy surface is attacked with a solution of lithium chloride and hydrochloric acid. Dissolved uranium can be recovered from the solution by an ion exchange resin. Treated alloy can be nickel plated by a chemical process [fr

  3. Nano-Pervaporation Membrane with Heat Exchanger Generates Medical-Grade Water

    Science.gov (United States)

    Tsai, Chung-Yi; Alexander, Jerry

    2009-01-01

    A nanoporous membrane is used for the pervaporation process in which potable water is maintained, at atmospheric pressure, on the feed side of the membrane. The water enters the non-pervaporation (NPV) membrane device where it is separated into two streams -- retentate water and permeated water. The permeated pure water is removed by applying low vapor pressure on the permeate side to create water vapor before condensation. This permeated water vapor is subsequently condensed by coming in contact with the cool surface of a heat exchanger with heat being recovered through transfer to the feed water stream.

  4. Assessing uncertainty and sensitivity of model parameterizations and parameters in WRF affecting simulated surface fluxes and land-atmosphere coupling over the Amazon region

    Science.gov (United States)

    Qian, Y.; Wang, C.; Huang, M.; Berg, L. K.; Duan, Q.; Feng, Z.; Shrivastava, M. B.; Shin, H. H.; Hong, S. Y.

    2016-12-01

    This study aims to quantify the relative importance and uncertainties of different physical processes and parameters in affecting simulated surface fluxes and land-atmosphere coupling strength over the Amazon region. We used two-legged coupling metrics, which include both terrestrial (soil moisture to surface fluxes) and atmospheric (surface fluxes to atmospheric state or precipitation) legs, to diagnose the land-atmosphere interaction and coupling strength. Observations made using the Department of Energy's Atmospheric Radiation Measurement (ARM) Mobile Facility during the GoAmazon field campaign together with satellite and reanalysis data are used to evaluate model performance. To quantify the uncertainty in physical parameterizations, we performed a 120 member ensemble of simulations with the WRF model using a stratified experimental design including 6 cloud microphysics, 3 convection, 6 PBL and surface layer, and 3 land surface schemes. A multiple-way analysis of variance approach is used to quantitatively analyze the inter- and intra-group (scheme) means and variances. To quantify parameter sensitivity, we conducted an additional 256 WRF simulations in which an efficient sampling algorithm is used to explore the multiple-dimensional parameter space. Three uncertainty quantification approaches are applied for sensitivity analysis (SA) of multiple variables of interest to 20 selected parameters in YSU PBL and MM5 surface layer schemes. Results show consistent parameter sensitivity across different SA methods. We found that 5 out of 20 parameters contribute more than 90% total variance, and first-order effects dominate comparing to the interaction effects. Results of this uncertainty quantification study serve as guidance for better understanding the roles of different physical processes in land-atmosphere interactions, quantifying model uncertainties from various sources such as physical processes, parameters and structural errors, and providing insights for

  5. "Breath figures" on leaf surfaces-formation and effects of microscopic leaf wetness.

    Science.gov (United States)

    Burkhardt, Juergen; Hunsche, Mauricio

    2013-01-01

    "Microscopic leaf wetness" means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 μm, microscopic leaf wetness is about two orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the type and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g., ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

  6. Plasma transferred arc surface modification of atmospheric plasma sprayed ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ulutan, Mustafa; Kilicay, Koray; Kaya, Esad; Bayar, Ismail [Dept. of Mechanical Engineering, Eskisehir Osmangazi University, Eskisehir (Turkmenistan)

    2016-08-15

    In this study, a 90MnCrV8 steel surface was coated with aluminum oxide and chromium oxide powders through the Atmospheric plasma spray (APS) and Plasma transferred arc (PTA) methods. The effects of PTA surface melting on the microstructure, hardness, and wear behavior were investigated. The microstructures of plasma-sprayed and modified layers were characterized by Optical microscopy (OM), Scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDS). The dry-sliding wear properties of the samples were determined through the ball-on-disk wear test method. Voids, cracks, and nonhomogeneous regions were observed in the microstructure of the APS ceramic-coated surface. These microstructure defects were eliminated by the PTA welding process. The microhardness of the samples was increased. Significant reductions in wear rate were observed after the PTA surface modification. The wear resistance of ceramic coatings increased 7 to 12 times compared to that of the substrate material.

  7. The efficiency of macroporous polystyrene ion-exchange resins in natural organic matter removal from surface water

    Directory of Open Access Journals (Sweden)

    Urbanowska Agnieszka

    2017-01-01

    Full Text Available Natural water sources used for water treatment contains various organic and inorganic compounds. Surface waters are commonly contaminated with natural organic matter (NOM. NOM removal from water is important e.g. due to lowering the risk of disinfection by-product formation during chlorination. Ion exchange with the use of synthetic ion-exchange resins is an alternative process to typical NOM removal approach (e.g. coagulation, adsorption or oxidation as most NOM compounds have anionic character. Moreover, neutral fraction could be removed from water due to its adsorption on resin surface. In this study, applicability of two macroporous, polystyrene ion exchange resins (BD400FD and A100 in NOM removal from water was assessed including comparison of treatment efficiency in various process set-ups and conditions. Moreover, resin regeneration effectivity was determined. Obtained results shown that examined resins could be applied in NOM removal and it should be noticed that column set-up yielded better results (contrary to batch set-up. Among the examined resins A100 one possessed better properties. It was determined that increase of solution pH resulted in a slight decrease in treatment efficiency while higher temperature improved it. It was also observed that regeneration efficiency was comparable in both tested methods but batch set-up required less reagents.

  8. An Analytic Approach to Modeling Land-Atmosphere Interaction: 1. Construct and Equilibrium Behavior

    Science.gov (United States)

    Brubaker, Kaye L.; Entekhabi, Dara

    1995-03-01

    A four-variable land-atmosphere model is developed to investigate the coupled exchanges of water and energy between the land surface and atmosphere and the role of these exchanges in the statistical behavior of continental climates. The land-atmosphere system is substantially simplified and formulated as a set of ordinary differential equations that, with the addition of random noise, are suitable for analysis in the form of the multivariate Îto equation. The model treats the soil layer and the near-surface atmosphere as reservoirs with storage capacities for heat and water. The transfers between these reservoirs are regulated by four states: soil saturation, soil temperature, air specific humidity, and air potential temperature. The atmospheric reservoir is treated as a turbulently mixed boundary layer of fixed depth. Heat and moisture advection, precipitation, and layer-top air entrainment are parameterized. The system is forced externally by solar radiation and the lateral advection of air and water mass. The remaining energy and water mass exchanges are expressed in terms of the state variables. The model development and equilibrium solutions are presented. Although comparisons between observed data and steady state model results re inexact, the model appears to do a reasonable job of partitioning net radiation into sensible and latent heat flux in appropriate proportions for bare-soil midlatitude summer conditions. Subsequent work will introduce randomness into the forcing terms to investigate the effect of water-energy coupling and land-atmosphere interaction on variability and persistence in the climatic system.

  9. Surface analysis of 316 stainless steel treated with cold atmospheric plasma

    Energy Technology Data Exchange (ETDEWEB)

    Williams, David F., E-mail: david.williams@surrey.ac.uk [Department of Mechanical Engineering Sciences, University Of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); TWI Ltd Granta Park Great Abington, Cambridge CB21 6AL (United Kingdom); Kellar, Ewen J.C. [TWI Ltd Granta Park Great Abington, Cambridge CB21 6AL (United Kingdom); Jesson, David A.; Watts, John F. [Department of Mechanical Engineering Sciences, University Of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2017-05-01

    Highlights: • Reduction in carbon contamination from ∼80 at.% to 40 at.% after 15 s treatment. • Associated carbon thickness reduction from 4.5 nm to 0.5 nm. • Area treated by torch has a diameter of 11 mm measured using imaging XPS. - Abstract: The surface of 316 stainless steel has been modified using cold atmospheric plasma (CAP) to increase the surface free energy (by cleaning the and chemically activating the surface)IN preparation for subsequent processes such as painting, coating or adhesive bonding. The analyses carried out, on CAP treated 316 stainless steel surfaces, includes X-ray photoelectron spectroscopy (XPS), imaging XPS (iXPS), and surface free energy (SFE) analysis using contact angle measurements. The CAP treatment is shown to increase the SFE of as-received 316 stainless steel from ∼39 mJ m{sup −1} to >72 mJ m{sup −1} after a short exposure to the plasma torch. This was found to correlate to a reduction in adventitious carbon, as determined by XPS analysis of the surface. The reduction from ∼90 at% to ∼30% and ∼39 at%, after being plasma treated for 5 min and 15 s respectively, shows that the process is relatively quick at changing the surface. It is suggested that the mechanism that causes the increase in surface free energy is chain scission of the hydrocarbon contamination triggered by free electrons in the plasma plume followed by chemical functionalisation of the metal oxide surface and some of the remaining carbon contamination layer.

  10. The influence of gas-particle partitioning and surface-atmosphere exchange on ammonia during BAQS-Met

    Directory of Open Access Journals (Sweden)

    R. A. Ellis

    2011-01-01

    Full Text Available The Border Air Quality and Meteorology study (BAQS-Met was an intensive field campaign conducted in Southwestern Ontario during the summer of 2007. The focus of BAQS-Met was determining the causes of the formation of ozone and fine particulate matter (PM2.5, and of the regional significance of trans-boundary transport and lake breeze circulations on that formation. Fast (1 Hz measurements of ammonia were acquired using a Quantum Cascade Laser Tunable Infrared Differential Absorption Spectrometer (QC-TILDAS at the Harrow supersite. Measurements of PM2.5 ammonium, sulfate and nitrate were made using an Ambient Ion Monitor Ion Chromatograph (AIM-IC with hourly time resolution. The median mixing ratio of ammonia was 2.5 ppb, with occasional high spikes at night resulting from local emissions. Measurements were used to assess major local emissions of NH3, diurnal profiles and gas-particle partitioning. The measurements were compared with results from A Unified Regional Air-quality Modelling System (AURAMS. While the fraction of total ammonia (NHx≡NH3 + NH4+ observed in the gas phase peaks between 0.1 and 0.8, AURAMS tended to predict fractions of either less than 0.05 or greater than 0.8. The model frequently predicted acidic aerosol, in contrast with observations wherein NHx almost always exceeded the observed equivalents of sulfate. One explanation for our observations is that the net flux of ammonia from the land surface to the atmosphere increases when aerosol sulfate is present, effectively buffering the mixing ratio of gas phase ammonia, a process not included in the model. A simple representation of an offline bi-directional flux parameterization using the ISORROPIA thermodynamic model was successful at reducing the population of zero gas fraction points, but not the higher gas fraction points.

  11. Surface pretreatment of plastics with an atmospheric pressure plasma jet - Influence of generator power and kinematics

    International Nuclear Information System (INIS)

    Moritzer, E.; Leister, C.

    2014-01-01

    The industrial use of atmospheric pressure plasmas in the plastics processing industry has increased significantly in recent years. Users of this treatment process have the possibility to influence the target values (e.g. bond strength or surface energy) with the help of kinematic and electrical parameters. Until now, systematic procedures have been used with which the parameters can be adapted to the process or product requirements but only by very time-consuming methods. For this reason, the relationship between influencing values and target values will be examined based on the example of a pretreatment in the bonding process with the help of statistical experimental design. Because of the large number of parameters involved, the analysis is restricted to the kinematic and electrical parameters. In the experimental tests, the following factors are taken as parameters: gap between nozzle and substrate, treatment velocity (kinematic data), voltage and duty cycle (electrical data). The statistical evaluation shows significant relationships between the parameters and surface energy in the case of polypropylene. An increase in the voltage and duty cycle increases the polar proportion of the surface energy, while a larger gap and higher velocity leads to lower energy levels. The bond strength of the overlapping bond is also significantly influenced by the voltage, velocity and gap. The direction of their effects is identical with those of the surface energy. In addition to the kinematic influences of the motion of an atmospheric pressure plasma jet, it is therefore especially important that the parameters for the plasma production are taken into account when designing the pretreatment processes

  12. Titan Coupled Surface/Atmosphere Retrievals

    Science.gov (United States)

    West, R. A.; Pitman, K. M.

    2009-05-01

    Titan's thick haze obscures its surface at visible wavelengths and hinders surface photometric studies in the near-infrared. The large vertical extent of the haze produces two effects which require radiative transfer analysis beyond the capability of plane-parallel multi-scatter models. Haze aerosols extend to altitudes above 500 km and require a spherical-shell RT algorithm close to the limb or terminator. Even near nadir viewing, horizontal scattering at spatial scales less than a few hundred km requires a code capable of simulating the adjacency effect. The adjacency effect will reduce contrast more for small spatial scales than for large spatial scales, and the amount of contrast reduction depends on many factors (haze optical thickness, vertical distribution, single scattering albedo, scattering geometry, spatial scale). Titan's haze is strongly forward scattering even near 1-µm wavelength and many RT codes do a poor job. Fortunately the problem is more tractable at longer wavelengths. We show how data from the Cassini VIMS and ISS instruments can be used to understand surface contrast and atmospheric haze properties.

  13. Studying temporal and spatial variations of groundwater-surface water exchange flux for the Slootbeek (Belgium) using the LPML method

    Science.gov (United States)

    Anibas, Christian; Schneideweind, Uwe; Vandersteen, Gerd; Huysmans, Marijke; Batelaan, Okke

    2015-04-01

    Knowledge of groundwater-surface water interaction is important for the assessment of water resources and for the investigation of fate and transport of contaminants and nutrients. In streams and rivers exchange fluxes of water are sensitive to local and regional factors such as riverbed hydraulic conductivity and hydraulic gradients. Field monitoring in time and space is therefore indispensible for assessing the variability of groundwater-surface water interaction. Not only the complexity of the examined processes demand novel data processing and characterization tools, the amount of acquired data also urges for new modeling tools. These tools should be easily applicable, allow for a fast computation, and utilize the maximum amount of available data for detailed analysis, including uncertainties. Such analytical tools should be combined with modern field equipment, data processing tools, geographical information systems and geostatistics for best results. A simple and cost effective methodology to estimate groundwater-surface water interaction is the use of temperature as an environmental tracer (ANDERSON, 2005). LPML (VANDERSTEEN et al., 2014) is one of the most advanced analytical 1D coupled water flow and heat transport models, combining a local polynomial method with a maximum likelihood estimator. It is flexible, fast and able to create time series of exchange fluxes, as well as model quality and parameter uncertainty. LPML determines frequency response functions from measured temperature time series and an analytical model, and applies a non-linear optimization technique. With this tool the variability of groundwater-surface water interaction of the Belgian stream Slootbeek was assessed. Multilevel temperature sensors were placed in seven locations to obtain temperature-time series. Located at the streambed top and at six depths below, several months worth of data was collected and analyzed. Results identified a high spatial and temporal variability of

  14. Study on a Dynamic Vegetation Model for Simulating Land Surface Flux Exchanges at Lien-Hua-Chih Flux Observation Site in Taiwan

    Science.gov (United States)

    Yeh, T. Y.; Li, M. H.; Chen, Y. Y.; Ryder, J.; McGrath, M.; Otto, J.; Naudts, K.; Luyssaert, S.; MacBean, N.; Bastrikov, V.

    2016-12-01

    Dynamic vegetation model ORCHIDEE (Organizing Carbon and Hydrology In Dynamic EcosystEms) is a state of art land surface component of the IPSL (Institute Pierre Simon Laplace) Earth System Model. It has been used world-wide to investigate variations of water, carbon, and energy exchanges between the land surface and the atmosphere. In this study we assessed the applicability of using ORCHIDEE-CAN, a new feature with 3-D CANopy structure (Naudts et al., 2015; Ryder et al., 2016), to simulate surface fluxes measured at tower-based eddy covariance fluxes at the Lien-Hua-Chih experimental watershed in Taiwan. The atmospheric forcing including radiation, air temperature, wind speed, and the dynamics of vertical canopy structure for driving the model were obtained from the observations site. Suitable combinations of default plant function types were examined to meet in-situ observations of soil moisture and leaf area index from 2009 to 2013. The simulated top layer soil moisture was ranging from 0.1 to 0.4 and total leaf area was ranging from 2.2 to 4.4, respectively. A sensitivity analysis was performed to investigate the sensitive of model parameters and model skills of ORCHIDEE-CAN on capturing seasonal variations of surface fluxes. The most sensitive parameters were suggested and calibrated by an automatic data assimilation tool ORCHDAS (ORCHIDEE Data Assimilation Systems; http://orchidas.lsce.ipsl.fr/). Latent heat, sensible heat, and carbon fluxes simulated by the model were compared with long-term observations at the site. ORCHIDEE-CAN by making use of calibrated surface parameters was used to study variations of land-atmosphere interactions on a variety of temporal scale in associations with changes in both land and atmospheric conditions. Ref: Naudts, K., et al.,: A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes, Geoscientific Model Development, 8, 2035-2065, doi:10.5194/gmd-8

  15. Formation of hydrophobic coating on glass surface using atmospheric pressure non-thermal plasma in ambient air

    International Nuclear Information System (INIS)

    Fang, Z; Qiu, Y; Kuffel, E

    2004-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in material surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of a glass surface for improving hydrophobicity using a non-thermal plasma generated by a dielectric barrier corona discharge (DBCD) with a needle array-to-plane electrode arrangement in atmospheric air is conducted, and the surface properties of the glass before and after the DBCD treatment are studied using contact angle measurement, surface resistance measurement and the wet flashover voltage test. The effects of the plasma dose (the product of average discharge power and treatment time) of DBCD on the surface modification are studied, and the mechanism of interaction between the plasma and glass surface is discussed. It is found that a layer of hydrophobic coating is formed on the glass surface through DBCD treatment, and the improvement of hydrophobicity depends on the plasma dose of the DBCD. It seems that there is an optimum plasma dose for the surface treatment. The test results of thermal ageing and chemical ageing show that the hydrophobic layer has quite stable characteristics

  16. The Significance of Land-Atmosphere Processes in the Earth System

    Science.gov (United States)

    Suni, T.; Kulmala, M. T.; Guenther, A. B.

    2012-12-01

    The land-atmosphere interface is where humans primarily operate. Humans modify the land surface in many ways that influence the fluxes of energy and trace gases between land and atmosphere. Their emissions change the chemical composition of the atmosphere and anthropogenic aerosols change the radiative balance of the globe directly by scattering sunlight back to space and indirectly by changing the properties of clouds. Feedback loops among all these processes, land, the atmosphere, and biogeochemical cycles of nutrients and trace gases extend the human influence even further. Over the last decade, the importance of land-atmosphere processes and feedbacks in the Earth System has been shown on many levels and with multiple approaches, and a number of publications have shown the crucial role of the terrestrial ecosystems as regulators of climate [1-6]. Modellers have clearly shown the effect of missing land cover changes and other feedback processes and regional characteristics in current climate models and recommended actions to improve them [7-11]. Unprecedented insights of the long-term net impacts of aerosols on clouds and precipitation have also been provided [12-14]. Land-cover change has been emphasized with model intercomparison projects that showed that realistic land-use representation was essential in land surface modelling [11, 15]. Crucially important tools in this research have been the networks of long-term flux stations and large-scale land-atmosphere observation platforms that are also beginning to combine remote sensing techniques with ground observations [16-20]. Human influence has always been an important part of land-atmosphere science but in order to respond to the new challenges of global sustainability, closer ties with social science and economics groups will be necessary to produce realistic estimates of land use and anthropogenic emissions by analysing future population increase, migration patterns, food production allocation, land

  17. The role of soil moisture in land surface-atmosphere coupling: climate model sensitivity experiments over India

    Science.gov (United States)

    Williams, Charles; Turner, Andrew

    2015-04-01

    It is generally acknowledged that anthropogenic land use changes, such as a shift from forested land into irrigated agriculture, may have an impact on regional climate and, in particular, rainfall patterns in both time and space. India provides an excellent example of a country in which widespread land use change has occurred during the last century, as the country tries to meet its growing demand for food. Of primary concern for agriculture is the Indian summer monsoon (ISM), which displays considerable seasonal and subseasonal variability. Although it is evident that changing rainfall variability will have a direct impact on land surface processes (such as soil moisture variability), the reverse impact is less well understood. However, the role of soil moisture in the coupling between the land surface and atmosphere needs to be properly explored before any potential impact of changing soil moisture variability on ISM rainfall can be understood. This paper attempts to address this issue, by conducting a number of sensitivity experiments using a state-of-the-art climate model from the UK Meteorological Office Hadley Centre: HadGEM2. Several experiments are undertaken, with the only difference between them being the extent to which soil moisture is coupled to the atmosphere. Firstly, the land surface is fully coupled to the atmosphere, globally (as in standard model configurations); secondly, the land surface is entirely uncoupled from the atmosphere, again globally, with soil moisture values being prescribed on a daily basis; thirdly, the land surface is uncoupled from the atmosphere over India but fully coupled elsewhere; and lastly, vice versa (i.e. the land surface is coupled to the atmosphere over India but uncoupled elsewhere). Early results from this study suggest certain 'hotspot' regions where the impact of soil moisture coupling/uncoupling may be important, and many of these regions coincide with previous studies. Focusing on the third experiment, i

  18. Apparatus and method for atmospheric pressure reactive atom plasma processing for shaping of damage free surfaces

    Science.gov (United States)

    Carr,; Jeffrey, W [Livermore, CA

    2009-03-31

    Fabrication apparatus and methods are disclosed for shaping and finishing difficult materials with no subsurface damage. The apparatus and methods use an atmospheric pressure mixed gas plasma discharge as a sub-aperture polisher of, for example, fused silica and single crystal silicon, silicon carbide and other materials. In one example, workpiece material is removed at the atomic level through reaction with fluorine atoms. In this example, these reactive species are produced by a noble gas plasma from trace constituent fluorocarbons or other fluorine containing gases added to the host argon matrix. The products of the reaction are gas phase compounds that flow from the surface of the workpiece, exposing fresh material to the etchant without condensation and redeposition on the newly created surface. The discharge provides a stable and predictable distribution of reactive species permitting the generation of a predetermined surface by translating the plasma across the workpiece along a calculated path.

  19. Operational mesoscale atmospheric dispersion prediction using a ...

    Indian Academy of Sciences (India)

    surface layer energy exchange processes (Grell et al. 1994). The model can be ... tion, it is chosen for forecasting the wind field in ... of land surface where the energy exchange takes ...... plant under a hypothetical accidental scenario at a trop-.

  20. Surface and top-of-atmosphere radiative feedback kernels for CESM-CAM5

    Science.gov (United States)

    Pendergrass, Angeline G.; Conley, Andrew; Vitt, Francis M.

    2018-02-01

    Radiative kernels at the top of the atmosphere are useful for decomposing changes in atmospheric radiative fluxes due to feedbacks from atmosphere and surface temperature, water vapor, and surface albedo. Here we describe and validate radiative kernels calculated with the large-ensemble version of CAM5, CESM1.1.2, at the top of the atmosphere and the surface. Estimates of the radiative forcing from greenhouse gases and aerosols in RCP8.5 in the CESM large-ensemble simulations are also diagnosed. As an application, feedbacks are calculated for the CESM large ensemble. The kernels are freely available at https://doi.org/10.5065/D6F47MT6" target="_blank">https://doi.org/10.5065/D6F47MT6, and accompanying software can be downloaded from https://github.com/apendergrass/cam5-kernels" target="_blank">https://github.com/apendergrass/cam5-kernels.

  1. Optimization of parameters of heat exchangers vehicles

    Directory of Open Access Journals (Sweden)

    Andrei MELEKHIN

    2014-09-01

    Full Text Available The relevance of the topic due to the decision of problems of the economy of resources in heating systems of vehicles. To solve this problem we have developed an integrated method of research, which allows to solve tasks on optimization of parameters of heat exchangers vehicles. This method decides multicriteria optimization problem with the program nonlinear optimization on the basis of software with the introduction of an array of temperatures obtained using thermography. The authors have developed a mathematical model of process of heat exchange in heat exchange surfaces of apparatuses with the solution of multicriteria optimization problem and check its adequacy to the experimental stand in the visualization of thermal fields, an optimal range of managed parameters influencing the process of heat exchange with minimal metal consumption and the maximum heat output fin heat exchanger, the regularities of heat exchange process with getting generalizing dependencies distribution of temperature on the heat-release surface of the heat exchanger vehicles, defined convergence of the results of research in the calculation on the basis of theoretical dependencies and solving mathematical model.

  2. Study on the surface oxidation of uranium in different gaseous atmospheres

    International Nuclear Information System (INIS)

    Wang Xiaoling; Fu Yibei; Xie Renshou

    1996-03-01

    The studying for the surface oxidation of uranium and oxide by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), secondary ion mass spectroscopy (SIMS), and the surface oxidation of uranium in different gaseous atmospheres such as O 2 , H 2 , CO, CO 2 , H 2 O(v) and air were reviewed. The surface oxidation of uranium is greatly influenced by a number of parameters including atmospheric temperature, pressure, diffusion of adsorbed gas atoms through the oxide layer, surface and interface chemical component, and defect structure and electron nature of the oxide layer. The initial oxidation mechanism and kinetics have been discussed. Suggestions for future work have also been presented. (32 refs., 7 figs., 5 tabs.)

  3. Process analysis of the modelled 3-D mesoscale impact of aircraft emissions on the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, J; Ebel, A; Lippert, E; Petry, H [Koeln Univ. (Germany). Inst. fuer Geophysik und Meterorologie

    1998-12-31

    A mesoscale chemistry transport model is applied to study the impact of aircraft emissions on the atmospheric trace gas composition. A special analysis of the simulations is conducted to separate the effects of chemistry, transport, diffusion and cloud processes on the transformation of the exhausts of a subsonic fleet cruising over the North Atlantic. The aircraft induced ozone production strongly depends on the tropopause height and the cruise altitude. Aircraft emissions may undergo an effective downward transport under the influence of stratosphere-troposphere exchange activity. (author) 12 refs.

  4. Process analysis of the modelled 3-D mesoscale impact of aircraft emissions on the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, J.; Ebel, A.; Lippert, E.; Petry, H. [Koeln Univ. (Germany). Inst. fuer Geophysik und Meterorologie

    1997-12-31

    A mesoscale chemistry transport model is applied to study the impact of aircraft emissions on the atmospheric trace gas composition. A special analysis of the simulations is conducted to separate the effects of chemistry, transport, diffusion and cloud processes on the transformation of the exhausts of a subsonic fleet cruising over the North Atlantic. The aircraft induced ozone production strongly depends on the tropopause height and the cruise altitude. Aircraft emissions may undergo an effective downward transport under the influence of stratosphere-troposphere exchange activity. (author) 12 refs.

  5. Isotopic study of water exchange between atmosphere and biosphere at different sites in Pakistan

    International Nuclear Information System (INIS)

    Fazil, M.; Ali, M.; Ahmad, M.; Latif, Z.; Butt, S.; Choudhry, M.A.; Qureshiu, R.M.

    2009-11-01

    Study of Isotopic behavior of water exchange between atmosphere and biosphere was initiated to understand the ties between these two spheres. This report presents the isotopic data of delta/sup 18/O and delta /sup 2/H in the water contents of leaves and stems in different plant species along with soil moisture. Non woody plants of wheat and grass along with soil from the surface and from the depth of 7 cm were collected during January 2005 to April 2005. Woody plants of many species were sampled from two sites near Islamabad and Lahore. Air moisture was also collected in the field. Moisture contents from these samples were extracted using the vacuum distillation method and analyzed for /sup 18/O and /sup 2/H Data depicts that the /sup 18/O and /sup 2/H of moisture in the leaves of non- woody and woody plants are much more enriched than their respective stems. This behavior is due to the evaporative enrichment trend originating from the soil moisture in the active root zone and also from the surface of the leaf. Degree of enrichment depends on the size of leaves, temperature, wind speed, stomatal resistance, soil chemistry and humidity. Significant evaporation effects in the moisture of grass stems are due to photosynthesis. Reflection of typical isotopic values of individual rain events is also observed in soil, plant water and atmospheric moisture, which can be used for studying water-use efficiency. Leaves of woody plants have relatively depleted/sup 18/O values during wet (monsoon) period mainly due to retardation of fractionation resulting from higher humidity. The stem samples do not show any significant variation in delta/sup 18/O indicating no evaporation from stems of big trees. Degree of enrichment of leave samples of woody plants also indicates the species- specific effects in oxygen and hydrogen isotopes during transpiration. Pine and Eucalyptus leaves show more variation in the isotopic contents as compared to other species. (author)

  6. Uncertainties associated to the representation of surface processes in impact studies. A study in the Mediterranean area.

    Science.gov (United States)

    Quéguiner, Solen; Martin, Eric; Lafont, Sébastien; Calvet, Jean-Christophe; Faroux, Stéphanie

    2010-05-01

    In the framework of the assessment of the impact of climate change, the uncertainty associated to the direct effect of CO2 on plant physiology was seldom addressed, while some other sources of uncertainties have been more studied, such as those related to climate modeling or the downscaling method. A few studies are available at global or continental scale. The purpose of this study is to quantify this effect in a regional study focussed on the Mediterranean area of France. The Safran-Isba-Modcou chain was used. This chain is composed of a meteorological analysis system (SAFRAN), a land surface model describing the exchange with the atmosphere (ISBA) and a hydrogeological model (MODCOU), and has already been used in many studies in France. The present study focuses on the uncertainties related to the representation of carbon cycle and the photosynthesis in the surface model. Two versions of ISBA were used and compared. The standard version simulates the mass and energy exchanges between the continental surface (including vegetation and snow) and the atmosphere. In this version, the LAI (Leaf Area Index) is provided by the ECOCLIMAP2 database and the vegetation is divided into 12 types. The A-gs version accounts for the process of photosynthesis taking into account the vegetation assimilation of atmospheric CO2 concentration, and simulates the evolution of the biomass and the LAI. The domain studied is the French mediterranean basin, in which a sub domain was defined (latitude < 45 °N et height < 1000m) in order to identify the low land area pertaining to a Mediterranean climate. The study focuses on the impact of the climate change on the surface variables (LAI, water balance) and the discharges. The periods chosen to compare the changes are the end of the 20th century (1995-2005) and the end of the 21st century (2090-2099). A first comparison is made for the present climate between the versions of model and the observations of discharges, using two type of

  7. Guest editor - Material exchanges at marine boundaries and surface ocean processes: Forcings and feedbacks

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.

    . Diffusional flux is generally used to quantify air?sea flux of a gas and the bubbling process is generally ignored. This study highlights therefore the signi- ficance of bubbles in loading the atmosphere with methane from shallow water systems. What hap- pens... Institute of Science, Bangalore) for their critical and indepth comments which enriched the qual- ity and content of the manuscripts and helped in editorial decisions. I also appreciate the support and encouragement I received from the Editors, particularly...

  8. A modelling approach for simulation of water and carbon dioxide exchange between multi-species tropical rain forest and the atmosphere

    DEFF Research Database (Denmark)

    Olchev, A.; Ibrom, Andreas; Ross, T.

    2008-01-01

    An one-dimensional process-based SVAT model (Mixfor-SVAT) was developed to describe energy, water and carbon dioxide exchanges between vegetation canopy and the atmosphere at a local scale. Simulation of the energy, water and CO2 fluxes in Mixfor-SVAT is based on aggregated description...... in measured data series caused by some instrumental errors, sensor wetting, changes in the footprint or fast changes in turbulence conditions resulted in some reduction of correlation between modeled and measured fluxes (e.g. r(2) = 0.62 for CO2 and r(2) = 0.64 for H2O fluxes under friction velocity u* > 0...

  9. Atmospheric and Surface-Condition Effects on CO2 Exchange in the Liaohe Delta Wetland, China

    Directory of Open Access Journals (Sweden)

    Qingyu Jia

    2017-10-01

    Full Text Available The eddy covariance method was used to study the CO2 budget of the Liaohe Delta reed wetland in northern China during 2012–2015. The changes in environmental factors (including meteorology, vegetation, hydrology, and soil were analyzed simultaneously. The change in the trend of the CO2 concentration in the reed wetland was similar to global changes over the four years. The average annual CO2 accumulation was 2.037 kg·CO2·m−2, ranging from 1.472 to 2.297 kg·CO2·m−2. The seasonal characteristics of the CO2 exchange included high CO2 absorption in June and July, and high emissions in April and from September to October, with the highest emissions in July 2015. The average temperatures from 2013 to 2015 were higher than the 50-year average, largely due to increased temperatures in winter. Precipitation was below the 50-year average, mainly because of low precipitation in summer. The average wind speed was less than the 50-year average, and sunshine duration decreased each year. The CO2 exchange and environmental factors had a degree of correlation or consistency. The contribution of meteorology, vegetation, hydrology, and soil to the CO2 budget was analyzed using the partial least squares method. Water and soil temperature had a greater effect on the CO2 exchange variability. The regression equation of the CO2 budget was calculated using the significant contributing factors, including temperature, precipitation, relative humidity, water-table level, salinity, and biomass. The model fit explained more than 70% of the CO2 exchange, and the simulation results were robust.

  10. Samarium ion exchanged montmorillonite for high temperature cumene cracking reaction

    International Nuclear Information System (INIS)

    Binitha, N.N.

    2009-01-01

    Full text: Nano material Montmorillonite clay is cation exchanged with samarium and its catalytic influence in cumene cracking reaction is investigated. Effect of exchange with sodium ions on further exchange with samarium ions is also noted. Acidity measurements are done using TPD of ammonia. The retention of basic structure is proved from FTIR spectra and XRD patterns. Elemental analysis result shows that samarium exchange has occurred, which is responsible for the higher catalytic activity. Surface area and pore volume remains more or less unaffected upon exchange. Thermogravimetric analysis indicates the enhanced thermal stability on exchanging. Cumene cracking reaction is carried out at atmospheric pressure in a fixed bed glass reactor at 673 K. The predominance of Bronsted acidity is confirmed from high selectivity to benzene. (author)

  11. 78 FR 70076 - Aging Management of Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and...

    Science.gov (United States)

    2013-11-22

    ... Systems, Atmospheric Storage Tanks, and Corrosion Under Insulation AGENCY: Nuclear Regulatory Commission... Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and Corrosion Under Insulation.'' This LR... related to internal surface aging effects, fire water systems, atmospheric storage tanks, and corrosion...

  12. Thermal design of heat-exchangeable reactors using a dry-sorbent CO2 capture multi-step process

    International Nuclear Information System (INIS)

    Moon, Hokyu; Yoo, Hoanju; Seo, Hwimin; Park, Yong-Ki; Cho, Hyung Hee

    2015-01-01

    The present study proposes a multi-stage CO 2 capture process that incorporates heat-exchangeable fluidized-bed reactors. For continuous multi-stage heat exchange, three dry regenerable sorbents: K 2 CO 3 , MgO, and CaO, were used to create a three-stage temperature-dependent reaction chain for CO 2 capture, corresponding to low (50–150 °C), middle (350–650 °C), and high (750–900 °C) temperature stages, respectively. Heat from carbonation in the high and middle temperature stages was used for regeneration for the middle and low temperature stages. The feasibility of this process is depending on the heat-transfer performance of the heat-exchangeable fluidized bed reactors as the focus of this study. The three-stage CO 2 capture process for a 60 Nm 3 /h CO 2 flow rate required a reactor area of 0.129 and 0.130 m 2 for heat exchange between the mid-temperature carbonation and low-temperature regeneration stages and between the high-temperature carbonation and mid-temperature regeneration stages, respectively. The reactor diameter was selected to provide dense fluidization conditions for each bed with respect to the desired flow rate. The flow characteristics and energy balance of the reactors were confirmed using computational fluid dynamics and thermodynamic analysis, respectively. - Highlights: • CO 2 capture process is proposed using a multi-stage process. • Reactor design is conducted considering heat exchangeable scheme. • Reactor surface is designed by heat transfer characteristics of fluidized bed

  13. Characteristics of meter-scale surface electrical discharge propagating along water surface at atmospheric pressure

    International Nuclear Information System (INIS)

    Hoffer, Petr; Sugiyama, Yuki; Hosseini, S Hamid R; Akiyama, Hidenori; Lukes, Petr; Akiyama, Masahiro

    2016-01-01

    This paper reports physical characteristics of water surface discharges. Discharges were produced by metal needle-to-water surface geometry, with the needle electrode driven by 47 kV (FWHM) positive voltage pulses of 2 µ s duration. Propagation of discharges along the water surface was confined between glass plates with 2 mm separation. This allowed generation of highly reproducible 634 mm-long plasma filaments. Experiments were performed using different atmospheres: air, N 2 , and O 2 , each at atmospheric pressure. Time- and spatially-resolved spectroscopic measurements revealed that early spectra of discharges in air and nitrogen atmospheres were dominated by N 2 2nd positive system. N 2 radiation disappeared after approx. 150 ns, replaced by emissions from atomic hydrogen. Spectra of discharges in O 2 atmosphere were dominated by emissions from atomic oxygen. Time- and spatially-resolved emission spectra were used to determine temperatures in plasma. Atomic hydrogen emissions showed excitation temperature of discharges in air to be about 2  ×  10 4 K. Electron number densities determined by Stark broadening of the hydrogen H β line reached a maximum value of ∼10 18 cm −3 just after plasma initiation. Electron number densities and temperatures depended only slightly on distance from needle electrode, indicating formation of high conductivity leader channels. Direct observation of discharges by high speed camera showed that the average leader head propagation speed was 412 km · s −1 , which is substantially higher value than that observed in experiments with shorter streamers driven by lower voltages. (paper)

  14. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    2012-01-01

    Efficiency of atmospheric pressure plasma treatment can be highly enhanced by simultaneous high power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above ∼140 dB can reduce the thickness of a boundary gas layer between the plasma...... arc at atmospheric pressure to study adhesion improvement. The effect of ultrasonic irradiation with the frequency diapason between 20 and 40 kHz at the SPL of ∼150 dB was investigated. After the plasma treatment without ultrasonic irradiation, the wettability was significantly improved...

  15. Exchange across the shelf break at high southern latitudes

    Directory of Open Access Journals (Sweden)

    J. M. Klinck

    2010-05-01

    Full Text Available Exchange of water across the Antarctic shelf break has considerable scientific and societal importance due to its effects on circulation and biology of the region, conversion of water masses as part of the global overturning circulation and basal melt of glacial ice and the consequent effect on sea level rise. The focus in this paper is the onshore transport of warm, oceanic Circumpolar Deep Water (CDW; export of dense water from these shelves is equally important, but has been the focus of other recent papers and will not be considered here. A variety of physical mechanisms are described which could play a role in this onshore flux. The relative importance of some processes are evaluated by simple calculations. A numerical model for the Ross Sea continental shelf is used as an example of a more comprehensive evaluation of the details of cross-shelf break exchange. In order for an ocean circulation model to simulate these processes at high southern latitudes, it needs to have high spatial resolution, realistic geometry and bathymetry. Grid spacing smaller than the first baroclinic radius of deformation (a few km is required to adequately represent the circulation. Because of flow-topography interactions, bathymetry needs to be represented at these same small scales. Atmospheric conditions used to force these circulation models also need to be known at a similar small spatial resolution (a few km in order to represent orographically controlled winds (coastal jets and katabatic winds. Significantly, time variability of surface winds strongly influences the structure of the mixed layer. Daily, if not more frequent, surface fluxes must be imposed for a realistic surface mixed layer. Sea ice and ice shelves are important components of the coastal circulation. Ice isolates the ocean from exchange with the atmosphere, especially in the winter. Melting and freezing of both sea ice and glacial ice influence salinity and thereby the character of shelf

  16. RF atmospheric plasma jet surface treatment of paper

    Science.gov (United States)

    Pawlat, Joanna; Terebun, Piotr; Kwiatkowski, Michał; Diatczyk, Jaroslaw

    2016-09-01

    A radio frequency RF atmospheric pressure plasma jet was used to enhance the wettability of cellulose-based paper of 90 g m-2 and 160 g m-2 grammage as a perspective platform for antibiotic sensitivity tests. Helium and argon were the carrier gases for oxygen and nitrogen; pure water and rapeseed oil were used for goniometric tests. The influence of the flow rate and gas type, the power of the discharge, and distance from the nozzle was examined. The surface structure was observed using an optical microscope. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectra were investigated in order to determine whether cellulose degradation processes occurred. The RF plasma jet allowed us to decrease the surface contact angle without drastic changes in other features of the tested material. Experiments confirmed the significant influence of the distance between the treated sample and reactor nozzle, especially for treatment times longer than 15 s due to the greater concentration of reactive species at the surface of the sample, which decreases with distance—and their accumulation effect with time. The increase of discharge power plays an important role in decreasing the surface contact angle for times longer than 10 s. Higher power had a positive effect on the amount of generated active particles and facilitated the ignition of discharge. However, a too high value can cause a rise in temperature of the material and heat-caused damage.

  17. Surface modification of polyethylene films using atmospheric ...

    African Journals Online (AJOL)

    An atmospheric-pressure plasma jet (APPJ) is used to increase the wettability of polyethylene polymer films. Reduction in contact angle from 94.32 to 58.33 degrees was measured for treatment times of 1 - 5 seconds. Contact angle reductions of PE as a function of treatment time with APPJ and PE surface at various oxygen ...

  18. Surface area of antimony oxide by isotope exchange and other methods

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Y.K.; Acharya, B.V.; Rangamannar, B.

    1985-06-17

    Specific surface areas of antimony oxide samples, one commercial, the other prepared from antimony trichloride were measured by heterogeneous isotope exchange, gas adsorption, air permeability and microscopic methods. Specific surface areas obtained by these four methods for the two samples were compared and the observed differences are explained.

  19. Observations of Recent Arctic Sea Ice Volume Loss and Its Impact on Ocean-Atmosphere Energy Exchange and Ice Production

    Science.gov (United States)

    Kurtz, N. T.; Markus, T.; Farrell, S. L.; Worthen, D. L.; Boisvert, L. N.

    2011-01-01

    Using recently developed techniques we estimate snow and sea ice thickness distributions for the Arctic basin through the combination of freeboard data from the Ice, Cloud, and land Elevation Satellite (ICESat) and a snow depth model. These data are used with meteorological data and a thermodynamic sea ice model to calculate ocean-atmosphere heat exchange and ice volume production during the 2003-2008 fall and winter seasons. The calculated heat fluxes and ice growth rates are in agreement with previous observations over multiyear ice. In this study, we calculate heat fluxes and ice growth rates for the full distribution of ice thicknesses covering the Arctic basin and determine the impact of ice thickness change on the calculated values. Thinning of the sea ice is observed which greatly increases the 2005-2007 fall period ocean-atmosphere heat fluxes compared to those observed in 2003. Although there was also a decline in sea ice thickness for the winter periods, the winter time heat flux was found to be less impacted by the observed changes in ice thickness. A large increase in the net Arctic ocean-atmosphere heat output is also observed in the fall periods due to changes in the areal coverage of sea ice. The anomalously low sea ice coverage in 2007 led to a net ocean-atmosphere heat output approximately 3 times greater than was observed in previous years and suggests that sea ice losses are now playing a role in increasing surface air temperatures in the Arctic.

  20. Scaling properties of fracture surfaces on glass strengthened by ionic exchange

    International Nuclear Information System (INIS)

    Garza-Mendez, F.J.; Hinojosa-Rivera, M.; Gomez, I.; Sanchez, E.M.

    2007-01-01

    In this work the results of the statistical topometric analysis of fracture surfaces of soda-lime-silica glass with and without ionic exchange treatment are reported. In this case, the mechanism of substitution is K + -Na + . atomic force microscopy (AFM) was employed to record the topometric data from the fracture surface. The roughness exponent (ζ) and the correlation length (ξ) were calculated by the variable bandwidth method. The analysis for both glasses (subjected and non-subjected to ionic exchange) for ζ shows a value ∼0.8, this value agrees well with that reported in the literature for rapid crack propagation in a variety of materials. The correlation length shows different values for each condition. These results, along with those of microhardness indentations suggest that the self-affine correlation length is influenced by the complex interactions of the stress field of microcracks with that resulting from the collective behavior of the point defects introduced by the strengthening mechanism of ionic exchange

  1. Nonlinear dynamics of global atmospheric and Earth-system processes

    Science.gov (United States)

    Saltzman, Barry; Ebisuzaki, Wesley; Maasch, Kirk A.; Oglesby, Robert; Pandolfo, Lionel

    1991-01-01

    General Circulation Model (GCM) studies of the atmospheric response to change boundary conditions are discussed. Results are reported on an extensive series of numerical studies based on the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM) general circulation model. In these studies the authors determined the response to systematic changes in atmospheric CO2 ranging from 100 to 1000 ppm; to changes in the prescribed sea surface temperature (SST) in the Gulf of Mexico, such as occurred during the deglaciation phase of the last ice age; to changes in soil moisture over North America; and to changes in sea ice extent in the Southern Hemisphere. Study results show that the response of surface temperature and other variables is nearly logarithmic, with lower levels of CO2 implying greater sensitivity of the atmospheric state to changes in CO2. It was found that the surface temperature of the Gulf of Mexico exerts considerable control over the storm track and behavior of storm systems over the North Atlantic through its influence on evaporation and the source of latent heat. It was found that reductions in soil moisture can play a significant role in amplifying and maintaining North American drought, particularly when a negative soil moisture anomaly prevails late in the spring.

  2. Focus State Roadway Departure Safety Plans and High Friction Surface Treatments Peer Exchange : an RPSCB Peer Exchange

    Science.gov (United States)

    2014-08-01

    This report summarizes the Focus State Roadway Departure Safety Plans and High Friction Surface Treatments Peer Exchange, held in Birmingham, Alabama, sponsored by the Federal Highway Administration (FHWA) Office of Safetys Roadway Safety Professi...

  3. Whirlwinds and hairpins in the atmospheric surface layer

    NARCIS (Netherlands)

    Oncley, Steven P.; Hartogensis, O.K.; Tong, Chenning

    2016-01-01

    Vortices in the atmospheric surface layer are characterized using observations at unprecedented resolution from a fixed array of 31 turbulence sensors. During the day, these vortices likely are dust devils, though no visual observations are available for confirmation. At night, hairpin vortices

  4. Atmospheric pressure plasma surface modification of carbon fibres

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Michelsen, Poul

    2008-01-01

    Carbon fibres are continuously treated with dielectric barrier discharge plasma at atmospheric pressure in various gas conditions for adhesion improvement in mind. An x-ray photoelectron spectroscopic analysis indicated that oxygen is effectively introduced onto the carbon fibre surfaces by He, He...

  5. On the exchange of sensible and latent heat between the atmosphere and melting snow

    Science.gov (United States)

    Stoy, Paul C.; Peitzsch, Erich H.; Wood, David J. A.; Rottinghaus, Daniel; Wohlfahrtd, Georg; Goulden, Michael; Ward, Helen

    2018-01-01

    to melt more slowly and earlier in the year under conditions of lower net radiation (Rn). Eddy covariance research networks such as Ameriflux must improve their ability to observe cold-season processes to enhance our understanding of water resources and surface-atmosphere exchange in a changing climate.

  6. [Summer Greenhouse Gases Exchange Flux Across Water-air Interface in Three Water Reservoirs Located in Different Geologic Setting in Guangxi, China].

    Science.gov (United States)

    Li, Jian-hong; Pu, Jun-bing; Sun, Ping-an; Yuan, Dao-xian; Liu, Wen; Zhang, Tao; Mo, Xue

    2015-11-01

    Due to special hydrogeochemical characteristics of calcium-rich, alkaline and DIC-rich ( dissolved inorganic carbon) environment controlled by the weathering products from carbonate rock, the exchange characteristics, processes and controlling factors of greenhouse gas (CO2 and CH4) across water-air interface in karst water reservoir show obvious differences from those of non-karst water reservoir. Three water reservoirs (Dalongdong reservoir-karst reservoir, Wulixia reservoir--semi karst reservoir, Si'anjiang reservoir-non-karst reservoir) located in different geologic setting in Guangxi Zhuang Autonomous Region, China were chosen to reveal characteristics and controlling factors of greenhouse gas exchange flux across water-air interface. Two common approaches, floating chamber (FC) and thin boundary layer models (TBL), were employed to research and contrast greenhouse gas exchange flux across water-air interface from three reservoirs. The results showed that: (1) surface-layer water in reservoir area and discharging water under dam in Dalongdong water reservoir were the source of atmospheric CO2 and CH4. Surface-layer water in reservoir area in Wulixia water reservoir was the sink of atmospheric CO2 and the source of atmospheric CH4, while discharging water under dam was the source of atmospheric CO2 and CH4. Surface-layer water in Si'anjiang water reservoir was the sink of atmospheric CO2 and source of atmospheric CH4. (2) CO2 and CH4 effluxes in discharging water under dam were much more than those in surface-layer water in reservoir area regardless of karst reservoir or non karst reservoir. Accordingly, more attention should be paid to the CO2 and CH4 emission from discharging water under dam. (3) In the absence of submerged soil organic matters and plants, the difference of CH4 effluxes between karst groundwater-fed reservoir ( Dalongdong water reservoir) and non-karst area ( Wulixia water reservoir and Si'anjiang water reservoir) was less. However, CO2

  7. Experimental investigation of thermal conductivity coefficient and heat exchange between fluidized bed and inclined exchange surface

    Directory of Open Access Journals (Sweden)

    B. Stojanovic

    2009-06-01

    Full Text Available The paper presents experimental research of thermal conductivity coefficients of the siliceous sand bed fluidized by air and an experimental investigation of the particle size influence on the heat transfer coefficient between fluidized bed and inclined exchange surfaces. The measurements were performed for the specific fluidization velocity and sand particle diameters d p=0.3, 0.5, 0.9 mm. The industrial use of fluidized beds has been increasing rapidly in the past 20 years owing to their useful characteristics. One of the outstanding characteristics of a fluidized bed is that it tends to maintain a uniform temperature even with nonuniform heat release. On the basis of experimental research, the influence of the process's operational parameters on the obtained values of the bed's thermal conductivity has been analyzed. The results show direct dependence of thermal conductivity on the intensity of mixing, the degree of fluidization, and the size of particles. In the axial direction, the coefficients that have been treated have values a whole order higher than in the radial direction. Comparison of experimental research results with experimental results of other authors shows good agreement and the same tendency of thermal conductivity change. It is well known in the literature that the value of the heat transfer coefficient is the highest in the horizontal and the smallest in the vertical position of the heat exchange surface. Variation of heat transfer, depending on inclination angle is not examined in detail. The difference between the values of the relative heat transfer coefficient between vertical and horizontal heater position for all particle sizes reduces by approximately 15% with the increase of fluidization rate.

  8. Atmospheric processes over complex terrain

    Science.gov (United States)

    Banta, Robert M.; Berri, G.; Blumen, William; Carruthers, David J.; Dalu, G. A.; Durran, Dale R.; Egger, Joseph; Garratt, J. R.; Hanna, Steven R.; Hunt, J. C. R.

    1990-06-01

    A workshop on atmospheric processes over complex terrain, sponsored by the American Meteorological Society, was convened in Park City, Utah from 24 vto 28 October 1988. The overall objective of the workshop was one of interaction and synthesis--interaction among atmospheric scientists carrying out research on a variety of orographic flow problems, and a synthesis of their results and points of view into an assessment of the current status of topical research problems. The final day of the workshop was devoted to an open discussion on the research directions that could be anticipated in the next decade because of new and planned instrumentation and observational networks, the recent emphasis on development of mesoscale numerical models, and continual theoretical investigations of thermally forced flows, orographic waves, and stratified turbulence. This monograph represents an outgrowth of the Park City Workshop. The authors have contributed chapters based on their lecture material. Workshop discussions indicated interest in both the remote sensing and predictability of orographic flows. These chapters were solicited following the workshop in order to provide a more balanced view of current progress and future directions in research on atmospheric processes over complex terrain.

  9. Dominant rate process of silicon surface etching by hydrogen chloride gas

    International Nuclear Information System (INIS)

    Habuka, Hitoshi; Suzuki, Takahiro; Yamamoto, Sunao; Nakamura, Akio; Takeuchi, Takashi; Aihara, Masahiko

    2005-01-01

    Silicon surface etching and its dominant rate process are studied using hydrogen chloride gas in a wide concentration range of 1-100% in ambient hydrogen at atmospheric pressure in a temperature range of 1023-1423 K, linked with the numerical calculation accounting for the transport phenomena and the surface chemical reaction in the entire reactor. The etch rate, the gaseous products and the surface morphology are experimentally evaluated. The dominant rate equation accounting for the first-order successive reactions at silicon surface by hydrogen chloride gas is shown to be valid. The activation energy of the dominant surface process is evaluated to be 1.5 x 10 5 J mol - 1 . The silicon deposition by the gaseous by-product, trichlorosilane, is shown to have a negligible influence on the silicon etch rate

  10. Combined ground-based and satellite remote sensing of atmospheric aerosol and Earth surface in the Antarctic

    Science.gov (United States)

    Chaikovsky, Anatoli; Korol, Michail; Malinka, A.; Zege, E.; Katsev, I.; Prikhach, A.; Denisov, S.; Dick, V.; Goloub, P.; Blarel, L.; Chaikovskaya, L.; Lapyonok, A.; Podvin, T.; Denishchik-Nelubina, N.; Fedarenka, A.; Svidinsky, V.

    2016-01-01

    The paper presents lecture materials given at the Nineteenth International Conference and School on Quantum Electronics "Laser Physics and Applications" (19th ICSQE) in 2016, Sozopol, Bulgaria and contains the results of the 10-year research of Belarusian Antarctic expeditions to study the atmospheric aerosol and Earth surface in Antarctica. The works focus on the studying variability and trends of aerosol, cloud and snow characteristics in the Antarctic and the links of these processes with the long range transport of atmospheric pollutants and climate changes.

  11. Land Surface Model (LSM 1.0) for Ecological, Hydrological, Atmospheric Studies

    Data.gov (United States)

    National Aeronautics and Space Administration — The NCAR LSM 1.0 is a land surface model developed to examine biogeophysical and biogeochemical land-atmosphere interactions, especially the effects of land surfaces...

  12. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO/sub 2/ during the past decades

    Energy Technology Data Exchange (ETDEWEB)

    Revelle, R; Suess, H E

    1957-01-01

    From a comparison of C/sup 14//C/sup 12/ and C/sup 13//C/sup 12/ ratios in wood and in marine material and from a slight decrease of the C/sup 14/ concentration in terrestrial plants over the past 50 years it can be concluded that the average lifetime of a CO/sub 2/ molecule in the atmosphere before it is dissolved into the sea is of the order of 10 years. This means that most of the CO/sub 2/ released by artificial fuel combustion since the beginning of the industrial revolution must have been absorbed by the oceans. The increase of atmospheric CO/sub 2/ from this cause is at present small but may become significant during future decades of industrial fuel combustion continues to rise exponentially. Present data on the total amount of CO/sub 2/ in the atmosphere, on the rates and mechanisms of exchange, and on possible fluctuations in terrestrial and marine organic carbon, are inadequate for accurate measurement of future changes in atmospheric CO/sub 2/. An opportunity exists during the international geophysical year to obtain much of the necessary information.

  13. Groundwater Discharge of Legacy Nitrogen to River Networks: Linking Regional Groundwater Models to Streambed Groundwater-Surface Water Exchange and Nitrogen Processing

    Science.gov (United States)

    Barclay, J. R.; Helton, A. M.; Briggs, M. A.; Starn, J. J.; Hunt, A.

    2017-12-01

    Despite years of management, excess nitrogen (N) is a pervasive problem in many aquatic ecosystems. More than half of surface water in the United States is derived from groundwater, and widespread N contamination in aquifers from decades of watershed N inputs suggest legacy N discharging from groundwater may contribute to contemporary N pollution problems in surface waters. Legacy N loads to streams and rivers are controlled by both regional scale flow paths and fine-scale processes that drive N transformations, such as groundwater-surface water exchange across steep redox gradients that occur at stream bed interfaces. Adequately incorporating these disparate scales is a challenge, but it is essential to understanding legacy N transport and making informed management decisions. We developed a regional groundwater flow model for the Farmington River, a HUC-8 basin that drains to the Long Island Sound, a coastal estuary that suffers from elevated N loads despite decades of management, to understand broad patterns of regional transport. To evaluate and refine the regional model, we used thermal infrared imagery paired with vertical temperature profiling to estimate groundwater discharge at the streambed interface. We also analyzed discharging groundwater for multiple N species to quantify fine scale patterns of N loading and transformation via denitrification at the streambed interface. Integrating regional and local estimates of groundwater discharge of legacy N to river networks should improve our ability to predict spatiotemporal patterns of legacy N loading to and transformation within surface waters.

  14. ‘Breath figures’ on leaf surfaces – formation and effects of microscopic leaf wetness

    Directory of Open Access Journals (Sweden)

    Jürgen eBurkhardt

    2013-10-01

    Full Text Available ‘Microscopic leaf wetness’ means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 µm, microscopic leaf wetness it is about 2 orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the amount and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g. ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

  15. Surface modification of polyimide (PI) film using water cathode atmospheric pressure glow discharge plasma

    International Nuclear Information System (INIS)

    Zheng Peichao; Liu Keming; Wang Jinmei; Dai Yu; Yu Bin; Zhou Xianju; Hao Honggang; Luo Yuan

    2012-01-01

    Highlights: ► Equipment called water cathode atmospheric pressure glow discharge was used to improve the hydrophilicity of polyimide films. ► The data shows good homogeneity and the variation trends of contact angles are different for polar and non-polar testing liquids. ► The thickness of liquid layer plays an important role in plasma processing and directly affects the treatment effect. ► Surface hydrophilicity after plasma treatment is improved partly due to the increase in the roughness. ► The hydrophilicity of polyimide films is still better than untreated ones after long-term storage. - Abstract: The industrial use of polyimide film is limited because of undesirable properties such as poor wettability. In the present paper, a new kind of equipment called water cathode atmospheric pressure glow discharge was used to improve the surface properties of polyimide films and made them useful to technical applications. The changes in hydrophilicity of modified polyimide film surfaces were investigated by contact angle, surface energy and water content measurements as a function of treatment time. The results obtained show good treatment homogeneity and that the variation trends of contact angles are different for polar and non-polar testing liquids, while surface energy and water content are significantly enhanced with the increase of treatment time until they achieve saturated values after 60 s plasma treatment. Also, the thickness of liquid layer plays an important role in plasma processing and directly affects the treatment effect. Changes in morphology of polyimide films were analyzed by atomic force microscope and the results indicate that surface hydrophilicity after plasma treatment are improved partly due to the increase in the roughness. In addition, polyimide films treated by plasma are subjected to an ageing process to determine the durability of plasma treatment. It is found that the hydrophilicity is still better than untreated ones though the

  16. Seasonal change in CO2 and H2O exchange between grassland and atmosphere

    Directory of Open Access Journals (Sweden)

    T. Oikawa

    Full Text Available The seasonal change in CO2 flux over an artificial grassland was analyzed from the ecological and meteorological point of view. This grassland contains C3 and C4 plants; the three dominant species belonging to the Gramineae; Festuca elatior (C3 dominated in early spring, and Imperata cylindrica (C4 and Andropogon virginicus (C4 grew during early summer and became dominant in mid-summer. CO2 flux was measured by the gradient method, and the routinely observed data for the surface-heat budget were used to analyze the CO2 and H2O exchange between the grassland and atmosphere. From August to October in 1993, CO2 flux was reduced to around half under the same solar-radiation conditions, while H2O flux decreased 20% during the same period. The monthly values of water use efficiency, i.e., ratio of CO2 flux to H2O flux decreased from 5.8 to 3.3 mg CO2/g H2O from August to October, the Bowen ratio increased from 0.20 to 0.30, and the ratio of the bulk latent heat transfer coefficient CE to the sensible heat transfer coefficient CH was maintained around 0.40-0.50. The increase in the Bowen ratio was explained by the decrease in air temperature from 22.3 °C in August to 16.6 °C in October without considering biological effects such as stomatal closure on the individual leaves. The nearly constant CE/CH ratios suggested that the contribution ratio of canopy resistance to aerodynamic resistance did not change markedly, although the meteorological conditions changed seasonally. The decrease in the water use efficiency, however, suggested that the photosynthetic rate decreased for individual leaves from August to October under the same radiation conditions. Diurnal variations of CO2 exchange were simulated by the multi-layer canopy model taking into account the differences in the stomatal conductance and photosynthetic pathway between C3 and C4 plants. The results suggested that C4 plants played a major role in the CO2 exchange in August, the contribution

  17. Seasonal change in CO2 and H2O exchange between grassland and atmosphere

    Directory of Open Access Journals (Sweden)

    N. Saigusa

    1996-03-01

    Full Text Available The seasonal change in CO2 flux over an artificial grassland was analyzed from the ecological and meteorological point of view. This grassland contains C3 and C4 plants; the three dominant species belonging to the Gramineae; Festuca elatior (C3 dominated in early spring, and Imperata cylindrica (C4 and Andropogon virginicus (C4 grew during early summer and became dominant in mid-summer. CO2 flux was measured by the gradient method, and the routinely observed data for the surface-heat budget were used to analyze the CO2 and H2O exchange between the grassland and atmosphere. From August to October in 1993, CO2 flux was reduced to around half under the same solar-radiation conditions, while H2O flux decreased 20% during the same period. The monthly values of water use efficiency, i.e., ratio of CO2 flux to H2O flux decreased from 5.8 to 3.3 mg CO2/g H2O from August to October, the Bowen ratio increased from 0.20 to 0.30, and the ratio of the bulk latent heat transfer coefficient CE to the sensible heat transfer coefficient CH was maintained around 0.40-0.50. The increase in the Bowen ratio was explained by the decrease in air temperature from 22.3 °C in August to 16.6 °C in October without considering biological effects such as stomatal closure on the individual leaves. The nearly constant CE/CH ratios suggested that the contribution ratio of canopy resistance to aerodynamic resistance did not change markedly, although the meteorological conditions changed seasonally. The decrease in the water use efficiency, however, suggested that the photosynthetic rate decreased for individual leaves from August to October under the same radiation conditions. Diurnal variations of CO2 exchange were simulated by the multi-layer canopy model taking into account the differences in the stomatal conductance and photosynthetic pathway between C3 and C4 plants. The results suggested that C4 plants played a major role in the CO2 exchange in August, the contribution

  18. Seasonal change in CO2 and H2O exchange between grassland and atmosphere

    Science.gov (United States)

    Saigusa, N.; Liu, S.; Oikawa, T.; Watanabe, T.

    1996-03-01

    The seasonal change in CO2 flux over an artificial grassland was analyzed from the ecological and meteorological point of view. This grassland contains C3 and C4 plants; the three dominant species belonging to the Gramineae; Festuca elatior (C3) dominated in early spring, and Imperata cylindrica (C4) and Andropogon virginicus (C4) grew during early summer and became dominant in mid-summer. CO2 flux was measured by the gradient method, and the routinely observed data for the surface-heat budget were used to analyze the CO2 and H2O exchange between the grassland and atmosphere. From August to October in 1993, CO2 flux was reduced to around half under the same solar-radiation conditions, while H2O flux decreased 20% during the same period. The monthly values of water use efficiency, i.e., ratio of CO2 flux to H2O flux decreased from 5.8 to 3.3 mg CO2/g H2O from August to October, the Bowen ratio increased from 0.20 to 0.30, and the ratio of the bulk latent heat transfer coefficient CE to the sensible heat transfer coefficient CH was maintained around 0.40-0.50. The increase in the Bowen ratio was explained by the decrease in air temperature from 22.3 °C in August to 16.6 °C in October without considering biological effects such as stomatal closure on the individual leaves. The nearly constant CE/CH ratios suggested that the contribution ratio of canopy resistance to aerodynamic resistance did not change markedly, although the meteorological conditions changed seasonally. The decrease in the water use efficiency, however, suggested that the photosynthetic rate decreased for individual leaves from August to October under the same radiation conditions. Diurnal variations of CO2 exchange were simulated by the multi-layer canopy model taking into account the differences in the stomatal conductance and photosynthetic pathway between C3 and C4 plants. The results suggested that C4 plants played a major role in the CO2 exchange in August, the contribution of C4 plants

  19. Surface-exchange of NOx and NH3 above a winter wheat field in the Yangtze Delta, China

    Institute of Scientific and Technical Information of China (English)

    FANG Shuan-gxi; ZHANG Yi; MU Yu-jing

    2006-01-01

    A four-dynamic-chamber system was constructed to measure NOx and NH3 surface-exchange between a typical wheat field and the fluxes of NO2 and NH3 were negatively correlated with their ambient concentrations during the investigated period. The compensation point of NO2 between the wheat field and the atmosphere was 11.9 μg/m3. The emissions of NO-N and NH3-N from the urea applied to the wheat field were 2.3% and 0.2%, respectively, which indicated that the main pathway of N loss from the investigated winter wheat field was NO. Application of a mixture of urea and lignin increased the emissions of NO, but also greatly increased the yield of the winter wheat.

  20. Influence of the adhesion force crystal/heat exchanger surface on fouling mitigation

    International Nuclear Information System (INIS)

    Forster, M.; Augustin, W.; Bohnet, M.

    1999-01-01

    The accumulation of unwanted crystalline deposits (fouling) reduces the efficiency of heat exchangers considerably. In order to decrease the cost of fouling two strategies have been developed. The first fouling mitigation strategy is based on the modification of energy-and-geometry-related characteristics of the heat transfer surface to realize an increased duration of the induction period. By means of a drop-shape-analysis measurement device the interaction at the interface crystal/heat transfer surface is determined. The deployment of the fracture energy model and the interfacial defect model relates wetting characteristics to the adhesion phenomenon. Hence, a first estimation of the optimal choice of surface material is realized. Furthermore, the influence of surface topography on interfacial interactions has been analyzed. The second fouling mitigation strategy is based on the adjustment of the hydrodynamic flow conditions using a pulsation technique. Here, single strokes of higher velocity are superimposed on the stationary flow. These strokes shift the equilibrium of forces to an improved removal process. Fouling experiments have proved that pulsation is a powerful tool to mitigate the built-up of fouling layers on heat transfer surfaces. (author)

  1. Removal of disinfection by-product precursors by coagulation and an innovative suspended ion exchange process.

    Science.gov (United States)

    Metcalfe, David; Rockey, Chris; Jefferson, Bruce; Judd, Simon; Jarvis, Peter

    2015-12-15

    This investigation aimed to compare the disinfection by-product formation potentials (DBPFPs) of three UK surface waters (1 upland reservoir and 2 lowland rivers) with differing characteristics treated by (a) a full scale conventional process and (b) pilot scale processes using a novel suspended ion exchange (SIX) process and inline coagulation (ILCA) followed by ceramic membrane filtration (CMF). Liquid chromatography-organic carbon detection analysis highlighted clear differences between the organic fractions removed by coagulation and suspended ion exchange. Pretreatments which combined SIX and coagulation resulted in significant reductions in dissolved organic carbon (DOC), UV absorbance (UVA), trihalomethane and haloacetic acid formation potential (THMFP, HAAFP), in comparison with the SIX or coagulation process alone. Further experiments showed that in addition to greater overall DOC removal, the processes also reduced the concentration of brominated DBPs and selectively removed organic compounds with high DBPFP. The SIX/ILCA/CMF process resulted in additional removals of DOC, UVA, THMFP, HAAFP and brominated DBPs of 50, 62, 62, 62% and 47% respectively compared with conventional treatment. Copyright © 2015. Published by Elsevier Ltd.

  2. ENVISAT Land Surface Processes. Phase 2

    Science.gov (United States)

    vandenHurk, B. J. J. M.; Su, Z.; Verhoef, W.; Menenti, M.; Li, Z.-L.; Wan, Z.; Moene, A. F.; Roerink, G.; Jia, I.

    2002-01-01

    This is a progress report of the 2nd phase of the project ENVISAT- Land Surface Processes, which has a 3-year scope. In this project, preparative research is carried out aiming at the retrieval of land surface characteristics from the ENVISAT sensors MERIS and AATSR, for assimilation into a system for Numerical Weather Prediction (NWP). Where in the 1st phase a number of first shot experiments were carried out (aiming at gaining experience with the retrievals and data assimilation procedures), the current 2nd phase has put more emphasis on the assessment and improvement of the quality of the retrieved products. The forthcoming phase will be devoted mainly to the data assimilation experiments and the assessment of the added value of the future ENVISAT products for NWP forecast skill. Referring to the retrieval of albedo, leaf area index and atmospheric corrections, preliminary radiative transfer calculations have been carried out that should enable the retrieval of these parameters once AATSR and MERIS data become available. However, much of this work is still to be carried out. An essential part of work in this area is the design and implementation of software that enables an efficient use of MODTRAN(sub 4) radiative transfer code, and during the current project phase familiarization with these new components has been achieved. Significant progress has been made with the retrieval of component temperatures from directional ATSR-images, and the calculation of surface turbulent heat fluxes from these data. The impact of vegetation cover on the retrieved component temperatures appears manageable, and preliminary comparison of foliage temperature to air temperatures were encouraging. The calculation of surface fluxes using the SEBI concept,which includes a detailed model of the surface roughness ratio, appeared to give results that were in reasonable agreement with local measurements with scintillometer devices. The specification of the atmospheric boundary conditions

  3. Impact of electrode geometry on an atmospheric pressure surface barrier discharge

    Science.gov (United States)

    Hasan, M. I.; Morabit, Y.; Dickenson, A.; Walsh, J. L.

    2017-06-01

    Several of the key characteristics of an atmospheric pressure surface barrier discharge (SBD) are heavily dependent on the geometrical configuration of the plasma generating electrodes. This paper reveals that increasing the surface area of an SBD device by reducing the gaps within the electrodes can have major and unforeseen consequence on the discharge properties. It is experimentally demonstrated that a critical limit exists when reducing the diameter of a circular electrode gap below 5 mm, beyond which the required breakdown voltage increases exponentially and the power deposited in the discharge is impeded. Using a numerical model, it is shown that a reduced electrode gap diameter yields a decrease in the voltage difference between the electrode and dielectric surface, thus lowering the maximum electric field. This study indicates a link between the electrode geometry and the nature of the reactive chemistry produced in the plasma, findings which have wide-reaching implications for many applications where multiple closely packed surface barrier discharges are employed to achieve uniform and large area plasma processing.

  4. Physical modeling of emergency emission in the atmosphere (experimental investigation of Lagrangian turbulence characteristics in the surface and boundary layer of the atmosphere)

    International Nuclear Information System (INIS)

    Garger, E.K.

    2013-01-01

    Results of diffusion experiments simulating emergency emission in the surface and boundary layers of the atmosphere are presented. Interpretation of measurements in the surface layer of the atmosphere had been conducted on the basis of the Lagrangian similarity hypothesis., Results of measurements in the boundary layer of the atmosphere are interpreted with use of the homogeneous turbulence theory. Regimes of turbulent diffusion from land and low sources of admixtures predicted by the Lagrangian similarity hypothesis for various conditions of thermal stratification in the surface layer of the atmosphere are experimentally confirmed. Universal empirical constants for these regimes are received that allows to use their in practice. Calculation diffusion parameters and concentrations of an admixture from various sources in the surface layer of the atmosphere by model is presented. Results of calculation on this model are compared to independent measurements of mass concentration of a admixture in horizontal and vertical planes. Results of simultaneous measurements Eulerian and Lagrangian turbulence characteristics for various diffusion times in the boundary layer of the atmosphere have allowed to estimate turbulence time scales in Lagrangian variables for conditions close to neutral thermal stratification. The monograph is intended for scientists and students engaged in the field of meteorology, physics of the atmosphere and pollution air control, services of radiation and ecological safety

  5. Trace gas exchange above the floor of a deciduous forest: 1. Evaporation and CO2 efflux

    Science.gov (United States)

    Baldocchi, Dennis D.; Meyers, Tilden P.

    1991-04-01

    The eddy correlation method has great potential for directly measuring trace gas fluxes at the floor of a forest canopy, but a thorough validation study has not been yet conducted. Another appeal of the eddy correlation method is its ability to study processes that regulate and modulate gas exchange between the soil/litter complex and the atmosphere that cannot be probed with chambers. In this paper we report on eddy correlation measurements of water vapor, sensible heat, and carbon dioxide exchange that were made at the floor of a deciduous forest. The validity of the eddy correlation method to measure the emission of water vapor and CO2 from a deciduous forest floor is demonstrated by our ability to close the surface energy budget during periods that meet the requirements of the technique. Water vapor fluxes from a dry forest floor are strongly influenced by large-scale turbulent events that penetrate deep into the canopy. The frequency of these turbulent events prevents equilibrium evaporation rates from being achieved because the dynamic time constant for water vapor exchange is longer. Consequently, maximal evaporation rates are capped to rates defined by the product of the driving potential of the atmosphere and the surface conductance. On the other hand, evaporation from a wet forest floor proceeds at rates reaching or exceeding equilibrium evaporation and are highly correlated with static pressure fluctuations. CO2 efflux rates are governed by litter and soil temperature, as expected. But we also find a significant correlation between static pressure fluctuations and soil/litter CO2 exchange rates.

  6. Adjoint Methods for Adjusting Three-Dimensional Atmosphere and Surface Properties to Fit Multi-Angle Multi-Pixel Polarimetric Measurements

    Science.gov (United States)

    Martin, William G.; Cairns, Brian; Bal, Guillaume

    2014-01-01

    This paper derives an efficient procedure for using the three-dimensional (3D) vector radiative transfer equation (VRTE) to adjust atmosphere and surface properties and improve their fit with multi-angle/multi-pixel radiometric and polarimetric measurements of scattered sunlight. The proposed adjoint method uses the 3D VRTE to compute the measurement misfit function and the adjoint 3D VRTE to compute its gradient with respect to all unknown parameters. In the remote sensing problems of interest, the scalar-valued misfit function quantifies agreement with data as a function of atmosphere and surface properties, and its gradient guides the search through this parameter space. Remote sensing of the atmosphere and surface in a three-dimensional region may require thousands of unknown parameters and millions of data points. Many approaches would require calls to the 3D VRTE solver in proportion to the number of unknown parameters or measurements. To avoid this issue of scale, we focus on computing the gradient of the misfit function as an alternative to the Jacobian of the measurement operator. The resulting adjoint method provides a way to adjust 3D atmosphere and surface properties with only two calls to the 3D VRTE solver for each spectral channel, regardless of the number of retrieval parameters, measurement view angles or pixels. This gives a procedure for adjusting atmosphere and surface parameters that will scale to the large problems of 3D remote sensing. For certain types of multi-angle/multi-pixel polarimetric measurements, this encourages the development of a new class of three-dimensional retrieval algorithms with more flexible parametrizations of spatial heterogeneity, less reliance on data screening procedures, and improved coverage in terms of the resolved physical processes in the Earth?s atmosphere.

  7. Modeling Turbulence Generation in the Atmospheric Surface and Boundary Layers

    Science.gov (United States)

    2015-10-01

    hydrostatic equation: dP dz = −ρa g −→ ∫ ZI 0 ρa dz = − 1 g ∫ dP = + 1 g [P (0)− P (ZI)]. (6.14) The pressure at the surface is... surface pressure is estimated, we can compute a vertical pressure profile using the hydrostatic equation and a selected temperature profile based on dP... surface -layer atmosphere. By surface layer what is intended is a layer of foliage plus the surface itself. That is, a flat ground surface that

  8. The effects on the atmosphere of a major nuclear exchange

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Most of the earth's population would survive the immediate horrors of a nuclear holocaust, but what long-term climatological changes would affect their ability to secure food and shelter. This sobering report considers the effects of fine dust from ground-level detonations, of smoke from widespread fires, and of chemicals released into the atmosphere. The authors use mathematical models of atmospheric processes and data from natural situations - e.g., volcanic eruptions and arctic haze - to draw their conclusions

  9. Influence of stripping and cooling atmospheres on surface properties and corrosion of zinc galvanizing coatings

    International Nuclear Information System (INIS)

    Yasakau, K.A.; Giner, I.; Vree, C.; Ozcan, O.; Grothe, R.; Oliveira, A.; Grundmeier, G.; Ferreira, M.G.S.; Zheludkevich, M.L.

    2016-01-01

    Highlights: • Stripping/cooling atmosphere affects surfaces chemical composition of Zn and Zn-Al-Mg galvanized coatings. • Higher peel forces of model adhesive films were obtained on zinc alloys samples prepared under nitrogen atmosphere. • Localized corrosion attack originates at grain boundaries on Zn galvanized coating. • Visible dissolution of MgZn_2 phase was observed by in situ AFM only at binary eutectics and not at ternary ones. - Abstract: In this work the influence of stripping/cooling atmospheres used after withdrawal of steel sheet from Zn or Zn-alloy melt on surface properties of Zn (Z) and Zn-Al-Mg (ZM) hot-dip galvanizing coatings has been studied. The aim was to understand how the atmosphere (composed by nitrogen (N_2) or air) affects adhesion strength to model adhesive and corrosive behaviour of the galvanized substrates. It was shown that the surface chemical composition and Volta potential of the galvanizing coatings prepared under the air or nitrogen atmosphere are strongly influenced by the atmosphere. The surface chemistry Z and ZM surfaces prepared under N_2 contained a higher content of metal atoms and a richer hydroxide density than the specimens prepared under air atmosphere as assessed by X-ray photoelectron spectroscopy (XPS). The induced differences on the microstructure of the galvanized coatings played a key role on the local corrosion induced defects as observed by means of in situ Atomic force microscopy (AFM). Peel force tests performed on the substrates coated by model adhesive films indicate a higher adhesive strength to the surfaces prepared under nitrogen atmosphere. The obtained results have been discussed in terms of the microstructure and surface chemical composition of the galvanizing coatings.

  10. Low-cost photonic sensors for carbon dioxide exchange rate measurement

    Science.gov (United States)

    Bieda, Marcin S.; Sobotka, Piotr; Lesiak, Piotr; Woliński, Tomasz R.

    2017-10-01

    Carbon dioxide (CO2) measurement has an important role in atmosphere monitoring. Usually, two types of measurements are carried out. The first one is based on gas concentration measurement while the second involves gas exchange rate measurement between earth surface and atmosphere [1]. There are several methods which allow gas concentration measurement. However, most of them require expensive instrumentation or large devices (i.e. gas chambers). In order to precisely measure either CO2 concentration or CO2 exchange rate, preferably a sensors network should be used. These sensors must have small dimensions, low power consumption, and they should be cost-effective. Therefore, this creates a great demand for a robust low-power and low-cost CO2 sensor [2,3]. As a solution, we propose a photonic sensor that can measure CO2 concentration and also can be used to measure gas exchange by using the Eddy covariance method [1].

  11. The surface energy, water, carbon flux and their intercorrelated seasonality in a global climate-vegetation coupled model

    International Nuclear Information System (INIS)

    Li Dan.; Jinjun Ji

    2007-01-01

    The sensible and latent heat fluxes, representatives of the physical exchange processes of energy and water between land and air, are the two crucial variables controlling the surface energy partitioning related to temperature and humidity. The net primary production (NPP), the major carbon flux exchange between vegetation and atmosphere, is of great importance for the terrestrial ecosystem carbon cycle. The fluxes are simulated by a two-way coupled model, Atmosphere-Vegetation Interaction Model-Global Ocean-Atmosphere-Land System Model (AVIM-GOALS) in which the surface physical and physiological processes are coupled with general circulation model (GCM), and the global spatial and temporal variation of the fluxes is studied. The simulated terrestrial surface physical fluxes are consistent with the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA40) in the global distribution, but the magnitudes are generally 20-40 W/m 2 underestimated. The annual NPP agrees well with the International Geosphere Biosphere Programme (IGBP) NPP data except for the lower value in northern high latitudes. The surface physical fluxes, leaf area index (LAI) and NPP of the global mid-latitudes, especially between 30 deg N-50 deg N, show great variation in annual oscillation amplitudes. And all physical and biological fields in northern mid-latitudes have the largest seasonality with a high statistical significance of 99.9%. The seasonality of surface physical fluxes, LAI and NPP are highly correlated with each other. The meridional three-peak pattern of seasonal change emerges in northern mid-latitudes, which indicates the interaction of topographical gradient variation of surface fluxes and vegetation phenology on these three latitudinal belts

  12. Influence of stripping and cooling atmospheres on surface properties and corrosion of zinc galvanizing coatings

    Science.gov (United States)

    Yasakau, K. A.; Giner, I.; Vree, C.; Ozcan, O.; Grothe, R.; Oliveira, A.; Grundmeier, G.; Ferreira, M. G. S.; Zheludkevich, M. L.

    2016-12-01

    In this work the influence of stripping/cooling atmospheres used after withdrawal of steel sheet from Zn or Zn-alloy melt on surface properties of Zn (Z) and Zn-Al-Mg (ZM) hot-dip galvanizing coatings has been studied. The aim was to understand how the atmosphere (composed by nitrogen (N2) or air) affects adhesion strength to model adhesive and corrosive behaviour of the galvanized substrates. It was shown that the surface chemical composition and Volta potential of the galvanizing coatings prepared under the air or nitrogen atmosphere are strongly influenced by the atmosphere. The surface chemistry Z and ZM surfaces prepared under N2 contained a higher content of metal atoms and a richer hydroxide density than the specimens prepared under air atmosphere as assessed by X-ray photoelectron spectroscopy (XPS). The induced differences on the microstructure of the galvanized coatings played a key role on the local corrosion induced defects as observed by means of in situ Atomic force microscopy (AFM). Peel force tests performed on the substrates coated by model adhesive films indicate a higher adhesive strength to the surfaces prepared under nitrogen atmosphere. The obtained results have been discussed in terms of the microstructure and surface chemical composition of the galvanizing coatings.

  13. A numerical study of the effect of irrigation on land-atmosphere interactions in a spring wheat cropland in India using a coupled atmosphere-crop growth dynamics model

    Science.gov (United States)

    Kumari, S.; Sharma, P.; Srivastava, A.; Rastogi, D.; Sehgal, V. K.; Dhakar, R.; Roy, S. B.

    2017-12-01

    Vegetation dynamics and surface meteorology are tightly coupled through the exchange of momentum, moisture and heat between the land surface and the atmosphere. In this study, we use a recently developed coupled atmosphere-crop growth dynamics model to study these exchanges and their effects in a spring wheat cropland in northern India. In particular, we investigate the role of irrigation in controlling crop growth rates, surface meteorology, and sensible and latent heat fluxes. The model is developed by implementing a crop growth module based on the Simple and Universal Crop growth Simulator (SUCROS) model in the Weather Research Forecasting (WRF) mesoscale atmospheric model. The crop module calculates photosynthesis rates, carbon assimilation, and biomass partitioning as a function of environmental factors and crop development stage. The leaf area index (LAI) and root depth calculated by the crop module is then fed to the Noah-MP land module of WRF to calculate land-atmosphere fluxes. The crop model is calibrated using data from an experimental spring wheat crop site in the Indian Agriculture Research Institute. The coupled model is capable of simulating the observed spring wheat phenology. Irrigation is simulated by changing the soil moisture levels from 50% - 100% of field capacity. Results show that the yield first increases with increasing soil moisture and then starts decreasing as we further increase the soil moisture. Yield attains its maximum value with soil moisture at the level of 60% water of FC. At this level, high LAI values lead to a decrease in the Bowen Ratio because more energy is transferred to the atmosphere as latent heat rather than sensible heat resulting in a cooling effect on near-surface air temperatures. Apart from improving simulation of land-atmosphere interactions, this coupled modeling approach can form the basis for the seamless crop yield and seasonal scale weather outlook prediction system.

  14. Cumulative Significance of Hyporheic Exchange and Biogeochemical Processing in River Networks

    Science.gov (United States)

    Harvey, J. W.; Gomez-Velez, J. D.

    2014-12-01

    Biogeochemical reactions in rivers that decrease excessive loads of nutrients, metals, organic compounds, etc. are enhanced by hydrologic interactions with microbially and geochemically active sediments of the hyporheic zone. The significance of reactions in individual hyporheic flow paths has been shown to be controlled by the contact time between river water and sediment and the intrinsic reaction rate in the sediment. However, little is known about how the cumulative effects of hyporheic processing in large river basins. We used the river network model NEXSS (Gomez-Velez and Harvey, submitted) to simulate hyporheic exchange through synthetic river networks based on the best available models of network topology, hydraulic geometry and scaling of geomorphic features, grain size, hydraulic conductivity, and intrinsic reaction rates of nutrients and metals in river sediment. The dimensionless reaction significance factor, RSF (Harvey et al., 2013) was used to quantify the cumulative removal fraction of a reactive solute by hyporheic processing. SF scales reaction progress in a single pass through the hyporheic zone with the proportion of stream discharge passing through the hyporheic zone for a specified distance. Reaction progress is optimal where the intrinsic reaction timescale in sediment matches the residence time of hyporheic flow and is less efficient in longer residence time hyporheic flow as a result of the decreasing proportion of river flow that is processed by longer residence time hyporheic flow paths. In contrast, higher fluxes through short residence time hyporheic flow paths may be inefficient because of the repeated surface-subsurface exchanges required to complete the reaction. Using NEXSS we found that reaction efficiency may be high in both small streams and large rivers, although for different reasons. In small streams reaction progress generally is dominated by faster pathways of vertical exchange beneath submerged bedforms. Slower exchange

  15. Studying Titan's surface photometry in the 5 microns atmospheric window with the Cassini/VIMS instrument

    Science.gov (United States)

    Cornet, T.; Altobelli, N.; Sotin, C.; Le Mouelic, S.; Rodriguez, S.; Philippe, S.; Brown, R. H.; Barnes, J. W.; Buratti, B. J.; Baines, K. H.; Clark, R. N.; Nicholson, P. D.

    2014-12-01

    Due to the influence of methane gas and a thick aerosols haze in the atmosphere, Titan's surface is only visible in 7 spectral atmospheric windows centered at 0.93, 1.08, 1.27, 1.59, 2.01, 2.7-2.8 and 5 microns with the Cassini Visual and Infrared Mapping Spectrometer (VIMS). The 5 microns atmospheric window constitutes the only one being almost insensitive to the haze scattering and which presents only a reduced atmospheric absorption contribution to the signal recorded by the instrument. Despite these advantages leading to the almost direct view of the surface, the 5 microns window is also the noisiest spectral window of the entire VIMS spectrum (an effect highly dependent on the time exposure used for the observations), and it is not totally free from atmospheric contributions, enough to keep "artefacts" in mosaics of several thousands of cubes due to atmospheric and surface photometric effects amplified by the very heterogeneous viewing conditions between each Titan flyby. At first order, a lambertian surface photometry at 5 microns has been used as an initial parameter in order to estimate atmospheric opacity and surface photometry in all VIMS atmospheric windows and to determine the albedo of the surface, yet unknown, both using radiative transfer codes on single cubes or empirical techniques on global hyperspectral mosaics. Other studies suggested that Titan's surface photometry would not be uniquely lambertian but would also contain anisotropic lunar-like contributions. In the present work, we aim at constraining accurately the surface photometry of Titan and residual atmospheric absorption effects in this 5 microns window using a comprehensive study of relevant sites located at various latitudes. Those include bright and dark (dunes) terrains, 5-microns bright terrains (Hotei Regio and Tui Regio), the Huygens Landing Site and high latitudes polar lakes and seas. The VIMS 2004 to 2014 database, composed of more than 40,000 hyperspectral cubes acquired on

  16. Radiation exchange factors between specular inner surfaces of a rectangular enclosure such as transplant production unit

    International Nuclear Information System (INIS)

    Abdel-Ghany, Ahmed M.; Kozai, Toyoki

    2006-01-01

    General mathematical relations are presented for the specular exchange factors, F S , of diffuse radiation exchange between the inner surfaces of a rectangular enclosure. Three of these surfaces are specular reflectors, diffuse emitters and the fourth surface is a diffuse reflector, diffuse emitter. This enclosure can be used as a transplant production unit with artificial lighting for electric energy saving purposes. An image system and the crossed string method are used to derive these relations. The resulting expressions are conceptually simple and similar to the commonly known expressions of the exchange factors between diffuse surfaces, F. The accuracy of the presented F S relations was examined for different numbers of multiple reflections, N, on the specular surfaces and for different aspect ratios (ratio of the width, w to the height, h). The results proved that the relations are accurate and strongly satisfy the well-known relation of the radiation exchange between enclosure surfaces and satisfy the reciprocity relation. For any aspect ratio, considering N of 150 between highly reflective surfaces (ρ = 0.99) is sufficient to estimate the F S factors without any possible error. Using specular reflecting surfaces in such cases significantly reduces the electric energy consumption used for lighting

  17. Recent developments on ion-exchange membranes and electro-membrane processes.

    Science.gov (United States)

    Nagarale, R K; Gohil, G S; Shahi, Vinod K

    2006-02-28

    Rapid growth of chemical and biotechnology in diversified areas fuels the demand for the need of reliable green technologies for the down stream processes, which include separation, purification and isolation of the molecules. Ion-exchange membrane technologies are non-hazardous in nature and being widely used not only for separation and purification but their application also extended towards energy conversion devices, storage batteries and sensors etc. Now there is a quite demand for the ion-exchange membrane with better selectivities, less electrical resistance, high chemical, mechanical and thermal stability as well as good durability. A lot of work has been done for the development of these types of ion-exchange membranes during the past twenty-five years. Herein we have reviewed the preparation of various types of ion-exchange membranes, their characterization and applications for different electro-membrane processes. Primary attention has been given to the chemical route used for the membrane preparation. Several general reactions used for the preparation of ion-exchange membranes were described. Methodologies used for the characterization of these membranes and their applications were also reviewed for the benefit of readers, so that they can get all information about the ion-exchange membranes at one platform. Although there are large number of reports available regarding preparations and applications of ion-exchange membranes more emphasis were predicted for the usefulness of these membranes or processes for solving certain type of industrial or social problems. More efforts are needed to bring many products or processes to pilot scale and extent their applications.

  18. The Abundance of Atmospheric CO{sub 2} in Ocean Exoplanets: a Novel CO{sub 2} Deposition Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Levi, A.; Sasselov, D. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Podolak, M., E-mail: amitlevi.planetphys@gmail.com [Dept. of Geosciences, Tel Aviv University, Tel Aviv, 69978 (Israel)

    2017-03-20

    We consider super-Earth sized planets which have a water mass fraction large enough to form an external mantle composed of high-pressure water-ice polymorphs and also lack a substantial H/He atmosphere. We consider such planets in their habitable zone, so that their outermost condensed mantle is a global, deep, liquid ocean. For these ocean planets, we investigate potential internal reservoirs of CO{sub 2}, the amount of CO{sub 2} dissolved in the ocean for the various saturation conditions encountered, and the ocean-atmosphere exchange flux of CO{sub 2}. We find that, in a steady state, the abundance of CO{sub 2} in the atmosphere has two possible states. When wind-driven circulation is the dominant CO{sub 2} exchange mechanism, an atmosphere of tens of bars of CO{sub 2} results, where the exact value depends on the subtropical ocean surface temperature and the deep ocean temperature. When sea-ice formation, acting on these planets as a CO{sub 2} deposition mechanism, is the dominant exchange mechanism, an atmosphere of a few bars of CO{sub 2} is established. The exact value depends on the subpolar surface temperature. Our results suggest the possibility of a negative feedback mechanism, unique to water planets, where a reduction in the subpolar temperature drives more CO{sub 2} into the atmosphere to increase the greenhouse effect.

  19. Ground-atmosphere interactions at Gale

    Science.gov (United States)

    Renno, N. O.; Martinez, G.; Ramos, M.; Hallet, B.; Gómez, F. G.; Jun, I.; Fisk, M. R.; Gomez-Elvira, J.; Hamilton, V. E.; Mischna, M. A.; Sletten, R. S.; Martin-Torres, J.; De La Torre Juarez, M.; Vasavada, A. R.; Zorzano, M.

    2013-12-01

    We analyze variations in environmental parameters and regolith properties along Curiosity's track to determine the possible causes of an abrupt change in the thermal properties of the ground and the atmosphere observed around Sol 120, as the rover transitioned from an area of sandy soil (Rocknest) to an area of fractured bedrock terrain (Yellowknife). Curiosity is instrumented with the Rover Environmental Monitoring Station (REMS) and the Dynamic Albedo of Neutrons (DAN) sensors to measure the air temperature, the ground temperature, and the hydrogen content of the shallow subsurface along Curiosity's track. Analysis of the REMS data is used to estimate the regolith's heat budget. This analysis suggests that the abrupt decrease in the ground and atmosphere temperature and the difference between ground and air temperatures observed around Sol 120 is likely caused by an increase in the soil thermal inertia. The changes in thermal inertia have been known for some time so confirming this by the REMS package provides ground truthing. A new unexpected finding is that the regolith water content, as indicated by DAN's detection of hydrogen content, is higher in the Yellowknife soil. Another interesting finding at this site are the holes and other signs of recent geological activity in the area of fractured terrain that may reflect large volumetric variations and facilitate gas exchange between the ground and atmosphere. Near-surface volumetric changes in soil and bedrock could reflect changes in the volume of subsurface H2O, or in the partitioning of H2O among its three phases. Volume increases could also result from salt crystal growth in rock pores and soil pores associated with the adsorption of water vapor. Crystallization in pores is a significant weathering process on Earth; it could well be active on Mars. Salts also inhibits the exchange of moisture between the ground and the atmosphere, and cements the soils of arid places such as in the McMurdo Dry Valleys in

  20. Atmospheric and surface properties of Mars obtained by infrared spectroscopy on Mariner 9

    Science.gov (United States)

    Conrath, B.; Curran, R.; Hanel, R.; Kunde, V.; Maguire, W.; Pearl, J.; Pirraglia, J.; Welker, J.; Burke, T.

    1973-01-01

    The infrared spectroscopy experiment on Mariner 9 obtained data over much of Mars. Interpretation of the thermal emission of Mars in terms of atmospheric temperatures, wind fields and dynamics, surface temperatures, surface pressure and topography, mineral composition, and minor atmospheric constituents including isotopic ratios, as well as a search for unexpected phenomena are reported.

  1. Impacts of Climate Modes on Air–Sea Heat Exchange in the Red Sea

    KAUST Repository

    Abualnaja, Yasser; Papadopoulos, Vassilis P.; Josey, Simon A.; Hoteit, Ibrahim; Kontoyiannis, Harilaos; Raitsos, Dionysios E.

    2015-01-01

    The impacts of various climate modes on the Red Sea surface heat exchange are investigated using the MERRA reanalysis and the OAFlux satellite reanalysis datasets. Seasonality in the atmospheric forcing is also explored. Mode impacts peak during

  2. Atmospheric plasma processes for environmental applications

    OpenAIRE

    Shapoval, Volodymyr

    2012-01-01

    Plasma chemistry is a rapidly growing field which covers applications ranging from technological processing of materials, including biological tissues, to environmental remediation and energy production. The so called atmospheric plasma, produced by electric corona or dielectric barrier discharges in a gas at atmospheric pressure, is particularly attractive for the low costs and ease of operation and maintenance involved. The high concentrations of energetic and chemically active species (e.g...

  3. The Ocean's Vital Skin: Toward an Integrated Understanding of the Sea Surface Microlayer

    Directory of Open Access Journals (Sweden)

    Anja Engel

    2017-05-01

    Full Text Available Despite the huge extent of the ocean's surface, until now relatively little attention has been paid to the sea surface microlayer (SML as the ultimate interface where heat, momentum and mass exchange between the ocean and the atmosphere takes place. Via the SML, large-scale environmental changes in the ocean such as warming, acidification, deoxygenation, and eutrophication potentially influence cloud formation, precipitation, and the global radiation balance. Due to the deep connectivity between biological, chemical, and physical processes, studies of the SML may reveal multiple sensitivities to global and regional changes. Understanding the processes at the ocean's surface, in particular involving the SML as an important and determinant interface, could therefore provide an essential contribution to the reduction of uncertainties regarding ocean-climate feedbacks. This review identifies gaps in our current knowledge of the SML and highlights a need to develop a holistic and mechanistic understanding of the diverse biological, chemical, and physical processes occurring at the ocean-atmosphere interface. We advocate the development of strong interdisciplinary expertise and collaboration in order to bridge between ocean and atmospheric sciences. Although this will pose significant methodological challenges, such an initiative would represent a new role model for interdisciplinary research in Earth System sciences.

  4. Reduced calcification of marine plankton in response to increased atmospheric CO2.

    Science.gov (United States)

    Riebesell, U; Zondervan, I; Rost, B; Tortell, P D; Zeebe, R E; Morel, F M

    2000-09-21

    The formation of calcareous skeletons by marine planktonic organisms and their subsequent sinking to depth generates a continuous rain of calcium carbonate to the deep ocean and underlying sediments. This is important in regulating marine carbon cycling and ocean-atmosphere CO2 exchange. The present rise in atmospheric CO2 levels causes significant changes in surface ocean pH and carbonate chemistry. Such changes have been shown to slow down calcification in corals and coralline macroalgae, but the majority of marine calcification occurs in planktonic organisms. Here we report reduced calcite production at increased CO2 concentrations in monospecific cultures of two dominant marine calcifying phytoplankton species, the coccolithophorids Emiliania huxleyi and Gephyrocapsa oceanica. This was accompanied by an increased proportion of malformed coccoliths and incomplete coccospheres. Diminished calcification led to a reduction in the ratio of calcite precipitation to organic matter production. Similar results were obtained in incubations of natural plankton assemblages from the north Pacific ocean when exposed to experimentally elevated CO2 levels. We suggest that the progressive increase in atmospheric CO2 concentrations may therefore slow down the production of calcium carbonate in the surface ocean. As the process of calcification releases CO2 to the atmosphere, the response observed here could potentially act as a negative feedback on atmospheric CO2 levels.

  5. Respiratory Mechanics and Gas Exchange: The Effect of Surfactants

    Science.gov (United States)

    Jbaily, Abdulrahman; Szeri, Andrew J.

    2017-11-01

    The purpose of the lung is to exchange gases, primarily oxygen and carbon dioxide, between the atmosphere and the circulatory system. To enable this exchange, the airways in the lungs terminate in some 300 million alveoli that provide adequate surface area for transport. During breathing, work must be done to stretch various tissues to accommodate a greater volume of gas. Considerable work must also be done to expand the liquid lining (hypophase) that coats the interior surfaces of the alveoli. This is enabled by a surface active lipo-protein complex, known as pulmonary surfactant, that modifies the surface tension at the hypophase-air interface. Surfactants also serve as physical barriers that modify the rate of gas transfer across interfaces. We develop a mathematical model to study the action of pulmonary surfactant and its determinative contributions to breathing. The model is used to explore the influence of surfactants on alveolar mechanics and on gas exchange: it relates the work of respiration at the level of the alveolus to the gas exchange rate through the changing influence of pulmonary surfactant over the breathing cycle. This work is motivated by a need to develop improved surfactant replacement therapies to treat serious medical conditions.

  6. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations. Part I: Surface fluxes

    Science.gov (United States)

    Josse, P.; Caniaux, G.; Giordani, H.; Planton, S.

    1999-04-01

    A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer to the atmosphere is

  7. The effects on the atmosphere of a major nuclear exchange

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Most of the earth's population would survive the immediate horrors of a nuclear holocaust, but what long-term climatological changes would affect their ability to secure food and shelter. This sobering report considers the effects of fine dust from ground-level detonations, of smoke from widespread fires, and of chemicals released into the atmosphere. The authors use mathematical models of atmospheric processes and data from natural situations - e.g., volcanic eruptions and arctic haze - to draw their conclusions.

  8. Impacts of Cosmic Dust on Planetary Atmospheres and Surfaces

    Science.gov (United States)

    Plane, John M. C.; Flynn, George J.; Määttänen, Anni; Moores, John E.; Poppe, Andrew R.; Carrillo-Sanchez, Juan Diego; Listowski, Constantino

    2018-02-01

    Recent advances in interplanetary dust modelling provide much improved estimates of the fluxes of cosmic dust particles into planetary (and lunar) atmospheres throughout the solar system. Combining the dust particle size and velocity distributions with new chemical ablation models enables the injection rates of individual elements to be predicted as a function of location and time. This information is essential for understanding a variety of atmospheric impacts, including: the formation of layers of metal atoms and ions; meteoric smoke particles and ice cloud nucleation; perturbations to atmospheric gas-phase chemistry; and the effects of the surface deposition of micrometeorites and cosmic spherules. There is discussion of impacts on all the planets, as well as on Pluto, Triton and Titan.

  9. Influence of stripping and cooling atmospheres on surface properties and corrosion of zinc galvanizing coatings

    Energy Technology Data Exchange (ETDEWEB)

    Yasakau, K.A., E-mail: kyasakau@ua.pt [Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Giner, I. [Universität Paderborn, Fakultät NW—Department Chemie, Technische und Makromolekulare Chemie, Warburger Strasse 100, D-33098 Paderborn (Germany); Vree, C. [Salzgitter Mannesmann Forschung, GmbH Division Surface Technology, Eisenhüttenstrasse 99, 38239 Salzgitter (Germany); Ozcan, O.; Grothe, R. [Universität Paderborn, Fakultät NW—Department Chemie, Technische und Makromolekulare Chemie, Warburger Strasse 100, D-33098 Paderborn (Germany); Oliveira, A. [Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Grundmeier, G. [Universität Paderborn, Fakultät NW—Department Chemie, Technische und Makromolekulare Chemie, Warburger Strasse 100, D-33098 Paderborn (Germany); Ferreira, M.G.S. [Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Zheludkevich, M.L. [Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Department of Corrosion and Surface Technology, Institute of Materials Research Helmholtz-Zentrum Geesthacht, Max-Planck Str. 1, 21502 Geesthacht (Germany)

    2016-12-15

    Highlights: • Stripping/cooling atmosphere affects surfaces chemical composition of Zn and Zn-Al-Mg galvanized coatings. • Higher peel forces of model adhesive films were obtained on zinc alloys samples prepared under nitrogen atmosphere. • Localized corrosion attack originates at grain boundaries on Zn galvanized coating. • Visible dissolution of MgZn{sub 2} phase was observed by in situ AFM only at binary eutectics and not at ternary ones. - Abstract: In this work the influence of stripping/cooling atmospheres used after withdrawal of steel sheet from Zn or Zn-alloy melt on surface properties of Zn (Z) and Zn-Al-Mg (ZM) hot-dip galvanizing coatings has been studied. The aim was to understand how the atmosphere (composed by nitrogen (N{sub 2}) or air) affects adhesion strength to model adhesive and corrosive behaviour of the galvanized substrates. It was shown that the surface chemical composition and Volta potential of the galvanizing coatings prepared under the air or nitrogen atmosphere are strongly influenced by the atmosphere. The surface chemistry Z and ZM surfaces prepared under N{sub 2} contained a higher content of metal atoms and a richer hydroxide density than the specimens prepared under air atmosphere as assessed by X-ray photoelectron spectroscopy (XPS). The induced differences on the microstructure of the galvanized coatings played a key role on the local corrosion induced defects as observed by means of in situ Atomic force microscopy (AFM). Peel force tests performed on the substrates coated by model adhesive films indicate a higher adhesive strength to the surfaces prepared under nitrogen atmosphere. The obtained results have been discussed in terms of the microstructure and surface chemical composition of the galvanizing coatings.

  10. Investigation of surface treatment of conductive wire in cylindrical atmospheric pressure plasmas

    International Nuclear Information System (INIS)

    Ye Rubin; Kagohashi, Tsutomu; Zheng Wei

    2009-01-01

    Polyethylene insulated electric wire was treated in He and Ar dielectric barrier discharge atmospheric pressure plasmas generated in a quartz tube wound with tubular electrodes. The wire was put penetrating through the high voltage and the grounded electrodes, improving the discharge and facilitating uniform surface treatment. In this work, the influences of conductivity of the wire on the effects of surface treatment and discharge behavior were investigated. Surface properties of the wire samples were analyzed by means of surface energy measurement and X-ray photoelectron spectroscopy. In order to reveal the mechanism for treating the conductive wire, I-V discharge waveforms were measured and time-resolved plasma images were taken. It was demonstrated that the conductive wire was involved in the discharge process, reducing the breakdown voltage significantly and enhancing the discharge. It shows that the discharge mode was strongly dependent on the conductivity of a wire. Intensive surface discharges developed along the conductive wire were found to be mainly responsible for noticeable improvement in the treatment effect.

  11. Improved Formulations for Air-Surface Exchanges Related to National Security Needs: Dry Deposition Models

    Energy Technology Data Exchange (ETDEWEB)

    Droppo, James G.

    2006-07-01

    The Department of Homeland Security and others rely on results from atmospheric dispersion models for threat evaluation, event management, and post-event analyses. The ability to simulate dry deposition rates is a crucial part of our emergency preparedness capabilities. Deposited materials pose potential hazards from radioactive shine, inhalation, and ingestion pathways. A reliable characterization of these potential exposures is critical for management and mitigation of these hazards. A review of the current status of dry deposition formulations used in these atmospheric dispersion models was conducted. The formulations for dry deposition of particulate materials from am event such as a radiological attack involving a Radiological Detonation Device (RDD) is considered. The results of this effort are applicable to current emergency preparedness capabilities such as are deployed in the Interagency Modeling and Atmospheric Assessment Center (IMAAC), other similar national/regional emergency response systems, and standalone emergency response models. The review concludes that dry deposition formulations need to consider the full range of particle sizes including: 1) the accumulation mode range (0.1 to 1 micron diameter) and its minimum in deposition velocity, 2) smaller particles (less than .01 micron diameter) deposited mainly by molecular diffusion, 3) 10 to 50 micron diameter particles deposited mainly by impaction and gravitational settling, and 4) larger particles (greater than 100 micron diameter) deposited mainly by gravitational settling. The effects of the local turbulence intensity, particle characteristics, and surface element properties must also be addressed in the formulations. Specific areas for improvements in the dry deposition formulations are 1) capability of simulating near-field dry deposition patterns, 2) capability of addressing the full range of potential particle properties, 3) incorporation of particle surface retention/rebound processes, and

  12. Surface modification of food contact materials for processing and packaging applications

    Science.gov (United States)

    Barish, Jeffrey A.

    This body of work investigates various techniques for the surface modification of food contact materials for use in food packaging and processing applications. Nanoscale changes to the surface of polymeric food packaging materials enables changes in adhesion, wettability, printability, chemical functionality, and bioactivity, while maintaining desirable bulk properties. Polymer surface modification is used in applications such as antimicrobial or non-fouling materials, biosensors, and active packaging. Non-migratory active packagings, in which bioactive components are tethered to the package, offer the potential to reduce the need for additives in food products while maintaining safety and quality. A challenge in developing non-migratory active packaging materials is the loss of biomolecular activity that can occur when biomolecules are immobilized. Polyethylene glycol (PEG), a biocompatible polymer, is grafted from the surface of ozone treated low-density polyethylene (LDPE) resulting in a surface functionalized polyethylene to which a range of amine-terminated bioactive molecules can be immobilized. The grafting of PEG onto the surface of polymer packaging films is accomplished by free radical graft polymerization, and to covalently link an amine-terminated molecule to the PEG tether, demonstrating that amine-terminated bioactive compounds (such as peptides, enzymes, and some antimicrobials) can be immobilized onto PEG-grafted LDPE in the development of non-migratory active packaging. Fouling on food contact surfaces during food processing has a significant impact on operating efficiency and can promote biofilm development. Processing raw milk on plate heat exchangers results in significant fouling of proteins as well as minerals, and is exacerbated by the wall heating effect. An electroless nickel coating is co-deposited with polytetrafluoroethylene onto stainless steel to test its ability to resist fouling on a pilot plant scale plate heat exchanger. Further

  13. Isotope exchange process and device

    International Nuclear Information System (INIS)

    Delvalle, Pierre.

    1974-01-01

    A process for enriching uranium in one of its isotopes is described. To do so, cascade isotopic exchanges are made by contact between U(III) and U(IV) in conditions avoiding the oxidation of U(III) in U(IV). A liquid phase containing an uranium compound and free of other group III to VIII metals of the periodic classification, in which uranium is present at a first valence is placed in contact with a second valence uranium compound, protected from any contact with a conducting solid and with an agent bringing free or release oxygen. The second phase is organic. The process includes a counter current isotopic exchange between an aqueous phase containing a U +4 salting-out agent and the uranium as U +3 ions and an organic phase containing the uranium at valence IV. This is followed by the extraction of U(IV) from the organic phase into the previously spent aqueous phase and the reduction of uranium from valence IV to valence III; finally by oxidation of U(III) of the aqueous phase into U(IV) and the transfer of U(IV) into the previously exhausted organic phase [fr

  14. Assessment of surface contamination level in an operating uranium ore processing facility of Jaduguda, India

    International Nuclear Information System (INIS)

    Meena, J.S.; Patnaik, R.L.; Jha, V.N.; Sahoo, S.K.; Ravi, P.M.; Tripathi, R.M.

    2014-01-01

    Radiological concern of the occupational workers and the area is given priority over other safety issue in confirmation with the stipulated guideline of national regulatory agency (AERB/FEFCF/SG-2, 2007). The key concern from the radiological hazard evaluation point of view is air activity, external gamma level and surface contamination. Present investigations was carried out to ascertain the surface contamination level of uranium ore processing facility at Jaduguda, Jharkhand. For a low grade uranium ore processing industry surface contamination is a major concern in product precipitation and recovery section. In view of this, the ore processing plant can broadly be classified into three areas i.e. ion exchange area, precipitation and product recovery section and other areas. The monitoring results incorporate the level of surface contamination of the plant during the last five years. The geometric mean activity of surface contamination level was 31.1, 34.5 and 9.8 Bq dm -2 in ion exchange, product precipitation and recovery and other areas with GSD of 2, 2.5 and 1.9. In most of the cases the surface contamination level was well within the recommended limit of 100 Bq dm -2 for M class uranium compound. Occasional cases of surface contamination levels exceeding the recommended limit were addressed and areas were decontaminated. Based on the study, modification in the design feature of the surface of the finished product section was also suggested so that the decontamination procedure can be more effectively implemented

  15. Implied and Local Volatility Surfaces for South African Index and Foreign Exchange Options

    Directory of Open Access Journals (Sweden)

    Antonie Kotzé

    2015-01-01

    Full Text Available Certain exotic options cannot be valued using closed-form solutions or even by numerical methods assuming constant volatility. Many exotics are priced in a local volatility framework. Pricing under local volatility has become a field of extensive research in finance, and various models are proposed in order to overcome the shortcomings of the Black-Scholes model that assumes a constant volatility. The Johannesburg Stock Exchange (JSE lists exotic options on its Can-Do platform. Most exotic options listed on the JSE’s derivative exchanges are valued by local volatility models. These models needs a local volatility surface. Dupire derived a mapping from implied volatilities to local volatilities. The JSE uses this mapping in generating the relevant local volatility surfaces and further uses Monte Carlo and Finite Difference methods when pricing exotic options. In this document we discuss various practical issues that influence the successful construction of implied and local volatility surfaces such that pricing engines can be implemented successfully. We focus on arbitrage-free conditions and the choice of calibrating functionals. We illustrate our methodologies by studying the implied and local volatility surfaces of South African equity index and foreign exchange options.

  16. Ligands Exchange Process on Gold Nanoparticles in Acetone Solution

    Science.gov (United States)

    Hu, C. L.; Mu, Y. Y.; Bian, Z. C.; Luo, Z. H.; Luo, K.; Huang, A. Z.

    2018-05-01

    The ligands exchange process on gold nanoparticles (GNPs) was proceeded by using hydrophobic group (PPh3) and hydrophilic group (THPO) in acetone solution. The FTIR and XPS results demonstrated that part of THPO was replaced by PPh3 which was dissolved in polar solution (acetone); the results were in accordance with the electrochemical analysis where the differential capacity decreased with increasing exchange time. After 12 h, the exchange process terminated and the final ratio of PPh3 and THPO was about 1.4: 1. This ratio remained unchanged although the PPh3 and THPO modified GNPs re-dispersed in the PPh3 acetone solution demonstrating the stable adsorption of both ligands after exchanging for 12 h. The TEM images showed that the gold nanoparticles were self-assembled from scattered to arranged morphology due to the existence of hydrophilic and hydrophobic ligands and led to Janus gold nanoparticles.

  17. High temperature heat exchange: nuclear process heat applications

    International Nuclear Information System (INIS)

    Vrable, D.L.

    1980-09-01

    The unique element of the HTGR system is the high-temperature operation and the need for heat exchanger equipment to transfer nuclear heat from the reactor to the process application. This paper discusses the potential applications of the HTGR in both synthetic fuel production and nuclear steel making and presents the design considerations for the high-temperature heat exchanger equipment

  18. Atmospheric processing outside clouds increases soluble iron in mineral dust.

    Science.gov (United States)

    Shi, Zongbo; Krom, Michael D; Bonneville, Steeve; Benning, Liane G

    2015-02-03

    Iron (Fe) is a key micronutrient regulating primary productivity in many parts of the global ocean. Dust deposition is an important source of Fe to the surface ocean, but most of this Fe is biologically unavailable. Atmospheric processing and reworking of Fe in dust aerosol can increase the bioavailable Fe inputs to the ocean, yet the processes are not well understood. Here, we experimentally simulate and model the cycling of Fe-bearing dust between wet aerosol and cloud droplets. Our results show that insoluble Fe in dust particles readily dissolves under acidic conditions relevant to wet aerosols. By contrast, under the higher pH conditions generally relevant to clouds, Fe dissolution tends to stop, and dissolved Fe precipitates as poorly crystalline nanoparticles. If the dust-bearing cloud droplets evaporated again (returning to the wet aerosol stage with low pH), those neo-formed Fe nanoparticles quickly redissolve, while the refractory Fe-bearing phases continue to dissolve gradually. Overall, the duration of the acidic, wet aerosol stage ultimately increases the amount of potentially bioavailable Fe delivered to oceans, while conditions in clouds favor the formation of Fe-rich nanoparticles in the atmosphere.

  19. Smart coating process of proton-exchange membrane for polymer electrolyte fuel cell

    International Nuclear Information System (INIS)

    Leu, Hoang-Jyh; Chiu, Kuo-Feng; Lin, Chiu-Yue

    2013-01-01

    Highlights: ► Using oxygen plasma and smart coating technique for membrane modification. ► Oxygen plasma treatment can increase the reaction area of the membrane. ► AFM, SEM, FT-IR, XPS, EIS spectra can prove the surface treatment process. ► Nafion membrane modification can reduce Rct and enhance current density. - Abstract: The interfaces of electrolyte|catalyst|electrode play an important role in the performance of proton-exchange membrane fuel cells (PEMFCs). Increasing the interface effective area and lowering the charge transfer resistance of the interface are significant issues to promote the cell performance. In this study, oxygen plasma treatment was used to increase the surface roughness of Nafion®117 membrane, and then a smart coating process was applied to fabricate the initial Pt/C catalyst layer, which served to reduce the charge transfer resistance of the interface. The morphology and surface characteristics of membranes have been qualified by scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy. These results show that the plasma treatments and smart coating processes were effective in reducing the interface charge transfer resistance. At optimal condition, the interface charge transfer resistance was 0.45 Ω/cm 2 which was 1–2 order less than the untreated ones

  20. THE USE OF EXCHANGEABLE BONDS DURING THE PRIVATIZATION PROCESS

    Directory of Open Access Journals (Sweden)

    Damian Kaźmierczak

    2014-04-01

    Full Text Available In our article we present the use of hybrid securities in the privatization process. We show that exchangeable bonds may be successfully applied during privatization of state companies throughout the world. It may be profitable for many reasons. Firstly, the exchangeables offer a much lower coupon in comparison with the ordinary government bonds which may be crucial for highly indebted countries. Secondly, throughout the entire maturity period the state remains the owner of the privatized firm which means that the government can be a beneficiary of high dividends paid by the public enterprises and can actively manage them. Thirdly, in the case of unfavorable market conditions the authorities get an opportunity to wait for the end of economic turmoil in order to avoid selling the equity participations under their true value. Finally, the issue of certain types of exchangeables (e.g. callable exchangeables or mandatory exchangeables and adding several provisions (e.g. greenshoe option or clean-up call makes the instrument more flexible for the issuer. We also present a few examples of the privatization processes by means of exchangeable bonds i.a. in Germany and in Austria. Most of such operations, e.g. German Deutsche Post, Austrian Telekom Austria or Portuguese Galp Energia SGPS S.A. were completed with success.

  1. Surface tungsten reduction during thermal decomposition of ammonium paratungstate tetrahydrate in oxidising atmosphere: A paradox?

    International Nuclear Information System (INIS)

    Fait, Martin J.G.; Radnik, Jörg; Lunk, Hans-Joachim

    2016-01-01

    Highlights: • Detection of reduced tungsten ions at the solid’s surface in oxidising atmosphere. • Detection of gaseous ammonia liberated as oxidising agent. • Detection of ammonia’s oxidation products. • Quantification of the ammonia/tungsten redox process. - Abstract: The interaction of ammonia, liberated during thermal decomposition of ammonium paratungstate tetrahydrate in oxidising atmosphere, with tungsten has been studied employing a conventional microbalance combined with MS (Setaram’s instrument Sensys). Applying XPS a partial reduction of tungsten at the surface with the minimal tungsten oxidation number of +5.3 for a sample generated at 293 °C was detected. The balancing oxidation of ammonia to nitrogen/nitrogen oxides has been proven by MS. An amount of 0.049 mol e"− per mol W was transferred which resulted in an ammonia conversion degree from 2.1 mol% (NO_2 formation) to 3.0 mol% (N_2 formation).

  2. Surface tungsten reduction during thermal decomposition of ammonium paratungstate tetrahydrate in oxidising atmosphere: A paradox?

    Energy Technology Data Exchange (ETDEWEB)

    Fait, Martin J.G., E-mail: martin.fait@catalysis.de [Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock (Germany); Radnik, Jörg [Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock (Germany); Lunk, Hans-Joachim [2858 Lake RD, Towanda, PA 18848 (United States)

    2016-06-10

    Highlights: • Detection of reduced tungsten ions at the solid’s surface in oxidising atmosphere. • Detection of gaseous ammonia liberated as oxidising agent. • Detection of ammonia’s oxidation products. • Quantification of the ammonia/tungsten redox process. - Abstract: The interaction of ammonia, liberated during thermal decomposition of ammonium paratungstate tetrahydrate in oxidising atmosphere, with tungsten has been studied employing a conventional microbalance combined with MS (Setaram’s instrument Sensys). Applying XPS a partial reduction of tungsten at the surface with the minimal tungsten oxidation number of +5.3 for a sample generated at 293 °C was detected. The balancing oxidation of ammonia to nitrogen/nitrogen oxides has been proven by MS. An amount of 0.049 mol e{sup −} per mol W was transferred which resulted in an ammonia conversion degree from 2.1 mol% (NO{sub 2} formation) to 3.0 mol% (N{sub 2} formation).

  3. Isotopic study of water exchange between atmosphere and biosphere at Changa Manga site in Pakistan

    International Nuclear Information System (INIS)

    Fazil, M.; Ali, M.; Latif, Z.; Butt, S.

    2012-01-01

    Study of water exchange between atmosphere and biosphere was initiated to understand the ties between these two spheres. Samples of leaves and stems of 23 woody plants along with soil from the surface and from the depth of 7 cm were collected from Changa Manga forest. Moisture content from these samples was extracted using the vacuum distillation method and analyzed for stable isotopes (/sup 18/O and /sup 2/H). Air moisture was also collected in the field. Isotopic data plotted long with the Local Meteoric Water Line (LMWL) indicates that /sup 18/O and /sup 2/H contents of moisture in the leaves of woody plants are higher than their respective stems. This behavior is due to the evaporative enrichment trend originating from the soil moisture in active root zone and also from the leaf surface. The stem samples did not show any significant variation in gamma /sup 18/O suggesting no significant evaporation from stems of big trees. Degree of enrichment of leave samples of woody plants indicated the species-specific effects in isotopes during transpiration. Pine and Eucalyptus leaves showed more variation in the isotopic contents as compared to other species. Temporal variations of /sup 18/O and /sup 2/H in the leaves indicated enriched isotopic values during hot and dry periods as compared to those during wet period (monsoon and winter rains) mainly due to higher transpiration rates at high temperature and low humidity. (orig./A.B.)

  4. Current issues and uncertainties in the measurement and modelling of air-vegetation exchange and within-plant processing of POPs

    International Nuclear Information System (INIS)

    Barber, Jonathan L.; Thomas, Gareth O.; Kerstiens, Gerhard; Jones, Kevin

    2004-01-01

    Air-vegetation exchange of POPs is an important process controlling the entry of POPs into terrestrial food chains, and may also have a significant effect on the global movement of these compounds. Many factors affect the air-vegetation transfer including: the physicochemical properties of the compounds of interest; environmental factors such as temperature, wind speed, humidity and light conditions; and plant characteristics such as functional type, leaf surface area, cuticular structure, and leaf longevity. The purpose of this review is to quantify the effects these differences might have on air/plant exchange of POPs, and to point out the major gaps in the knowledge of this subject that require further research. Uptake mechanisms are complicated, with the role of each factor in controlling partitioning, fate and behaviour process still not fully understood. Consequently, current models of air-vegetation exchange do not incorporate variability in these factors, with the exception of temperature. These models instead rely on using average values for a number of environmental factors (e.g. plant lipid content, surface area), ignoring the large variations in these values. The available models suggest that boundary layer conductance is of key importance in the uptake of POPs, although large uncertainties in the cuticular pathway prevents confirmation of this with any degree of certainty, and experimental data seems to show plant-side resistance to be important. Models are usually based on the assumption that POP uptake occurs through the lipophilic cuticle which covers aerial surfaces of plants. However, some authors have recently attached greater importance to the stomatal route of entry into the leaf for gas phase compounds. There is a need for greater mechanistic understanding of air-plant exchange and the 'scaling' of factors affecting it. The review also suggests a number of key variables that researchers should measure in their experiments to allow comparisons

  5. Evaluation methodology for advance heat exchanger concepts using analytical hierarchy process

    International Nuclear Information System (INIS)

    Sabharwall, Piyush; Kim, Eung Soo; Patterson, Mike

    2012-01-01

    This study describes how the major alternatives and criteria being developed for the heat exchangers for next generation nuclear reactors are evaluated using the analytical hierarchy process (AHP). This evaluation was conducted as an aid in developing and selecting heat exchangers for integrating power production and process heat applications with next generation nuclear reactors. The basic setup for selecting the most appropriate heat exchanger option was established with evaluation goals, alternatives, and criteria. The two potential candidates explored in this study were shell-and-tube (helical coiled) and printed circuit heat exchangers. Based on study results, the shell-and-tube (helical coiled) heat exchanger is recommended for a demonstration reactor in the near term, mainly because of its reliability.

  6. Air-surface exchange measurements of gaseous elemental mercury over naturally enriched and background terrestrial landscapes in Australia

    Directory of Open Access Journals (Sweden)

    G. C. Edwards

    2013-05-01

    Full Text Available This paper presents the first gaseous elemental mercury (GEM air-surface exchange measurements obtained over naturally enriched and background (−1 Hg terrestrial landscapes in Australia. Two pilot field studies were carried out during the Australian autumn and winter periods at a copper-gold-cobalt-arsenic-mercury mineral field near Pulganbar, NSW. GEM fluxes using a dynamic flux chamber approach were measured, along with controlling environmental parameters over three naturally enriched and three background substrates. The enriched sites results showed net emission to the atmosphere and a strong correlation between flux and substrate Hg concentration, with average fluxes ranging from 14 ± 1 ng m−2 h−1 to 113 ± 6 ng m−2 h−1. Measurements at background sites showed both emission and deposition. The average Hg flux from all background sites showed an overall net emission of 0.36 ± 0.06 ng m−2 h−1. Fluxes show strong relationships with temperature, radiation, and substrate parameters. A compensation point of 2.48, representative of bare soils was determined. For periods of deposition, dry deposition velocities ranged from 0.00025 cm s−1 to 0.0083 cm s−1 with an average of 0.0041 ± 0.00018 cm s−1, representing bare soil, nighttime conditions. Comparison of the Australian data to North American data suggests the need for Australian-specific mercury air-surface exchange data representative of Australia's unique climatic conditions, vegetation types, land use patterns and soils.

  7. Analysis of Surface Heterogeneity Effects with Mesoscale Terrestrial Modeling Platforms

    Science.gov (United States)

    Simmer, C.

    2015-12-01

    An improved understanding of the full variability in the weather and climate system is crucial for reducing the uncertainty in weather forecasting and climate prediction, and to aid policy makers to develop adaptation and mitigation strategies. A yet unknown part of uncertainty in the predictions from the numerical models is caused by the negligence of non-resolved land surface heterogeneity and the sub-surface dynamics and their potential impact on the state of the atmosphere. At the same time, mesoscale numerical models using finer horizontal grid resolution [O(1)km] can suffer from inconsistencies and neglected scale-dependencies in ABL parameterizations and non-resolved effects of integrated surface-subsurface lateral flow at this scale. Our present knowledge suggests large-eddy-simulation (LES) as an eventual solution to overcome the inadequacy of the physical parameterizations in the atmosphere in this transition scale, yet we are constrained by the computational resources, memory management, big-data, when using LES for regional domains. For the present, there is a need for scale-aware parameterizations not only in the atmosphere but also in the land surface and subsurface model components. In this study, we use the recently developed Terrestrial Systems Modeling Platform (TerrSysMP) as a numerical tool to analyze the uncertainty in the simulation of surface exchange fluxes and boundary layer circulations at grid resolutions of the order of 1km, and explore the sensitivity of the atmospheric boundary layer evolution and convective rainfall processes on land surface heterogeneity.

  8. Designing heat exchangers for process heat reactors

    International Nuclear Information System (INIS)

    Quade, R.N.

    1980-01-01

    A brief account is given of the IAEA specialist meeting on process heat applications technology held in Julich, November 1979. The main emphasis was on high temperature heat exchange. Papers were presented covering design requirements, design construction and prefabrication testing, and selected problems. Primary discussion centered around mechanical design, materials requirements, and structural analysis methods and limits. It appears that high temperature heat exchanges design to nuclear standards, is under extensive development but will require a lengthy concerted effort before becoming a commercial reality. (author)

  9. Where the Rubber Meets the Road; Varied Techniques for Measuring the Land-Atmosphere Exchange of Water and Energy in a California Watershed and the Driving Influences on this Exchange

    Science.gov (United States)

    Kochendorfer, J.; Viers, J.; Niswonger, R.; Paw U, K.; Haas, E.; Reck, R. A.

    2005-12-01

    In conjunction with the Cosumnes Research Group, we performed a field study along the Cosumnes River in California's Central Valley. The study included tower-based evapotranspiration estimates, continuous hydrologic measurements, and analysis of remote sensing data. We estimated the effects of phreatophytic evapotranspiration on groundwater from scales as small as an individual stand of trees to as large as the watershed and explored the climactic and hydrologic controls over riparian evapotranspiration. Tower-based evapotranspiration measurements included one eddy covariance tower within a cottonwood forest (Populus fremontii), and one surface temperature/micrometeorological evapotranspiration tower within a willow stand (Salix lasiolepis). The technique used on the surface temperature/micrometeorological evapotranspiration tower was developed and chosen in preference to eddy covariance for a site where a considerable quantity of the riparian ecosystem to atmosphere exchange is advective. Hydrologic techniques included measurements of groundwater depth and volumetric soil moisture. We also examined multitemporal, multiresolution remotely sensed imagery to correlate evapotranspiration rates for a restored cottonwood forest with derived vegetation indices. These indices were evaluated for applicability to other restored riparian habitats within the Cosumnes River Preserve and to help guide future restoration actions as a function of hydrologic connectivity and water demand.

  10. Atmospheric boundary layer response to sea surface temperatures during the SEMAPHORE experiment

    Science.gov (United States)

    Giordani, Hervé; Planton, Serge; Benech, Bruno; Kwon, Byung-Hyuk

    1998-10-01

    The sensitivity of the marine atmospheric boundary layer (MABL) subjected to sea surface temperatures (SST) during the Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment in 1993 has been studied. Atmospheric analyses produced by the Action de Recherche, Petite Echelle, Grande Echelle (ARPEGE) operational model at the French meteorological weather service assimilated data sets collected between October 7 and November 17, 1993, merged with the Global Telecommunication System (GTS) data. Analyses were validated against independent data from aircraft instruments collected along a section crossing the Azores oceanic front, not assimilated into the model. The responses of the mean MABL in the aircraft cross section to changes in SST gradients of about 1°C/100 km were the presence of an atmospheric front with horizontal gradients of 1°C/100 km and an increase of the wind intensity from the cold to the warm side during an anticyclonic synoptic situation. The study of the spatiotemporal characteristics of the MABL shows that during 3 days of an anticyclonic synoptic situation the SST is remarkably stationary because it is principally controlled by the Azores ocean current, which has a timescale of about 10 days. However, the temperature and the wind in the MABL are influenced by the prevailing atmospheric conditions. The ocean does not appear to react to the surface atmospheric forcing on the timescale of 3 days, whereas the atmospheric structures are modified by local and synoptic-scale advection. The MABL response appears to be much quicker than that of the SSTs. The correlation between the wind and the thermal structure in the MABL is dominated by the ageostrophic and not by the geostrophic component. In particular, the enhancement of the wind on either side of the SST front is mainly due to the ageostrophic component. Although the surface heat fluxes are not the only cause of ageostrophy, the

  11. Inorganic ion exchangers. Application to liquid effluent processing

    International Nuclear Information System (INIS)

    Dozol, M.

    1983-10-01

    Main inorganic ion exchangers used for radioactive liquid effluents presented in this report are: synthetic and natural zeolites, in titanium oxides, titanates, niobates, tantalates, zirconates, some insoluble salts of zirconium, molybdenum and tin, heteropolyacids and polyantimonic acid. Properties of these ion exchangers are described: structure, adsoption, radiation effects and thermal stability, application to waste processing, radioactive waste storage uranium and cesium 137 recovery are evoked [fr

  12. Sensitivity of land-atmosphere exchanges to overshooting PBL thermals in an idealized coupled model

    Directory of Open Access Journals (Sweden)

    Ian T. Baker

    2009-11-01

    Full Text Available The response of atmospheric carbon dioxide to a given amount of surface flux is inversely proportional to the depth of the planetary boundary layer (PBL. Overshooting thermals that entrain free tropospheric air down into the boundary layer modify the characteristics and depth of the mixed layer through the insertion of energy and mass. In addition, entrainment "dilutes" the effects of surface fluxes on scalar quantities (temperature, water vapor, carbon dioxide, etc. in the PBL. Therefore, incorrect simulation of PBL depth can lead to linear errors in estimates of carbon dioxide fluxes in inverse models. Dilution by entrainment directly alters the surface-air gradients in scalar properties, which serve as the "driving force" for surface fluxes. In addition, changes in near-surface temperature and water vapor affect surface fluxes through physiological processes in plant canopies (e.g. stomatal conductance. Although overshooting thermals are important in the physical world, their effects are unresolved in most regional models. We explore the sensitivity of surface fluxes and PBL scalars to the intensity of PBL top entrainment by manipulating its strength in an idealized version of the coupled SiB-RAMS model. An entrainment parameterization based on the virtual potential temperature flux at the surface is implemented into SiB-RAMS to produce a warmer and drier mixed layer, to alter the surface fluxes, and to increase the depth of the PBL. These variations produce modified CO2 concentrations and vary with the strength of the parameterized entrainment.

  13. Fouling of heat exchanger surfaces by dust particles from flue gases of glass furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Mutsaers, P.L.M.; Beerkens, R.G.C.; Waal, H. de (Nederlandse Centrale Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek, Delft. Inst. of Applied Physics)

    1989-08-01

    Fouling by dust particles generally leads to a reduction of the heat transfer and causes corrosion of secondary heat exchangers. A deposition model, including thermodynamic equilibrium calculations, has been derived and applied to describe the deposition (i.e. fouling) process and the nature of the deposition products in a secondary heat exchanger. The deposition model has been verified by means of laboratory experiments, for the case of flue gases from soda-lime glass furnaces. Corrosion of iron-containing metallic materials, caused by the deposition products, has been briefly investigated with the same equipment. There is a close similarity between the experimental results and model calculations. The largest deposition rates from flue gases on cylindrical tubes in cross-flow configuration, are predicted and measured at the upstream stagnation point. The lowest deposition rates are determined at downstream stagnation point locations. At tube surface temperatures of approximately 520 to 550 K, the fouling rate on the tube reaches a maximum. In this temperature region NaHSO{sub 4} is the most important deposition product. This component is mainly formed at temperatures from 470 up to 540 K. The compound Na{sub 3}H(SO{sub 4}){sub 2} seems to be stable up to 570 K, for even higher temperatures Na{sub 2}SO{sub 4} has been found. These deposition products react with iron, SO{sub 3}, oxygen and water vapour forming the complex corrosion product Na{sub 3}Fe(SO{sub 4}){sub 3}. NaHSO{sub 4}, which is formed at tube surface temperatures below 540 K, causes more severe corrosion of iron-containing materials than Na{sub 2}SO{sub 4}. Maintaining temperatures of the heat exchanger surfaces above 550 to 600 K reduces the fouling tendency and corrosion in case of flue gases from oil-fired soda-lime glass furnaces. (orig.).

  14. Investigation of hurricane Ivan using the coupled ocean-atmosphere-wave-sediment transport (COAWST) model

    Science.gov (United States)

    Zambon, Joseph B.; He, Ruoying; Warner, John C.

    2014-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) model is used to hindcast Hurricane Ivan (2004), an extremely intense tropical cyclone (TC) translating through the Gulf of Mexico. Sensitivity experiments with increasing complexity in ocean–atmosphere–wave coupled exchange processes are performed to assess the impacts of coupling on the predictions of the atmosphere, ocean, and wave environments during the occurrence of a TC. Modest improvement in track but significant improvement in intensity are found when using the fully atmosphere–ocean-wave coupled configuration versus uncoupled (e.g., standalone atmosphere, ocean, or wave) model simulations. Surface wave fields generated in the fully coupled configuration also demonstrates good agreement with in situ buoy measurements. Coupled and uncoupled model-simulated sea surface temperature (SST) fields are compared with both in situ and remote observations. Detailed heat budget analysis reveals that the mixed layer temperature cooling in the deep ocean (on the shelf) is caused primarily by advection (equally by advection and diffusion).

  15. A multilinear regression methodology to analyze the effect of atmospheric and surface forcing on Arctic clouds

    Science.gov (United States)

    Boeke, R.; Taylor, P. C.; Li, Y.

    2017-12-01

    Arctic cloud amount as simulated in CMIP5 models displays large intermodel spread- models disagree on the processes important for cloud formation as well as the radiative impact of clouds. The radiative response to cloud forcing can be better assessed when the drivers of Arctic cloud formation are known. Arctic cloud amount (CA) is a function of both atmospheric and surface conditions, and it is crucial to separate the influences of unique processes to understand why the models are different. This study uses a multilinear regression methodology to determine cloud changes using 3 variables as predictors: lower tropospheric stability (LTS), 500-hPa vertical velocity (ω500), and sea ice concentration (SIC). These three explanatory variables were chosen because their effects on clouds can be attributed to unique climate processes: LTS is a thermodynamic indicator of the relationship between clouds and atmospheric stability, SIC determines the interaction between clouds and the surface, and ω500 is a metric for dynamical change. Vertical, seasonal profiles of necessary variables are obtained from the Coupled Model Intercomparison Project 5 (CMIP5) historical simulation, an ocean-atmosphere couple model forced with the best-estimate natural and anthropogenic radiative forcing from 1850-2005, and statistical significance tests are used to confirm the regression equation. A unique heuristic model will be constructed for each climate model and for observations, and models will be tested by their ability to capture the observed cloud amount and behavior. Lastly, the intermodel spread in Arctic cloud amount will be attributed to individual processes, ranking the relative contributions of each factor to shed light on emergent constraints in the Arctic cloud radiative effect.

  16. Energy exchange in thermal energy atom-surface scattering: impulsive models

    International Nuclear Information System (INIS)

    Barker, J.A.; Auerbach, D.J.

    1979-01-01

    Energy exchange in thermal energy atom surface collisions is studied using impulsive ('hard cube' and 'hard sphere') models. Both models reproduce the observed nearly linear relation between outgoing and incoming energies. In addition, the hard-sphere model accounts for the widths of the outcoming energy distributions. (Auth.)

  17. High-Temperature, Dual-Atmosphere Corrosion of Solid-Oxide Fuel Cell Interconnects

    Science.gov (United States)

    Gannon, Paul; Amendola, Roberta

    2012-12-01

    High-temperature corrosion of ferritic stainless steel (FSS) surfaces can be accelerated and anomalous when it is simultaneously subjected to different gaseous environments, e.g., when separating fuel (hydrogen) and oxidant (air) streams, in comparison with single-atmosphere exposures, e.g., air only. This so-called "dual-atmosphere" exposure is realized in many energy-conversion systems including turbines, boilers, gasifiers, heat exchangers, and particularly in intermediate temperature (600-800°C) planar solid-oxide fuel cell (SOFC) stacks. It is generally accepted that hydrogen transport through the FSS (plate or tube) and its subsequent integration into the growing air-side surface oxide layer can promote accelerated and anomalous corrosion—relative to single-atmosphere exposure—via defect chemistry changes, such as increased cation vacancy concentrations, decreased oxygen activity, and steam formation within the growing surface oxide layers. Establishment of a continuous and dense surface oxide layer on the fuel side of the FSS can inhibit hydrogen transport and the associated effects on the air side. Minor differences in FSS composition, microstructure, and surface conditions can all have dramatic influences on dual-atmosphere corrosion behaviors. This article reviews high-temperature, dual-atmosphere corrosion phenomena and discusses implications for SOFC stacks, related applications, and future research.

  18. On the Impact of Wind Farms on a Convective Atmospheric Boundary Layer

    Science.gov (United States)

    Lu, Hao; Porté-Agel, Fernando

    2015-10-01

    With the rapid growth in the number of wind turbines installed worldwide, a demand exists for a clear understanding of how wind farms modify land-atmosphere exchanges. Here, we conduct three-dimensional large-eddy simulations to investigate the impact of wind farms on a convective atmospheric boundary layer. Surface temperature and heat flux are determined using a surface thermal energy balance approach, coupled with the solution of a three-dimensional heat equation in the soil. We study several cases of aligned and staggered wind farms with different streamwise and spanwise spacings. The farms consist of Siemens SWT-2.3-93 wind turbines. Results reveal that, in the presence of wind turbines, the stability of the atmospheric boundary layer is modified, the boundary-layer height is increased, and the magnitude of the surface heat flux is slightly reduced. Results also show an increase in land-surface temperature, a slight reduction in the vertically-integrated temperature, and a heterogeneous spatial distribution of the surface heat flux.

  19. Hydrophilic surface modification of coronary stent using an atmospheric pressure plasma jet for endothelialization.

    Science.gov (United States)

    Shim, Jae Won; Bae, In-Ho; Park, Dae Sung; Lee, So-Youn; Jang, Eun-Jae; Lim, Kyung-Seob; Park, Jun-Kyu; Kim, Ju Han; Jeong, Myung Ho

    2018-03-01

    The first two authors contributed equally to this study. Bioactivity and cell adhesion properties are major factors for fabricating medical devices such as coronary stents. The aim of this study was to evaluate the advantages of atmospheric-pressure plasma jet in enhancing the biocompatibility and endothelial cell-favorites. The experimental objects were divided into before and after atmospheric-pressure plasma jet treatment with the ratio of nitrogen:argon = 3:1, which is similar to air. The treated surfaces were basically characterized by means of a contact angle analyzer for the activation property on their surfaces. The effect of atmospheric-pressure plasma jet on cellular response was examined by endothelial cell adhesion and XTT analysis. It was difficult to detect any changeable morphology after atmospheric-pressure plasma jet treatment on the surface. The roughness was increased after atmospheric-pressure plasma jet treatment compared to nonatmospheric-pressure plasma jet treatment (86.781 and 7.964 nm, respectively). The X-ray photoelectron spectroscopy results showed that the surface concentration of the C-O groups increased slightly from 6% to 8% after plasma activation. The contact angle dramatically decreased in the atmospheric-pressure plasma jet treated group (22.6 ± 15.26°) compared to the nonatmospheric-pressure plasma jet treated group (72.4 ± 15.26°) ( n = 10, p atmospheric-pressure plasma jet on endothelial cell migration and proliferation was 85.2% ± 12.01% and 34.2% ± 2.68%, respectively, at 7 days, compared to the nonatmospheric-pressure plasma jet treated group (58.2% ± 11.44% in migration, n = 10, p atmospheric-pressure plasma jet method. Moreover, the atmospheric-pressure plasma jet might affect re-endothelialization after stenting.

  20. Surface layer conditions of the atmosphere over western Bay of Bengal during Monex

    Digital Repository Service at National Institute of Oceanography (India)

    Anto, A.F.; Rao, L.V.G.; Somayajulu, Y.K.

    Based on surface meteorological data and wave data collected from 2 stations in the western Bay of Bengal in July 1979, surface layer (SL) conditions of the atmosphere for different situations of surface circulations and the associated sea surface...

  1. Investigation of atmospheric dielectric barrier discharge and its application to surface modification of textile material

    International Nuclear Information System (INIS)

    Xiaoliang Tang; Gao Qiu; Hankun Xie; Xianping Feng

    2005-01-01

    The dielectric barrier discharge (DBD) is characterized by the presence of at least one insulating layer in contact with the discharge between two planar or cylindrical electrodes connected to an ac power supply. In this paper, the spectral lines of plasma emission at atmospheric pressure were recorded by using a grating spectrograph, and all signals will be directly and immediately sent to the computer for data processing and analysis during the experiments. The spectrum lines of nitrogen, helium and argon plasma emission at atmospheric pressure were separately recorded and qualitatively analyzed using spectral diagnosis equipment of atmospheric pressure DBD plasma. The spectrum lines of the second positive system of nitrogen (c 3 π μ → B 3 Π g ), two characteristic spectrum lines of helium (3 1 P 1 → 2 1 S 0 , 3 3 D → 3 3 P), and all of neutral argon atom spectrum lines in the range 680 to 780 nm are recognized. For controlling the process of material surface modification promptly, the electron temperature of DBD plasma is quantitatively analyzed using relative intensity of argon spectrum lines. The relationships among the plasma parameters, such as discharge current and discharge power measured by Lissajous figure of the oscilloscope, were analyzed by using improved DBD equipment. The variation of plasma discharge current following the change of discharge gaps indicates an existence of critical gap distance. When the gap between electrodes is less than that the critical gap, a quasi-stable atmospheric pressure DBD plasma source can be achieved after carefully controlled discharge voltage and current. The experimental results indicate that a critical discharge gap is an important parameter to improve the quality of materials processing. The result is of great importance to DBD at atmospheric pressure and its application to materials processing. (author)

  2. Sea ice contribution to the air-sea CO(2) exchange in the Arctic and Southern Oceans

    DEFF Research Database (Denmark)

    Rysgaard...[], Søren; Bendtsen, Jørgen; Delille, B.

    2011-01-01

    Although salt rejection from sea ice is a key process in deep-water formation in ice-covered seas, the concurrent rejection of CO(2) and the subsequent effect on air-sea CO(2) exchange have received little attention. We review the mechanisms by which sea ice directly and indirectly controls the air......-sea CO(2) exchange and use recent measurements of inorganic carbon compounds in bulk sea ice to estimate that oceanic CO(2) uptake during the seasonal cycle of sea-ice growth and decay in ice-covered oceanic regions equals almost half of the net atmospheric CO(2) uptake in ice-free polar seas. This sea......-sea CO(2) exchange during winter, and (3) release of CO(2)-depleted melt water with excess total alkalinity during sea-ice decay and (4) biological CO(2) drawdown during primary production in sea ice and surface oceanic waters....

  3. Influence of surface emission processes on a fast-pulsed dielectric barrier discharge in air at atmospheric pressure

    Science.gov (United States)

    Pechereau, François; Bonaventura, Zdeněk; Bourdon, Anne

    2016-08-01

    This paper presents simulations of an atmospheric pressure air discharge in a point-to-plane geometry with a dielectric layer parallel to the cathode plane. Experimentally, a discharge reignition in the air gap below the dielectrics has been observed. With a 2D fluid model, it is shown that due to the fast rise of the high voltage applied and the sharp point used, a first positive spherical discharge forms around the point. Then this discharge propagates axially and impacts the dielectrics. As the first discharge starts spreading on the upper dielectric surface, in the second air gap with a low preionization density of {{10}4}~\\text{c}{{\\text{m}}-3} , the 2D fluid model predicts a rapid reignition of a positive discharge. As in experiments, the discharge reignition is much slower, a discussion on physical processes to be considered in the model to increase the reignition delay is presented. The limit case with no initial seed charges in the second air gap has been studied. First, we have calculated the time to release an electron from the cathode surface by thermionic and field emission processes for a work function φ \\in ≤ft[3,4\\right] eV and an amplification factor β \\in ≤ft[100,220\\right] . Then a 3D Monte Carlo model has been used to follow the dynamics of formation of an avalanche starting from a single electron emitted at the cathode. Due to the high electric field in the second air gap, we have shown that in a few nanoseconds, a Gaussian cloud of seed charges is formed at a small distance from the cathode plane. This Gaussian cloud has been used as the initial condition of the 2D fluid model in the second air gap. In this case, the propagation of a double headed discharge in the second air gap has been observed and the reignition delay is in rather good agreement with experiments.

  4. SIERRA-Flux: Measuring Regional Surface Fluxes of Carbon Dioxide, Methane, and Water Vapor from an Unmanned Aircraft System

    Science.gov (United States)

    Fladeland; Yates, Emma Louise; Bui, Thaopaul Van; Dean-Day, Jonathan; Kolyer, Richard

    2011-01-01

    The Eddy-Covariance Method for quantifying surface-atmosphere fluxes is a foundational technique for measuring net ecosystem exchange and validating regional-to-global carbon cycle models. While towers or ships are the most frequent platform for measuring surface-atmosphere exchange, experiments using aircraft for flux measurements have yielded contributions to several large-scale studies including BOREAS, SMACEX, RECAB by providing local-to-regional coverage beyond towers. The low-altitude flight requirements make airborne flux measurements particularly dangerous and well suited for unmanned aircraft.

  5. An Experimental Study of the Dropwise Condensation on Physically Processed Surface

    International Nuclear Information System (INIS)

    Choi, Jaeyoung; Chang, Soonheung; Watanabe, N.; Sambuichi, T.; Shiota, D.; Aritomi, M.

    2013-01-01

    Recent research by Kawakubo et al. derived empirical condensation heat transfer correlation suitable for wider range of operating condition in presence of non-condensable gas. However, their proposals of PCCS are focused on plane tube surface. To design better PCCS heat exchanger with high heat transfer coefficient new treatment on condensation surface can be considered in order to maintain dropwise condensation, the heat transfer coefficient of which has an order of magnitude larger than those of film condensation. Advanced research measure dropwise condensation heat transfer coefficient of Au and Cr coated surface based on number of droplet and droplet growth rate. However, coated surface is not desirable in power plant due to its duration of few years. On the other hand, physical processing (micro holes and patterns) on stainless steel and titanium surface is expected to perform better heat transfer, also is durable for the whole reactor lifetime. Since there is no published research about dropwise condensation for physically processed surface on SUS and Ti, the purposes of this research are to measure the condensation heat transfer coefficient and analyze its mechanism of enhanced heat transfer of treated SUS and Ti commonly used to nuclear plant. In the comparison of theoretical equation and experiment, it shows same result that heat transfer coefficient is proportional to maximum droplet diameter power to -0.321. Moreover, in the comparison of bare and processed surface, heat transfer coefficient decreases in processed surface

  6. Effect of fluoride on ion exchange, remineralization and acid resistance of surface enamel

    Energy Technology Data Exchange (ETDEWEB)

    Aponte-Merced, L A; Feagin, F F [Alabama Univ., Birmingham (USA)

    1979-01-01

    In a system of constant ion activities the rates of F/sup -/ exchange in enamel, under conditions of exchange alone and remineralization, depended on the concentration of F/sup -/ in solutions. Acid resistance of surface minerals resulted from exchange of F/sup -/ for OH/sup -/ in the enamel at pH 7.0 and 4.5. The level of 0.5 mM NaF, compared to 0.05 and 5.0 mM, caused maximum rates of isotopic exchange of /sup 45/Ca and maximum acid resistance of enamel. Similarly low levels of F/sup -/ may be feasible for use in caries prevention in the absence and presence of remineralization.

  7. Developing maintenance technologies for FBR's heat exchanger units by advanced laser processing

    International Nuclear Information System (INIS)

    Nishimura, Akihiko; Shimada, Yukihiro

    2011-01-01

    Laser processing technologies were developed for the purpose of maintenance of FBR's heat exchanger units. Ultrashort laser processing fabricated fiber Bragg grating sensor for seismic monitoring. Fiber laser welding with a newly developed robot system repair cracks on inner wall of heat exchanger tubes. Safety operation of the heat exchanger units will be improved by the advanced laser processing technologies. These technologies are expected to be applied to the maintenance for the next generation FBRs. (author)

  8. NOAA Climate Data Record (CDR) of Ocean Near Surface Atmospheric Properties, Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Ocean Surface Bundle (OSB) Climate Data Record (CDR) consist of three parts: sea surface temperature; near-surface wind speed, air temperature, and specific...

  9. Charge exchange processes of high energy heavy ions channeled in crystals

    International Nuclear Information System (INIS)

    Andriamonje, S.; Dural, J.; Toulemonde, M.; Groeneveld, K.O.; Maier, R.; Quere, Y.

    1990-01-01

    The interaction of moving ions with single crystals is very sensitive to the orientation of the incident beam with respect to the crystalline directions of the target. The experiments show that high energy heavy ion channeling deeply modifies the slowing down and charge exchange processes. In this review, we describe the opportunity offered by channeling conditions to study the charge exchange processes. Some aspects of the charge exchange processes with high energy channeled heavy ions are selected from the extensive literature published over the past few years on this subject. Special attention is given to the work performed at the GANIL facility on the study of Radiative Electron Capture (REG), Electron Impact Ionisation (EII), and convoy electron emission. Finally we emphasize the interest of studying resonant charge exchange processes such as Resonant Coherent Excitation (RCE), Resonant Transfer and Excitation (RTE) or Dielectronic Recombination (DR) and the recently proposed Nuclear Excitation by Electron Capture (NEEC)

  10. Investigation and optimization of the depth of flue gas heat recovery in surface heat exchangers

    Science.gov (United States)

    Bespalov, V. V.; Bespalov, V. I.; Melnikov, D. V.

    2017-09-01

    Economic issues associated with designing deep flue gas heat recovery units for natural gas-fired boilers are examined. The governing parameter affecting the performance and cost of surface-type condensing heat recovery heat exchangers is the heat transfer surface area. When firing natural gas, the heat recovery depth depends on the flue gas temperature at the condenser outlet and determines the amount of condensed water vapor. The effect of the outlet flue gas temperature in a heat recovery heat exchanger on the additionally recovered heat power is studied. A correlation has been derived enabling one to determine the best heat recovery depth (or the final cooling temperature) maximizing the anticipated reduced annual profit of a power enterprise from implementation of energy-saving measures. Results of optimization are presented for a surface-type condensing gas-air plate heat recovery heat exchanger for the climatic conditions and the economic situation in Tomsk. The predictions demonstrate that it is economically feasible to design similar heat recovery heat exchangers for a flue gas outlet temperature of 10°C. In this case, the payback period for the investment in the heat recovery heat exchanger will be 1.5 years. The effect of various factors on the optimal outlet flue gas temperature was analyzed. Most climatic, economical, or technological factors have a minor effect on the best outlet temperature, which remains between 5 and 20°C when varying the affecting factors. The derived correlation enables us to preliminary estimate the outlet (final) flue gas temperature that should be used in designing the heat transfer surface of a heat recovery heat exchanger for a gas-fired boiler as applied to the specific climatic conditions.

  11. Temporal and Spatial Variabilities of Japan Sea Surface Temperature and Atmospheric Forcings

    National Research Council Canada - National Science Library

    Chu, Peter C; Chen, Yuchun; Lu, Shihua

    1998-01-01

    ...) and surface air temperature (SAT) data during 1982-1994 and the National Center for Atmospheric Research surface wind stress curl data during 1982-1989 to investigate the Japan Sea SST temporal and spatial variabilities...

  12. Analysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes

    KAUST Repository

    Hong, Jongsup

    2013-10-01

    The catalytic kinetics of oxygen surface exchange and fuel oxidation for a perovskite membrane is investigated in terms of the thermodynamic state in the immediate vicinity of or on the membrane surface. Perovskite membranes have been shown to exhibit both oxygen perm-selectivity and catalytic activity for hydrocarbon conversion. A fundamental description of their catalytic surface reactions is needed. In this study, we infer the kinetic parameters for heterogeneous oxygen surface exchange and catalytic fuel conversion reactions, based on permeation rate measurements and a spatially resolved physical model that incorporates detailed chemical kinetics and transport in the gas-phase. The conservation equations for surface and bulk species are coupled with those of the gas-phase species through the species production rates from surface reactions. It is shown that oxygen surface exchange is limited by dissociative/associative adsorption/desorption of oxygen molecules onto/from the membrane surface. On the sweep side, while the catalytic conversion of methane to methyl radical governs the overall surface reactions at high temperature, carbon monoxide oxidation on the membrane surface is dominant at low temperature. Given the sweep side conditions considered in ITM reactor experiments, gas-phase reactions also play an important role, indicating the significance of investigating both homogeneous and heterogeneous chemistry and their coupling when examining the results. We show that the local thermodynamic state at the membrane surface should be considered when constructing and examining models of oxygen permeation and heterogeneous chemistry. © 2013 Elsevier B.V.

  13. Analysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes

    KAUST Repository

    Hong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.

    2013-01-01

    The catalytic kinetics of oxygen surface exchange and fuel oxidation for a perovskite membrane is investigated in terms of the thermodynamic state in the immediate vicinity of or on the membrane surface. Perovskite membranes have been shown to exhibit both oxygen perm-selectivity and catalytic activity for hydrocarbon conversion. A fundamental description of their catalytic surface reactions is needed. In this study, we infer the kinetic parameters for heterogeneous oxygen surface exchange and catalytic fuel conversion reactions, based on permeation rate measurements and a spatially resolved physical model that incorporates detailed chemical kinetics and transport in the gas-phase. The conservation equations for surface and bulk species are coupled with those of the gas-phase species through the species production rates from surface reactions. It is shown that oxygen surface exchange is limited by dissociative/associative adsorption/desorption of oxygen molecules onto/from the membrane surface. On the sweep side, while the catalytic conversion of methane to methyl radical governs the overall surface reactions at high temperature, carbon monoxide oxidation on the membrane surface is dominant at low temperature. Given the sweep side conditions considered in ITM reactor experiments, gas-phase reactions also play an important role, indicating the significance of investigating both homogeneous and heterogeneous chemistry and their coupling when examining the results. We show that the local thermodynamic state at the membrane surface should be considered when constructing and examining models of oxygen permeation and heterogeneous chemistry. © 2013 Elsevier B.V.

  14. Atmospheric stability analysis over statically and dynamically rough surfaces

    Science.gov (United States)

    Maric, Emina; Metzger, Meredith; Singha, Arindam; Sadr, Reza

    2011-11-01

    The ratio of buoyancy flux to turbulent kinetic energy production in the atmospheric surface layer is investigated experimentally for air flow over two types of surfaces characterized by static and dynamic roughness. In this study, ``static'' refers to the time-invariant nature of naturally-occurring roughness over a mud/salt playa; while, ``dynamic'' refers to the behavior of water waves along an air-water interface. In both cases, time-resolved measurements of the momentum and heat fluxes were acquired from synchronized 3D sonic anemometers mounted on a vertical tower. Field campaigns were conducted at two sites, representing the ``statically'' and ``dynamically'' rough surfaces, respectively: (1) the SLTEST facility in Utah's western desert, and (2) the new Doha airport in Qatar under construction along the coast of the Persian Gulf. Note, at site 2, anemometers were located directly above the water by extension from a tower secured to the end of a 1 km-long pier. Comparisons of the Monin-Obukhov length, flux Richardson number, and gradient Richardson number are presented, and discussed in the context of the observed evolution of the turbulent spectra in response to diurnal variations of atmospheric stability. Supported by the Qatar National Research Fund.

  15. Controlling the surface termination of NdGaO3 (110): the role of the gas atmosphere.

    Science.gov (United States)

    Cavallaro, Andrea; Harrington, George F; Skinner, Stephen J; Kilner, John A

    2014-07-07

    In this work the effect of gas atmosphere on the surface termination reconstruction of single crystal NdGaO3 (110) (NGO) during thermal annealing was analyzed. Using Low Energy Ion Scattering (LEIS) it has been possible to study the chemical composition of the first atomic layer of treated NGO single crystal samples. NGO has been analyzed both as-received and after a specific thermal treatment at 1000 °C under different gas fluxes (argon, nitrogen, static air, synthetic air, nitrogen plus 5% hydrogen and wet synthetic air respectively). Thermal annealing of perovskite single crystals, as already reported in the literature, is used to obtain a fully A-cation surface termination. Nevertheless the effect of the gas-atmosphere on this process has not been previously reported. By the use of sequential low energy Ar(+) sputtering combined with the primary ion LEIS analysis, the reconstruction of the outermost atomic layers has allowed the clarification of the mechanism of NGO neodymium surface enrichment. It is proposed that the gallium at the surface is submitted to a reduction/evaporation mechanism caused by low oxygen partial pressure and/or high water pressure in the vector gas. Below the first surface atomic layers of an as-received NGO single-crystal a gallium-rich phase has also been observed.

  16. GROUNDWATER-SURFACE WATER EXCHANGE AND IMPLICATIONS FOR LARGE RIVER RESTORATION

    Science.gov (United States)

    Movement of river water into and out of high-porosity alluvial deposits can have an important influence on surface water quality and aquatic habitat. In our study of a 60-km reach of the Willamette River in Oregon, USA, we: 1) used tracers to estimate the rate of exchange betw...

  17. Atmospheric Water Harvesting: Role of Surface Wettability and Edge Effect

    KAUST Repository

    Jin, Yong; Zhang, Lianbin; Wang, Peng

    2017-01-01

    Atmospheric water is emerging as an important potable water source. The present work experimentally and theoretically investigates water condensation and collection on flat surfaces with contrasting contact angles and contact angle hysteresis (CAH

  18. Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air

    International Nuclear Information System (INIS)

    Yang Guoqing; Zhang Guanjun; Zhang Wenyuan

    2011-01-01

    Improvement of polytetrafluoroethylene surface energy by non-thermal plasma treatment is presented, using a nanosecond-positive-edge repetitive pulsed dielectric barrier discharge generator in atmospheric air. The electrical parameters including discharging power, peak and density of micro-discharge current were calculated, and the electron energy was estimated. Surface treatment experiments of polytetrafluoroethylene films were conducted for both different applied voltages and different treating durations. Results show that the surface energy of polytetrafluoroethylene film could be improved to 40 mJ/m 2 or more by plasma treatment. Surface roughness measurement and surface X-ray photoelectron spectroscopy analysis indicate that there are chemical etching and implantation of polar oxygen groups in the sample surface treating process, resulting in the improvement of the sample surface energy. Compared with an AC source of 50 Hz, the dielectric barrier discharges generated by a repetitive pulsed source could provide higher peak power, lower mean power, larger micro-discharge current density and higher electron energy. Therefore, with the same applied peak voltage and treating duration, the improvement of polytetrafluoroethylene surface energy using repetitive pulsed plasma is more effective, and the plasma treatment process based on repetitive pulsed dielectric barrier discharges in air is thus feasible and applicable.

  19. Process heat exchanger for SO3 decomposer fabricated with Ni-based alloys surface modified by SiC film deposition and N ion beam bombardment

    International Nuclear Information System (INIS)

    Park, Jae-Won; Kim, Hyung-Jin; Choi, Yong-Woon; Kim, Yong-Wan

    2007-01-01

    In the iodine-sulfur (IS) cycle for the hydrogen production using the high temperature gas-cooled reactor (HTGR), one of the important components is the SO 3 decomposer which generates SO 2 and SO 3 gases under high temperature conditions. Since this environment is extremely corrosive, the materials used for the decomposer should meet excellent mechanical properties at the elevated temperature as well as high corrosion resistance in SO 2 /SO 3 atmospheres. In general, ceramics are protective against the corrosion, but metals exhibit limited corrosion resistance. In this work, the ceramic coating on the metallic substrate was studied. We selected SiC as coating materials and Ni-based alloys as the substrate materials. Since the adhesion between the coated layer and the substrate is most crucial in this application, we attempted to develop Ion Beam Mixing (IBM) technique to produce a highly adherent coated layer. For the fabrication of process heat exchange for SO 3 decomposer, the diffusion bonding at ∼900 .deg. C is employed because this temperature does not affect the mechanical properties of materials

  20. Hydrogen-water isotopic exchange process

    International Nuclear Information System (INIS)

    Cheung, H.

    1984-01-01

    The objects of this invention are achieved by a dual temperature isotopic exchange process employing hydrogen-water exchange with water passing in a closed recirculation loop between a catalyst-containing cold tower and the upper portion of a catalyst-containing hot tower, with feed water being introduced to the lower portion of the hot tower and being maintained out of contact with the water recirculating in the closed loop. Undue retarding of catalyst activity during deuterium concentration can thus be avoided. The cold tower and the upper portion of the hot tower can be operated with relatively expensive catalyst material of higher catalyst activity, while the lower portion of the hot tower can be operated with a relatively less expensive, more rugged catalyst material of lesser catalyst activity. The feed water stream, being restricted solely to the lower portion of the hot tower, requires minimal pretreatment for the removal of potential catalyst contaminants. The catalyst materials are desirably coated with a hydrophobic treating material so as to be substantially inaccessible to liquid water, thereby retarding catalyst fouling while being accessible to the gas for enhancing isotopic exchange between hydrogen gas and water vapor. A portion of the water of the closed loop can be passed to a humidification zone to heat and humidify the circulating hydrogen gas and then returned to the closed loop

  1. Plasma nitriding - an eco friendly surface hardening process

    International Nuclear Information System (INIS)

    Mukherjee, S.

    2015-01-01

    Surface hardening is a process of heating the metal such that the surface gets only hardened. This process is adopted for many components like gears, cams, and crankshafts, which desire high hardness on the outer surface with a softer core to withstand the shocks. So, to attain such properties processes like carburising, nitriding, flame hardening and induction hardening are employed. Amongst these processes nitriding is the most commonly used process by many industries. In nitriding process the steel material is heated to a temperature of around 550 C and then exposed to atomic nitrogen. This atomic nitrogen reacts with iron and other alloying elements and forms nitrides, which are very hard in nature. By this process both wear resistance and hardness of the product can be increased. The atomic nitrogen required for this process can be obtained using ammonia gas (gas nitriding), cyanide based salt bath (liquid nitriding) and plasma medium (plasma nitriding). However, plasma nitriding has recently received considerable industrial interest owing to its characteristic of faster nitrogen penetration, short treatment time, low process temperature, minimal distortion, low energy use and easier control of layer formation compared with conventional techniques such as gas and liquid nitriding. This process can be used for all ferrous materials including stainless steels. Plasma nitriding is carried out using a gas mixture of nitrogen and hydrogen gas at sub atmospheric pressures hence, making it eco-friendly in nature. Plasma nitriding allows modification of the surface layers and hardness profiles by changing the gas mixture and temperature. The wide applicable temperature range enables a multitude of applications, beyond the possibilities of gas or salt bath processes. This has led to numerous applications of this process in industries such as the manufacture of machine parts for plastics and food processing, packaging and tooling as well as pumps and hydraulic, machine

  2. Untangling the Chemical Evolution of Titan's Atmosphere and Surface -- From Homogeneous to Heterogeneous Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Ralf I.; Maksyutenko, Pavlo; Ennis, Courtney; Zhang, Fangtong; Gu, Xibin; Krishtal, Sergey P.; Mebel, Alexander M.; Kostko, Oleg; Ahmed, Musahid

    2010-03-16

    The arrival of the Cassini-Huygens probe at Saturn's moon Titan - the only Solar System body besides Earth and Venus with a solid surface and a thick atmosphere with a pressure of 1.4 atm at surface level - in 2004 opened up a new chapter in the history of Solar System exploration. The mission revealed Titan as a world with striking Earth-like landscapes involving hydrocarbon lakes and seas as well as sand dunes and lava-like features interspersed with craters and icy mountains of hitherto unknown chemical composition. The discovery of a dynamic atmosphere and active weather system illustrates further the similarities between Titan and Earth. The aerosol-based haze layers, which give Titan its orange-brownish color, are not only Titan's most prominent optically visible features, but also play a crucial role in determining Titan's thermal structure and chemistry. These smog-like haze layers are thought to be very similar to those that were present in Earth's atmosphere before life developed more than 3.8 billion years ago, absorbing the destructive ultraviolet radiation from the Sun, thus acting as 'prebiotic ozone' to preserve astrobiologically important molecules on Titan. Compared to Earth, Titan's low surface temperature of 94 K and the absence of liquid water preclude the evolution of biological chemistry as we know it. Exactly because of these low temperatures, Titan provides us with a unique prebiotic 'atmospheric laboratory' yielding vital clues - at the frozen stage - on the likely chemical composition of the atmosphere of the primitive Earth. However, the underlying chemical processes, which initiate the haze formation from simple molecules, have been not understood well to date.

  3. Ion exchange kinetics of alkaline earths on Zr(IV) arsenosilicate cation exchanger

    International Nuclear Information System (INIS)

    Varshney, K.G.; Agrawal, S.; Varshney, K.

    1984-01-01

    A new approach based on the Nernst-Planck equations was applied to study the ion exchange kinetics for the exchange reactions of Mg(II), Ca(II), Sr(II) and Ba(II) with H + -ions at various temperatures on the zirconium(IV) arsenosilicate phase. Under the conditions of particle diffusion, the rate of exchange was found to be independent of the metal ion concentration at and above 0.1 M in aqueous medium. Energy and entropy of activation were determined and found to vary linearly with the ionic radii and mobilities of alkaline earths, a unique feature observed for an inorganic ion exchanger. The results are useful for predicting the ion exchange processes occurring on the surface of an inorganic material of the type studied. (author)

  4. Transport and mass exchange processes in sand and gravel aquifers (v.1)

    International Nuclear Information System (INIS)

    Moltyaner, G.

    1990-01-01

    The objectives of this conference were to exchange information on promising field measurement techniques used for the characterization of spatial variability of geologic formations and on new methods used for quantifying the effect of spatial variability on groundwater flow and transport of materials; to discuss novel developments in the theory of transport processes and simulation methods; and to present views and opinions on future initiatives and directions in the design of large-scale field tracer experiments and the development of conceptual and mathematical models of transport and mass exchange processes. The 46 papers presented in these proceedings are divided into six sections: field studies of transport processes; groundwater tracers and novel field measurement techniques; promising methods and field measurement techniques for quantifying the effect of geological heterogeneities on groundwater flow and transport; novel developments in the theory of transport processes; numerical modelling of transport and mass exchange processes; and field and modelling studies of mass exchange processes. (L.L.)

  5. Influence of radioactivity on surface charging and aggregation kinetics of particles in the atmosphere.

    Science.gov (United States)

    Kim, Yong-Ha; Yiacoumi, Sotira; Lee, Ida; McFarlane, Joanna; Tsouris, Costas

    2014-01-01

    Radioactivity can influence surface interactions, but its effects on particle aggregation kinetics have not been included in transport modeling of radioactive particles. In this research, experimental and theoretical studies have been performed to investigate the influence of radioactivity on surface charging and aggregation kinetics of radioactive particles in the atmosphere. Radioactivity-induced charging mechanisms have been investigated at the microscopic level, and heterogeneous surface potential caused by radioactivity is reported. The radioactivity-induced surface charging is highly influenced by several parameters, such as rate and type of radioactive decay. A population balance model, including interparticle forces, has been employed to study the effects of radioactivity on particle aggregation kinetics in air. It has been found that radioactivity can hinder aggregation of particles because of similar surface charging caused by the decay process. Experimental and theoretical studies provide useful insights into the understanding of transport characteristics of radioactive particles emitted from severe nuclear events, such as the recent accident of Fukushima or deliberate explosions of radiological devices.

  6. Impacts of the Air Temperature Rising on the Soil Freezing-thawing Processes and the Surface Fluxes on the Tibetan Plateau

    Science.gov (United States)

    Zheng, G.; Yang, D.

    2017-12-01

    The Tibetan Plateau (TP) is the highest plateau all over the world and plays an essential role on the global water cycle and the atmospheric circulation, because many large rivers originating there and it acts as a "heat source" to pump the Asian summer monsoon. During the past 50 years, the TP is among the most sensitive regions to the climatic warming. Many previous researches have been delved into the impacts of the permafrost degradation there. But the variations and the impacts of the changes of the seasonally frozen ground, which consists 50 % of the plateau region, have been less discussed. Thus, this study uses the geomorphology-based eco-hydrological model to simulate the long-term land surface processes on 37 after picked China Meteorological Administration stations. And, these stations uniformly locate within the seasonally frozen regions of the TP. The modelled freezing-thawing cycles have successfully reproduced the observations with the correlation squares of 0.8 (significance level p rate of 0.13 m/decade and 4.6 days/decade. The changes of the near-surface freezing-thawing cycles exert large influences on the flux exchanges between the land surface and the atmosphere. The advance (delay) of the freezing ending (starting) time has caused 13 % (p influence the following summer monsoon and redistribute the precipitation over the southeastern Asia. Also, as the incoming radiation and the latent heat keeping stable, less sensible heat fluxes would lead to more ground heat storage which provides a better thermal condition for the vegetation growth.

  7. Scaling Hydrologic Exchange Flows and Biogeochemical Reactions from Bedforms to Basins

    Science.gov (United States)

    Harvey, J. W.; Gomez-Velez, J. D.

    2015-12-01

    River water moves in and out of the main channel along pathways that are perpendicular to the channel's main axis that flow across or beneath the ground surface. These hydrologic exchange flows (HEFs) are difficult to measure, yet no less important than a river's downstream flow, or exchanges with the atmosphere and deeper groundwater (Harvey and Gooseff, 2015, WRR). There are very few comprehensive investigations of exchange fluxes to understand patterns with river size and relative importance of specific types of exchanges. We used the physically based model NEXSS to simulate multiple scales of hyporheic flow and their cumulative effects on solute reaction in large basins (on the order of Chesapeake Bay basin or larger). Our goal was to explain where and when particular types of hyporheic flow are important in enhancing key biogeochemical reactions, such as organic carbon respiration and denitrification. Results demonstrate that hyporheic flux (expressed per unit area of streambed) varies surprisingly little across the continuum of first-order streams to eighth-order rivers, and vertical exchange beneath small bedforms dominates in comparison with lateral flow beneath gravel bars and meanders. Also, the river's entire volume is exchanged many times with hyporheic flow within a basin, and the turnover length (after one entire river volume is exchanged) is strongly influenced by hydrogeomorphic differences between physiographic regions as well as by river size. The cumulative effects on biogeochemical reactions were assessed using a the reaction significance factor, RSF, which computes the cumulative potential for hyporheic reactions using a dimensionless index that balances reaction progress in a single hyporheic flow path against overall processing efficiency of river turnover through hyporheic flow paths of that type. Reaction significance appears to be strongly dominated by hydrologic factors rather than biogeochemical factors, and seems to be dominated by

  8. Atmospheric sensitivity to land surface changes: comparing the impact of albedo, roughness, and evaporative resistance on near-surface air temperature using an idealized land model.

    Science.gov (United States)

    Lague, M. M.; Swann, A. L. S.; Bonan, G. B.

    2017-12-01

    Past studies have demonstrated how changes in vegetation can impact the atmosphere; however, it is often difficult to identify the exact physical pathway through which vegetation changes drive an atmospheric response. Surface properties (such as vegetation color, or height) control surface energy fluxes, which feed back on the atmosphere on both local and global scales by modifying temperatures, cloud cover, and energy gradients. Understanding how land surface properties influence energy fluxes is crucial for improving our understanding of how vegetation change - past, present, and future - impacts the atmosphere, global climate, and people. We explore the sensitivity of the atmosphere to perturbations of three land surface properties - albedo, roughness, and evaporative resistance - using an idealized land model coupled to an Earth System Model. We derive a relationship telling us how large a change in each surface property is required to drive a local 0.1 K change in 2m air temperature. Using this idealized framework, we are able to separate the influence on the atmosphere of each individual surface property. We demonstrate that the impact of each surface property on the atmosphere is spatially variable - that is, a similar change in vegetation can have different climate impacts if made in different locations. This analysis not only improves our understanding of how the land system can influence climate, but also provides us with a set of theoretical limits on the potential climate impact of arbitrary vegetation change (natural or anthropogenic).

  9. Surface modification of polyester synthetic leather with tetramethylsilane by atmospheric pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kan, C.W., E-mail: tccwk@polyu.edu.hk [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Kwong, C.H. [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Ng, S.P. [Hong Kong Community College, The Hong Kong Polytechnic University (Hong Kong)

    2015-08-15

    Highlights: • Atmospheric pressure plasma treatment improved surface performance of polyester synthetic leather with tetramethylsilane. • XPS and FTIR confirmed the deposition of organosilanes on the sample's surface. • Contact angle increases to 138° after plasma treatment. - Abstract: Much works have been done on synthetic materials but scarcely on synthetic leather owing to its surface structures in terms of porosity and roughness. This paper examines the use of atmospheric pressure plasma (APP) treatment for improving the surface performance of polyester synthetic leather by use of a precursor, tetramethylsilane (TMS). Plasma deposition is regarded as an effective, simple and single-step method with low pollution. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) confirm the deposition of organosilanes on the sample's surface. The results showed that under a particular combination of treatment parameters, a hydrophobic surface was achieved on the APP treated sample with sessile drop static contact angle of 138°. The hydrophobic surface is stable without hydrophilic recovery 30 days after plasma treatment.

  10. Surface modification of polyester synthetic leather with tetramethylsilane by atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Kan, C.W.; Kwong, C.H.; Ng, S.P.

    2015-01-01

    Highlights: • Atmospheric pressure plasma treatment improved surface performance of polyester synthetic leather with tetramethylsilane. • XPS and FTIR confirmed the deposition of organosilanes on the sample's surface. • Contact angle increases to 138° after plasma treatment. - Abstract: Much works have been done on synthetic materials but scarcely on synthetic leather owing to its surface structures in terms of porosity and roughness. This paper examines the use of atmospheric pressure plasma (APP) treatment for improving the surface performance of polyester synthetic leather by use of a precursor, tetramethylsilane (TMS). Plasma deposition is regarded as an effective, simple and single-step method with low pollution. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) confirm the deposition of organosilanes on the sample's surface. The results showed that under a particular combination of treatment parameters, a hydrophobic surface was achieved on the APP treated sample with sessile drop static contact angle of 138°. The hydrophobic surface is stable without hydrophilic recovery 30 days after plasma treatment

  11. Towards a Global Unified Model of Europa's Tenuous Atmosphere

    Science.gov (United States)

    Plainaki, Christina; Cassidy, Tim A.; Shematovich, Valery I.; Milillo, Anna; Wurz, Peter; Vorburger, Audrey; Roth, Lorenz; Galli, André; Rubin, Martin; Blöcker, Aljona; Brandt, Pontus C.; Crary, Frank; Dandouras, Iannis; Jia, Xianzhe; Grassi, Davide; Hartogh, Paul; Lucchetti, Alice; McGrath, Melissa; Mangano, Valeria; Mura, Alessandro; Orsini, Stefano; Paranicas, Chris; Radioti, Aikaterini; Retherford, Kurt D.; Saur, Joachim; Teolis, Ben

    2018-02-01

    Despite the numerous modeling efforts of the past, our knowledge on the radiation-induced physical and chemical processes in Europa's tenuous atmosphere and on the exchange of material between the moon's surface and Jupiter's magnetosphere remains limited. In lack of an adequate number of in situ observations, the existence of a wide variety of models based on different scenarios and considerations has resulted in a fragmentary understanding of the interactions of the magnetospheric ion population with both the moon's icy surface and neutral gas envelope. Models show large discrepancy in the source and loss rates of the different constituents as well as in the determination of the spatial distribution of the atmosphere and its variation with time. The existence of several models based on very different approaches highlights the need of a detailed comparison among them with the final goal of developing a unified model of Europa's tenuous atmosphere. The availability to the science community of such a model could be of particular interest in view of the planning of the future mission observations (e.g., ESA's JUpiter ICy moons Explorer (JUICE) mission, and NASA's Europa Clipper mission). We review the existing models of Europa's tenuous atmosphere and discuss each of their derived characteristics of the neutral environment. We also discuss discrepancies among different models and the assumptions of the plasma environment in the vicinity of Europa. A summary of the existing observations of both the neutral and the plasma environments at Europa is also presented. The characteristics of a global unified model of the tenuous atmosphere are, then, discussed. Finally, we identify needed future experimental work in laboratories and propose some suitable observation strategies for upcoming missions.

  12. Soil atmosphere exchange of carbonyl sulfide (COS regulated by diffusivity depending on water-filled pore space

    Directory of Open Access Journals (Sweden)

    H. Van Diest

    2008-04-01

    Full Text Available The exchange of carbonyl sulfide (COS between soil and the atmosphere was investigated for three arable soils from Germany, China and Finland and one forest soil from Siberia for parameterization in the relation to ambient carbonyl sulfide (COS concentration, soil water content (WC and air temperature. All investigated soils acted as sinks for COS. A clear and distinct uptake optimum was found for the German, Chinese, Finnish and Siberian soils at 11.5%, 9%, 11.5%, and 9% soil WC, respectively, indicating that the soil WC acts as an important biological and physical parameter for characterizing the exchange of COS between soils and the atmosphere. Different optima of deposition velocities (Vd as observed for the Chinese, Finnish and Siberian boreal soil types in relation to their soil WC, aligned at 19% in relation to the water-filled pore space (WFPS, indicating the dominating role of gas diffusion. This interpretation was supported by the linear correlation between Vd and bulk density. We suggest that the uptake of COS depends on the diffusivity dominated by WFPS, a parameter depending on soil WC, soil structure and porosity of the soil.

  13. Modelling land atmosphere exchange of gaseous oxides of nitrogen in Europe

    NARCIS (Netherlands)

    Duyzer, J.; Fowler, D.

    1994-01-01

    This review outlines current understanding of the exchange processes and methods used to estimate regional NOy deposition. Several methods have been used to measure dry deposition. Measurement artefacts such as non-stationarity caused by local sources, monitors responding to other gases than NO2 and

  14. The character of resonant charge exchange involving highly excited atoms

    International Nuclear Information System (INIS)

    Kosarim, A. V.; Smirnov, B. M.; Capitelli, M.; Laricchiuta, A.

    2012-01-01

    We study the process of resonant charge exchange involving excited helium atoms with the principal quantum number n = 5 colliding with the helium ion in the ground state in the collision energy range from thermal up to 10 eV. This information may be important for the analysis of planet atmospheres containing helium, in particular, for Jupiter’s atmosphere, but our basic interest is the transition from the quantum to classical description of this process, where, due to large cross sections, evaluations of the cross sections are possible. For the chosen process, quantum theory allows determining the cross section as a result of a tunnel electron transition, while classical theory accounts for over-barrier electron transitions. The classical theory additionally requires effective transitions between states with close energies. The analysis of these transitions for helium with n = 5 shows that electron momenta and their projections are mixed for a part of the states, while for other states, the mixing is absent. A simple criterion to separate such states is given. In addition, the main contribution to the cross section of resonant charge exchange follows from tunnel electron transitions. As a result, the quantum theory is better for calculating the cross sections of resonant charge exchange than the classical one and also allows finding the partial cross sections of resonant charge exchange, while the classical approach gives the cross section of resonant charge exchange in a simple manner with the accuracy of 20%.

  15. Sensitivity of Climate Simulations to Land-Surface and Atmospheric Boundary-Layer Treatments-A Review.

    Science.gov (United States)

    Garratt, J. R.

    1993-03-01

    Aspects of the land-surface and boundary-layer treatments in some 20 or so atmospheric general circulation models (GCMS) are summarized. In only a small fraction of these have significant sensitivity studies been carried out and published. Predominantly, the sensitivity studies focus upon the parameterization of land-surface processes and specification of land-surface properties-the most important of these include albedo, roughness length, soil moisture status, and vegetation density. The impacts of surface albedo and soil moisture upon the climate simulated in GCMs with bare-soil land surfaces are well known. Continental evaporation and precipitation tend to decrease with increased albedo and decreased soil moisture availability. For example, results from numerous studies give an average decrease in continental precipitation of 1 mm day1 in response to an average albedo increase of 0.13. Few conclusive studies have been carried out on the impact of a gross roughness-length change-the primary study included an important statistical assessment of the impact upon the mean July climate around the globe of a decreased continental roughness (by three orders of magnitude). For example, such a decrease reduced the precipitation over Amazonia by 1 to 2 mm day1.The inclusion of a canopy scheme in a GCM ensures the combined impacts of roughness (canopies tend to be rougher than bare soil), albedo (canopies tend to be less reflective than bare soil), and soil-moisture availability (canopies prevent the near-surface soil region from drying out and can access the deep soil moisture) upon the simulated climate. The most revealing studies to date involve the regional impact of Amazonian deforestation. The results of four such studies show that replacing tropical forest with a degraded pasture results in decreased evaporation ( 1 mm day1) and precipitation (1-2 mm day1), and increased near-surface air temperatures (2 K).Sensitivity studies as a whole suggest the need for a

  16. Non-linear processes in the Earth atmosphere boundary layer

    Science.gov (United States)

    Grunskaya, Lubov; Valery, Isakevich; Dmitry, Rubay

    2013-04-01

    in the form of PAS instruments of processes of geophysical and man-triggered nature; to predict the presence of the features of geophysical nature in the electromagnetic field of the atmosphere boundary surface layer; to study dynamics the analyzed signals coming from the geophysical and man-triggered sources in the electrical and magnetic fields of the atmosphere boundary surface layer; to expose changes of the investigated time series in the periods preceding the appearance of the predicted phenomena; to form clusters of the time series being the features of the predicted events. On the base of the exposed clusters of the time series there have been built the predicting rules allowing to coordinate the probability of appearing the groups of the occurred events. The work is carried out with supporting of Program FPP #14.B37.210668, FPP #5.2071.2011, RFBR #11-05-97518.

  17. Supercritical fluid chromatography coupled with in-source atmospheric pressure ionization hydrogen/deuterium exchange mass spectrometry for compound speciation.

    Science.gov (United States)

    Cho, Yunju; Choi, Man-Ho; Kim, Byungjoo; Kim, Sunghwan

    2016-04-29

    An experimental setup for the speciation of compounds by hydrogen/deuterium exchange (HDX) with atmospheric pressure ionization while performing chromatographic separation is presented. The proposed experimental setup combines the high performance supercritical fluid chromatography (SFC) system that can be readily used as an inlet for mass spectrometry (MS) and atmospheric pressure photo ionization (APPI) or atmospheric pressure chemical ionization (APCI) HDX. This combination overcomes the limitation of an approach using conventional liquid chromatography (LC) by minimizing the amount of deuterium solvents used for separation. In the SFC separation, supercritical CO2 was used as a major component of the mobile phase, and methanol was used as a minor co-solvent. By using deuterated methanol (CH3OD), AP HDX was achieved during SFC separation. To prove the concept, thirty one nitrogen- and/or oxygen-containing standard compounds were analyzed by SFC-AP HDX MS. The compounds were successfully speciated from the obtained SFC-MS spectra. The exchange ions were observed with as low as 1% of CH3OD in the mobile phase, and separation could be performed within approximately 20min using approximately 0.24 mL of CH3OD. The results showed that SFC separation and APPI/APCI HDX could be successfully performed using the suggested method. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Study of the Effect of Turbulence and Large Obstacles on the Evaporation from Bare Soil Surface through Coupled Free-flow and Porous-medium Flow Model

    Science.gov (United States)

    Gao, B.; Smits, K. M.

    2017-12-01

    Evaporation is a strongly coupled exchange process of mass, momentum and energy between the atmosphere and the soil. Several mechanisms influence evaporation, such as the atmospheric conditions, the structure of the soil surface, and the physical properties of the soil. Among the previous studies associated with evaporation modeling, most efforts use uncoupled models which simplify the influences of the atmosphere and soil through the use of resistance terms. Those that do consider the coupling between the free flow and porous media flow mainly consider flat terrain with grain-scale roughness. However, larger obstacles, which may form drags or ridges allowing normal convective air flow through the soil, are common in nature and may affect the evaporation significantly. Therefore, the goal of this work is to study the influence of large obstacles such as wavy surfaces on the flow behavior within the soil and exchange processes to the atmosphere under turbulent free-flow conditions. For simplicity, the soil surface with large obstacles are represented by a simple wavy surface. To do this, we modified a previously developed theory for two-phase two-component porous-medium flow, coupling it to single-phase two-component turbulent flow to simulate and analyze the evaporation from wavy soil surfaces. Detailed laboratory scale experiments using a wind tunnel interfaced with a porous media tank were carried out to test the modeling results. The characteristics of turbulent flow across a permeable wavy surface are discussed. Results demonstrate that there is an obvious recirculation zone formed at the surface, which is special because of the accumulation of water vapor and the thicker boundary layer in this area. In addition, the influences of both the free flow and porous medium on the evaporation are also analyzed. The porous medium affects the evaporation through the amount of water it can provide to the soil surface; while the atmosphere influences the evaporation

  19. Cation exchange process for molten salt extraction residues

    International Nuclear Information System (INIS)

    Proctor, S.G.

    1975-01-01

    A new method, utilizing a cation exchange technique, has been developed for processing molten salt extraction (MSE) chloride salt residues. The developed ion exchange procedure has been used to separate americium and plutonium from gross quantities of magnesium, potassium, and sodium chloride that are present in the residues. The recovered plutonium and americium contained only 20 percent of the original amounts of magnesium, potassium, and sodium and were completely free of any detectable amounts of chloride impurity. (U.S.)

  20. The Role of Exchange Traded Funds in the Price Discovery Process of Stocks Listed on the Botswana Stock Exchange

    Directory of Open Access Journals (Sweden)

    Edson Kambeu

    2017-04-01

    Full Text Available In this paper we analyse the role of Exchange Traded Funds (ETFs in the price discovery process of stocks listed at the Botswana Stock Exchange.Using daily returns data covering the period 3 January 2013 to 31 December 2015   for Beta Betta ETF and Domestic Company Indices, we utilize a VECM model to find out whether the Betta Beta ETF is playing a significant role in the price discovery process of stocks listed on the Botswana Stock Exchange. We found the error correction term to be statistically significant thereby confirming that the Beta Betta ETF is playing a significant role in the price discovery of stocks listed on the Botswana Stock Exchange.

  1. Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Hanzhong, E-mail: jiahz@ms.xjb.ac.cn [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Li, Li [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Chen, Hongxia; Zhao, Yue [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); School of Geology and Mining Engineering, Xinjiang University, Urumqi 830046 (China); Li, Xiyou [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Wang, Chuanyi, E-mail: cywang@ms.xjb.ac.cn [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China)

    2015-04-28

    Graphical abstract: Roles of exchangeable cations in PAHs photodegradation on clay surafces under visible light. - Highlights: • Photolysis rate are strongly dependent on the type of cations on clay surface. • The strength of “cation–π” interactions governs the photodegradation rate of PAHs. • Several exchangeable cations could cause a shift in the absorption spectrum of PAHs. • Exchangeable cations influence the type and amount of reactive intermediates. - Abstract: Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe{sup 3+} > Al{sup 3+} > Cu{sup 2+} >> Ca{sup 2+} > K{sup +} > Na{sup +}, which is consistent with the binding energy of cation–π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation–π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na{sup +}-smectite and K{sup +}-smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe{sup 3+}, Al{sup 3+}, and Cu{sup 2+} are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O{sub 2}{sup −}· , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation.

  2. Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light

    International Nuclear Information System (INIS)

    Jia, Hanzhong; Li, Li; Chen, Hongxia; Zhao, Yue; Li, Xiyou; Wang, Chuanyi

    2015-01-01

    Graphical abstract: Roles of exchangeable cations in PAHs photodegradation on clay surafces under visible light. - Highlights: • Photolysis rate are strongly dependent on the type of cations on clay surface. • The strength of “cation–π” interactions governs the photodegradation rate of PAHs. • Several exchangeable cations could cause a shift in the absorption spectrum of PAHs. • Exchangeable cations influence the type and amount of reactive intermediates. - Abstract: Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe 3+ > Al 3+ > Cu 2+ >> Ca 2+ > K + > Na + , which is consistent with the binding energy of cation–π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation–π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na + -smectite and K + -smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe 3+ , Al 3+ , and Cu 2+ are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O 2 − · , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation

  3. Advancing land surface model development with satellite-based Earth observations

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-05-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts, we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability, and understanding of climate system feedbacks.

  4. Process for the exchange of hydrogen isotopes using a catalyst packed bed assembly

    International Nuclear Information System (INIS)

    Butler, J.P.; den Hartog, J.; Molson, F.W.R.

    1978-01-01

    A process for the exchange of hydrogen isotopes between streams of gaseous hydrogen and liquid water is described, wherein the streams of liquid water and gaseous hydrogen are simultaneously brought into contact with one another and a catalyst packed bed assembly while at a temperature in the range 273 0 to 573 0 K. The catalyst packed bed assembly may be composed of discrete carrier bodies of e.g. ceramics, metals, fibrous materials or synthetic plastics with catalytically active metal crystallites selected from Group VIII of the Periodic Table, partially enclosed in and bonded to the carrier bodies by a water repellent, water vapor and hydrogen gas permeable, porous, polymeric material, and discrete packing bodies having an exterior surface which is substantially hydrophilic and relatively noncatalytically active with regard to hydrogen isotope exchange between hydrogen gas and water vapor to that of the catalyst bodies

  5. Experimental study of the impact of large-scale wind farms on land–atmosphere exchanges

    International Nuclear Information System (INIS)

    Zhang Wei; Markfort, Corey D; Porté-Agel, Fernando

    2013-01-01

    Large-scale wind farms, covering a significant portion of the land and ocean surface, may affect the transport of momentum, heat, mass and moisture between the atmosphere and the land locally and globally. To understand the wind-farm–atmosphere interaction, we conducted wind-tunnel experiments to study the surface scalar (heat) flux using model wind farms, consisting of more than ten rows of wind turbines—having typical streamwise and spanwise spacings of five and four rotor diameters—in a neutral boundary layer with a heated surface. The spatial distribution of the surface heat flux was mapped with an array of surface heat flux sensors within the quasi-developed regime of the wind-farm flow. Although the overall surface heat flux change produced by the wind farms was found to be small, with a net reduction of 4% for a staggered wind farm and nearly zero change for an aligned wind farm, the highly heterogeneous spatial distribution of the surface heat flux, dependent on the wind-farm layout, was significant. The difference between the minimum and maximum surface heat fluxes could be up to 12% and 7% in aligned and staggered wind farms, respectively. This finding is important for planning intensive agriculture practice and optimizing farm land use strategy regarding wind energy project development. The well-controlled wind-tunnel experiments presented in this study also provide a first comprehensive dataset on turbulent flow and scalar transport in wind farms, which can be further used to develop and validate new parameterizations of surface scalar fluxes in numerical models. (letter)

  6. Charge-exchange processes in a divertor plasma with account for excited particles

    International Nuclear Information System (INIS)

    Krasheninnikov, S.I.; Lisitsa, V.S.; Pigarov, A.Yu.

    1988-01-01

    A model describing dynamics of neutral atoms and multicharge ions in tokamak plasma, taking account of cascade excitation effect on charge exchange and ionization processes, is constructed. Dependences of effective rate of processes of proton charge exchange on hydrogen atom and non-resonance helium atom charge exchange on proton and α-particle- on atomic hydrogen on tokamak divertor plasma parameters are calculated. It is shown that H + +He→H-He + charge exchange can make up a notable shave (∼30%) in full helium ionization rate. Accounting for Ge 2+ charge exchange on atomic hydrogen under INTOR reactor divertor plasma conditions can lead to substantial He 2+ →He + conversion and thus increase diverter plate sputtering by helium ions

  7. Spin-wave resonance frequency in ferromagnetic thin film with interlayer exchange coupling and surface anisotropy

    Science.gov (United States)

    Zhang, Shuhui; Rong, Jianhong; Wang, Huan; Wang, Dong; Zhang, Lei

    2018-01-01

    We have investigated the dependence of spin-wave resonance(SWR) frequency on the surface anisotropy, the interlayer exchange coupling, the ferromagnetic layer thickness, the mode number and the external magnetic field in a ferromagnetic superlattice film by means of the linear spin-wave approximation and Green's function technique. The SWR frequency of the ferromagnetic thin film is shifted to higher values corresponding to those of above factors, respectively. It is found that the linear behavior of SWR frequency curves of all modes in the system is observed as the external magnetic field is increasing, however, SWR frequency curves are nonlinear with the lower and the higher modes for different surface anisotropy and interlayer exchange coupling in the system. In addition, the SWR frequency of the lowest (highest) mode is shifted to higher (lower) values when the film thickness is thinner. The interlayer exchange coupling is more important for the energetically higher modes than for the energetically lower modes. The surface anisotropy has a little effect on the SWR frequency of the highest mode, when the surface anisotropy field is further increased.

  8. Formation and Evolution of the Atmosphere on Early Titan

    Science.gov (United States)

    Marounina, N.; Tobie, G.; Carpy, S.; Monteux, J.; Charnay, B.; Grasset, O.

    2014-12-01

    The mass and composition of Titan's massive atmosphere, which is dominated by N2 and CH4 at present, have probably varied all along its history owing to a combination of exogenous and endogenous processes. In a recent study, we investigated its fate during the Late Heavy Bombardment (LHB) by modeling the competitive loss and supply of volatiles by cometary impacts and their consequences on the atmospheric balance. We examine the emergence of an atmosphere as well as the evolution of a primitive atmosphere of various sizes and compositions. By considering an impactor population characteristic of the LHB, we showed that an atmosphere with a mass equivalent to the present-day one cannot be formed during the LHB era. Our calculations indicated that the high-velocity impacts during the LHB led to a strong atmospheric erosion, so that the pre-LHB atmosphere should be 5 to 7 times more massive than at present (depending mostly on the albedo), in order to sustain an atmosphere equivalent to the present-day one. This implies that either a massive atmosphere was formed on Titan during its accretion or that the nitrogen-rich atmosphere was generated after the LHB.To investigate the primitive atmosphere of the satellite, we consider chemical exchanges of volatils between a global water ocean at Titan's surface, generated by impact heating during the accretion and an atmosphere. We are currently developing a liquid-vapor equilibrium model for various initial oceanic composition to investigate how a massive atmosphere may be generated during the satellite growth and how it may evolve toward a composition dominated by N2. More generally, our model address how atmosphere may be generated in water-rich objects, which may be common around other stars.

  9. Experimental study on fouling in the heat exchangers of surface water heat pumps

    International Nuclear Information System (INIS)

    Bai, Xuelian; Luo, Te; Cheng, Kehui; Chai, Feng

    2014-01-01

    Fouling in the heat exchangers plays a key role on the performance of surface water heat pumps. It is also the basement for the system design criteria and operation energy efficiency. In this paper, experimental measurements are performed both in the field and the laboratory with different water qualities, temperatures and velocities. The research will focus on the dynamic growth characteristics of fouling and its main components. By studying the variation rules of fouling resistance, the fouling resistance allowance for certain water condition is recommended. Furthermore, a fouling prediction model in surface water heat pump will be developed and validated based on elaborating with fouling principle under specified water conditions. - Highlights: • Field and laboratory experiments are taken to measure the fouling variation. • Fouling growth process can be divided into four stages. • We recommend fouling resistance allowances for certain conditions. • A fouling prdiction model is developed and validated

  10. The fractal geometry of nutrient exchange surfaces does not provide an explanation for 3/4-power metabolic scaling

    Directory of Open Access Journals (Sweden)

    Painter Page R

    2005-08-01

    Full Text Available Abstract Background A prominent theoretical explanation for 3/4-power allometric scaling of metabolism proposes that the nutrient exchange surface of capillaries has properties of a space-filling fractal. The theory assumes that nutrient exchange surface area has a fractal dimension equal to or greater than 2 and less than or equal to 3 and that the volume filled by the exchange surface area has a fractal dimension equal to or greater than 3 and less than or equal to 4. Results It is shown that contradicting predictions can be derived from the assumptions of the model. When errors in the model are corrected, it is shown to predict that metabolic rate is proportional to body mass (proportional scaling. Conclusion The presence of space-filling fractal nutrient exchange surfaces does not provide a satisfactory explanation for 3/4-power metabolic rate scaling.

  11. Study on the surface reaction of LaNi{sub 5} alloy during discharge process in KOH solution

    Energy Technology Data Exchange (ETDEWEB)

    Tan Zuxian [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Yang Yifu [Department of Chemistry, Wuhan University, Wuhan 430072 (China)]. E-mail: yang-y-f1@vip.sina.com; Jiang Fengshan [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Shao Huixia [Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2006-10-05

    A new method for studying surface reaction of LaNi{sub 5} absorbing alloy in KOH solution (pH 12) was established. It is based on tip-substrate voltammetry of scanning electrochemical microscopy (SECM) where the tip faradic current is recorded while scanning the substrate potential. The Pt electrode is selected as tip electrode, and the Pt oxide formation-reduction is used as a pH-dependent reaction while the tip potential is held at a constant value. As substrate surface reactions proceed, the pH of solution can be changed, and then the tip faradic current is recorded. The mechanism of discharge process of LaNi{sub 5} alloy was analyzed by comparing the tip current (I {sub tip}) versus substrate potential (E {sub sub}) curve, which reflects the exchange of H{sup +} or OH{sup -} between the alloy surface and the solution, with the substrate current (I {sub sub}) versus substrate potential (E {sub sub}) curve, which reflects the exchange of electron on the LaNi{sub 5} alloy surface. The results showed that the OH{sup -} adsorption process is occurred before the electron transfer process during discharge process, and the adsorptive OH{sup -} helps the oxidation of adsorbed hydrogen atom on the alloy surface. A quantitative assessment for the maximum changes of pH during discharge process is also proposed, and the variation as large as 2.65 pH unit was detected.

  12. Study on the surface reaction of LaNi{sub 5} alloy during discharge process in KOH solution

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Zuxian; Yang, Yifu; Jiang, Fengshan; Shao, Huixia [Wuhan University, Wuhan (China). Department of Chemistry

    2006-10-05

    A new method for studying surface reaction of LaNi{sub 5} absorbing alloy in KOH solution (pH 12) was established. It is based on tip-substrate voltammetry of scanning electrochemical microscopy (SECM) where the tip faradic current is recorded while scanning the substrate potential. The Pt electrode is selected as tip electrode, and the Pt oxide formation-reduction is used as a pH-dependent reaction while the tip potential is held at a constant value. As substrate surface reactions proceed, the pH of solution can be changed, and then the tip faradic current is recorded. The mechanism of discharge process of LaNi{sub 5} alloy was analyzed by comparing the tip current (I{sub tip}) versus substrate potential (E{sub sub}) curve, which reflects the exchange of H{sup +} or OH{sup -} between the alloy surface and the solution, with the substrate current (I{sub sub}) versus substrate potential (E{sub sub}) curve, which reflects the exchange of electron on the LaNi{sub 5} alloy surface. The results showed that the OH{sup -} adsorption process is occurred before the electron transfer process during discharge process, and the adsorptive OH{sup -} helps the oxidation of adsorbed hydrogen atom on the alloy surface. A quantitative assessment for the maximum changes of pH during discharge process is also proposed, and the variation as large as 2.65 pH unit was detected. (author)

  13. ESA STSE Project “Sea Surface Temperature Diurnal Variability: Regional Extend – Implications in Atmospheric Modelling”

    DEFF Research Database (Denmark)

    Karagali, Ioanna

    of the vertical extend of diurnal signals. Drifting buoys provide measurements close to the surface but are not always available. Moored buoys are generally not able to resolve the daily SST signal, which strongly weakens with depth within the upper water column. For such reasons, the General Ocean Turbulence......, atmospheric and oceanic modelling, bio-chemical processes and oceanic CO2 studies. The diurnal variability of SST, driven by the coincident occurrence of low enough wind and solar heating, is currently not properly understood. Atmospheric, oceanic and climate models are currently not adequately resolving...... the daily SST variability, resulting in biases of the total heat budget estimates and therefore, demised model accuracies. The ESA STSE funded project SSTDV:R.EX.-IM.A.M. aimed at characterising the regional extend of diurnal SST signals and their impact in atmospheric modelling. This study will briefly...

  14. Surface-Atmosphere Moisture Interactions in the Frozen Ground Regions of Eurasia.

    Science.gov (United States)

    Ford, Trent W; Frauenfeld, Oliver W

    2016-01-18

    Climate models simulate an intensifying Arctic hydrologic cycle in response to climatic warming, however the role of surface-atmosphere interactions from degrading frozen ground is unclear in these projections. Using Modern-Era Retrospective Analysis for Research and Applications (MERRA) data in high-latitude Eurasia, we examine long-term variability in surface-atmosphere coupling as represented by the statistical relationship between surface evaporative fraction (EF) and afternoon precipitation. Changes in EF, precipitation, and their statistical association are then related to underlying permafrost type and snow cover. Results indicate significant positive trends in July EF in the Central Siberian Plateau, corresponding to significant increases in afternoon precipitation. The positive trends are only significant over continuous permafrost, with non-significant or negative EF and precipitation trends over isolated, sporadic, and discontinuous permafrost areas. Concurrently, increasing EF and subsequent precipitation are found to coincide with significant trends in May and June snowmelt, which potentially provides the moisture source for the observed enhanced latent heating and moisture recycling in the region. As climate change causes continuous permafrost to transition to discontinuous, discontinuous to sporadic, sporadic to isolated, and isolated permafrost disappears, this will also alter patterns of atmospheric convection, moisture recycling, and hence the hydrologic cycle in high-latitude land areas.

  15. Application of ion exchange processes for the treatment of radioactive waste and management of spent ion exchangers

    International Nuclear Information System (INIS)

    2002-01-01

    This report describes the ion exchange technologies currently used and under development in nuclear industry, in particular for waste management practices, along with the experience gained in their application and with the subsequent handling, treatment and conditioning of spent ion exchange media for long term storage and/or disposal. The increased role of inorganic ion exchangers for treatment of radioactive liquid waste, both in nuclear power plant operations and in the fuel reprocessing sector, is recognised in this report. The intention of this report is to consolidate the previous publications, document recent developments and describe the state of the art in the application of ion exchange processes for the treatment of radioactive liquid waste and the management of spent ion exchange materials

  16. Spatial Gradients in Trace Metal Concentrations in the Surface Microlayer of the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Antonio eTovar-Sanchez

    2014-12-01

    Full Text Available The relationship between dust deposition and surface water metal concentrations is poorly understood. Dissolution, solubility, and partitioning reactions of trace metals from dust particles are governed by complex chemical, biological, and physical processes occurring in the surface ocean. Despite that, the role of the sea surface microlayer (SML, a thin, but fundamental component modulating the air-sea exchange of materials has not been properly evaluated. Our study revealed that the SML of the Mediterranean Sea is enriched with bioactive trace metals (i.e., Cd, Co, Cu and Fe, ranging from 8 (for Cd to 1000 (for Fe times higher than the dissolved metal pool in the underlying water column. The highest enrichments were spatially correlated with the atmospheric deposition of mineral particles. Our mass balance results suggest that the SML in the Mediterranean Sea contains about 2 tonnes of Fe. However, we did not detect any trends between the concentrations of metals in SML with the subsurface water concentrations and biomass distributions. These findings suggest that future studies are needed to quantify the rate of metal exchange between the SML and the bioavailable pool and that the SML should be considered to better understand the effect of atmospheric inputs on the biogeochemistry of trace metals in the ocean.

  17. Enolate Stabilization by Anion-π Interactions: Deuterium Exchange in Malonate Dilactones on π-Acidic Surfaces.

    Science.gov (United States)

    Miros, François N; Zhao, Yingjie; Sargsyan, Gevorg; Pupier, Marion; Besnard, Céline; Beuchat, César; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2016-02-18

    Of central importance in chemistry and biology, enolate chemistry is an attractive topic to elaborate on possible contributions of anion-π interactions to catalysis. To demonstrate the existence of such contributions, experimental evidence for the stabilization of not only anions but also anionic intermediates and transition states on π-acidic aromatic surfaces is decisive. To tackle this challenge for enolate chemistry with maximal precision and minimal uncertainty, malonate dilactones are covalently positioned on the π-acidic surface of naphthalenediimides (NDIs). Their presence is directly visible in the upfield shifts of the α-protons in the (1) H NMR spectra. The reactivity of these protons on π-acidic surfaces is measured by hydrogen-deuterium (H-D) exchange for 11 different examples, excluding controls. The velocity of H-D exchange increases with π acidity (NDI core substituents: SO2 R>SOR>H>OR>OR/NR2 >SR>NR2 ). The H-D exchange kinetics vary with the structure of the enolate (malonates>methylmalonates, dilactones>dithiolactones). Moreover, they depend on the distance to the π surface (bridge length: 11-13 atoms). Most importantly, H-D exchange depends strongly on the chirality of the π surface (chiral sulfoxides as core substituents; the crystal structure of the enantiopure (R,R,P)-macrocycle is reported). For maximal π acidity, transition-state stabilizations up to -18.8 kJ mol(-1) are obtained for H-D exchange. The Brønsted acidity of the enols increases strongly with π acidity of the aromatic surface, the lowest measured pKa =10.9 calculates to a ΔpKa =-5.5. Corresponding to the deprotonation of arginine residues in neutral water, considered as "impossible" in biology, the found enolate-π interactions are very important. The strong dependence of enolate stabilization on the unprecedented seven-component π-acidity gradient over almost 1 eV demonstrates quantitatively that such important anion-π activities can be expected only from

  18. Surface energy balances of three general circulation models: Current climate and response to increasing atmospheric CO2

    International Nuclear Information System (INIS)

    Gutowski, W.J.; Gutzler, D.S.; Portman, D.; Wang, W.C.

    1988-04-01

    The surface energy balance simulated by state-of-the-art general circulation models at GFDL, GISS and NCAR for climates with current levels of atmospheric CO 2 concentration (control climate) and with twice the current levels. The work is part of an effort sponsored by the US Department of Energy to assess climate simulations produced by these models. The surface energy balance enables us to diagnose differences between models in surface temperature climatology and sensitivity to doubling CO 2 in terms of the processes that control surface temperature. Our analysis compares the simulated balances by averaging the fields of interest over a hierarchy of spatial domains ranging from the entire globe down to regions a few hundred kilometers across

  19. Atmospheric processing of iron carried by mineral dust

    Directory of Open Access Journals (Sweden)

    S. Nickovic

    2013-09-01

    Full Text Available Nutrification of the open ocean originates mainly from deposited aerosol in which the bio-avaliable iron is likely to be an important factor. The relatively insoluble iron in dust from arid soils becomes more soluble after atmospheric processing and, through its deposition in the ocean, could contribute to marine primary production. To numerically simulate the atmospheric route of iron from desert sources to sinks in the ocean, we developed a regional atmospheric dust-iron model that included parameterization of the transformation of iron to a soluble form caused by dust mineralogy, cloud processes and solar radiation. When compared with field data on the aerosol iron, which were collected during several Atlantic cruises, the results from the higher-resolution simulation experiments showed that the model was capable of reproducing the major observed patterns.

  20. Atmospheric-Pressure Plasma Interaction with Soft Materials as Fundamental Processes in Plasma Medicine.

    Science.gov (United States)

    Takenaka, Kosuke; Miyazaki, Atsushi; Uchida, Giichiro; Setsuhara, Yuichi

    2015-03-01

    Molecular-structure variation of organic materials irradiated with atmospheric pressure He plasma jet have been investigated. Optical emission spectrum in the atmospheric-pressure He plasma jet has been measured. The spectrum shows considerable emissions of He lines, and the emission of O and N radicals attributed to air. Variation in molecular structure of Polyethylene terephthalate (PET) film surface irradiated with the atmospheric-pressure He plasma jet has been observed via X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). These results via XPS and FT-IR indicate that the PET surface irradiated with the atmospheric-pressure He plasma jet was oxidized by chemical and/or physical effect due to irradiation of active species.