WorldWideScience

Sample records for atmosphere model description

  1. Description of Atmospheric Conditions at the Pierre Auger Observatory Using Meteorological Measurements and Models

    CERN Document Server

    Keilhauer, Bianca

    2012-01-01

    Atmospheric conditions at the site of a cosmic ray observatory must be known well for reconstructing observed extensive air showers, especially when measured using the fluorescence technique. For the Pierre Auger Observatory, a sophisticated network of atmospheric monitoring devices has been conceived. Part of this monitoring was a weather balloon program to measure atmospheric state variables above the Observatory. To use the data in reconstructions of air showers, monthly models have been constructed. Scheduled balloon launches were abandoned and replaced with launches triggered by high-energetic air showers as part of a rapid monitoring system. Currently, the balloon launch program is halted and atmospheric data from numerical weather prediction models are used. A description of the balloon measurements, the monthly models as well as the data from the numerical weather prediction are presented.

  2. The Chemistry of Atmosphere-Forest Exchange (CAFE Model – Part 1: Model description and characterization

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2010-09-01

    Full Text Available We present the Chemistry of Atmosphere-Forest Exchange (CAFE model, a vertically-resolved 1-D chemical transport model designed to probe the details of near-surface reactive gas exchange. CAFE integrates all key processes, including turbulent diffusion, emission, deposition and chemistry, throughout the forest canopy and mixed layer. It is the first model of its kind to incorporate the Master Chemical Mechanism (MCM and a suite of reactions for the oxidation of monoterpenes and sesquiterpenes, providing a more comprehensive description of the oxidative chemistry occurring within and above the forest. We use CAFE to simulate a young Ponderosa pine forest in the Sierra Nevada, CA. Utilizing meteorological constraints from the BEARPEX-2007 field campaign, we assess the sensitivity of modeled fluxes to parameterizations of diffusion, laminar sublayer resistance and radiation extinction. To characterize the general chemical environment of this forest, we also present modeled mixing ratio profiles of biogenic hydrocarbons, hydrogen oxides and reactive nitrogen. The vertical profiles of these species demonstrate a range of structures and gradients that reflect the interplay of physical and chemical processes within the forest canopy, which can influence net exchange.

  3. The Chemistry of Atmosphere-Forest Exchange (CAFE Model – Part 1: Model description and characterization

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2011-01-01

    Full Text Available We present the Chemistry of Atmosphere-Forest Exchange (CAFE model, a vertically-resolved 1-D chemical transport model designed to probe the details of near-surface reactive gas exchange. CAFE integrates all key processes, including turbulent diffusion, emission, deposition and chemistry, throughout the forest canopy and mixed layer. CAFE utilizes the Master Chemical Mechanism (MCM and is the first model of its kind to incorporate a suite of reactions for the oxidation of monoterpenes and sesquiterpenes, providing a more comprehensive description of the oxidative chemistry occurring within and above the forest. We use CAFE to simulate a young Ponderosa pine forest in the Sierra Nevada, CA. Utilizing meteorological constraints from the BEARPEX-2007 field campaign, we assess the sensitivity of modeled fluxes to parameterizations of diffusion, laminar sublayer resistance and radiation extinction. To characterize the general chemical environment of this forest, we also present modeled mixing ratio profiles of biogenic hydrocarbons, hydrogen oxides and reactive nitrogen. The vertical profiles of these species demonstrate a range of structures and gradients that reflect the interplay of physical and chemical processes within the forest canopy, which can influence net exchange.

  4. Regionally coupled atmosphere-ocean-sea ice-marine biogeochemistry model ROM: 1. Description and validation

    Science.gov (United States)

    Sein, Dmitry V.; Mikolajewicz, Uwe; Gröger, Matthias; Fast, Irina; Cabos, William; Pinto, Joaquim G.; Hagemann, Stefan; Semmler, Tido; Izquierdo, Alfredo; Jacob, Daniela

    2015-03-01

    The general circulation models used to simulate global climate typically feature resolution too coarse to reproduce many smaller-scale processes, which are crucial to determining the regional responses to climate change. A novel approach to downscale climate change scenarios is presented which includes the interactions between the North Atlantic Ocean and the European shelves as well as their impact on the North Atlantic and European climate. The goal of this paper is to introduce the global ocean-regional atmosphere coupling concept and to show the potential benefits of this model system to simulate present-day climate. A global ocean-sea ice-marine biogeochemistry model (MPIOM/HAMOCC) with regionally high horizontal resolution is coupled to an atmospheric regional model (REMO) and global terrestrial hydrology model (HD) via the OASIS coupler. Moreover, results obtained with ROM using NCEP/NCAR reanalysis and ECHAM5/MPIOM CMIP3 historical simulations as boundary conditions are presented and discussed for the North Atlantic and North European region. The validation of all the model components, i.e., ocean, atmosphere, terrestrial hydrology, and ocean biogeochemistry is performed and discussed. The careful and detailed validation of ROM provides evidence that the proposed model system improves the simulation of many aspects of the regional climate, remarkably the ocean, even though some biases persist in other model components, thus leaving potential for future improvement. We conclude that ROM is a powerful tool to estimate possible impacts of climate change on the regional scale.

  5. CRAC2 model description

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, L.T.; Alpert, D.J.; Burke, R.P.; Johnson, J.D.; Ostmeyer, R.M.; Aldrich, D.C.; Blond, R.M.

    1984-03-01

    The CRAC2 computer code is a revised version of CRAC (Calculation of Reactor Accident Consequences) which was developed for the Reactor Safety Study. This document provides an overview of the CRAC2 code and a description of each of the models used. Significant improvements incorporated into CRAC2 include an improved weather sequence sampling technique, a new evacuation model, and new output capabilities. In addition, refinements have been made to the atmospheric transport and deposition model. Details of the modeling differences between CRAC2 and CRAC are emphasized in the model descriptions.

  6. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Overview and Description of Models, Simulations and Climate Diagnostics

    Science.gov (United States)

    Lamarque, J.-F.; Shindell, D. T.; Naik, V.; Plummer, D.; Josse, B.; Righi, M.; Rumbold, S. T.; Schulz, M.; Skeie, R. B.; Strode, S.; Young, P. J.; Cionni, I.; Dalsoren, S.; Eyring, V.; Bergmann, D.; Cameron-Smith, P.; Collins, W. J.; Doherty, R.; Faluvegi, G.; Folberth, G.; Ghan, S. J.; Horowitz, L. W.; Lee, Y. H.; MacKenzie, I. A.; Nagashima, T.

    2013-01-01

    The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) consists of a series of time slice experiments targeting the long-term changes in atmospheric composition between 1850 and 2100, with the goal of documenting composition changes and the associated radiative forcing. In this overview paper, we introduce the ACCMIP activity, the various simulations performed (with a requested set of 14) and the associated model output. The 16 ACCMIP models have a wide range of horizontal and vertical resolutions, vertical extent, chemistry schemes and interaction with radiation and clouds. While anthropogenic and biomass burning emissions were specified for all time slices in the ACCMIP protocol, it is found that the natural emissions are responsible for a significant range across models, mostly in the case of ozone precursors. The analysis of selected present-day climate diagnostics (precipitation, temperature, specific humidity and zonal wind) reveals biases consistent with state-of-the-art climate models. The model-to- model comparison of changes in temperature, specific humidity and zonal wind between 1850 and 2000 and between 2000 and 2100 indicates mostly consistent results. However, models that are clear outliers are different enough from the other models to significantly affect their simulation of atmospheric chemistry.

  7. Model Experiments and Model Descriptions

    Science.gov (United States)

    Jackman, Charles H.; Ko, Malcolm K. W.; Weisenstein, Debra; Scott, Courtney J.; Shia, Run-Lie; Rodriguez, Jose; Sze, N. D.; Vohralik, Peter; Randeniya, Lakshman; Plumb, Ian

    1999-01-01

    The Second Workshop on Stratospheric Models and Measurements Workshop (M&M II) is the continuation of the effort previously started in the first Workshop (M&M I, Prather and Remsberg [1993]) held in 1992. As originally stated, the aim of M&M is to provide a foundation for establishing the credibility of stratospheric models used in environmental assessments of the ozone response to chlorofluorocarbons, aircraft emissions, and other climate-chemistry interactions. To accomplish this, a set of measurements of the present day atmosphere was selected. The intent was that successful simulations of the set of measurements should become the prerequisite for the acceptance of these models as having a reliable prediction for future ozone behavior. This section is divided into two: model experiment and model descriptions. In the model experiment, participant were given the charge to design a number of experiments that would use observations to test whether models are using the correct mechanisms to simulate the distributions of ozone and other trace gases in the atmosphere. The purpose is closely tied to the needs to reduce the uncertainties in the model predicted responses of stratospheric ozone to perturbations. The specifications for the experiments were sent out to the modeling community in June 1997. Twenty eight modeling groups responded to the requests for input. The first part of this section discusses the different modeling group, along with the experiments performed. Part two of this section, gives brief descriptions of each model as provided by the individual modeling groups.

  8. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP: overview and description of models, simulations and climate diagnostics

    Directory of Open Access Journals (Sweden)

    J.-F. Lamarque

    2012-08-01

    Full Text Available The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP consists of a series of timeslice experiments targeting the long-term changes in atmospheric composition between 1850 and 2100, with the goal of documenting radiative forcing and the associated composition changes. Here we introduce the various simulations performed under ACCMIP and the associated model output. The ACCMIP models have a wide range of horizontal and vertical resolutions, vertical extent, chemistry schemes and interaction with radiation and clouds. While anthropogenic and biomass burning emissions were specified for all time slices in the ACCMIP protocol, it is found that the natural emissions lead to a significant range in emissions, mostly for ozone precursors. The analysis of selected present-day climate diagnostics (precipitation, temperature, specific humidity and zonal wind reveals biases consistent with state-of-the-art climate models. The model-to-model comparison of changes in temperature, specific humidity and zonal wind between 1850 and 2000 and between 2000 and 2100 indicates mostly consistent results, but with outliers different enough to possibly affect their representation of climate impact on chemistry.

  9. MATCH–SALSA – Multi-scale Atmospheric Transport and CHemistry model coupled to the SALSA aerosol microphysics model – Part 1: Model description and evaluation

    Directory of Open Access Journals (Sweden)

    C. Andersson

    2014-05-01

    Full Text Available We have implemented the sectional aerosol dynamics model SALSA in the European scale chemistry-transport model MATCH (Multi-scale Atmospheric Transport and Chemistry. The new model is called MATCH–SALSA. It includes aerosol microphysics, with several formulations for nucleation, wet scavenging and condensation. The model reproduces observed higher particle number concentration (PNC in central Europe and lower concentrations in remote regions. The model PNC size distribution peak occurs at the same or smaller particle size as the observed peak at five measurement sites spread across Europe. Total PNC is underestimated at Northern and Central European sites and accumulation mode PNC is underestimated at all investigated sites. On the other hand the model performs well for particle mass, including secondary inorganic aerosol components. Elemental and organic carbon concentrations are underestimated at many of the sites. Further development is needed, primarily for treatment of secondary organic aerosol, both in terms of biogenic emissions and chemical transformation, and for nitrogen gas-particle partitioning. Updating the biogenic SOA scheme will likely have a large impact on modeled PM2.5 and also affect the model performance for PNC through impacts on nucleation and condensation. An improved nitrogen partitioning model may also improve the description of condensational growth.

  10. Modeling coupled interactions of carbon, water, and ozone exchange between terrestrial ecosystems and the atmosphere. I: model description.

    Science.gov (United States)

    Nikolov, Ned; Zeller, Karl F

    2003-01-01

    A new biophysical model (FORFLUX) is presented to study the simultaneous exchange of ozone, carbon dioxide, and water vapor between terrestrial ecosystems and the atmosphere. The model mechanistically couples all major processes controlling ecosystem flows trace gases and water implementing recent concepts in plant eco-physiology, micrometeorology, and soil hydrology. FORFLUX consists of four interconnected modules-a leaf photosynthesis model, a canopy flux model, a soil heat-, water- and CO2- transport model, and a snow pack model. Photosynthesis, water-vapor flux and ozone uptake at the leaf level are computed by the LEAFC3 sub-model. The canopy module scales leaf responses to a stand level by numerical integration of the LEAFC3model over canopy leaf area index (LAI). The integration takes into account (1) radiative transfer inside the canopy, (2) variation of foliage photosynthetic capacity with canopy depth, (3) wind speed attenuation throughout the canopy, and (4) rainfall interception by foliage elements. The soil module uses principles of the diffusion theory to predict temperature and moisture dynamics within the soil column, evaporation, and CO2 efflux from soil. The effect of soil heterogeneity on field-scale fluxes is simulated employing the Bresler-Dagan stochastic concept. The accumulation and melt of snow on the ground is predicted using an explicit energy balance approach. Ozone deposition is modeled as a sum of three fluxes- ozone uptake via plant stomata, deposition to non-transpiring plant surfaces, and ozone flux into the ground. All biophysical interactions are computed hourly while model projections are made at either hourly or daily time step. FORFLUX represents a comprehensive approach to studying ozone deposition and its link to carbon and water cycles in terrestrial ecosystems.

  11. GNAQPMS-Hg v1.0, a global nested atmospheric mercury transport model: model description, evaluation and application to trans-boundary transport of Chinese anthropogenic emissions

    Directory of Open Access Journals (Sweden)

    H. S. Chen

    2014-10-01

    Full Text Available Atmospheric mercury (Hg is a toxic pollutant and can be transported over the whole globe due to its long lifetime in the atmosphere. For the purpose of assessing Hg hemispheric transport and better characterizing regional Hg pollution, a global nested atmospheric Hg transport model (GNAQPMS-Hg has been developed. In GNAQPMS-Hg, the gas and aqueous phase Hg chemistry representing the transformation among three forms of Hg: elemental mercury (Hg(0, divalent mercury (Hg(II, and primary particulate mercury (Hg(P are calculated. A detailed description of the model, including mercury emissions, gas and aqueous phase chemistry, and dry and wet deposition is given in this study. Worldwide observations including extensive data in China have been collected for model evaluation. Comparison results show that the model reasonably simulates the global mercury budget and the spatial–temporal variation of surface mercury concentrations and deposition. Overall, model predictions of annual total gaseous mercury (TGM and wet deposition agree with observations within a factor of two, and within a factor of five for oxidized mercury and dry deposition. The model performs significantly better in North America and Europe than in East Asia. This can probably be attributed to the large uncertainties in emission inventories, coarse model resolution and to the inconsistency between the simulation and observation periods in East Asia. Compared to the global simulation, the nested simulation shows improved skill at capturing the high spatial variability of Hg concentrations and deposition over East Asia. In particular, the root mean square error (RMSE of simulated Hg wet deposition over East Asia is reduced by 24% in the nested simulation. Model sensitivity studies indicate that Chinese primary anthropogenic emissions account for 30 and 62% of surface mercury concentrations and deposition over China, respectively. Along the rim of the western Pacific, the contributions

  12. Modelo OLAM (ocean-land-atmosphere-model: descrição, aplicações, e perspectivas Ocean-land-atmosphere model (OLAM: description, applications, and perspectives

    Directory of Open Access Journals (Sweden)

    Renato Ramos da Silva

    2009-06-01

    Full Text Available O modelo OLAM foi desenvolvido com objetivo de estender a capacidade de representar os fenômenos de escala global e regional simultaneamente. Este modelo apresenta inovações quanto aos processos dinâmicos, configuração de grade, estrutura de memória e técnicas de solução numérica das equações prognósticas. As equações de Navier-Stokes são resolvidas através da técnica de volumes finitos que conservam massa, momento e energia. No presente trabalho, apresenta-se uma descrição sucinta do OLAM e alguns resultados de sua aplicação em simulações climáticas da precipitação mensal para a região norte da América do Sul, bem como em rodadas para previsão numérica de tempo regional. Os resultados mostram que o modelo consegue representar bem os aspectos meteorológicos de grande escala. Em geral, seu desempenho melhora quando são adotadas grades de maior resolução espacial, nas quais se verificam melhorias significativas tanto na estimativa da precipitação mensal regional, quanto na previsão numérica de tempo.The OLAM model was developed to extend the capability to represent the global and regional scale phenomena simultaneously. The model presents innovations regarding to the dynamic processes, grid configuration, memory structure, and numerical technique solutions for the prognostics equations. The Navier-Stokes equations are solved using the finite volume technique that conserves mass, momentum, and energy. In this study the OLAM model is described, and results are presented for its application on the climate mode to simulate the monthly prediction of precipitation for South America and numerical weather prediction. The results show that the model is able to represent reasonable the large scale meteorological processes. In general, its performance improves when grids of greater resolution is adopted, for which significant improvements are observed for the monthly precipitation simulation estimates as for the

  13. Atmospheric radionuclide transport model with radon postprocessor and SBG module. Model description version 2.8.0; ARTM. Atmosphaerisches Radionuklid-Transport-Modell mit Radon Postprozessor und SBG-Modul. Modellbeschreibung zu Version 2.8.0

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Cornelia; Sogalla, Martin; Thielen, Harald; Martens, Reinhard

    2015-04-20

    The study on the atmospheric radionuclide transport model with radon postprocessor and SBG module (model description version 2.8.0) covers the following issues: determination of emissions, radioactive decay, atmospheric dispersion calculation for radioactive gases, atmospheric dispersion calculation for radioactive dusts, determination of the gamma cloud radiation (gamma submersion), terrain roughness, effective source height, calculation area and model points, geographic reference systems and coordinate transformations, meteorological data, use of invalid meteorological data sets, consideration of statistical uncertainties, consideration of housings, consideration of bumpiness, consideration of terrain roughness, use of frequency distributions of the hourly dispersion situation, consideration of the vegetation period (summer), the radon post processor radon.exe, the SBG module, modeling of wind fields, shading settings.

  14. The efficient urban canopy dependency parametrization (SURY) v1.0 for atmospheric modelling: description and application with the COSMO-CLM model for a Belgian summer

    Science.gov (United States)

    Wouters, Hendrik; Demuzere, Matthias; Blahak, Ulrich; Fortuniak, Krzysztof; Maiheu, Bino; Camps, Johan; Tielemans, Daniël; van Lipzig, Nicole P. M.

    2016-09-01

    This paper presents the Semi-empirical URban canopY parametrization (SURY) v1.0, which bridges the gap between bulk urban land-surface schemes and explicit-canyon schemes. Based on detailed observational studies, modelling experiments and available parameter inventories, it offers a robust translation of urban canopy parameters - containing the three-dimensional information - into bulk parameters. As a result, it brings canopy-dependent urban physics to existing bulk urban land-surface schemes of atmospheric models. At the same time, SURY preserves a low computational cost of bulk schemes for efficient numerical weather prediction and climate modelling at the convection-permitting scales. It offers versatility and consistency for employing both urban canopy parameters from bottom-up inventories and bulk parameters from top-down estimates. SURY is tested for Belgium at 2.8 km resolution with the COSMO-CLM model (v5.0_clm6) that is extended with the bulk urban land-surface scheme TERRA_URB (v2.0). The model reproduces very well the urban heat islands observed from in situ urban-climate observations, satellite imagery and tower observations, which is in contrast to the original COSMO-CLM model without an urban land-surface scheme. As an application of SURY, the sensitivity of atmospheric modelling with the COSMO-CLM model is addressed for the urban canopy parameter ranges from the local climate zones of http://WUDAPT.org. City-scale effects are found in modelling the land-surface temperatures, air temperatures and associated urban heat islands. Recommendations are formulated for more precise urban atmospheric modelling at the convection-permitting scales. It is concluded that urban canopy parametrizations including SURY, combined with the deployment of the WUDAPT urban database platform and advancements in atmospheric modelling systems, are essential.

  15. Description and evaluation of the Multiscale Online Nonhydrostatic AtmospheRe CHemistry model (NMMB-MONARCH) version 1.0: gas-phase chemistry at global scale

    Science.gov (United States)

    Badia, Alba; Jorba, Oriol; Voulgarakis, Apostolos; Dabdub, Donald; Pérez García-Pando, Carlos; Hilboll, Andreas; Gonçalves, María; Janjic, Zavisa

    2017-02-01

    This paper presents a comprehensive description and benchmark evaluation of the tropospheric gas-phase chemistry component of the Multiscale Online Nonhydrostatic AtmospheRe CHemistry model (NMMB-MONARCH), formerly known as NMMB/BSC-CTM, that can be run on both regional and global domains. Here, we provide an extensive evaluation of a global annual cycle simulation using a variety of background surface stations (EMEP, WDCGG and CASTNET), ozonesondes (WOUDC, CMD and SHADOZ), aircraft data (MOZAIC and several campaigns), and satellite observations (SCIAMACHY and MOPITT). We also include an extensive discussion of our results in comparison to other state-of-the-art models. We note that in this study, we omitted aerosol processes and some natural emissions (lightning and volcano emissions). The model shows a realistic oxidative capacity across the globe. The seasonal cycle for CO is fairly well represented at different locations (correlations around 0.3-0.7 in surface concentrations), although concentrations are underestimated in spring and winter in the Northern Hemisphere, and are overestimated throughout the year at 800 and 500 hPa in the Southern Hemisphere. Nitrogen species are well represented in almost all locations, particularly NO2 in Europe (root mean square error - RMSE - below 5 ppb). The modeled vertical distributions of NOx and HNO3 are in excellent agreement with the observed values and the spatial and seasonal trends of tropospheric NO2 columns correspond well to observations from SCIAMACHY, capturing the highly polluted areas and the biomass burning cycle throughout the year. Over Asia, the model underestimates NOx from March to August, probably due to an underestimation of NOx emissions in the region. Overall, the comparison of the modeled CO and NO2 with MOPITT and SCIAMACHY observations emphasizes the need for more accurate emission rates from anthropogenic and biomass burning sources (i.e., specification of temporal variability). The resulting

  16. A mechanistic model of H{sub 2}{sup 18}O and C{sup 18}OO fluxes between ecosystems and the atmosphere: Model description and sensitivity analyses

    Energy Technology Data Exchange (ETDEWEB)

    Riley, W.J.; Still, C.J.; Torn, M.S.; Berry, J.A.

    2002-01-01

    The concentration of 18O in atmospheric CO2 and H2O is a potentially powerful tracer of ecosystem carbon and water fluxes. In this paper we describe the development of an isotope model (ISOLSM) that simulates the 18O content of canopy water vapor, leaf water, and vertically resolved soil water; leaf photosynthetic 18OC16O (hereafter C18OO) fluxes; CO2 oxygen isotope exchanges with soil and leaf water; soil CO2 and C18OO diffusive fluxes (including abiotic soil exchange); and ecosystem exchange of H218O and C18OO with the atmosphere. The isotope model is integrated into the land surface model LSM, but coupling with other models should be straightforward. We describe ISOLSM and apply it to evaluate (a) simplified methods of predicting the C18OO soil-surface flux; (b) the impacts on the C18OO soil-surface flux of the soil-gas diffusion coefficient formulation, soil CO2 source distribution, and rooting distribution; (c) the impacts on the C18OO fluxes of carbonic anhydrase (CA) activity in soil and leaves; and (d) the sensitivity of model predictions to the d18O value of atmospheric water vapor and CO2. Previously published simplified models are unable to capture the seasonal and diurnal variations in the C18OO soil-surface fluxes simulated by ISOLSM. Differences in the assumed soil CO2 production and rooting depth profiles, carbonic anhydrase activity in soil and leaves, and the d18O value of atmospheric water vapor have substantial impacts on the ecosystem CO2 flux isotopic composition. We conclude that accurate prediction of C18OO ecosystem fluxes requires careful representation of H218O and C18OO exchanges and transport in soils and plants.

  17. Description and Evaluation of the Multiscale Online Nonhydrostatic AtmospheRe CHemistry Model (NMMB-MONARCH) Version 1.0: Gas-Phase Chemistry at Global Scale

    Science.gov (United States)

    Badia, Alba; Jorba, Oriol; Voulgarakis, Apostolos; Dabdub, Donald; Garcia-Pando, Carlos Perez; Hilboll, Andreas; Goncalves, Maria; Janjic, Zavisa

    2017-01-01

    This paper presents a comprehensive description and benchmark evaluation of the tropospheric gas-phase chemistry component of the Multiscale Online Nonhydrostatic AtmospheRe CHemistry model (NMMBMONARCH), formerly known as NMMB/BSC-CTM, that can be run on both regional and global domains. Here, we provide an extensive evaluation of a global annual cycle simulation using a variety of background surface stations (EMEP, WDCGG and CASTNET), ozonesondes (WOUDC, CMD and SHADOZ), aircraft data (MOZAIC and several campaigns), and satellite observations (SCIAMACHY and MOPITT).We also include an extensive discussion of our results in comparison to other state-of-the-art models. We note that in this study, we omitted aerosol processes and some natural emissions (lightning and volcano emissions). The model shows a realistic oxidative capacity across the globe. The seasonal cycle for CO is fairly well represented at different locations (correlations around 0.3-0.7 in surface concentrations), although concentrations are underestimated in spring and winter in the Northern Hemisphere, and are overestimated throughout the year at 800 and 500 hPa in the Southern Hemisphere. Nitrogen species are well represented in almost all locations, particularly NO2 in Europe (root mean square error - RMSE - below 5 ppb). The modeled vertical distributions of NOx and HNO3 are in excellent agreement with the observed values and the spatial and seasonal trends of tropospheric NO2 columns correspond well to observations from SCIAMACHY, capturing the highly polluted areas and the biomass burning cycle throughout the year. Over Asia, the model underestimates NOx from March to August, probably due to an underestimation of NOx emissions in the region. Overall, the comparison of the modeled CO and NO2 with MOPITT and SCIAMACHY observations emphasizes the need for more accurate emission rates from anthropogenic and biomass burning sources (i.e., specification of temporal variability).

  18. The 1-way on-line coupled atmospheric chemistry model system MECO(n – Part 1: Description of the limited-area atmospheric chemistry model COSMO/MESSy

    Directory of Open Access Journals (Sweden)

    A. Kerkweg

    2012-01-01

    Full Text Available The numerical weather prediction model of the Consortium for Small Scale Modelling (COSMO, maintained by the German weather service (DWD, is connected with the Modular Earth Submodel System (MESSy. This effort is undertaken in preparation of a new, limited-area atmospheric chemistry model. Limited-area models require lateral boundary conditions for all prognostic variables. Therefore the quality of a regional chemistry model is expected to improve, if boundary conditions for the chemical constituents are provided by the driving model in consistence with the meteorological boundary conditions. The new developed model is as consistent as possible, with respect to atmospheric chemistry and related processes, with a previously developed global atmospheric chemistry general circulation model: the ECHAM/MESSy Atmospheric Chemistry (EMAC model. The combined system constitutes a new research tool, bridging the global to the meso-γ scale for atmospheric chemistry research. MESSy provides the infrastructure and includes, among others, the process and diagnostic submodels for atmospheric chemistry simulations. Furthermore, MESSy is highly flexible allowing model setups with tailor made complexity, depending on the scientific question. Here, the connection of the MESSy infrastructure to the COSMO model is documented and also the code changes required for the generalisation of regular MESSy submodels. Moreover, previously published prototype submodels for simplified tracer studies are generalised to be plugged-in and used in the global and the limited-area model. They are used to evaluate the TRACER interface implementation in the new COSMO/MESSy model system and the tracer transport characteristics, an important prerequisite for future atmospheric chemistry applications. A supplementary document with further details on the technical implementation of the MESSy interface into COSMO with a complete list of modifications to the COSMO code is provided.

  19. Atmospheric Boundary Layers: Modeling and Parameterization

    NARCIS (Netherlands)

    Holtslag, A.A.M.

    2015-01-01

    In this contribution we deal with the representation of the atmospheric boundary layer (ABL) for modeling studies of weather, climate, and air quality. As such we review the major characteristics of the ABL, and summarize the basic parameterizations for the description of atmospheric turbulence and

  20. Middle Atmosphere Response to Different Descriptions of the 11-Year Solar Cycle in Spectral Irradiance in a Chemistry-Climate Model

    Science.gov (United States)

    Swartz, W. H.; Stolarski, R. S.; Oman, L. D.; Fleming, E. L.; Jackman, C. H.

    2012-01-01

    The 11-year solar cycle in solar spectral irradiance (SSI) inferred from measurements by the SOlar Radiation & Climate Experiment (SORCE) suggests a much larger variation in the ultraviolet than previously accepted. We present middle atmosphere ozone and temperature responses to the solar cycles in SORCE SSI and the ubiquitous Naval Research Laboratory (NRL) SSI reconstruction using the Goddard Earth Observing System chemistry-climate model (GEOS CCM). The results are largely consistent with other recent modeling studies. The modeled ozone response is positive throughout the stratosphere and lower mesosphere using the NRL SSI, while the SORCE SSI produces a response that is larger in the lower stratosphere but out of phase with respect to total solar irradiance above 45 km. The modeled responses in total ozone are similar to those derived from satellite and ground-based measurements, 3-6 Dobson Units per 100 units of 10.7-cm radio flux (F10.7) in the tropics. The peak zonal mean tropical temperature response 50 using the SORCE SSI is nearly 2 K per 100 units 3 times larger than the simulation using the NRL SSI. The GEOS CCM and the Goddard Space Flight Center (GSFC) 2-D coupled model are used to examine how the SSI solar cycle affects the atmosphere through direct solar heating and photolysis processes individually. Middle atmosphere ozone is affected almost entirely through photolysis, whereas the solar cycle in temperature is caused both through direct heating and photolysis feedbacks, processes that are mostly linearly separable. Further, the net ozone response results from the balance of ozone production at wavelengths less than 242 nm and destruction at longer wavelengths, coincidentally corresponding to the wavelength regimes of the SOLar STellar Irradiance Comparison Experiment (SOLSTICE) and Spectral Irradiance Monitor (SIM) on SORCE, respectively. A higher wavelength-resolution analysis of the spectral response could allow for a better prediction of the

  1. Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model

    Directory of Open Access Journals (Sweden)

    W. H. Swartz

    2012-07-01

    Full Text Available The 11-yr solar cycle in solar spectral irradiance (SSI inferred from measurements by the SOlar Radiation & Climate Experiment (SORCE suggests a much larger variation in the ultraviolet than previously accepted. We present middle atmosphere ozone and temperature responses to the solar cycles in SORCE SSI and the ubiquitous Naval Research Laboratory (NRL SSI reconstruction using the Goddard Earth Observing System chemistry-climate model (GEOSCCM. The results are largely consistent with other recent modeling studies. The modeled ozone response is positive throughout the stratosphere and lower mesosphere using the NRL SSI, while the SORCE SSI produces a response that is larger in the lower stratosphere but out of phase with respect to total solar irradiance above 45 km. The modeled responses in total ozone are similar to those derived from satellite and ground-based measurements, 3–6 Dobson Units per 100 units of 10.7-cm radio flux (F10.7 in the tropics. The peak zonal mean tropical temperature response using the SORCE SSI is nearly 2 K per 100 units F10.7 – 3 times larger than the simulation using the NRL SSI. The GEOSCCM and the Goddard Space Flight Center (GSFC 2-D coupled model are used to examine how the SSI solar cycle affects the atmosphere through direct solar heating and photolysis processes individually. Middle atmosphere ozone is affected almost entirely through photolysis, whereas the solar cycle in temperature is caused both through direct heating and photolysis feedbacks, processes that are mostly linearly separable. This is important in that it means that chemistry-transport models should simulate the solar cycle in ozone well, while general circulation models without coupled chemistry will underestimate the temperature response to the solar cycle significantly in the middle atmosphere. Further, the net ozone response results from the balance of ozone production at wavelengths less than 242 nm

  2. Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model

    Directory of Open Access Journals (Sweden)

    W. H. Swartz

    2012-03-01

    Full Text Available The 11-yr solar cycle in solar spectral irradiance (SSI inferred from measurements by the SOlar Radiation & Climate Experiment (SORCE suggests a much larger variation in the ultraviolet than previously accepted. We present middle atmosphere ozone and temperature responses to the solar cycles in SORCE SSI and the ubiquitous Naval Research Laboratory (NRL SSI reconstruction using the Goddard Earth Observing System chemistry-climate model (GEOS CCM. The results are largely consistent with other recent modeling studies. The modeled ozone response is positive throughout the stratosphere and lower mesosphere using the NRL SSI, while the SORCE SSI produces a response that is larger in the lower stratosphere but out of phase with respect to total solar irradiance above 45 km. The modeled responses in total ozone are similar to those derived from satellite and ground-based measurements, 3–6 Dobson Units per 100 units of 10.7-cm radio flux (F10.7 in the tropics. The peak zonal mean tropical temperature response using the SORCE SSI is nearly 2 K per 100 units F10.7 – 3 times larger than the simulation using the NRL SSI. The GEOS CCM and the Goddard Space Flight Center (GSFC 2-D coupled model are used to examine how the SSI solar cycle affects the atmosphere through direct solar heating and photolysis processes individually. Middle atmosphere ozone is affected almost entirely through photolysis, whereas the solar cycle in temperature is caused both through direct heating and photolysis feedbacks, processes that are mostly linearly separable. Further, the net ozone response results from the balance of ozone production at wavelengths less than 242 nm and destruction at longer wavelengths, coincidentally corresponding to the wavelength regimes of the SOLar STellar Irradiance Comparison Experiment (SOLSTICE and Spectral Irradiance Monitor (SIM on SORCE, respectively. A higher wavelength-resolution analysis of the spectral

  3. Modeling of Cometary Atmospheres

    Science.gov (United States)

    Gombosi, Tamas

    2004-01-01

    The NASA supported project 'Modeling of Cometary Atmospheres' has been quite successful in broadening our understanding of the cometary environment. We list peer reviewed publications and conference presentation that have been made as a result of studies performed under this project. Following the list we present details of a selection of the results.

  4. A mechanistic description of the global COS cycle consistent with atmospheric measurements and its potential to evaluate gross primary production of vegetation models

    Science.gov (United States)

    Launois, Thomas; Peylin, Philippe; Belviso, Sauveur; Bopp, Laurent; Ogée, Jérôme; Wingate, Lisa; Cuntz, Matthias

    2016-04-01

    Accurate estimates of the gross carbon fluxes - photosynthesis and respiration - are essential to predict the ecosystem carbon fluxes and stocks and their evolution in a changing climate. The gross primary productivity (GPP) in the current dynamic global vegetation models (DGVMs), however, shows large differences in terms of mean values, phase and amplitude. As large scale measurements of the GPP are not possible, their estimates are usually based on indirect tracers. Carbonyl sulfide (COS) has been proposed as a tracer of GPP since COS and CO2 are dominantly taken up by plants via the same enzyme during photosynthesis. Thus leaf uptakes of COS and CO2 are often found to be proportional, with a coefficient of proportionality (LRU) that is species-dependant according to laboratory measurements. However contrarily to CO2, atmospheric records of COS over the last decades show a strong seasonal cycle but with no significant trend, which implies roughly equilibrated sources and sinks of COS at the global scale. Most recent estimates of COS uptake by plants using this LRU concept led to larger sinks over land than initially estimated. In order to maintain a closed atmospheric budget, a compensatory COS source had to be found, with the ocean being suggested as the most likely candidate. In this work, we propose a new mechanistically-based parameterization of the major sources and sinks of COS, allowing to close the global atmospheric budget. For the ocean, we used the ocean general circulation and biogeochemistry model NEMO-PISCES to assess the marine source of COS. Using the simulated organic compounds at the surface, we derived a direct source of COS through the COS photo-production as well as an indirect source through the emissions of sulfur compounds (DMS). The resulting simulated global fluxes correspond to a net source of COS of around 800 GgS yr-1, spatially and temporally consistent with the suggested missing source. For the land, we considered most anoxic soils

  5. MARCS model atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Plez, B [GRAAL, CNRS, UMR5024, Universite Montpellier 2, F-34095 Montpellier, Cedex 5 (France) and Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala (Sweden)], E-mail: bertrand.plez@graal.univ-montp2.fr

    2008-12-15

    In this review presented at the Symposium A Stellar Journey in Uppsala, June 2008, I give an account of the historical development of the MARCS code, and its premises from the first version published in 1975 to the 2008 grid. The primary driver for the development team who constantly strive to include the best possible physical data, is the science that can be done with the models. A few preliminary comparisons of M star model spectra to spectrophotometric observations are presented. Particular results related to opacity effects are discussed. The size of errors in spectral energy distribution (SED) and model thermal stratification is estimated for different densities of wavelength sampling. The number of points used in the MARCS 2008 grid (108 000) is large enough to ensure errors of only a few K in all models of the grid, except the optically very thin layers of metal-poor stars. Errors in SEDs may reach about 10% locally in the UV. The published sampled SEDs are thus adequate to compute synthetic broadband photometry, but higher resolution spectra will be computed in the near future and published as well on the MARCS site (marcs.astro.uu.se). Test model calculations with TiO line opacity accounted for in scattering show significant cooling of the upper atmospheric layers of red giants. Rough estimates of radiative and collisional time scales for electronic transitions of TiO indicate that scattering may well be the dominant mechanism in these lines. However, models constructed with this hypothesis are incompatible with optical observations of TiO (Arcturus) or IR observations of OH (Betelgeuse), although they may succeed in explaining H{sub 2}O line observations. More work is needed in that direction.

  6. The Initial Atmospheric Transport (IAT) Code: Description and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, Charles W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bartel, Timothy James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    The Initial Atmospheric Transport (IAT) computer code was developed at Sandia National Laboratories as part of their nuclear launch accident consequences analysis suite of computer codes. The purpose of IAT is to predict the initial puff/plume rise resulting from either a solid rocket propellant or liquid rocket fuel fire. The code generates initial conditions for subsequent atmospheric transport calculations. The Initial Atmospheric Transfer (IAT) code has been compared to two data sets which are appropriate to the design space of space launch accident analyses. The primary model uncertainties are the entrainment coefficients for the extended Taylor model. The Titan 34D accident (1986) was used to calibrate these entrainment settings for a prototypic liquid propellant accident while the recent Johns Hopkins University Applied Physics Laboratory (JHU/APL, or simply APL) large propellant block tests (2012) were used to calibrate the entrainment settings for prototypic solid propellant accidents. North American Meteorology (NAM )formatted weather data profiles are used by IAT to determine the local buoyancy force balance. The IAT comparisons for the APL solid propellant tests illustrate the sensitivity of the plume elevation to the weather profiles; that is, the weather profile is a dominant factor in determining the plume elevation. The IAT code performed remarkably well and is considered validated for neutral weather conditions.

  7. Stellar model atmospheres with magnetic line blanketing

    CERN Document Server

    Kochukhov, O; Shulyak, D

    2004-01-01

    Model atmospheres of A and B stars are computed taking into account magnetic line blanketing. These calculations are based on the new stellar model atmosphere code LLModels which implements direct treatment of the opacities due to the bound-bound transitions and ensures an accurate and detailed description of the line absorption. The anomalous Zeeman effect was calculated for the field strengths between 1 and 40 kG and a field vector perpendicular to the line of sight. The model structure, high-resolution energy distribution, photometric colors, metallic line spectra and the hydrogen Balmer line profiles are computed for magnetic stars with different metallicities and are discussed with respect to those of non-magnetic reference models. The magnetically enhanced line blanketing changes the atmospheric structure and leads to a redistribution of energy in the stellar spectrum. The most noticeable feature in the optical region is the appearance of the 5200 A depression. However, this effect is prominent only in ...

  8. Lagrangian Modeling of the Atmosphere

    Science.gov (United States)

    Schultz, Colin

    2013-08-01

    Like watching a balloon borne by the breeze, a Lagrangian model tracks a parcel of air as it flows through the atmosphere. Whether running forward or backward in time, Lagrangian models offer a powerful tool for tracking and understanding the fates, or origins, of atmospheric flows. In the AGU monograph Lagrangian Modeling of the Atmosphere, editors John Lin, Dominik Brunner, Christoph Gerbig, Andreas Stohl, Ashok Luhar, and Peter Webley explore the nuances of the modeling technique. In this interview Eos talks to Lin about the growing importance of Lagrangian modeling as the world settles on climate change mitigation strategies, the societal value of operational modeling, and how recent advances are making it possible to run these complex calculations at home.

  9. MODA - A hybrid atmospheric pollutant dispersion model

    Energy Technology Data Exchange (ETDEWEB)

    Favaron, M.; Oliveti Selmi, O. [Servizi Territorio srl, Milan (Italy); Sozzi, R. [Agenzia Regionale Protezione Ambiente (ARPA) Lazio, Rieti (Italy)

    2004-07-01

    MODA is a Gaussian-hybrid atmospheric dispersion model, intended for regulatory applications, and designed to meet the following requirements: ability to operate in complex terrain, standard use of a refined description of turbulence, operational efficiency (in terms of both speed and ease to change simulation parameters), ease of integration in modelling interfaces, output compatibility with the widely-used ISC3. MODA can operate in two modes: a standard mode, in which the pollutant dispersion is treated as Gaussian, and an advanced mode, in which the hybrid relations are used to compute the pollutant concentrations. (orig.)

  10. Geophysical Plasmas and Atmospheric Modeling.

    Science.gov (United States)

    1982-01-01

    will be submitted to the Journal of the Atmospheric Sciences. 32 - .- I. LIMITATIONS ON STRATOSPHERIC DYNAMICS We have performed an investigation of...Amplitudes" which will be submitted to the Journal of the Atmospheric Sciences. 1i 33 A& J. GENERAL CIRCULATION MODEL STUDIES Comparison computer runs...In tis case, as clearly shov.i by Petvia-mensona. I ths cseas ceary sou byPetia- cavities requires a local theory going beyond the limitshvilli,’ the

  11. Towards reproducible descriptions of neuronal network models.

    Directory of Open Access Journals (Sweden)

    Eilen Nordlie

    2009-08-01

    Full Text Available Progress in science depends on the effective exchange of ideas among scientists. New ideas can be assessed and criticized in a meaningful manner only if they are formulated precisely. This applies to simulation studies as well as to experiments and theories. But after more than 50 years of neuronal network simulations, we still lack a clear and common understanding of the role of computational models in neuroscience as well as established practices for describing network models in publications. This hinders the critical evaluation of network models as well as their re-use. We analyze here 14 research papers proposing neuronal network models of different complexity and find widely varying approaches to model descriptions, with regard to both the means of description and the ordering and placement of material. We further observe great variation in the graphical representation of networks and the notation used in equations. Based on our observations, we propose a good model description practice, composed of guidelines for the organization of publications, a checklist for model descriptions, templates for tables presenting model structure, and guidelines for diagrams of networks. The main purpose of this good practice is to trigger a debate about the communication of neuronal network models in a manner comprehensible to humans, as opposed to machine-readable model description languages. We believe that the good model description practice proposed here, together with a number of other recent initiatives on data-, model-, and software-sharing, may lead to a deeper and more fruitful exchange of ideas among computational neuroscientists in years to come. We further hope that work on standardized ways of describing--and thinking about--complex neuronal networks will lead the scientific community to a clearer understanding of high-level concepts in network dynamics, and will thus lead to deeper insights into the function of the brain.

  12. Langley Atmospheric Information Retrieval System (LAIRS): System description and user's guide

    Science.gov (United States)

    Boland, D. E., Jr.; Lee, T.

    1982-01-01

    This document presents the user's guide, system description, and mathematical specifications for the Langley Atmospheric Information Retrieval System (LAIRS). It also includes a description of an optimal procedure for operational use of LAIRS. The primary objective of the LAIRS Program is to make it possible to obtain accurate estimates of atmospheric pressure, density, temperature, and winds along Shuttle reentry trajectories for use in postflight data reduction.

  13. The stellar atmosphere simulation code Bifrost. Code description and validation

    Science.gov (United States)

    Gudiksen, B. V.; Carlsson, M.; Hansteen, V. H.; Hayek, W.; Leenaarts, J.; Martínez-Sykora, J.

    2011-07-01

    Context. Numerical simulations of stellar convection and photospheres have been developed to the point where detailed shapes of observed spectral lines can be explained. Stellar atmospheres are very complex, and very different physical regimes are present in the convection zone, photosphere, chromosphere, transition region and corona. To understand the details of the atmosphere it is necessary to simulate the whole atmosphere since the different layers interact strongly. These physical regimes are very diverse and it takes a highly efficient massively parallel numerical code to solve the associated equations. Aims: The design, implementation and validation of the massively parallel numerical code Bifrost for simulating stellar atmospheres from the convection zone to the corona. Methods: The code is subjected to a number of validation tests, among them the Sod shock tube test, the Orzag-Tang colliding shock test, boundary condition tests and tests of how the code treats magnetic field advection, chromospheric radiation, radiative transfer in an isothermal scattering atmosphere, hydrogen ionization and thermal conduction. Results.Bifrost completes the tests with good results and shows near linear efficiency scaling to thousands of computing cores.

  14. Multiplicity description by gluon model

    CERN Document Server

    Kokoulina, E S

    2015-01-01

    Study of high multiplicity events in proton-proton interactions is carried out at the U-70 accelerator (IHEP, Protvino). These events are extremely rare. Usually, Monte Carlo codes underestimate topological cross sections in this region. The gluon dominance model (GDM) was offered to describe them. It is based on QCD and a phenomenological scheme of a hadronization stage. This model indicates a recombination mechanism of hadronization and a gluon fission. Future program of the SVD Collaboration is aimed at studying a long-standing puzzle of excess soft photon yield and its connection with high multiplicity at the U-70 and Nuclotron facility at JINR, Dubna.

  15. Model for Simulation Atmospheric Turbulence

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik

    1976-01-01

    A method that produces realistic simulations of atmospheric turbulence is developed and analyzed. The procedure makes use of a generalized spectral analysis, often called a proper orthogonal decomposition or the Karhunen-Loève expansion. A set of criteria, emphasizing a realistic appearance....... The method is unique in modeling the three velocity components simultaneously, and it is found that important cross-statistical features are reasonably well-behaved. It is concluded that the model provides a practical, operational simulator of atmospheric turbulence....

  16. Chemical modeling of exoplanet atmospheres

    CERN Document Server

    Venot, Olivia

    2014-01-01

    The past twenty years have revealed the diversity of planets that exist in the Universe. It turned out that most of exoplanets are different from the planets of our Solar System and thus, everything about them needs to be explored. Thanks to current observational technologies, we are able to determine some information about the atmospheric composition, the thermal structure and the dynamics of these exoplanets, but many questions remain still unanswered. To improve our knowledge about exoplanetary systems, more accurate observations are needed and that is why the Exoplanet Characterisation Observatory (EChO) is an essential space mission. Thanks to its large spectral coverage and high spectral resolution, EChO will provide exoplanetary spectra with an unprecedented accuracy, allowing to improve our understanding of exoplanets. In this work, we review what has been done to date concerning the chemical modeling of exoplanet atmospheres and what are the main characteristics of warm exoplanet atmospheres, which a...

  17. The Sentinel-4 Mission: Instrument Description and Atmospheric Composition Products

    Science.gov (United States)

    Veihelmann, Ben; Meijer, Yasjka; Ingmann, Paul; Koopman, Rob; Bazalgette Courrèges-Lacoste, Grégory; Stark, Hendrik

    2013-04-01

    The Sentinel-4 mission, together with Sentinel-5 and the Sentinel-5 Precursor missions, is part of the Global Monitoring for Environment and Security (GMES) space component covering the Earth's atmosphere. The primary objective of the Sentinel-4 mission is the observation of the diurnal cycle of tropospheric species in support of the air quality applications of GMES Atmosphere Services. The presentation focuses on the Sentinel-4/UVN instrument and its related Level-2 atmospheric composition products. The Sentinel-4 instrument is an Ultra-violet Visible Near infrared spectrometer (S4/UVN) which is embarked on the geostationary Meteosat Third Generation-Sounder (MTG-S) platforms. Key features of the S4/UVN instrument are the spectral range from 305 nm to 500 nm with a spectral resolution of 0.5 nm, and from 750 nm to 775 nm with a spectral resolution of 0.12 nm, in combination with a low polarization sensitivity and a high radiometric accuracy. The instrument shall observe Europe with a revisit time of one hour. The spatial sampling distance varies across the geographic coverage area and takes a value of 8 km at a reference location at 45˚ N. The expected launch date of the first MTG-S platform is 2019, and the expected lifetime is 15 years (two S4/UVN instruments in sequence on two MTG-S platforms). ESA will develop products based on the S4/UVN measurements for the key target species, which are NO2, O3, HCHO, SO2, aerosols, and CHOCHO, and for cloud and surface properties (mainly intermediate products). Also a synergetic O3 vertical profile product is foreseen based on observations from the S4/UVN and the MTG InfraRed Sounder (IRS) on-board the same platform. Synergetic aerosol and cloud products are foreseen based on observations from the S4/UVN and from the MTG Flexible Combined Imager (FCI) on-board the MTG-Imager (MTG-I) platform. Current pre-development studies are dedicated to a daily surface reflectance map product that treats the surface directionality as

  18. A Global Atmospheric Model of Meteoric Iron

    Science.gov (United States)

    Feng, Wuhu; Marsh, Daniel R.; Chipperfield, Martyn P.; Janches, Diego; Hoffner, Josef; Yi, Fan; Plane, John M. C.

    2013-01-01

    The first global model of meteoric iron in the atmosphere (WACCM-Fe) has been developed by combining three components: the Whole Atmosphere Community Climate Model (WACCM), a description of the neutral and ion-molecule chemistry of iron in the mesosphere and lower thermosphere (MLT), and a treatment of the injection of meteoric constituents into the atmosphere. The iron chemistry treats seven neutral and four ionized iron containing species with 30 neutral and ion-molecule reactions. The meteoric input function (MIF), which describes the injection of Fe as a function of height, latitude, and day, is precalculated from an astronomical model coupled to a chemical meteoric ablation model (CABMOD). This newly developed WACCM-Fe model has been evaluated against a number of available ground-based lidar observations and performs well in simulating the mesospheric atomic Fe layer. The model reproduces the strong positive correlation of temperature and Fe density around the Fe layer peak and the large anticorrelation around 100 km. The diurnal tide has a significant effect in the middle of the layer, and the model also captures well the observed seasonal variations. However, the model overestimates the peak Fe+ concentration compared with the limited rocket-borne mass spectrometer data available, although good agreement on the ion layer underside can be obtained by adjusting the rate coefficients for dissociative recombination of Fe-molecular ions with electrons. Sensitivity experiments with the same chemistry in a 1-D model are used to highlight significant remaining uncertainties in reaction rate coefficients, and to explore the dependence of the total Fe abundance on the MIF and rate of vertical transport.

  19. Dynamic description logic model for data integration

    Institute of Scientific and Technical Information of China (English)

    Guoshun HAO; Shilong MA; Yuefei SUI; Jianghua LV

    2008-01-01

    Data integration is the issue of retrieving and combining data residing at distributed and heterogeneous sources,and of providing users with transparent access without being aware of the details of the sources.Data integration is a very important issue because it deals with data infrastructure issues of coordinated computing systems.Despite its importance,the following key challenges make data integration one of the longest standing problems around:1) how to solve the system heterogeneity;2) how to build a global model;3) how to process queries automatically and correctly;and 4) how to solve semantic heterogeneity. This paper presents an extended dynamic description logic language to describe systems with dynamic actions.By this language,a-universal and unified model for relational database systems and a model for data integration are presented.This paper presents a universal and unified description logic model for relational databases.The model is universal because any relational database system can be automatically transformed to the model;it is unified because it integrates three essential components of relational databases together:description logic knowledge bases modeling the relational data,atomic modalities modeling the atomic relational operations,and combined modalities modeling the combined relational operations-queries. Furthermore,a description logic model for data integration is proposed which contains four layers of ontologies.Based on the model,a solution for each key challenge is proposed:a universal model eliminates system heterogeneity;a novel global model including three ontologies is proposed with some important benefits;a query process mechanism is provided by which user queries can be decomposed to queries over the sources;and for solving the semantic heterogeneity,this paper provides a framework under which semantic relations can be expressed and inferred. In summary,this paper presents a dynamic knowledge base framework by an extended

  20. Minimum Description Length Shape and Appearance Models

    DEFF Research Database (Denmark)

    Thodberg, Hans Henrik

    2003-01-01

    The Minimum Description Length (MDL) approach to shape modelling is reviewed. It solves the point correspondence problem of selecting points on shapes defined as curves so that the points correspond across a data set. An efficient numerical implementation is presented and made available as open s...... source Matlab code. The problems with the early MDL approaches are discussed. Finally the MDL approach is extended to an MDL Appearance Model, which is proposed as a means to perform unsupervised image segmentation....

  1. Forsmark - site descriptive model version 0

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-10-01

    During 2002, the Swedish Nuclear Fuel and Waste Management Company (SKB) is starting investigations at two potential sites for a deep repository in the Precambrian basement of the Fennoscandian Shield. The present report concerns one of those sites, Forsmark, which lies in the municipality of Oesthammar, on the east coast of Sweden, about 150 kilometres north of Stockholm. The site description should present all collected data and interpreted parameters of importance for the overall scientific understanding of the site, for the technical design and environmental impact assessment of the deep repository, and for the assessment of long-term safety. The site description will have two main components: a written synthesis of the site, summarising the current state of knowledge, as documented in the databases containing the primary data from the site investigations, and one or several site descriptive models, in which the collected information is interpreted and presented in a form which can be used in numerical models for rock engineering, environmental impact and long-term safety assessments. The site descriptive models are devised and stepwise updated as the site investigations proceed. The point of departure for this process is the regional site descriptive model, version 0, which is the subject of the present report. Version 0 is developed out of the information available at the start of the site investigation. This information, with the exception of data from tunnels and drill holes at the sites of the Forsmark nuclear reactors and the underground low-middle active radioactive waste storage facility, SFR, is mainly 2D in nature (surface data), and is general and regional, rather than site-specific, in content. For this reason, the Forsmark site descriptive model, version 0, as detailed in the present report, has been developed at a regional scale. It covers a rectangular area, 15 km in a southwest-northeast and 11 km in a northwest-southeast direction, around the

  2. Simpevarp - site descriptive model version 0

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-11-01

    During 2002, SKB is starting detailed investigations at two potential sites for a deep repository in the Precambrian rocks of the Fennoscandian Shield. The present report concerns one of those sites, Simpevarp, which lies in the municipality of Oskarshamn, on the southeast coast of Sweden, about 250 kilometres south of Stockholm. The site description will have two main components: a written synthesis of the site, summarising the current state of knowledge, as documented in the databases containing the primary data from the site investigations, and one or several site descriptive models, in which the collected information is interpreted and presented in a form which can be used in numerical models for rock engineering, environmental impact and long-term safety assessments. SKB maintains two main databases at the present time, a site characterisation database called SICADA and a geographic information system called SKB GIS. The site descriptive model will be developed and presented with the aid of the SKB GIS capabilities, and with SKBs Rock Visualisation System (RVS), which is also linked to SICADA. The version 0 model forms an important framework for subsequent model versions, which are developed successively, as new information from the site investigations becomes available. Version 0 is developed out of the information available at the start of the site investigation. In the case of Simpevarp, this is essentially the information which was compiled for the Oskarshamn feasibility study, which led to the choice of that area as a favourable object for further study, together with information collected since its completion. This information, with the exception of the extensive data base from the nearby Aespoe Hard Rock Laboratory, is mainly 2D in nature (surface data), and is general and regional, rather than site-specific, in content. Against this background, the present report consists of the following components: an overview of the present content of the databases

  3. Description and implementation of a MiXed Layer model (MXL, v1.0) for the dynamics of the atmospheric boundary layer in the Modular Earth Submodel System (MESSy)

    Science.gov (United States)

    Janssen, R. H. H.; Pozzer, A.

    2015-03-01

    We present a new submodel for the Modular Earth Submodel System (MESSy): the MiXed Layer (MXL) model for the diurnal dynamics of the convective boundary layer, including explicit representations of entrainment and surface fluxes. This submodel is embedded in a new MESSy base model (VERTICO), which represents a single atmospheric column. With the implementation of MXL in MESSy, MXL can be used in combination with other MESSy submodels that represent processes related to atmospheric chemistry. For instance, the coupling of MXL with more advanced modules for gas-phase chemistry (such as the Mainz Isoprene Mechanism 2 (MIM2)), emissions, dry deposition and organic aerosol formation than in previous versions of the MXL code is possible. Since MXL is now integrated in the MESSy framework, it can take advantage of future developments of this framework, such as the inclusion of new process submodels. The coupling of MXL with submodels that represent other processes relevant to chemistry in the atmospheric boundary layer (ABL) yields a computationally inexpensive tool that is ideally suited for the analysis of field data, for evaluating new parametrizations for 3-D models, and for performing systematic sensitivity analyses. A case study for the DOMINO campaign in southern Spain is shown to demonstrate the use and performance of MXL/MESSy in reproducing and analysing field observations.

  4. Transport properties site descriptive model. Guidelines for evaluation and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Berglund, Sten [WSP Environmental, Stockholm (Sweden); Selroos, Jan-Olof [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2004-04-01

    This report describes a strategy for the development of Transport Properties Site Descriptive Models within the SKB Site Investigation programme. Similar reports have been produced for the other disciplines in the site descriptive modelling (Geology, Hydrogeology, Hydrogeochemistry, Rock mechanics, Thermal properties, and Surface ecosystems). These reports are intended to guide the site descriptive modelling, but also to provide the authorities with an overview of modelling work that will be performed. The site descriptive modelling of transport properties is presented in this report and in the associated 'Strategy for the use of laboratory methods in the site investigations programme for the transport properties of the rock', which describes laboratory measurements and data evaluations. Specifically, the objectives of the present report are to: Present a description that gives an overview of the strategy for developing Site Descriptive Models, and which sets the transport modelling into this general context. Provide a structure for developing Transport Properties Site Descriptive Models that facilitates efficient modelling and comparisons between different sites. Provide guidelines on specific modelling issues where methodological consistency is judged to be of special importance, or where there is no general consensus on the modelling approach. The objectives of the site descriptive modelling process and the resulting Transport Properties Site Descriptive Models are to: Provide transport parameters for Safety Assessment. Describe the geoscientific basis for the transport model, including the qualitative and quantitative data that are of importance for the assessment of uncertainties and confidence in the transport description, and for the understanding of the processes at the sites. Provide transport parameters for use within other discipline-specific programmes. Contribute to the integrated evaluation of the investigated sites. The site descriptive

  5. Stochastic models for atmospheric dispersion

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2003-01-01

    Simple stochastic differential equation models have been applied by several researchers to describe the dispersion of tracer particles in the planetary atmospheric boundary layer and to form the basis for computer simulations of particle paths. To obtain the drift coefficient, empirical vertical...... positions close to the boundaries. Different rules have been suggested in the literature with justifications based on simulation studies. Herein the relevant stochastic differential equation model is formulated in a particular way. The formulation is based on the marginal transformation of the position...... dependent particle velocity into a position independent Gaussian velocity. Boundary conditions are obtained from Itos rule of stochastic differentiation. The model directly point at a canonical rule of reflection for the approximating random walk with finite time step. This reflection rule is different from...

  6. Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL) Part 1. Description of Tritium Dose Model (DCART) for Routine Releases from LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, S R

    2006-09-27

    DCART (Doses from Chronic Atmospheric Releases of Tritium) is a spreadsheet model developed at Lawrence Livermore National Laboratory (LLNL) that calculates doses from inhalation of tritiated hydrogen gas (HT), inhalation and skin absorption of tritiated water (HTO), and ingestion of HTO and organically bound tritium (OBT) to adult, child (age 10), and infant (age 6 months to 1 year) from routine atmospheric releases of HT and HTO. DCART is a deterministic model that, when coupled to the risk assessment software Crystal Ball{reg_sign}, predicts doses with a 95% confidence interval. The equations used by DCART are described and all distributions on parameter values are presented. DCART has been tested against the results of other models and several sets of observations in the Tritium Working Groups of the International Atomic Energy Agency's programs, Biosphere Modeling and Assessment and Environmental Modeling for Radiation Safety. The version of DCART described here has been modified to include parameter values and distributions specific to conditions at LLNL. In future work, DCART will be used to reconstruct dose to the hypothetical maximally exposed individual from annual routine releases of HTO and HT from all LLNL facilities and from the Sandia National Laboratory's Tritium Research Laboratory over the last fifty years.

  7. Simpevarp - site descriptive model version 0

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-11-01

    During 2002, SKB is starting detailed investigations at two potential sites for a deep repository in the Precambrian rocks of the Fennoscandian Shield. The present report concerns one of those sites, Simpevarp, which lies in the municipality of Oskarshamn, on the southeast coast of Sweden, about 250 kilometres south of Stockholm. The site description will have two main components: a written synthesis of the site, summarising the current state of knowledge, as documented in the databases containing the primary data from the site investigations, and one or several site descriptive models, in which the collected information is interpreted and presented in a form which can be used in numerical models for rock engineering, environmental impact and long-term safety assessments. SKB maintains two main databases at the present time, a site characterisation database called SICADA and a geographic information system called SKB GIS. The site descriptive model will be developed and presented with the aid of the SKB GIS capabilities, and with SKBs Rock Visualisation System (RVS), which is also linked to SICADA. The version 0 model forms an important framework for subsequent model versions, which are developed successively, as new information from the site investigations becomes available. Version 0 is developed out of the information available at the start of the site investigation. In the case of Simpevarp, this is essentially the information which was compiled for the Oskarshamn feasibility study, which led to the choice of that area as a favourable object for further study, together with information collected since its completion. This information, with the exception of the extensive data base from the nearby Aespoe Hard Rock Laboratory, is mainly 2D in nature (surface data), and is general and regional, rather than site-specific, in content. Against this background, the present report consists of the following components: an overview of the present content of the databases

  8. Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Relesed to the Atmosphere from Lawrence Livermore National Laboratory (LLNL) Part 1. Description of Tritium Dose Model (DCART) for Chronic Releases from LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, S

    2004-06-30

    DCART (Doses from Chronic Atmospheric Releases of Tritium) is a spreadsheet model developed at Lawrence Livermore National Laboratory (LLNL) that calculates doses from inhalation of tritiated hydrogen gas (HT), inhalation and skin absorption of tritiated water (HTO), and ingestion of HTO and organically bound tritium (OBT) to adult, child (age 10), and infant (age 6 months to 1 year) from routine atmospheric releases of HT and HTO. DCART is a deterministic model that, when coupled to the risk assessment software Crystal Ball{reg_sign}, predicts doses with a 95th percentile confidence interval. The equations used by DCART are described and all distributions on parameter values are presented. DCART has been tested against the results of other models and several sets of observations in the Tritium Working Group of the International Atomic Energy Agency's Biosphere Modeling and Assessment Programme. The version of DCART described here has been modified to include parameter values and distributions specific to conditions at LLNL. In future work, DCART will be used to reconstruct dose to the hypothetical maximally exposed individual from annual routine releases of HTO and HT from all LLNL facilities and from the Sandia National Laboratory's Tritium Research Laboratory over the last fifty years.

  9. Forsmark - site descriptive model version 0

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-10-01

    During 2002, the Swedish Nuclear Fuel and Waste Management Company (SKB) is starting investigations at two potential sites for a deep repository in the Precambrian basement of the Fennoscandian Shield. The present report concerns one of those sites, Forsmark, which lies in the municipality of Oesthammar, on the east coast of Sweden, about 150 kilometres north of Stockholm. The site description should present all collected data and interpreted parameters of importance for the overall scientific understanding of the site, for the technical design and environmental impact assessment of the deep repository, and for the assessment of long-term safety. The site description will have two main components: a written synthesis of the site, summarising the current state of knowledge, as documented in the databases containing the primary data from the site investigations, and one or several site descriptive models, in which the collected information is interpreted and presented in a form which can be used in numerical models for rock engineering, environmental impact and long-term safety assessments. The site descriptive models are devised and stepwise updated as the site investigations proceed. The point of departure for this process is the regional site descriptive model, version 0, which is the subject of the present report. Version 0 is developed out of the information available at the start of the site investigation. This information, with the exception of data from tunnels and drill holes at the sites of the Forsmark nuclear reactors and the underground low-middle active radioactive waste storage facility, SFR, is mainly 2D in nature (surface data), and is general and regional, rather than site-specific, in content. For this reason, the Forsmark site descriptive model, version 0, as detailed in the present report, has been developed at a regional scale. It covers a rectangular area, 15 km in a southwest-northeast and 11 km in a northwest-southeast direction, around the

  10. Behaviorally Modeling Games of Strategy Using Descriptive Q-learning

    Science.gov (United States)

    2013-01-01

    REPORT Behaviorally Modeling Games of Strategy Using Descriptive Q-learning 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Modeling human decision making... Games of Strategy Using Descriptive Q-learning Report Title ABSTRACT Modeling human decision making in strategic problem domains is challenging with...an unknown automated opponent. Behaviorally Modeling Games of Strategy Using Descriptive Q-learning Roi Ceren Department of Computer Science

  11. Modelling Imprecise Arguments in Description Logic

    Directory of Open Access Journals (Sweden)

    LETIA, I. A.

    2009-10-01

    Full Text Available Real arguments are a mixture of fuzzy linguistic variables and ontological knowledge. This paper focuses on modelling imprecise arguments in order to obtain a better interleaving of human and software agents argumentation, which might be proved useful for extending the number of real life argumentative-based applications. We propose Fuzzy Description Logic as the adequate technical instrumentation for filling the gap between human arguments and software agents arguments. A proof of concept scenario has been tested with the fuzzyDL reasoner.

  12. Radiation Belt Electron Dynamics: Modeling Atmospheric Losses

    Science.gov (United States)

    Selesnick, R. S.

    2003-01-01

    The first year of work on this project has been completed. This report provides a summary of the progress made and the plan for the coming year. Also included with this report is a preprint of an article that was accepted for publication in Journal of Geophysical Research and describes in detail most of the results from the first year of effort. The goal for the first year was to develop a radiation belt electron model for fitting to data from the SAMPEX and Polar satellites that would provide an empirical description of the electron losses into the upper atmosphere. This was largely accomplished according to the original plan (with one exception being that, for reasons described below, the inclusion of the loss cone electrons in the model was deferred). The main concerns at the start were to accurately represent the balance between pitch angle diffusion and eastward drift that determines the dominant features of the low altitude data, and then to accurately convert the model into simulated data based on the characteristics of the particular electron detectors. Considerable effort was devoted to achieving these ends. Once the model was providing accurate results it was applied to data sets selected from appropriate periods in 1997, 1998, and 1999. For each interval of -30 to 60 days, the model parameters were calculated daily, thus providing good short and long term temporal resolution, and for a range of radial locations from L = 2.7 to 3.9. .

  13. Exact results in modeling planetary atmospheres-I. Gray atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Chevallier, L. [Observatoire de Paris-Meudon, Laboratoire LUTH, 5 Place Jules Janssen, 92195 Meudon cedex (France)]. E-mail: loic.chevallier@obspm.fr; Pelkowski, J. [Institut fuer Meteorologie und Geophysik, J.W. Goethe Universitaet Frankfurt, Robert Mayer Strasse 1, D-60325 Frankfurt (Germany); Rutily, B. [Universite de Lyon, Lyon, F-69000 (France) and Universite Lyon 1, Villeurbanne, F-69622 (France) and Centre de Recherche Astronomique de Lyon, Observatoire de Lyon, 9 avenue Charles Andre, Saint-Genis Laval cedex, F-69561 (France) and CNRS, UMR 5574; Ecole Normale Superieure de Lyon, Lyon (France)

    2007-04-15

    An exact model is proposed for a gray, isotropically scattering planetary atmosphere in radiative equilibrium. The slab is illuminated on one side by a collimated beam and is bounded on the other side by an emitting and partially reflecting ground. We provide expressions for the incident and reflected fluxes on both boundary surfaces, as well as the temperature of the ground and the temperature distribution in the atmosphere, assuming the latter to be in local thermodynamic equilibrium. Tables and curves of the temperature distribution are included for various values of the optical thickness. Finally, semi-infinite atmospheres illuminated from the outside or by sources at infinity is dealt with.

  14. Description of atmospheric conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    NARCIS (Netherlands)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antici'c, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Baecker, T.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Baeuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Belletoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordiera, A.; Coutu, S.; Covault, C. E.; Creusota, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; de la Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; del Rio, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Luis, P. Facal San; Tapia, I. Fajardo; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Filevich, A.; Filipcic, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Froehlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; Garcia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gomez Berisso, M.; Gomez Vitale, P. F.; Goncalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hoerandel, J. R.; Horneffer, A.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D. -H.; Kotera, K.; Krohm, N.; Kroemer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; LaHurd, D.; Latronico, L.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Lopez Agueera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martinez, H.; Martinez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mi'canovi'c, S.; Micheletti, M. I.; Minaya, I. A.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Mueller, G.; Muenchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nozka, L.; Oehlschlaeger, J.; Olinto, A.; Ortiz, M.; Pacheco, N.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez, G.; Martino, J. Rodriguez; Rojo, J. Rodriguez; Rodriguez-Cabo, I.; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouille-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Ruehle, C.; Saftoiu, A.; Salamida, F.; Salazar, H.; Greus, F. Salesa; Salina, G.; Sanchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovanek, P.; Schroeder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Sima, O.; 'Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijaervi, T.; Supanitsky, A. D.; Susa, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Tascau, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Peixoto, C. J. Todero; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van den Berg, A. M.; Varela, E.; VargasCardenas, B.; Vazquez, J. R.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhu, Y.; Silva, M. Zimbres; Ziolkowski, M.; Martin, L.

    2012-01-01

    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude

  15. ORACLE: a module for the description of ORganic Aerosol Composition and Evolution in the atmosphere

    Directory of Open Access Journals (Sweden)

    A. P. Tsimpidi

    2014-08-01

    Full Text Available A computationally efficient module for the description of organic aerosol (OA partitioning and chemical aging has been developed and implemented into the EMAC atmospheric chemistry-climate model. The model simulates the formation of secondary organic aerosol (SOA from semi-volatile (SVOCs, intermediate-volatility (IVOCs and volatile organic compounds (VOCs. The model distinguishes SVOCs from biomass burning and all other combustion sources using two surrogate species for each source category with an effective saturation concentration at 298 K of C* = 0.1 and 10 μg m−3. Two additional surrogate species with C* = 103 and 105 μg m−3 are used for the IVOCs emitted by the above two source categories. Gas-phase photochemical reactions that change the volatility of the organics are taken into account. The oxidation products (SOA-sv, SOA-iv, and SOA-v of each group of precursors (SVOCs, IVOCs, and VOCs are simulated separately in the module to keep track of their origin. ORACLE efficiently describes the OA composition and evolution in the atmosphere and can be used to (i estimate the relative contributions of SOA and primary organic aerosol (POA to total OA, (ii determine how SOA concentrations are affected by biogenic and anthropogenic emissions, and (iii evaluate the effects of photochemical aging and long-range transport on the OA budget. Here we estimate that the predicted domain-average global surface OA concentration is 1.5 μg m−3 and consists of 7% POA from fuel combustion, 11% POA from biomass burning, 2% SOA-sv from fuel combustion, 3% SOA-sv from biomass burning, 15% SOA-iv from fuel combustion, 28% SOA-iv from biomass burning, 19% biogenic SOA-v, and 15% anthropogenic SOA-v. The tropospheric burden of OA components is predicted to be 0.23 Tg POA, 0.16 Tg SOA-sv, 1.41 Tg SOA-iv, and 1.2 Tg SOA-v.

  16. Constituent quark model description of charmonium phenomenology

    CERN Document Server

    Segovia, J; Fernandez, F; Hernandez, E

    2013-01-01

    We review how quark models are able to describe the phenomenology of the charm meson sector. The spectroscopy and decays of charmonium and open charm mesons are described in a particular quark model and compared with the data and the results of other existing models in the literature. A quite reasonable global description of the heavy meson spectra is reached. A new assignment of the $\\psi(4415)$ resonance as a 3D state leaving aside the 4S state to the X(4360) is tested through the analysis of the resonance structure in $e^{+}e^{-}$ exclusive reactions around the $\\psi(4415)$ energy region. We make tentative assignments of some of the $XYZ$ mesons. To elucidate the structure of the $1^{+}$ $c\\bar{s}$ states, i.e. $D_{s1}(2460)$ and $D_{s1}(2536)$, we study the strong decay properties of the $D_{s1}(2536)$ meson. We also perform a calculation of the branching fractions for the semileptonic decays of $B$ and $B_{s}$ mesons into final states containing orbitally excited charmed and charmed-strange mesons, which...

  17. Conservative modelling of the moisture and heat transfer in building components under atmospheric excitation

    DEFF Research Database (Denmark)

    Janssen, Hans; Blocken, Bert; Carmeliet, Jan

    2007-01-01

    While the transfer equations for moisture and heat in building components are currently undergoing standardisation, atmospheric boundary conditions, conservative modelling and numerical efficiency are not addressed. In a first part, this paper adds a comprehensive description of those boundary co...

  18. Optical models of the molecular atmosphere

    Science.gov (United States)

    Zuev, V. E.; Makushkin, Y. S.; Mitsel, A. A.; Ponomarev, Y. N.; Rudenko, V. P.; Firsov, K. M.

    1986-01-01

    The use of optical and laser methods for performing atmospheric investigations has stimulated the development of the optical models of the atmosphere. The principles of constructing the optical models of molecular atmosphere for radiation with different spectral composition (wideband, narrowband, and monochromatic) are considered in the case of linear and nonlinear absorptions. The example of the development of a system which provides for the modeling of the processes of optical-wave energy transfer in the atmosphere is presented. Its physical foundations, structure, programming software, and functioning were considered.

  19. Optical Hall effect-model description: tutorial.

    Science.gov (United States)

    Schubert, Mathias; Kühne, Philipp; Darakchieva, Vanya; Hofmann, Tino

    2016-08-01

    The optical Hall effect is a physical phenomenon that describes the occurrence of magnetic-field-induced dielectric displacement at optical wavelengths, transverse and longitudinal to the incident electric field, and analogous to the static electrical Hall effect. The electrical Hall effect and certain cases of the optical Hall effect observations can be explained by extensions of the classic Drude model for the transport of electrons in metals. The optical Hall effect is most useful for characterization of electrical properties in semiconductors. Among many advantages, while the optical Hall effect dispenses with the need of electrical contacts, electrical material properties such as effective mass and mobility parameters, including their anisotropy as well as carrier type and density, can be determined from the optical Hall effect. Measurement of the optical Hall effect can be performed within the concept of generalized ellipsometry at an oblique angle of incidence. In this paper, we review and discuss physical model equations, which can be used to calculate the optical Hall effect in single- and multiple-layered structures of semiconductor materials. We define the optical Hall effect dielectric function tensor, demonstrate diagonalization approaches, and show requirements for the optical Hall effect tensor from energy conservation. We discuss both continuum and quantum approaches, and we provide a brief description of the generalized ellipsometry concept, the Mueller matrix calculus, and a 4×4 matrix algebra to calculate data accessible by experiment. In a follow-up paper, we will discuss strategies and approaches for experimental data acquisition and analysis.

  20. Description of atmospheric conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    Science.gov (United States)

    Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antiči'C, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Domenico, M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; de Vries, K. D.; Del Peral, L.; Del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; di Giulio, C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lahurd, D.; Latronico, L.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mi'Canovi'C, S.; Micheletti, M. I.; Minaya, I. A.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-D'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Sima, O.; 'Smiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargascárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2012-04-01

    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargüe and averaged monthly models, the utility of the GDAS data is shown.

  1. Description of Atmospheric Conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, P.; /Lisbon, IST; Aglietta, M.; /Turin U. /INFN, Turin; Ahlers, M.; /Wisconsin U., Madison; Ahn, E.J.; /Fermilab; Albuquerque, I.F.M.; /Sao Paulo U.; Allard, D.; /APC, Paris; Allekotte, I.; /Buenos Aires, CONICET; Allen, J.; /New York U.; Allison, P.; /Ohio State U.; Almela, A.; /Natl. Tech. U., San Nicolas /Buenos Aires, CONICET; Alvarez Castillo, J.; /Mexico U., ICN /Santiago de Compostela U.

    2012-01-01

    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown.

  2. Description of Atmospheric Conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    CERN Document Server

    Abreu, P; Ahlers, M; Ahn, E J; Albuquerque, I F M; Allard, D; Allekotte, I; Allen, J; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muñiz, J; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andringa, S; Antičić, T; Aramo, C; Arganda, E; Arqueros, F; Asorey, H; Assis, P; Aublin, J; Ave, M; Avenier, M; Avila, G; Bäcker, T; Badescu, A M; Balzer, M; Barber, K B; Barbosa, A F; Bardenet, R; Barroso, S L C; Baughman, B; Bäuml, J; Beatty, J J; Becker, B R; Becker, K H; Bellétoile, A; Bellido, J A; BenZvi, S; Berat, C; Bertou, X; Biermann, P L; Billoir, P; Blanco, F; Blanco, M; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brancus, I; Brogueira, P; Brown, W C; Bruijn, R; Buchholz, P; Bueno, A; Burton, R E; Caballero-Mora, K S; Caccianiga, B; Caramete, L; Caruso, R; Castellina, A; Catalano, O; Cataldi, G; Cazon, L; Cester, R; Chauvin, J; Cheng, S H; Chiavassa, A; Chinellato, J A; Diaz, J Chirinos; Chudoba, J; Clay, R W; Coluccia, M R; Conceição, R; Contreras, F; Cook, H; Cooper, M J; Coppens, J; Cordier, A; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J; Curutiu, A; Dagoret-Campagne, S; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; De Donato, C; de Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; de Souza, V; de Vries, K D; del Peral, L; del Río, M; Deligny, O; Dembinski, H; Dhital, N; Di Giulio, C; Castro, M L Díaz; Diep, P N; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dong, P N; Dorofeev, A; Anjos, J C dos; Dova, M T; D'Urso, D; Dutan, I; Ebr, J; Engel, R; Erdmann, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Luis, P Facal San; Tapia, I Fajardo; Falcke, H; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Filevich, A; Filipčič, A; Fliescher, S; Fracchiolla, C E; Fraenkel, E D; Fratu, O; Fröhlich, U; Fuchs, B; Gaior, R; Gamarra, R F; Gambetta, S; García, B; Roca, S T Garcia; Garcia-Gamez, D; Garcia-Pinto, D; Gascon, A; Gemmeke, H; Ghia, P L; Giaccari, U; Giller, M; Glass, H; Gold, M S; Golup, G; Albarracin, F Gomez; Berisso, M Gómez; Vitale, P F Gómez; Gonçalves, P; Gonzalez, D; Gonzalez, J G; Gookin, B; Gorgi, A; Gouffon, P; Grashorn, E; Grebe, S; Griffith, N; Grigat, M; Grillo, A F; Guardincerri, Y; Guarino, F; Guedes, G P; Guzman, A; Hansen, P; Harari, D; Harrison, T A; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Herve, A E; Hojvat, C; Hollon, N; Holmes, V C; Homola, P; Hörandel, J R; Horneffer, A; Horvath, P; Hrabovský, M; Huber, D; Huege, T; Insolia, A; Ionita, F; Italiano, A; Jarne, C; Jiraskova, S; Josebachuili, M; Kadija, K; Kampert, K H; Karhan, P; Kasper, P; Kégl, B; Keilhauer, B; Keivani, A; Kelley, J L; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapp, J; Koang, D -H; Kotera, K; Krohm, N; Krömer, O; Kruppke-Hansen, D; Kuehn, F; Kuempel, D; Kulbartz, J K; Kunka, N; La Rosa, G; Lachaud, C; LaHurd, D; Latronico, L; Lauer, R; Lautridou, P; Coz, S Le; Leão, M S A B; Lebrun, D; Lebrun, P; de Oliveira, M A Leigui; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lu, L; Lucero, A; Ludwig, M; Lyberis, H; Maccarone, M C; Macolino, C; Maldera, S; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, J; Marin, V; Maris, I C; Falcon, H R Marquez; Marsella, G; Martello, D; Martin, L; Martinez, H; Bravo, O Martínez; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurel, D; Maurizio, D; Mazur, P O; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Mertsch, P; Meurer, C; Mićanović, S; Micheletti, M I; Minaya, I A; Miramonti, L; Molina-Bueno, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, E; Moreno, J C; Mostafá, M; Moura, C A; Muller, M A; Müller, G; Münchmeyer, M; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nhung, P T; Niechciol, M; Niemietz, L; Nierstenhoefer, N; Nitz, D; Nosek, D; Nožka, L; Oehlschläger, J; Olinto, A; Ortiz, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Palmieri, N; Parente, G; Parizot, E; Parra, A; Pastor, S; Paul, T; Pech, M; Pȩkala, J; Pelayo, R; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrinca, P; Petrolini, A; Petrov, Y; Pfendner, C; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Ponce, V H; Pontz, M; Porcelli, A; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Riggi, S; Risse, M; Ristori, P; Rivera, H; Rizi, V; Roberts, J; de Carvalho, W Rodrigues; Rodriguez, G; Martino, J Rodriguez; Rojo, J Rodriguez; Rodriguez-Cabo, I; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Rühle, C; Saftoiu, A; Salamida, F; Salazar, H; Greus, F Salesa; Salina, G; Sánchez, F; Santo, C E; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sarkar, S; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, A; Scholten, O; Schoorlemmer, H; Schovancova, J; Schovánek, P; Schröder, F; Schulte, S; Schuster, D; Sciutto, S J; Scuderi, M; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sidelnik, I; Sigl, G; Lopez, H H Silva; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Srivastava, Y N; Stanic, S; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Šuša, T; Sutherland, M S; Swain, J; Szadkowski, Z; Szuba, M; Tapia, A; Tartare, M; Taşcău, O; Ruiz, C G Tavera; Tcaciuc, R; Thao, N T; Thomas, D; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Peixoto, C J Todero; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Travnicek, P; Tridapalli, D B; Tristram, G; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; Berg, A M van den; Varela, E; Cárdenas, B Vargas; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Werner, F; Westerhoff, S; Whelan, B J; Widom, A; Wieczorek, G; Wiencke, L; Wilczyńska, B; Wilczyński, H; Will, M; Williams, C; Winchen, T; Wommer, M; Wundheiler, B; Yamamoto, T; Yapici, T; Younk, P; Yuan, G; Yushkov, A; Zamorano, B; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Zhu, Y; Silva, M Zimbres; Ziolkowski, M; 10.1016/j.astropartphys.2011.12.002

    2012-01-01

    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malarg\\"ue and averaged monthly models, the utility of the GDAS data is shown.

  3. Performance Engineering in the Community Atmosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    Worley, P; Mirin, A; Drake, J; Sawyer, W

    2006-05-30

    The Community Atmosphere Model (CAM) is the atmospheric component of the Community Climate System Model (CCSM) and is the primary consumer of computer resources in typical CCSM simulations. Performance engineering has been an important aspect of CAM development throughout its existence. This paper briefly summarizes these efforts and their impacts over the past five years.

  4. Modeling the atmospheric chemistry of TICs

    Science.gov (United States)

    Henley, Michael V.; Burns, Douglas S.; Chynwat, Veeradej; Moore, William; Plitz, Angela; Rottmann, Shawn; Hearn, John

    2009-05-01

    An atmospheric chemistry model that describes the behavior and disposition of environmentally hazardous compounds discharged into the atmosphere was coupled with the transport and diffusion model, SCIPUFF. The atmospheric chemistry model was developed by reducing a detailed atmospheric chemistry mechanism to a simple empirical effective degradation rate term (keff) that is a function of important meteorological parameters such as solar flux, temperature, and cloud cover. Empirically derived keff functions that describe the degradation of target toxic industrial chemicals (TICs) were derived by statistically analyzing data generated from the detailed chemistry mechanism run over a wide range of (typical) atmospheric conditions. To assess and identify areas to improve the developed atmospheric chemistry model, sensitivity and uncertainty analyses were performed to (1) quantify the sensitivity of the model output (TIC concentrations) with respect to changes in the input parameters and (2) improve, where necessary, the quality of the input data based on sensitivity results. The model predictions were evaluated against experimental data. Chamber data were used to remove the complexities of dispersion in the atmosphere.

  5. 3D multispecies collisional model of Ganymede's atmosphere

    Science.gov (United States)

    Leblanc, Francois; Leclercq, Ludivine; Oza, Apurva; Schmidt, Carl; Modolo, Ronan; Chaufray, Jean-Yves; Johnson, Robert E.

    2016-10-01

    Ganymede's atmosphere is produced by the interaction of the Sun and of the Jovian magnetosphere with its surface. It is a reflection of Ganymede's surface properties, but also of the complex interaction between the Ganymede and Jupiter magnetospheres. The Exospheric Global Model (EGM) has been developed in order to be able to integrate surface and magnetosphere processes with those in Ganymede's atmosphere. It is a 3D parallelized multi-species collisional model, coupled with LatHys, a hybrid multi-grid 3D multi-species model of Ganymede's magnetosphere (Leclercq et al., Geophys. Res. Let., Submitted, 2016). EGM's description of the species-dependent spatial distribution of Ganymede's atmosphere, its temporal variability during rotation around Jupiter, its connection to the surface, the role of collisions, and respective roles of sublimation and sputtering in producing Ganymede's exosphere, illustrates how modeling combined with in situ and remote sensing of Ganymede's atmosphere can contribute to our understanding of this unique surface-atmosphere-magnetosphere integrated system.

  6. Soil-vegetation-atmosphere transfer modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ikonen, J.P.; Sucksdorff, Y. [Finnish Environment Agency, Helsinki (Finland)

    1996-12-31

    In this study the soil/vegetation/atmosphere-model based on the formulation of Deardorff was refined to hour basis and applied to a field in Vihti. The effect of model parameters on model results (energy fluxes, temperatures) was also studied as well as the effect of atmospheric conditions. The estimation of atmospheric conditions on the soil-vegetation system as well as an estimation of the effect of vegetation parameters on the atmospheric climate was estimated. Areal surface fluxes, temperatures and moistures were also modelled for some river basins in southern Finland. Land-use and soil parameterisation was developed to include properties and yearly variation of all vegetation and soil types. One classification was selected to describe the hydrothermal properties of the soils. Evapotranspiration was verified against the water balance method

  7. Atmosphere of Mars - Mariner IV models compared.

    Science.gov (United States)

    Eshleman, V. R.; Fjeldbo, G.; Fjeldbo, W. C.

    1966-01-01

    Mariner IV models of three Mars atmospheric layers analogous to terrestrial E, F-1 and F-2 layers, considering relative mass densities, temperatures, carbon dioxide photodissociation and ionization profile

  8. San Joaquin-Tulare Conjunctive Use Model: Detailed model description

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, N.W.T.

    1992-03-01

    The San Joaquin - Tulare Conjunctive Use Model (SANTUCM) was originally developed for the San Joaquin Valley Drainage Program to evaluate possible scenarios for long-term management of drainage and drainage - related problems in the western San Joaquin Valley of California. A unique aspect of this model is its coupling of a surface water delivery and reservoir operations model with a regional groundwater model. The model also performs salinity balances along the tributaries and along the main stem of the San Joaquin River to allow assessment of compliance with State Water Resources Control Board water quality objectives for the San Joaquin River. This document is a detailed description of the various subroutines, variables and parameters used in the model.

  9. Status and future of hydrodynamical model atmospheres

    CERN Document Server

    Ludwig, H G

    2004-01-01

    Since about 25 years ago work has been dedicated to the development of hydrodynamical model atmospheres for cool stars (of A to T spectral type). Despite their obviously sounder physical foundation in comparison with standard hydrostatic models, their general application has been rather limited. In order to understand why this is, and how to progress, we review the present status of hydrodynamical modelling of cool star atmospheres. The development efforts were and are motivated by the theoretical interest of understanding the dynamical processes operating in stellar atmospheres. To show the observational impact, we discuss examples in the fields of spectroscopy and stellar structure where hydrodynamical modelling provided results on a level qualitatively beyond standard models. We stress present modelling challenges, and highlight presently possible and future observations that would be particularly valuable in the interplay between model validation and interpretation of observables, to eventually widen the ...

  10. Model Description for the SOCRATES Contamination Code

    Science.gov (United States)

    1988-10-21

    Special A2-I V ILLUSTRATIONS A Schematic Representaction of the Major Elements or Shuttle Contaminacion Problem .... .............. 3 2 A Diagram of the...Atmospherically Scattered Molecules on Ambient Number Density for the 200, 250, and 300 Km Runs 98 A--I A Plot of the Chi-Square Probability Density Function...are scaled with respect to the far field ambient number density, nD, which leaves only the cross section scaling factor to be determined. This factor

  11. Generic-Model-Based Description Scheme for MPEG-7

    Institute of Scientific and Technical Information of China (English)

    Deng Juan; Tan Hut; Chen Xin-meng

    2004-01-01

    We propose a new description scheme for MPEG7-: Generic-model-based Description Scheme to describe contents of audio, video, text and other sorts of multimedia.It uses a generic model as the description frame, which provides a simple but useful object-based structure. The main components of the description scheme are generic model, objects and object fcatures. The proposed description scheme is illustrated and exemplified by Extensible Markup Language.It aims at clarity and flexibility to support MPEG-7 applications such as query and edit. We demonstrate its feasibility and efficiency by presenting applications: Digital Broadcasting and Edit System (DEBS) and Non-linear Edit System (NLES) that already used the generic structure or will greatly benefit from it.

  12. Diffusive description of lattice gas models

    DEFF Research Database (Denmark)

    Fiig, T.; Jensen, H.J.

    1993-01-01

    in time. We have numerically investigated the power spectrum of the density fluctuations, the lifetime distribution, and the spatial correlation function. We discuss the appropriate Langevin-like diffusion equation which can reproduce our numerical findings. Our conclusion is that the deterministic...... lattice gases are described by a diffusion equation without any bulk noise. The open lattice gas exhibits a crossover behavior as the probability for introducing particles at the edge of the system becomes small. The power spectrum changes from a 1/f to a 1/f2 spectrum. The diffusive description, proven...

  13. Adding Curvature to Minimum Description Length Shape Models

    DEFF Research Database (Denmark)

    Thodberg, Hans Henrik; Ólafsdóttir, Hildur

    2003-01-01

    The Minimum Description Length (MDL) approach to shape modelling seeks a compact description of a set of shapes in terms of the coordinates of marks on the shapes. It has been shown that the mark positions resulting from this optimisation to a large extent solve the so-called point correspondence...

  14. New atmospheric model of Epsilon Eridani

    Science.gov (United States)

    Vieytes, Mariela; Fontenla, Juan; Buccino, Andrea; Mauas, Pablo

    2016-05-01

    We present a new semi-empirical model of the atmosphere of the widely studied K-dwarf Epsilon Eridani (HD 22049). The model is build to reproduce the visible spectral observations from 3800 to 6800 Angstrom and the h and k Mg II lines profiles. The computations were carried out using the Solar-Stellar Radiation Physical Modeling (SSRPM) tools, which calculate non-LTE population for the most important species in the stellar atmosphere. We show a comparison between the synthetic and observed spectrum, obtaining a good agreement in all the studied spectral range.

  15. Hydrodynamic models of a Cepheid atmosphere

    Science.gov (United States)

    Karp, A. H.

    1975-01-01

    Instead of computing a large number of coarsely zoned hydrodynamic models covering the entire atmospheric instability strip, the author computed a single model as well as computer limitations allow. The implicit hydrodynamic code of Kutter and Sparks was modified to include radiative transfer effects in optically thin zones.

  16. Coupled atmosphere-wildland fire modelling

    Directory of Open Access Journals (Sweden)

    Jacques Henri Balbi

    2009-10-01

    Full Text Available Simulating the interaction between fire and atmosphere is critical to the estimation of the rate of spread of the fire. Wildfire’s convection (i.e., entire plume can modify the local meteorology throughout the atmospheric boundary layer and consequently affect the fire propagation speed and behaviour. In this study, we use for the first time the Méso-NH meso-scale numerical model coupled to the point functional ForeFire simplified physical front-tracking wildfire model to investigate the differences introduced by the atmospheric feedback in propagation speed and behaviour. Both numerical models have been developed as research tools for operational models and are currently used to forecast localized extreme events. These models have been selected because they can be run coupled and support decisions in wildfire management in France and Europe. The main originalities of this combination reside in the fact that Méso-NH is run in a Large Eddy Simulation (LES configuration and that the rate of spread model used in ForeFire provides a physical formulation to take into account the effect of wind and slope. Simulations of typical experimental configurations show that the numerical atmospheric model is able to reproduce plausible convective effects of the heat produced by the fire. Numerical results are comparable to estimated values for fire-induced winds and present behaviour similar to other existing numerical approaches.

  17. Atmospheric neutrino flux calculation using the NRLMSISE00 atmospheric model

    CERN Document Server

    Honda, M; Kajita, T; Kasahara, K; Midorikawa, S

    2015-01-01

    In this paper, we extend the calculation of the atmospheric neutrino flux~\\cite{hkkm2004,hkkms2006,hkkm2011} to the sites in polar and tropical regions. In our earliest full 3D-calculation~\\cite{hkkm2004}, we used DPMJET-III~\\cite{dpm} for the hadronic interaction model above 5~GeV, and NUCRIN~\\cite{nucrin} below 5~GeV. We modified DPMJET-III as in Ref.~\\cite{hkkms2006} to reproduce the experimental muon spectra better, mainly using the data observed by BESS group~\\cite{BESSTeVpHemu}. In a recent work~\\cite{hkkm2011}, we introduced JAM interaction model for the low energy hadronic interactions. JAM is a nuclear interaction model developed with PHITS (Particle and Heavy-Ion Transport code System)~\\cite{phits}. In Ref.~\\cite{hkkm2011}, we could reproduce the observed muon flux at the low energies at balloon altitude with DPMJET-III above 32 GeV and JAM below that better than the combination of DPMJET-III above 5~GeV and NUCRIN below that. Besides the interaction model, we have also improved the calculation sche...

  18. Coupling approaches used in atmospheric entry models

    Science.gov (United States)

    Gritsevich, M. I.

    2012-09-01

    While a planet orbits the Sun, it is subject to impact by smaller objects, ranging from tiny dust particles and space debris to much larger asteroids and comets. Such collisions have taken place frequently over geological time and played an important role in the evolution of planets and the development of life on the Earth. Though the search for near-Earth objects addresses one of the main points of the Asteroid and Comet Hazard, one should not underestimate the useful information to be gleaned from smaller atmospheric encounters, known as meteors or fireballs. Not only do these events help determine the linkages between meteorites and their parent bodies; due to their relative regularity they provide a good statistical basis for analysis. For successful cases with found meteorites, the detailed atmospheric path record is an excellent tool to test and improve existing entry models assuring the robustness of their implementation. There are many more important scientific questions meteoroids help us to answer, among them: Where do these objects come from, what are their origins, physical properties and chemical composition? What are the shapes and bulk densities of the space objects which fully ablate in an atmosphere and do not reach the planetary surface? Which values are directly measured and which are initially assumed as input to various models? How to couple both fragmentation and ablation effects in the model, taking real size distribution of fragments into account? How to specify and speed up the recovery of a recently fallen meteorites, not letting weathering to affect samples too much? How big is the pre-atmospheric projectile to terminal body ratio in terms of their mass/volume? Which exact parameters beside initial mass define this ratio? More generally, how entering object affects Earth's atmosphere and (if applicable) Earth's surface? How to predict these impact consequences based on atmospheric trajectory data? How to describe atmospheric entry

  19. Models of magnetized neutron star atmospheres

    CERN Document Server

    Suleimanov, V; Werner, K

    2009-01-01

    We present a new computer code for modeling magnetized neutron star atmospheres in a wide range of magnetic fields (10^{12} - 10^{15} G) and effective temperatures (3 \\times 10^5 - 10^7 K). The atmosphere is assumed to consist either of fully ionized electron-ion plasmas or of partially ionized hydrogen. Vacuum resonance and partial mode conversion are taken into account. Any inclination of the magnetic field relative to the stellar surface is allowed. We use modern opacities of fully or partially ionized plasmas in strong magnetic fields and solve the coupled radiative transfer equations for the normal electromagnetic modes in the plasma. Using this code, we study the possibilities to explain the soft X-ray spectra of isolated neutron stars by different atmosphere models. In particular, the outgoing spectrum using the "sandwich" model (thin atmosphere with a hydrogen layer above a helium layer) is constructed. Thin partially ionized hydrogen atmospheres with vacuum polarization are shown to be able to improv...

  20. Matrix model description of baryonic deformations

    Energy Technology Data Exchange (ETDEWEB)

    Bena, Iosif; Murayama, Hitoshi; Roiban, Radu; Tatar, Radu

    2003-03-13

    We investigate supersymmetric QCD with N{sub c} + 1 flavors using an extension of the recently proposed relation between gauge theories and matrix models.The impressive agreement between the two sides provides a beautiful confirmation of the extension of the gauge theory-matrix model relation to this case.

  1. Modelling stable atmospheric boundary layers over snow

    NARCIS (Netherlands)

    Sterk, H.A.M.

    2015-01-01

    Thesis entitled: Modelling Stable Atmospheric Boundary Layers over Snow H.A.M. Sterk Wageningen, 29th of April, 2015 Summary The emphasis of this thesis is on the understanding and forecasting of the Stable Boundary Layer (SBL) over snow-covered surfaces. SBLs typically form at night and in polar re

  2. Domain Endurants: An Analysis and Description Process Model

    DEFF Research Database (Denmark)

    Bjørner, Dines

    2014-01-01

    We present a summary, Sect. 2, of a structure of domain analysis and description concepts: techniques and tools. And we link, in Sect. 3, these concepts, embodied in domain analysis prompts and domain description prompts, in a model of how a diligent domain analyser cum describer would use them. ...... claim that both sections, Sects. 2–3, contribute to a methodology of software engineering.......We present a summary, Sect. 2, of a structure of domain analysis and description concepts: techniques and tools. And we link, in Sect. 3, these concepts, embodied in domain analysis prompts and domain description prompts, in a model of how a diligent domain analyser cum describer would use them. We...

  3. The self-description data configuration model

    Energy Technology Data Exchange (ETDEWEB)

    Abadie, Lana, E-mail: lana.abadie@iter.org [ITER Organization, Route de vinon sur Verdon, 13115 St Paul Lez Durance (France); Di Maio, Franck; Klotz, Wolf-Dieter; Mahajan, Kirti; Stepanov, Denis; Utzel, Nadine; Wallander, Anders [ITER Organization, Route de vinon sur Verdon, 13115 St Paul Lez Durance (France)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We use the relational model to represent the configuration data for ITER. Black-Right-Pointing-Pointer We explain the different modeled views namely physical, functional and control. Black-Right-Pointing-Pointer We explain how this information is used to generate configuration files. Black-Right-Pointing-Pointer We explain that this information is validated. - Abstract: ITER will consist of roughly 160 plant systems I and C delivered in kind which need to be integrated into the ITER control infrastructure. To make the integration of all these plant systems I and C, a smooth operation, the CODAC (Controls, Data Access and Communications) group release every year the core software environment which consists of many applications. In this paper we would like to describe what configuration data and how it is modeled in the version 2. The model is based on three views, the physical one which lists the components with their signals, the functional view which describes the control functions and variables required to implement them and the control view which links the two previous views. We use Hibernate as an ORM (Object Relational Mapping) framework with a PostgreSQL database and Spring as a framework to handle transactions.

  4. Transitional Description of Diatomic Molecules in U(4) Vibron Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin; PAN Feng

    2004-01-01

    U(3)-O(4) transitional description of diatomic molecules in the U(4) vibron model is studied by using the algebraic Bethe ansatz, in which the O(4) limit is a special case of the theory. Vibrational band-heads of some typical diatornic molecules are fitted by both transitional theory and the O(4) limit within the same framework. The results show that there are evident deviations from the O(4) limit in description of vibrational spectra of some diatomic molecules.

  5. A computationally efficient description of heterogeneous freezing: A simplified version of the Soccer ball model

    Science.gov (United States)

    Niedermeier, Dennis; Ervens, Barbara; Clauss, Tina; Voigtländer, Jens; Wex, Heike; Hartmann, Susan; Stratmann, Frank

    2014-01-01

    In a recent study, the Soccer ball model (SBM) was introduced for modeling and/or parameterizing heterogeneous ice nucleation processes. The model applies classical nucleation theory. It allows for a consistent description of both apparently singular and stochastic ice nucleation behavior, by distributing contact angles over the nucleation sites of a particle population assuming a Gaussian probability density function. The original SBM utilizes the Monte Carlo technique, which hampers its usage in atmospheric models, as fairly time-consuming calculations must be performed to obtain statistically significant results. Thus, we have developed a simplified and computationally more efficient version of the SBM. We successfully used the new SBM to parameterize experimental nucleation data of, e.g., bacterial ice nucleation. Both SBMs give identical results; however, the new model is computationally less expensive as confirmed by cloud parcel simulations. Therefore, it is a suitable tool for describing heterogeneous ice nucleation processes in atmospheric models.

  6. Global Atmospheric Models for Cosmic Ray Detectors

    CERN Document Server

    Will, Martin

    2014-01-01

    The knowledge of atmospheric parameters -- such as temperature, pressure, and humidity -- is very important for a proper reconstruction of air showers, especially with the fluorescence technique. The Global Data Assimilation System (GDAS) provides altitude-dependent profiles of these state variables of the atmosphere and several more. Every three hours, a new data set on 23 constant pressure level plus an additional surface values is available for the entire globe. These GDAS data are now used in the standard air shower reconstruction of the Pierre Auger Observatory. The validity of the data was verified by comparisons with monthly models that were averaged from on-site meteorological radio soundings and weather station measurements obtained at the Observatory in Malarg\\"ue. Comparisons of reconstructions using the GDAS data and the monthly models are also presented. Since GDAS is a global model, the data can potentially be used for other cosmic and gamma ray detectors. Several studies were already performed ...

  7. Models of magnetized neutron star atmospheres: thin atmospheres and partially ionized hydrogen atmospheres with vacuum polarization

    CERN Document Server

    Suleimanov, V F; Werner, K

    2009-01-01

    Observed X-ray spectra of some isolated magnetized neutron stars display absorption features, sometimes interpreted as ion cyclotron lines. Modeling the observed spectra is necessary to check this hypothesis and to evaluate neutron star parameters.We develop a computer code for modeling magnetized neutron star atmospheres in a wide range of magnetic fields (10^{12} - 10^{15} G) and effective temperatures (3 \\times 10^5 - 10^7 K). Using this code, we study the possibilities to explain the soft X-ray spectra of isolated neutron stars by different atmosphere models. The atmosphere is assumed to consist either of fully ionized electron-ion plasmas or of partially ionized hydrogen. Vacuum resonance and partial mode conversion are taken into account. Any inclination of the magnetic field relative to the stellar surface is allowed. We use modern opacities of fully or partially ionized plasmas in strong magnetic fields and solve the coupled radiative transfer equations for the normal electromagnetic modes in the plas...

  8. Parallel computing in atmospheric chemistry models

    Energy Technology Data Exchange (ETDEWEB)

    Rotman, D. [Lawrence Livermore National Lab., CA (United States). Atmospheric Sciences Div.

    1996-02-01

    Studies of atmospheric chemistry are of high scientific interest, involve computations that are complex and intense, and require enormous amounts of I/O. Current supercomputer computational capabilities are limiting the studies of stratospheric and tropospheric chemistry and will certainly not be able to handle the upcoming coupled chemistry/climate models. To enable such calculations, the authors have developed a computing framework that allows computations on a wide range of computational platforms, including massively parallel machines. Because of the fast paced changes in this field, the modeling framework and scientific modules have been developed to be highly portable and efficient. Here, the authors present the important features of the framework and focus on the atmospheric chemistry module, named IMPACT, and its capabilities. Applications of IMPACT to aircraft studies will be presented.

  9. Atmosphere-Cryosphere Coupled Model for Regional Climate Applications

    Directory of Open Access Journals (Sweden)

    Ki-Hong Min

    2015-01-01

    Full Text Available There have been significant advances in our understanding of the climate system, but two major problems still exist in modeling atmospheric response during cold seasons: (a lack of detailed physical description of snow and frozen soil in the land-surface schemes and (b insufficient understanding of regional climate response from the cryosphere. A multilayer snow land-surface model based on the conservations of heat and water substance inside the soil and snow is coupled to an atmospheric RCM, to investigate the effect of snow, snowmelt, and soil frost on the atmosphere during cold seasons. The coupled RCM shows much improvement in moisture and temperature simulation for March-April of 1997 compared to simple parameterizations used in GCMs. The importance of such processes in RCM simulation is more pronounced in mid-to-high latitudes during the transition period (winter–spring affected by changes in surface energy and the hydrological cycle. The effect of including cryosphere physics through snow-albedo feedback mechanism changes the meridional temperature gradients and in turn changes the location of weather systems passing over the region. The implications from our study suggest that, to reduce the uncertainties and better assess the impacts of climate change, RCM simulations should include the detailed snow and frozen soil processes.

  10. The study of prescriptive and descriptive models of decision making

    Directory of Open Access Journals (Sweden)

    Ashok A Divekar

    2012-04-01

    Full Text Available The field of decision making can be loosely divided into two parts: the study of prescriptive models and the study of descriptive models. Prescriptive decision scientists are concerned with prescribing methods for making optimal decisions. Descriptive decision researchers are concerned with the bounded way in which the decisions are actually made. The statistics courses treat risk from a prescriptive, by suggesting rational methods. This paper brings out the work done by many researchers by examining the psychological factors that explain how managers deviate from rationality in responding to uncertainty.

  11. Seasonal Predictability in a Model Atmosphere.

    Science.gov (United States)

    Lin, Hai

    2001-07-01

    The predictability of atmospheric mean-seasonal conditions in the absence of externally varying forcing is examined. A perfect-model approach is adopted, in which a global T21 three-level quasigeostrophic atmospheric model is integrated over 21 000 days to obtain a reference atmospheric orbit. The model is driven by a time-independent forcing, so that the only source of time variability is the internal dynamics. The forcing is set to perpetual winter conditions in the Northern Hemisphere (NH) and perpetual summer in the Southern Hemisphere.A significant temporal variability in the NH 90-day mean states is observed. The component of that variability associated with the higher-frequency motions, or climate noise, is estimated using a method developed by Madden. In the polar region, and to a lesser extent in the midlatitudes, the temporal variance of the winter means is significantly greater than the climate noise, suggesting some potential predictability in those regions.Forecast experiments are performed to see whether the presence of variance in the 90-day mean states that is in excess of the climate noise leads to some skill in the prediction of these states. Ensemble forecast experiments with nine members starting from slightly different initial conditions are performed for 200 different 90-day means along the reference atmospheric orbit. The serial correlation between the ensemble means and the reference orbit shows that there is skill in the 90-day mean predictions. The skill is concentrated in those regions of the NH that have the largest variance in excess of the climate noise. An EOF analysis shows that nearly all the predictive skill in the seasonal means is associated with one mode of variability with a strong axisymmetric component.

  12. Web Service Description and Discovery Based on Semantic Model

    Institute of Scientific and Technical Information of China (English)

    YANG Xuemei; XU Lizhen; DONG Yisheng; WANG Yongli

    2006-01-01

    A novel semantic model of Web service description and discovery was proposed through an extension for profile model of Web ontology language for services (OWL-S) in this paper.Similarity matching of Web services was implemented through computing weighted summation of semantic similarity value based on specific domain ontology and dynamical satisfy extent evaluation for quality of service (QoS).Experiments show that the provided semantic matching model is efficient.

  13. Organic chemistry in the atmosphere. [laboratory modeling of Titan atmosphere

    Science.gov (United States)

    Sagan, C.

    1974-01-01

    The existence of an at least moderately complex organic chemistry on Titan is stipulated based on clear evidence of methane, and at least presumptive evidence of hydrogen in its atmosphere. The ratio of methane to hydrogen is the highest of any atmosphere in the solar system. Irradiation of hydrogen/methane mixtures produces aromatic and aliphatic hydrocarbons. A very reasonable hypothesis assumes that the red cloud cover of Titan is made of organic chemicals. Two-carbon hydrocarbons experimentally produced from irradiated mixtures of methane, ammonia, water, and hydrogen bear out the possible organic chemistry of the Titanian environment.

  14. Atmospheric transmittance model for photosynthetically active radiation

    Energy Technology Data Exchange (ETDEWEB)

    Paulescu, Marius; Stefu, Nicoleta; Gravila, Paul; Paulescu, Eugenia; Boata, Remus; Pacurar, Angel; Mares, Oana [Physics Department, West University of Timisoara, V Parvan 4, 300223 Timisoara (Romania); Pop, Nicolina [Department of Physical Foundations of Engineering, Politehnica University of Timisoara, V Parvan 2, 300223 Timisoara (Romania); Calinoiu, Delia [Mechanical Engineering Faculty, Politehnica University of Timisoara, Mihai Viteazu 1, 300222 Timisoara (Romania)

    2013-11-13

    A parametric model of the atmospheric transmittance in the PAR band is presented. The model can be straightforwardly applied for calculating the beam, diffuse and global components of the PAR solar irradiance. The required inputs are: air pressure, ozone, water vapor and nitrogen dioxide column content, Ångström's turbidity coefficient and single scattering albedo. Comparison with other models and ground measured data shows a reasonable level of accuracy for this model, making it suitable for practical applications. From the computational point of view the calculus is condensed into simple algebra which is a noticeable advantage. For users interested in speed-intensive computation of the effective PAR solar irradiance, a PC program based on the parametric equations along with a user guide are available online at http://solar.physics.uvt.ro/srms.

  15. Model atmospheres - Tool for identifying interstellar features

    Science.gov (United States)

    Frisch, P. C.; Slojkowski, S. E.; Rodriguez-Bell, T.; York, D.

    1993-01-01

    Model atmosphere parameters are derived for 14 early A stars with rotation velocities, from optical spectra, in excess of 80 km/s. The models are compared with IUE observations of the stars in regions where interstellar lines are expected. In general, with the assumption of solar abundances, excellent fits are obtained in regions longward of 2580 A, and accurate interstellar equivalent widths can be derived using models to establish the continuum. The fits are poorer at shorter wavelengths, particularly at 2026-2062 A, where the stellar model parameters seem inadequate. Features indicating mass flows are evident in stars with known infrared excesses. In gamma TrA, variability in the Mg II lines is seen over the 5-year interval of these data, and also over timescales as short as 26 days. The present technique should be useful in systematic studies of episodic mass flows in A stars and for stellar abundance studies, as well as interstellar features.

  16. Modeling Atmospheric Activity of Cool Stars

    Science.gov (United States)

    Schrijver, C. J.

    2003-10-01

    This review discusses a set of simple models for cool-star activity with which we compute (1) photospheric field patterns on stars of different activity levels, (2) the associated outer-atmospheric field configurations, and (3) the soft X-ray emission that is expected to result from the ensemble of loop atmospheres in the coronae of these stars. The model is based on empirically-determined properties of solar activity. It allows us to extrapolate to stars of significantly higher and lower activity than seen on the present-day Sun through its cycle. With it, we can, for example, gain insight into stellar field patterns (including a possible formation mechanism for polar starspots), as well as in the properties of coronal heating (helpful in the identification of the quiescent coronal heating mechanism). Lacking comprehensive theoretical understanding, the model's reliance on empirical solar data means that the multitude of processes involved are approximated to be independent of rotation rate, activity level, and fundamental stellar parameters, or -- where unavoidably necessary -- assumed to simply scale with activity. An evaluation of the most important processes involved guides a discussion of the limits of the model, of the limitations in our knowledge, and of future needs. "I propose to adopt such rules as will ensure the testability of scientific statements; which is to say, their falsifiability." Karl Popper (1902-1994)

  17. The PHOENIX Model Atmosphere Grid for Stars

    Science.gov (United States)

    Allard, F.

    2016-12-01

    We present a new project for a 1D static though full NLTE model atmosphere grid ranging T_{eff}= 15,000 to 1500 K in 100K steps, surface gravities ranging from log g= -0.5 to 6.0 in steps of 0.25 dex, and metallicity ranging from [M/H]=-2.5 to +0.5 in steps of 0.25 dex accounting for alpha element enrichment of [α/H]= +0.0, +0.2, +0.4 and C/O enhancement.

  18. Spectral Analysis and Atmospheric Models of Microflares

    Institute of Scientific and Technical Information of China (English)

    Cheng Fang; Yu-Hua Tang; Zhi Xu

    2006-01-01

    By use of the high-resolution spectral data obtained with THEMIS on 2002 September 5, the spectra and characteristics of five well-observed microflares have been analyzed. Our results indicate that some of them are located near the longitudinal magnetic polarity inversion lines. All the microflares are accompanied by mass motions. The most obvious characteristic of the Hα microflare spectra is the emission at the center of both Hα and CaII 8542(A) lines. For the first time both thermal and non-thermal semi-empirical atmospheric models for the conspicuous and faint microflares are computed. In computing the non-thermal models, we assume that the electron beam resulting from magnetic reconnection is produced in the chromosphere, because it requires lower energies for the injected particles.It is found there is obvious heating in the low chromosphere. The temperature enhancement is about 1000-2200 K in the thermal models. If the non-thermal effects are included, then the required temperature increase can be reduced by 100-150 K. These imply that the Hα microflares can probably be produced by magnetic reconnection in the solar Iower atmosphere.The radiative and kinetic energies of the Hα microflares are estimated and the total energy is found to be 1027 - 4× 1028 erg.

  19. Confidence assessment. Site-descriptive modelling SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    2008-12-15

    The objective of this report is to assess the confidence that can be placed in the Laxemar site descriptive model, based on the information available at the conclusion of the surface-based investigations (SDM-Site Laxemar). In this exploration, an overriding question is whether remaining uncertainties are significant for repository engineering design or long-term safety assessment and could successfully be further reduced by more surface-based investigations or more usefully by explorations underground made during construction of the repository. Procedures for this assessment have been progressively refined during the course of the site descriptive modelling, and applied to all previous versions of the Forsmark and Laxemar site descriptive models. They include assessment of whether all relevant data have been considered and understood, identification of the main uncertainties and their causes, possible alternative models and their handling, and consistency between disciplines. The assessment then forms the basis for an overall confidence statement. The confidence in the Laxemar site descriptive model, based on the data available at the conclusion of the surface based site investigations, has been assessed by exploring: - Confidence in the site characterization data base, - remaining issues and their handling, - handling of alternatives, - consistency between disciplines and - main reasons for confidence and lack of confidence in the model. Generally, the site investigation database is of high quality, as assured by the quality procedures applied. It is judged that the Laxemar site descriptive model has an overall high level of confidence. Because of the relatively robust geological model that describes the site, the overall confidence in the Laxemar Site Descriptive model is judged to be high, even though details of the spatial variability remain unknown. The overall reason for this confidence is the wide spatial distribution of the data and the consistency between

  20. The Atmospheric Radionuclide Transport Model (ARTM) - Validation of a long-term atmospheric dispersion model

    Science.gov (United States)

    Hettrich, Sebastian; Wildermuth, Hans; Strobl, Christopher; Wenig, Mark

    2016-04-01

    In the last couple of years, the Atmospheric Radionuclide Transport Model (ARTM) has been developed by the German Federal Office for Radiation Protection (BfS) and the Society for Plant and Reactor Security (GRS). ARTM is an atmospheric dispersion model for continuous long-term releases of radionuclides into the atmosphere, based on the Lagrangian particle model. This model, developed in the first place as a more realistic replacement for the out-dated Gaussian plume models, is currently being optimised for further scientific purposes to study atmospheric dispersion in short-range scenarios. It includes a diagnostic wind field model, allows for the application of building structures and multiple sources (including linear, 2-and 3-dimensional source geometries), and considers orography and surface roughness. As an output it calculates the activity concentration, dry and wet deposition and can model also the radioactive decay of Rn-222. As such, ARTM requires to undergo an intense validation process. While for short-term and short-range models, which were mainly developed for examining nuclear accidents or explosions, a few measurement data-sets are available for validation, data-sets for validating long-term models are very sparse and the existing ones mostly prove to be not applicable for validation. Here we present a strategy for the validation of long-term Lagrangian particle models based on the work with ARTM. In our validation study, the first part we present is a comprehensive analysis of the model sensitivities on different parameters like e.g. (simulation grid size resolution, starting random number, amount of simulation particles, etc.). This study provides a good estimation for the uncertainties of the simulation results and consequently can be used to generate model outputs comparable to the available measurements data at various distances from the emission source. This comparison between measurement data from selected scenarios and simulation results

  1. The compact Earth system model OSCAR v2.2: description and first results

    Science.gov (United States)

    Gasser, Thomas; Ciais, Philippe; Boucher, Olivier; Quilcaille, Yann; Tortora, Maxime; Bopp, Laurent; Hauglustaine, Didier

    2017-01-01

    This paper provides a comprehensive description of OSCAR v2.2, a simple Earth system model. The general philosophy of development is first explained, followed by a complete description of the model's drivers and various modules. All components of the Earth system necessary to simulate future climate change are represented in the model: the oceanic and terrestrial carbon cycles - including a book-keeping module to endogenously estimate land-use change emissions - so as to simulate the change in atmospheric carbon dioxide; the tropospheric chemistry and the natural wetlands, to simulate that of methane; the stratospheric chemistry, for nitrous oxide; 37 halogenated compounds; changing tropospheric and stratospheric ozone; the direct and indirect effects of aerosols; changes in surface albedo caused by black carbon deposition on snow and land-cover change; and the global and regional response of climate - in terms of temperature and precipitation - to all these climate forcers. Following the probabilistic framework of the model, an ensemble of simulations is made over the historical period (1750-2010). We show that the model performs well in reproducing observed past changes in the Earth system such as increased atmospheric concentration of greenhouse gases or increased global mean surface temperature.

  2. Can simulations of flux exchanges between the land surface and the atmosphere be improved by a more complex description of soil and plant processes?

    Science.gov (United States)

    Klein, Christian

    2013-04-01

    Can simulations of flux exchanges between the land surface and the atmosphere be improved by a more complex description of soil and plant processes? Christian Klein, Christian Biernath, Peter Hoffmann and Eckart Priesack Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Soil Ecology, Oberschleissheim, Germany christian.klein@helmholtz-muenchen.de, ++ 49 89 3187 3015 Recent studies show, that uncertainties in regional and global climate simulations are partly caused by inadequate descriptions of soil-plant-atmosphere. Therefore, we coupled the soil-plant model system Expert-N to the regional climate and weather forecast model WRF. Key features of the Expert-N model system are the simulation of water flow, heat transfer and solute transport in soils and the transpiration of grassland and forest stands. Particularly relevant for the improvement of regional weather forecast are simulations of the feedback between the land surface and atmosphere, which influences surface temperature, surface pressure and precipitation. The WRF model was modified to optionally select either the land surface model Expert-N or NOAH to simulate the exchange of water and energy fluxes between the land surface and the atmosphere for every single grid cell within the simulation domain. Where the standard land surface model NOAH interpolates monthly LAI input values to simulate interactions between plant and atmosphere Expert-N simulates a dynamic plant growth with respect to water and nutrient availability in the soil. In this way Expert-N can be applied to study the effect of dynamic vegetation growth simulation on regional climate simulation results. For model testing Expert-N was used with two different soil parameterizations. The first parametrization used the USGS soil texture classification and simplifies the soil profile to one horizon (similar to the NOAH model). The second parameterization is based on the German soil texture classification

  3. Hydrodynamic description of spin Calogero-Sutherland model

    Science.gov (United States)

    Abanov, Alexander; Kulkarni, Manas; Franchini, Fabio

    2009-03-01

    We study a non-linear collective field theory for an integrable spin-Calogero-Sutherland model. The hydrodynamic description of this SU(2) model in terms of charge density, charge velocity and spin currents is used to study non-perturbative solutions (solitons) and examine their correspondence with known quantum numbers of elementary excitations [1]. A conventional linear bosonization or harmonic approximation is not sufficient to describe, for example, the physics of spin-charge (non)separation. Therefore, we need this new collective bosonic field description that captures the effects of the band curvature. In the strong coupling limit [2] this model reduces to integrable SU(2) Haldane-Shastry model. We study a non-linear coupling of left and right spin currents which form a Kac-Moody algebra. Our quantum hydrodynamic description for the spin case is an extension for the one found in the spinless version in [3].[3pt] [1] Y. Kato,T. Yamamoto, and M. Arikawa, J. Phys. Soc. Jpn. 66, 1954-1961 (1997).[0pt] [2] A. Polychronakos, Phys Rev Lett. 70,2329-2331(1993).[0pt] [3] A.G.Abanov and P.B. Wiegmann, Phys Rev Lett 95, 076402(2005)

  4. Modeling the water decarbonization processes in atmospheric deaerators

    Science.gov (United States)

    Leduhovsky, G. V.

    2017-02-01

    A mathematical model of the water decarbonization processes in atmospheric deaerators is proposed to calculate the thermal decomposition degree of hydrocarbonates in a deaerator, pH of a deaerated water sample, and the mass concentration of free carbonic acid in it on a carbon dioxide basis. The mathematical description of these processes is based on the deaeration tank water flow model implemented in the specialized software suite for the calculation of three-dimensional liquid flows, where a real water flow is a set of parallel small plug-flow reactors, and the rate constant of the reaction representing a generalized model of the thermal decomposition of hydrocarbonates with consideration for its chemical and diffusion stages is identified by experimental data. Based on the results of experimental studies performed on deaerators of different designs with and without steam bubbling in their tanks, an empirical support of this model has been developed in the form of recommended reaction order and rate constant values selected depending on the overall alkalinity of water fed into a deaerator. A self-contained mathematical description of the water decarbonization processes in deaerators has been obtained. The proposed model precision has been proven to agree with the specified metrological characteristics of the potentiometric and alkalimetric methods for measuring pH and the free carbonic acid concentration in water. This allows us to recommend the obtained model for the solution of practical problems of forming a specified amount of deaerated water via the selection of the structural and regime parameters of deaerators during their design and regime adjustment.

  5. Description of deformed nuclei in the sdg boson model

    CERN Document Server

    Li, S C

    1996-01-01

    We present a study of deformed nuclei in the framework of the sdg interacting boson model utilizing both numerical diagonalization and analytical 1/N expansion techniques. The focus is on description of high-spin states which have recently become computationally accessible through the use of computer algebra in the 1/N expansion formalism. A systematic study is made of high-spin states in rare-earth and actinide nuclei.

  6. BTZ black hole entropy: a spin foam model description

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Islas, J Manuel [Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas, Universidad Nacional Autonoma de Mexico, UNAM, A Postal 20-726, 01000, Mexico DF (Mexico)], E-mail: jmgislas@leibniz.iimas.unam.mx

    2008-12-21

    We present a microscopical explanation of the entropy of the BTZ black hole using discrete spin foam models of quantum gravity. The entropy of a black hole is given in geometrical terms which led us to think that its statistical description must be given in terms of a quantum geometry. In this paper we present it in terms of spin foam geometrical observables at the horizon of the black hole.

  7. Swell impact on wind stress and atmospheric mixing in a regional coupled atmosphere-wave model

    DEFF Research Database (Denmark)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik;

    2016-01-01

    Over the ocean, the atmospheric turbulence can be significantly affected by swell waves. Change in the atmospheric turbulence affects the wind stress and atmospheric mixing over swell waves. In this study, the influence of swell on atmospheric mixing and wind stress is introduced into an atmosphere......-wave-coupled regional climate model, separately and combined. The swell influence on atmospheric mixing is introduced into the atmospheric mixing length formula by adding a swell-induced contribution to the mixing. The swell influence on the wind stress under wind-following swell, moderate-range wind, and near......-neutral and unstable stratification conditions is introduced by changing the roughness length. Five year simulation results indicate that adding the swell influence on atmospheric mixing has limited influence, only slightly increasing the near-surface wind speed; in contrast, adding the swell influence on wind stress...

  8. Global warming description using Daisyworld model with greenhouse gases.

    Science.gov (United States)

    Paiva, Susana L D; Savi, Marcelo A; Viola, Flavio M; Leiroz, Albino J K

    2014-11-01

    Daisyworld is an archetypal model of the earth that is able to describe the global regulation that can emerge from the interaction between life and environment. This article proposes a model based on the original Daisyworld considering greenhouse gases emission and absorption, allowing the description of the global warming phenomenon. Global and local analyses are discussed evaluating the influence of greenhouse gases in the planet dynamics. Numerical simulations are carried out showing the general qualitative behavior of the Daisyworld for different scenarios that includes solar luminosity variations and greenhouse gases effect. Nonlinear dynamics perspective is of concern discussing a way that helps the comprehension of the global warming phenomenon.

  9. Nonlocal quark model description of a composite Higgs particle

    CERN Document Server

    Kachanovich, Aliaksei

    2016-01-01

    We propose a description of the Higgs boson as top-antitop quark bound state within a nonlocal relativistic quark model of Nambu - Jona-Lasinio type. In contrast to model with local four-fermion interaction, the mass of the scalar bound state can be lighter than the sum of its constituents. This is achieved by adjusting the interaction range and the value of the coupling constant to experimental data, for both the top quark mass and the scalar Higgs boson mass, which can simultaneously be described.

  10. ISDTM:An Intrusion Signatures Description Temporal Model

    Institute of Scientific and Technical Information of China (English)

    OuYangMing-guang; ZhouYang-bo

    2003-01-01

    ISDTM, based on an augmented Allen's interval temporal logic (ITL) and first-order predicate calculus, is a formal temporal model for representing intrusion signatures.It is augmented with some real time extensions which enhance the expressivity. Intrusion scenarios usually are the set of events and system states, wherethe temporal sequence is their basic relation. Intrusion signatures description, therefore, is to represent such temporal relations in a sense. While representing these signatures, ISDTM decomposes the intrusion process into the sequence of events according to their relevant intervals, and then specifies network states in these Intervals. The uncertain intrusion signatures as well as basic temporal modes of events, which consist of the parallel mode,the sequential mode and the hybrid mode, can be succinctly and naturally represented in ISDTM. Mode chart is the visualization of intrusion signatures in ISDTM, which makes the formulas more readable. The intrusion signatures descriptions in ISDTM have advantages of compact construct, concise syntax, scalability and easy implementation.

  11. Architecture Descriptions. A Contribution to Modeling of Production System Architecture

    DEFF Research Database (Denmark)

    Jepsen, Allan Dam; Hvam, Lars

    on the underlying principles of a production system’s design; and despite the existence of established architecture and platform theories and practices within product design, there is still a need for a better understanding of the architecture phenomenon itself, and certainly how it applies within production system....... The viewpoints provide a set of model kinds to frame select architecture related concerns relating to the production capability and the design of the technical system. With the contribution to architecture description there follows a need to support exchange and processing of architecture information within......The subject of this PhD dissertation is architecture-centric design and the description of production system architecture. Companies are facing demands for the development and production of new products at an ever increasing rate, as the market life of products decreases and the rate at which...

  12. Tactical Atmospheric Modeling System-Real Time (TAMS-RT)

    Science.gov (United States)

    2016-06-07

    mesoscale model analysis and forecast fields as inputs. OBJECTIVES Support the NRL Tactical Atmospheric Modeling System- Real Time (TAMS-RT) installed in...SEP 1999 2. REPORT TYPE 3. DATES COVERED 00-00-1999 to 00-00-1999 4. TITLE AND SUBTITLE Tactical Atmospheric Modeling System- Real Time (TAMS...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 1 Tactical Atmospheric Modeling System- Real

  13. Gray-box modelling approach for description of storage tunnel

    DEFF Research Database (Denmark)

    Harremoës, Poul; Carstensen, Jacob

    1999-01-01

    . The model in the present paper provides on-line information on overflow volumes, pumping capacities, and remaining storage capacities. A linear overflow relation is found, differing significantly from the traditional deterministic modeling approach. The linearity of the formulas is explained by the inertia......The dynamics of a storage tunnel is examined using a model based on on-line measured data and a combination of simple deterministic and black-box stochastic elements. This approach, called gray-box modeling, is a new promising methodology for giving an on-line state description of sewer systems...... of the water in the overflow structures. The capacity of a pump draining the storage tunnel is estimated for two different rain events, revealing that the pump was malfunctioning during the first rain event. The proposed modeling approach can be used in automated online surveillance and control and implemented...

  14. Approaching the other: Investigation of a descriptive belief revision model

    Directory of Open Access Journals (Sweden)

    Spyridon Stelios

    2016-12-01

    Full Text Available When an individual—a hearer—is confronted with an opinion expressed by another individual—a speaker—differing from her only in terms of a degree of belief, how will she react? In trying to answer that question this paper reintroduces and investigates a descriptive belief revision model designed to measure approaches. Parameters of the model are the hearer’s credibility account of the speaker, the initial difference between the hearer’s and speaker’s degrees of belief, and the hearer’s resistance to change. Within an interdisciplinary framework, two empirical studies were conducted. A comparison was carried out between empirically recorded revisions and revisions according to the model. Results showed that the theoretical model is highly confirmed. An interesting finding is the measurement of an “unexplainable behaviour” that is not classified either as repulsion or as approach. At a second level of analysis, the model is compared to the Bayesian framework of inference. Structural differences and evidence for optimal descriptive adequacy of the former were highlighted.

  15. Predicate Argument Structure Analysis for Use Case Description Modeling

    Science.gov (United States)

    Takeuchi, Hironori; Nakamura, Taiga; Yamaguchi, Takahira

    In a large software system development project, many documents are prepared and updated frequently. In such a situation, support is needed for looking through these documents easily to identify inconsistencies and to maintain traceability. In this research, we focus on the requirements documents such as use cases and consider how to create models from the use case descriptions in unformatted text. In the model construction, we propose a few semantic constraints based on the features of the use cases and use them for a predicate argument structure analysis to assign semantic labels to actors and actions. With this approach, we show that we can assign semantic labels without enhancing any existing general lexical resources such as case frame dictionaries and design a less language-dependent model construction architecture. By using the constructed model, we consider a system for quality analysis of the use cases and automated test case generation to keep the traceability between document sets. We evaluated the reuse of the existing use cases and generated test case steps automatically with the proposed prototype system from real-world use cases in the development of a system using a packaged application. Based on the evaluation, we show how to construct models with high precision from English and Japanese use case data. Also, we could generate good test cases for about 90% of the real use cases through the manual improvement of the descriptions based on the feedback from the quality analysis system.

  16. Swell impact on wind stress and atmospheric mixing in a regional coupled atmosphere-wave model

    Science.gov (United States)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik; Guo Larsén, Xiaoli

    2016-07-01

    Over the ocean, the atmospheric turbulence can be significantly affected by swell waves. Change in the atmospheric turbulence affects the wind stress and atmospheric mixing over swell waves. In this study, the influence of swell on atmospheric mixing and wind stress is introduced into an atmosphere-wave-coupled regional climate model, separately and combined. The swell influence on atmospheric mixing is introduced into the atmospheric mixing length formula by adding a swell-induced contribution to the mixing. The swell influence on the wind stress under wind-following swell, moderate-range wind, and near-neutral and unstable stratification conditions is introduced by changing the roughness length. Five year simulation results indicate that adding the swell influence on atmospheric mixing has limited influence, only slightly increasing the near-surface wind speed; in contrast, adding the swell influence on wind stress reduces the near-surface wind speed. Introducing the wave influence roughness length has a larger influence than does adding the swell influence on mixing. Compared with measurements, adding the swell influence on both atmospheric mixing and wind stress gives the best model performance for the wind speed. The influence varies with wave characteristics for different sea basins. Swell occurs infrequently in the studied area, and one could expect more influence in high-swell-frequency areas (i.e., low-latitude ocean). We conclude that the influence of swell on atmospheric mixing and wind stress should be considered when developing climate models.

  17. Confidence assessment. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    2008-09-15

    The objective of this report is to assess the confidence that can be placed in the Forsmark site descriptive model, based on the information available at the conclusion of the surface-based investigations (SDM-Site Forsmark). In this exploration, an overriding question is whether remaining uncertainties are significant for repository engineering design or long-term safety assessment and could successfully be further reduced by more surface based investigations or more usefully by explorations underground made during construction of the repository. The confidence in the Forsmark site descriptive model, based on the data available at the conclusion of the surface-based site investigations, have been assessed by exploring: Confidence in the site characterisation data base; Key remaining issues and their handling; Handling of alternative models; Consistency between disciplines; and, Main reasons for confidence and lack of confidence in the model. It is generally found that the key aspects of importance for safety assessment and repository engineering of the Forsmark site descriptive model are associated with a high degree of confidence. Because of the robust geological model that describes the site, the overall confidence in Forsmark site descriptive model is judged to be high. While some aspects have lower confidence this lack of confidence is handled by providing wider uncertainty ranges, bounding estimates and/or alternative models. Most, but not all, of the low confidence aspects have little impact on repository engineering design or for long-term safety. Poor precision in the measured data are judged to have limited impact on uncertainties on the site descriptive model, with the exceptions of inaccuracy in determining the position of some boreholes at depth in 3-D space, as well as the poor precision of the orientation of BIPS images in some boreholes, and the poor precision of stress data determined by overcoring at the locations where the pre

  18. CDMBE: A Case Description Model Based on Evidence

    Directory of Open Access Journals (Sweden)

    Jianlin Zhu

    2015-01-01

    Full Text Available By combining the advantages of argument map and Bayesian network, a case description model based on evidence (CDMBE, which is suitable to continental law system, is proposed to describe the criminal cases. The logic of the model adopts the credibility logical reason and gets evidence-based reasoning quantitatively based on evidences. In order to consist with practical inference rules, five types of relationship and a set of rules are defined to calculate the credibility of assumptions based on the credibility and supportability of the related evidences. Experiments show that the model can get users’ ideas into a figure and the results calculated from CDMBE are in line with those from Bayesian model.

  19. Indeterminate direction relation model based on fuzzy description framework

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The indetermination of direction relation is a hot topic for fuzzy GIS researchers. The existing models only study the effects of indetermination of spatial objects,but ignore the uncertainty of direction reference framework. In this paper,first a for-malized representation model of indeterminate spatial objects is designed based on quadruple (x,y,A,μ),then a fuzzy direction reference framework is constructed by revising the cone method,in which the partitions of direction tiles are smooth and continuous,and two neighboring sections are overlapped in the transitional zones with fuzzy method. Grounded on these,a fuzzy description model for indeterminate direction relation is proposed in which the uncertainty of all three parts (source object,reference object and reference frame) is taken into account simultaneously. In the end,case studies are implemented to test the rationality and validity of the model.

  20. New Description Model of Sputtering on Material Surface

    Institute of Scientific and Technical Information of China (English)

    邓柏权; 严建成; 黄锦华; 彭利林

    2003-01-01

    In order to estimate the erosion rates of some plasma facing component materials, the sputtering yields of Mo, W and deuterium-saturated Li bombarded by fusion charged particles are calculated by application of new sputtering physics description methods based on the bipartition model of ion transport theory. The comparisons with Monte Carlo calculation and experimental results are made. These data might be useful to estimate the lifetime of plasma facing components and to analyse the impurity level in core plasma of fusion reactors.

  1. Radiative and dynamical modeling of Jupiter's atmosphere

    Science.gov (United States)

    Guerlet, Sandrine; Spiga, Aymeric

    2016-04-01

    Jupiter's atmosphere harbours a rich meteorology, with alternate westward and eastward zonal jets, waves signatures and long-living storms. Recent ground-based and spacecraft measurements have also revealed a rich stratospheric dynamics, with the observation of thermal signatures of planetary waves, puzzling meridional distribution of hydrocarbons at odds with predictions of photochemical models, and a periodic equatorial oscillation analogous to the Earth's quasi-biennal oscillation and Saturn's equatorial oscillation. These recent observations, along with the many unanswered questions (What drives and maintain the equatorial oscillations? How important is the seasonal forcing compared to the influence of internal heat? What is the large-scale stratospheric circulation of these giant planets?) motivated us to develop a complete 3D General Circulation Model (GCM) of Saturn and Jupiter. We aim at exploring the large-scale circulation, seasonal variability, and wave activity from the troposphere to the stratosphere of these giant planets. We will briefly present how we adapted our existing Saturn GCM to Jupiter. One of the main change is the addition of a stratospheric haze layer made of fractal aggregates in the auroral regions (poleward of 45S and 30N). This haze layer has a significant radiative impact by modifying the temperature up to +/- 15K in the middle stratosphere. We will then describe the results of radiative-convective simulations and how they compare to recent Cassini and ground-based temperature measurements. These simulations reproduce surprisingly well some of the observed thermal vertical and meridional gradients, but several important mismatches at low and high latitudes suggest that dynamics also plays an important role in shaping the temperature field. Finally, we will present full GCM simulations and discuss the main resulting features (waves and instabilities). We will also and discuss the impact of the choice of spatial resolution and

  2. Spatio-temporal statistical models with applications to atmospheric processes

    Energy Technology Data Exchange (ETDEWEB)

    Wikle, C.K.

    1996-12-31

    This doctoral dissertation is presented as three self-contained papers. An introductory chapter considers traditional spatio-temporal statistical methods used in the atmospheric sciences from a statistical perspective. Although this section is primarily a review, many of the statistical issues considered have not been considered in the context of these methods and several open questions are posed. The first paper attempts to determine a means of characterizing the semiannual oscillation (SAO) spatial variation in the northern hemisphere extratropical height field. It was discovered that the midlatitude SAO in 500hPa geopotential height could be explained almost entirely as a result of spatial and temporal asymmetries in the annual variation of stationary eddies. It was concluded that the mechanism for the SAO in the northern hemisphere is a result of land-sea contrasts. The second paper examines the seasonal variability of mixed Rossby-gravity waves (MRGW) in lower stratospheric over the equatorial Pacific. Advanced cyclostationary time series techniques were used for analysis. It was found that there are significant twice-yearly peaks in MRGW activity. Analyses also suggested a convergence of horizontal momentum flux associated with these waves. In the third paper, a new spatio-temporal statistical model is proposed that attempts to consider the influence of both temporal and spatial variability. This method is mainly concerned with prediction in space and time, and provides a spatially descriptive and temporally dynamic model.

  3. Wind adaptive modeling of transmission lines using minimum description length

    Science.gov (United States)

    Jaw, Yoonseok; Sohn, Gunho

    2017-03-01

    The transmission lines are moving objects, which positions are dynamically affected by wind-induced conductor motion while they are acquired by airborne laser scanners. This wind effect results in a noisy distribution of laser points, which often hinders accurate representation of transmission lines and thus, leads to various types of modeling errors. This paper presents a new method for complete 3D transmission line model reconstruction in the framework of inner and across span analysis. The highlighted fact is that the proposed method is capable of indirectly estimating noise scales, which corrupts the quality of laser observations affected by different wind speeds through a linear regression analysis. In the inner span analysis, individual transmission line models of each span are evaluated based on the Minimum Description Length theory and erroneous transmission line segments are subsequently replaced by precise transmission line models with wind-adaptive noise scale estimated. In the subsequent step of across span analysis, detecting the precise start and end positions of the transmission line models, known as the Point of Attachment, is the key issue for correcting partial modeling errors, as well as refining transmission line models. Finally, the geometric and topological completion of transmission line models are achieved over the entire network. A performance evaluation was conducted over 138.5 km long corridor data. In a modest wind condition, the results demonstrates that the proposed method can improve the accuracy of non-wind-adaptive initial models on an average of 48% success rate to produce complete transmission line models in the range between 85% and 99.5% with the positional accuracy of 9.55 cm transmission line models and 28 cm Point of Attachment in the root-mean-square error.

  4. 1-D Radiative-Convective Model for Terrestrial Exoplanet Atmospheres

    Science.gov (United States)

    Leung, Cecilia W. S.; Robinson, Tyler D.

    2016-10-01

    We present a one dimensional radiative-convective model to study the thermal structure of terrestrial exoplanetary atmospheres. The radiative transfer and equilibrium chemistry in our model is based on similar methodologies in models used for studying Extrasolar Giant Planets (Fortney et al. 2005b.) We validated our model in the optically thin and thick limits, and compared our pressure-temperature profiles against the analytical solutions of Robinson & Catling (2012). For extrasolar terrestrial planets with pure hydrogen atmospheres, we evaluated the effects of H2-H2 collision induced absorption and identified the purely roto-translational band in our modeled spectra. We also examined how enhanced atmospheric metallicities affect the temperature structure, chemistry, and spectra of terrestrial exoplanets. For a terrestrial extrasolar planet whose atmospheric compostion is 100 times solar orbiting a sun-like star at 2 AU, our model resulted in a reducing atmosphere with H2O, CH4, and NH3 as the dominant greenhouse gases.

  5. Formulations of moist thermodynamics for atmospheric modelling

    CERN Document Server

    Marquet, Pascal

    2015-01-01

    Internal energy, enthalpy and entropy are the key quantities to study thermodynamic properties of the moist atmosphere, because they correspond to the First (internal energy and enthalpy) and Second (entropy) Laws of thermodynamics. The aim of this chapter is to search for analytical formulas for the specific values of enthalpy and entropy and for the moist-air mixture composing the atmosphere. The Third Law of thermodynamics leads to the definition of absolute reference values for thermal enthalpies and entropies of all atmospheric species. It is shown in this Chapter 22 that it is possible to define and compute a general moist-air entropy potential temperature, which is really an equivalent of the moist-air specific entropy in all circumstances (saturated, or not saturated). Similarly, it is shown that it is possible to define and compute the moist-air specific enthalpy, which is different from the thermal part of what is called Moist-Static-Energy in atmospheric studies.

  6. MODELS-3 COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODEL AEROSOL COMPONENT 1: MODEL DESCRIPTION

    Science.gov (United States)

    The aerosol component of the Community Multiscale Air Quality (CMAQ) model is designed to be an efficient and economical depiction of aerosol dynamics in the atmosphere. The approach taken represents the particle size distribution as the superposition of three lognormal subdis...

  7. GEOS Atmospheric Model: Challenges at Exascale

    Science.gov (United States)

    Putman, William M.; Suarez, Max J.

    2017-01-01

    The Goddard Earth Observing System (GEOS) model at NASA's Global Modeling and Assimilation Office (GMAO) is used to simulate the multi-scale variability of the Earth's weather and climate, and is used primarily to assimilate conventional and satellite-based observations for weather forecasting and reanalysis. In addition, assimilations coupled to an ocean model are used for longer-term forecasting (e.g., El Nino) on seasonal to interannual times-scales. The GMAO's research activities, including system development, focus on numerous time and space scales, as detailed on the GMAO website, where they are tabbed under five major themes: Weather Analysis and Prediction; Seasonal-Decadal Analysis and Prediction; Reanalysis; Global Mesoscale Modeling, and Observing System Science. A brief description of the GEOS systems can also be found at the GMAO website. GEOS executes as a collection of earth system components connected through the Earth System Modeling Framework (ESMF). The ESMF layer is supplemented with the MAPL (Modeling, Analysis, and Prediction Layer) software toolkit developed at the GMAO, which facilitates the organization of the computational components into a hierarchical architecture. GEOS systems run in parallel using a horizontal decomposition of the Earth's sphere into processing elements (PEs). Communication between PEs is primarily through a message passing framework, using the message passing interface (MPI), and through explicit use of node-level shared memory access via the SHMEM (Symmetric Hierarchical Memory access) protocol. Production GEOS weather prediction systems currently run at 12.5-kilometer horizontal resolution with 72 vertical levels decomposed into PEs associated with 5,400 MPI processes. Research GEOS systems run at resolutions as fine as 1.5 kilometers globally using as many as 30,000 MPI processes. Looking forward, these systems can be expected to see a 2 times increase in horizontal resolution every two to three years, as well as

  8. Atomic hydrogen distribution. [in Titan atmospheric model

    Science.gov (United States)

    Tabarie, N.

    1974-01-01

    Several possible H2 vertical distributions in Titan's atmosphere are considered with the constraint of 5 km-A a total quantity. Approximative calculations show that hydrogen distribution is quite sensitive to two other parameters of Titan's atmosphere: the temperature and the presence of other constituents. The escape fluxes of H and H2 are also estimated as well as the consequent distributions trapped in the Saturnian system.

  9. Spectral Characteristics of Atmospheric Turbulence Model

    Institute of Scientific and Technical Information of China (English)

    GuojunXINShida; LIUShikouLIU; 等

    1996-01-01

    In this paper,KdV-Burgers equation can be regarded as the normal equation of atmospheric turbulence in the stable boundary layer.On the basis of the travelling wave analytic solution of KdV-Burgers equation,the turbulent spectrum is obtained.We observe that the behavior of the spectra is consistent with actual turbulent spectra of stable atmospheric boundary layer.

  10. Dynamical Opacity-Sampling Models of Mira Variables. I: Modelling Description and Analysis of Approximations

    CERN Document Server

    Ireland, M J; Wood, P R

    2008-01-01

    We describe the Cool Opacity-sampling Dynamic EXtended (CODEX) atmosphere models of Mira variable stars, and examine in detail the physical and numerical approximations that go in to the model creation. The CODEX atmospheric models are obtained by computing the temperature and the chemical and radiative states of the atmospheric layers, assuming gas pressure and velocity profiles from Mira pulsation models, which extend from near the H-burning shell to the outer layers of the atmosphere. Although the code uses the approximation of Local Thermodynamic Equilibrium (LTE) and a grey approximation in the dynamical atmosphere code, many key observable quantities, such as infrared diameters and low-resolution spectra, are predicted robustly in spite of these approximations. We show that in visible light, radiation from Mira variables is dominated by fluorescence scattering processes, and that the LTE approximation likely under-predicts visible-band fluxes by a factor of two.

  11. Atmospheric Modeling Using Accelerometer Data During Mars Atmosphere and Volatile Evolution (MAVEN) Flight Operations

    Science.gov (United States)

    Tolson, Robert H.; Lugo, Rafael A.; Baird, Darren T.; Cianciolo, Alicia D.; Bougher, Stephen W.; Zurek, Richard M.

    2017-01-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft is a NASA orbiter designed to explore the Mars upper atmosphere, typically from 140 to 160 km altitude. In addition to the nominal science mission, MAVEN has performed several Deep Dip campaigns in which the orbit's closest point of approach, also called periapsis, was lowered to an altitude range of 115 to 135 km. MAVEN accelerometer data were used during mission operations to estimate atmospheric parameters such as density, scale height, along-track gradients, and wave structures. Density and scale height estimates were compared against those obtained from the Mars Global Reference Atmospheric Model and used to aid the MAVEN navigation team in planning maneuvers to raise and lower periapsis during Deep Dip operations. This paper describes the processes used to reconstruct atmosphere parameters from accelerometers data and presents the results of their comparison to model and navigation-derived values.

  12. A descriptive ecosystem model - a strategy for model development during site investigations

    Energy Technology Data Exchange (ETDEWEB)

    Loefgren, Anders [Stockholm Univ. (Sweden). Dept. of Botany; Lindborg, Tobias [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2003-09-01

    This report describes a strategy for the development of a site descriptive model for the surface ecosystem on the potential deep repository sites. The surface ecosystem embraces many disciplines, and these have to be identified, described and integrated in order to construct a descriptive ecosystem model that describes and quantifies biotic and abiotic patterns and processes of importance for the ecosystem on the site. The descriptive model includes both present day conditions and historical information. The descriptive ecosystem model will be used to supply input data for the safety assessment and to serve as the baseline model for devising a monitoring program to detect short-term disturbances caused first by the site investigations and later by the construction of the deep repository. Furthermore, it will serve as a reference for future comparisons to determine more long-term effects or changes caused by the deep repository. The report adopts a non-site-specific approach focusing on the following aims: 1. To present and define the properties that will constitute the descriptive ecosystem model. 2. To present a methodology for determining those properties. 3. To describe and develop the framework for the descriptive ecosystem model by integrating the different properties. 4. To present vital data from other site descriptive models such as those for geology or hydrogeology that interacts with and affects the descriptive ecosystem model. The properties are described under four different sections: general physical properties of the landscape, the terrestrial system, the limnic system and the marine system. These headings are further subdivided into entities that integrate properties in relation to processes.

  13. Mesoscale, Sources and Models: Sources for Nitrogen in the Atmosphere

    DEFF Research Database (Denmark)

    Hertel, O.

    1994-01-01

    Projektet Mesoscales, Sources and Models: Sources for Nitrogen in the Atmosphere er opdelt i 3 delprojekter: Sources - farmland, Sources - sea og Sources - biogenic nitrogen.......Projektet Mesoscales, Sources and Models: Sources for Nitrogen in the Atmosphere er opdelt i 3 delprojekter: Sources - farmland, Sources - sea og Sources - biogenic nitrogen....

  14. MAXDOSE-SR: A routine release atmospheric dose model used at SRS

    Energy Technology Data Exchange (ETDEWEB)

    Simpkins, A.A.

    2000-02-09

    MAXDOSE-SR is a PC version of the dosimetry code MAXIGASP, which was used to calculate doses to the maximally exposed offsite individual for routine atmospheric releases of radioactive material at the Savannah River Site (SRS). Complete code description, verification of models, and user's manual have been included in this report. Minimal input is required to run the program, and site specific parameters are used when possible.

  15. An Analytic Radiative-Convective Model for Planetary Atmospheres

    CERN Document Server

    Robinson, Tyler D; 10.1088/0004-637X/757/1/104

    2012-01-01

    We present an analytic 1-D radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries, (2) worlds with some attenuation of sunli...

  16. Bedrock hydrogeology Forsmark. Site descriptive modelling, SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven (SF GeoLogic AB, Taeby (Sweden))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations at two different locations, the Forsmark and Laxemar-Simpevarp areas, with the objective of siting a final repository for spent nuclear fuel according to the KBS-3 concept. Site characterisation should provide all data required for an integrated evaluation of the suitability of the investigated site and an important component in the characterisation work is the development of a hydrogeological model. The hydrogeological model is used by repository engineering to design the underground facility and to develop a repository layout adapted to the site. It also provides input to the safety assessment. Another important use of the hydrogeological model is in the environmental impact assessment. This report presents the understanding of the hydrogeological conditions of the bedrock at Forsmark reached following the completion of the surface-based investigations and provides a summary of the bedrock hydrogeological model and the underlying data supporting its development. It constitutes the main reference on bedrock hydrogeology for the site descriptive model concluding the surface-based investigations at Forsmark, SDM-site, and is intended to describe the hydraulic properties and hydrogeological conditions of the bedrock at the site and to give the information essential for demonstrating understanding

  17. Meteorological Uncertainty of atmospheric Dispersion model results (MUD)

    DEFF Research Database (Denmark)

    Havskov Sørensen, Jens; Amstrup, Bjarne; Feddersen, Henrik;

    . However, recent developments in numerical weather prediction (NWP) include probabilistic forecasting techniques, which can be utilised also for atmospheric dispersion models. The ensemble statistical methods developed and applied to NWP models aim at describing the inherent uncertainties...

  18. Observational description of the atmospheric and oceanic boundary layers over the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    Marcelo Dourado

    2001-01-01

    Full Text Available Time evolution of atmospheric and oceanic boundary layers are described for an upwelling region in the Atlantic Ocean located in Cabo Frio, Brazil (23°00'S, 42°08'W. The observations were obtained during a field campaign carried out by the "Instituto de Estudos do Mar Almirante Paulo Moreira", on board of the oceanographic ship Antares of the Brazilian Navy, between July 7 and 10 of 1992. The analysis shown here was based on 19 simultaneous vertical soundings of atmosphere and ocean, carried out consecutively every 4 hours. The period of observation was characterized by a passage of a cold front that penetrated in Cabo Frio on July 6. During the cold front passage the vertical extension of atmospheric (and oceanic mixed layer varied from 200 m (and 13 m to 1000 m (and 59 m. These changes occurred in the first day of observation and were followed by an increase of 1.2°C in the oceanic mixed layer temperature and by a decrease of 6 K and 6 g/kg in the virtual potential temperature and specific humidity of the atmospheric mixed layer. The short time scale variations in the ocean can be explained in terms of the substitution of cold upwelling water by warm downwelling water regime, as the surface winds shift from pre-frontal NE to post-frontal SSW during the cold front passage in Cabo Frio. The large vertical extent of the atmospheric mixed layer can be explained in terms of an intensification of the thermal mixing induced by the warming of the oceanic upper layers combined with the cooling of the lower atmospheric layers during the cold front passage. An intensification of the mechanical mixing, observed during the cold front passage, may also be contributing to the observed variations in the vertical extent of both layers.A evolução temporal das camadas limites atmosféricas e oceânicas são descritas para a região de ressurgência do Oceano Atlântico localizada em Cabo Frio. As observações foram obtidas durante a campanha de medidas

  19. Description of Strongly Interacting Matter in A Hybrid Model

    CERN Document Server

    Srivastava, P K

    2014-01-01

    Search for a proper and realistic equation of state (EOS) for strongly interacting matter used in the study of the QCD phase diagram still appears as a challenging problem. Recently, we constructed a hybrid model description for the quark gluon plasma (QGP) as well as hadron gas (HG) phases where we used an excluded volume model for HG and a thermodynamically consistent quasiparticle model for the QGP phase. The hybrid model suitably describes the recent lattice results of various thermodynamical as well as transport properties of the QCD matter at zero baryon chemical potential ($\\mu_{B}$). In this paper, we extend our investigations further in obtaining the properties of QCD matter at finite value of $\\mu_{B}$ and compare our results with the most recent results of lattice QCD calculation. Finally we demonstrate the existence of two different limiting energy regimes and propose that the connection point of these two limiting regimes would foretell the existence of critical point (CP) of the deconfining phas...

  20. Geology Forsmark. Site descriptive modelling Forsmark - stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B. [Geological Survey of Sweden, Uppsala (Sweden); Fox, Aaron; La Pointe, Paul [Golder Associates Inc (United States); Simeonov, Assen [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Isaksson, Hans [GeoVista AB, Luleaa (Sweden); Hermanson, Jan; Oehman, Johan [Golder Associates AB, Stockholm (Sweden)

    2007-10-15

    The geological work during stage 2.2 has involved the development of deterministic models for rock domains (RFM) and deformation zones (ZFM), the identification and deterministic modelling of fracture domains (FFM) inside the candidate volume, i.e. the parts of rock domains that are not affected by deformation zones, and the development of statistical models for fractures and minor deformation zones (geological discrete fracture network modelling or geological DFN modelling). The geological DFN model addresses brittle structures at a scale of less than 1 km, which is the lower cut-off in the deterministic modelling of deformation zones. In order to take account of variability in data resolution, deterministic models for rock domains and deformation zones are presented in both regional and local model volumes, while the geological DFN model is valid within specific fracture domains inside the north-western part of the candidate volume, including the target volume. The geological modelling work has evaluated and made use of: A revised bedrock geological map at the ground surface. Geological and geophysical data from 21 cored boreholes and 33 percussion boreholes. Detailed mapping of fractures and rock units along nine excavations or large surface outcrops. Data bearing on the characterisation (including kinematics) of deformation zones. Complementary geochronological and other rock and fracture analytical data. Lineaments identified on the basis of airborne and high-resolution ground magnetic data. A reprocessing of both surface and borehole reflection seismic data. Seismic refraction data. The outputs of the deterministic modelling work are geometric models in RVS format and detailed property tables for rock domains and deformation zones, and a description of fracture domains. The outputs of the geological DFN modelling process are recommended parameters or statistical distributions that describe fracture set orientations, radius sizes, volumetric intensities

  1. How important are the descriptions of vegetation in distributed hydrologic models?

    Science.gov (United States)

    Cuntz, Matthias; Thober, Stephan; Zink, Matthias; Rakovec, Oldrich; Samaniego, Luis

    2016-04-01

    The land surface transforms incoming, absorbed radiation into other energy forms and radiation with longer wavelengths. The land surface emits long-wave radiation, stores energy in the soil, the biomass and the air in the boundary layer, and exchanges sensible and latent heat with the atmosphere. The latter, latent heat consists of evaporation from the soil and canopy and transpiration by plants. Plants enhance in this picture the absorption of incoming radiation and decrease the resistance for evaporation of deeper soil water. Transpiration by plants is therefore either energy-limited by low incoming radiation or water-limited by small soil moisture. In the extreme cases, all available energy will be used for evapotranspiration in cold regions and all available water will be used for evapotranspiration in arid regions. Very simple formulations of latent heat, which include plant processes only very indirectly, work well in hydrologic models for these limiting cases. These simple formulations seem to work also surprisingly well in temperate regions. Hydrologic models have, however, considerable problems in semi-arid regions where the vegetation influence on latent heat should be largest. But the models have to deal with much more problems in these regions. For example data scarcity in the Mediterranean leads to very large model uncertainty due to the forcing data. Water supply is also often very regulated in semi-arid regions. Variability in river discharge can hence be largely driven by the anthropogenic influence rather than natural meteorological variations in these regions. Here we will show for Europe the areas and times when the descriptions of plant processes are important for hydrologic models. We will compare differences in model uncertainties that come from 1. different formulations of evapotranspiration, 2. different descriptions of soil-plant interactions, and 3. uncertainty in the model's input data. It can be seen that model uncertainty stemming from

  2. Modeling the effects of atmospheric emissions on groundwater composition

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.J.

    1994-12-31

    A composite model of atmospheric, unsaturated and groundwater transport is developed to evaluate the processes determining the distribution of atmospherically derived contaminants in groundwater systems and to test the sensitivity of simulated contaminant concentrations to input parameters and model linkages. One application is to screen specific atmospheric emissions for their potential in determining groundwater age. Temporal changes in atmospheric emissions could provide a recognizable pattern in the groundwater system. The model also provides a way for quantifying the significance of uncertainties in the tracer source term and transport parameters on the contaminant distribution in the groundwater system, an essential step in using the distribution of contaminants from local, point source atmospheric emissions to examine conceptual models of groundwater flow and transport.

  3. A Atmospheric Dispersion Model for the Sudbury, Ontario, Area.

    Science.gov (United States)

    Huhn, Frank Jones

    1982-03-01

    A mathematical model was developed and tested to predict the relationship between sulphur oxide and trace metal emissions from smelters in the Sudbury, Ontario area, and atmospheric, precipitation, lake water and sediment chemistry. The model consists of atmospheric and lake chemistry portions. The atmospheric model is a Gaussian crosswind concentration distribution modification to a box model with a uniform vertical concentration gradient limited by a mixing height. In the near-field Briggs' plume rise and vertical dispersion terms are utilized. Oxidation, wet and dry deposition mechanisms are included to account for the gas, liquid and solid phases separately. Important improvements over existing models include (1) near- and far-field conditions treated in a single model; (2) direct linkage of crosswind dispersion to hourly meteorological observations; (3) utilization of maximum to minimum range of input parameters to realistically model the range of outputs; (4) direct linkage of the atmospheric model to a lake model. Precipitation chemistry as calculated by the atmospheric model is related to lake water and sediment chemistry utilizing a mass balance approach and assuming a continuously stirred reactor (CSTR) model to describe lake circulation. All inputs are atmospheric, modified by hydrology, soil chemistry and sedimentation. Model results were tested by comparison with existing atmospheric and precipitation chemistry measurements, supplemented with analyses of lake water and sediment chemistry collected in a field program. Eight pollutant species were selected for modeling: sulphur dioxide, sulphate ion, hydrogen ion, copper, nickel, lead, zinc, and iron. The model effectively predicts precipitation chemistry within 150 km of Sudbury, with an average prediction to measurement ratio of 90 percent. Atmospheric concentrations are effectively predicted within 80 km, with an average prediction to measurement ratio of 81 percent. Lake chemistry predictions are

  4. Bedrock hydrogeochemistry Forsmark. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus (Geopoint AB, Sollentuna (Sweden)); Smellie, John (Conterra AB, Partille (Sweden)); Tullborg, Eva-Lena (Terralogica, Graabo (Sweden)); Gimeno, Maria (Univ. of Zaragoza, Zaragoza (Spain)); Hallbeck, Lotta (Microbial Analytics, Goeteborg (Sweden)); Molinero, Jorge (Amphos XXI Consulting S.L., Barcelona (Spain)); Waber, Nick (Univ. of Bern, Bern (Switzerland))

    2008-12-15

    The overall objectives of the hydrogeochemical site description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site, and to use this understanding to develop models that address the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and porewater and their evolution with time. The specific aims of the hydrogeochemical work were: To document the hydrogeochemistry at the Forsmark site with focus on the development of conceptual models to describe and visualise the site. To provide relevant parameter values to be used for safety assessment calculations. To provide the hydrogeochemical basis for the modelling work by other teams, in particular hydrogeology. To take account of the feedback from the SR-Can safety assessment work that bears relevance to the hydrogeochemical modelling work. The work has involved the development of descriptive and mathematical models for groundwaters in relation to rock domains, fracture domains and deformation zones. In this report, the groundwaters have been interpreted in relation to their origin, evolution and composition, which require close integration with geological, climatological and hydrogeological information. Past climate changes are one of the major driving forces for long-term hydrogeochemical changes (hundreds to thousands of years) and are, therefore, of fundamental importance for understanding the palaeohydrogeological, palaeohydrogeochemical and present evolution of groundwater in the Fennoscandian crystalline bedrock. In contrast, redox buffer capacity of the bedrock will minimise the effects on changes in alkalinity and redox at repository depths, therefore limiting the variations in pH and Eh significantly, regardless of major changes in groundwater composition. There is

  5. General Description of Fission Observables: GEF Model Code

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, K.-H. [CENBG, CNRS/IN2 P3, Chemin du Solarium, B.P. 120, F-33175 Gradignan (France); Jurado, B., E-mail: jurado@cenbg.in2p3.fr [CENBG, CNRS/IN2 P3, Chemin du Solarium, B.P. 120, F-33175 Gradignan (France); Amouroux, C. [CEA, DSM-Saclay (France); Schmitt, C., E-mail: schmitt@ganil.fr [GANIL, Bd. Henri Becquerel, B.P. 55027, F-14076 Caen Cedex 05 (France)

    2016-01-15

    The GEF (“GEneral description of Fission observables”) model code is documented. It describes the observables for spontaneous fission, neutron-induced fission and, more generally, for fission of a compound nucleus from any other entrance channel, with given excitation energy and angular momentum. The GEF model is applicable for a wide range of isotopes from Z = 80 to Z = 112 and beyond, up to excitation energies of about 100 MeV. The results of the GEF model are compared with fission barriers, fission probabilities, fission-fragment mass- and nuclide distributions, isomeric ratios, total kinetic energies, and prompt-neutron and prompt-gamma yields and energy spectra from neutron-induced and spontaneous fission. Derived properties of delayed neutrons and decay heat are also considered. The GEF model is based on a general approach to nuclear fission that explains a great part of the complex appearance of fission observables on the basis of fundamental laws of physics and general properties of microscopic systems and mathematical objects. The topographic theorem is used to estimate the fission-barrier heights from theoretical macroscopic saddle-point and ground-state masses and experimental ground-state masses. Motivated by the theoretically predicted early localisation of nucleonic wave functions in a necked-in shape, the properties of the relevant fragment shells are extracted. These are used to determine the depths and the widths of the fission valleys corresponding to the different fission channels and to describe the fission-fragment distributions and deformations at scission by a statistical approach. A modified composite nuclear-level-density formula is proposed. It respects some features in the superfluid regime that are in accordance with new experimental findings and with theoretical expectations. These are a constant-temperature behaviour that is consistent with a considerably increased heat capacity and an increased pairing condensation energy that is

  6. Estimate Total Number of the Earth Atmospheric Particle with Standard Atmosphere Model

    Institute of Scientific and Technical Information of China (English)

    GAO Chong-Yi

    2001-01-01

    The total number of atmospheric particle (AP) is an important datum for planetary science and geoscience.Estimating entire AP number is also a familiar question in general physics.With standard atmosphere model,considering the number difference of AP caused by rough and uneven in the earth surface below,the sum of dry clean atmosphere particle is 1.06962 × 1044.So the whole number of AP including water vapor is 1.0740 × 1044.The rough estimation for the total number of AP on other planets (or satellites) in condensed state is also discussed on the base of it.

  7. Geology Laxemar. Site descriptive modelling SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Wahlgren, Carl-Henric (Geological Survey of Sweden, Uppsala (Sweden)); Curtis, Philip; Hermanson, Jan; Forssberg, Ola; Oehman, Johan (Golder Associates AB (Sweden)); Fox, Aaron; La Pointe, Paul (Golder Associates Inc (United States)); Drake, Henrik (Dept. of Earth Sciences, Univ. of Goeteborg, Goeteborg (Sweden)); Triumf, Carl-Axel; Mattsson, Haakan; Thunehed, Hans (GeoVista AB, Luleaa (Sweden)); Juhlin, Christopher (Dept. of Earth Sciences, Uppsala Univ., Uppsala (Sweden))

    2008-11-15

    , kinematics of brittle deformation in drill cores and outcrops, as well as studies with particular focus on minor deformation zones (MDZ) in both drill cores and in the field. Complementary geochronological and other rock and fracture analytical data. High resolution airborne laser scanning (LIDAR) leading to a new digital elevation model (DEM) together with high-resolution ground magnetic and resistivity data providing the basis for further lineament interpretations. Further seismic refraction surveys and reprocessing and re-evaluation of seismic reflection data. The outputs of the deterministic modelling work are geometric models in RVS format for rock domains, deformation zones and fracture domains, including detailed property tables for rock domains and deformation zones and a description of fracture domains. The outputs of the geological DFN modelling process are recommended parameters or statistical distributions that describe fracture set orientations, sizes, volumetric intensities, spatial correlations and models, and other parameters (lithology and scaling corrections, termination matrices) that are necessary for building stochastic models. The regional scale ductile deformation zones strike NNE-SSW and NE-SW, are subvertical and are characterised by sinistral strike-slip displacements, while E-W oriented zones, though more strongly overprinted by brittle deformation, display moderate to steep dips to the south or north. The kinematics of the latter are not resolved at Laxemar, but E-W ductile shear zones in the Simpevarp subarea show complex kinematics, including both reverse and normal dip-slip as well as sinistral and dextral strike-slip displacements. It should be noted that the regional and local major deformation zones, although the majority have a ductile precursor, are mainly brittle in character. The focussed volume is transected by a series of smaller deformation zones with a variety of orientations and with dips varying from sub-vertical to sub

  8. SMART - a computer program for modelling stellar atmospheres

    CERN Document Server

    Aret, Anna; Poolamäe, Raivo; Sapar, Lili

    2013-01-01

    Program SMART (Spectra and Model Atmospheres by Radiative Transfer) has been composed for modelling atmospheres and spectra of hot stars (O, B and A spectral classes) and studying different physical processes in them (Sapar & Poolam\\"ae 2003, Sapar et al. 2007). Line-blanketed models are computed assuming plane-parallel, static and horizontally homogeneous atmosphere in radiative, hydrostatic and local thermodynamic equilibrium. Main advantages of SMART are its shortness, simplicity, user friendliness and flexibility for study of different physical processes. SMART successfully runs on PC both under Windows and Linux.

  9. CFD Modeling of Non-Neutral Atmospheric Boundary Layer Conditions

    DEFF Research Database (Denmark)

    Koblitz, Tilman

    to the atmospheric boundary-layer, are mostly ignored so far. In order to decrease the uncertainty of wind resource assessment, the present work focuses on atmospheric flows that include atmospheric stability and the Coriolis effect. Within the present work a RANS model framework is developed and implemented......For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics models that focus on modeling the airflow in a neutrally stratified surface-layer. Physical processes like the Coriolis force, buoyancy forces and heat transport, that are important...

  10. Stochastic modelling and predictability: analysis of a low-order coupled ocean-atmosphere model.

    Science.gov (United States)

    Vannitsem, Stéphane

    2014-06-28

    There is a growing interest in developing stochastic schemes for the description of processes that are poorly represented in atmospheric and climate models, in order to increase their variability and reduce the impact of model errors. The use of such noise could however have adverse effects by modifying in undesired ways a certain number of moments of their probability distributions. In this work, the impact of developing a stochastic scheme (based on stochastic averaging) for the ocean is explored in the context of a low-order coupled (deterministic) ocean-atmosphere system. After briefly analysing its variability, its ability in predicting the oceanic flow generated by the coupled system is investigated. Different phases in the error dynamics are found: for short lead times, an initial overdispersion of the ensemble forecast is present while the ensemble mean follows a dynamics reminiscent of the combined amplification of initial condition and model errors for deterministic systems; for longer lead times, a reliable diffusive ensemble spread is observed. These different phases are also found for ensemble-oriented skill measures like the Brier score and the rank histogram. The implications of these features on building stochastic models are then briefly discussed.

  11. A theoretical model of atmospheric ozone depletion

    Science.gov (United States)

    Midya, S. K.; Jana, P. K.; Lahiri, T.

    1994-01-01

    A critical study on different ozone depletion and formation processes has been made and following important results are obtained: (i) From analysis it is shown that O3 concentration will decrease very minutely with time for normal atmosphere when [O], [O2] and UV-radiation remain constant. (ii) An empirical equation is established theoretically between the variation of ozone concentration and time. (iii) Special ozone depletion processes are responsible for the dramatic decrease of O3-concentration at Antarctica.

  12. Propagation of cosmic rays through the atmosphere in the quark-gluon strings model

    Science.gov (United States)

    Erlykin, A. D.; Krutikova, N. P.; Shabelski, Y. M.

    1985-01-01

    The quark-gluon strings model succeeds in the description of multiple hadron production in the central rapidity region of nucleon-nucleon interctions. This model was developed for hadron-nucleus interactions and used for calculation of the cosmic ray propagation through the atmosphere. It is shown that at energies 10 to the 11th power to the 12th power eV, this model gives a satisfactory description of experimental data. But with the increase of the energy up to approximately 10 to the 14th power eV, results of calculations and of experiments begin to differ and this difference rises with the energy. It may indicate that the scaling violation in the fragmentation region of inclusive spectra for hadron-nucleus interactions is stronger than in the quark-gluon strings model.

  13. The shell model. Towards a unified description of nuclear structure

    Energy Technology Data Exchange (ETDEWEB)

    Poves, Alfredo [Departamento de Fisica Teorica, Universidad Autonoma Cantoblanco, 28049 - Madrid (Spain); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    In this series of lectures we present the foundations of the spherical shell model that we treat as an approximation to the exact solution of the full secular problem. We introduce the notions of valence space, effective interaction and effective operator. We analyse the structure of the realistic effective interactions, identifying their monopole part with the spherical mean field. The multipole Hamiltonian is shown to have a universal (simple) form that includes pairing (isovector and isoscalar), quadrupole, octupole, deca-pole, and ({sigma}{center_dot}{tau})({sigma}{center_dot}{tau}). We describe the methods of resolution of the secular problem, in particular the Lanczos method. The model is applied to the description of nuclear deformation and its relationship with the deformed mean field theories is studied. We propose a new symmetry, `quasi`-SU3, to understand deformation in the spherical basis. Finally, we discuss the domain of nuclei very far from the valley of {beta} stability, addressing the vanishing of some magic closures that can be explained in terms of intruder states. (author) 53 refs., 20 figs., 3 tabs.

  14. Model-to-model transformations of architecture descriptions of an integration platform

    Directory of Open Access Journals (Sweden)

    Tomasz Górski

    2014-04-01

    Full Text Available Model transformations play a key role in any software development project based on Mod-el-Driven Engineering (MDE principles. However, little attention has been paid to the ap-plication of MDE principles to automate the design of integration solutions. The aim of the paper is to present transformations of a model-to-model type, used to automate the process of integration platform's architecture description. The transformations have been designed to enable the generation of model elements, according to the '1+5' architectural views model adjusted to the integration solutions description. Design and implementation of transformations were performed in the IBM Rational Software Architect (RSA environ-ment. Authorial UML profiles: UML Profile for Integration Platform and UML Profile for Integration Flows have been used. The paper covers transformations between models in the following architectural views: Integrated Processes; Use Cases; Logical and Integrated Services. The transformations occur at the levels of business processes, requirements speci-fication and system design. Using the transformations, it is possible to generate models, diagrams, model elements and relationships between them. The complete environment has been obtained to automate architectural description of an integration solution. Transfor-mations ensure completeness of the architectural description and consistency of elements between models.

  15. Memory efficient atmospheric effects modeling for infrared scene generators

    Science.gov (United States)

    Kavak, Çaǧlar; Özsaraç, Seçkin

    2015-05-01

    The infrared (IR) energy radiated from any source passes through the atmosphere before reaching the sensor. As a result, the total signature captured by the IR sensor is significantly modified by the atmospheric effects. The dominant physical quantities that constitute the mentioned atmospheric effects are the atmospheric transmittance and the atmospheric path radiance. The incoming IR radiation is attenuated by the transmittance and path radiance is added on top of the attenuated radiation. In IR scene simulations OpenGL is widely used for rendering purposes. In the literature there are studies, which model the atmospheric effects in an IR band using OpenGLs exponential fog model as suggested by Beers law. In the standard pipeline of OpenGL, the related fog model needs single equivalent OpenGL variables for the transmittance and path radiance, which actually depend on both the distance between the source and the sensor and also on the wavelength of interest. However, in the conditions where the range dependency cannot be modeled as an exponential function, it is not accurate to replace the atmospheric quantities with a single parameter. The introduction of OpenGL Shading Language (GLSL) has enabled the developers to use the GPU more flexible. In this paper, a novel method is proposed for the atmospheric effects modeling using the least squares estimation with polynomial fitting by programmable OpenGL shader programs built with GLSL. In this context, a radiative transfer model code is used to obtain the transmittance and path radiance data. Then, polynomial fits are computed for the range dependency of these variables. Hence, the atmospheric effects model data that will be uploaded in the GPU memory is significantly reduced. Moreover, the error because of fitting is negligible as long as narrow IR bands are used.

  16. Ensemble data assimilation in the Whole Atmosphere Community Climate Model

    Science.gov (United States)

    Pedatella, N. M.; Raeder, K.; Anderson, J. L.; Liu, H.-L.

    2014-08-01

    We present results pertaining to the assimilation of real lower, middle, and upper atmosphere observations in the Whole Atmosphere Community Climate Model (WACCM) using the Data Assimilation Research Testbed (DART) ensemble adjustment Kalman filter. The ability to assimilate lower atmosphere observations of aircraft and radiosonde temperature and winds, satellite drift winds, and Constellation Observing System for Meteorology, Ionosphere, and Climate refractivity along with middle/upper atmosphere temperature observations from SABER and Aura MLS is demonstrated. The WACCM+DART data assimilation system is shown to be able to reproduce the salient features, and variability, of the troposphere present in the National Centers for Environmental Prediction/National Center for Atmospheric Research Re-Analysis. In the mesosphere, the fit of WACCM+DART to observations is found to be slightly worse when only lower atmosphere observations are assimilated compared to a control experiment that is reflective of the model climatological variability. This differs from previous results which found that assimilation of lower atmosphere observations improves the fit to mesospheric observations. This discrepancy is attributed to the fact that due to the gravity wave drag parameterizations, the model climatology differs significantly from the observations in the mesosphere, and this is not corrected by the assimilation of lower atmosphere observations. The fit of WACCM+DART to mesospheric observations is, however, significantly improved compared to the control experiment when middle/upper atmosphere observations are assimilated. We find that assimilating SABER observations reduces the root-mean-square error and bias of WACCM+DART relative to the independent Aura MLS observations by ˜50%, demonstrating that assimilation of middle/upper atmosphere observations is essential for accurate specification of the mesosphere and lower thermosphere region in WACCM+DART. Last, we demonstrate that

  17. CHIMERE 2013: a model for regional atmospheric composition modelling

    Directory of Open Access Journals (Sweden)

    L. Menut

    2013-07-01

    Full Text Available Tropospheric trace gas and aerosol pollutants have adverse effects on health, environment and climate. In order to quantify and mitigate such effects, a wide range of processes leading to the formation and transport of pollutants must be considered, understood and represented in numerical models. Regional scale pollution episodes result from the combination of several factors: high emissions (from anthropogenic or natural sources, stagnant meteorological conditions, kinetics and efficiency of the chemistry and the deposition. All these processes are highly variable in time and space, and their relative contribution to the pollutants budgets can be quantified with chemistry-transport models. The CHIMERE chemistry-transport model is dedicated to regional atmospheric pollution event studies. Since it has now reached a certain level a maturity, the new stable version, CHIMERE 2013, is described to provide a reference model paper. The successive developments of the model are reviewed on the basis of published investigations that are referenced in order to discuss the scientific choices and to provide an overview of the main results.

  18. Aggressive shadowing of a low-dimensional model of atmospheric dynamics

    CERN Document Server

    Lieb-Lappen, Ross M

    2011-01-01

    Predictions of the future state of the Earth's atmosphere suffer from the consequences of chaos: numerical weather forecast models quickly diverge from observations as uncertainty in the initial state is amplified by nonlinearity. One measure of the utility of a forecast is its shadowing time, informally given by the period of time for which the forecast is a reasonable description of reality. The present work uses the Lorenz 096 coupled system, a simplified nonlinear model of atmospheric dynamics, to extend a recently developed technique for lengthening the shadowing time of a dynamical system. Ensemble forecasting is used to make forecasts with and without inflation, a method whereby the ensemble is regularly expanded artificially along dimensions whose uncertainty is contracting. The first goal of this work is to compare model forecasts, with and without inflation, to a true trajectory created by integrating a modified version of the same model. The second goal is to establish whether inflation can increas...

  19. Comparison of modelled and empirical atmospheric propagation data

    Science.gov (United States)

    Schott, J. R.; Biegel, J. D.

    1983-01-01

    The radiometric integrity of TM thermal infrared channel data was evaluated and monitored to develop improved radiometric preprocessing calibration techniques for removal of atmospheric effects. Modelled atmospheric transmittance and path radiance were compared with empirical values derived from aircraft underflight data. Aircraft thermal infrared imagery and calibration data were available on two dates as were corresponding atmospheric radiosonde data. The radiosonde data were used as input to the LOWTRAN 5A code which was modified to output atmospheric path radiance in addition to transmittance. The aircraft data were calibrated and used to generate analogous measurements. These data indicate that there is a tendancy for the LOWTRAN model to underestimate atmospheric path radiance and transmittance as compared to empirical data. A plot of transmittance versus altitude for both LOWTRAN and empirical data is presented.

  20. Revisiting the Carrington Event: Updated modeling of atmospheric effects

    CERN Document Server

    Thomas, Brian C; Snyder, Brock R

    2011-01-01

    The terrestrial effects of major solar events such as the Carrington white-light flare and subsequent geomagnetic storm of August-September 1859 are of considerable interest, especially in light of recent predictions that such extreme events will be more likely over the coming decades. Here we present results of modeling the atmospheric effects, especially production of odd nitrogen compounds and subsequent depletion of ozone, by solar protons associated with the Carrington event. This study combines approaches from two previous studies of the atmospheric effect of this event. We investigate changes in NOy compounds as well as depletion of O3 using a two-dimensional atmospheric chemistry and dynamics model. Atmospheric ionization is computed using a range-energy relation with four different proxy proton spectra associated with more recent well-known solar proton events. We find that changes in atmospheric constituents are in reasonable agreement with previous studies, but effects of the four proxy spectra use...

  1. CSOIL 2000 an exposure model for human risk assessment of soil contamination. A model description

    NARCIS (Netherlands)

    Brand E; Otte PF; Lijzen JPA; LER

    2007-01-01

    This RIVM description of the CSOIL 2000 model deals, for the first time, with all aspects of the model. CSOIL 2000 can be used to derive intervention values. Intervention values are calculated for contaminated soil and represent a measure for determining when contaminated soil needs to be remediated

  2. Weather Research and Forecasting (WRF) Regional Atmospheric Model: CNMI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the Commonwealth of the Northern...

  3. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Samoa

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the islands of Samoa at...

  4. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Oahu

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 3.5-day hourly forecast for the region surrounding the Hawaiian island of Oahu at...

  5. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the island of Guam at...

  6. Exact results in modeling planetary atmospheres-II. Semi-gray atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Rutily, B. [Universite de Lyon, F-69003 Lyon (France); Universite Lyon 1, Observatoire de Lyon, 9 avenue Charles Andre, F-69230 Saint-Genis-Laval (France); CNRS, UMR 5574, Centre de Recherche Astrophysique de Lyon (France); Ecole Normale Superieure de Lyon, F-69007 Lyon (France); Chevallier, L. [Observatoire de Paris-Meudon, Laboratoire LUTH, 5 Place Jules Janssen, 92195 Meudon cedex (France); Pelkowski, J. [Institut fuer Atmosphaere und Umwelt, J.W. Goethe Universitaet Frankfurt, Campus Riedberg, Altenhaferallee 1, D-60438 Frankfurt a.M. (Germany)], E-mail: Pelkowski@meteor.uni-frankfurt.de; Bergeat, J. [Universite de Lyon, F-69003 Lyon (France); Universite Lyon 1, Observatoire de Lyon, 9 avenue Charles Andre, F-69230 Saint-Genis-Laval (France); CNRS, UMR 5574, Centre de Recherche Astrophysique de Lyon (France); Ecole Normale Superieure de Lyon, F-69007 Lyon (France)

    2008-01-15

    We solve the radiative transfer equation for a semi-gray planetary atmosphere in radiative equilibrium, in an attempt to define an entirely analytical non-gray model atmosphere of finite optical thickness. The salient feature of the model is that the incident solar radiation is partitioned between two adjacent spectral domains-the 'visible' and the 'infrared'-in each of which the atmosphere's (effective) opacity is assumed to be independent of frequency (the semi-gray assumption). We envisage a plane-parallel atmosphere illuminated by a beam of parallel radiation and bounded below by a partially reflecting and emitting ground. The former emits infrared radiation, induced by the absorption of radiation both visible and infrared, deriving from the external irradiation as well as from the emission of the planet's surface layer. For an atmosphere with given single-scattering albedos and optical thicknesses in both the visible and infrared domains, we compute the temperature at every depth of the atmosphere, as well as the ground's temperature.

  7. Thermosphere Extension of the Whole Atmosphere Community Climate Model

    Science.gov (United States)

    2010-12-04

    D) chemical transport Model for Ozone and Related chemical Tracers ( MOZART ) [Brasseur et al., 1998; Hauglustaine et al., 1998; Horowitz et al., 2003...Muller, C. Granier, and X.‐X. Tie (1998), MOZART : A global chemical trans- port model for ozone and related chemical tracers: 1. Model description, J...F. Muller, L. K. Emmons, and M. A. Carroll (1998), MOZART : A global chemical transport model for ozone and related chemical tracers: 2. Model results

  8. Evaluation protocol for the WIND system atmospheric models

    Energy Technology Data Exchange (ETDEWEB)

    Fast, J.D.

    1991-12-31

    Atmospheric transport and diffusion models have been developed for real-time calculations of the location and concentration of toxic or radioactive materials during a accidental release at the Savannah River Site (SRS). These models are have been incorporated into an automated menu-driven computer based system called the WIND (Weather INformation and Display) system. In an effort to establish more formal quality assurance procedures for the WIND system atmospheric codes, a software evaluation protocol is being developed. An evaluation protocol is necessary to determine how well they may perform in emergency response (real-time) situations. The evaluation of high-impact software must be conducted in accordance with WSRC QA Manual, 1Q, QAP 20-1. This report will describe the method that will be used to evaluate the atmospheric models. The evaluation will determine the effectiveness of the atmospheric models in emergency response situations, which is not necessarily the same procedure used for research purposes. The format of the evaluation plan will provide guidance for the evaluation of atmospheric models that may be added to the WIND system in the future. The evaluation plan is designed to provide the user with information about the WIND system atmospheric models that is necessary for emergency response situations.

  9. Evaluation protocol for the WIND system atmospheric models

    Energy Technology Data Exchange (ETDEWEB)

    Fast, J.D.

    1991-01-01

    Atmospheric transport and diffusion models have been developed for real-time calculations of the location and concentration of toxic or radioactive materials during a accidental release at the Savannah River Site (SRS). These models are have been incorporated into an automated menu-driven computer based system called the WIND (Weather INformation and Display) system. In an effort to establish more formal quality assurance procedures for the WIND system atmospheric codes, a software evaluation protocol is being developed. An evaluation protocol is necessary to determine how well they may perform in emergency response (real-time) situations. The evaluation of high-impact software must be conducted in accordance with WSRC QA Manual, 1Q, QAP 20-1. This report will describe the method that will be used to evaluate the atmospheric models. The evaluation will determine the effectiveness of the atmospheric models in emergency response situations, which is not necessarily the same procedure used for research purposes. The format of the evaluation plan will provide guidance for the evaluation of atmospheric models that may be added to the WIND system in the future. The evaluation plan is designed to provide the user with information about the WIND system atmospheric models that is necessary for emergency response situations.

  10. Studying urban land-atmospheric interactions by coupling an urban canopy model with a single column atmospheric models

    Science.gov (United States)

    Song, J.; Wang, Z.

    2013-12-01

    Studying urban land-atmospheric interactions by coupling an urban canopy model with a single column atmospheric models Jiyun Song and Zhi-Hua Wang School of Sustainable Engineering and the Built Environment, Arizona State University, PO Box 875306, Tempe, AZ 85287-5306 Landuse landcover changes in urban area will modify surface energy budgets, turbulent fluxes as well as dynamic and thermodynamic structures of the overlying atmospheric boundary layer (ABL). In order to study urban land-atmospheric interactions, we coupled a single column atmospheric model (SCM) to a cutting-edge single layer urban canopy model (SLUCM). Modification of surface parameters such as the fraction of vegetation and engineered pavements, thermal properties of building and pavement materials, and geometrical features of street canyon, etc. in SLUCM dictates the evolution of surface balance of energy, water and momentum. The land surface states then provide lower boundary conditions to the overlying atmosphere, which in turn modulates the modification of ABL structure as well as vertical profiles of temperature, humidity, wind speed and tracer gases. The coupled SLUCM-SCM model is tested against field measurements of surface layer fluxes as well as profiles of temperature and humidity in the mixed layer under convective conditions. After model test, SLUCM-SCM is used to simulate the effect of changing urban land surface conditions on the evolution of ABL structure and dynamics. Simulation results show that despite the prescribed atmospheric forcing, land surface states impose significant impact on the physics of the overlying vertical atmospheric layer. Overall, this numerical framework provides a useful standalone modeling tool to assess the impacts of urban land surface conditions on the local hydrometeorology through land-atmospheric interactions. It also has potentially far-reaching implications to urban ecohydrological services for cities under future expansion and climate challenges.

  11. Descriptive models for single-jet sluicing of sludge waste

    Energy Technology Data Exchange (ETDEWEB)

    Erian, F.F.; Mahoney, L.A.; Terrones, G.

    1997-12-01

    Mobilization of sludge waste stored in underground storage tanks can be achieved safely and reliably by sluicing. In the project discussed in this report, the waste in Hanford single-shell Tank 241-C-106 will be mobilized by sluicing, retrieved by a slurry retrieval pump, and transferred via an 1800-ft slurry pipeline to Tank 241-AY-102. A sluicing strategy must be developed that ensures efficient use of the deployed configuration of the sluicing system: the nozzle(s) and the retrieval pump(s). Given a sluicing system configuration in a particular tank, it is desirable to prescribe the sequential locations at which the sludge will be mobilized and retrieved and the rate at which these mobilization and retrieval processes take place. In addition, it is necessary to know whether the retrieved waste slurry meets the requirements for cross-site slurry transport. Some of the physical phenomena that take place during mobilization and retrieval and certain aspects of the sluicing process are described in this report. First, a mathematical model gives (1) an idealized geometrical representation of where, within the confines of a storage tank containing a certain amount of settled waste, sludge can be removed and mobilized; and (2) a quantitative measure of the amount of sludge that can be removed during a sluicing campaign. A model describing an idealized water jet issuing from a circular nozzle located at a given height above a flat surface is also presented in this report. This dynamic water-jet model provides the basis for improving the geometrical sluicing model presented next. In this model the authors assume that the water jet follows a straight trajectory toward a target point on a flat surface. However, the water jet does not follow a straight line in the actual tank, and using the true trajectory will allow a more accurate estimate of the amount of disturbed material. Also, the authors hope that developing accurate force and pressure fields will lead to a better

  12. Modeling chemistry in and above snow at Summit, Greenland – Part 1: Model description and results

    Directory of Open Access Journals (Sweden)

    J. L. Thomas

    2010-12-01

    Full Text Available Sun-lit snow is increasingly recognized as a chemical reactor that plays an active role in uptake, transformation, and release of atmospheric trace gases. Snow is known to influence boundary layer air on a local scale, and given the large global surface coverage of snow may also be significant on regional and global scales.

    We present a new detailed one-dimensional snow chemistry module that has been coupled to the 1-D atmospheric boundary layer model MISTRA, we refer to the coupled model as MISTRA-SNOW. The new 1-D snow module, which is dynamically coupled to the overlaying atmospheric model, includes heat transport in the snowpack, molecular diffusion, and wind pumping of gases in the interstitial air. The model includes gas phase photochemistry and chemical reactions both in the interstitial air and the atmosphere. Heterogeneous and multiphase chemistry on atmospheric aerosol is considered explicitly. The chemical interaction of interstitial air with snow grains is simulated assuming chemistry in a liquid (aqueous layer on the grain surface. The model was used to investigate snow as the source of nitrogen oxides (NOx and gas phase reactive bromine in the atmospheric boundary layer in the remote snow covered Arctic (over the Greenland ice sheet as well as to investigate the link between halogen cycling and ozone depletion that has been observed in interstitial air. The model is validated using data taken 10 June–13 June, 2008 as part of the Greenland Summit Halogen-HOx experiment (GSHOX. The model predicts that reactions involving bromide and nitrate impurities in the surface snow at Summit can sustain atmospheric NO and BrO mixing ratios measured at Summit during this period.

  13. PCBs in the Arctic atmosphere: determining important driving forces using a global atmospheric transport model

    Directory of Open Access Journals (Sweden)

    C. L. Friedman

    2015-11-01

    Full Text Available We present a spatially and temporally resolved global atmospheric PCB model, driven by meteorological data, that is skilled at simulating mean atmospheric PCB concentrations and seasonal cycles in the Northern Hemisphere mid-latitudes, and mean Arctic concentrations. However, the model does not capture the observed Arctic summer maximum in atmospheric PCBs. We use the model to estimate global budgets for the International Council for the Exploration of the Sea 7 PCBs, and demonstrate that congeners that deposit more readily show lower potential for long-range transport, consistent with a recently-described "differential removal hypothesis" regarding the hemispheric transport of PCBs. Using sensitivity simulations to assess processes within, outside, or transport to the Arctic, we examine the influence of climate- and emissions-driven processes on Arctic concentrations and their effect on improving the simulated Arctic seasonal cycle. We find evidence that processes occurring outside the Arctic have a greater influence on Arctic atmospheric PCB levels than processes that occur within the Arctic. Our simulations suggest that re-emissions from sea ice melting or from the Arctic Ocean during summer would have to be unrealistically high in order to capture observed temporal trends of PCBs in the Arctic atmosphere. We conclude that mid-latitude processes are likely to have a greater effect on the Arctic under global change scenarios than re-emissions within the Arctic.

  14. Atmospheric Dispersion Model Validation in Low Wind Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Patrick

    2007-11-01

    Atmospheric plume dispersion models are used for a variety of purposes including emergency planning and response to hazardous material releases, determining force protection actions in the event of a Weapons of Mass Destruction (WMD) attack and for locating sources of pollution. This study provides a review of previous studies that examine the accuracy of atmospheric plume dispersion models for chemical releases. It considers the principles used to derive air dispersion plume models and looks at three specific models currently in use: Aerial Location of Hazardous Atmospheres (ALOHA), Emergency Prediction Information Code (EPIcode) and Second Order Closure Integrated Puff (SCIPUFF). Results from this study indicate over-prediction bias by the EPIcode and SCIPUFF models and under-prediction bias by the ALOHA model. The experiment parameters were for near field dispersion (less than 100 meters) in low wind speed conditions (less than 2 meters per second).

  15. Measuring the basic parameters of neutron stars using model atmospheres

    CERN Document Server

    Suleimanov, V F; Klochkov, D; Werner, K

    2015-01-01

    Model spectra of neutron star atmospheres are nowadays widely used to fit the observed thermal X-ray spectra of neutron stars. This fitting is the key element in the method of the neutronstar radius determination. Here, we present the basic assumptions used for the neutron star atmosphere modeling as well as the main qualitative features of the stellar atmospheres leading to the deviations of the emergent model spectrum from blackbody. We describe the properties of two of our model atmosphere grids: (i) pure carbon atmospheres for relatively cool neutron stars (1--4 MK) and (ii) hot atmospheres with Compton scattering taken into account. The results obtained by applying these grids to model the X-ray spectra of the central compact object in supernova remnant HESS 1731-347, and two X-ray bursting neutron stars in low-mass X-ray binaries, 4U 1724-307 and 4U 1608-52, are presented. Possible systematic uncertainties associated with the obtained neutron star radii are discussed.

  16. Measuring the basic parameters of neutron stars using model atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Suleimanov, V.F. [Universitaet Tuebingen, Institut fuer Astronomie und Astrophysik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Kazan Federal University, Kazan (Russian Federation); Poutanen, J. [University of Turku, Tuorla Observatory, Department of Physics and Astronomy, Piikkioe (Finland); KTH Royal Institute of Technology and Stockholm University, Nordita, Stockholm (Sweden); Klochkov, D.; Werner, K. [Universitaet Tuebingen, Institut fuer Astronomie und Astrophysik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany)

    2016-02-15

    Model spectra of neutron star atmospheres are nowadays widely used to fit the observed thermal X-ray spectra of neutron stars. This fitting is the key element in the method of the neutron star radius determination. Here, we present the basic assumptions used for the neutron star atmosphere modeling as well as the main qualitative features of the stellar atmospheres leading to the deviations of the emergent model spectrum from blackbody. We describe the properties of two of our model atmosphere grids: i) pure carbon atmospheres for relatively cool neutron stars (1-4MK) and ii) hot atmospheres with Compton scattering taken into account. The results obtained by applying these grids to model the X-ray spectra of the central compact object in supernova remnant HESS 1731-347, and two X-ray bursting neutron stars in low-mass X-ray binaries, 4U 1724-307 and 4U 1608-52, are presented. Possible systematic uncertainties associated with the obtained neutron star radii are discussed. (orig.)

  17. Observations, Thermochemical Calculations, and Modeling of Exoplanetary Atmospheres

    CERN Document Server

    Blecic, Jasmina

    2016-01-01

    This dissertation as a whole aims to provide means to better understand hot-Jupiter planets through observing, performing thermochemical calculations, and modeling their atmospheres. We used Spitzer multi-wavelength secondary-eclipse observations and targets with high signal-to-noise ratios, as their deep eclipses allow us to detect signatures of spectral features and assess planetary atmospheric structure and composition with greater certainty. Chapter 1 gives a short introduction. Chapter 2 presents the Spitzer secondary-eclipse analysis and atmospheric characterization of WASP-14b. WASP-14b is a highly irradiated, transiting hot Jupiter. By applying a Bayesian approach in the atmospheric analysis, we found an absence of thermal inversion contrary to theoretical predictions. Chapter 3 describes the infrared observations of WASP-43b Spitzer secondary eclipses, data analysis, and atmospheric characterization. WASP-43b is one of the closest-orbiting hot Jupiters, orbiting one of the coolest stars with a hot Ju...

  18. Information Flow in an Atmospheric Model and Data Assimilation

    Science.gov (United States)

    Yoon, Young-noh

    2011-01-01

    Weather forecasting consists of two processes, model integration and analysis (data assimilation). During the model integration, the state estimate produced by the analysis evolves to the next cycle time according to the atmospheric model to become the background estimate. The analysis then produces a new state estimate by combining the background…

  19. Geology Laxemar. Site descriptive modelling SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Wahlgren, Carl-Henric (Geological Survey of Sweden, Uppsala (Sweden)); Curtis, Philip; Hermanson, Jan; Forssberg, Ola; Oehman, Johan (Golder Associates AB (Sweden)); Fox, Aaron; La Pointe, Paul (Golder Associates Inc (United States)); Drake, Henrik (Dept. of Earth Sciences, Univ. of Goeteborg, Goeteborg (Sweden)); Triumf, Carl-Axel; Mattsson, Haakan; Thunehed, Hans (GeoVista AB, Luleaa (Sweden)); Juhlin, Christopher (Dept. of Earth Sciences, Uppsala Univ., Uppsala (Sweden))

    2008-11-15

    , kinematics of brittle deformation in drill cores and outcrops, as well as studies with particular focus on minor deformation zones (MDZ) in both drill cores and in the field. Complementary geochronological and other rock and fracture analytical data. High resolution airborne laser scanning (LIDAR) leading to a new digital elevation model (DEM) together with high-resolution ground magnetic and resistivity data providing the basis for further lineament interpretations. Further seismic refraction surveys and reprocessing and re-evaluation of seismic reflection data. The outputs of the deterministic modelling work are geometric models in RVS format for rock domains, deformation zones and fracture domains, including detailed property tables for rock domains and deformation zones and a description of fracture domains. The outputs of the geological DFN modelling process are recommended parameters or statistical distributions that describe fracture set orientations, sizes, volumetric intensities, spatial correlations and models, and other parameters (lithology and scaling corrections, termination matrices) that are necessary for building stochastic models. The regional scale ductile deformation zones strike NNE-SSW and NE-SW, are subvertical and are characterised by sinistral strike-slip displacements, while E-W oriented zones, though more strongly overprinted by brittle deformation, display moderate to steep dips to the south or north. The kinematics of the latter are not resolved at Laxemar, but E-W ductile shear zones in the Simpevarp subarea show complex kinematics, including both reverse and normal dip-slip as well as sinistral and dextral strike-slip displacements. It should be noted that the regional and local major deformation zones, although the majority have a ductile precursor, are mainly brittle in character. The focussed volume is transected by a series of smaller deformation zones with a variety of orientations and with dips varying from sub-vertical to sub

  20. Regional atmospheric budgets of reduced nitrogen over the British isles assessed using a multi-layer atmospheric transport model

    NARCIS (Netherlands)

    Fournier, N.; Tang, Y.S.; Dragosits, U.; Kluizenaar, Y.de; Sutton, M.A.

    2005-01-01

    Atmospheric budgets of reduced nitrogen for the major political regions of the British Isles are investigated with a multi-layer atmospheric transport model. The model is validated against measurements of NH3 concentration and is developed to provide atmospheric budgets for defined subdomains of the

  1. Constructing an advanced software tool for planetary atmospheric modeling

    Science.gov (United States)

    Keller, Richard M.; Sims, Michael; Podolak, Ester; Mckay, Christopher

    1990-01-01

    Scientific model building can be an intensive and painstaking process, often involving the development of large and complex computer programs. Despite the effort involved, scientific models cannot be easily distributed and shared with other scientists. In general, implemented scientific models are complex, idiosyncratic, and difficult for anyone but the original scientist/programmer to understand. We believe that advanced software techniques can facilitate both the model building and model sharing process. In this paper, we describe a prototype for a scientific modeling software tool that serves as an aid to the scientist in developing and using models. This tool includes an interactive intelligent graphical interface, a high level domain specific modeling language, a library of physics equations and experimental datasets, and a suite of data display facilities. Our prototype has been developed in the domain of planetary atmospheric modeling, and is being used to construct models of Titan's atmosphere.

  2. High Resolution Global Modeling of the Atmospheric Circulation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An informal review is presented of recent developments in numerical simulation of the global atmospheric circulation with very fine numerical resolution models. The focus is on results obtained recently with versions of the GFDL SKYHI model and the Atmospheric Model for the Earth Simulator (AFES) global atmospheric models. These models have been run with effective horizontal grid resolution of ~10-40 km and fine vertical resolution. The results presented demonstrate the utility of such models for the study of a diverse range of phenomena. Specifically the models are shown to simulate the development of tropical cyclones with peak winds and minimum central pressures comparable to those of the most intense hurricanes actually observed. More fundamentally, the spectrum of energy content in the mesoscale in the flow can be reproduced by these models down to near the smallest explicitly-resolved horizontal scales. In the middle atmosphere it is shown that increasing horizontal resolution can lead to significantly improved overall simulation of the global-scale circulation. The application of the models to two specific problems requiring very fine resolution global will be discussed. The spatial and temporal variability of the vertical eddy flux of zonal momentum associated with gravity waves near the tropopause is evaluated in the very fine resolution AFES model. This is a subject of great importance for understanding and modelling the flow in the middle atmosphere. Then the simulation of the small scale variations of the semidiurnal surface pressure oscillation is analyzed, and the signature of significant topographic modulation of the semidiurnal atmospheric tide is identified.

  3. Atmospheric aerosol dispersion models and their applications to environmental risk assessment

    Directory of Open Access Journals (Sweden)

    Andrzej Mazur

    2014-03-01

    Full Text Available Introduction. Numerical models of dispersion of atmospheric pollutants are widely used to forecast the spread of contaminants in the air and to analyze the effects of this phenomenon. The aim of the study is to investigate the possibilities and the quality of diagnosis and prediction of atmospheric transport of aerosols in the air using the dispersion model of atmospheric pollutants, developed at the Institute of Meteorology and Water Management (IMWM in Warsaw. Material and methods. A model of the dispersion of atmospheric pollutants, linked with meteorological models in a diagnostic mode, was used to simulate the transport of the cloud of aerosols released during the crash near the town of Ożydiw (Ukraine and of volcanic ash – during the volcanic eruption of Eyjafjallajökull in Iceland. Results. Possible directions of dispersion of pollutants in the air and its concentration in the atmosphere and deposition to the soil were assessed. The analysis of temporal variability of concentrations of aerosols in the atmosphere confirmed that the model developed at IMWM is an effective tool for diagnosis of air quality in the area of Poland as well as for determination of exposure duration to the aerosol clouds for different weather scenarios. Conclusions. The results are a confirmation of the thesis, that because in the environmental risk assessment, an important element is not only current information on the level of pollution concentrations, but also the time of exposure to pollution and forecast of these elements, and consequently the predicted effects on man or the environment in general; so it is necessary to use forecasting tools, similar to presented application. The dispersion model described in the paper is an operational tool for description, analysis and forecasting of emergency situations in case of emissions of hazardous substances.

  4. A land surface model combined with a crop growth model for paddy rice (MATCRO-Rice v. 1) - Part 1: Model description

    Science.gov (United States)

    Masutomi, Yuji; Ono, Keisuke; Mano, Masayoshi; Maruyama, Atsushi; Miyata, Akira

    2016-11-01

    Crop growth and agricultural management can affect climate at various spatial and temporal scales through the exchange of heat, water, and gases between land and atmosphere. Therefore, simulation of fluxes for heat, water, and gases from agricultural land is important for climate simulations. A land surface model (LSM) combined with a crop growth model (CGM), called an LSM-CGM combined model, is a useful tool for simulating these fluxes from agricultural land. Therefore, we developed a new LSM-CGM combined model for paddy rice fields, the MATCRO-Rice model. The main objective of this paper is to present the full description of MATCRO-Rice. The most important feature of MATCRO-Rice is that it can consistently simulate latent and sensible heat fluxes, net carbon uptake by crop, and crop yield by exchanging variables between the LSM and CGM. This feature enables us to apply the model to a wide range of integrated issues.

  5. Examining Tatooine: Atmospheric Models of Neptune-Like Circumbinary Planets

    CERN Document Server

    May, E M

    2016-01-01

    Circumbinary planets experience a time varying irradiation pattern as they orbit their two host stars. In this work, we present the first detailed study of the atmospheric effects of this irradiation pattern on known and hypothetical gaseous circumbinary planets. Using both a one-dimensional Energy Balance Model and a three-dimensional General Circulation Model, we look at the temperature differences between circumbinary planets and their equivalent single-star cases in order to determine the nature of the atmospheres of these planets. We find that for circumbinary planets on stable orbits around their host stars, temperature differences are on average no more than 1.0% in the most extreme cases. Based on detailed modeling with the General Circulation Model, we find that these temperature differences are not large enough to excite circulation differences between the two cases. We conclude that gaseous circumbinary planets can be treated as their equivalent single-star case in future atmospheric modeling effor...

  6. Atmosphere-magma ocean modeling of GJ 1132 b

    Science.gov (United States)

    Schaefer, Laura; Wordsworth, Robin; Berta-Thompson, Zachory K.; Sasselov, Dimitar

    2017-01-01

    GJ 1132 b is a nearby Earth-sized exoplanet transiting an M dwarf, and is amongst the most highly characterizable small exoplanets currently known. Using a coupled atmosphere-magma ocean model, we determine that GJ 1132 b must have begun with more than 5 wt% initial water in order to still retain a water-based atmosphere. We also determine the amount of O2 that can build up in the atmosphere as a result of hydrogen dissociation and loss. We find that the magma ocean absorbs at most ~ 10% of the O2 produced, whereas more than 90% is lost to space through hydrodynamic drag. The results of the model depend strongly on the initial water abundance and the XUV model. The most common outcome for GJ 1132 b from our simulations is a tenuous atmosphere dominated by O2, although for very large initial water abundances, atmospheres with several thousands of bars of O2 are possible. A substantial steam envelope would indicate either the existence of an earlier H2 envelope or low XUV flux over the system's lifetime. A steam atmosphere would also imply the continued existence of a magma ocean on GJ 1132 b. Preliminary modeling with the addition of CO2 gas will be presented.

  7. Using Existing Arctic Atmospheric Mercury Measurements to Refine Global and Regional Scale Atmospheric Transport Models

    Science.gov (United States)

    Moore, C. W.; Dastoor, A.; Steffen, A.; Nghiem, S. V.; Agnan, Y.; Obrist, D.

    2015-12-01

    Northern hemisphere background atmospheric concentrations of gaseous elemental mercury (GEM) have been declining by up to 25% over the last ten years at some lower latitude sites. However, this decline has ranged from no decline to 9% over 10 years at Arctic long-term measurement sites. Measurements also show a highly dynamic nature of mercury (Hg) species in Arctic air and snow from early spring to the end of summer when biogeochemical transformations peak. Currently, models are unable to reproduce this variability accurately. Estimates of Hg accumulation in the Arctic and Arctic Ocean by models require a full mechanistic understanding of the multi-phase redox chemistry of Hg in air and snow as well as the role of meteorology in the physicochemical processes of Hg. We will show how findings from ground-based atmospheric Hg measurements like those made in spring 2012 during the Bromine, Ozone and Mercury Experiment (BROMEX) near Barrow, Alaska can be used to reduce the discrepancy between measurements and model output in the Canadian GEM-MACH-Hg model. The model is able to reproduce and to explain some of the variability in Arctic Hg measurements but discrepancies still remain. One improvement involves incorporation of new physical mechanisms such as the one we were able to identify during BROMEX. This mechanism, by which atmospheric mercury depletion events are abruptly ended via sea ice leads opening and inducing shallow convective mixing that replenishes GEM (and ozone) in the near surface atmospheric layer, causing an immediate recovery from the depletion event, is currently lacking in models. Future implementation of this physical mechanism will have to incorporate current remote sensing sea ice products but also rely on the development of products that can identify sea ice leads quantitatively. In this way, we can advance the knowledge of the dynamic nature of GEM in the Arctic and the impact of climate change along with new regulations on the overall

  8. Regional forecasting with global atmospheric models; Fourth year report

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, T.J.; North, G.R.; Smith, N.R. [Applied Research Corp., College Station, TX (United States)

    1994-05-01

    The scope of the report is to present the results of the fourth year`s work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals.

  9. Development of an efficient coupled model for soil–atmosphere modelling (FHAVeT: model evaluation and comparison

    Directory of Open Access Journals (Sweden)

    A.-J. Tinet

    2014-07-01

    Full Text Available In agricultural management, a good timing in operations such as irrigation or sowing, is essential to enhance both economical and environmental performance. To improve such timing, predictive software are of particular interest. An optimal decision making software would require process modules which provides robust, efficient and accurate predictions while being based on a minimal amount of parameters easily available. This paper develops a coupled soil–atmosphere model based on Ross fast solution for Richards' equation, heat transfer and detailed surface energy balance. In this paper, the developed model, FHAVeT (Fast Hydro Atmosphere Vegetation Temperature, has been evaluated in bare soil conditions against the coupled model based of the De Vries description, TEC. The two models were compared for different climatic and soil conditions. Moreover, the model allows the use of various pedotransfer functions. The FHAVeT model showed better performance in regards to mass balance. In order to allow a more precise comparison, 6 time windows were selected. The study demonstrated that the FHAVeT behaviour is quite similar to the TEC behaviour except under some dry conditions. An evaluation of day detection in regards to moisture thresholds is performed.

  10. The physical theory and propagation model of THz atmospheric propagation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, R; Yao, J Q; Xu, D G; Wang, J L; Wang, P, E-mail: wangran19861014@163.com [College of Precision Instrument and Opto-electronics Engineering, Institute of Laser and Opto-electronics, Tianjin University, Tianjin 300072 (China)

    2011-02-01

    Terahertz (THz) radiation is extensively applied in diverse fields, such as space communication, Earth environment observation, atmosphere science, remote sensing and so on. And the research on propagation features of THz wave in the atmosphere becomes more and more important. This paper firstly illuminates the advantages and outlook of THz in space technology. Then it introduces the theoretical framework of THz atmospheric propagation, including some fundamental physical concepts and processes. The attenuation effect (especially the absorption of water vapor), the scattering of aerosol particles and the effect of turbulent flow mainly influence THz atmosphere propagation. Fundamental physical laws are illuminated as well, such as Lamber-beer law, Mie scattering theory and radiative transfer equation. The last part comprises the demonstration and comparison of THz atmosphere propagation models like Moliere(V5), SARTre and AMATERASU. The essential problems are the deep analysis of physical mechanism of this process, the construction of atmospheric propagation model and databases of every kind of material in the atmosphere, and the standardization of measurement procedures.

  11. Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution

    Energy Technology Data Exchange (ETDEWEB)

    Marti, Olivier; Braconnot, P.; Bellier, J.; Brockmann, P.; Caubel, A.; Noblet, N. de; Friedlingstein, P.; Idelkadi, A.; Kageyama, M. [Unite Mixte CEA-CNRS-UVSQ, IPSL/LSCE, Gif-sur-Yvette Cedex (France); Dufresne, J.L.; Bony, S.; Codron, F.; Fairhead, L.; Grandpeix, J.Y.; Hourdin, F.; Musat, I. [Unite Mixte CNRS-Ecole Polytechnique-ENS-UPCM, IPSL/LMD, Paris Cedex 05 (France); Benshila, R.; Guilyardi, E.; Levy, C.; Madec, G.; Mignot, J.; Talandier, C. [unite mixte CNRS-IRD-UPMC, IPLS/LOCEAN, Paris Cedex 05 (France); Cadule, P.; Denvil, S.; Foujols, M.A. [Institut Pierre Simon Laplace des Sciences de l' Environnement (IPSL), Paris Cedex 05 (France); Fichefet, T.; Goosse, H. [Universite Catholique de Louvain, Institut d' Astronomie et de Geophysique Georges Lemaitre, Louvain-la-Neuve (Belgium); Krinner, G. [Unite mixte CNRS-UJF Grenoble, LGGE, BP96, Saint-Martin-d' Heres (France); Swingedouw, D. [CNRS/CERFACS, Toulouse (France)

    2010-01-15

    This paper presents the major characteristics of the Institut Pierre Simon Laplace (IPSL) coupled ocean-atmosphere general circulation model. The model components and the coupling methodology are described, as well as the main characteristics of the climatology and interannual variability. The model results of the standard version used for IPCC climate projections, and for intercomparison projects like the Paleoclimate Modeling Intercomparison Project (PMIP 2) are compared to those with a higher resolution in the atmosphere. A focus on the North Atlantic and on the tropics is used to address the impact of the atmosphere resolution on processes and feedbacks. In the North Atlantic, the resolution change leads to an improved representation of the storm-tracks and the North Atlantic oscillation. The better representation of the wind structure increases the northward salt transports, the deep-water formation and the Atlantic meridional overturning circulation. In the tropics, the ocean-atmosphere dynamical coupling, or Bjerknes feedback, improves with the resolution. The amplitude of ENSO (El Nino-Southern oscillation) consequently increases, as the damping processes are left unchanged. (orig.)

  12. Surface system Forsmark. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Lindborg, Tobias (ed.)

    2008-12-15

    SKB has undertaken site characterization of two different areas, Forsmark and Laxemar-Simpevarp, in order to find a suitable location for a geological repository for spent nuclear fuel. This report focuses on the site descriptive modelling of the surface system at Forsmark. The characterization of the surface system at the site was primarily made by identifying and describing important properties in different parts of the surface system, properties concerning e.g. hydrology and climate, Quaternary deposits and soils, hydrochemistry, vegetation, ecosystem functions, but also current and historical land use. The report presents available input data, methodology for data evaluation and modelling, and resulting models for each of the different disciplines. Results from the modelling of the surface system are also integrated with results from modelling of the deep bedrock system. The Forsmark site is located within the municipality of Oesthammar, about 120 km north of Stockholm. The investigated area is located along the shoreline of Oeregrundsgrepen, a funnel-shaped bay of the Baltic Sea. The area is characterized by small-scale topographic variations and is almost entirely located at altitudes lower than 20 metres above sea level. The Quaternary deposits in the area are dominated by till, characterized by a rich content of calcite which was transported by the glacier ice to the area from the sedimentary bedrock of Gaevlebukten about 100 km north of Forsmark. As a result, the surface waters and shallow groundwater at Forsmark are characterized by high pH values and high concentrations of certain major constituents, especially calcium and bicarbonate. The annual precipitation and runoff are 560 and 150 mm, respectively. The lakes are small and shallow, with mean and maximum depths ranging from approximately 0.1 to 1 m and 0.4 to 2 m. Sea water flows into the most low-lying lakes during events giving rise to very high sea levels. Wetlands are frequent and cover 25 to 35

  13. Surface system Forsmark. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Lindborg, Tobias (ed.)

    2008-12-15

    SKB has undertaken site characterization of two different areas, Forsmark and Laxemar-Simpevarp, in order to find a suitable location for a geological repository for spent nuclear fuel. This report focuses on the site descriptive modelling of the surface system at Forsmark. The characterization of the surface system at the site was primarily made by identifying and describing important properties in different parts of the surface system, properties concerning e.g. hydrology and climate, Quaternary deposits and soils, hydrochemistry, vegetation, ecosystem functions, but also current and historical land use. The report presents available input data, methodology for data evaluation and modelling, and resulting models for each of the different disciplines. Results from the modelling of the surface system are also integrated with results from modelling of the deep bedrock system. The Forsmark site is located within the municipality of Oesthammar, about 120 km north of Stockholm. The investigated area is located along the shoreline of Oeregrundsgrepen, a funnel-shaped bay of the Baltic Sea. The area is characterized by small-scale topographic variations and is almost entirely located at altitudes lower than 20 metres above sea level. The Quaternary deposits in the area are dominated by till, characterized by a rich content of calcite which was transported by the glacier ice to the area from the sedimentary bedrock of Gaevlebukten about 100 km north of Forsmark. As a result, the surface waters and shallow groundwater at Forsmark are characterized by high pH values and high concentrations of certain major constituents, especially calcium and bicarbonate. The annual precipitation and runoff are 560 and 150 mm, respectively. The lakes are small and shallow, with mean and maximum depths ranging from approximately 0.1 to 1 m and 0.4 to 2 m. Sea water flows into the most low-lying lakes during events giving rise to very high sea levels. Wetlands are frequent and cover 25 to 35

  14. A dynamic model reduction algorithm for atmospheric chemistry models

    Science.gov (United States)

    Santillana, Mauricio; Le Sager, Philippe; Jacob, Daniel J.; Brenner, Michael

    2010-05-01

    Understanding the dynamics of the chemical composition of our atmosphere is essential to address a wide range of environmental issues from air quality to climate change. Current models solve a very large and stiff system of nonlinear advection-reaction coupled partial differential equations in order to calculate the time evolution of the concentration of over a hundred chemical species. The numerical solution of this system of equations is difficult and the development of efficient and accurate techniques to achieve this has inspired research for the past four decades. In this work, we propose an adaptive method that dynamically adjusts the chemical mechanism to be solved to the local environment and we show that the use of our approach leads to accurate results and considerable computational savings. Our strategy consists of partitioning the computational domain in active and inactive regions for each chemical species at every time step. In a given grid-box, the concentration of active species is calculated using an accurate numerical scheme, whereas the concentration of inactive species is calculated using a simple and computationally inexpensive formula. We demonstrate the performance of the method by application to the GEOS-Chem global chemical transport model.

  15. Exact results in modeling planetary atmospheres-III

    Energy Technology Data Exchange (ETDEWEB)

    Pelkowski, J. [Institut fuer Atmosphaere und Umwelt, J.W. Goethe Universitaet Frankfurt, Campus Riedberg, Altenhoferallee 1, D-60438 Frankfurt a.M. (Germany)], E-mail: Pelkowski@meteor.uni-frankfurt.de; Chevallier, L. [Observatoire de Paris-Meudon, Laboratoire LUTH, 5 Place Jules Janssen, 92195 Meudon cedex (France); Rutily, B. [Universite de Lyon, F-69003 Lyon (France); Universite Lyon 1, Observatoire de Lyon, 9 avenue Charles Andre, F-69230 Saint-Genis-Laval (France); CNRS, UMR 5574, Centre de Recherche Astrophysique de Lyon (France); Ecole Normale Superieure de Lyon, F-69007 Lyon (France); Titaud, O. [Centro de Modelamiento Matematico, UMI 2807 CNRS-UChile, Blanco Encalada 2120 - 7 Piso, Casilla 170 - Correo 3, Santiago (Chile)

    2008-01-15

    We apply the semi-gray model of our previous paper to the particular case of the Earth's atmosphere, in order to illustrate quantitatively the inverse problem associated with the direct problem we dealt with before. From given climatological values of the atmosphere's spherical albedo and transmittance for visible radiation, the single-scattering albedo and the optical thickness in the visible are inferred, while the infrared optical thickness is deduced for given global average surface temperature. Eventually, temperature distributions in terms of the infrared optical depth will be shown for a terrestrial atmosphere assumed to be semi-gray and, locally, in radiative and thermodynamic equilibrium.

  16. Atmospheric Turbulence Modeling for Aero Vehicles: Fractional Order Fits

    Science.gov (United States)

    Kopasakis, George

    2015-01-01

    Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying coupling between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms and then by deriving an explicit fractional circuit-filter type analog for this model. This circuit model is utilized to develop a generalized formulation in frequency domain to approximate the fractional order with the products of first order transfer functions, which enables accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.

  17. Atmospheric Turbulence Modeling for Aerospace Vehicles: Fractional Order Fit

    Science.gov (United States)

    Kopasakis, George (Inventor)

    2015-01-01

    An improved model for simulating atmospheric disturbances is disclosed. A scale Kolmogorov spectral may be scaled to convert the Kolmogorov spectral into a finite energy von Karman spectral and a fractional order pole-zero transfer function (TF) may be derived from the von Karman spectral. Fractional order atmospheric turbulence may be approximated with an integer order pole-zero TF fit, and the approximation may be stored in memory.

  18. Complex source rate estimation for atmospheric transport and dispersion models

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, L.L.

    1993-09-13

    The accuracy associated with assessing the environmental consequences of an accidental atmospheric release of radioactivity is highly dependent on our knowledge of the source release rate which is generally poorly known. This paper reports on a technique that integrates the radiological measurements with atmospheric dispersion modeling for more accurate source term estimation. We construct a minimum least squares methodology for solving the inverse problem with no a priori information about the source rate.

  19. Medicanes in an ocean–atmosphere coupled regional climate model

    Directory of Open Access Journals (Sweden)

    N. Akhtar

    2014-03-01

    Full Text Available So-called medicanes (Mediterranean hurricanes are meso-scale, marine, and warm-core Mediterranean cyclones that exhibit some similarities to tropical cyclones. The strong cyclonic winds associated with medicanes threaten the highly populated coastal areas around the Mediterranean basin. To reduce the risk of casualties and overall negative impacts, it is important to improve the understanding of medicanes with the use of numerical models. In this study, we employ an atmospheric limited-area model (COSMO-CLM coupled with a one-dimensional ocean model (1-D NEMO-MED12 to simulate medicanes. The aim of this study is to assess the robustness of the coupled model in simulating these extreme events. For this purpose, 11 historical medicane events are simulated using the atmosphere-only model, COSMO-CLM, and coupled model, with different setups (horizontal atmospheric grid-spacings of 0.44°, 0.22°, and 0.08°; with/without spectral nudging, and an ocean grid-spacing of 1/12°. The results show that at high-resolution, the coupled model is able to not only simulate most of medicane events but also improve the track length, core temperature, and wind speed of simulated medicanes compared to the atmosphere-only simulations. The results suggest that the coupled model is more proficient for systemic and detailed studies of historical medicane events, and that this model can be an effective tool for future projections.

  20. A new atmospheric aerosol phase equilibrium model (UHAERO: organic systems

    Directory of Open Access Journals (Sweden)

    N. R. Amundson

    2007-09-01

    Full Text Available In atmospheric aerosols, water and volatile inorganic and organic species are distributed between the gas and aerosol phases in accordance with thermodynamic equilibrium. Within an atmospheric particle, liquid and solid phases can exist at equilibrium. Models exist for computation of phase equilibria for inorganic/water mixtures typical of atmospheric aerosols; when organic species are present, the phase equilibrium problem is complicated by organic/water interactions as well as the potentially large number of organic species. We present here an extension of the UHAERO inorganic thermodynamic model (Amundson et al., 2006c to organic/water systems. Phase diagrams for a number of model organic/water systems characteristic of both primary and secondary organic aerosols are computed. Also calculated are inorganic/organic/water phase diagrams that show the effect of organics on inorganic deliquescence behavior. The effect of the choice of activity coefficient model for organics on the computed phase equilibria is explored.

  1. A new atmospheric aerosol phase equilibrium model (UHAERO: organic systems

    Directory of Open Access Journals (Sweden)

    N. R. Amundson

    2007-06-01

    Full Text Available In atmospheric aerosols, water and volatile inorganic and organic species are distributed between the gas and aerosol phases in accordance with thermodynamic equilibrium. Within an atmospheric particle, liquid and solid phases can exist at equilibrium. Models exist for computation of phase equilibria for inorganic/water mixtures typical of atmospheric aerosols; when organic species are present, the phase equilibrium problem is complicated by organic/water interactions as well as the potentially large number of organic species. We present here an extension of the UHAERO inorganic thermodynamic model (Amundson et al., 2006c to organic/water systems. Phase diagrams for a number of model organic/water systems characteristic of both primary and secondary organic aerosols are computed. Also calculated are inorganic/organic/water phase diagrams that show the effect of organics on inorganic deliquescence behavior. The effect of the choice of activity coefficient model for organics on the computed phase equilibria is explored.

  2. Critical review of wind tunnel modeling of atmospheric heat dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Orgill, M.M.

    1977-05-01

    There is increasing concern by scientists that future proposed energy or power parks may significantly affect the environment by releasing large quantities of heat and water vapor to the atmosphere. A critical review is presented of the potential application of physical modeling (wind tunnels) to assess possible atmospheric effects from heat dissipation systems such as cooling towers. A short inventory of low-speed wind tunnel facilities is included in the review. The useful roles of wind tunnels are assessed and the state-of-the-art of physical modeling is briefly reviewed. Similarity criteria are summarized and present limitations in satisfying these criteria are considered. Current physical models are defined and limitations are discussed. Three experimental problems are discussed in which physical modeling may be able to provide data. These are: defining the critical atmospheric heat load; topographic and local circulation effects on thermal plumes; and plume rise and downstream effects.

  3. Regional atmospheric composition modeling with CHIMERE

    Science.gov (United States)

    Menut, L.; Bessagnet, B.; Khvorostyanov, D.; Beekmann, M.; Colette, A.; Coll, I.; Curci, G.; Foret, G.; Hodzic, A.; Mailler, S.; Meleux, F.; Monge, J.-L.; Pison, I.; Turquety, S.; Valari, M.; Vautard, R.; Vivanco, M. G.

    2013-01-01

    Tropospheric trace gas and aerosol pollutants have adverse effects on health, environment and climate. In order to quantify and mitigate such effects, a wide range of processes leading to the formation and transport of pollutants must be considered, understood and represented in numerical models. Regional scale pollution episodes result from the combination of several factors: high emissions (from anthropogenic or natural sources), stagnant meteorological conditions, velocity and efficiency of the chemistry and the deposition. All these processes are highly variable in time and space, and their relative importance to the pollutants budgets can be quantified within a chemistry-transport models (CTM). The offline CTM CHIMERE model uses meteorological model fields and emissions fluxes and calculates deterministically their behavior in the troposphere. The calculated three-dimensional fields of chemical concentrations can be compared to measurements to analyze past periods or used to make air quality forecasts and CHIMERE has enabled a fine understanding of pollutants transport during numerous measurements campaigns. It is a part of the PREVAIR french national forecast platform, delivering pollutant concentrations up to three days in advance. The model also allows scenario studies and long term simulations for pollution trends. The modelling of photochemical air pollution has reached a good level of maturity, and the latest projects involving CHIMERE now aim at increasing our understanding of pollution impact on health at the urban scale or at the other end of the spectrum for long term air quality and climate change interlinkage studies, quantifying the emissions and transport of pollen, but also, at a larger scale, analyzing the transport of pollutants plumes emitted by volcanic eruptions and forest fires.

  4. Regional atmospheric composition modeling with CHIMERE

    Directory of Open Access Journals (Sweden)

    L. Menut

    2013-01-01

    Full Text Available Tropospheric trace gas and aerosol pollutants have adverse effects on health, environment and climate. In order to quantify and mitigate such effects, a wide range of processes leading to the formation and transport of pollutants must be considered, understood and represented in numerical models. Regional scale pollution episodes result from the combination of several factors: high emissions (from anthropogenic or natural sources, stagnant meteorological conditions, velocity and efficiency of the chemistry and the deposition. All these processes are highly variable in time and space, and their relative importance to the pollutants budgets can be quantified within a chemistry-transport models (CTM. The offline CTM CHIMERE model uses meteorological model fields and emissions fluxes and calculates deterministically their behavior in the troposphere. The calculated three-dimensional fields of chemical concentrations can be compared to measurements to analyze past periods or used to make air quality forecasts and CHIMERE has enabled a fine understanding of pollutants transport during numerous measurements campaigns. It is a part of the PREVAIR french national forecast platform, delivering pollutant concentrations up to three days in advance. The model also allows scenario studies and long term simulations for pollution trends. The modelling of photochemical air pollution has reached a good level of maturity, and the latest projects involving CHIMERE now aim at increasing our understanding of pollution impact on health at the urban scale or at the other end of the spectrum for long term air quality and climate change interlinkage studies, quantifying the emissions and transport of pollen, but also, at a larger scale, analyzing the transport of pollutants plumes emitted by volcanic eruptions and forest fires.

  5. Atmospheric monitoring and model applications at the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Keilhauer Bianca

    2015-01-01

    Full Text Available The Pierre Auger Observatory detects high-energy cosmic rays with energies above ∼1017 eV. It is built as a multi-hybrid detector measuring extensive air showers with different techniques. For the reconstruction of extensive air showers, the atmospheric conditions at the site of the Observatory have to be known quite well. This is particularly true for reconstructions based on data obtained by the fluorescence technique. For these data, not only the weather conditions near ground are relevant, most important are altitude-dependent atmospheric profiles. The Pierre Auger Observatory has set up a dedicated atmospheric monitoring programme at the site in the Mendoza province, Argentina. Beyond this, exploratory studies were performed in Colorado, USA, for possible installations in the northern hemisphere. In recent years, the atmospheric monitoring programme at the Pierre Auger Observatory was supplemented by applying data from atmospheric models. Both GDAS and HYSPLIT are developments by the US weather department NOAA and the data are freely available. GDAS is a global model of the atmospheric state parameters on a 1 degree geographical grid, based on real-time measurements and numeric weather predictions, providing a full altitude-dependent data set every 3 hours. HYSPLIT is a powerful tool to track the movement of air masses at various heights, and with it the aerosols. Combining local measurements of the atmospheric state variables and aerosol scattering with the given model data, advanced studies about atmospheric conditions can be performed and high precision air shower reconstructions are achieved.

  6. Modeling Planetary Atmospheric Energy Deposition By Energetic Ions

    Science.gov (United States)

    Parkinson, Christopher; Bougher, Stephen; Gronoff, Guillaume; Barthelemy, Mathieu

    2016-07-01

    The structure, dynamics, chemistry, and evolution of planetary upper atmospheres are in large part determined by the available sources of energy. In addition to the solar EUV flux, the solar wind and solar energetic particle (SEP) events are also important sources. Both of these particle populations can significantly affect an atmosphere, causing atmospheric loss and driving chemical reactions. Attention has been paid to these sources from the standpoint of the radiation environment for humans and electronics, but little work has been done to evaluate their impact on planetary atmospheres. At unmagnetized planets or those with crustal field anomalies, in particular, the solar wind and SEPs of all energies have direct access to the atmosphere and so provide a more substantial energy source than at planets having protective global magnetic fields. Additionally, solar wind and energetic particle fluxes should be more significant for planets orbiting more active stars, such as is the case in the early history of the solar system for paleo-Venus and Mars. Therefore quantification of the atmospheric energy input from the solar wind and SEP events is an important component of our understanding of the processes that control their state and evolution. We have applied a full Lorentz motion particle transport model to study the effects of particle precipitation in the upper atmospheres of Mars and Venus. Such modeling has been previously done for Earth and Mars using a guiding center precipitation model. Currently, this code is only valid for particles with small gyroradii in strong uniform magnetic fields. There is a clear necessity for a Lorentz formulation, hence, a systematic study of the ionization, excitation, and energy deposition has been conducted, including a comparison of the influence relative to other energy sources (namely EUV photons). The result is a robust examination of the influence of energetic ion transport on the Venus and Mars upper atmosphere which

  7. Meteorological Uncertainty of atmospheric Dispersion model results (MUD)

    DEFF Research Database (Denmark)

    Havskov Sørensen, Jens; Amstrup, Bjarne; Feddersen, Henrik;

    ’ dispersion scenario. However, recent developments in numerical weather prediction (NWP) include probabilistic forecasting techniques, which can be utilised also for long-range atmospheric dispersion models. The ensemble statistical methods developed and applied to NWP models aim at describing the inherent...

  8. National Utility Financial Statement model (NUFS). Volume III of III: software description. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-29

    This volume contains a description of the software comprising the National Utility Financial Statement Model (NUFS). This is the third of three volumes describing NUFS provided by ICF Incorporated under contract DEAC-01-79EI-10579. The three volumes are entitled: model overview and description, user's guide, and software guide.

  9. INTRA/Mod3.2. Manual and Code Description. Volume I - Physical Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Jenny; Edlund, O.; Hermann, J.; Johansson, Lise-Lotte

    1999-01-01

    The INTRA Manual consists of two volumes. Volume I of the manual is a thorough description of the code INTRA, the Physical modelling of INTRA and the ruling numerical methods and volume II, the User`s Manual is an input description. This document, the Physical modelling of INTRA, contains code characteristics, integration methods and applications

  10. Atmospheric resuspension of radionuclides. Model testing using Chernobyl data

    Energy Technology Data Exchange (ETDEWEB)

    Garger, E.; Lev, T.; Talerko, N. [Inst. of Radioecology UAAS, Kiev (Ukraine); Galeriu, D. [Institute of Atomic Physics, Bucharest (Romania); Garland, J. [Consultant (United Kingdom); Hoffman, O.; Nair, S.; Thiessen, K. [SENES, Oak Ridge, TN (United States); Miller, C. [Centre for Disease Control, Atlanta, GA (United States); Mueller, H. [GSF - Inst. fuer Strahlenschultz, Neuherberg (Germany); Kryshev, A. [Moscow State Univ. (Russian Federation)

    1996-10-01

    Resuspension can be an important secondary source of contamination after a release has stopped, as well as a source of contamination for people and areas not exposed to the original release. The inhalation of resuspended radionuclides contributes to the overall dose received by exposed individuals. Based on measurements collected after the Chernobyl accident, Scenario R was developed to provide an opportunity to test existing mathematical models of contamination resuspension. In particular, this scenario provided the opportunity to examine data and test models for atmospheric resuspension of radionuclides at several different locations from the release, to investigate resuspension processes on both local and regional scales, and to investigate the importance of seasonal variations of these processes. Participants in the test exercise were provided with information for three different types of locations: (1) within the 30-km zone, where local resuspension processes are expected to dominate; (2) a large urban location (Kiev) 120 km from the release site, where vehicular traffic is expected to be the dominant mechanism for resuspension; and (3) an agricultural area 40-60 km from the release site, where highly contaminated upwind 'hot spots' are expected to be important. Input information included characteristics of the ground contamination around specific sites, climatological data for the sites, characteristics of the terrain and topography, and locations of the sampling sites. Participants were requested to predict the average (quarterly and yearly) concentrations of 137 Cs in air at specified locations due to resuspension of Chernobyl fallout; predictions for 90 Sr and 239 + 240 Pu were also requested for one location and time point. Predictions for specified resuspension factors and rates were also requested. Most participants used empirical models for the resuspension factor as a function of time K(t), as opposed to process-based models. While many of

  11. Interfacing the Urban Land-Atmosphere System Through Coupled Urban Canopy and Atmospheric Models

    Science.gov (United States)

    Song, Jiyun; Wang, Zhi-Hua

    2015-03-01

    We couple a single column model (SCM) to a cutting-edge single-layer urban canopy model (SLUCM) with realistic representation of urban hydrological processes. The land-surface transport of energy and moisture parametrized by the SLUCM provides lower boundary conditions to the overlying atmosphere. The coupled SLUCM-SCM model is tested against field measurements of sensible and latent heat fluxes in the surface layer, as well as vertical profiles of temperature and humidity in the mixed layer under convective conditions. The model is then used to simulate urban land-atmosphere interactions by changing urban geometry, surface albedo, vegetation fraction and aerodynamic roughness. Results show that changes of landscape characteristics have a significant impact on the growth of the boundary layer as well as on the distributions of temperature and humidity in the mixed layer. Overall, the proposed numerical framework provides a useful stand-alone modelling tool, with which the impact of urban land-surface conditions on the local hydrometeorology can be assessed via land-atmosphere interactions.

  12. Challenges in Modeling of the Global Atmosphere

    Science.gov (United States)

    Janjic, Zavisa; Djurdjevic, Vladimir; Vasic, Ratko; Black, Tom

    2015-04-01

    The massively parallel computer architectures require that some widely adopted modeling paradigms be reconsidered in order to utilize more productively the power of parallel processing. For high computational efficiency with distributed memory, each core should work on a small subdomain of the full integration domain, and exchange only few rows of halo data with the neighbouring cores. However, the described scenario implies that the discretization used in the model is horizontally local. The spherical geometry further complicates the problem. Various grid topologies will be discussed and examples will be shown. The latitude-longitude grid with local in space and explicit in time differencing has been an early choice and remained in use ever since. The problem with this method is that the grid size in the longitudinal direction tends to zero as the poles are approached. So, in addition to having unnecessarily high resolution near the poles, polar filtering has to be applied in order to use a time step of decent size. However, the polar filtering requires transpositions involving extra communications. The spectral transform method and the semi-implicit semi-Lagrangian schemes opened the way for a wide application of the spectral representation. With some variations, these techniques are used in most major centers. However, the horizontal non-locality is inherent to the spectral representation and implicit time differencing, which inhibits scaling on a large number of cores. In this respect the lat-lon grid with a fast Fourier transform represents a significant step in the right direction, particularly at high resolutions where the Legendre transforms become increasingly expensive. Other grids with reduced variability of grid distances such as various versions of the cubed sphere and the hexagonal/pentagonal ("soccer ball") grids were proposed almost fifty years ago. However, on these grids, large-scale (wavenumber 4 and 5) fictitious solutions ("grid imprinting

  13. Mesoscale modelling of atmospheric CO2 across Denmark

    DEFF Research Database (Denmark)

    Lansø, Anne Sofie

    2016-01-01

    It is scientifically well-established that the increase of atmospheric CO2 affects the entire globe and will lead to higher surface temperatures. Although anthropogenic CO2is emitted straight into the atmosphere, it does not all contribute to the existing atmospheric CO2 reservoir. Approximately 29...... the processes controlling the sources and sinks of atmospheric CO2. This PhD dissertation attempts to increase our understanding of the importance of accounting for high spatiotemporal variability in estimates of CO2 exchanges between the atmosphere and the surface. For this purpose, a mesoscale...... modelling system is constructed, centred around Denmark, based on an atmospheric transport model. In this study, the main areas of focus have been on improving the spatial surface representation, for both land and sea, and investigating the influence of the temporal resolution on the air–sea CO2 exchange...

  14. Onboard Atmospheric Modeling and Prediction for Autonomous Aerobraking Missions

    Science.gov (United States)

    Tolson, Robert H.; Prince, Jill L. H.

    2011-01-01

    Aerobraking has proven to be an effective means of increasing the science payload for planetary orbiting missions and/or for enabling the use of less expensive launch vehicles. Though aerobraking has numerous benefits, large operations cost have been required to maintain the aerobraking time line without violating aerodynamic heating or other constraints. Two operations functions have been performed on an orbit by orbit basis to estimate atmospheric properties relevant to aerobraking. The Navigation team typically solves for an atmospheric density scale factor using DSN tracking data and the atmospheric modeling team uses telemetric accelerometer data to recover atmospheric density profiles. After some effort, decisions are made about the need for orbit trim maneuvers to adjust periapsis altitude to stay within the aerobraking corridor. Autonomous aerobraking would reduce the need for many ground based tasks. To be successful, atmospheric modeling must be performed on the vehicle in near real time. This paper discusses the issues associated with estimating the planetary atmosphere onboard and evaluates a number of the options for Mars, Venus and Titan aerobraking missions.

  15. Models of ash-laden intrusions in a stratified atmosphere

    Science.gov (United States)

    Hogg, Andrew; Johnson, Chris; Sparks, Steve; Huppert, Herbert; Woodhouse, Mark; Phillips, Jeremy

    2013-04-01

    Recent volcanic eruptions and the associated dispersion of ash through the atmosphere have led to widespread closures of airspace, for example the 2010 eruption of Eyjafjallajokull and 2011 eruption of Puyehue-Cordón Caulle. These episodes bring into sharp focus the need to predict quantitatively the transport and deposition of fine ash and in particular, its interaction with atmospheric wind. Many models of this process are based upon capturing the physics of advection with the wind, turbulence-induced diffusion and gravitational settling. Buoyancy-induced processes, associated with the density of the ash cloud and the background stratification of the atmosphere, are neglected and it is this issue that we address in this contribution. In particular, we suggest that the buoyancy-induced motion may account for the relatively thin distal ash layers that have been observed in the atmosphere and their relatively weak cross-wind spreading. We formulate a new model for buoyancy-driven spreading in the atmosphere in which we treat the evolving ash layer as relatively shallow so that its motion is predominantly horizontal and the pressure locally hydrostatic. The motion is driven by horizontal pressure gradients along with interfacial drag between the flowing ash layer and the surrounding atmosphere. Ash-laden fluid is delivered to this intrusion from a plume source and has risen through the atmosphere to its height of neutral buoyancy. The ash particles are then transported horizontally by the intrusion and progressively settle out of it to sediment through the atmosphere and form the deposit on the ground. This model is integrated numerically and analysed asymptotically in various regimes, including scenarios in which the atmosphere is quiescent and in which there is a sustained wind. The results yield predictions for the variation of the thickness of the intrusion with distance from the source and for how the concentration of ash is reduced due to settling. They

  16. Modelling Saturn's atmospheric circulations and cloud structure with OPUS

    Science.gov (United States)

    Zuchowski, L. C.; Read, P. L.; Yamazaki, Y. H.

    2009-04-01

    We are investigating Saturn's atmospheric circulations and cloud structure in the Northern and Southern hemisphere as initial value problems by use of the Oxford Planetary Unified model System (OPUS), a sophisticated GCM based on the UK Met Office Unified Model. Solving an extended form of the Hydrodynamic Primitive Equations, OPUS is capable of including 40 vertical levels from 0.1 bar to 100 bar. The model was initiated with temperature and balanced thermal wind profiles recently obtained by Cassini's Composite InfraRed Spectrometer (CIRS). A simple cloud scheme for the Jovian planets has been added to OPUS and is employed to model the three major cloud decks (ammonia, ammonium-hydrosulfide and water) on Saturn and the advection of these clouds with the atmosphere. We have already conducted several numerical studies with OPUS, simulating jet scale meridional circulations, the formation of cloud bands and discrete turbulent features on Jupiter. By modelling the dynamics and clouds of Saturn in a similar way, we are hoping to gain further insight into the formation of circulation cells over the zonal jet streams as well as to examine the distribution of atmospheric condensates in response to these motions. The model will also be used to numerically investigate the characteristic features in Saturn's Northern hemisphere. It is envisioned to directly compare the atmospheric configurations obtained for Saturn with previous results from the Jupiter model.

  17. Light self-focusing in the atmosphere: thin window model

    Science.gov (United States)

    Vaseva, Irina A.; Fedoruk, Mikhail P.; Rubenchik, Alexander M.; Turitsyn, Sergei K.

    2016-08-01

    Ultra-high power (exceeding the self-focusing threshold by more than three orders of magnitude) light beams from ground-based laser systems may find applications in space-debris cleaning. The propagation of such powerful laser beams through the atmosphere reveals many novel interesting features compared to traditional light self-focusing. It is demonstrated here that for the relevant laser parameters, when the thickness of the atmosphere is much shorter than the focusing length (that is, of the orbit scale), the beam transit through the atmosphere in lowest order produces phase distortion only. This means that by using adaptive optics it may be possible to eliminate the impact of self-focusing in the atmosphere on the laser beam. The area of applicability of the proposed “thin window” model is broader than the specific physical problem considered here. For instance, it might find applications in femtosecond laser material processing.

  18. Model atmospheres for Mercury based on a lunar analogy

    Science.gov (United States)

    Hodges, R. R., Jr.

    1974-01-01

    Similarities in daytime spectral reflectivities and nighttime infrared emission from Mercury and the moon are shown to imply that the atmosphere of Mercury must be tenuous, like that of the moon. The theory of formation, transport, and loss in the lunar atmosphere is applied to Mercury. Models of the Hermian atmosphere at perihelion and aphelion are presented, based on the solar wind as the dominant source of gases. Only the noncondensable species - hydrogen, helium and neon - are considered. Of these, helium is the most abundant atmospheric gas, with maximum concentration of about 40,000,000 per cu cm at the nighttime surface. The maximum concentration of H2 is 6,000,000 per cu cm, and that of neon is 700,000 per cu cm.

  19. Box models for the evolution of atmospheric oxygen: an update

    Science.gov (United States)

    Kasting, J. F.

    1991-01-01

    A simple 3-box model of the atmosphere/ocean system is used to describe the various stages in the evolution of atmospheric oxygen. In Stage I, which probably lasted until redbeds began to form about 2.0 Ga ago, the Earth's surface environment was generally devoid of free O2, except possibly in localized regions of high productivity in the surface ocean. In Stage II, which may have lasted for less than 150 Ma, the atmosphere and surface ocean were oxidizing, while the deep ocean remained anoxic. In Stage III, which commenced with the disappearance of banded iron formations around 1.85 Ga ago and has lasted until the present, all three surface reservoirs contained appreciable amounts of free O2. Recent and not-so-recent controversies regarding the abundance of oxygen in the Archean atmosphere are identified and discussed. The rate of O2 increase during the Middle and Late Proterozoic is identified as another outstanding question.

  20. Model Atmospheres for X-ray Bursting Neutron Stars

    CERN Document Server

    Medin, Zach; Calder, Alan C; Fontes, Christopher J; Fryer, Chris L; Hungerford, Aimee L

    2016-01-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where X-ray bursts occur. Observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.

  1. Mars Entry Atmospheric Data System Modeling, Calibration, and Error Analysis

    Science.gov (United States)

    Karlgaard, Christopher D.; VanNorman, John; Siemers, Paul M.; Schoenenberger, Mark; Munk, Michelle M.

    2014-01-01

    The Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI)/Mars Entry Atmospheric Data System (MEADS) project installed seven pressure ports through the MSL Phenolic Impregnated Carbon Ablator (PICA) heatshield to measure heatshield surface pressures during entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. In particular, the quantities to be estimated from the MEADS pressure measurements include the dynamic pressure, angle of attack, and angle of sideslip. This report describes the calibration of the pressure transducers utilized to reconstruct the atmospheric data and associated uncertainty models, pressure modeling and uncertainty analysis, and system performance results. The results indicate that the MEADS pressure measurement system hardware meets the project requirements.

  2. Hydrogeological Site Descriptive Model - a strategy for its development during Site Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Rhen, Ingvar [SWECO VIAK AB, Goeteborg (Sweden); Follin, Sven [SF GeoLogic AB, Stockholm (Sweden); Hermanson, Jan [Golder Associates, Stockholm (Sweden)

    2003-04-01

    The report is to present a strategy for the development of the Site Descriptive Hydrogeological Model within the SKB Site Investigation Programme. The report, and similar reports from the Geology, Rock Mechanics, Thermal properties, Hydrogeochemistry, Transport Properties and Surface Ecosystem disciplines are intended to guide SKB Site Descriptive Modelling but also to provide the authorities with an overview of how the modelling should be performed. Thus the objectives of this report are to: provide guidelines for the modelling of different sites resulting in consistent handling of modelling issues during the Site Investigations, provide a structure for the modelling sequence that is suitable for the establishment of a Site Descriptive model and provide some necessary details that should be considered in a Site Descriptive model.

  3. WM-basic: Modeling atmospheres of hot stars

    Science.gov (United States)

    Pauldrach, A. W. A.

    2012-04-01

    WM-basic is an easy-to-use interface to a program package which models the atmospheres of Hot Stars (and also SN and GN). The release comprises all programs required to calculate model atmospheres which especially yield ionizing fluxes and synthetic spectra. WM-basic is a native 32-bit application, conforming to the Multiple Documents Interface (MDI) standards for Windows XP/2000/NT/9x. All components of the program package have been compiled with Digital Visual Fortran V6.6(Pro) and Microsoft Visual C++.

  4. The study and applications of photochemical-dynamical gravity wave model Ⅰ--Model description

    Institute of Scientific and Technical Information of China (English)

    XU; Jiyao(徐寄遥); MA; Ruiping(马瑞平); A.K.Smith

    2002-01-01

    A two-dimensional, nonlinear, compressible, diabatic, nonhydrostatic photochemical- dynamical gravity wave model has been advanced. The model includes diabetic process produced by photochemistry and the effect of gravity wave on atmospheric chemical species. In the horizontal direction, the pseudospectral method is used. The finite difference approximations are used in vertical direction z and time t. The FICE method is used to solve the model. The model results on small amplitude fluctuation are very close to those of linear theory, which demonstrates the correctness of the model.

  5. Thermal site descriptive model. A strategy for the model development during site investigations - version 2

    Energy Technology Data Exchange (ETDEWEB)

    Back, Paer-Erik; Sundberg, Jan [Geo Innova AB (Sweden)

    2007-09-15

    This report presents a strategy for describing, predicting and visualising the thermal aspects of the site descriptive model. The strategy is an updated version of an earlier strategy applied in all SDM versions during the initial site investigation phase at the Forsmark and Oskarshamn areas. The previous methodology for thermal modelling did not take the spatial correlation fully into account during simulation. The result was that the variability of thermal conductivity in the rock mass was not sufficiently well described. Experience from earlier thermal SDMs indicated that development of the methodology was required in order describe the spatial distribution of thermal conductivity in the rock mass in a sufficiently reliable way, taking both variability within rock types and between rock types into account. A good description of the thermal conductivity distribution is especially important for the lower tail. This tail is important for the design of a repository because it affects the canister spacing. The presented approach is developed to be used for final SDM regarding thermal properties, primarily thermal conductivity. Specific objectives for the strategy of thermal stochastic modelling are: Description: statistical description of the thermal conductivity of a rock domain. Prediction: prediction of thermal conductivity in a specific rock volume. Visualisation: visualisation of the spatial distribution of thermal conductivity. The thermal site descriptive model should include the temperature distribution and thermal properties of the rock mass. The temperature is the result of the thermal processes in the repository area. Determination of thermal transport properties can be made using different methods, such as laboratory investigations, field measurements, modelling from mineralogical composition and distribution, modelling from density logging and modelling from temperature logging. The different types of data represent different scales, which has to be

  6. Model Atmospheres From Very Low Mass Stars to Brown Dwarfs

    CERN Document Server

    Allard, F; Freytag, B

    2010-01-01

    Since the discovery of brown dwarfs in 1994, and the discovery of dust cloud formation in the latest Very Low Mass Stars (VLMs) and Brown Dwarfs (BDs) in 1996, the most important challenge in modeling their atmospheres as become the understanding of cloud formation and advective mixing. For this purpose, we have developed radiation hydrodynamic 2D model atmosphere simulations to study the formation of forsterite dust in presence of advection, condensation, and sedimentation across the M-L-T VLMs to BDs sequence (Teff = 2800 K to 900 K, Freytag et al. 2010). We discovered the formation of gravity waves as a driving mechanism for the formation of clouds in these atmospheres, and derived a rule for the velocity field versus atmospheric depth and Teff , which is relatively insensitive to gravity. This rule has been used in the construction of the new model atmosphere grid, BT-Settl, to determine the microturbulence velocity, the diffusion coefficient, and the advective mixing of molecules as a function of depth. ...

  7. Description of regolith at Laxemar-Simpevarp. Site descriptive modelling SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Sohlenius, Gustav; Hedenstroem, Anna (Geological Survey of Sweden (SGU), Uppsala (Sweden))

    2008-11-15

    This report compiles all known available information regarding the regolith in the Laxemar-Simpevarp regional model area. Regolith refers to the loose deposits overlying the bedrock. In the Laxemar-Simpevarp area, all known regolith was deposited during the Quaternary period and is consequently often referred to as Quaternary deposits (QD). In the terrestrial areas the uppermost part of the regolith, which has been affected by climate and vegetation, is referred to as soil. The geographical and stratigraphical distributions of the regolith have been used to construct a model showing the distribution of regolith depths in the whole model area. The stratigraphical units shown in the regolith depth and stratigraphy model have been characterised with respect to physical and chemical properties. Most of the data used for that characterisation have been obtained from the site investigation but some data were taken from the literature. All QD in the Laxemar area have most probably been deposited during or after the latest deglaciation. The ice sheet in the area moved from the north-west during the latest ice age. The Baltic Sea completely covered the investigated area after the latest deglaciation c 12,000 BC. Land uplift was fastest during the first few thousand years following the deglaciation and has subsequently decreased to the present value of 1 mm/year. Older QD have been eroded in areas exposed to waves and currents and the material has later been redeposited. Fine-grained sediments have been deposited on the floor of bays and in other sheltered positions. Peat has accumulated in many of the wetlands situated in topographically low positions. The groundwater table in many of the former wetlands has been artificially lowered to obtain land for forestry and agriculture, which has caused the peat to partly or completely oxidise. As land uplift proceeds, some new areas are being subjected to erosion at the same time as other new areas are becoming lakes and sheltered

  8. Description of regolith at Laxemar-Simpevarp. Site descriptive modelling SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Sohlenius, Gustav; Hedenstroem, Anna (Geological Survey of Sweden (SGU), Uppsala (Sweden))

    2008-11-15

    This report compiles all known available information regarding the regolith in the Laxemar-Simpevarp regional model area. Regolith refers to the loose deposits overlying the bedrock. In the Laxemar-Simpevarp area, all known regolith was deposited during the Quaternary period and is consequently often referred to as Quaternary deposits (QD). In the terrestrial areas the uppermost part of the regolith, which has been affected by climate and vegetation, is referred to as soil. The geographical and stratigraphical distributions of the regolith have been used to construct a model showing the distribution of regolith depths in the whole model area. The stratigraphical units shown in the regolith depth and stratigraphy model have been characterised with respect to physical and chemical properties. Most of the data used for that characterisation have been obtained from the site investigation but some data were taken from the literature. All QD in the Laxemar area have most probably been deposited during or after the latest deglaciation. The ice sheet in the area moved from the north-west during the latest ice age. The Baltic Sea completely covered the investigated area after the latest deglaciation c 12,000 BC. Land uplift was fastest during the first few thousand years following the deglaciation and has subsequently decreased to the present value of 1 mm/year. Older QD have been eroded in areas exposed to waves and currents and the material has later been redeposited. Fine-grained sediments have been deposited on the floor of bays and in other sheltered positions. Peat has accumulated in many of the wetlands situated in topographically low positions. The groundwater table in many of the former wetlands has been artificially lowered to obtain land for forestry and agriculture, which has caused the peat to partly or completely oxidise. As land uplift proceeds, some new areas are being subjected to erosion at the same time as other new areas are becoming lakes and sheltered

  9. Model Atmospheres and Transit Spectra for Hot Rocky Planets

    Science.gov (United States)

    Lupu, Roxana

    We propose to build a versatile set of self-consistent atmospheric models for hot rocky exoplanets and use them to predict their transit and eclipse spectra. Hot rocky exoplanets will form the majority of small planets in close-in orbits to be discovered by the TESS and Kepler K2 missions, and offer the best opportunity for characterization with current and future instruments. We will use fully non-grey radiative-convective atmospheric structure codes with cloud formation and vertical mixing, combined with a self-consistent treatment of gas chemistry above the magma ocean. Being in equilibrium with the surface, the vaporized rock material can be a good tracer of the bulk composition of the planet. We will derive the atmospheric structure and escape rates considering both volatile-free and volatile bearing compositions, which reflect the diversity of hot rocky planet atmospheres. Our models will inform follow- up observations with JWST and ground-based instruments, aid the interpretation of transit and eclipse spectra, and provide a better understanding of volatile loss in these atmospheres. Such results will help refine our picture of rocky planet formation and evolution. Planets in ultra-short period (USP) orbits are a special class of hot rocky exoplanets. As shown by Kepler, these planets are generally smaller than 2 Earth radii, suggesting that they are likely to be rocky and could have lost their volatiles through photo-evaporation. Being close to their host stars, these planets are ultra-hot, with estimated temperatures of 1000-3000 K. A number of USP planets have been already discovered (e.g. Kepler-78 b, CoRoT-7 b, Kepler-10 b), and this number is expected to grow by confirming additional planet candidates. The characterization of planets on ultra-short orbits is advantageous due to the larger number of observable transits, and the larger transit signal in the case of an evaporating atmosphere. Much advance has been made in understanding and characterizing

  10. Stellar model atmospheres with magnetic line blanketing. II. Introduction of polarized radiative transfer

    CERN Document Server

    Khan, S A

    2006-01-01

    The technique of model atmosphere calculation for magnetic Ap and Bp stars with polarized radiative transfer and magnetic line blanketing is presented. A grid of model atmospheres of A and B stars are computed. These calculations are based on direct treatment of the opacities due to the bound-bound transitions that ensures an accurate and detailed description of the line absorption and anomalous Zeeman splitting. The set of model atmospheres was calculated for the field strengths between 1 and 40 kG. The high-resolution energy distribution, photometric colors and the hydrogen Balmer line profiles are computed for magnetic stars with different metallicities and are compared to those of non-magnetic reference models and to the previous paper of this series. The results of modelling confirmed the main outcomes of the previous study: energy redistribution from UV to the visual region and flux depression at 5200A. However, we found that effects of enhanced line blanketing when transfer for polarized radiation take...

  11. Advances in parallel computer technology for desktop atmospheric dispersion models

    Energy Technology Data Exchange (ETDEWEB)

    Bian, X.; Ionescu-Niscov, S.; Fast, J.D. [Pacific Northwest National Lab., Richland, WA (United States); Allwine, K.J. [Allwine Enviornmental Serv., Richland, WA (United States)

    1996-12-31

    Desktop models are those models used by analysts with varied backgrounds, for performing, for example, air quality assessment and emergency response activities. These models must be robust, well documented, have minimal and well controlled user inputs, and have clear outputs. Existing coarse-grained parallel computers can provide significant increases in computation speed in desktop atmospheric dispersion modeling without considerable increases in hardware cost. This increased speed will allow for significant improvements to be made in the scientific foundations of these applied models, in the form of more advanced diffusion schemes and better representation of the wind and turbulence fields. This is especially attractive for emergency response applications where speed and accuracy are of utmost importance. This paper describes one particular application of coarse-grained parallel computer technology to a desktop complex terrain atmospheric dispersion modeling system. By comparing performance characteristics of the coarse-grained parallel version of the model with the single-processor version, we will demonstrate that applying coarse-grained parallel computer technology to desktop atmospheric dispersion modeling systems will allow us to address critical issues facing future requirements of this class of dispersion models.

  12. A Vertical Grid Module for Baroclinic Models of the Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Drake, John B [ORNL

    2008-04-01

    The vertical grid of an atmospheric model assigns dynamic and thermo- dynamic variables to grid locations. The vertical coordinate is typically not height but one of a class of meteorological variables that vary with atmo- spheric conditions. The grid system is chosen to further numerical approx- imations of the boundary conditions so that the system is terrain following at the surface. Lagrangian vertical coordinates are useful in reducing the numerical errors from advection processes. That the choices will effect the numercial properties and accuracy is explored in this report. A MATLAB class for Lorentz vertical grids is described and applied to the vertical struc- ture equation and baroclinic atmospheric circulation. A generalized meteo- rolgoical coordinate system is developed which can support σ, isentropic θ vertical coordinate, or Lagrangian vertical coordinates. The vertical atmo- spheric column is a MATLAB class that includes the kinematic and ther- modynamic variables along with methods for computing geopoentials and terms relevant to a 3D baroclinc atmospheric model.

  13. Atmospheric dispersion modeling: Challenges of the Fukushima Daiichi response

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Gayle [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nasstrom, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pobanz, Brenda [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, Kevin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vogt, Phil [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Aluzzi, Fernando [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homann, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-05-01

    In this research, the U.S. Department of Energy’s (DOE) National Atmospheric Release Advisory Center (NARAC) provided a wide range of predictions and analyses as part of the response to the Fukushima Daiichi Nuclear Power Plant accident including: daily Japanese weather forecasts and atmospheric transport predictions to inform planning for field monitoring operations and to provide U.S. government agencies with ongoing situational awareness of meteorological conditions; estimates of possible dose in Japan based on hypothetical U.S. Nuclear Regulatory Commission scenarios of potential radionuclide releases to support protective action planning for U.S. citizens; predictions of possible plume arrival times and dose levels at U.S. locations; and source estimation and plume model refinement based on atmospheric dispersion modeling and available monitoring data.

  14. Atomistic modeling of carbon Cottrell atmospheres in bcc iron

    Science.gov (United States)

    Veiga, R. G. A.; Perez, M.; Becquart, C. S.; Domain, C.

    2013-01-01

    Atomistic simulations with an EAM interatomic potential were used to evaluate carbon-dislocation binding energies in bcc iron. These binding energies were then used to calculate the occupation probability of interstitial sites in the vicinity of an edge and a screw dislocation. The saturation concentration due to carbon-carbon interactions was also estimated by atomistic simulations in the dislocation core and taken as an upper limit for carbon concentration in a Cottrell atmosphere. We obtained a maximum concentration of 10 ± 1 at.% C at T = 0 K within a radius of 1 nm from the dislocation lines. The spatial carbon distributions around the line defects revealed that the Cottrell atmosphere associated with an edge dislocation is denser than that around a screw dislocation, in contrast with the predictions of the classical model of Cochardt and colleagues. Moreover, the present Cottrell atmosphere model is in reasonable quantitative accord with the three-dimensional atom probe data available in the literature.

  15. Evaluation of atmospheric density models and preliminary functional specifications for the Langley Atmospheric Information Retrieval System (LAIRS)

    Science.gov (United States)

    Lee, T.; Boland, D. F., Jr.

    1980-01-01

    This document presents the results of an extensive survey and comparative evaluation of current atmosphere and wind models for inclusion in the Langley Atmospheric Information Retrieval System (LAIRS). It includes recommended models for use in LAIRS, estimated accuracies for the recommended models, and functional specifications for the development of LAIRS.

  16. THE LOS ALAMOS NATIONAL LABORATORY ATMOSPHERIC TRANSPORT AND DIFFUSION MODELS

    Energy Technology Data Exchange (ETDEWEB)

    M. WILLIAMS [and others

    1999-08-01

    The LANL atmospheric transport and diffusion models are composed of two state-of-the-art computer codes. The first is an atmospheric wind model called HOThlAC, Higher Order Turbulence Model for Atmospheric circulations. HOTMAC generates wind and turbulence fields by solving a set of atmospheric dynamic equations. The second is an atmospheric diffusion model called RAPTAD, Random Particle Transport And Diffusion. RAPTAD uses the wind and turbulence output from HOTMAC to compute particle trajectories and concentration at any location downwind from a source. Both of these models, originally developed as research codes on supercomputers, have been modified to run on microcomputers. Because the capability of microcomputers is advancing so rapidly, the expectation is that they will eventually become as good as today's supercomputers. Now both models are run on desktop or deskside computers, such as an IBM PC/AT with an Opus Pm 350-32 bit coprocessor board and a SUN workstation. Codes have also been modified so that high level graphics, NCAR Graphics, of the output from both models are displayed on the desktop computer monitors and plotted on a laser printer. Two programs, HOTPLT and RAPLOT, produce wind vector plots of the output from HOTMAC and particle trajectory plots of the output from RAPTAD, respectively. A third CONPLT provides concentration contour plots. Section II describes step-by-step operational procedures, specifically for a SUN-4 desk side computer, on how to run main programs HOTMAC and RAPTAD, and graphics programs to display the results. Governing equations, boundary conditions and initial values of HOTMAC and RAPTAD are discussed in Section III. Finite-difference representations of the governing equations, numerical solution procedures, and a grid system are given in Section IV.

  17. New Model Atmospheres: Testing the Solar Spectrum in the UV

    CERN Document Server

    Rodríguez-Merino, L H; Bertone, E; Chavez, M; Buzzoni, A

    2007-01-01

    We present preliminary results on the calculation of synthetic spectra obtained with the stellar model atmospheres developed by Cardona, Crivellari, and Simonneau. These new models have been used as input within the SYNTHE series of codes developed by Kurucz. As a first step we have tested if SYNTHE is able to handle these models which go down to log tau(Ross)= -13. We have successfully calculated a synthetic solar spectrum in the wavelength region 2000--4500 A at high resolution (R=522,000). Within this initial test we have found that layers at optical depths with log tau(Ross) < -7 significantly affect the mid-UV properties of a synthetic spectrum computed from a solar model. We anticipate that these new extended models will be a valuable tool for the analysis of UV stellar light arising from the outermost layers of the atmospheres.

  18. New Model Atmospheres: Testing the Solar Spectrum in the UV

    Science.gov (United States)

    Rodríguez-Merino, L. H.; Cardona, O.; Bertone, E.; Chávez, M.; Buzzoni, A.

    2009-03-01

    We present preliminary results on the calculation of synthetic spectra obtained with the stellar model atmospheres developed by Cardona, Crivellari, and Simonneau. These new models have been used as input within the Synthe series of codes developed by Kurucz. As a first step we have tested if Synthe is able to handle these models which go down to log{τ_{Ross}}= -13. We have successfully calculated a synthetic solar spectrum in the wavelength region 2000-4500 Å at high resolution (R=522 000). Within this initial test we have found that layers at optical depths with log{τ_{Ross}} < -7 significantly affect the mid-UV properties of a synthetic spectrum computed from a solar model. We anticipate that these new extended models will be a valuable tool for the analysis of UV stellar light arising from the outermost layers of the atmospheres.

  19. Atmospheric distribution of methane on Mars: A model study

    Science.gov (United States)

    Viscardy, Sébastien; Daerden, Frank; Neary, Lori

    2016-10-01

    In the past decade, the detection of methane (CH4) in the atmosphere of Mars has been reported several times. These observations have strongly drawn the attention of the scientific community and triggered a renewed interest in Mars as their implications for the geochemical or biological activities are remarkable. However, given that methane is expected to have a photochemical lifetime of several centuries, the relatively fast loss rates of methane estimated from Earth-based measurements remain unexplained. Although this gave rise to objections against the validity of those observations, recent in situ measurements confirmed that methane is being occasionally released into the atmosphere from an unknown source (possibly from the ground). Additionally, ExoMars/TGO was launched to Mars in March 2016. NOMAD, one of the instruments onboard TGO, will provide the first global detailed observations of methane on Mars. It is in this context that we present a model study of the behavior of methane plumes.A general circulation model for the atmosphere of Mars is applied to simulate surface emission of methane and to investigate its vertical distribution during the first weeks after the release. Such surface emissions were suggested to explain observations of methane. Previous GCM simulations focused on the horizontal evolution of the methane, but the present study focuses on the three-dimensional dispersion of methane throughout the atmosphere after the surface release. It is found that a highly nonuniform vertical distribution, including distinct vertical layers, can appear throughout the atmosphere during the first weeks after the emission. This is explained by the global circulation patterns in the atmosphere at the time of the emission. Large Hadley cells transport the methane rapidly to other locations over the planet, and methane will be stretched out in layers along the general circulation streamlines at heights corresponding to strong zonal jets.This result changes

  20. Aeolian dunes as ground truth for atmospheric modeling on Mars

    Science.gov (United States)

    Hayward, R.K.; Titus, T.N.; Michaels, T.I.; Fenton, L.K.; Colaprete, A.; Christensen, P.R.

    2009-01-01

    Martian aeolian dunes preserve a record of atmosphere/surface interaction on a variety of scales, serving as ground truth for both Global Climate Models (GCMs) and mesoscale climate models, such as the Mars Regional Atmospheric Modeling System (MRAMS). We hypothesize that the location of dune fields, expressed globally by geographic distribution and locally by dune centroid azimuth (DCA), may record the long-term integration of atmospheric activity across a broad area, preserving GCM-scale atmospheric trends. In contrast, individual dune morphology, as expressed in slipface orientation (SF), may be more sensitive to localized variations in circulation, preserving topographically controlled mesoscale trends. We test this hypothesis by comparing the geographic distribution, DCA, and SF of dunes with output from the Ames Mars GCM and, at a local study site, with output from MRAMS. When compared to the GCM: 1) dunes generally lie adjacent to areas with strongest winds, 2) DCA agrees fairly well with GCM modeled wind directions in smooth-floored craters, and 3) SF does not agree well with GCM modeled wind directions. When compared to MRAMS modeled winds at our study site: 1) DCA generally coincides with the part of the crater where modeled mean winds are weak, and 2) SFs are consistent with some weak, topographically influenced modeled winds. We conclude that: 1) geographic distribution may be valuable as ground truth for GCMs, 2) DCA may be useful as ground truth for both GCM and mesoscale models, and 3) SF may be useful as ground truth for mesoscale models. Copyright 2009 by the American Geophysical Union.

  1. Modelling atmospheric OH-reactivity in a boreal forest ecosystem

    DEFF Research Database (Denmark)

    Mogensen, D.; Smolander, S.; Sogachev, Andrey;

    2011-01-01

    We have modelled the total atmospheric OH-reactivity in a boreal forest and investigated the individual contributions from gas phase inorganic species, isoprene, monoterpenes, and methane along with other important VOCs. Daily and seasonal variation in OH-reactivity for the year 2008 was examined...

  2. Fast and simple model for atmospheric radiative transfer

    NARCIS (Netherlands)

    Seidel, F.C.; Kokhanovsky, A.A.; Schaepman, M.E.

    2010-01-01

    Radiative transfer models (RTMs) are of utmost importance for quantitative remote sensing, especially for compensating atmospheric perturbation. A persistent trade-off exists between approaches that prefer accuracy at the cost of computational complexity, versus those favouring simplicity at the cos

  3. Consistency Problem with Tracer Advection in the Atmospheric Model GAMIL

    Institute of Scientific and Technical Information of China (English)

    ZHANG Kai; WAN Hui; WANG Bin; ZHANG Meigen

    2008-01-01

    The radon transport test,which is a widely used test case for atmospheric transport models,is carried out to evaluate the tracer advection schemes in the Grid-Point Atmospheric Model of IAP-LASG (GAMIL).TWO of the three available schemes in the model are found to be associated with significant biases in the polar regions and in the upper part of the atmosphere,which implies potentially large errors in the simulation of ozone-like tracers.Theoretical analyses show that inconsistency exists between the advection schemes and the discrete continuity equation in the dynamical core of GAMIL and consequently leads to spurious sources and sinks in the tracer transport equation.The impact of this type of inconsistency is demonstrated by idealized tests and identified as the cause of the aforementioned biases.Other potential effects of this inconsistency are also discussed.Results of this study provide some hints for choosing suitable advection schemes in the GAMIL model.At least for the polar-region-concentrated atmospheric components and the closely correlated chemical species,the Flux-Form Semi-Lagrangian advection scheme produces more reasonable simulations of the large-scale transport processes without significantly increasing the computational expense.

  4. LES model intercomparisons for the stable atmospheric boundary layer

    NARCIS (Netherlands)

    Moene, A.F.; Baas, P.; Bosveld, F.C.; Basu, S.

    2011-01-01

    Model intercomparisons are one possible method to gain confidence in Large-Eddy Simulation (LES) as a viable tool to study turbulence in the atmospheric boundary-layer. This paper discusses the setup and some results of two intercomparison cases focussing on the stably stratified nocturnal boundary-

  5. Assessment of atmospheric models for tele-infrasonic propagation

    Science.gov (United States)

    McKenna, Mihan; Hayek, Sylvia

    2005-04-01

    Iron mines in Minnesota are ideally located to assess the accuracy of available atmospheric profiles used in infrasound modeling. These mines are located approximately 400 km away to the southeast (142) of the Lac-Du-Bonnet infrasound station, IS-10. Infrasound data from June 1999 to March 2004 was analyzed to assess the effects of explosion size and atmospheric conditions on observations. IS-10 recorded a suite of events from this time period resulting in well constrained ground truth. This ground truth allows for the comparison of ray trace and PE (Parabolic Equation) modeling to the observed arrivals. The tele-infrasonic distance (greater than 250 km) produces ray paths that turn in the upper atmosphere, the thermosphere, at approximately 120 km to 140 km. Modeling based upon MSIS/HWM (Mass Spectrometer Incoherent Scatter/Horizontal Wind Model) and the NOGAPS (Navy Operational Global Atmospheric Prediction System) and NRL-GS2 (Naval Research Laboratory Ground to Space) augmented profiles are used to interpret the observed arrivals.

  6. Global Deep Convection Models of Saturn's Atmospheric Features

    Science.gov (United States)

    Heimpel, Moritz; Cuff, Keith; Gastine, Thomas; Wicht, Johannes

    2016-04-01

    The Cassini mission, along with previous missions and ground-based observations, has revealed a rich variety of atmospheric phenomena and time variability on Saturn. Some examples of dynamical features are: zonal flows with multiple jet streams, turbulent tilted shear flows that seem to power the jets, the north polar hexagon, the south polar cyclone, large anticyclones in "storm alley", numerous convective storms (white spots) of various sizes, and the 2010/2011 great storm, which destroyed an array of vortices dubbed the "string of pearls". Here we use the anelastic dynamo code MagIC, in non-magnetic mode, to study rotating convection in a spherical shell. The thickness of the shell is set to approximate the depth of the low electrical conductivity deep atmosphere of Saturn, and the convective forcing is set to yield zonal flows of similar velocity (Rossby number) to those of Saturn. Internal heating and the outer entropy boundary conditions allow simple modelling of atmospheric layers with neutral stability or stable stratification. In these simulations we can identify several saturnian and jovian atmospheric features, with some variations. We find that large anticyclonic vortices tend to form in the first anticyclonic shear zones away from the equatorial jet. Cyclones form at the poles, and polar polygonal jet streams, comparable to Saturn's hexagon, may or may not form, depending on the model conditions. Strings of small scale vortical structures arise as convective plumes near boundaries of shear zones. They typically precede larger scale convective storms that spawn propagating shear flow disturbances and anticyclonic vortices, which tend to drift across anticyclonic shear zones, toward the equator (opposite the drift direction of Saturn's 2010/2011 storm). Our model results indicate that many identifiable dynamical atmospheric features seen on Jupiter and Saturn arise from deep convection, shaped by planetary rotation, underlying and interacting with stably

  7. Toward GEOS-6, A Global Cloud System Resolving Atmospheric Model

    Science.gov (United States)

    Putman, William M.

    2010-01-01

    NASA is committed to observing and understanding the weather and climate of our home planet through the use of multi-scale modeling systems and space-based observations. Global climate models have evolved to take advantage of the influx of multi- and many-core computing technologies and the availability of large clusters of multi-core microprocessors. GEOS-6 is a next-generation cloud system resolving atmospheric model that will place NASA at the forefront of scientific exploration of our atmosphere and climate. Model simulations with GEOS-6 will produce a realistic representation of our atmosphere on the scale of typical satellite observations, bringing a visual comprehension of model results to a new level among the climate enthusiasts. In preparation for GEOS-6, the agency's flagship Earth System Modeling Framework [JDl] has been enhanced to support cutting-edge high-resolution global climate and weather simulations. Improvements include a cubed-sphere grid that exposes parallelism; a non-hydrostatic finite volume dynamical core, and algorithm designed for co-processor technologies, among others. GEOS-6 represents a fundamental advancement in the capability of global Earth system models. The ability to directly compare global simulations at the resolution of spaceborne satellite images will lead to algorithm improvements and better utilization of space-based observations within the GOES data assimilation system

  8. A UML model for the description of different brain-computer interface systems.

    Science.gov (United States)

    Quitadamo, Lucia Rita; Abbafati, Manuel; Saggio, Giovanni; Marciani, Maria Grazia; Cardarilli, Gian Carlo; Bianchi, Luigi

    2008-01-01

    BCI research lacks a universal descriptive language among labs and a unique standard model for the description of BCI systems. This results in a serious problem in comparing performances of different BCI processes and in unifying tools and resources. In such a view we implemented a Unified Modeling Language (UML) model for the description virtually of any BCI protocol and we demonstrated that it can be successfully applied to the most common ones such as P300, mu-rhythms, SCP, SSVEP, fMRI. Finally we illustrated the advantages in utilizing a standard terminology for BCIs and how the same basic structure can be successfully adopted for the implementation of new systems.

  9. Framework of Distributed Coupled Atmosphere-Ocean-Wave Modeling System

    Institute of Scientific and Technical Information of China (English)

    WEN Yuanqiao; HUANG Liwen; DENG Jian; ZHANG Jinfeng; WANG Sisi; WANG Lijun

    2006-01-01

    In order to research the interactions between the atmosphere and ocean as well as their important role in the intensive weather systems of coastal areas, and to improve the forecasting ability of the hazardous weather processes of coastal areas, a coupled atmosphere-ocean-wave modeling system has been developed.The agent-based environment framework for linking models allows flexible and dynamic information exchange between models. For the purpose of flexibility, portability and scalability, the framework of the whole system takes a multi-layer architecture that includes a user interface layer, computational layer and service-enabling layer. The numerical experiment presented in this paper demonstrates the performance of the distributed coupled modeling system.

  10. Interception of wet deposited atmospheric pollutants by herbaceous vegetation: Data review and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Gonze, M.-A., E-mail: marc-andre.gonze@irsn.fr; Sy, M.M.

    2016-09-15

    Better understanding and predicting interception of wet deposited pollutants by vegetation remains a key issue in risk assessment studies of atmospheric pollution. We develop different alternative models, following either empirical or semi-mechanistic descriptions, on the basis of an exhaustive dataset consisting of 440 observations obtained in controlled experiments, from 1970 to 2014, for a wide variety of herbaceous plants, radioactive substances and rainfall conditions. The predictive performances of the models and the uncertainty/variability of the parameters are evaluated under Hierarchical Bayesian modelling framework. It is demonstrated that the variability of the interception fraction is satisfactorily explained and quite accurately modelled by a process-based alternative in which absorption of ionic substances onto the foliage surfaces is determined by their electrical valence. Under this assumption, the 95% credible interval of the predicted interception fraction encompasses 81% of the observations, including situations where either plant biomass or rainfall intensity are unknown. This novel approach is a serious candidate to challenge existing empirical relationships in radiological or chemical risk assessment tools. - Highlights: • Literature data on the interception of atmospheric pollutants by herbs were reviewed • Predictive models were developed and evaluated in the Bayesian modelling framework • Sensitivity of interception to environmental conditions was satisfactorily explained • 81% of the observations were satisfactorily predicted by a semi-mechanistic model • This model challenges empirical relationships currently used in risk assessment tools.

  11. The Mg II index for upper atmosphere modelling

    Directory of Open Access Journals (Sweden)

    G. Thuillier

    Full Text Available The solar radio flux at 10.7 cm has been used in upper atmosphere density modelling because of its correlation with EUV radiation and its long and complete observational record. A proxy, the Mg II index, for the solar chromospheric activity has been derived by Heath and Schlesinger (1986 from Nimbus-7 data. This index allows one to describe the changes occurring in solar-activity in the UV Sun spectral irradiance. The use of this new proxy in upper atmosphere density modelling will be considered. First, this is supported by the 99.9% correlation between the solar radio flux (F10.7 and the Mg II index over a period of 19 years with, however, large differences on time scales of days to months. Secondly, correlation between EUV emissions and the Mg II index has been shown recently, suggesting that this last index may also be used to describe the EUV variations. Using the same density dataset, a model was first run with the F10.7 index as a solar forcing function and second, with the Mg II index. Comparison of their respective predictions to partial density data showed a 3–8% higher precision when the modelling uses the Mg II index rather than F10.7. An external validation, by means of orbit computation, resulted in a 20–40% smaller RMS of the tracking residuals. A density dataset spanning an entire solar cycle, together with Mg II data, is required to construct an accurate, unbiased as possible density model.

    Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry; thermosphere – composition and chemistry – History of geophysics (atmospheric sciences

  12. Modeling atmospheric effects of the September 1859 Solar Flare

    CERN Document Server

    Thomas, B; Melott, A; Thomas, Brian; Jackman, Charles; Melott, Adrian

    2006-01-01

    We have modeled atmospheric effects, especially ozone depletion, due to a solar proton event which probably accompanied the extreme magnetic storm of 1-2 September 1859. We use an inferred proton fluence for this event as estimated from nitrate levels in Greenland ice cores. We present results showing production of odd nitrogen compounds and their impact on ozone. We also compute rainout of nitrate in our model and compare to values from ice core data.

  13. Description Model of Warehouse Architecture for Clinical Test at the Molecular Immunology Centre

    Directory of Open Access Journals (Sweden)

    Anthony Rafael Sotolongo León

    2012-05-01

    Full Text Available Accurate and detailed description of the architecture of computer systems is very important to achieve success in their development. As informatic solutions, data warehouses and software support decision-making in institutions that need to implement a detailed description of the architecture. Ralph Kimball proposes the aspects to be considered of the description and explains how it is done. There are specific models used to describe the architecture such as Kruchten 4 +1 views of meta-model or the Common Warehouse Metamodel (CWM however these models do not meet the need of the description that requires a data warehouse that integrates information from clinical trials of the Molecular Immunology Centre (CIM. In this paper we propose a model for describing the data warehouse architecture that fits the needs of the Molecular Immunology Center following the Kimball framework and using as UML 2.0 modeling language.

  14. Improving 1D Stellar Models with 3D Atmospheres

    CERN Document Server

    Mosumgaard, Jakob Rørsted; Weiss, Achim; Christensen-Dalsgaard, Jørgen; Trampedach, Regner

    2016-01-01

    Stellar evolution codes play a major role in present-day astrophysics, yet they share common issues. In this work we seek to remedy some of those by the use of results from realistic and highly detailed 3D hydrodynamical simulations of stellar atmospheres. We have implemented a new temperature stratification extracted directly from the 3D simulations into the Garching Stellar Evolution Code to replace the simplified atmosphere normally used. Secondly, we have implemented the use of a variable mixing-length parameter, which changes as a function of the stellar surface gravity and temperature -- also derived from the 3D simulations. Furthermore, to make our models consistent, we have calculated new opacity tables to match the atmospheric simulations. Here, we present the modified code and initial results on stellar evolution using it.

  15. Ecohydrodynamic model of the Baltic Sea. Part 1. Description of the ProDeMo model

    Directory of Open Access Journals (Sweden)

    Bogdan Ołdakowski

    2005-12-01

    Full Text Available The ProDeMo (Production and Destruction of Organic Matter Model, a 3D coupled hydrodynamic-ecological model, was formulated and applied to the whole Baltic Sea and the subregion of the Gulf of Gdansk. It describes nutrient cycles (phosphorus, nitrogen, silicon through the food web with 15 state variables, oxygen conditions and the parameterisation of water-sediment interactions. The present version of the model takes two groups of phytoplankton - diatoms and non-diatoms - as well as zooplankton into consideration. It covers the flow of matter and energy in the sea, including river discharges and atmospheric deposition. Numerical applications are embedded on a 1 NM grid for the Gulf of Gdansk and a 5 NM grid for the Baltic Sea.     Since the model results largely concur with observations, the model can be regarded as a reliable tool for analysing the behaviour of the Baltic ecosystem. Some examples of the spatial-temporal variability of the most important biological and chemical parameters are presented. The model results are compared with those of other modelling research in the Baltic Sea.     Both the ProDeMo model algorithm and its computing procedures need to be further developed. The next version should therefore enable more phytoplankton groups to be defined, for example cyanobacteria, which are able to take up molecular nitrogen from the atmosphere (nitrogen fixation. Additionally, the sediment phase should be divided into active and non-active layers.

  16. Working model of the atmosphere and near planetary space of Jupiter

    Science.gov (United States)

    Moroz, V. I. (Editor)

    1978-01-01

    Basic physical characteristics of Jupiter, its gravitational field, atmosphere, electromagnetic radiation, magnetosphere, meteorite situation and satellites are presented in tables, graphs and figures. Means of observation of the atmosphere and three models of the atmosphere are presented and analyzed.

  17. Gamow shell model description of proton scattering on $^{18}$Ne

    CERN Document Server

    Jaganathen, Y; Płoszajczak, M

    2014-01-01

    We formulate the GSM in coupled-channel (GSM-CC) representation to describe low-energy elastic and inelastic scattering of protons on $^{18}$Ne. The GSM-CC formalism is applied to a translationally-invariant Hamiltonian with an effective finite-range two-body interaction. We discuss in details the GSM-CC formalism in coordinate space and give the description of the novel equivalent potential method for solving the GSM-CC system of integro-differential equations. We present the first application of the GSM-CC formalism for the calculation of excited states of $^{18}$Ne and $^{19}$Na, excitation function and the elastic/inelastic differential cross-sections in the $^{18}$Ne$(p,p')$ reaction at different energies.

  18. Multi-scale atmospheric environment modelling for urban areas

    Directory of Open Access Journals (Sweden)

    A. A. Baklanov

    2009-04-01

    Full Text Available Modern supercomputers allow realising multi-scale systems for assessment and forecasting of urban meteorology, air pollution and emergency preparedness and considering nesting with obstacle-resolved models. A multi-scale modelling system with downscaling from regional to city-scale with the Environment – HIgh Resolution Limited Area Model (Enviro-HIRLAM and to micro-scale with the obstacle-resolved Micro-scale Model for Urban Environment (M2UE is suggested and demonstrated. The M2UE validation results versus the Mock Urban Setting Trial (MUST experiment indicate satisfactory quality of the model. Necessary conditions for the choice of nested models, building descriptions, areas and resolutions of nested models are analysed. Two-way nesting (up- and down-scaling, when scale effects both directions (from the meso-scale on the micro-scale and from the micro-scale on the meso-scale, is also discussed.

  19. A Coupled Atmospheric and Wave Modeling System for Storm Simulations

    DEFF Research Database (Denmark)

    Du, Jianting; Larsén, Xiaoli Guo; Bolanos, R.

    2015-01-01

    This study aims at improving the simulation of wind and waves during storms in connection with wind turbine design and operations in coastal areas. For this particular purpose, we investigated the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System which couples the Weather...... Research and Forecasting (WRF) Model with the thirdgeneration ocean wave modelSWAN. This study investigates mainly two issues: spatial resolution and the wind-wave interface parameter roughness length(z0). To study the impact of resolution, the nesting function for both WRF and SWAN is used, with spatial...... resolution ranging from 25km to 2km. Meanwhile, the atmospheric forcing data of dierent spatial resolution, with one about 100km (FNL) and the other about 38km (CFSR) are both used. In addition, bathymatry data of diferent resolutions (1arc-minute and 30arc-seconds) are used. We used three approaches...

  20. Modelling atmospheric OH-reactivity in a boreal forest ecosystem

    DEFF Research Database (Denmark)

    Mogensen, D.; Smolander, S.; Sogachev, Andrey;

    2011-01-01

    We have modelled the total atmospheric OH-reactivity in a boreal forest and investigated the individual contributions from gas phase inorganic species, isoprene, monoterpenes, and methane along with other important VOCs. Daily and seasonal variation in OH-reactivity for the year 2008 was examined...... as well as the vertical OH-reactivity profile. We have used SOSA; a one dimensional vertical chemistry-transport model (Boy et al., 2011a) together with measurements from Hyytiala, SMEAR II station, Southern Finland, conducted in August 2008. Model simulations only account for similar to 30......-50% of the total measured OH sink, and in our opinion, the reason for missing OH-reactivity is due to unmeasured unknown BVOCs, and limitations in our knowledge of atmospheric chemistry including uncertainties in rate constants. Furthermore, we found that the OH-reactivity correlates with both organic...

  1. RELAP5 Model Description and Validation for the BR2 Loss-of-Flow Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Licht, J. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Van den Branden, G. [Argonne National Lab. (ANL), Argonne, IL (United States); Sikik, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Koonen, E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-07-01

    This paper presents a description of the RELAP5 model, the calibration method used to obtain the minor loss coefficients from the available hydraulic data and the LOFA simulation results compared to the 1963 experimental tests for HEU fuel.

  2. Sensitivity model study of regional mercury dispersion in the atmosphere

    Science.gov (United States)

    Gencarelli, Christian N.; Bieser, Johannes; Carbone, Francesco; De Simone, Francesco; Hedgecock, Ian M.; Matthias, Volker; Travnikov, Oleg; Yang, Xin; Pirrone, Nicola

    2017-01-01

    Atmospheric deposition is the most important pathway by which Hg reaches marine ecosystems, where it can be methylated and enter the base of food chain. The deposition, transport and chemical interactions of atmospheric Hg have been simulated over Europe for the year 2013 in the framework of the Global Mercury Observation System (GMOS) project, performing 14 different model sensitivity tests using two high-resolution three-dimensional chemical transport models (CTMs), varying the anthropogenic emission datasets, atmospheric Br input fields, Hg oxidation schemes and modelling domain boundary condition input. Sensitivity simulation results were compared with observations from 28 monitoring sites in Europe to assess model performance and particularly to analyse the influence of anthropogenic emission speciation and the Hg0(g) atmospheric oxidation mechanism. The contribution of anthropogenic Hg emissions, their speciation and vertical distribution are crucial to the simulated concentration and deposition fields, as is also the choice of Hg0(g) oxidation pathway. The areas most sensitive to changes in Hg emission speciation and the emission vertical distribution are those near major sources, but also the Aegean and the Black seas, the English Channel, the Skagerrak Strait and the northern German coast. Considerable influence was found also evident over the Mediterranean, the North Sea and Baltic Sea and some influence is seen over continental Europe, while this difference is least over the north-western part of the modelling domain, which includes the Norwegian Sea and Iceland. The Br oxidation pathway produces more HgII(g) in the lower model levels, but overall wet deposition is lower in comparison to the simulations which employ an O3 / OH oxidation mechanism. The necessity to perform continuous measurements of speciated Hg and to investigate the local impacts of Hg emissions and deposition, as well as interactions dependent on land use and vegetation, forests, peat

  3. Modeling Atmospheric CO2 Processes to Constrain the Missing Sink

    Science.gov (United States)

    Kawa, S. R.; Denning, A. S.; Erickson, D. J.; Collatz, J. C.; Pawson, S.

    2005-01-01

    We report on a NASA supported modeling effort to reduce uncertainty in carbon cycle processes that create the so-called missing sink of atmospheric CO2. Our overall objective is to improve characterization of CO2 source/sink processes globally with improved formulations for atmospheric transport, terrestrial uptake and release, biomass and fossil fuel burning, and observational data analysis. The motivation for this study follows from the perspective that progress in determining CO2 sources and sinks beyond the current state of the art will rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. The major components of this effort are: 1) Continued development of the chemistry and transport model using analyzed meteorological fields from the Goddard Global Modeling and Assimilation Office, with comparison to real time data in both forward and inverse modes; 2) An advanced biosphere model, constrained by remote sensing data, coupled to the global transport model to produce distributions of CO2 fluxes and concentrations that are consistent with actual meteorological variability; 3) Improved remote sensing estimates for biomass burning emission fluxes to better characterize interannual variability in the atmospheric CO2 budget and to better constrain the land use change source; 4) Evaluating the impact of temporally resolved fossil fuel emission distributions on atmospheric CO2 gradients and variability. 5) Testing the impact of existing and planned remote sensing data sources (e.g., AIRS, MODIS, OCO) on inference of CO2 sources and sinks, and use the model to help establish measurement requirements for future remote sensing instruments. The results will help to prepare for the use of OCO and other satellite data in a multi-disciplinary carbon data assimilation system for analysis and prediction of carbon cycle changes and carbodclimate interactions.

  4. Atmospheric mercury dispersion modelling from two nearest hypothetical point sources

    Directory of Open Access Journals (Sweden)

    Khandakar Md Habib Al Razi, Moritomi Hiroshi, Kambara Shinji

    2012-01-01

    Full Text Available The Japan coastal areas are still environmentally friendly, though there are multiple air emission sources originating as a consequence of several developmental activities such as automobile industries, operation of thermal power plants, and mobile-source pollution. Mercury is known to be a potential air pollutant in the region apart from SOX, NOX, CO and Ozone. Mercury contamination in water bodies and other ecosystems due to deposition of atmospheric mercury is considered a serious environmental concern. Identification of sources contributing to the high atmospheric mercury levels will be useful for formulating pollution control and mitigation strategies in the region. In Japan, mercury and its compounds were categorized as hazardous air pollutants in 1996 and are on the list of "Substances Requiring Priority Action" published by the Central Environmental Council of Japan. The Air Quality Management Division of the Environmental Bureau, Ministry of the Environment, Japan, selected the current annual mean environmental air quality standard for mercury and its compounds of 0.04 μg/m3. Long-term exposure to mercury and its compounds can have a carcinogenic effect, inducing eg, Minamata disease. This study evaluates the impact of mercury emissions on air quality in the coastal area of Japan. Average yearly emission of mercury from an elevated point source in this area with background concentration and one-year meteorological data were used to predict the ground level concentration of mercury. To estimate the concentration of mercury and its compounds in air of the local area, two different simulation models have been used. The first is the National Institute of Advanced Science and Technology Atmospheric Dispersion Model for Exposure and Risk Assessment (AIST-ADMER that estimates regional atmospheric concentration and distribution. The second is the Hybrid Single Particle Lagrangian Integrated trajectory Model (HYSPLIT that estimates the

  5. Atmospheric mercury dispersion modelling from two nearest hypothetical point sources

    Energy Technology Data Exchange (ETDEWEB)

    Al Razi, Khandakar Md Habib; Hiroshi, Moritomi; Shinji, Kambara [Environmental and Renewable Energy System (ERES), Graduate School of Engineering, Gifu University, Yanagido, Gifu City, 501-1193 (Japan)

    2012-07-01

    The Japan coastal areas are still environmentally friendly, though there are multiple air emission sources originating as a consequence of several developmental activities such as automobile industries, operation of thermal power plants, and mobile-source pollution. Mercury is known to be a potential air pollutant in the region apart from SOX, NOX, CO and Ozone. Mercury contamination in water bodies and other ecosystems due to deposition of atmospheric mercury is considered a serious environmental concern. Identification of sources contributing to the high atmospheric mercury levels will be useful for formulating pollution control and mitigation strategies in the region. In Japan, mercury and its compounds were categorized as hazardous air pollutants in 1996 and are on the list of 'Substances Requiring Priority Action' published by the Central Environmental Council of Japan. The Air Quality Management Division of the Environmental Bureau, Ministry of the Environment, Japan, selected the current annual mean environmental air quality standard for mercury and its compounds of 0.04 ?g/m3. Long-term exposure to mercury and its compounds can have a carcinogenic effect, inducing eg, Minamata disease. This study evaluates the impact of mercury emissions on air quality in the coastal area of Japan. Average yearly emission of mercury from an elevated point source in this area with background concentration and one-year meteorological data were used to predict the ground level concentration of mercury. To estimate the concentration of mercury and its compounds in air of the local area, two different simulation models have been used. The first is the National Institute of Advanced Science and Technology Atmospheric Dispersion Model for Exposure and Risk Assessment (AIST-ADMER) that estimates regional atmospheric concentration and distribution. The second is the Hybrid Single Particle Lagrangian Integrated trajectory Model (HYSPLIT) that estimates the atmospheric

  6. Description of Muzzle Blast by Modified Ideal Scaling Models

    Directory of Open Access Journals (Sweden)

    Kevin S. Fansler

    1998-01-01

    Full Text Available Gun blast data from a large variety of weapons are scaled and presented for both the instantaneous energy release and the constant energy deposition rate models. For both ideal explosion models, similar amounts of data scatter occur for the peak overpressure but the instantaneous energy release model correlated the impulse data significantly better, particularly for the region in front of the gun. Two parameters that characterize gun blast are used in conjunction with the ideal scaling models to improve the data correlation. The gun-emptying parameter works particularly well with the instantaneous energy release model to improve data correlation. In particular, the impulse, especially in the forward direction of the gun, is correlated significantly better using the instantaneous energy release model coupled with the use of the gun-emptying parameter. The use of the Mach disc location parameter improves the correlation only marginally. A predictive model is obtained from the modified instantaneous energy release correlation.

  7. Atmosphere expansion and mass loss of close-orbit giant exoplanets heated by stellar XUV. I. Modeling of hydrodynamic escape of upper atmospheric material

    Energy Technology Data Exchange (ETDEWEB)

    Shaikhislamov, I. F. [Institute of Laser Physics SB RAS, Novosibirsk (Russian Federation); Khodachenko, M. L.; Sasunov, Yu. L.; Lammer, H.; Kislyakova, K. G. [Space Research Institute, Austrian Acad. Sci., Graz (Austria); Erkaev, N. V., E-mail: maxim.khodachenko@oeaw.ac.at [Institute of Computational Modelling, SB RAS, Krasnoyarsk (Russian Federation)

    2014-11-10

    In the present series of papers we propose a consistent description of the mass loss process. To study in a comprehensive way the effects of the intrinsic magnetic field of a close-orbit giant exoplanet (a so-called hot Jupiter) on atmospheric material escape and the formation of a planetary inner magnetosphere, we start with a hydrodynamic model of an upper atmosphere expansion in this paper. While considering a simple hydrogen atmosphere model, we focus on the self-consistent inclusion of the effects of radiative heating and ionization of the atmospheric gas with its consequent expansion in the outer space. Primary attention is paid to an investigation of the role of the specific conditions at the inner and outer boundaries of the simulation domain, under which different regimes of material escape (free and restricted flow) are formed. A comparative study is performed of different processes, such as X-ray and ultraviolet (XUV) heating, material ionization and recombination, H{sub 3}{sup +} cooling, adiabatic and Lyα cooling, and Lyα reabsorption. We confirm the basic consistency of the outcomes of our modeling with the results of other hydrodynamic models of expanding planetary atmospheres. In particular, we determine that, under the typical conditions of an orbital distance of 0.05 AU around a Sun-type star, a hot Jupiter plasma envelope may reach maximum temperatures up to ∼9000 K with a hydrodynamic escape speed of ∼9 km s{sup –1}, resulting in mass loss rates of ∼(4-7) · 10{sup 10} g s{sup –1}. In the range of the considered stellar-planetary parameters and XUV fluxes, that is close to the mass loss in the energy-limited case. The inclusion of planetary intrinsic magnetic fields in the model is a subject of the follow-up paper (Paper II).

  8. Bioenergy crop models: Descriptions, data requirements and future challenges

    Energy Technology Data Exchange (ETDEWEB)

    Nair, S. Surendran [University of Tennessee, Knoxville (UTK); Kang, Shujiang [ORNL; Zhang, Xuesong [Pacific Northwest National Laboratory (PNNL); Miguez, Fernando [Iowa State University; Izaurralde, Dr. R. Cesar [Pacific Northwest National Laboratory (PNNL); Post, Wilfred M [ORNL; Dietze, Michael [University of Illinois, Urbana-Champaign; Lynd, L. [Dartmouth College; Wullschleger, Stan D [ORNL

    2012-01-01

    Field studies that address the production of lignocellulosic biomass as a source of renewable energy provide critical data for the development of bioenergy crop models. A literature survey revealed that 14 models have been used for simulating bioenergy crops including herbaceous and woody bioenergy crops, and for crassulacean acid metabolism (CAM) crops. These models simulate field-scale production of biomass for switchgrass (ALMANAC, EPIC, and Agro-BGC), miscanthus (MISCANFOR, MISCANMOD, and WIMOVAC), sugarcane (APSIM, AUSCANE, and CANEGRO), and poplar and willow (SECRETS and 3PG). Two models are adaptations of dynamic global vegetation models and simulate biomass yields of miscanthus and sugarcane at regional scales (Agro-IBIS and LPJmL). Although it lacks the complexity of other bioenergy crop models, the environmental productivity index (EPI) is the only model used to estimate biomass production of CAM (Agave and Opuntia) plants. Except for the EPI model, all models include representations of leaf area dynamics, phenology, radiation interception and utilization, biomass production, and partitioning of biomass to roots and shoots. A few models simulate soil water, nutrient, and carbon cycle dynamics, making them especially useful for assessing the environmental consequences (e.g., erosion and nutrient losses) associated with the large-scale deployment of bioenergy crops. The rapid increase in use of models for energy crop simulation is encouraging; however, detailed information on the influence of climate, soils, and crop management practices on biomass production is scarce. Thus considerable work remains regarding the parameterization and validation of process-based models for bioenergy crops; generation and distribution of high-quality field data for model development and validation; and implementation of an integrated framework for efficient, high-resolution simulations of biomass production for use in planning sustainable bioenergy systems.

  9. An Overview of Modeling Middle Atmospheric Odd Nitrogen

    Science.gov (United States)

    Jackman, Charles H.; Kawa, S. Randolph; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Odd nitrogen (N, NO, NO2, NO3, N2O5, HNO3, HO2NO2, ClONO2, and BrONO2) constituents are important components in the control of middle atmospheric ozone. Several processes lead to the production of odd nitrogen (NO(sub y)) in the middle atmosphere (stratosphere and mesosphere) including the oxidation of nitrous oxide (N2O), lightning, downflux from the thermosphere, and energetic charged particles (e.g., galactic cosmic rays, solar proton events, and energetic electron precipitation). The dominant production mechanism of NO(sub y) in the stratosphere is N2O oxidation, although other processes contribute. Mesospheric NO(sub y) is influenced by N2O oxidation, downflux from the thermosphere, and energetic charged particles. NO(sub y) is destroyed in the middle atmosphere primarily via two processes: 1) dissociation of NO to form N and O followed by N + NO yielding N2 + O to reform even nitrogen; and 2) transport to the troposphere where HNO3 can be rapidly scavenged in water droplets and rained out of the atmosphere. There are fairly significant differences among global models that predict NO(sub y). NO(sub y) has a fairly long lifetime in the stratosphere (months to years), thus disparate transport in the models probably contributes to many of these differences. Satellite and aircraft measurement provide modeling tests of the various components of NO(sub y). Although some recent reaction rate measurements have led to improvements in model/measurement agreement, significant differences do remain. This presentation will provide an overview of several proposed sources and sinks of NO(sub y) and their regions of importance. Multi-dimensional modeling results for NO(sub y) and its components with comparisons to observations will also be presented.

  10. 1D-coupled photochemical model of neutrals, cations and anions in the atmosphere of Titan

    Science.gov (United States)

    Dobrijevic, M.; Loison, J. C.; Hickson, K. M.; Gronoff, G.

    2016-04-01

    Many models with different characteristics have been published so far to study the chemical processes at work in Titan's atmosphere. Some models focus on neutral species in the stratosphere or ionic species in the ionosphere, but few of them couple all the species throughout the whole atmosphere. Very few of these emphasize the importance of uncertainties in the chemical scheme and study their propagation in the model. We have developed a new 1D-photochemical model of Titan's atmosphere coupling neutral species with positive and negative ions from the lower atmosphere up to the ionosphere and have compared our results with observations to have a comprehensive view of the chemical processes driving the composition of the stratosphere and ionosphere of Titan. We have updated the neutral, positive ion and negative ion chemistry and have improved the description of N2 photodissociation by introducing high resolution N2 absorption cross sections. We performed for the first time an uncertainty propagation study in a fully coupled ion-neutral model. We determine how uncertainties on rate constants on both neutral and ionic reactions influence the model results and pinpoint the key reactions responsible for this behavior. We find very good agreement between our model results and observations in both the stratosphere and in the ionosphere for most neutral compounds. Our results are also in good agreement with an average INMS mass spectrum and specific flybys in the dayside suggesting that our chemical model (for both neutral and ions) provides a good approximation of Titan's atmospheric chemistry as a whole. Our uncertainty propagation study highlights the difficulty to interpret the INMS mass spectra for masses 14, 31, 41 and we identified the key reactions responsible for these ambiguities. Despite an overall improvement in the chemical model, disagreement for some specific compounds (HC3N, C2H5CN, C2H4) highlights the role that certain physical processes could play

  11. Descriptive documentation for New Mexico electricity econometric final demand model

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, J.D.; Ben-David, S.

    1981-01-01

    A mathematical model is developed for computing consumption and residential electric power demands for New Mexico. Factors considered in developing the model included: number of electric utility customers, past consumption data; household devices using electric power and their energy efficiencies; climatic conditions; and power costs. (LCL)

  12. Toward a spin foam model description of black hole entropy

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Islas, J Manuel [Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas, Universidad Nacional Autonoma de Mexico, UNAM, A Postal 20-726, 01000, Mexico DF (Mexico)], E-mail: jmgislas@leibniz.iimas.unam.mx

    2008-12-07

    We propose a way to describe the origin of black hole entropy in the spin foam models of quantum gravity. This stimulates a new way to study the relation of spin foam models and loop quantum gravity. (comments, replies and notes)

  13. The Description of the Open Model in College English Teaching

    Institute of Scientific and Technical Information of China (English)

    唐林

    2006-01-01

    In order to solve the current problems in the college English teaching and meet the demands of the "College English Curriculum Requirements", the Open Model in College English teaching is proposed in the thesis.The thesis describes the model from the five components.

  14. Advancing reservoir operation description in physically based hydrological models

    Science.gov (United States)

    Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir

  15. Meteorological fluid dynamics asymptotic modelling, stability and chaotic atmospheric motion

    CERN Document Server

    Zeytounian, Radyadour K

    1991-01-01

    The author considers meteorology as a part of fluid dynamics. He tries to derive the properties of atmospheric flows from a rational analysis of the Navier-Stokes equations, at the same time analyzing various types of initial and boundary problems. This approach to simulate nature by models from fluid dynamics will be of interest to both scientists and students of physics and theoretical meteorology.

  16. A grid of MARCS model atmospheres for S stars

    CERN Document Server

    Van Eck, Sophie; Plez, Bertrand; Jorissen, Alain; Edvardsson, Bengt; Eriksson, Kjell; Gustafsson, Bengt; Jorgensen, Uffe-Grae; Nordlund, Ake

    2010-01-01

    S-type stars are late-type giants whose atmosphere is enriched in carbon and s-process elements because of either extrinsic pollution by a binary companion or intrinsic nucleosynthesis and dredge-up on the thermally-pulsing AGB. A large grid of S-star model atmospheres has been computed covering the range 2700 < Teff < 4000 K with 0.5 < C/O < 0.99. ZrO and TiO band strength indices as well as VJHKL photometry are needed to disentangle Teff, C/O and [s/Fe]. A "best-model finding tool" was developed using a set of well-chosen indices and checked against photometry as well as low- and high-resolution spectroscopy. It is found that applying M-star model atmospheres (i.e., with a solar C/O ratio) to S stars can lead to errors on Teff up to 400K. We constrain the parameter space occupied by S stars of the vast sample of Henize stars in terms of Teff, [C/O] and [s/Fe].

  17. Transmission Spectra of Three-Dimensional Hot Jupiter Model Atmospheres

    CERN Document Server

    Fortney, J J; Showman, A P; Lian, Y; Freedman, R S; Marley, M S; Lewis, N K

    2009-01-01

    We compute models of the transmission spectra of planets HD 209458b, HD 189733b, and generic hot Jupiters. We examine the effects of temperature, surface gravity, and metallicity for the generic planets as a guide to understanding transmission spectra in general. We find that carbon dioxide absorption at 4.4 and 15 microns is prominent at high metallicity, and is a clear metallicity indicator. For HD 209458b and HD 189733b, we compute spectra for both one-dimensional and three-dimensional model atmospheres and examine the differences between them. The differences are usually small, but can be large if atmospheric temperatures are near important chemical abundance boundaries. The calculations for the 3D atmospheres, and their comparison with data, serve as constraints on these dynamical models that complement the secondary eclipse and light curve data sets. For HD 209458b, even if TiO and VO gases are abundant on the day side, their abundances can be considerably reduced on the cooler planetary limb. However, ...

  18. Animal models of fear and anxiety: neurobehavioral descriptions

    OpenAIRE

    Mora Gallegos, Andrea; Salas Castillo, Sofia

    2014-01-01

    Animal models of fear and anxiety have been widely used for the comprehension of anxiety disorders in humans, however, it has not been easy to distinguish between both concepts at physiological and behavioral levels. One way to model anxiety disorders is through behavioral tests of anxiety, (such as the elevated plus maze and the open field test), and fear (using the fear conditioning paradigm and active avoidance). Furthermore, animal models are relevant to study the involvement of different...

  19. Biogeochemical Modeling of the Second Rise of Atmospheric Oxygen

    Science.gov (United States)

    Smith, M.; Catling, D. C.; Claire, M.

    2014-12-01

    The second rise of atmospheric oxygen (~600 Ma) marked an increase of atmospheric pO2 from a poorly constrained value of 0.1% atmospheric level (PAL) in the early and mid Proterozoic to >10%PAL1. The event is important because it ushered in the modern era of animal life. To understand the evolution of Earth's habitability, it is therefore key to understand the cause of this 2nd rise. Here, we quantitatively examine possible causes for the 2nd rise of oxygen. We use a biogeochemical box model2 originally developed to calculate the oxygen evolution before and after the 1st rise of oxygen (~2.4 Ga). The Claire et al. (2006) model calculates the evolution of atmospheric oxygen and methane given production and loss fluxes associated with the oxygen, carbon, and iron cycles. Because the model was unable to drive pO2 to end-Proterozoic levels, the authors suggested that another buffer, such as sulfur, is needed to explain the 2nd rise of oxygen. The sulfur and oxygen cycles are tied through various biogeochemical interactions; therefore, once sulfur (as sulfate) began to accumulate in Proterozoic oceans, it likely began to heavily influence the oxygen cycle. We have added a sulfur biogeochemical cycle to this model, enabling exploration of mechanisms that buffer pO2 at intermediate levels in the Proterozoic and fail to do so in the Phanerozoic. Preliminary results show evolution of oxygen and methane that are consistent with geologic proxies. However, the model-generated 2nd rise of oxygen is dependent upon sulfur fluxes that have uncertain magnitudes, so we will present the sensitivity of our results to model assumptions while constraining scenarios for the 2nd rise of atmospheric O2. In the future, we will also integrate isotopic fractionation effects, which will allow comparison with isotopic data from sedimentary sulfides, carbonates, and organic carbon. 1Canfield, C., 2014, Treatise on Geochemistry, 197 2Claire, M.W., et al., 2006, Geobiology, 4, 239

  20. Unified Ion-chemical Model for the Middle Atmosphere

    Science.gov (United States)

    Kamsali, Nagaraja; Kamsali, Nagaraja; Datta, Jayati; Prasad, Bsn

    The importance of ion-chemical model studies in our understanding of middle atmospheric regions needs no special emphasis. Present day knowledge of middle atmosphere (0-100 km) has come from two distinct experimental developments: first, in situ measurements of ion composition by balloons and sounding rockets and second, laboratory investigations on ionchemical reactions of importance at these heights, determination of reaction rate coefficients and their temperature dependence. Model studies act as an interface between these, to generate theoretical estimates of ion composition and their derivatives (e.g. electrical conductivity) by using as input the laboratory data on reaction rate coefficients and the data on neutral species density, ionization flux, temperature etc. Free electrons exist only in the mesosphere. Positive molecular ions dominate the upper mesospheric heights and heavy positive and negative cluster ions appearing at the lower mesospheric heights continue to dominate in strato and troposphere. The equilibrium density of electrons and ionic species is governed by: a) ionization of the atmospheric constituents producing electron-positive ion pair b)gas-phase ion-chemical reactions that convert the electrons and primary positive ions into heavy cluster ions of both polarity c)heterogeneous ion-chemical reactions for producing aerosol ions and d) loss mechanisms for small ions and aerosol ions through recombination of oppositely charged species. Physical entities that control the ion production and loss processes are not the same and vary vastly both in nature and magnitude in the middle atmosphere X-rays, Lymann-alpha and precipitating electrons are the dominant ionizing agents at the mesospheric heights. Cosmic ray ionization that is not so significant in the mesosphere is the sole ionizing agent at stratosphere and troposphere. At the ground level and up to a few tens of meters above the earth's surface, natural radioactivity induced ionization is

  1. Technical description of the RIVM/KNMI PUFF dispersion model. Version 4.0

    NARCIS (Netherlands)

    van Pul WAJ

    1992-01-01

    This report provides a technical description of the RIVM/KNMI PUFF model. The model may be used to calculate, given wind and rain field data, the dispersion of components emitted following an accident, emergency or calamity; the model area may be freely chosen to match the area of concern. The re

  2. The Explicit Planetary Isentropic-Coordinate (EPIC) Atmospheric Model

    Science.gov (United States)

    Dowling, T. E.; Fischer, A. S.; Gierasch, P. J.; Harrington, J.; LeBeau, R. P.; Santori, C. M.

    1998-04-01

    We describe a new general circulation model (GCM) designed for planetary atmospheric studies called the EPIC model. This is a finite-difference model based on the isentropic-coordinate scheme of Hsu and Arakawa (1990.Mon. Wea. Rev.118, 1933-1959). We report on previously undocumented modifications, additions, and key practical issues that experience running the model has revealed to be important. The model integrates the hydrostatic primitive equations, which are valid for large-scale atmospheric dynamics and include gravity waves (buoyancy waves), planetary waves (Rossby waves), and horizontally propagating sound waves (Lamb waves), but not vertically propagating sound waves because of the hydrostatic approximation. The vertical coordinate is entropy in the form of potential temperature, which coincides with material surfaces for adiabatic motion. This means that there is no vertical velocity except where there is heating, which improves accuracy and helps the model maintain conservation properties over long integrations. An isentropic vertical coordinate is natural for the atmospheres of Jupiter, Saturn, Uranus, and Neptune, which are believed to have essentially adiabatic interiors that match up with the bottom of the model and is also excellent for middle-atmosphere studies on any planet. Radiative processes are parameterized by Newtonian cooling, and the latent heat of ortho-para hydrogen conversion is included when appropriate, with a suitably defined mean potential temperature. The model is written with general map factors that make it easy to configure in oblate spherical, cylindrical, or Cartesian coordinates. The code includes optional Message Passing Interface (MPI) library calls and hence runs on any Unix-based parallel computer or network cluster. An optional graphical user interface to commercial visualization software facilitates control of the model and analysis of output. Memory is allocated dynamically such that the user does not recompile to

  3. Exploring model based engineering for large telescopes: getting started with descriptive models

    Science.gov (United States)

    Karban, R.; Zamparelli, M.; Bauvir, B.; Koehler, B.; Noethe, L.; Balestra, A.

    2008-07-01

    Large telescopes pose a continuous challenge to systems engineering due to their complexity in terms of requirements, operational modes, long duty lifetime, interfaces and number of components. A multitude of decisions must be taken throughout the life cycle of a new system, and a prime means of coping with complexity and uncertainty is using models as one decision aid. The potential of descriptive models based on the OMG Systems Modeling Language (OMG SysMLTM) is examined in different areas: building a comprehensive model serves as the basis for subsequent activities of soliciting and review for requirements, analysis and design alike. Furthermore a model is an effective communication instrument against misinterpretation pitfalls which are typical of cross disciplinary activities when using natural language only or free-format diagrams. Modeling the essential characteristics of the system, like interfaces, system structure and its behavior, are important system level issues which are addressed. Also shown is how to use a model as an analysis tool to describe the relationships among disturbances, opto-mechanical effects and control decisions and to refine the control use cases. Considerations on the scalability of the model structure and organization, its impact on the development process, the relation to document-centric structures, style and usage guidelines and the required tool chain are presented.

  4. An Efficient Explicit-time Description Method for Timed Model Checking

    CERN Document Server

    Wang, Hao; 10.4204/EPTCS.14.6

    2009-01-01

    Timed model checking, the method to formally verify real-time systems, is attracting increasing attention from both the model checking community and the real-time community. Explicit-time description methods verify real-time systems using general model constructs found in standard un-timed model checkers. Lamport proposed an explicit-time description method using a clock-ticking process (Tick) to simulate the passage of time together with a group of global variables to model time requirements. Two methods, the Sync-based Explicit-time Description Method using rendezvous synchronization steps and the Semaphore-based Explicit-time Description Method using only one global variable were proposed; they both achieve better modularity than Lamport's method in modeling the real-time systems. In contrast to timed automata based model checkers like UPPAAL, explicit-time description methods can access and store the current time instant for future calculations necessary for many real-time systems, especially those with p...

  5. PERFORMANCE-BASED INTELLIGENT RESOURCE DESCRIPTION MODEL FOR INTERNET-BASED PRODUCT DESIGN

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Issues on intelligent resource description and multiple intelligent resources integration for Internet-based collaborative design are analyzed. A performance-based intelligent resource description model for Internet-based product design is proposed, which can help to create, store,manipulate and exchange intelligent resource description information for applications, tools and systems in Internet-based product design. A method to integrate multiple intelligent resources to fulfill a complex product design and analysis via Internet is also proposed. A real project for improving the bearing system design of a turbo-expander with many intelligent resources in prominent universities is presented as a case study.

  6. Biomass Scenario Model Scenario Library: Definitions, Construction, and Description

    Energy Technology Data Exchange (ETDEWEB)

    Inman, D.; Vimmerstedt, L.; Bush, B.; Peterson, S.

    2014-04-01

    Understanding the development of the biofuels industry in the United States is important to policymakers and industry. The Biomass Scenario Model (BSM) is a system dynamics model of the biomass-to-biofuels system that can be used to explore policy effects on biofuels development. Because of the complexity of the model, as well as the wide range of possible future conditions that affect biofuels industry development, we have not developed a single reference case but instead developed a set of specific scenarios that provide various contexts for our analyses. The purpose of this report is to describe the scenarios that comprise the BSM scenario library. At present, we have the following policy-focused scenarios in our library: minimal policies, ethanol-focused policies, equal access to policies, output-focused policies, technological diversity focused, and the point-of-production- focused. This report describes each scenario, its policy settings, and general insights gained through use of the scenarios in analytic studies.

  7. Non-LTE models for synthetic spectra of type Ia supernovae/hot stars with extremely extended atmospheres

    CERN Document Server

    Sauer, D N; Pauldrach, A W A

    2006-01-01

    Realistic atmospheric models that link the properties and the physical conditions of supernova ejecta to observable spectra are required for the quantitative interpretation of observational data of type Ia supernovae (SN Ia) and the assessment of the physical merits of theoretical supernova explosion models. The numerical treatment of the radiation transport - yielding the synthetic spectra - in models of SN Ia ejecta in early phases is usually carried out in analogy to atmospheric models of `normal' hot stars. Applying this analogy indiscriminately leads to inconsistencies in SN Ia models because a diffusive lower boundary, while justified for hot stars, is invalid for hydrogen and helium-deficient supernova ejecta. In type Ia supernovae the radiation field does not thermalize even at large depths, and large optical depths are not reached at all wavelengths. We derive an improved description of the lower boundary that allows a more consistent solution of the radiation transfer in SN Ia and therefore yields m...

  8. Description of Model Tests Carried Out by Aalborg University

    DEFF Research Database (Denmark)

    Frigaard, Peter; Schlütter, F.; Andersen, H.

    1996-01-01

    As associated partner, Aalborg University (AU) have participated in different aspects of "the Zeebrugge project". AU has carried out an extensive number of small-scale model tests (1:65) with the Zeebrugge breakwater with the aim of investigating scale-effects.......As associated partner, Aalborg University (AU) have participated in different aspects of "the Zeebrugge project". AU has carried out an extensive number of small-scale model tests (1:65) with the Zeebrugge breakwater with the aim of investigating scale-effects....

  9. Shell Model Description of Neutron-Deficient Sn Isotopes

    Institute of Scientific and Technical Information of China (English)

    Erdal Dikmen

    2009-01-01

    The shell model calculations in the sdgh major shell for the neutron-deficient 106,107,108,109Sn isotopes have been carried out by using CD-Bonn and Nijmegenl two-body effective nucleon-nucleon interactions. The single-shell states and the corresponding matrix elements needed for describing Sn isotopes are reconstructed to calculate the coefficient of fractional parantage by reducing the calculation requirements. This reconstruction allows us to do the shell model calculations of the neutron deficient Sn isotopes in very reasonable time. The results are compared to the recent high-resolution experimental data and found to be in good agreement with experiments.

  10. Testing the methodology for site descriptive modelling. Application for the Laxemar area

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Johan [JA Streamflow AB, Aelvsjoe (Sweden); Berglund, Johan [SwedPower AB, Stockholm (Sweden); Follin, Sven [SF Geologic AB, Stockholm (Sweden); Hakami, Eva [Itasca Geomekanik AB, Stockholm (Sweden); Halvarson, Jan [Swedish Nuclear Fuel and Waste Management Co, Stockholm (Sweden); Hermanson, Jan [Golder Associates AB, Stockholm (Sweden); Laaksoharju, Marcus [Geopoint (Sweden); Rhen, Ingvar [Sweco VBB/VIAK, Stockholm (Sweden); Wahlgren, C.H. [Sveriges Geologiska Undersoekning, Uppsala (Sweden)

    2002-08-01

    A special project has been conducted where the currently available data from the Laxemar area, which is part of the Simpevarp site, have been evaluated and interpreted into a Site Descriptive Model covering: geology, hydrogeology, hydrogeochemistry and rock mechanics. Description of the surface ecosystem has been omitted, since it was re-characterised in another, parallel, project. Furthermore, there has been no evaluation of transport properties. The project is primarily a methodology test. The lessons learnt will be implemented in the Site Descriptive Modelling during the coming site investigation. The intent of the project has been to explore whether available methodology for Site Descriptive Modelling based on surface and borehole data is adequate and to identify potential needs for development and improvement in the methodology. The project has developed, with limitations in scope, a Site Descriptive Model in local scale, corresponding to the situation after completion of the Initial Site Investigations for the Laxemar area (i.e. 'version 1.2' using the vocabulary of the general execution program for the site investigations). The Site Descriptive Model should be reasonable, but should not be regarded as a 'real' model. There are limitations both in input data and in the scope of the analysis. The measured (primary) data constitute a wide range of different measurement results including data from two deep core drilled boreholes. These data both need to be checked for consistency and to be interpreted into a format more amenable for three-dimensional modelling. Examples of such evaluations are estimation of surface geology, lineament interpretation, geological single hole interpretation, hydrogeological single hole interpretation and assessment of hydrogeochemical data. Furthermore, while cross discipline interpretation is encouraged there is also a need for transparency. This means that the evaluations first are made within each discipline

  11. SST Diurnal Variability: Regional Extent & Implications in Atmospheric Modelling

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Høyer, Jacob L.

    2013-01-01

    and quantify regional diurnal warming from the experimental MSG/SEVIRI hourly SST fields, for the period 2006-2012. ii) To investigate the impact of the increased SST temporal resolution in the atmospheric model WRF, in terms of modeled 10-m winds and surface heat fluxes. Withing this context, 3 main tasks...... regional diurnal warming over the SEVIRI disk, a SEVIRI derived reference field representative of the well mixed night-time conditions is required. Different methodologies are tested and the results are validated against SEVIRI pre-dawn SSTs and in situ data from moored and drifting buoys....

  12. A tool model for predicting atmospheric kinetics with sensitivity analysis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A package( a tool model) for program of predicting atmospheric chemical kinetics with sensitivity analysis is presented. The new direct method of calculating the first order sensitivity coefficients using sparse matrix technology to chemical kinetics is included in the tool model, it is only necessary to triangularize the matrix related to the Jacobian matrix of the model equation. The Gear type procedure is used to integrate amodel equation and its coupled auxiliary sensitivity coefficient equations. The FORTRAN subroutines of the model equation, the sensitivity coefficient equations, and their Jacobian analytical expressions are generated automatically from a chemical mechanism. The kinetic representation for the model equation and its sensitivity coefficient equations, and their Jacobian matrix is presented. Various FORTRAN subroutines in packages, such as SLODE, modified MA28, Gear package, with which the program runs in conjunction are recommended.The photo-oxidation of dimethyl disulfide is used for illustration.

  13. Regional forecasting with global atmospheric models; Final report

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, T.J.; Smith, N.R. [Applied Research Corp., College Station, TX (United States)

    1994-05-01

    The purpose of the project was to conduct model simulations for past and future climate change with respect to the proposed Yucca Mtn. repository. The authors report on three main topics, one of which is boundary conditions for paleo-hindcast studies. These conditions are necessary for the conduction of three to four model simulations. The boundary conditions have been prepared for future runs. The second topic is (a) comparing the atmospheric general circulation model (GCM) with observations and other GCMs; and (b) development of a better precipitation data base for the Yucca Mtn. region for comparisons with models. These tasks have been completed. The third topic is preliminary assessments of future climate change. Energy balance model (EBM) simulations suggest that the greenhouse effect will likely dominate climate change at Yucca Mtn. for the next 10,000 years. The EBM study should improve rational choice of GCM CO{sub 2} scenarios for future climate change.

  14. Regional forecasting with global atmospheric models; Third year report

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, T.J.; North, G.R.; Smith, N.R. [Applied Research Corp., College Station, TX (United States)

    1994-05-01

    This report was prepared by the Applied Research Corporation (ARC), College Station, Texas, under subcontract to Pacific Northwest Laboratory (PNL) as part of a global climate studies task. The task supports site characterization work required for the selection of a potential high-level nuclear waste repository and is part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work is under the overall direction of the Office of Civilian Radioactive Waste Management (OCRWM), US Department of Energy Headquarters, Washington, DC. The scope of the report is to present the results of the third year`s work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain several studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals.

  15. Shell Model Description of $^{102-108}$Sn Isotopes

    CERN Document Server

    Trivedi, T; Negi, D; Mehrotra, I

    2012-01-01

    We have performed shell model calculations for neutron deficient even $^{102-108}$Sn and odd $^{103-107}$Sn isotopes in $sdg_{7/2}h_{11/2}$ model space using two different interactions. The first set of interaction is due to Brown {\\it et al.} and second is due to Hoska {\\it et al}. The calculations have been performed using doubly magic $^{100}$Sn as core and valence neutrons are distributed over the single particle orbits 1$g_{7/2}$, 2$d_{5/2}$, 2$d_{3/2}$, 3$s_{1/2}$ and 1$h_{11/2}$. In more recent experimental work for $^{101}$Sn [Phys. Rev. Lett. {\\bf 105} (2010) 162502], the g.s. is predicted as 5/2$^+$ with excited 7/2$^+$ at 172 keV. We have also performed another two set of calculations by taking difference in single particle energies of 2$d_{5/2}$ and 1$g_{7/2}$ orbitals by 172 keV. The present state-of-the-art shell model calculations predicts fair agreements with the experimental data. These calculations serve as a test of nuclear shell model in the region far from stability for unstable Sn isotop...

  16. Shell Model Description of 102-108Sn Isotopes

    Science.gov (United States)

    Trivedi, T.; Srivastava, P. C.; Negi, D.; Mehrotra, I.

    2012-05-01

    We have performed shell model calculations for neutron deficient even 102-108Sn and odd 103-107Sn isotopes in sdg7/2h11/2 model space using two different interactions. The first set of interaction is due to Brown et al. and second is due to Hoska et al. The calculations have been performed using doubly magic 100Sn as core and valence neutrons are distributed over the single particle orbits 1g7/2, 2d5/2, 2d3/2, 3s1/2 and 1h11/2. In more recent experimental work for 101Sn [I. G. Darby et al., Phys. Rev. Lett. 105 (2010) 162502], the g.s. is predicted as 5/2+ with excited 7/2+ at 172 keV. We have also performed another two set of calculations by taking difference in single particle energies of 2d5/2 and 1g7/2 orbitals by 172 keV. The present state-of-the-art shell model calculations predict fair agreement with the experimental data. These calculations serve as a test of nuclear shell model in the region far from stability for unstable Sn isotopes near the doubly magic 100Sn core.

  17. Quality Assurance Based on Descriptive and Parsimonious Appearance Models

    DEFF Research Database (Denmark)

    Nielsen, Jannik Boll; Eiríksson, Eyþór Rúnar; Kristensen, Rasmus Lyngby

    2015-01-01

    In this positional paper, we discuss the potential benefits of using appearance models in additive manufacturing, metal casting, wind turbine blade production, and 3D content acquisition. Current state of the art in acquisition and rendering of appearance cannot easily be used for quality assurance...

  18. A model of job activity description for workplace accommodation assessment.

    Science.gov (United States)

    Sevilla, Joaquin; Sanford, Jon A

    2013-01-01

    Workplace accommodations to enable employees with disabilities to perform essential job tasks are an important strategy ways for increasing the presence of people with disabilities in the labor market. However, assessments, which are crucial to identifying necessary accommodations, are typically conducted using a variety of methods that lack consistent procedures and comprehensiveness of information. This can lead to the rediscovery of the same solutions over and over, inability to replicate assessments and a failure to effectively meet all of an individual's accommodation needs. To address standardize assessment tools and processes, a taxonomy of demand-producing activity factors is needed to complement the taxonomies of demand-producing person and environment factors already available in the International Classification of Functioning, Disability and Health (ICF). The purpose of this article is to propose a hierarchical model of accommodation assessment based on level of specificity of job activity. While the proposed model is neither a taxonomy nor an assessment process, the seven-level hierarchical model provides a conceptual framework of job activity that is the first step toward such a taxonomy as well as providing a common language that can bridge the many approaches to assessment. The model was designed and refined through testing against various job examples. Different levels of activity are defined to be easily linked to different accommodation strategies. Finally, the levels can be cross-walked to the ICF, which enhances its acceptability, utility and universality.

  19. Process description of SWQN : A simplified hydraulic model

    NARCIS (Netherlands)

    Smit, A.A.M.F.R.; Siderius, C.; Gerven, van L.P.A.

    2009-01-01

    SWQN is a simplified hydraulic model for surface water systems which computes water levels and flows in a network of nodes labelled as ‘volumes’ and segments labelled as ‘connectors’. The user can specify a variety of connectors like open water courses or structures such as weirs, gates, culverts or

  20. Thermal properties. Site descriptive modelling Forsmark - stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Back, Paer-Erik; Wrafter, John; Sundberg, Jan [Geo Innova AB (Sweden); Rosen, L ars [Sweco Viak AB (Sweden)

    2007-09-15

    The lithological data acquired from boreholes and mapping of the rock surface need to be reclassified into thermal rock classes, TRCs. The main reason is to simplify the simulations. The lithological data are used to construct models of the transition between different TRCs, thus describing the spatial statistical structure of each TRC. The result is a set of transition probability models that are used in the simulation of TRCs. The intermediate result of this first stochastic simulation is a number of realisations of the geology, each one equally probable. Based on the thermal data, a spatial statistical thermal model is constructed for each TRC. It consists of a statistical distribution and a variogram for each TRC. These are used in the stochastic simulation of thermal conductivity and the result is a number of equally probable realisations of thermal conductivity for the domain. In the next step, the realisations of TRCs (lithology) and thermal conductivity are merged, i.e. each realisation of geology is filled with simulated thermal conductivity values. The result is a set of realisations of thermal conductivity that considers both the difference in thermal properties between different TRCs, and the variability within each TRC. If the result is desired in a scale different from the simulation scale, i.e. the canister scale, upscaling of the realisations can be performed. The result is a set of equally probable realisations of thermal properties. The presented methodology was applied to rock domain RFM029 and RFM045. The main results are sets of realisations of thermal properties that can be used for further processing, most importantly for statistical analysis and numerical temperature simulations for the design of repository layout (distances between deposition holes). The main conclusions of the thermal modelling are: The choice of scale has a profound influence on the distribution of thermal conductivity values. The variance decreases and the lower tail

  1. Soil-Vegetation-Atmosphere Radiative Transfer Model in Microwave Region

    Institute of Scientific and Technical Information of China (English)

    JIA Yuanyuan; LI Zhaoliang

    2008-01-01

    The radiative transfer is one of the significant theories that describe the processes of scattering,emission,and absorption of electromagnetic radiant intensity through scattering medium.It is the basis of the study on the quantitative remote sensing.In this paper,the radiative characteristics of soil,vegetation,and atmosphere were described respectively.The numerical solution of radiative transfer was accomplished by Successive Orders of Scattering (SOS).A radiative transfer model for simulating microwave brightness temperature over land surfaces was constructed,designed,and implemented.Analyzing the database generated from soil-vegetation-atmosphere radiative transfer model under Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) configuration showed that the atmospheric effects on microwave brightness temperature should not be neglected,particularly for higher frequency,and can be parameterized.At the same time,the relationship between the emissivities of the different channels was developed.The study results will promote the development of algorithm to retrieve geophysical parameters from microwave remotely sensed data.

  2. Fast and simple model for atmospheric radiative transfer

    Directory of Open Access Journals (Sweden)

    F. C. Seidel

    2010-05-01

    Full Text Available Radiative transfer models (RTMs are of utmost importance for quantitative remote sensing, especially for compensating atmospheric perturbation. A persistent trade-off exists between approaches that prefer accuracy at the cost of computational complexity, versus those favouring simplicity at the cost of reduced accuracy. We propose an approach in the latter category, using analytical equations, parameterizations and a correction factor to efficiently estimate the effect of molecular multiple scattering. We discuss the approximations together with an analysis of the resulting performance and accuracy. The proposed Simple Model for Atmospheric Radiative Transfer (SMART decreases the calculation time by a factor of more than 25 in comparison to the benchmark RTM~6S on the same infrastructure. The approximative computation of the atmospheric reflectance factor by SMART has an uncertainty ranging from about 5% to 10% for nadir spaceborne and airborne observational conditions. The combination of a large solar zenith angle (SZA with high aerosol optical depth (AOD at low wavelengths lead to uncertainties of up to 15%. SMART can be used to simulate the hemispherical conical reflectance factor (HCRF for spaceborne and airborne sensors, as well as for the retrieval of columnar AOD.

  3. Understanding atmospheric peroxyformic acid chemistry: observation, modeling and implication

    Directory of Open Access Journals (Sweden)

    H. Liang

    2015-01-01

    Full Text Available The existence and importance of peroxyformic acid (PFA in the atmosphere has been under controversy. We present here, for the first time, the observation data for PFA from four field measurements carried out in China. These data provided powerful evidence that PFA can stay in the atmosphere, typically in dozens of pptv level. The relationship between PFA and other detected peroxides was examined. The results showed that PFA had a strong positive correlation with its homolog, peroxyacetic acid, due to their similar sources and sinks. Through an evaluation of PFA production and removal rates, we proposed that the reactions between peroxyformyl radical (HC(OO2 and formaldehyde or the hydroperoxyl radical (HO2 were likely to be the major source and degradation into formic acid (FA was likely to be the major sink for PFA. Based on a box model evaluation, we proposed that the HC(OO2 and PFA chemistry was a major source for FA under low NOx conditions. Furthermore, it is found that the impact of the HC(OO2 and PFA chemistry on radical cycling was dependent on the yield of HC(OO2 radical from HC(O + O2 reaction. When this yield exceeded 50%, the HC(OO2 and PFA chemistry should not be neglected for calculating the radical budget. To make clear the exact importance of HC(OO2 and PFA chemistry in the atmosphere, further kinetic, field and modeling studies are required.

  4. Description of surface hydrology and near-surface hydrogeology at Forsmark. Site descriptive modelling SDM. Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Per-Olof (Artesia Grundvattenkonsult AB, Taeby (Sweden))

    2008-12-15

    This report describes the modelling of the surface hydrology and near-surface hydrogeology that was performed for the final site descriptive model of Forsmark produced in the site investigation stage, SDM-Site Forsmark. The comprehensive investigation and monitoring programme forms a strong basis for the developed conceptual and descriptive model of the hydrological and near-surface hydrological system of the site investigation area. However, there are some remaining uncertainties regarding the interaction of deep and near-surface groundwater and surface water of importance for the understanding of the system: The groundwaters in till below Lake Eckarfjaerden, Lake Gaellbotraesket, Lake Fiskarfjaerden and Lake Bolundsfjaerden have high salinities. The hydrological and hydrochemical interpretations indicate that these waters are relict waters of mainly marine origin. From the perspective of the overall water balance, the water below the central parts of the lakes can be considered as stagnant. However, according to the hydrochemical interpretation, these waters also contain weak signatures of deep saline water. Rough chloride budget calculations for the Gaellbotraesket depression also raise the question of a possible upward flow of deep groundwater. No absolute conclusion can be drawn from the existing data analyses regarding the key question of whether there is a small ongoing upward flow of deep saline water. However, Lake Bolundsfjaerden is an exception where the clear downward flow gradient from the till to the bedrock excludes the possibility of an active deep saline source. The available data indicate that there are no discharge areas for flow systems involving deep bedrock groundwater in the northern part of the tectonic lens, where the repository is planned to be located (the so-called 'target area'). However, it can not be excluded that such discharge areas exist. Data indicate that the prevailing downward vertical flow gradients from the QD to

  5. A multi-layer land surface energy budget model for implicit coupling with global atmospheric simulations

    Directory of Open Access Journals (Sweden)

    J. Ryder

    2014-12-01

    Full Text Available In Earth system modelling, a description of the energy budget of the vegetated surface layer is fundamental as it determines the meteorological conditions in the planetary boundary layer and as such contributes to the atmospheric conditions and its circulation. The energy budget in most Earth system models has long been based on a "big-leaf approach", with averaging schemes that represent in-canopy processes. Such models have difficulties in reproducing consistently the energy balance in field observations. We here outline a newly developed numerical model for energy budget simulation, as a component of the land surface model ORCHIDEE-CAN (Organising Carbon and Hydrology In Dynamic Ecosystems – CANopy. This new model implements techniques from single-site canopy models in a practical way. It includes representation of in-canopy transport, a multilayer longwave radiation budget, height-specific calculation of aerodynamic and stomatal conductance, and interaction with the bare soil flux within the canopy space. Significantly, it avoids iterations over the height of tha canopy and so maintains implicit coupling to the atmospheric model LMDz. As a first test, the model is evaluated against data from both an intensive measurement campaign and longer term eddy covariance measurements for the intensively studied Eucalyptus stand at Tumbarumba, Australia. The model performs well in replicating both diurnal and annual cycles of fluxes, as well as the gradients of sensible heat fluxes. However, the model overestimates sensible heat flux against an underestimate of the radiation budget. Improved performance is expected through the implementation of a more detailed calculation of stand albedo and a more up-to-date stomatal conductance calculation.

  6. On the use of inexact, pruned hardware in atmospheric modelling.

    Science.gov (United States)

    Düben, Peter D; Joven, Jaume; Lingamneni, Avinash; McNamara, Hugh; De Micheli, Giovanni; Palem, Krishna V; Palmer, T N

    2014-06-28

    Inexact hardware design, which advocates trading the accuracy of computations in exchange for significant savings in area, power and/or performance of computing hardware, has received increasing prominence in several error-tolerant application domains, particularly those involving perceptual or statistical end-users. In this paper, we evaluate inexact hardware for its applicability in weather and climate modelling. We expand previous studies on inexact techniques, in particular probabilistic pruning, to floating point arithmetic units and derive several simulated set-ups of pruned hardware with reasonable levels of error for applications in atmospheric modelling. The set-up is tested on the Lorenz '96 model, a toy model for atmospheric dynamics, using software emulation for the proposed hardware. The results show that large parts of the computation tolerate the use of pruned hardware blocks without major changes in the quality of short- and long-time diagnostics, such as forecast errors and probability density functions. This could open the door to significant savings in computational cost and to higher resolution simulations with weather and climate models.

  7. A High Resolution Nonhydrostatic Tropical Atmospheric Model and Its Performance

    Institute of Scientific and Technical Information of China (English)

    SHEN Xueshun; Akimasa SUMI

    2005-01-01

    A high resolution nonhydrostatic tropical atmospheric model is developed by using a ready-made regional atmospheric modeling system. The motivation is to investigate the convective activities associated with the tropical intraseasonal oscillation (ISO) through a cloud resolving calculation. Due to limitations in computing resources, a 2000 km×2000 km region covering the forefront of an ISO-related westerly is selected as the model domain, in which a cloud-resolving integration with a 5-km horizontal resolution is conducted. The results indicate the importance of stratus-cumulus interactions in the organization of the cloud clusters embedded in the ISO. In addition, comparative integrations with 2-km and 5-km grid sizes are conducted, which suggest no distinctive differences between the two cases although some finer structures of convections are discernible in the 2-km case. The significance of this study resides in supplying a powerful tool for investigating tropical cloud activities without the controversy of cloud parameterizations. The parallel computing method applied in this model allows sufficient usage of computer memory, which is different from the usual method used when parallelizing regional model. Further simulation for the global tropics with a resolution around 5 km is being prepared.

  8. Atmospheric trace gases and global climate - A seasonal model study

    Science.gov (United States)

    Wang, Wei-Chyung; Molnar, Gyula; Ko, Malcolm K. W.; Goldenberg, Steven; Sze, Nien Dak

    1990-01-01

    Atmospheric models with seasonal cycles are used to study the possible near-future changes in latitudinal and vertical distributions of atmospheric ozone and temperature caused by increases of trace gases. It is found that increases of CFCs, CH4, and N2O may add to the surface warming from increased CO2. Calculations based on projected trends of CO2, N2O, CH4, and CFCs show that the annual mean and global mean surface temperature could warm by as much as 2.5 C by the year 2050, with larger warming at high latitudes. The results suggest that the warming in the lower stratosphere and upper troposphere is much larger than that at the surface, especially during the summer season.

  9. Characterizing uniform discharge in atmospheric helium by numerical modelling

    Institute of Scientific and Technical Information of China (English)

    Lü Bo; Wang Xin-Xin; Luo Hai-Yun; Liang Zhuo

    2009-01-01

    One-dimensional fluid model of dielectric barrier discharge (DBD) in helium at atmospheric pressure was estab-lished and the discharge was numerically simulated. It was found that not only the spatial distributions of the internal parameters such as the electric field, the electron density and ion density are similar to those in a low-pressure glow discharge, but also the visually apparent attribute (light emission) is exactly the same as the observable feature of a low-pressure glow discharge. This confirms that the uniform DBD in atmosphcric helium is a glow type discharge. The fact that the thickness of the cathode fall layer is about 0.5 ram, much longer than that of a normal glow dischargc in helium at atmospheric pressure, indicates the discharge being a sub-normal glow discharge close to normal one. The multipulse phenomenon was reproduced in the simulation and a much less complicated explanation for this phenomenon was given.

  10. Geological Site Descriptive Model. A strategy for the model development during site investigations

    Energy Technology Data Exchange (ETDEWEB)

    Munier, Raymond; Stenberg, Leif [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Stanfors, Roy [Roy Stanfors Consulting, Lund (Sweden); Milnes, Allan Geoffrey [GEA Consulting, Uppsala (Sweden); Hermanson, Jan [Golder Associates, Stockholm (Sweden); Triumf, Carl-Axel [Geovista, Luleaa (Sweden)

    2003-04-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is at present conducting site investigations as a preliminary to building an underground nuclear waste disposal facility in Sweden. This report presents a methodology for constructing, visualising and presenting 3-dimensional geological models, based on data from the site investigations. The methodology integrates with the overall work-flow of the site investigations, from the collection of raw data to the complete site description, as proposed in several earlier technical reports. Further, it is specifically designed for interaction with SICADA - SKB's Site Characterisation Database - and RVS - SKB's Rock Visualisation System. This report is one in a series of strategy documents intended to demonstrate how modelling is to be performed within each discipline. However, it also has a wider purpose, since the geological site descriptive model provides the basic geometrical framework for all the other disciplines. Hence, the wider aim is to present a practical and clear methodology for the analysis and interpretation of input data for use in the construction of the geology-based 3D geometrical model. In addition to the various aspects of modelling described above, the methodology presented here should therefore also provide: guidelines and directives on how systematic interpretation and integration of geo-scientific data from the different investigation methods should be carried out; guidelines on how different geometries should be created in the geological models; guidelines on how the assignment of parameters to the different geological units in RVS should be accomplished; guidelines on the handling of uncertainty at different points in the interpretation process. In addition, it should clarify the relation between the geological model and other models used in the processes of site characterisation, repository layout and safety analysis. In particular, integration and transparency should be

  11. Description of “Tail Suspension” as a Model of ‹mmobilization in Rats

    Directory of Open Access Journals (Sweden)

    Ayçe Atalay

    2002-09-01

    Full Text Available Since human beings have included outer space to their living places, effects of gravity on bone has been extensively studied. Authors claim that basic biologic mechanisms are similar in rats and human so rats should serve as a useful model for studying osteoporosis. Models for simulating microgravity conditions can be grouped into two as local and systemic models. We aimed to summarize models for immobilization as well as detailed description of tail suspension model.

  12. A review on 2D models for the description of pantographic fabrics

    Science.gov (United States)

    Placidi, Luca; Barchiesi, Emilio; Turco, Emilio; Rizzi, Nicola Luigi

    2016-10-01

    A review on models for pantographic fabrics, a new promising kind of metamaterials, is presented. We treat those models that are able to capture the peculiar effects conferred by their specific microstructure and that can be generalized for the description of more complex metamaterials. For each approach, model formulation and modeling assumptions are discussed along with the presentation of numerical solutions in exemplary cases and no attempt is made to model damage and failure phenomena.

  13. Geological discrete fracture network model for the Laxemar site. Site Descriptive Modelling. SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    La Pointe, Paul; Fox, Aaron (Golder Associates Inc (United States)); Hermanson, Jan; Oehman, Johan (Golder Associates AB, Stockholm (Sweden))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site characterization at two different locations, Forsmark and Laxemar, in order to locate a site for a final geologic repository for spent nuclear fuel. The program is built upon the development of Site Descriptive Models (SDMs) at specific timed data freezes. Each SDM is formed from discipline-specific reports from across the scientific spectrum. This report describes the methods, analyses, and conclusions of the modelling team in the production of the SDM-Site Laxemar geological discrete-fracture network (DFN) model. The DFN builds upon the work of other geological models, including the deformation zone and rock domain models. The geological DFN is a statistical model for stochastically simulating rock fractures and minor deformation zones at a scale of less than 1,000 m (the lower cut-off of the DZ models). The geological DFN is valid within six distinct fracture domains inside the Laxemar local model subarea: FSM{sub C}, FSM{sub E}W007, FSM{sub N}, FSM{sub N}E005, FSM{sub S}, and FSM{sub W}. The models are built using data from detailed surface outcrop maps, geophysical lineament maps, and the cored borehole record at Laxemar. The conceptual model for the SDM-Site Laxemar geological DFN model revolves around the identification of fracture domains based on relative fracture set intensities, orientation clustering, and the regional tectonic framework (including deformation zones). A single coupled fracture size/fracture intensity concept (the Base Model) based on a Pareto (power-law) distribution for fracture sizes was chosen as the recommended parameterisation. A slew of alternative size-intensity models were also carried through the fracture analyses and into the uncertainty and model verification analyses. Uncertainty is modelled by analysing the effects on fracture intensity (P32) that alternative model cases can have. Uncertainty is parameterised as a ratio between the P32 of the

  14. TWO-LAYER MODEL DESCRIPTION OF POLYMER THIN FILM DYNAMICS

    Institute of Scientific and Technical Information of China (English)

    Dong-dong Peng; Ran-xing Nancy Li; Chi-hang Lam; Ophelia K.C.Tsui

    2013-01-01

    Experiments in the past two decades have shown that the glass transition temperature of polymer films can become noticeably different from that of the bulk when the film thickness is decreased below ca.100 nm.It is broadly believed that these observations are caused by a nanometer interfacial layer with dynamics faster or slower than that of the bulk.In this paper,we examine how this idea may be realized by using a two-layer model assuming a hydrodynamic coupling between the interfacial layer and the remaining,bulk-like layer in the film.Illustrative examples will be given showing how the two-layer model is applied to the viscosity measurements of polystyrene and polymethylmethacrylate films supported by silicon oxide,where divergent thickness dependences are observed.

  15. Thermal Model Description of Collisions of Small Nuclei

    CERN Document Server

    Cleymans, J.; Oeschler, H.; Redlich, K.; Sharma, N.

    2016-01-01

    The dependence of particle production on the size of the colliding nuclei is analyzed in terms of the thermal model using the canonical ensemble. The concept of strangeness correlation in clusters of sub-volume $V_c$ is used to account for the suppression of strangeness. A systematic analysis is presented of the predictions of the thermal model for particle production in collisions of small nuclei. The pattern of the maxima in particle ratios of strange particles to pions as a function of beam energy is quite special, as they do not occur at the same beam energy and are sensitive to system size. In particular, the $\\Lambda/\\pi^+$ ratio shows a clear maximum even for the smallest systems while the maximum in the K$^+/\\pi^+$ ratio disappears in small systems.

  16. System Advisor Model, SAM 2011.12.2: General Description

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, P.; Dobos, A.

    2012-02-01

    This document describes the capabilities of the U.S. Department of Energy and National Renewable Energy Laboratory's System Advisor Model (SAM), Version 2011.12.2, released on December 2, 2011. SAM is software that models the cost and performance of renewable energy systems. Project developers, policy makers, equipment manufacturers, and researchers use graphs and tables of SAM results in the process of evaluating financial, technology, and incentive options for renewable energy projects. SAM simulates the performance of solar, wind, geothermal, biomass, and conventional power systems. The financial model can represent financing structures for projects that either buy and sell electricity at retail rates (residential and commercial) or sell electricity at a price determined in a power purchase agreement (utility). Advanced analysis options facilitate parametric, sensitivity, and statistical analyses, and allow for interfacing SAM with Microsoft Excel or with other computer programs. SAM is available as a free download at http://sam.nrel.gov. Technical support and more information about the software are available on the website.

  17. Model-based description of environment interaction for mobile robots

    Science.gov (United States)

    Borghi, Giuseppe; Ferrari, Carlo; Pagello, Enrico; Vianello, Marco

    1999-01-01

    We consider a mobile robot that attempts to accomplish a task by reaching a given goal, and interacts with its environment through a finite set of actions and observations. The interaction between robot and environment is modeled by Partially Observable Markov Decision Processes (POMDP). The robot takes its decisions in presence of uncertainty about the current state, by maximizing its reward gained during interactions with the environment. It is able to self-locate into the environment by collecting actions and perception histories during the navigation. To make the state estimation more reliable, we introduce an additional information in the model without adding new states and without discretizing the considered measures. Thus, we associate to the state transition probabilities also a continuous metric given through the mean and the variance of some significant sensor measurements suitable to be kept under continuous form, such as odometric measurements, showing that also such unreliable data can supply a great deal of information to the robot. The overall control system of the robot is structured as a two-levels layered architecture, where the low level implements several collision avoidance algorithms, while the upper level takes care of the navigation problem. In this paper, we concentrate on how to use POMDP models at the upper level.

  18. System Advisor Model, SAM 2014.1.14: General Description

    Energy Technology Data Exchange (ETDEWEB)

    Blair, N.; Dobos, A. P.; Freeman, J.; Neises, T.; Wagner, M.; Ferguson, T.; Gilman, P.; Janzou, S.

    2014-02-01

    This document describes the capabilities of the U.S. Department of Energy and National Renewable Energy Laboratory's System Advisor Model (SAM), Version 2013.9.20, released on September 9, 2013. SAM is a computer model that calculates performance and financial metrics of renewable energy systems. Project developers, policy makers, equipment manufacturers, and researchers use graphs and tables of SAM results in the process of evaluating financial, technology, and incentive options for renewable energy projects. SAM simulates the performance of photovoltaic, concentrating solar power, solar water heating, wind, geothermal, biomass, and conventional power systems. The financial model can represent financial structures for projects that either buy and sell electricity at retail rates (residential and commercial) or sell electricity at a price determined in a power purchase agreement (utility). SAM's advanced simulation options facilitate parametric and sensitivity analyses, and statistical analysis capabilities are available for Monte Carlo simulation and weather variability (P50/P90) studies. SAM can also read input variables from Microsoft Excel worksheets. For software developers, the SAM software development kit (SDK) makes it possible to use SAM simulation modules in their applications written in C/C++, C#, Java, Python, and MATLAB. NREL provides both SAM and the SDK as free downloads at http://sam.nrel.gov. Technical support and more information about the software are available on the website.

  19. Description of waste pretreatment and interfacing systems dynamic simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Garbrick, D.J.; Zimmerman, B.D.

    1995-05-01

    The Waste Pretreatment and Interfacing Systems Dynamic Simulation Model was created to investigate the required pretreatment facility processing rates for both high level and low level waste so that the vitrification of tank waste can be completed according to the milestones defined in the Tri-Party Agreement (TPA). In order to achieve this objective, the processes upstream and downstream of the pretreatment facilities must also be included. The simulation model starts with retrieval of tank waste and ends with vitrification for both low level and high level wastes. This report describes the results of three simulation cases: one based on suggested average facility processing rates, one with facility rates determined so that approximately 6 new DSTs are required, and one with facility rates determined so that approximately no new DSTs are required. It appears, based on the simulation results, that reasonable facility processing rates can be selected so that no new DSTs are required by the TWRS program. However, this conclusion must be viewed with respect to the modeling assumptions, described in detail in the report. Also included in the report, in an appendix, are results of two sensitivity cases: one with glass plant water recycle steams recycled versus not recycled, and one employing the TPA SST retrieval schedule versus a more uniform SST retrieval schedule. Both recycling and retrieval schedule appear to have a significant impact on overall tank usage.

  20. A model independent description of the deutron asymptotic D state

    Science.gov (United States)

    Ericson, T. E. O.; Rosa-Clot, M.

    1982-04-01

    The asymptotic deutron D state is shown to result nearly model-independently from iterated OPEP yielding a predicted value η = (0.02633 ± 0.00035). Alternatively the result leads to a determination of the πN coupling constant [ f2 = (0.0792 ± 0.0012 )]. Attention is drawn to the implications for the size of quark bags. Analogous considerations of the deutron quadrupole moment permit the first direct determination of its non-potential part from experiment ΔQ = (0.005 ± 0.004) fm 2.

  1. Synthetic-Eddy Method for Urban Atmospheric Flow Modelling

    Science.gov (United States)

    Pavlidis, D.; Gorman, G. J.; Gomes, J. L. M. A.; Pain, C. C.; Apsimon, H.

    2010-08-01

    The computational fluid dynamics code Fluidity, with anisotropic mesh adaptivity, is used as a multi-scale obstacle-accommodating meteorological model. A novel method for generating realistic inlet boundary conditions based on the view of turbulence as a superposition of synthetic eddies is adopted. It is able to reproduce prescribed first-order and second-order one-point statistics and turbulence length scales. The aim is to simulate an urban boundary layer. The model is validated against two standard benchmark tests: a plane channel flow numerical simulation and a flow past a cube physical simulation. The performed large-eddy simulations are in good agreement with both reference models giving confidence that the model can be used to successfully simulate urban atmospheric flows.

  2. Description of interacting channel gating using a stochastic Markovian model.

    Science.gov (United States)

    Manivannan, K; Mathias, R T; Gudowska-Nowak, E

    1996-01-01

    Single-channel recordings from membrane patches frequently exhibit multiple conductance levels. In some preparations, the steady-state probabilities of observing these levels do not follow a binomial distribution. This behavior has been reported in sodium channels, potassium channels, acetylcholine receptor channels and gap junction channels. A non-binomial distribution suggests interaction of the channels or the presence of channels or the presence of channels with different open probabilities. However, the current trace sometimes exhibits single transitions spanning several levels. Since the probability of simultaneous transitions of independent channels is infinitesimally small, such observations strongly suggest a cooperative gating behavior. We present a Markov model to describe the cooperative gating of channels using only the all-points current amplitude histograms for the probability of observing the various conductance levels. We investigate the steady-state (or equilibrium) properties of a system of N channels and provide a scheme to express all the probabilities in terms of just two parameters. The main feature of our model is that lateral interaction of channels gives rise to cooperative gating. Another useful feature is the introduction of the language of graph theory which can potentially provide a different avenue to study ion channel kinetics. We write down explicit expressions for systems of two, three and four channels and provide a procedure to describe the system of N channels.

  3. Modeling Wood Encroachment in Abandoned Grasslands in the Eifel National Park - Model Description and Testing.

    Directory of Open Access Journals (Sweden)

    Silvana Hudjetz

    Full Text Available The degradation of natural and semi-natural landscapes has become a matter of global concern. In Germany, semi-natural grasslands belong to the most species-rich habitat types but have suffered heavily from changes in land use. After abandonment, the course of succession at a specific site is often difficult to predict because many processes interact. In order to support decision making when managing semi-natural grasslands in the Eifel National Park, we built the WoodS-Model (Woodland Succession Model. A multimodeling approach was used to integrate vegetation dynamics in both the herbaceous and shrub/tree layer. The cover of grasses and herbs was simulated in a compartment model, whereas bushes and trees were modelled in an individual-based manner. Both models worked and interacted in a spatially explicit, raster-based landscape. We present here the model description, parameterization and testing. We show highly detailed projections of the succession of a semi-natural grassland including the influence of initial vegetation composition, neighborhood interactions and ungulate browsing. We carefully weighted the single processes against each other and their relevance for landscape development under different scenarios, while explicitly considering specific site conditions. Model evaluation revealed that the model is able to emulate successional patterns as observed in the field as well as plausible results for different population densities of red deer. Important neighborhood interactions such as seed dispersal, the protection of seedlings from browsing ungulates by thorny bushes, and the inhibition of wood encroachment by the herbaceous layer, have been successfully reproduced. Therefore, not only a detailed model but also detailed initialization turned out to be important for spatially explicit projections of a given site. The advantage of the WoodS-Model is that it integrates these many mutually interacting processes of succession.

  4. CFD and Gaussian atmospheric dispersion models: A comparison for leak from carbon dioxide transportation and storage facilities

    Science.gov (United States)

    Mazzoldi, Alberto; Hill, Tim; Colls, Jeremy J.

    Carbon Capture and Storage (CCS) is of interest to the scientific community as a way of achieving significant global reduction of atmospheric CO 2 emission in the medium term. CO 2 would be transported from large emission points (e.g. coal fired power plants) to storage sites by surface/shallow high pressure pipelines. Modelling of CO 2 atmospheric dispersion after leakages from transportation facilities will be required before starting large scale CCS projects. This paper deals with the evaluation of the atmospheric dispersion CFD tool Fluidyn-PANACHE against Prairie Grass and Kit Fox field experiments. A description of the models for turbulence generation and dissipation used ( k- ɛ and k- l) and a comparison with the Gaussian model ALOHA for both field experiments are also outlined. The main outcome of this work puts PANACHE among the "fit-for-purpose" models, respecting all the prerequisites stated by Hanna et al. [Hanna, S.R., Chang, J.C. and Strimaitis, D.G., 1993. Hazardous gas model evaluation with field observations. Atmospheric Environment, 27, 2265-2285] for the evaluation of atmospheric dispersion model performance. The average under-prediction has been ascribed to the usage of mean wind speed and direction, which is characteristic of all CFD models. The authors suggest a modification of performance ranges for model acceptability measures, within the field of high pressure CO 2 transportation risk assessment, with the aim of accounting for the overall simplification induced by the usage of constant wind speed and direction within CFD atmospheric dispersion models.

  5. Generalized elastic model yields a fractional Langevin equation description.

    Science.gov (United States)

    Taloni, Alessandro; Chechkin, Aleksei; Klafter, Joseph

    2010-04-23

    Starting from a generalized elastic model which accounts for the stochastic motion of several physical systems such as membranes, (semi)flexible polymers, and fluctuating interfaces among others, we derive the fractional Langevin equation (FLE) for a probe particle in such systems, in the case of thermal initial conditions. We show that this FLE is the only one fulfilling the fluctuation-dissipation relation within a new family of fractional Brownian motion equations. The FLE for the time-dependent fluctuations of the donor-acceptor distance in a protein is shown to be recovered. When the system starts from nonthermal conditions, the corresponding FLE, which does not fulfill the fluctuation-dissipation relation, is derived.

  6. Solitonic description of interface profiles in competition models

    CERN Document Server

    Azevedo, T; Menezes, J

    2014-01-01

    We consider the spatial patterns provided by mean field numerical simulations for two competing species. As all individuals have the same rate of mobility, reproduction and competition, interfaces of empty spaces separating domains of single species are formed by a spontaneous process of symmetry breaking. We construct a Lagrangian formalism for studying the static profile of such interfaces by means of a scalar field theory framework. We identify the number density of empty spaces created by the competition interactions with a function of the energy density in scalar field systems. We then present a potential with $Z_2$ symmetry, which leads to differential equations whose solitonic solutions describe interface profile. Finally, we compare the theoretical results with data from one-dimensional numerical simulation of the Lotka-Volterra equations and show that our model fits well the properties of interfaces.

  7. Parallel community climate model: Description and user`s guide

    Energy Technology Data Exchange (ETDEWEB)

    Drake, J.B.; Flanery, R.E.; Semeraro, B.D.; Worley, P.H. [and others

    1996-07-15

    This report gives an overview of a parallel version of the NCAR Community Climate Model, CCM2, implemented for MIMD massively parallel computers using a message-passing programming paradigm. The parallel implementation was developed on an Intel iPSC/860 with 128 processors and on the Intel Delta with 512 processors, and the initial target platform for the production version of the code is the Intel Paragon with 2048 processors. Because the implementation uses a standard, portable message-passing libraries, the code has been easily ported to other multiprocessors supporting a message-passing programming paradigm. The parallelization strategy used is to decompose the problem domain into geographical patches and assign each processor the computation associated with a distinct subset of the patches. With this decomposition, the physics calculations involve only grid points and data local to a processor and are performed in parallel. Using parallel algorithms developed for the semi-Lagrangian transport, the fast Fourier transform and the Legendre transform, both physics and dynamics are computed in parallel with minimal data movement and modest change to the original CCM2 source code. Sequential or parallel history tapes are written and input files (in history tape format) are read sequentially by the parallel code to promote compatibility with production use of the model on other computer systems. A validation exercise has been performed with the parallel code and is detailed along with some performance numbers on the Intel Paragon and the IBM SP2. A discussion of reproducibility of results is included. A user`s guide for the PCCM2 version 2.1 on the various parallel machines completes the report. Procedures for compilation, setup and execution are given. A discussion of code internals is included for those who may wish to modify and use the program in their own research.

  8. Dynamical vegetation-atmosphere modelling of the boreal zone

    Science.gov (United States)

    Tang, Hui; Stordal, Frode; Berntsen, Terje K.; Bryn, Anders

    2016-04-01

    Vegetation interacts with climate on seasonal to inter-annual time scales through albedo, roughness, evapotranspiration, CO2 sequestration and by influencing snow accumulation and ablation. The Scandinavian mountains and high latitudes is a hot spot for land-atmosphere feedback, as the future's increased winter minimum temperature supports a boreal tree line advance, lowering the surface albedo. The northern ecosystem is dominated by mires, boreal forests and alpine heaths, in addition to agricultural land. Model studies have shown that vegetation-climate feedbacks are strong enough to lead to regime shifts in vegetation and local climate in boreal regions. Biogeophysical factors, such as albedo, the Bowen ratio, and surface roughness, are all involved in these feedbacks, and they are also altered by land use change such as reforestation. For calculations of the dynamical coupling between the atmosphere and the vegetation we have used the Earth System Model NorESM, which includes several advanced features in its land surface model (CLM4.5), such as the inclusion of the radiative forcing due to black carbon and dust deposit onto snow, improved representation of fire, permafrost and its hydrological impact, a new snow cover fraction parameterization reflecting the hysteresis in fractional snow cover for a given snow depth between accumulation and melt phases, as well as dynamic vegetation coupled with carbon-nitrogen cycles. These new features improve the representation of surface albedo feedback in Arctic. We have performed experiments with coupled as well fixed ocean for the current as a quadrupled atmospheric CO2 situation. This model configuration is used to study changes in vegetation in a high end radiative forcing case. It is contrasted with an experiment where vegetation dynamics is neglected. Changes in the features of the vegetation along with surface fluxes, albedo and atmospheric temperatures are analysed, with main emphasis on the boreal zone. In

  9. The Hydrogen Futures Simulation Model (H[2]Sim) technical description.

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Scott A.; Kamery, William; Baker, Arnold Barry; Drennen, Thomas E.; Lutz, Andrew E.; Rosthal, Jennifer Elizabeth

    2004-10-01

    Hydrogen has the potential to become an integral part of our energy transportation and heat and power sectors in the coming decades and offers a possible solution to many of the problems associated with a heavy reliance on oil and other fossil fuels. The Hydrogen Futures Simulation Model (H2Sim) was developed to provide a high level, internally consistent, strategic tool for evaluating the economic and environmental trade offs of alternative hydrogen production, storage, transport and end use options in the year 2020. Based on the model's default assumptions, estimated hydrogen production costs range from 0.68 $/kg for coal gasification to as high as 5.64 $/kg for centralized electrolysis using solar PV. Coal gasification remains the least cost option if carbon capture and sequestration costs ($0.16/kg) are added. This result is fairly robust; for example, assumed coal prices would have to more than triple or the assumed capital cost would have to increase by more than 2.5 times for natural gas reformation to become the cheaper option. Alternatively, assumed natural gas prices would have to fall below $2/MBtu to compete with coal gasification. The electrolysis results are highly sensitive to electricity costs, but electrolysis only becomes cost competitive with other options when electricity drops below 1 cent/kWhr. Delivered 2020 hydrogen costs are likely to be double the estimated production costs due to the inherent difficulties associated with storing, transporting, and dispensing hydrogen due to its low volumetric density. H2Sim estimates distribution costs ranging from 1.37 $/kg (low distance, low production) to 3.23 $/kg (long distance, high production volumes, carbon sequestration). Distributed hydrogen production options, such as on site natural gas, would avoid some of these costs. H2Sim compares the expected 2020 per mile driving costs (fuel, capital, maintenance, license, and registration) of current technology internal combustion engine (ICE

  10. The dependence of land-atmosphere interactions on atmospheric parametrizations in the JULES/UM modelling system

    Science.gov (United States)

    Johnson, Helen; Best, Martin

    2015-04-01

    It has been understood for a while now that atmospheric behaviour is affected by land surface processes, modelling this relationship however still presents challenges. Most numerical weather prediction (NWP) models couple an atmospheric model to a land surface model in order to forecast the weather and/or climate. The Global Land-Atmosphere Coupling Experiment (GLACE) demonstrated that soil moisture variability has considerable control over atmospheric behaviour, particularly impacting on precipitation and temperature variability. The study also suggested that differences in coupling strengths between models may be due to differences in atmospheric parametrizations. There have since been other studies which support this claim but it is not yet clear which parameters control the land-atmosphere coupling strength or indeed what it should be. In this study we investigate whether certain atmospheric parameters hold more control than others over model sensitivity to land surface changes. We focus on the interaction of the JULES (Joint UK Land Environment Simulator) land surface model with the Met Office Unified Model (UM) that is used for operational NWP and climate prediction. For computational efficiency we ran the UM at a single site using a single column model (SCM) rather than running a global model simulation. A site in the Sahel region of West Africa was chosen as this is an area that was identified by GLACE as being especially responsive to changes in soil moisture. JULES was run several times with various different initial soil moisture profiles to create an ensemble of surface sensible and latent heat fluxes that could be used to force a set of different SCM runs in order to simulate a range of different atmospheric conditions. Various atmospheric parameters in the SCM were then perturbed to create additional sets of SCM runs with different sensitivities to soil moisture changes. By analysing the difference in spread between the standard configuration and the

  11. Atmospheric Modelling for Air Quality Study over the complex Himalayas

    Science.gov (United States)

    Surapipith, Vanisa; Panday, Arnico; Mukherji, Aditi; Banmali Pradhan, Bidya; Blumer, Sandro

    2014-05-01

    An Atmospheric Modelling System has been set up at International Centre for Integrated Mountain Development (ICIMOD) for the assessment of Air Quality across the Himalaya mountain ranges. The Weather Research and Forecasting (WRF) model version 3.5 has been implemented over the regional domain, stretching across 4995 x 4455 km2 centred at Ichhyakamana , the ICIMOD newly setting-up mountain-peak station (1860 m) in central Nepal, and covering terrains from sea-level to the Everest (8848 m). Simulation is carried out for the winter time period, i.e. December 2012 to February 2013, when there was an intensive field campaign SusKat, where at least 7 super stations were collecting meteorology and chemical parameters on various sites. The very complex terrain requires a high horizontal resolution (1 × 1 km2), which is achieved by nesting the domain of interest, e.g. Kathmandu Valley, into 3 coarser ones (27, 9, 3 km resolution). Model validation is performed against the field data as well as satellite data, and the challenge of capturing the necessary atmospheric processes is discussed, before moving forward with the fully coupled chemistry module (WRF-Chem), having local and regional emission databases as input. The effort aims at finding a better understanding of the atmospheric processes and air quality impact on the mountain population, as well as the impact of the long-range transport, particularly of Black Carbon aerosol deposition, to the radiative budget over the Himalayan glaciers. The higher rate of snowcap melting, and shrinkage of permafrost as noticed by glaciologists is a concern. Better prediction will supply crucial information to form the proper mitigation and adaptation strategies for saving people lives across the Himalayas in the changing climate.

  12. Hydrogeochemical site descriptive model - a strategy for the model development during site investigations

    Energy Technology Data Exchange (ETDEWEB)

    Smellie, John [Conterra AB, Uppsala (Sweden); Laaksoharju, Marcus [GeoPoint AB, Sollentuna (Sweden); Tullborg, Eva-Lena [Terralogica AB, Graabo (Sweden)

    2002-12-01

    In 2002, SKB commenced site characterisation investigations using deep boreholes at different sites. As an integral part of the planning work SKB has prepared a strategy to develop a Hydrogeochemical Site Descriptive Model; similar strategies have been developed for the other major geoscience disciplines. The main objectives of the Hydrogeochemical Site Descriptive Model are to describe the chemistry and distribution of the groundwater in the bedrock and overburden and the hydrogeochemical processes involved in its origin and evolution. This description is based primarily on measurements of the groundwater composition but incorporates the use of available geological and hydrogeological site descriptive models. The SKB hydrogeochemistry programme is planned to fulfil two basic requirements: 1) to provide representative and quality assured data for use as input parameter values in calculating long-term repository safety, and 2) to understand the present undisturbed hydrogeochemical conditions and how these conditions will change in the future. Parameter values for safety analysis include pH, Eh, S, SO{sub 4}, HCO{sub 3}, HPO{sub 4} and TDS (mainly cations), together with colloids, fulvic and humic acids, other organics, bacteria and nitrogen. These values will be used to characterise the groundwater environment at, above and below repository depths. In the hydrogeochemical site investigation programme the number and location of the sampling points will be constrained by: a) geology (e.g. topography, overburden types, bedrock structures etc), b) hydrogeology (e.g. groundwater recharge/discharge areas, residence times), c) reliability (e.g. undisturbed vs disturbed groundwater chemical conditions), and d) resources (e.g. number and type of samples, and also available personnel, may be restricted by budgetary and schedule concerns). Naturally a balance is required between these constraints and the scientific aims of the programme. The constraints should never

  13. Experiments of reconstructing discrete atmospheric dynamic models from data (I)

    Science.gov (United States)

    Lin, Zhenshan; Zhu, Yanyu; Deng, Ziwang

    1995-03-01

    In this paper, we give some experimental results of our study in reconstructing discrete atmospheric dynamic models from data. After a great deal of numerical experiments, we found that the logistic map, x n + 1 = 1- μx {2/n}, could be used in monthly mean temperature prediction when it was approaching the chaotic region, and its predictive results were in reverse states to the practical data. This means that the nonlinear developing behavior of the monthly mean temperature system is bifurcating back into the critical chaotic states from the chaotic ones.

  14. Modeling of Atmospheric Turbulence Effect on Terrestrial FSO Link

    Directory of Open Access Journals (Sweden)

    A. Prokes

    2009-04-01

    Full Text Available Atmospheric turbulence results in many effects causing fluctuation in the received optical power. Terrestrial laser beam communication is affected above all by scintillations. The paper deals with modeling the influence of scintillation on link performance, using the modified Rytov theory. The probability of correct signal detection in direct detection system in dependence on many parameters such as link distance, power link margin, refractive-index structure parameter, etc. is discussed and different approaches to the evaluation of scintillation effect are compared. The simulations are performed for a horizontal-path propagation of the Gaussian-beam wave.

  15. An Adaptive Discontinuous Galerkin Method for Modeling Atmospheric Convection (Preprint)

    Science.gov (United States)

    2011-04-13

    J. Päpke, K. Dethloff, amatos: Parallel adaptive mesh generator for atmospheric and oceanic simulation, Ocean Modelling 10, pp.171–183 (2005). [24] P. K. Kundu , Fluid Mechanics . Academic Press, 638 pp. (1990). 20 ...further explanation we refer to the text. two fluids . Johari found that, depending on the strength of the buoyancy reversal, the morphology of the cloud...development could be vastly different. Similar results were found in highly idealized numerical two- fluid experiments by Gra- bowski4 in 1995. These

  16. Atmospheric Dispersion Modeling: Challenges of the Fukushima Daiichi Response

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Gayle [Lawrence Livermore National Laboratory; Nasstrom, John [Lawrence Livermore National Laboratory; Pobanz, Brenda [Lawrence Livermore National Laboratory; Foster, Kevin [Lawrence Livermore National Laboratory; Simpson, Matthew [Lawrence Livermore National Laboratory; Vogt, Phil [Lawrence Livermore National Laboratory; Aluzzi, Fernando [Lawrence Livermore National Laboratory; Homann, Steve [Lawrence Livermore National Laboratory

    2012-05-01

    The U.S. Department of Energy’s (DOE) National Atmospheric Release Advisory Center (NARAC) provided a wide range of predictions and analyses as part of the response to the Fukushima Daiichi Nuclear Power Plant accident. This work encompassed: weather forecasts and atmospheric transport predictions, estimates of possible dose in Japan based on hypothetical U.S. Nuclear Regulatory Commission scenarios of potential radionuclide releases, predictions of possible plume arrival times and dose levels at U.S. locations, and source estimation and plume model refinement. An overview of NARAC response activities is provided, along with a more in-depth discussion of some of NARAC’s preliminary source reconstruction analyses. NARAC optimized the overall agreement of model predictions to dose rate measurements using statistical comparisons of data and model values paired in space and time. Estimated emission rates varied depending on the choice of release assumptions (e.g., time-varying vs. constant release rates), the radionuclide mix, meteorology, and/or the radiological data used in the analysis. Results were found to be consistent with other studies within expected uncertainties, despite the application of different source estimation methodologies and the use of significantly different radiological measurement data. A discussion of some of the operational and scientific challenges encountered during the response, along with recommendations for future work, is provided.

  17. A sonic boom propagation model including mean flow atmospheric effects

    Science.gov (United States)

    Salamone, Joe; Sparrow, Victor W.

    2012-09-01

    This paper presents a time domain formulation of nonlinear lossy propagation in onedimension that also includes the effects of non-collinear mean flow in the acoustic medium. The model equation utilized is an augmented Burgers equation that includes the effects of nonlinearity, geometric spreading, atmospheric stratification, and also absorption and dispersion due to thermoviscous and molecular relaxation effects. All elements of the propagation are implemented in the time domain and the effects of non-collinear mean flow are accounted for in each term of the model equation. Previous authors have presented methods limited to showing the effects of wind on ray tracing and/or using an effective speed of sound in their model equation. The present work includes the effects of mean flow for all terms included in the augmented Burgers equation with all of the calculations performed in the time-domain. The capability to include the effects of mean flow in the acoustic medium allows one to make predictions more representative of real-world atmospheric conditions. Examples are presented for nonlinear propagation of N-waves and shaped sonic booms. [Work supported by Gulfstream Aerospace Corporation.

  18. Fingering convection and cloudless models for cool brown dwarf atmospheres

    CERN Document Server

    Tremblin, P; Mourier, P; Baraffe, I; Chabrier, G; Drummond, B; Homeier, D; Venot, O

    2015-01-01

    This work aims to improve the current understanding of the atmospheres of brown dwarfs, especially cold ones with spectral type T and Y, whose modeling is a current challenge. Silicate and iron clouds are believed to disappear at the photosphere at the L/T transition, but cloudless models fail to reproduce correctly the spectra of T dwarfs, advocating for the addition of more physics, e.g. other types of clouds or internal energy transport mechanisms. We use a one-dimensional (1D) radiative/convective equilibrium code ATMO to investigate this issue. This code includes both equilibrium and out-of-equilibrium chemistry and solves consistently the PT structure. Included opacity sources are H2-H2, H2-He, H2O, CO, CO2, CH4, NH3, K, Na, and TiO, VO if they are present in the atmosphere. We show that the spectra of Y dwarfs can be accurately reproduced with a cloudless model if vertical mixing and NH3 quenching are taken into account. T dwarf spectra still have some reddening in e.g. J - H compared to cloudless mode...

  19. Radiation Transfer Model for Aerosol Events in the Earth Atmosphere

    Science.gov (United States)

    Mukai, Sonoyo; Yokomae, Takuma; Nakata, Makiko; Sano, Itaru

    Recently large scale-forest fire, which damages the Earth environment as biomass burning and emission of carbonaceous particles, frequently occurs due to the unstable climate and/or global warming tendency. It is also known that the heavy soil dust is transported from the China continent to Japan on westerly winds, especially in spring. Furthermore the increasing emis-sions of anthropogenic particles associated with continuing economic growth scatter serious air pollutants. Thus atmospheric aerosols, especially in Asia, are very complex and heavy loading, which is called aerosol event. In the case of aerosol events, it is rather difficult to do the sun/sky photometry from the ground, however satellite observation is an effective for aerosol monitoring. Here the detection algorithms from space for such aerosol events as dust storm or biomass burn-ing are dealt with multispectral satellite data as ADEOS-2/GLI, Terra/Aqua/MODIS and/or GOSAT/CAI first. And then aerosol retrieval algorithms are examined based on new radiation transfer code for semi-infinite atmosphere model. The derived space-based results are validated with ground-based measurements and/or model simulations. Namely the space-or surface-based measurements, multiple scattering calculations and model simulations are synthesized together for aerosol retrieval in this work.

  20. A New Astrobiological Model of the Atmosphere of Titan

    Science.gov (United States)

    Willacy, K.; Allen, M.; Yung, Y.

    2016-10-01

    We present results of an investigation into the formation of nitrogen-bearing molecules in the atmosphere of Titan. We extend a previous model to cover the region below the tropopause, so the new model treats the atmosphere from Titan’s surface to an altitude of 1500 km. We consider the effects of condensation and sublimation using a continuous, numerically stable method. This is coupled with parameterized treatments of the sedimentation of the aerosols and their condensates, and the formation of haze particles. These processes affect the abundances of heavier species such as the nitrogen-bearing molecules, but have less effect on the abundances of lighter molecules. Removal of molecules to form aerosols also plays a role in determining the mixing ratios, particularly of HNC, HC3N, and HCN. We find good agreement with the recently detected mixing ratios of C2H5CN, with condensation playing an important role in determining the abundance of this molecule below 500 km. Of particular interest is the chemistry of acrylonitrile (C2H3CN) which has been suggested by Stevenson et al. as a molecule that could form biological membranes in an oxygen-deficient environment. With the inclusion of haze formation, we find good agreement of our model predictions of acrylonitrile with the available observations.

  1. A High-Order Multiscale Global Atmospheric Model

    Science.gov (United States)

    Nair, Ram

    2016-04-01

    The High-Order Method Modeling Environment (HOMME), developed at NCAR, is a petascale hydrostatic framework, which employs the cubed-sphere grid system and high-order continuous or discontinuous Galerkin (DG) methods. Recently, the HOMME framework is being extended to a non-hydrostatic dynamical core, named as the "High-Order Multiscale Atmospheric Model (HOMAM)." The spatial discretization is based on DG or high-order finite-volume methods. Orography is handled by the terrain-following height-based coordinate system. To alleviate the stringent CFL stability requirement resulting from the vertical aspects of the dynamics, an operator-splitting time integration scheme based on the horizontally explicit and vertically implicit (HEVI) philosophy is adopted for HOMAM. Preliminary results with the benchmark test cases proposed in the Dynamical Core Model Intercomparison project (DCMIP) test-suite will be presented in the seminar.

  2. Puff models for simulation of fugitive radioactive emissions in atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Camila P. da, E-mail: camila.costa@ufpel.edu.b [Universidade Federal de Pelotas (UFPel), RS (Brazil). Inst. de Fisica e Matematica. Dept. de Matematica e Estatistica; Pereira, Ledina L., E-mail: ledinalentz@yahoo.com.b [Universidade do Extremo Sul Catarinense (UNESC), Criciuma, SC (Brazil); Vilhena, Marco T., E-mail: vilhena@pq.cnpq.b [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Tirabassi, Tiziano, E-mail: t.tirabassi@isac.cnr.i [Institute of Atmospheric Sciences and Climate (CNR/ISAC), Bologna (Italy)

    2009-07-01

    A puff model for the dispersion of material from fugitive radioactive emissions is presented. For vertical diffusion the model is based on general techniques for solving time dependent advection-diffusion equation: the ADMM (Advection Diffusion Multilayer Method) and GILTT (Generalized Integral Laplace Transform Technique) techniques. The first one is an analytical solution based on a discretization of the Atmospheric Boundary Layer (ABL) in sub-layers where the advection-diffusion equation is solved by the Laplace transform technique. The solution is given in integral form. The second one is a well-known hybrid method that had solved a wide class of direct and inverse problems mainly in the area of Heat Transfer and Fluid Mechanics and the solution is given in series form. Comparisons between values predicted by the models against experimental ground-level concentrations are shown. (author)

  3. The chemistry CATT–BRAMS model (CCATT–BRAMS 4.5: a regional atmospheric model system for integrated air quality and weather forecasting and research

    Directory of Open Access Journals (Sweden)

    K. M. Longo

    2013-02-01

    Full Text Available The Coupled Chemistry Aerosol-Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CCATT–BRAMS, version 4.5 is an online regional chemical transport model designed for local and regional studies of atmospheric chemistry from surface to the lower stratosphere suitable both for operational and research purposes. It includes gaseous/aqueous chemistry, photochemistry, scavenging and dry deposition. The CCATT–BRAMS model takes advantages of the BRAMS specific development for the tropics/subtropics and of the recent availability of preprocessing tools for chemical mechanisms and of fast codes for photolysis rates. BRAMS includes state-of-the-art physical parameterizations and dynamic formulations to simulate atmospheric circulations of scales down to meters. The online coupling between meteorology and chemistry allows the system to be used for simultaneous atmospheric weather and chemical composition forecasts as well as potential feedbacks between them. The entire system comprises three preprocessing software tools for chemical mechanism (which are user defined, aerosol and trace gases emission fields and atmospheric and chemistry fields for initial and boundary conditions. In this paper, the model description is provided along evaluations performed using observational data obtained from ground-based stations, instruments aboard of aircrafts and retrieval from space remote sensing. The evaluation takes into account model application on different scales from megacities and Amazon Basin up to intercontinental region of the Southern Hemisphere.

  4. Hydrodynamic models of a Cepheid atmosphere. I - Deep envelope models

    Science.gov (United States)

    Karp, A. H.

    1975-01-01

    The implicit hydrodynamic code of Kutter and Sparks has been modified to include radiative transfer effects. This modified code has been used to compute deep envelope models of a classical Cepheid with a period of 12 days. It is shown that in this particular model the hydrogen ionization region plays only a small role in producing the observed phase lag between the light and velocity curves. The cause of the bumps on the model's light curve is examined, and a mechanism is presented to explain those Cepheids with two secondary features on their light curves. This mechanism is shown to be consistent with the Hertzsprung sequence only if the evolutionary mass-luminosity law is used.

  5. Asteroid fragmentation approaches for modeling atmospheric energy deposition

    Science.gov (United States)

    Register, Paul J.; Mathias, Donovan L.; Wheeler, Lorien F.

    2017-03-01

    During asteroid entry, energy is deposited in the atmosphere through thermal ablation and momentum-loss due to aerodynamic drag. Analytic models of asteroid entry and breakup physics are used to compute the energy deposition, which can then be compared against measured light curves and used to estimate ground damage due to airburst events. This work assesses and compares energy deposition results from four existing approaches to asteroid breakup modeling, and presents a new model that combines key elements of those approaches. The existing approaches considered include a liquid drop or "pancake" model where the object is treated as a single deforming body, and a set of discrete fragment models where the object breaks progressively into individual fragments. The new model incorporates both independent fragments and aggregate debris clouds to represent a broader range of fragmentation behaviors and reproduce more detailed light curve features. All five models are used to estimate the energy deposition rate versus altitude for the Chelyabinsk meteor impact, and results are compared with an observationally derived energy deposition curve. Comparisons show that four of the five approaches are able to match the overall observed energy deposition profile, but the features of the combined model are needed to better replicate both the primary and secondary peaks of the Chelyabinsk curve.

  6. 3D Servicescape Model: Atmospheric Qualities of Virtual Reality Retailing

    Directory of Open Access Journals (Sweden)

    Aasim Munir Dad

    2016-02-01

    Full Text Available The purpose of this paper is to provide a 3D servicescape conceptual model which explores the potential effect of 3D virtual reality retail stores’ environment on shoppers' behaviour. Extensive review of literature within two different domains, namely: servicescape models, and retail atmospherics, was carried out in order to propose a conceptual model. Further, eight detailed interviews were conducted to confirm the stimulus dimension of the conceptual model. A 3D servicescape conceptual model is offered on the basis of stimulus-organism-dimension, which proposes that a 3D virtual reality retail (VRR store environment consists of physical, social, socially symbolic and natural dimensions. These dimensions are proposed to affect shoppers’ behaviour through the mediating variables of emotions (pleasure and arousal. An interrelationship between pleasure and arousal, as mediating variables, is also proposed. This research opens a number of new avenues for further research through the proposed model of shoppers’ behaviour in a VRR store environment. Further, a systematic taxonomy development of VRR store environment is attempted through this proposed model that may prove to be an important step in theory building. A comprehensive 3D service scape model along with a large number of propositions is made to define a 3D VRR store environment.

  7. Description of the atmospheric circulation in the boundary layer over a tropical island: Case study of Guadeloupe Archipelago

    Science.gov (United States)

    Plocoste, Thomas; Dorville, Jean-François; Jacoby-Koaly, Sandra; Roussas, André

    2016-04-01

    Over past two decades the use of atmospheric sounding methods as Sodars, Lidar equipped drones increased sharply. Compare to weather balloon, these modern methods allow measure of profile at constant heights during long period. There are few studies using this type of equipment in tropical climates and lesser on small island. Wind regime on island of diameter less than 50 km are mostly considered as oceanic. Many author consider that thermal effect are negligible in land. But recent observations and simulations show importance of the thermal circulation at small- and meso- scales particularly in atmospheric pollution process. Up to 2009 no wind profile data were available continuously to study atmospheric circulation in Guadeloupe Archipelago (GA) which is one of the islands of the Lesser Antilles Arc. In first approximation wind was evaluated based on measures done at the most upwind island of the GA for many application as wind power and atmospheric pollution. From 2009 to 2012 a measurement campaign of the Atmospheric Boundary Layer (ABL) have been performed by the University of Antilles (UA) in GA. To assess effects of dynamic of ABL on air quality in sub urban area, particularly during the sunset and sunrise, UA monitored two sites with a weather station and a doppler sodar (REMTECH PAO). Both sites are close to the sea with one in a coastal area and the other in an open landfill surrounded by densely populated building and a mangrove swamp. Thermal and chemical measurements with a portable mass spectrometer were made in the vicinity of the landfill and showed the existence of urban heat islands. This study presents the first Doppler Sodar long measurements campaign in GA. Statistical analysis of the three year of doppler sodar data (i.e. wind components and its fluctuations) allow to identified and characterized the complex circulations on the two sites in the ABL between 25 and 500m above the sea level. Orographic and thermal effects due to urban area were

  8. ATTILA - Atmospheric Tracer Transport In a Langrangian Model

    Energy Technology Data Exchange (ETDEWEB)

    Reithmeier, C.; Sausen, R.

    2000-07-01

    The Lagrangian model ATTILA (atmospheric tracer transport in a Lagrangian model) has been developed to treat the global-scale transport of passive trace species in the atmosphere within the framework of a general circulation model (GCM). ATTILA runs online within the GCM ECHAM4 and uses the GCM produced wind field to advect the centrois of 80.000 to 180.000 constant mass air parcels into which the model atmosphere is divided. Each trace constituent is thereby represented by a mass mixing ratio in each parcel. ATTILA contains state-of-the-art parameterizations of convection, turbulent boundary layer mixing, and interparcel transport and provides an algorithm to map the tracer concentrations from the trajectories to the ECHAM model grid. We use two experiments to evaluate the transport characteristics of ATTILA against observations and the standard semiLagrangian transport scheme of ECHAM. In the first experiment we simulate the distribution of the short-lived tracer Radon ({sup 222}Rn) in order to examine fast vertical transport over continents, and long-range transport from the continents to remote areas. In the second experiment, we simulate the distribution of radiocarbon ({sup 14}C) that was injected into the northern stratosphere during the nuclear weapon tests in the early 60ties, in order to examine upper tropospheric and stratospheric transport characteristics. ATTILA compares well to the observations and in many respects to the semiLagrangian scheme. However, contrary to the semiLagrangian scheme, ATTILA shows a greatly reduced meridional transport in the upper troposphere and lower stratosphere, and a reduced downward flux from the stratosphere to the troposphere, especially in midlatitudes. Since both transport schemes use the same model meteorology, we conclude that the often cited enhanced meridional transport and overestimated downward flux in ECHAM as described above is rather due to the numerical properties of the semiLagrangian scheme than due to an

  9. Vehicle Modeling for use in the CAFE model: Process description and modeling assumptions

    Energy Technology Data Exchange (ETDEWEB)

    Moawad, Ayman [Argonne National Lab. (ANL), Argonne, IL (United States); Kim, Namdoo [Argonne National Lab. (ANL), Argonne, IL (United States); Rousseau, Aymeric [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-06-01

    The objective of this project is to develop and demonstrate a process that, at a minimum, provides more robust information that can be used to calibrate inputs applicable under the CAFE model’s existing structure. The project will be more fully successful if a process can be developed that minimizes the need for decision trees and replaces the synergy factors by inputs provided directly from a vehicle simulation tool. The report provides a description of the process that was developed by Argonne National Laboratory and implemented in Autonomie.

  10. Stellar models for very low mass main sequence stars the role of model atmospheres

    CERN Document Server

    Brocato, E; Castellani, V

    1997-01-01

    We present Very Low Mass stellar models as computed including non-grey model atmospheres for selected assumptions about the star metallicities. The role of atmospheres is discussed and the models are compared with models based on the Eddington approximation and with similar models appeared in the recent literature. Theoretical predictions concerning both the HR diagram location and the mass-luminosity relation are presented and discussed in terms of expectations in selected photometric bands. Comparison with available observational data concerning both galactic globular clusters and dwarfs in the solar neighborhood reveals a satisfactory agreement together with the existence of some residual mismatches.

  11. Simplified Atmospheric Dispersion Model andModel Based Real Field Estimation System ofAir Pollution

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The atmospheric dispersion model has been well developed and applied in pollution emergency and prediction. Based on thesophisticated air diffusion model, this paper proposes a simplified model and some optimization about meteorological andgeological conditions. The model is suitable for what is proposed as Real Field Monitor and Estimation system. The principle ofsimplified diffusion model and its optimization is studied. The design of Real Field Monitor system based on this model and itsfundamental implementations are introduced.

  12. Generalized Manning Condensation Model Captures the RNA Ion Atmosphere

    Science.gov (United States)

    Hayes, Ryan L.; Noel, Jeffrey K.; Mandic, Ana; Whitford, Paul C.; Sanbonmatsu, Karissa Y.; Mohanty, Udayan; Onuchic, José N.

    2016-01-01

    RNA is highly sensitive to the ionic environment, and typically requires Mg2+ to form compact structures. There is a need for models capable of describing the ion atmosphere surrounding RNA with quantitative accuracy. We present a model of RNA electrostatics and apply it within coarse-grained molecular dynamics simulation. The model treats Mg2+ ions explicitly to account for ion-ion correlations neglected by mean field theories. Since mean-field theories capture KCl well, it is treated implicitly by a generalized Manning counterion condensation model. The model extends Manning condensation to deal with arbitrary RNA conformations, non-limiting KCl concentrations, and the ion inaccessible volume of RNA. The model is tested against experimental measurements of the excess Mg2+ associated with the RNA, Γ2+, because Γ2+ is directly related to the Mg2+-RNA interaction free energy. The excellent agreement with experiment demonstrates the model captures the ionic dependence of the RNA free energy landscape. PMID:26197147

  13. Forward and Inverse Modeling of Brown Dwarf Atmospheres

    Science.gov (United States)

    Fortney, Jonathan

    Ultracool dwarfs (UCDs), here defined as the L, T, and Y spectral classes, consist of the lowest mass stars and the substellar brown dwarfs. Over 1200 are currently known, from effective temperatures of 2400 K down to "room temperature" objects of 300 K. Observations of UCDs show tremendous diversity in their spectral characteristics. However, factors such as metallicity, non-solar C/O ratios, surface gravity, vertical mixing efficiency, cloud levels, and cloud thickness remain largely unexplored within atmosphere models. This leads to a very limited understanding of the physical and chemical causes of brown dwarf diversity. One of the main motivations of this proposal is to greatly expand the kinds of modeling efforts that we envision for UCD science to obtain fundamentally new insights from the spectra of several hundred objects. First, we will expand our self-consistent grids of combined atmosphere and evolution models. With this traditional approach we can test the sensitivity of synthetic spectra of changes in parameters like surface gravity, cloud thickness, partial cloudiness, cloud particle size, and vertical mixing efficiency. Second, we will use powerful retrieval techniques to invert the model-to-data comparison problem. These Bayesian techniques allow the inference of P-T profile structure and molecular abundances, directly from the data. The first target populations are benchmark brown dwarfs, which have a well-studied main sequence companion, and where metallicity, age, and even mass can be independently constrained. The second is the 500+ UCDs across all spectral types that have NIR spectra already in hand in the SpeX spectral library. The third population is brown dwarfs that are variable in emission. This work is directly relevant to the NASA Astrophysics Theory (ATP) program. The proposed falls within the ATP scope of "Stellar Astrophysics and Exoplanets," which specifically includes brown dwarfs. The current proposal both facilitates "the

  14. Atmospheric ionization induced by precipitating electrons: Comparison of CRAC:EPII model with parametrization model

    CERN Document Server

    Artamonov, A A; Usoskin, I G

    2016-01-01

    A new model CRAC:EPII (Cosmic Ray Atmospheric Cascade: Electron Precipitation Induced Ionization) is presented. The CRAC:EPII is based on Monte Carlo simulation of precipitating electrons propagation and interaction with matter in the Earth atmosphere. It explicitly considers energy deposit: ionization, pair production, Compton scattering, generation of Bremsstrahlung high energy photons, photo-ionization and annihilation of positrons, multiple scattering as physical processes accordingly. The propagation of precipitating electrons and their interactions with atmospheric molecules is carried out with the GEANT4 simulation tool PLANETOCOSMICS code using NRLMSISE 00 atmospheric model. The ionization yields is compared with an analytical parametrization for various energies of incident precipitating electron, using a flux of mono-energetic particles. A good agreement between the two models is achieved. Subsequently, on the basis of balloon-born measured spectra of precipitating electrons at 30.10.2002 and 07.01....

  15. Stochastic Parametrisations and Regime Behaviour of Atmospheric Models

    Science.gov (United States)

    Arnold, Hannah; Moroz, Irene; Palmer, Tim

    2013-04-01

    The presence of regimes is a characteristic of non-linear, chaotic systems (Lorenz, 2006). In the atmosphere, regimes emerge as familiar circulation patterns such as the El-Nino Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO) and Scandinavian Blocking events. In recent years there has been much interest in the problem of identifying and studying atmospheric regimes (Solomon et al, 2007). In particular, how do these regimes respond to an external forcing such as anthropogenic greenhouse gas emissions? The importance of regimes in observed trends over the past 50-100 years indicates that in order to predict anthropogenic climate change, our climate models must be able to represent accurately natural circulation regimes, their statistics and variability. It is well established that representing model uncertainty as well as initial condition uncertainty is important for reliable weather forecasts (Palmer, 2001). In particular, stochastic parametrisation schemes have been shown to improve the skill of weather forecast models (e.g. Berner et al., 2009; Frenkel et al., 2012; Palmer et al., 2009). It is possible that including stochastic physics as a representation of model uncertainty could also be beneficial in climate modelling, enabling the simulator to explore larger regions of the climate attractor including other flow regimes. An alternative representation of model uncertainty is a perturbed parameter scheme, whereby physical parameters in subgrid parametrisation schemes are perturbed about their optimal value. Perturbing parameters gives a greater control over the ensemble than multi-model or multiparametrisation ensembles, and has been used as a representation of model uncertainty in climate prediction (Stainforth et al., 2005; Rougier et al., 2009). We investigate the effect of including representations of model uncertainty on the regime behaviour of a simulator. A simple chaotic model of the atmosphere, the Lorenz '96 system, is used to study

  16. A new astrobiological model of the atmosphere of Titan

    CERN Document Server

    Willacy, Karen; Yung, Yuk

    2016-01-01

    We present results of an investigation into the formation of nitrogen-bearing molecules in the atmosphere of Titan. We extend a previous model (Li et al. 2015, 2016) to cover the region below the tropopause, so the new model treats the atmosphere from Titan's surface to an altitude of 1500 km. We consider the effects of condensation and sublimation using a continuous, numerically stable method. This is coupled with parameterized treatments of the sedimentation of the aerosols and their condensates, and the formation of haze particles. These processes affect the abundances of heavier species such as the nitrogen-bearing molecules, but have less effect on the abundances of lighter molecules. Removal of molecules to form aerosols also plays a role in determining the mixing ratios, in particular of HNC, HC3N and HCN. We find good agreement with the recently detected mixing ratios of C2H5CN, with condensation playing an important role in determining the abundance of this molecule below 500 km. Of particular intere...

  17. The balance model of oxygen enrichment of atmospheric air

    Science.gov (United States)

    Popov, Alexander

    2013-04-01

    The study of turnover of carbon and oxygen is an important line of scientific investigation. This line takes on special significance in conditions of soil degradation, which leads to the excess content of carbon dioxide and, as result, decrease of oxygen in the atmosphere. The aim of this article is a statement the balance model of oxygen enrichment of atmospheric air (ratio O/C) depending on consumption and assimilation by plants of dissolved organic matter (DOM) and the value of the oxidation-reduction potential (Eh). Basis of model was the following: green vascular plants are facultative heterotrophic organisms with symbiotic digestion and nutrition. According to the trophology viewpoint, the plant consumption of organic compounds broadens greatly a notion about the plant nutrition and ways of its regulation. In particular, beside the main known cycle of carbon: plant - litter - humus - carbon dioxide - plant, there is the second carbon cycle (turnover of organic compounds): plant - litter - humus - DOM - plant. The biogeochemical meaning of consumption of organic compounds by plants is that plants build the structural and functional blocks of biological macromolecules in their bodies. It provides receiving of a certain "energy payoff" by plants, which leads to increase of plant biomass by both an inclusion of allochthonous organic molecules in plant tissues, and positive effect of organic compounds on plant metabolic processes. One more of powerful ecological consequence of a heterotrophic nutrition of green plants is oxygen enrichment of atmospheric air. As the organic molecules in the second biological cycle of carbon are built in plants without considerable chemical change, the atmospheric air is enriched on that amount of oxygen, which would be required on oxidation of the organic molecules absorbed by plants, in result. It was accepted that: plant-soil system was climax, the plant community was grassy, initial contents of carbon in phytomass was accepted

  18. Inverse modelling of national and European CH4 emissions using the atmospheric zoom model TM5

    NARCIS (Netherlands)

    Bergamaschi, P.; Krol, M.C.; Dentener, F.; Vermeulen, A.; Meinhardt, F.; Graul, R.; Ramonet, M.; Peters, W.; Dlugokencky, E.J.

    2005-01-01

    A synthesis inversion based on the atmospheric zoom model TM5 is used to derive top-down estimates of CH4 emissions from individual European countries for the year 2001. We employ a model zoom over Europe with 1° × 1° resolution that is two-way nested into the global model domain (with resolution of

  19. Spectral classification of stars using synthetic model atmospheres

    CERN Document Server

    Bertone, E

    2001-01-01

    We devised a straightforward procedure to derive the atmosphere fundamental parameters of stars across the different MK spectral types by comparing mid-resolution spectroscopic observations with theoretical grids of synthetic spectra.The results of a preliminary experiment, by matching the Gunn and Stryker and Jacoby et al. spectrophotometric atlases with the Kurucz models, are briefly discussed. For stars in the A-K spectral range, effective temperature is obtained within a 1-2% relative uncertainty (at 2 sigma confidence level). This value raises to 4-5% for the hottest stars in the samples (O-B spectral types). A poorer fit is obtained throughout for stars cooler than 4000 K mainly due to the limiting input physics in the Kurucz models.

  20. Maximal atmospheric neutrino mixing in an SU(5) model

    Science.gov (United States)

    Grimus, W.; Lavoura, L.

    2003-05-01

    We show that maximal atmospheric and large solar neutrino mixing can be implemented in SU(5) gauge theories, by making use of the U(1) F symmetry associated with a suitably defined family number F, together with a Z2 symmetry which does not commute with F. U(1) F is softly broken by the mass terms of the right-handed neutrino singlets, which are responsible for the seesaw mechanism; in additio n, U(1) F is also spontaneously broken at the electroweak scale. In our scenario, lepton mixing stems exclusively from the right-handed-neutrino Majorana mass matrix, whereas the CKM matrix originates solely in the up-type-quark sector. We show that, despite the non-supersymmetric character of our model, unification of the gauge couplings can be achieved at a scale 1016 GeV particula r solution to this problem which yields results almost identical to the ones of the minimal supersymmetric standard model.

  1. Indirect Global Warming Potentials of Halons Using Atmospheric Models

    Science.gov (United States)

    Youn, D.; Patten, K. O.; Wuebbles, D. J.

    2007-05-01

    Emission of bromochlorofluorocarbons, or Halons, results in stratospheric ozone depletion. This leads to cooling of the climate system in the opposite direction to direct warming contribution of the Halons as greenhouse gases. This cooling is a key indirect effect of Halons on radiative forcing or climate. The Global Warming Potential (GWP) is a relative index used to compare the climate impact of an emitted greenhouse gas, relative to an equal amount of carbon dioxide. Until now, indirect GWPs have been calculated based on the concept of Equivalent Effective Stratospheric Chlorine (EESC), which oversimplifies the complex processes in the atmosphere. As a step towards obtaining indirect GWPs through a more robust approach, 2-D and 3-D global chemical transport models (CTM) were used as the computational tool to derive more realistic ozone changes caused by pulse perturbation of Halons at the surface. Indirect GWPs of Halon-1211 and -1301 for a 100-year time horizon were explicitly calculated based on the University of Illinois at Urbana-Champaign (UIUC) 2-D global CTM and radiative transport model (RTM) and the 3-D CTM, MOZART-3.1. The 2-D and 3-D model simulations show acceptable temporal variations in the atmosphere as well as derived lifetimes and direct GWP values of the Halons. The 2-D model-based indirect GWPs for a 100-year horizon are -16,294 for Halon-1211 and -33,648 for Halon-1301. 3-D indirect GWP for Halon-1211 is -18,216. The indirect GWPs for Halon-1211 presented here are much smaller than previous published results using the previous simplified appraoch.

  2. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    Directory of Open Access Journals (Sweden)

    E. D. Sofen

    2015-07-01

    Full Text Available The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent dataset for the evaluation of chemical transport and chemistry-climate (Earth System models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total dataset of approximately 6600 sites and 500 million hourly observations from 1971–2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regional background locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This dataset is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily eight-hour average (MDA8, SOMO35, AOT40, and metrics related to air quality regulatory thresholds. Gridded datasets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi:10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452. We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  3. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    Science.gov (United States)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.

    2016-02-01

    The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent data set for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total data set of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regionally representative locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This data set is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily 8-hour average (MDA8), sum of means over 35 ppb (daily maximum 8-h; SOMO35), accumulated ozone exposure above a threshold of 40 ppbv (AOT40), and metrics related to air quality regulatory thresholds. Gridded data sets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi: 10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  4. Global atmospheric model for mercury including oxidation by bromine atoms

    Directory of Open Access Journals (Sweden)

    C. D. Holmes

    2010-12-01

    Full Text Available Global models of atmospheric mercury generally assume that gas-phase OH and ozone are the main oxidants converting Hg0 to HgII and thus driving mercury deposition to ecosystems. However, thermodynamic considerations argue against the importance of these reactions. We demonstrate here the viability of atomic bromine (Br as an alternative Hg0 oxidant. We conduct a global 3-D simulation with the GEOS-Chem model assuming gas-phase Br to be the sole Hg0 oxidant (Hg + Br model and compare to the previous version of the model with OH and ozone as the sole oxidants (Hg + OH/O3 model. We specify global 3-D Br concentration fields based on our best understanding of tropospheric and stratospheric Br chemistry. In both the Hg + Br and Hg + OH/O3 models, we add an aqueous photochemical reduction of HgII in cloud to impose a tropospheric lifetime for mercury of 6.5 months against deposition, as needed to reconcile observed total gaseous mercury (TGM concentrations with current estimates of anthropogenic emissions. This added reduction would not be necessary in the Hg + Br model if we adjusted the Br oxidation kinetics downward within their range of uncertainty. We find that the Hg + Br and Hg + OH/O3 models are equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes. The Hg + Br model shows a steeper decline of TGM concentrations from the tropics to southern mid-latitudes. Only the Hg + Br model can reproduce the springtime depletion and summer rebound of TGM observed at polar sites; the snowpack component of GEOS-Chem suggests that 40% of HgII deposited to snow in the Arctic is transferred to the ocean and land reservoirs, amounting to a net deposition flux to the Arctic of 60 Mg a−1. Summertime events of depleted Hg0 at Antarctic sites due to subsidence are much better simulated by

  5. Testing the methodology for site descriptive modelling. Application for the Laxemar area

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Johan [JA Streamflow AB, Aelvsjoe (Sweden); Berglund, Johan [SwedPower AB, Stockholm (Sweden); Follin, Sven [SF Geologic AB, Stockholm (Sweden); Hakami, Eva [Itasca Geomekanik AB, Stockholm (Sweden); Halvarson, Jan [Swedish Nuclear Fuel and Waste Management Co, Stockholm (Sweden); Hermanson, Jan [Golder Associates AB, Stockholm (Sweden); Laaksoharju, Marcus [Geopoint (Sweden); Rhen, Ingvar [Sweco VBB/VIAK, Stockholm (Sweden); Wahlgren, C.H. [Sveriges Geologiska Undersoekning, Uppsala (Sweden)

    2002-08-01

    A special project has been conducted where the currently available data from the Laxemar area, which is part of the Simpevarp site, have been evaluated and interpreted into a Site Descriptive Model covering: geology, hydrogeology, hydrogeochemistry and rock mechanics. Description of the surface ecosystem has been omitted, since it was re-characterised in another, parallel, project. Furthermore, there has been no evaluation of transport properties. The project is primarily a methodology test. The lessons learnt will be implemented in the Site Descriptive Modelling during the coming site investigation. The intent of the project has been to explore whether available methodology for Site Descriptive Modelling based on surface and borehole data is adequate and to identify potential needs for development and improvement in the methodology. The project has developed, with limitations in scope, a Site Descriptive Model in local scale, corresponding to the situation after completion of the Initial Site Investigations for the Laxemar area (i.e. 'version 1.2' using the vocabulary of the general execution program for the site investigations). The Site Descriptive Model should be reasonable, but should not be regarded as a 'real' model. There are limitations both in input data and in the scope of the analysis. The measured (primary) data constitute a wide range of different measurement results including data from two deep core drilled boreholes. These data both need to be checked for consistency and to be interpreted into a format more amenable for three-dimensional modelling. Examples of such evaluations are estimation of surface geology, lineament interpretation, geological single hole interpretation, hydrogeological single hole interpretation and assessment of hydrogeochemical data. Furthermore, while cross discipline interpretation is encouraged there is also a need for transparency. This means that the evaluations first are made within each discipline

  6. Global atmospheric model for mercury including oxidation by bromine atoms

    Directory of Open Access Journals (Sweden)

    C. D. Holmes

    2010-08-01

    Full Text Available Global models of atmospheric mercury generally assume that OH and ozone are the main oxidants converting Hg0 to HgII and thus driving mercury deposition to ecosystems. However, thermodynamic considerations argue against the importance of these reactions. We demonstrate here the viability of atomic bromine (Br as an alternative Hg0 oxidant. We conduct a global 3-D simulation with the GEOS-Chem model assuming Br to be the sole Hg0 oxidant (Hg + Br model and compare to the previous version of the model with OH and ozone as the sole oxidants (Hg + OH/O3 model. We specify global 3-D Br concentration fields based on our best understanding of tropospheric and stratospheric Br chemistry. In both the Hg + Br and Hg + OH/O3 models, we add an aqueous photochemical reduction of HgII in cloud to impose a tropospheric lifetime for mercury of 6.5 months against deposition, as needed to reconcile observed total gaseous mercury (TGM concentrations with current estimates of anthropogenic emissions. This added reduction would not be necessary in the Hg + Br model if we adjusted the Br oxidation kinetics downward within their range of uncertainty. We find that the Hg + Br and Hg + OH/O3 models are equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes. The Hg + Br model shows a steeper decline of TGM concentrations from the tropics to southern mid-latitudes. Only the Hg + Br model can reproduce the springtime depletion and summer rebound of TGM observed at polar sites; the snowpack component of GEOS-Chem suggests that 40% of HgII deposited to snow in the Arctic is transferred to the ocean and land reservoirs, amounting to a net deposition flux of 60 Mg a−1. Summertime events of depleted Hg0 at Antarctic sites due to subsidence are much better simulated by the Hg + Br model. Model

  7. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model

    Science.gov (United States)

    Gebauer, S.; Grenfell, J. L.; Stock, J. W.; Lehmann, R.; Godolt, M.; von Paris, P.; Rauer, H.

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O2, whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis. The O2 bistability found by Goldblatt et al. (2006) is not observed in our calculations likely due to our detailed CH4 oxidation scheme. We calculate increased CH4 with increasing O2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O2 is unique. Mixing, CH4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O2 fluxes. Regarding exoplanets, different "states" of O2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O2 that

  8. NASA's Upper Atmosphere Research Program (UARP) and Atmospheric Chemistry Modeling and Analysis Program (ACMAP): Research Summaries 1997-1999

    Science.gov (United States)

    Kurylo, M. J.; DeCola, P. L.; Kaye, J. A.

    2000-01-01

    Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology development, and monitoring of the Earth's upper atmosphere, with emphasis on the upper troposphere and stratosphere. This program aims at expanding our chemical and physical understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Research Division in the Office of Earth Science at NASA. Significant contributions to this effort have also been provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aero-Space Technology. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper troposphere and the stratosphere and their control on the distribution of atmospheric chemical species such as ozone; assess possible perturbations to the composition of the atmosphere caused by human activities and natural phenomena (with a specific emphasis on trace gas geographical distributions, sources, and sinks and the role of trace gases in defining the chemical composition of the upper atmosphere); understand the processes affecting the distributions of radiatively active species in the atmosphere, and the importance of chemical-radiative-dynamical feedbacks on the meteorology and climatology of the stratosphere and troposphere; and understand ozone production, loss, and recovery in an atmosphere with increasing abundances of greenhouse gases. The current report is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported

  9. Hybrid turbulence models for atmospheric flow: A proper comparison with RANS models

    Directory of Open Access Journals (Sweden)

    Bautista Mary C.

    2015-01-01

    Full Text Available A compromise between the required accuracy and the need for affordable simulations for the wind industry might be achieved with the use of hybrid turbulence models. Detached-Eddy Simulation (DES [1] is a hybrid technique that yields accurate results only if it is used according to its original formulation [2]. Due to its particular characteristics (i.e., the type of mesh required, the modeling of the atmospheric flow might always fall outside the original scope of DES. An enhanced version of DES called Simplify Improved Delayed Detached-Eddy Simulation (SIDDES [3] can overcome this and other disadvantages of DES. In this work the neutrally stratified atmospheric flow over a flat terrain with homogeneous roughness will be analyzed using a Reynolds-Averaged Navier–Stokes (RANS model called k – ω SST (shear stress transport [4], and the hybrids k – ω SST-DES and k – ω SST-SIDDES models. An obvious test is to validate these hybrid approaches and asses their advantages and disadvantages over the pure RANS model. However, for several reasons the technique to drive the atmospheric flow is generally different for RANS and LES or hybrid models. The flow in a RANS simulation is usually driven by a constant shear stress imposed at the top boundary [5], therefore modeling only the atmospheric surface layer. On the contrary the LES and hybrid simulations are usually driven by a constant pressure gradient, thus a whole atmospheric boundary layer is simulated. Rigorously, this represents two different simulated cases making the model comparison not trivial. Nevertheless, both atmospheric flow cases are studied with the mentioned models. The results prove that a simple comparison of the time average turbulent quantities obtained by RANS and hybrid simulations is not easily achieved. The RANS simulations yield consistent results for the atmospheric surface layer case, while the hybrid model results are not correct. As for the atmospheric boundary

  10. Multi-model Music Content Description and Retrieval Using IEEE 1599 XML Standard

    Directory of Open Access Journals (Sweden)

    Alberto Pinto

    2009-02-01

    Full Text Available The new format IEEE 1599 for music and audio content description defines a standard for the representation of retrieval models within music and music/audio formats that makes use of XML documents as content descriptors. In this article, it is described how music/audio semantics can be actually represented within the Structural Layer of IEEE 1599, thanks to the introduction of novel Music Information Retrieval (MIR objects that can be exploited by music search engines. A complete description of MIR objects is provided and it is shown how they can be used to embed metadata relative to specific music retrieval models, thus allowing for the description of music content in different retrieval contexts. To this aim, a new concept for MIR Model is introduced together with its formalization and tools provided by category theory. The role of MIR objects and morphisms in music content description and retrieval is explained. Furthermore, a concrete example is given with the implementation of a graph-based model within the IEEE 1599 framework.

  11. Application of the Rangeland Hydrology and Erosion Model to Ecological Site Descriptions and Management

    Science.gov (United States)

    The utility of Ecological Site Descriptions (ESDs) and State-and-Transition Models (STMs) concepts in guiding rangeland management hinges on their ability to accurately describe and predict community dynamics and the associated consequences. For many rangeland ecosystems, plant community dynamics ar...

  12. The Relationship between BIBFRAME and OCLC's Linked-Data Model of Bibliographic Description: A Working Paper

    Science.gov (United States)

    Godby, Carol Jean

    2013-01-01

    This document describes a proposed alignment between BIBFRAME (Bibliographic Framework) and a model being explored by the Online Computer Library Center (OCLC) with extensions proposed by the Schema Bib Extend project, a Worldwide Web Consortium sponsored (W3C-sponsored) community group tasked with enhancing Schema.org to the description of…

  13. Effects of Modeling Instruction on Descriptive Writing and Observational Skills in Middle School

    Science.gov (United States)

    Park, Do-Yong; Logsdon, Cindy

    2015-01-01

    Before science can be completely understood, one of the fundamental skills that must be developed is observation. Improving descriptive writing and investigating students' observational skills in the classroom is the purpose of this study. The study was designed to determine if such skills, practiced through modeling activities, serve as a…

  14. A Short Introduction to Model Selection, Kolmogorov Complexity and Minimum Description Length (MDL)

    NARCIS (Netherlands)

    Nannen, Volker

    2010-01-01

    The concept of overtting in model selection is explained and demon- strated. After providing some background information on information theory and Kolmogorov complexity, we provide a short explanation of Minimum Description Length and error minimization. We conclude with a discussion of the typical

  15. Effects of Modeling Instruction on Descriptive Writing and Observational Skills in Middle School

    Science.gov (United States)

    Park, Do-Yong; Logsdon, Cindy

    2015-01-01

    Before science can be completely understood, one of the fundamental skills that must be developed is observation. Improving descriptive writing and investigating students' observational skills in the classroom is the purpose of this study. The study was designed to determine if such skills, practiced through modeling activities, serve as a way to…

  16. Hydrogeochemical site descriptive model - a strategy for the model development during site investigations

    Energy Technology Data Exchange (ETDEWEB)

    Smellie, John [Conterra AB, Uppsala (Sweden); Laaksoharju, Marcus [GeoPoint AB, Sollentuna (Sweden); Tullborg, Eva-Lena [Terralogica AB, Graabo (Sweden)

    2002-12-01

    In 2002, SKB commenced site characterisation investigations using deep boreholes at different sites. As an integral part of the planning work SKB has prepared a strategy to develop a Hydrogeochemical Site Descriptive Model; similar strategies have been developed for the other major geoscience disciplines. The main objectives of the Hydrogeochemical Site Descriptive Model are to describe the chemistry and distribution of the groundwater in the bedrock and overburden and the hydrogeochemical processes involved in its origin and evolution. This description is based primarily on measurements of the groundwater composition but incorporates the use of available geological and hydrogeological site descriptive models. The SKB hydrogeochemistry programme is planned to fulfil two basic requirements: 1) to provide representative and quality assured data for use as input parameter values in calculating long-term repository safety, and 2) to understand the present undisturbed hydrogeochemical conditions and how these conditions will change in the future. Parameter values for safety analysis include pH, Eh, S, SO{sub 4}, HCO{sub 3}, HPO{sub 4} and TDS (mainly cations), together with colloids, fulvic and humic acids, other organics, bacteria and nitrogen. These values will be used to characterise the groundwater environment at, above and below repository depths. In the hydrogeochemical site investigation programme the number and location of the sampling points will be constrained by: a) geology (e.g. topography, overburden types, bedrock structures etc), b) hydrogeology (e.g. groundwater recharge/discharge areas, residence times), c) reliability (e.g. undisturbed vs disturbed groundwater chemical conditions), and d) resources (e.g. number and type of samples, and also available personnel, may be restricted by budgetary and schedule concerns). Naturally a balance is required between these constraints and the scientific aims of the programme. The constraints should never

  17. The 1-way on-line coupled atmospheric chemistry model system MECO(n – Part 1: The limited-area atmospheric chemistry model COSMO/MESSy

    Directory of Open Access Journals (Sweden)

    A. Kerkweg

    2011-06-01

    Full Text Available The numerical weather prediction model of the Consortium for Small Scale Modelling (COSMO, maintained by the German weather service (DWD, is connected with the Modular Earth Submodel System (MESSy. This effort is undertaken in preparation of a~new, limited-area atmospheric chemistry model. This model is as consistent as possible, with respect to atmospheric chemistry and related processes, with a previously developed global atmospheric chemistry general circulation model: the ECHAM/MESSy Atmospheric Chemistry (EMAC model. The combined system constitutes a new research tool, bridging the global to the meso-γ scale for atmospheric chemistry research. MESSy provides the infrastructure and includes, among others, the process and diagnostic submodels for atmospheric chemistry simulations. Furthermore, MESSy is highly flexible allowing model setups with tailor made complexity, depending on the scientific question. Here, the connection of the MESSy infrastructure to the COSMO model is documented. Previously published prototype submodels for simplified tracer studies are generalised to be plugged-in and used in the global and the limited-area model. They are used to evaluate the tracer transport characteristics of the new COSMO/MESSy model system, an important prerequisite for future atmospheric chemistry applications. A supplementary document with further details on the technical implementation of the MESSy interface into COSMO with a complete list of modifications to the COSMO code is provided.

  18. Atmospheric ionization induced by precipitating electrons: Comparison of CRAC:EPII model with a parametrization model

    Science.gov (United States)

    Artamonov, A. A.; Mishev, A. L.; Usoskin, I. G.

    2016-11-01

    Results of a comparison of a new model CRAC:EPII (Cosmic Ray Atmospheric Cascade: Electron Precipitation Induced Ionization) with a commonly used parametric model of atmospheric ionization is presented. The CRAC:EPII is based on a Monte Carlo simulation of precipitating electrons propagation and interaction with matter in the Earth's atmosphere. It explicitly considers energy deposit: ionization, pair production, Compton scattering, generation of Bremsstrahlung high energy photons, photo-ionization and annihilation of positrons, multiple scattering as physical processes accordingly. Propagation of precipitating electrons and their interactions with air is simulated with the GEANT4 simulation tool PLANETOCOSMICS code using NRLMSISE-00 atmospheric model. Ionization yields are computed and compared with a parametrization model for different energies of incident precipitating energetic electrons, using simulated fluxes of mono-energetic particles. A good agreement between the two models is achieved in the mesosphere but the contribution of Bremsstrahlung in the stratosphere, which is not accounted for in the parametric models, is found significant. As an example, we calculated profiles of the ion production rates in the middle and upper atmosphere (below 100 km) on the basis of balloon-born measured spectra of precipitating electrons for 30-October-2002 and 07-January-2004.

  19. NOAA/NCEP Global Forecast System (GFS) Atmospheric Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — U.S. National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) numerical weather...

  20. EGATEC: A new high-resolution engineering model of the global atmospheric electric circuit—Currents in the lower atmosphere

    Science.gov (United States)

    Odzimek, A.; Lester, M.; Kubicki, M.

    2010-09-01

    We present a new high-resolution model of the Earth's global atmospheric electric circuit (GEC) represented by an equivalent electrical network. Contributions of clouds to the total resistance of the atmosphere and as current generators are treated more realistically than in previous GEC models. The model of cloud current generators is constructed on the basis of the ISCCP cloud data and the OTD/LIS lightning flash rates and TRMM rainfall data. The current generated and the electric resistance can be estimated with a spatial resolution of several degrees in latitude and longitude and 3 hour time resolution. The resistance of the atmosphere is calculated using an atmospheric conductivity model which is spatially dependent and sensitive to the level of solar activity. An equivalent circuit is constructed assuming the ionosphere and ground are ideal conductors. The circuit solution provides diurnal variations of the ionospheric potential and the GEC global current at the 3 hour time resolution as well as the global distributions and diurnal variations of the air-Earth current density and electric field. The model confirms that the global atmospheric electric activity peaks daily at ˜21 UT. The diurnal variation of the ionospheric potential and the global current have a maximum at 12 and 21-24 UT in July and at 9 and 21 UT in December, and a global minimum at 3-6 UT independent of season. About 80% of the current is generated by thunderstorm convective clouds and 20% by mid-level rain clouds.

  1. Towards Fully Coupled Atmosphere-Hydrology Model Systems: Recent Developments and Performance Evaluation For Different Climate Regions

    Science.gov (United States)

    Kunstmann, Harald; Fersch, Benjamin; Rummler, Thomas; Wagner, Sven; Arnault, Joel; Senatore, Alfonso; Gochis, David

    2015-04-01

    Limitations in the adequate representation of terrestrial hydrologic processes controlling the land-atmosphere coupling are assumed to be a significant factor currently limiting prediction skills of regional atmospheric models. The necessity for more comprehensive process descriptions accounting for the interdependencies between water- and energy fluxes at the compartmental interfaces are driving recent developments in hydrometeorological modeling towards more sophisticated treatment of terrestrial hydrologic processes. It is particularly the lateral surface and subsurface water fluxes that are neglected in standard regional atmospheric models. Current developments in enhanced lateral hydrological process descriptions in the WRF model system will be presented. Based on WRF and WRF-Hydro, new modules and concepts for integrating the saturated zone by a 2-dim groundwater scheme and coupling approaches to the unsaturated zone will be presented. The fully coupled model system allows to model the complete regional water cycle, from the top of the atmosphere, via the boundary layer, the land surface, the unsaturated zone and the saturated zone till the flow in the river beds. With this increasing complexity, that also allows to describe the complex interaction of the regional water cycle on different spatial and temporal scales, the reliability and predictability of model simulations can only be shown, if performance is tested for a variety of hydrological variables for different climatological environments. We will show results of fully coupled simulations for the regions of sempiternal humid Southern Bavaria/Germany (rivers Isar and Ammer) and semiarid to subhumid Westafrica (river Sissilli). In both regions, in addition to streamflow measurements, also the validation of heat fluxes is possible via Eddy-Covariance stations within hydrometeorological testbeds. In the German Isar/Ammer region, e.g., we apply the extended WRF-Hydro modeling system in 3km atmospheric- grid

  2. Toward unification of the multiscale modeling of the atmosphere

    Directory of Open Access Journals (Sweden)

    A. Arakawa

    2011-01-01

    Full Text Available This paper suggests two possible routes to achieve the unification of model physics in coarse- and fine-resolution atmospheric models. As far as representation of deep moist convection is concerned, only two kinds of model physics are used at present: highly parameterized as in the conventional general circulation models (GCMs and explicitly simulated as in the cloud-resolving models (CRMs. Ideally, these two kinds of model physics should be unified so that a continuous transition of model physics from one kind to the other takes place as the resolution changes. With such unification, the GCM can converge to a global CRM (GCRM as the grid size is refined. ROUTE I for unification continues to follow the parameterization approach, but uses a unified parameterization that is applicable to any horizontal resolutions between those typically used by GCMs and CRMs. It is shown that a key to construct such a unified parameterization is to eliminate the assumption of small fractional area covered by convective clouds, which is commonly used in the conventional cumulus parameterizations either explicitly or implicitly. A preliminary design of the unified parameterization is presented, which demonstrates that such an assumption can be eliminated through a relatively minor modification of the existing mass-flux based parameterizations. Partial evaluations of the unified parameterization are also presented. ROUTE II for unification follows the "multi-scale modeling framework (MMF" approach, which takes advantage of explicit representation of deep moist convection and associated cloud-scale processes by CRMs. The Quasi-3-D (Q3-D MMF is an attempt to broaden the applicability of MMF without necessarily using a fully three-dimensional CRM. This is accomplished using a network of cloud-resolving grids with gaps. An outline of the Q3-D algorithm and highlights of preliminary results are reviewed.

  3. Atmospheric boundary layers in storms: advanced theory and modelling applications

    Directory of Open Access Journals (Sweden)

    S. S. Zilitinkevich

    2005-01-01

    Full Text Available Turbulent planetary boundary layers (PBLs control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow. It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S

  4. Atmospheric boundary layers in storms: advanced theory and modelling applications

    Science.gov (United States)

    Zilitinkevich, S. S.; Esau, I. N.; Baklanov, A.

    2005-03-01

    Turbulent planetary boundary layers (PBLs) control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow). It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral) or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions) depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S were overlooked

  5. Descriptive and discourse-referential modifiers in a layered model of the noun phrase

    DEFF Research Database (Denmark)

    Rijkhoff, Jan

    2008-01-01

    This article argues that adnominal modifiers in a layered model of the noun phrase can be divided into two major subcategories: descriptive modifiers and discourse-referential modifiers. Whereas descriptive modifiers can be subdivided into classifying, qualifying, quantifying and localizing......), (ii) the special relationship between localizing and discourse-referential modifiers (section 5), and (iii) semantic and morpho-syntactic parallels between modifier categories in the noun phrase and the clause (section 6). In addition this sample-based typological study shows (contra Hawkins...

  6. Modeling of atmospheric-coupled Rayleigh waves on planets with atmosphere: From Earth observation to Mars and Venus perspectives.

    Science.gov (United States)

    Lognonné, Philippe; Karakostas, Foivos; Rolland, Lucie; Nishikawa, Yasuhiro

    2016-08-01

    Acoustic coupling between solid Earth and atmosphere has been observed since the 1960s, first from ground-based seismic, pressure, and ionospheric sensors and since 20 years with various satellite measurements, including with global positioning system (GPS) satellites. This coupling leads to the excitation of the Rayleigh surface waves by local atmospheric sources such as large natural explosions from volcanoes, meteor atmospheric air-bursts, or artificial explosions. It contributes also in the continuous excitation of Rayleigh waves and associated normal modes by atmospheric winds and pressure fluctuations. The same coupling allows the observation of Rayleigh waves in the thermosphere most of the time through ionospheric monitoring with Doppler sounders or GPS. The authors review briefly in this paper observations made on Earth and describe the general frame of the theory enabling the computation of Rayleigh waves for models of telluric planets with atmosphere. The authors then focus on Mars and Venus and give in both cases the atmospheric properties of the Rayleigh normal modes and associated surface waves compared to Earth. The authors then conclude on the observation perspectives especially for Rayleigh waves excited by atmospheric sources on Mars and for remote ionospheric observations of Rayleigh waves excited by quakes on Venus.

  7. Modelling atmospheric dry deposition in urban areas using an urban canopy approach

    Directory of Open Access Journals (Sweden)

    N. Cherin

    2015-03-01

    Full Text Available Atmospheric dry deposition is typically modelled using an average roughness length, which depends on land use. This classical roughness-length approach cannot account for the spatial variability of dry deposition in complex settings such as urban areas. Urban canopy models have been developed to parametrise momentum and heat transfer. We extend this approach here to mass transfer, and a new dry deposition model based on the urban canyon concept is presented. It uses a local mixing-length parametrisation of turbulence within the canopy, and a description of the urban canopy via key parameters to provide spatially distributed dry deposition fluxes. Three different flow regimes are distinguished in the urban canyon depending on the height-to-width ratio of built areas: isolated roughness flow, wake interference flow and skimming flow. Differences between the classical roughness-length model and the model developed here are investigated. Sensitivity to key parameters are discussed. This approach provides spatially distributed dry deposition fluxes that depend on surfaces (streets, walls, roofs and flow regimes (recirculation and ventilation within the urban area.

  8. Modelling atmospheric dry deposition in urban areas using an urban canopy approach

    Directory of Open Access Journals (Sweden)

    N. Cherin

    2014-12-01

    Full Text Available Atmospheric dry deposition is typically modelled using an average roughness length, which depends on land use. This classical roughness-length approach cannot account for the spatial variability of dry deposition in complex settings such as urban areas. Urban canopy models have been developed to parametrise momentum and heat transfer. We extend this approach here to mass transfer and a new dry deposition model based on the urban canyon concept is presented. It uses a local mixing length parametrisation of turbulence within the canopy, and a description of the urban canopy via key parameters to provide spatially-distributed dry deposition fluxes. Three different flow regimes are distinguished in the urban canyon depending on the height-to-width ratio of built areas: isolated roughness flow, wake interference flow and skimming flow. Differences between the classical roughness-length model and the model developed here are investigated. Sensitivity to key parameters are discussed. This approach provides spatially-distributed dry deposition fluxes that depend on surfaces (streets, walls, roofs and flow regimes (recirculation and ventilation within the urban area.

  9. A model for grain growth based on the novel description of dendrite shape

    Directory of Open Access Journals (Sweden)

    O. Wodo

    2007-12-01

    Full Text Available We use novel description of dendritic shape in the micro solid phase growth model. The model describes evolution of both primary solid solution dendrite and eutectic that forms between arms and grains in the last stage of solidification. Obtained results show that our approach can be used in grain growth model to determine more reliable eutectic distribution. In the paper no kinetics connected with the eutectic transformation is taken into account. However, this does not affect the eutectic distribution because at the beginning of eutectic reaction all liquid phase was assumed to fully transform into eutectic. Results for solid phase growth model based on this description are presented. The obtained results of eutectic distribution are especially important in the hypoeutectic alloy solidification case, where the eutectic grains grow between formed solid solution grains. Thus, the distribution of solid solution grain becomes crucial due to its influence on the delay in solid fraction increase of eutectic grains.

  10. Parallel Semi-Implicit Spectral Element Atmospheric Model

    Science.gov (United States)

    Fournier, A.; Thomas, S.; Loft, R.

    2001-05-01

    The shallow-water equations (SWE) have long been used to test atmospheric-modeling numerical methods. The SWE contain essential wave-propagation and nonlinear effects of more complete models. We present a semi-implicit (SI) improvement of the Spectral Element Atmospheric Model to solve the SWE (SEAM, Taylor et al. 1997, Fournier et al. 2000, Thomas & Loft 2000). SE methods are h-p finite element methods combining the geometric flexibility of size-h finite elements with the accuracy of degree-p spectral methods. Our work suggests that exceptional parallel-computation performance is achievable by a General-Circulation-Model (GCM) dynamical core, even at modest climate-simulation resolutions (>1o). The code derivation involves weak variational formulation of the SWE, Gauss(-Lobatto) quadrature over the collocation points, and Legendre cardinal interpolators. Appropriate weak variation yields a symmetric positive-definite Helmholtz operator. To meet the Ladyzhenskaya-Babuska-Brezzi inf-sup condition and avoid spurious modes, we use a staggered grid. The SI scheme combines leapfrog and Crank-Nicholson schemes for the nonlinear and linear terms respectively. The localization of operations to elements ideally fits the method to cache-based microprocessor computer architectures --derivatives are computed as collections of small (8x8), naturally cache-blocked matrix-vector products. SEAM also has desirable boundary-exchange communication, like finite-difference models. Timings on on the IBM SP and Compaq ES40 supercomputers indicate that the SI code (20-min timestep) requires 1/3 the CPU time of the explicit code (2-min timestep) for T42 resolutions. Both codes scale nearly linearly out to 400 processors. We achieved single-processor performance up to 30% of peak for both codes on the 375-MHz IBM Power-3 processors. Fast computation and linear scaling lead to a useful climate-simulation dycore only if enough model time is computed per unit wall-clock time. An efficient SI

  11. Description and evaluation of tropospheric chemistry and aerosols in the Community Earth System Model (CESM1.2

    Directory of Open Access Journals (Sweden)

    S. Tilmes

    2014-12-01

    Full Text Available The Community Atmosphere Model (CAM, version 5, is now coupled to extensive tropospheric and stratospheric chemistry, called CAM5-chem, and is available in addition to CAM4-chem in the Community Earth System Model (CESM version 1.2. Both configurations are well suited as tools for atmospheric-chemistry modeling studies in the troposphere and lower stratosphere, whether with internally derived "free running" (FR meteorology, or "specified dynamics" (SD. The main focus of this paper is to compare the performance of these configurations against observations from surface, aircraft, and satellite, as well as understand the origin of the identified differences. We particularly focus on comparing present-day methane lifetime estimates within the different model configurations, which range between 7.8 years in the SD configuration of CAM5-chem and 8.8 years in the FR configuration of CAM4-chem. We find that tropospheric surface area density is an important factor in controlling the burden of the hydroxyl radical (OH, which causes differences in tropical methane lifetime of about half a year between CAM4-chem and CAM5-chem. In addition, different distributions of nitrogen oxides (NOx produced from lightning production explain about half of the difference between SD and FR model versions in both CAM4-chem and CAM5-chem. Remaining differences in the tropical OH burden are due to enhanced tropical ozone burden in SD configurations compared to the FR versions, which are not only caused by differences in chemical production or loss, but also by transport and mixing. For future studies, we recommend the use of CAM5-chem, due to improved aerosol description and inclusion of aerosol-cloud interactions. However, smaller tropospheric surface area density in the current version of CAM5-chem compared to CAM4-chem results in larger oxidizing capacity in the troposphere and therefore a shorter methane lifetime.

  12. Optimization of atmospheric transport models on HPC platforms

    Science.gov (United States)

    de la Cruz, Raúl; Folch, Arnau; Farré, Pau; Cabezas, Javier; Navarro, Nacho; Cela, José María

    2016-12-01

    The performance and scalability of atmospheric transport models on high performance computing environments is often far from optimal for multiple reasons including, for example, sequential input and output, synchronous communications, work unbalance, memory access latency or lack of task overlapping. We investigate how different software optimizations and porting to non general-purpose hardware architectures improve code scalability and execution times considering, as an example, the FALL3D volcanic ash transport model. To this purpose, we implement the FALL3D model equations in the WARIS framework, a software designed from scratch to solve in a parallel and efficient way different geoscience problems on a wide variety of architectures. In addition, we consider further improvements in WARIS such as hybrid MPI-OMP parallelization, spatial blocking, auto-tuning and thread affinity. Considering all these aspects together, the FALL3D execution times for a realistic test case running on general-purpose cluster architectures (Intel Sandy Bridge) decrease by a factor between 7 and 40 depending on the grid resolution. Finally, we port the application to Intel Xeon Phi (MIC) and NVIDIA GPUs (CUDA) accelerator-based architectures and compare performance, cost and power consumption on all the architectures. Implications on time-constrained operational model configurations are discussed.

  13. Time evolution of entropy in a growth model: Dependence on the description

    Science.gov (United States)

    Goh, Segun; Choi, Jungzae; Choi, Moo Young; Yoon, Byung-Gook

    2017-01-01

    Entropy plays a key role in the statistical physics of complex systems, which in general exhibit diverse aspects of emergence on different scales. However, how entropy varies with the coarsegraining level and the description scale still remains not fully resolved. In this paper, we consider a Yule-type growth model, where each element is characterized by its size being either continuous or discrete. Entropy is then defined directly from the probability distribution of the states of all elements, as well as from the size distribution of the system. Probing in detail their relations and time evolutions, we find that heterogeneity, in addition to correlations between elements, can induce loss of information during the coarse-graining procedure. Another revelation is that the expansion of the size space domain depends on the description level, leading to a difference between the continuous and the discrete descriptions.

  14. On the practical applications of atmosphere-ocean and atmosphere-wave coupling in mesoscale numerical modeling

    Science.gov (United States)

    Kochanski, Adam

    The objectives of this work were to develop coupled atmosphere-ocean and atmosphere-wave models for the verification of the atmospheric simulations, model the small-scale ocean circulations, analyze the role of the atmospheric stability in the generation of coastal upwelling, improve the accuracy of numerical prediction over the coastal areas, and develop a parameterization of the swell-induced wind stress. The study confirmed the applicability of the high resolution Mesoscale Model 5 (MM5) wind field prediction to driving small scale ocean models applied to the U.S. West Coast, and showed that the small-scale circulation pattern of Bodega Bay can be well simulated even by the relatively simple 2D ocean model. Additional experiments performed with the complex 3D Princeton Ocean Model (POM) coupled with the MM5 showed the importance of the atmospheric stability in terms of the modification of the wind stress-curl pattern and the generation of coastal upwelling. The study revealed that the introduction of the stability effect to the wind stress computation may change the monthly mean wind stress curl by up to 0.15Pa/100km, and increase the simulated upwelling velocity by up to 25%, significantly improving the picture of the simulated upwelling and relaxation events. Further analysis performed with the MM5 model run at 9km resolution, showed that the introduction of the atmosphere-ocean coupling greatly improved the quality of the model results. The comparison with buoy data revealed that the atmosphere-ocean coupling led to a 95% increase in the correlation coefficients of the air temperature and heat fluxes, 23% for the wind direction, and up to 25% for the wind speed, and the reduction of the mean errors by up to 30%. The air-wave interaction model developed during this study showed the applicability of the innovative semi-analytical approach to the computation of the swell-induced stress. Its results also confirmed the importance of the swell-induced stress for

  15. System Design Description and Requirements for Modeling the Off-Gas Systems for Fuel Recycling Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Daryl R. Haefner; Jack D. Law; Troy J. Tranter

    2010-08-01

    This document provides descriptions of the off-gases evolved during spent nuclear fuel processing and the systems used to capture the gases of concern. Two reprocessing techniques are discussed, namely aqueous separations and electrochemical (pyrochemical) processing. The unit operations associated with each process are described in enough detail so that computer models to mimic their behavior can be developed. The document also lists the general requirements for the desired computer models.

  16. Stable spatial Langmuir solitons as a model of long-lived atmospheric plasma structures

    CERN Document Server

    Dvornikov, Maxim

    2014-01-01

    I study stable spatial Langmuir solitons in plasma based on nonlinear radial oscillations of charged particles. I discuss two situations when a Langmuir soliton can be stable. In the former case the stability of solitons against the collapse is due to electron-electron interactions which result in the nonlocal terms in the nonlinear Schr\\"{o}dinger equation. In the latter situation I derive the new cubic-quintic nonlinear Schr\\"{o}dinger equation with accounts for the interaction of induced dipole moments of diatomic ions with a rapidly oscillating electric field and show that the collapse of Langmuir waves can be also arrested. In both cases I find the numerical solutions of the nonlinear Schr\\"{o}dinger equation and analyze their stability using the Vakhitov-Kolokolov criterion. I discuss the application of my results for the description of long-lived atmospheric plasma structures. I show that, using my model, one can explain the existence of atmospheric plasmoids in the upper ionosphere. It is also demonst...

  17. Classical mathematical models for description and prediction of experimental tumor growth.

    Directory of Open Access Journals (Sweden)

    Sébastien Benzekry

    2014-08-01

    Full Text Available Despite internal complexity, tumor growth kinetics follow relatively simple laws that can be expressed as mathematical models. To explore this further, quantitative analysis of the most classical of these were performed. The models were assessed against data from two in vivo experimental systems: an ectopic syngeneic tumor (Lewis lung carcinoma and an orthotopically xenografted human breast carcinoma. The goals were threefold: 1 to determine a statistical model for description of the measurement error, 2 to establish the descriptive power of each model, using several goodness-of-fit metrics and a study of parametric identifiability, and 3 to assess the models' ability to forecast future tumor growth. The models included in the study comprised the exponential, exponential-linear, power law, Gompertz, logistic, generalized logistic, von Bertalanffy and a model with dynamic carrying capacity. For the breast data, the dynamics were best captured by the Gompertz and exponential-linear models. The latter also exhibited the highest predictive power, with excellent prediction scores (≥80% extending out as far as 12 days in the future. For the lung data, the Gompertz and power law models provided the most parsimonious and parametrically identifiable description. However, not one of the models was able to achieve a substantial prediction rate (≥70% beyond the next day data point. In this context, adjunction of a priori information on the parameter distribution led to considerable improvement. For instance, forecast success rates went from 14.9% to 62.7% when using the power law model to predict the full future tumor growth curves, using just three data points. These results not only have important implications for biological theories of tumor growth and the use of mathematical modeling in preclinical anti-cancer drug investigations, but also may assist in defining how mathematical models could serve as potential prognostic tools in the clinic.

  18. Quantifying atmospheric transport, chemistry, and mixing using a new trajectory-box model and a global atmospheric-chemistry GCM

    Directory of Open Access Journals (Sweden)

    H. Riede

    2009-12-01

    Full Text Available We present a novel method for the quantification of transport, chemistry, and mixing along atmospheric trajectories based on a consistent model hierarchy. The hierarchy consists of the new atmospheric-chemistry trajectory-box model CAABA/MJT and the three-dimensional (3-D global ECHAM/MESSy atmospheric-chemistry (EMAC general circulation model. CAABA/MJT employs the atmospheric box model CAABA in a configuration using the atmospheric-chemistry submodel MECCA (M, the photochemistry submodel JVAL (J, and the new trajectory submodel TRAJECT (T, to simulate chemistry along atmospheric trajectories, which are provided offline. With the same chemistry submodels coupled to the 3-D EMAC model and consistent initial conditions and physical parameters, a unique consistency between the two models is achieved. Since only mixing processes within the 3-D model are excluded from the model consistency, comparisons of results from the two models allow to separate and quantify contributions of transport, chemistry, and mixing along the trajectory pathways. Consistency of transport between the trajectory-box model CAABA/MJT and the 3-D EMAC model is achieved via calculation of kinematic trajectories based on 3-D wind fields from EMAC using the trajectory model LAGRANTO. The combination of the trajectory-box model CAABA/MJT and the trajectory model LAGRANTO can be considered as a Lagrangian chemistry-transport model (CTM moving isolated air parcels. The procedure for obtaining the necessary statistical basis for the quantification method is described as well as the comprehensive diagnostics with respect to chemistry.

    The quantification method presented here allows to investigate the characteristics of transport, chemistry, and mixing in a grid-based 3-D model. The analysis of chemical processes within the trajectory-box model CAABA/MJT is easily extendable to include, for example, the impact of different transport pathways or of mixing processes onto

  19. Multi-level model for 2D human motion analysis and description

    Science.gov (United States)

    Foures, Thomas; Joly, Philippe

    2003-01-01

    This paper deals with the proposition of a model for human motion analysis in a video. Its main caracteristic is to adapt itself automatically to the current resolution, the actual quality of the picture, or the level of precision required by a given application, due to its possible decomposition into several hierarchical levels. The model is region-based to address some analysis processing needs. The top level of the model is only defined with 5 ribbons, which can be cut into sub-ribbons regarding to a given (or an expected) level of details. Matching process between model and current picture consists in the comparison of extracted subject shape with a graphical rendering of the model built on the base of some computed parameters. The comparison is processed by using a chamfer matching algorithm. In our developments, we intend to realize a platform of interaction between a dancer and tools synthetizing abstract motion pictures and music in the conditions of a real-time dialogue between a human and a computer. In consequence, we use this model in a perspective of motion description instead of motion recognition: no a priori gestures are supposed to be recognized as far as no a priori application is specially targeted. The resulting description will be made following a Description Scheme compliant with the movement notation called "Labanotation".

  20. Radiative Transfer Model in the Atmosphere and Experimental Solar Data of Yaounde Location

    Science.gov (United States)

    Dountio, E. G.; Njomo, D.; Fouda, E.; Simo, A.

    2006-11-01

    The Sun is the primary source of energy supplying the Earth. This energy absorbed by the various components of the atmosphere, the oceans, the vegetation and Earth’s surface, is at the origin of the forces that control the climatic changes, the general circulation of the atmosphere, the temperature of the atmosphere and that of the oceans and the ionization of atmospheric gases, etc. The solar energy received on Earth’s surface is also directly used in technological applications such as solar heaters, solar dryers and other solar distillers, and the photovoltaic generators, etc. The calculation of the thermal performances of these apparatuses can be well made only if the spectral and even angular distribution of the solar irradiation arriving on the ground surface is well known. Moreover, the well known characteristics of the solar radiation arriving on the ground could inform us about the atmospheric phenomena that influenced its transfer, and consequently provide a better correction of the sensors response while receiving a signal from outer space in its direction, or the correction to be made on the response of a sensor while receiving data from a terrestrial sender. Only a few measurement stations of solar radiation are currently running and are not well managed, particularly in developing countries where the maintenance of a park of pyranometers on the ground is difficult and expensive. Moreover, where these measurements exist, they are rarely carried out for various wavelengths and/or angles. Such data are on the other hand accessible by numerical calculation, by solving the radiative transfer equation (ETR) in the atmosphere. One of the major factors attenuating the solar radiation received on the ground is scattering by clouds. The non- homogeneous nature of the clouds justifies the difficulty shown by the researchers to insert realistic profiles of clouds in radiative transfer models in a parallel stratified atmosphere [1, 2]. Several recent studies

  1. Atmospheric dispersion modelling over complex terrain at small scale

    Science.gov (United States)

    Nosek, S.; Janour, Z.; Kukacka, L.; Jurcakova, K.; Kellnerova, R.; Gulikova, E.

    2014-03-01

    Previous study concerned of qualitative modelling neutrally stratified flow over open-cut coal mine and important surrounding topography at meso-scale (1:9000) revealed an important area for quantitative modelling of atmospheric dispersion at small-scale (1:3300). The selected area includes a necessary part of the coal mine topography with respect to its future expansion and surrounding populated areas. At this small-scale simultaneous measurement of velocity components and concentrations in specified points of vertical and horizontal planes were performed by two-dimensional Laser Doppler Anemometry (LDA) and Fast-Response Flame Ionization Detector (FFID), respectively. The impact of the complex terrain on passive pollutant dispersion with respect to the prevailing wind direction was observed and the prediction of the air quality at populated areas is discussed. The measured data will be used for comparison with another model taking into account the future coal mine transformation. Thus, the impact of coal mine transformation on pollutant dispersion can be observed.

  2. Atmospheric radiance interpolation for the modeling of hyperspectral data

    Science.gov (United States)

    Fuehrer, Perry; Healey, Glenn; Rauch, Brian; Slater, David; Ratkowski, Anthony

    2008-04-01

    The calibration of data from hyperspectral sensors to spectral radiance enables the use of physical models to predict measured spectra. Since environmental conditions are often unknown, material detection algorithms have emerged that utilize predicted spectra over ranges of environmental conditions. The predicted spectra are typically generated by a radiative transfer (RT) code such as MODTRAN TM. Such techniques require the specification of a set of environmental conditions. This is particularly challenging in the LWIR for which temperature and atmospheric constituent profiles are required as inputs for the RT codes. We have developed an automated method for generating environmental conditions to obtain a desired sampling of spectra in the sensor radiance domain. Our method provides a way of eliminating the usual problems encountered, because sensor radiance spectra depend nonlinearly on the environmental parameters, when model conditions are specified by a uniform sampling of environmental parameters. It uses an initial set of radiance vectors concatenated over a set of conditions to define the mapping from environmental conditions to sensor spectral radiance. This approach enables a given number of model conditions to span the space of desired radiance spectra and improves both the accuracy and efficiency of detection algorithms that rely upon use of predicted spectra.

  3. The Middle Miocene climate as modelled in an atmosphere-ocean-biosphere model

    Directory of Open Access Journals (Sweden)

    M. Krapp

    2011-11-01

    Full Text Available We present simulations with a coupled atmosphere-ocean-biosphere model for the Middle Miocene 15 million years ago. The model is insofar more consistent than previous models because it captures the essential interactions between ocean and atmosphere and between atmosphere and vegetation. The Middle Miocene topography, which alters both large-scale ocean and atmospheric circulations, causes a global warming of 0.7 K compared to present day. Higher than present-day CO2 levels of 480 and 720 ppm cause a global warming of 2.8 and 4.9 K. The associated water vapour feedback enhances the greenhouse effect which leads to a polar amplification of the warming. These results suggest that higher than present-day CO2 levels are necessary to drive the warm Middle Miocene climate, also because the dynamic vegetation model simulates a denser vegetation which is in line with fossil records. However, we do not find a flatter than present-day equator-to-pole temperature gradient as has been suggested by marine and terrestrial proxies. Instead, a compensation between atmospheric and ocean heat transport counteracts the flattening of the temperature gradient. The acclaimed role of the large-scale ocean circulation in redistributing heat cannot be supported by our results. Including full ocean dynamics, therefore, does not solve the problem of the flat temperature gradient during the Middle Miocene.

  4. On Modeling the Kelvin–Helmholtz Instability in Solar Atmosphere

    Indian Academy of Sciences (India)

    I. Zhelyazkov

    2015-03-01

    In the present review article, we discuss the recent developments in studying the Kelvin–Helmholtz (KH) instability of magnetohydrodynamic (MHD) waves propagating in various solar magnetic structures. The main description is on the modeling of KH instability developing in the coronal mass ejections (CMEs), and contributes to the triggering of wave turbulence subsequently, leading to the coronal heating. KH instability of MHD waves in coronal active regions recently observed and imaged in unprecedented detail in EUV high cadence, high-resolution observations by SDO/AIA, and spectroscopic observations by Hinode/EIS instrument, is posing new challenge for its realistic modeling. It is shown that, considering the solar mass flows of CMEs as moving cylindrical twisted magnetic flux tubes, the observed instability can be explained in terms of unstable = −3 MHD mode. We also describe the occurrence of the KH instability in solar jets. The obtained critical jet speeds for the instability onset, as well as the linear wave growth rates, are in good agreement with the observational data of solar jets.

  5. Model fitting of kink waves in the solar atmosphere: Gaussian damping and time-dependence

    Science.gov (United States)

    Morton, R. J.; Mooroogen, K.

    2016-09-01

    Aims: Observations of the solar atmosphere have shown that magnetohydrodynamic waves are ubiquitous throughout. Improvements in instrumentation and the techniques used for measurement of the waves now enables subtleties of competing theoretical models to be compared with the observed waves behaviour. Some studies have already begun to undertake this process. However, the techniques employed for model comparison have generally been unsuitable and can lead to erroneous conclusions about the best model. The aim here is to introduce some robust statistical techniques for model comparison to the solar waves community, drawing on the experiences from other areas of astrophysics. In the process, we also aim to investigate the physics of coronal loop oscillations. Methods: The methodology exploits least-squares fitting to compare models to observational data. We demonstrate that the residuals between the model and observations contain significant information about the ability for the model to describe the observations, and show how they can be assessed using various statistical tests. In particular we discuss the Kolmogorov-Smirnoff one and two sample tests, as well as the runs test. We also highlight the importance of including any observational trend line in the model-fitting process. Results: To demonstrate the methodology, an observation of an oscillating coronal loop undergoing standing kink motion is used. The model comparison techniques provide evidence that a Gaussian damping profile provides a better description of the observed wave attenuation than the often used exponential profile. This supports previous analysis from Pascoe et al. (2016, A&A, 585, L6). Further, we use the model comparison to provide evidence of time-dependent wave properties of a kink oscillation, attributing the behaviour to the thermodynamic evolution of the local plasma.

  6. The Global Modeling Initiative Assessment Model: Model Description, Integration and Testing of the Transport Shell

    Energy Technology Data Exchange (ETDEWEB)

    Rotman, D.A.; Tannahill, J.R.; Kinnison, D.E.; Connell, P.S.; Bergmann, D.; Proctor, D.; Rodriquez, J.M.; Lin, S.J.; Rood, R.B.; Prather, M.J.; Rasch, P.J.; Considine, D.B.; Ramaroson, R.; Kawa, S.R.

    2000-04-25

    We describe the three dimensional global stratospheric chemistry model developed under the NASA Global Modeling Initiative (GMI) to assess the possible environmental consequences from the emissions of a fleet of proposed high speed civil transport aircraft. This model was developed through a unique collaboration of the members of the GMI team. Team members provided computational modules representing various physical and chemical processes, and analysis of simulation results through extensive comparison to observation. The team members' modules were integrated within a computational framework that allowed transportability and simulations on massively parallel computers. A unique aspect of this model framework is the ability to interchange and intercompare different submodules to assess the sensitivity of numerical algorithms and model assumptions to simulation results. In this paper, we discuss the important attributes of the GMI effort, describe the GMI model computational framework and the numerical modules representing physical and chemical processes. As an application of the concept, we illustrate an analysis of the impact of advection algorithms on the dispersion of a NO{sub y}-like source in the stratosphere which mimics that of a fleet of commercial supersonic transports (High-Speed Civil Transport (HSCT)) flying between 17 and 20 kilometers.

  7. Description of EQSAM4: gas-liquid-solid partitioning model for global simulations

    Science.gov (United States)

    Metzger, S.; Steil, B.; Xu, L.; Penner, J. E.; Lelieveld, J.

    2011-10-01

    We introduce version 4 of the EQuilibrium Simplified Aerosol Model (EQSAM4), which is part of our aerosol chemistry-microphysics module (GMXe) and chemistry-climate model (EMAC). We focus on the relative humidity of deliquescence (RHD) based water uptake of atmospheric aerosols, as this is important for atmospheric chemistry and climate modeling, e.g. to calculate the aerosol optical depth (AOD). Since the main EQSAM4 applications will involve large-scale, long-term and high-resolution atmospheric chemistry-climate modeling with EMAC, computational efficiency is an important requirement. EQSAM4 parameterizes the composition and water uptake of multicomponent atmospheric aerosols by considering the gas-liquid-solid partitioning of single and mixed solutes. EQSAM4 builds on analytical, and hence CPU efficient, aerosol hygroscopic growth parameterizations to compute the aerosol liquid water content (AWC). The parameterizations are described in the companion paper (Metzger et al., 2011) and only require a compound specific coefficient νi to derive the single solute molality and the AWC for the whole range of water activity (aw). νi is pre-calculated and applied during runtime by using internal look-up tables. Here, the EQSAM4 equilibrium model is described and compared to the more explicit thermodynamic model ISORROPIA II. Both models are imbedded in EMAC/GMXe. Box model inter-comparisons, including the reference model E-AIM, and global simulations with EMAC show that gas-particle partitioning, including semi-volatiles and water, is in good agreement. A more comprehensive box model inter-comparison of EQSAM4 with EQUISOLV II is subject of the revised publication of Xu et al. (2009), i.e. Xu et al. (2011).

  8. Validation of coastal oceanographic models at Forsmark. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Engqvist, Anders (A och I Engqvist Konsult HB, Vaxholm (SE)); Andrejev, Oleg (Finnish Inst. of Marine Research, Helsinki (FI))

    2008-01-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterisation at two different locations, the Forsmark and the Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The characterisation work is divided into an initial site investigation phase and a complete site investigation phase. In this context, the water exchange of the coastal zone is one link of the chain of possible nuclide transport mechanisms that must be assessed in the site description of potential repository areas. For the purpose of validating the pair of nested 3D-models employed to simulate the water exchange in the near-shore coastal zone in the Forsmark area, an encompassing measurement program entailing six stations has been performed. The design of this program was to first assess to what degree the forcing of the fine resolution (FR) model of the Forsmark study area at its interfacial boundary to the coarse resolution (CR) model of the entire Baltic was reproduced. In addition to this scrutiny it is of particular interest how the time-varying density-determining properties, salinity and temperature, at the borders are propagated into the FR-domain, since this corresponds to the most efficient mode of water exchange. An important part of the validation process has been to carefully evaluate which measurement data that can be considered reliable. The result was that several periods of foremost near-surface salinity data had to be discarded due to growth of algae on the conductivity sensors. Lack of thorough absolute calibration of the salinity meters also necessitates dismissal of measurement data. Relative the assessed data that can be accepted as adequate, the outcome of the validation can be summarized in five points: (i) The surface-most salinity of the CR-model drifts downward a little less than one practical salinity unit (psu) per year, requiring that the ensuing correlation analysis be subdivided into periods of a

  9. Observations and Modeling of Solar Flare Atmospheric Dynamics

    Science.gov (United States)

    Li, Y.

    2015-09-01

    Solar flares are one of the most energetic events in solar atmosphere, which last minutes to tens of minutes. The eruption of a solar flare involves energy release, plasma heating, particle acceleration, mass flows, waves, etc. A solar flare releases a large amount of energy, and its emission spans a wide wavelength range. Solar flares are usually accompanied by coronal mass ejections (CMEs); therefore they could significantly affect the space environments between the Earth and the Sun. At present, we do not fully understand the whole flare process. There are still many important questions to be resolved, such as when and where is the energy released? How long does the energy release last? What are the main ways of energy release? And how does the solar atmosphere respond to the energy release? To address these questions, we study in detail the flare heating and dynamic evolution. We first give a brief review of previous flare studies (Chapter 1), and introduce the observing instruments (Chapter 2) and the modeling method (Chapter 3) related to this thesis work. Then we use spectral data to investigate the chromospheric evaporation (Chapter 4). Based on the results, we further explore the flare heating problem. With observationally inferred heating functions, we model two flare loops, and compare the results with observations (Chapter 5). A consistency is achieved between modeling and observations. In addition, we model two different sets of flare loop systems with quite different heating profiles and dynamic evolutions (Chapter 6). The details are described as below. Firstly, we investigate the chromospheric evaporation in the flare on 2007 January 16 using line profiles observed by the Extreme-ultraviolet (EUV) Imaging Spectrometer (EIS) on board Hinode. Three points with different magnetic polarities at flare ribbons are analyzed in detail. We find that the three points show different patterns of upflows and downflows in the impulsive phase of the flare. The

  10. Relating harmonic and projective descriptions of N=2 nonlinear sigma models

    CERN Document Server

    Butter, Daniel

    2012-01-01

    Recent papers have established the relationship between projective superspace and a complexified version of harmonic superspace. We extend this construction to the case of general nonlinear sigma models in both frameworks. Using an analogy with Hamiltonian mechanics, we demonstrate how the Hamiltonian structure of the harmonic model and the symplectic structure of the projective model naturally arise from a single unifying action on a complexified version of harmonic superspace. This links the harmonic and projective descriptions of hyperkahler target spaces. For two examples, we show how to derive the projective superspace solutions for the Taub-NUT and Eguchi-Hanson models from the harmonic superspace solutions.

  11. Development of Semantic Description for Multiscale Models of Thermo-Mechanical Treatment of Metal Alloys

    Science.gov (United States)

    Macioł, Piotr; Regulski, Krzysztof

    2016-08-01

    We present a process of semantic meta-model development for data management in an adaptable multiscale modeling framework. The main problems in ontology design are discussed, and a solution achieved as a result of the research is presented. The main concepts concerning the application and data management background for multiscale modeling were derived from the AM3 approach—object-oriented Agile multiscale modeling methodology. The ontological description of multiscale models enables validation of semantic correctness of data interchange between submodels. We also present a possibility of using the ontological model as a supervisor in conjunction with a multiscale model controller and a knowledge base system. Multiscale modeling formal ontology (MMFO), designed for describing multiscale models' data and structures, is presented. A need for applying meta-ontology in the MMFO development process is discussed. Examples of MMFO application in describing thermo-mechanical treatment of metal alloys are discussed. Present and future applications of MMFO are described.

  12. Analytic model for description of temperature dependent rate phenomena in arthropods

    Energy Technology Data Exchange (ETDEWEB)

    Logan, J.A.; Wollkind, D.J.; Hoyt, S.C.; Tanigoshi, L.K.

    1976-12-15

    A new description of temperature-dependent, rate phenomena was deduced to describe developmental time and ovipositional data for the McDaniel spider mite, Tetranychus mcdanieli McGregor. The derived equation accounted for asymmetry about optimum temperature and was of particular utility for description of systems operating at or above optimum temperatures. Ovipositional and developmental rate functions were used in a temperature-driven, discrete-time, simulation model describing McDaniel spider mite population dynamics. Temperature dependence of the instantaneous population growth rate was determined by fitting the derived rate-temperature function to data generated through simulation at various fixed temperatures. The functional relationship of important population parameters to temperature provided the mechanism for inclusion of phenological effects on mite populations in a synoptic apple pest management model. Two derived functions were fit to several published rate-temperature data sets. Adequacy of description (as indicated by R/sup 2/ values) indicated general applicability of both functions for description of temperature-controlled, biological processes. Further, it was concluded that the singular perturbation method of matched asymptotes has potentially wide application in ecology, and an Appendix detailing the application of this method is included.

  13. Long-wave forcing for regional atmospheric modelling

    Energy Technology Data Exchange (ETDEWEB)

    Storch, H. von; Langenberg, H.; Feser, F. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik

    1999-07-01

    A new method, named 'spectral nudging', of linking a regional model to the driving large-scale model simulated or analyzed by a global model is proposed and tested. Spectral nudging is based on the idea that regional-scale climate statistics are conditioned by the interplay between continental-scale atmospheric conditions and such regional features as marginal seas and mountain ranges. Following this 'downscaling' idea, the regional model is forced to satisfy not only boundary conditions, possibly in a boundary sponge region, but also large-scale flow conditions inside the integration area. We demonstrate that spectral nudging succeeds in keeping the simulated state close to the driving state at large scales, while generating smaller-scale features. We also show that the standard boundary forcing technique in current use allows the regional model to develop internal states conflicting with the large-scale state. It is concluded that spectral nudging may be seen as a suboptimal and indirect data assimilation technique. (orig.) [German] Eine neue Methode, genannt 'spektrales nudging', ein Regionalmodell an das durch ein Globalmodell simulierte grossskalige Antriebsfeld zu koppeln, wird vorgestellt und getestet. Das spektrale nudging basiert auf der Annahme, dass regionale Klimastatistik durch die Wechselwirkung zwischen dem kontinental-skaligen atmosphaerischen Zustand und regionalen Gegebenheiten, wie kleinere Seen und Gebirgszuege, bestimmt wird. Demnach muss das Regionalmodell nicht nur die Randbedingungen erfuellen, sondern auch die grossskaligen Zustaende innerhalb des Integrationsgebietes wiedergeben koennen. Wir zeigen, dass durch das spektrale nudging der grossskalige modellierte Zustand nahe an dem des Antriebsfeldes liegt, ohne die Modellierung regionaler Phaenomene zu beeintraechtigen. Ausserdem zeigen wir, dass das Regionalmodell durch die zur Zeit benutzte Antriebstechnik ueber den Modellrand interne Felder produzieren kann

  14. A Rangeland Hydrology and Erosion Model for Developing Ecological Site Descriptions

    Science.gov (United States)

    Nearing, M. A.; Hernandez, M.; Armendariz, G.; Barker, S.; Williams, C. J.

    2014-12-01

    Predicting soil erosion is common practice in natural resource management for assessing the effects of management practices and control techniques of soil productivity, sediment delivery and off site water quality. The Rangeland Hydrology and Erosion Model (RHEM) was designed for this purpose. RHEM is an event-based model that estimates runoff, erosion, and sediment delivery rates and volumes at the spatial scale of the hillslope and the temporal scale of as single rainfall event. It represents erosion processes under normal and fire-impacted rangeland conditions. Moreover, it adopts a new splash erosion and thin sheet -flow transport equation developed from rangeland data, and it links the model hydrologic and erosion parameters with rangeland plant community by providing a new system of parameter estimation equations based on 204 plots at 49 rangeland sites distributed across 15 western U.S. states. Testing was done using long-term runoff and erosion data from small semi-aridland catchments. One of our goals with this project is to develop a framework for incorporating key ecohydrologic information/relationships in Ecological Site Descriptions and thereby enhanced utility of Ecological Site Descriptions s for guiding management. These key ecohydrologic relationships govern the ecologic resilience of the various states and community phases on many rangeland ecological sites and are strongly affected by management practices, land use, and disturbances. However, ecohydrologic data and relationships are often missing in Ecological Site Descriptions and resilience-based state-and-transition models. In this study we applied the RHEM model to data from multiple points in several ecological sites in Arizona, New Mexico, and Utah to assess the utility of the model for informing these Ecological Site Descriptions.

  15. A sustained oscillation in a toy-model of the coupled atmosphere-ocean system

    CERN Document Server

    Bothe, Oliver

    2011-01-01

    Interaction between atmospheric mid-latitude flow and wind-driven ocean circulation is studied coupling two idealized low-order spectral models. The barotropic Charney-DeVore model with three components simulates a bimodal mid-latitude atmospheric circulation in a channel with two stable flow patterns induced by topography. The wind-driven ocean double gyre circulation in a square basin (of half the channel length) is modeled by an equivalent barotropic formulation of the Veronis model with 21 components, which captures Rossby-wave dynamics and nonlinear decadal variability. When coupled, the atmosphere forces the ocean by wind-stress while, simultaneously, the ocean affects the atmosphere by thermal forcing in terms of a vorticity source. Coupled atmosphere-ocean simulations show two stable flow patterns associated with the topographically induced atmospheric bimodality and a sustained oscillation due to interaction between atmospheric bimodality and oceanic Rossby dynamics. The oscillation is of inter-annua...

  16. Global atmospheric dispersion modelling after the Fukushima accident

    Energy Technology Data Exchange (ETDEWEB)

    Suh, K.S.; Youm, M.K.; Lee, B.G.; Min, B.I. [Korea Atomic Energy Research Institute (Korea, Republic of); Raul, P. [Universidad de Sevilla (Spain)

    2014-07-01

    A large amount of radioactive material was released to the atmosphere due to the Fukushima nuclear accident in March 2011. The radioactive materials released into the atmosphere were mostly transported to the Pacific Ocean, but some of them were fallen on the surface due to dry and wet depositions in the northwest area from the Fukushima nuclear site. Therefore, northwest part of the nuclear site was seriously contaminated and it was designated with the restricted zone within a radius of 20 ∼ 30 km around the Fukushima nuclear site. In the early phase of the accident from 11 March to 30 March, the radioactive materials were dispersed to an area of the inland and offshore of the nuclear site by the variations of the wind. After the Fukushima accident, the radionuclides were detected through the air monitoring in the many places over the world. The radioactive plume was transported to the east part off the site by the westerly jet stream. It had detected in the North America during March 17-21, in European countries during March 23-24, and in Asia during from March 24 to April 6, 2011. The radioactive materials were overall detected across the northern hemisphere passed by 15 ∼ 20 days after the accident. Three dimensional numerical model was applied to evaluate the dispersion characteristics of the radionuclides released into the air. Simulated results were compared with measurements in many places over the world. Comparative results had good agreements in some places, but they had a little differences in some locations. The difference between the calculations and measurements are due to the meteorological data and relatively coarse resolutions in the model. Some radioactive materials were measured in Philippines, Taiwan, Hon Kong and South Korea during from March 23-28. It inferred that it was directly transported from the Fukushima by the northeastern monsoon winds. This event was well represented in the numerical model. Generally, the simulations had a good

  17. Descriptive and predictive evaluation of high resolution Markov chain precipitation models

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Madsen, Henrik; Arnbjerg-Nielsen, Karsten

    2012-01-01

    . Continuous modelling of the Markov process proved attractive because of a marked decrease in the number of parameters. Inclusion of seasonality into the continuous Markov chain model proved difficult. Monte Carlo simulations with the models show that it is very difficult for all the model formulations...... to reproduce the time series on event level. Extreme events with short (10 min), medium (60 min) and long (12 h) durations were investigated because of their importance in urban hydrology. Both the descriptive likelihood based statistics and the predictive Monte Carlo simulation based statistics are valuable......A time series of tipping bucket recordings of very high temporal and volumetric resolution precipitation is modelled using Markov chain models. Both first and second‐order Markov models as well as seasonal and diurnal models are investigated and evaluated using likelihood based techniques...

  18. Capturing Characteristics of Atmospheric Refractivity Using Observations and Modeling Approaches

    Science.gov (United States)

    2015-06-01

    property of the atmosphere that bends EM energy (e.g., radar, communications) from a straight line path and is caused by spatial variations in temperature...factors that affect the radiation balance include diurnal cycle, season and latitude , presence of clouds and at what altitudes, atmospheric water vapor...coordinated supporting atmospheric and oceanographic data collection was conducted along with EM propagation loss measurements during an intensive

  19. Modeling Turbulence Generation in the Atmospheric Surface and Boundary Layers

    Science.gov (United States)

    2015-10-01

    index. In the boundary layer, atmospheric temperature fluctuations are primarily responsible for the variations in refractive index at ultraviolet...parameterization of the atmospheric emissivity, in the early 1980s a parallel study of the SEB was conducted by the US Army Waterways Experiment Station...period of rotation of the atmosphere can be defined as TI = 2π/fc. At most mid- latitude locations this period is approximately 17 h. This quantity is

  20. Analytical Models of Exoplanetary Atmospheres: Atmospheric Dynamics via the Shallow Water System

    CERN Document Server

    Heng, Kevin

    2014-01-01

    Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical and spherical), rotation, magnetic tension and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag and magnetic drag) and magnetic tension are included. The global atmospheric structure is largely controlled by a single, key parameter that involves the Rossby and Prandtl numbers. This near-universality breaks down when either molecular viscosity or magnetic drag varies significantly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulatio...

  1. Models of neutron star atmospheres enriched with nuclear burning ashes

    CERN Document Server

    Nättilä, Joonas; Kajava, Jari J E; Poutanen, Juri

    2015-01-01

    Low-mass X-ray binaries hosting neutron stars (NS) exhibit thermonuclear (type-I) X-ray bursts, which are powered by unstable nuclear burning of helium and/or hydrogen into heavier elements deep in the NS "ocean". In some cases the burning ashes may rise from the burning depths up to the NS photosphere by convection, leading to the appearance of the metal absorption edges in the spectra, which then force the emergent X-ray burst spectra to shift toward lower energies. These effects may have a substantial impact on the color correction factor $f_c$ and the dilution factor $w$, the parameters of the diluted blackbody model $F_E \\approx w B_E(f_c T_{eff})$ that is commonly used to describe the emergent spectra from NSs. The aim of this paper is to quantify how much the metal enrichment can change these factors. We have developed a new NS atmosphere modeling code, which has a few important improvements compared to our previous code required by inclusion of the metals. The opacities and the internal partition func...

  2. An updated subgrid orographic parameterization for global atmospheric forecast models

    Science.gov (United States)

    Choi, Hyun-Joo; Hong, Song-You

    2015-12-01

    A subgrid orographic parameterization (SOP) is updated by including the effects of orographic anisotropy and flow-blocking drag (FBD). The impact of the updated SOP on short-range forecasts is investigated using a global atmospheric forecast model applied to a heavy snowfall event over Korea on 4 January 2010. When the SOP is updated, the orographic drag in the lower troposphere noticeably increases owing to the additional FBD over mountainous regions. The enhanced drag directly weakens the excessive wind speed in the low troposphere and indirectly improves the temperature and mass fields over East Asia. In addition, the snowfall overestimation over Korea is improved by the reduced heat fluxes from the surface. The forecast improvements are robust regardless of the horizontal resolution of the model between T126 and T510. The parameterization is statistically evaluated based on the skill of the medium-range forecasts for February 2014. For the medium-range forecasts, the skill improvements of the wind speed and temperature in the low troposphere are observed globally and for East Asia while both positive and negative effects appear indirectly in the middle-upper troposphere. The statistical skill for the precipitation is mostly improved due to the improvements in the synoptic fields. The improvements are also found for seasonal simulation throughout the troposphere and stratosphere during boreal winter.

  3. The global chemistry transport model TM5: description and evaluation of the tropospheric chemistry version 3.0

    NARCIS (Netherlands)

    Huijnen, V.; Williams, J.; van Weele, M.; van Noije, T.; Krol, M.; Dentener, F.; Segers, A.; Houweling, S.; Peters, W.; de Laat, J.; Boersma, F.; Bergamaschi, P.; van Velthoven, P.; Le Sager, P.; Eskes, H.; Alkemade, F.; Scheele, R.; Nédélec, P.; Pätz, H.-W.

    2010-01-01

    We present a comprehensive description and benchmark evaluation of the tropospheric chemistry version of the global chemistry transport model TM5 (Tracer Model 5, version TM5-chem-v3.0). A full description is given concerning the photochemical mechanism, the interaction with aerosol, the treatment o

  4. Mass-based hygroscopicity parameter interaction model and measurement of atmospheric aerosol water uptake

    Directory of Open Access Journals (Sweden)

    E. Mikhailov

    2013-01-01

    Full Text Available In this study we derive and apply a mass-based hygroscopicity parameter interaction model for efficient description of concentration-dependent water uptake by atmospheric aerosol particles with complex chemical composition. The model approach builds on the single hygroscopicity parameter model of Petters and Kreidenweis (2007. We introduce an observable mass-based hygroscopicity parameter κm which can be deconvoluted into a dilute hygroscopicity parameter (κm0 and additional self- and cross-interaction parameters describing non-ideal solution behavior and concentration dependencies of single- and multi-component systems.

    For reference aerosol samples of sodium chloride and ammonium sulfate, the κm-interaction model (KIM captures the experimentally observed concentration and humidity dependence of the hygroscopicity parameter and is in good agreement with an accurate reference model based on the Pitzer ion-interaction approach (Aerosol Inorganic Model, AIM. Experimental results for pure organic particles (malonic acid, levoglucosan and for mixed organic-inorganic particles (malonic acid – ammonium sulfate are also well reproduced by KIM, taking into account apparent or equilibrium solubilities for stepwise or gradual deliquescence and efflorescence transitions.

    The mixed organic-inorganic particles as well as atmospheric aerosol samples exhibit three distinctly different regimes of hygroscopicity: (I a quasi-eutonic deliquescence & efflorescence regime at low-humidity where substances are just partly dissolved and exist also in a non-dissolved phase, (II a gradual deliquescence & efflorescence regime at intermediate humidity where different solutes undergo gradual dissolution or solidification in the aqueous phase; and (III a dilute regime at high humidity where the solutes are fully dissolved approaching their dilute hygroscopicity.

    For atmospheric aerosol samples

  5. A comparison of chemistry and dust cloud formation in ultracool dwarf model atmospheres

    CERN Document Server

    Helling, Ch; Allard, F; Dehn, M; Hauschild, P; Homeier, D; Lodders, K; Marley, M; Rietmeijer, F; Tsuji, T; Woitke, P

    2008-01-01

    The atmospheres of substellar objects contain clouds of oxides, iron, silicates, and other refractory condensates. Water clouds are expected in the coolest objects. The opacity of these `dust' clouds strongly affects both the atmospheric temperature-pressure profile and the emergent flux. Thus any attempt to model the spectra of these atmospheres must incorporate a cloud model. However the diversity of cloud models in atmospheric simulations is large and it is not always clear how the underlying physics of the various models compare. Likewise the observational consequences of different modeling approaches can be masked by other model differences, making objective comparisons challenging. In order to clarify the current state of the modeling approaches, this paper compares five different cloud models in two sets of tests. Test case 1 tests the dust cloud models for a prescribed L, L--T, and T-dwarf atmospheric (temperature T, pressure p, convective velocity vconv)-structures. Test case 2 compares complete mode...

  6. Validation of coastal oceanographic models at Laxemar-Simpevarp. Site descriptive modelling SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Engqvist, Anders (A och I Engqvist Konsult HB, Vaxholm (SE)); Andrejev, Oleg (Finnish Inst. of Marine Research, Helsinki (FI))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterization at two different locations, the Forsmark and the Laxemar-Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The characterization work is divided into an initial site investigation phase and a complete site investigation phase. In this context, the water exchange of the coastal zone is one link of the chain of possible nuclide transport mechanisms that must be assessed in the site description of potential repository areas. For the purpose of validating the pair of nested 3D-models and the coupled discrete basin (CDB-) model employed to simulate the water exchange in the near-shore coastal zone in the Laxemar-Simpevarp area, an encompassing measurement program entailing data from six stations (of which two are close) has been performed. The design of this program was to first assess to what degree the forcing of the fine resolution (FR-) model of the Laxemar- Simpevarp study area at its interfacial boundary to the coarse resolution (CR-) model of the entire Baltic was reproduced. In addition to this, it is of particular interest how the time-varying density-determining properties, salinity and temperature, at the borders are propagated into the FR-domain and further influence the water exchange with the interior, more secluded, basins. An important part of the validation process has been to carefully evaluate which measurement data that can be considered reliable. The result was that some periods of foremost near-surface salinity data had to be discarded due to growth of algae on the conductivity sensors. Interference with ship traffic and lack of absolute calibration of the salinity meters necessitated dismissal of measurement data too. In this study so-called Mesan data have been consistently used for the meteorological forcing of the 3D-models. Relative the assessed data that can be accepted as adequate, the outcome of the

  7. On the applicability of deformed jellium model to the description of metal clusters

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Matveentsev, Anton; Solov'yov, Ilia;

    2003-01-01

    This work is devoted to the elucidation the applicability of jellium model to the description of alkali cluster properties on the basis of comparison the jellium model results with those derived from experiment and within ab initio theoretical framework. On the basis of the Hartree-Fock and local......-density approximation deformed jellium model we have calculated the binding energies per atom, ionization potentials, deformation parameters and the optimized values of the Wigner-Seitz radii for neutral and singly charged sodium clusters with the number of atoms $N0$. These characteristics are compared...

  8. [DESCRIPTION AND PRESENTATION OF THE RESULTS OF ELECTROENCEPHALOGRAM PROCESSING USING AN INFORMATION MODEL].

    Science.gov (United States)

    Myznikov, I L; Nabokov, N L; Rogovanov, D Yu; Khankevich, Yu R

    2016-01-01

    The paper proposes to apply the informational modeling of correlation matrix developed by I.L. Myznikov in early 1990s in neurophysiological investigations, such as electroencephalogram recording and analysis, coherence description of signals from electrodes on the head surface. The authors demonstrate information models built using the data from studies of inert gas inhalation by healthy human subjects. In the opinion of the authors, information models provide an opportunity to describe physiological processes with a high level of generalization. The procedure of presenting the EEG results holds great promise for the broad application.

  9. Wind Turbine Blockset in Saber. General Overview and Description of the Model

    DEFF Research Database (Denmark)

    Iov, Florin; Timbus, Adrian Vasile; Hansen, A. D.;

    This report presents a new developed Saber Toolbox for wind turbine applications. This toolbox has been developed during the research project ?Simulation Platform to model, optimize and design wind turbines?. The report provides a quick overview of the Saber and then explains the structure...... blocks. Since the developed models are based on Saber built-in blocks, a description of the libraries from Saber is given. Then some simulation results using the developed models are shown. Finally some general conclusions regarding this new developed Toolbox as well as some directions for future work...

  10. A descriptive model of a universe containing matter which produces gravitational radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chauvet, P.; Cervantes-Cota, J. (Universidad Autonoma Metropolitana-Iztapalapa, Mexico City (Mexico)); Klapp, J. (Universidad Autonoma Metropolitana-Iztapalapa, Mexico City (Mexico) Instituto Nacional de Investigaciones Nucleares, Mexico City (Mexico))

    1993-04-01

    The dynamics of the production of relative high frequency gravitational waves by astrophysical events taking place within the galaxies in the cosmological context can be well represented by a phenomenological description of the generating processes through a radiation energy profile that contains two adjustable parameters. This profile gives a relation between the total pressure and energy density of the matter generating gravitational radiation together with the waves themselves, both treated as ordinary hydrodynamic fluids. The resulting cosmological models then represent, in a descriptive way only, universes filled with two interacting fluids: on the one hand gravitational radiation, and the matter which emits it but does not reabsorb it, on the other. It is shown that the dynamic effects of the model can be significant, even if the conversion rate of matter into gravitational radiation is relatively small. 16 refs., 5 figs., 1 tab.

  11. a Better Description of Liquid Jet Breakup Using a Spatial Model Including Viscous Effects.

    Science.gov (United States)

    Hammerschlag, William Brian

    Theoretical models describing the operation and disintegration of a liquid jet are often based on an approximate solution of an inviscid jet in the temporal frame of reference. These models provide only a fair first order prediction of growth rate and breakoff length, and are based solely on a surface tension induced instability. A spatial model yielding jet growth rate and including both jet and surrounding atmosphere viscosity and density is now developed. This model is seen to reproduce all the features and limitations of the Weber viscous jet theory. When tested against experiments of water, water and glycerol mixes and binary eutectic tin/lead solder, only fair agreement is observed.

  12. Tests of Dielectric Model Descriptions of Chemical Charge Displacements in Water

    CERN Document Server

    Tawa, G J; Tawa, Gregory J.; Pratt, Lawrence R.

    1994-01-01

    A dielectric model of electrostatic solvation is applied to describe potentials of mean force in water along reaction paths for: a) formation of a sodium chloride ion pair; b) the symmetric SN2 exchange of chloride in methylchloride; and c) nucleophilic attack of formaldehyde by hydroxide anion. For these cases simulation and XRISM results are available for comparison. The accuracy of model predictions varies from spectacular to mediocre. It is argued that: a) dielectric models are physical models, even though simplistic and empirical; b) their successes suggest that second-order perturbation theory is a physically sound description of free energies of electrostatic solvation; and c) the most serious deficiency of the dielectric models lies in the definition of cavity volumes. Second-order perturbation theory should therefore be used to refine the dielectric models. These dielectric models make no attempt to assess the role of packing effects but for solvation of classical electrostatic interactions the diele...

  13. Snow modeling within a multi-layer soil-vegetation-atmosphere model

    Science.gov (United States)

    McGowan, L. E.; Paw U, K. T.; Pyles, D. R.

    2014-12-01

    Estimates of snow depth, extent, and melt in the Sierra Nevada Mountain Range are critical to estimating the amount of water that will be available for crops during the growing season within California's Central Valley. Numerical simulations utilizing a fourth order turbulent closure transport scheme in a multi-layer soil-vegetation-atmosphere model, Advanced Canopy-Atmosphere-Soil algorithm (ACASA), were used to explore snow model improvements in the physics-based parameterization for the Sierra Nevada Range. A set of alterations were made separately to the existing snowpack model within ACASA focusing on improvements to snow cover simulations on complex terrain slopes and over varying canopy cover. Three winter seasons were simulated; a climatological average, dry, and wet winter. The simulated output from the models are compared to observations to determine which model alterations made the largest improvements to snow simulations.

  14. Description of Mixed-Phase Clouds in Weather Forecast and Climate Models

    Science.gov (United States)

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Description of Mixed-Phase Clouds in Weather Forecast...TERM GOALS To develop improved parameterizations of so-called mixed-phase stratocumulus in numerical models of weather and climate, and of their...impact on the surface energy budget over the Arctic Ocean, their impact on the vertical structure of the lower troposphere and relationships to larger

  15. Should we use a simple or complex model for moisture recycling and atmospheric moisture tracking?

    NARCIS (Netherlands)

    Ent, van der R.J.; Tuinenburg, O.A.; Knoche, H.R.; Kunstmann, H.; Savenije, H.H.G.

    2013-01-01

    This paper compares state-of-the-art atmospheric moisture tracking models. Such models are typically used to study the water component of coupled land and atmosphere models, in particular quantifying moisture recycling and the source-sink relations between evaporation and precipitation. There are se

  16. Should we use a simple or complex model for moisture recycling and atmospheric moisture tracking?

    NARCIS (Netherlands)

    Van der Ent, R.J.; Tuinenburg, O.A.; Knoche, H.R.; Kunstmann, H.; Savenije, H.H.G.

    2013-01-01

    This paper compares three state-of-the-art atmospheric moisture tracking models. Such models are typically used to study the water component of coupled land and atmosphere models, in particular quantifying moisture recycling and the source-sink relations between evaporation and precipitation. Howeve

  17. Atmospheric blocking in a high resolution climate model: influences of mean state, orography and eddy forcing

    NARCIS (Netherlands)

    Berckmans, J.N.J.; Woollings, T.; Demory, M.; Vidale, P.; Roberts, M.

    2013-01-01

    An underestimate of atmospheric blocking occurrence is a well-known limitation of many climate models. This article presents an analysis of Northern Hemisphere winter blocking in an atmospheric model with increased horizontal resolution. European blocking frequency increases with model resolution, a

  18. Validation of coastal oceanographic models at Laxemar-Simpevarp. Site descriptive modelling SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Engqvist, Anders (A och I Engqvist Konsult HB, Vaxholm (SE)); Andrejev, Oleg (Finnish Inst. of Marine Research, Helsinki (FI))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterization at two different locations, the Forsmark and the Laxemar-Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The characterization work is divided into an initial site investigation phase and a complete site investigation phase. In this context, the water exchange of the coastal zone is one link of the chain of possible nuclide transport mechanisms that must be assessed in the site description of potential repository areas. For the purpose of validating the pair of nested 3D-models and the coupled discrete basin (CDB-) model employed to simulate the water exchange in the near-shore coastal zone in the Laxemar-Simpevarp area, an encompassing measurement program entailing data from six stations (of which two are close) has been performed. The design of this program was to first assess to what degree the forcing of the fine resolution (FR-) model of the Laxemar- Simpevarp study area at its interfacial boundary to the coarse resolution (CR-) model of the entire Baltic was reproduced. In addition to this, it is of particular interest how the time-varying density-determining properties, salinity and temperature, at the borders are propagated into the FR-domain and further influence the water exchange with the interior, more secluded, basins. An important part of the validation process has been to carefully evaluate which measurement data that can be considered reliable. The result was that some periods of foremost near-surface salinity data had to be discarded due to growth of algae on the conductivity sensors. Interference with ship traffic and lack of absolute calibration of the salinity meters necessitated dismissal of measurement data too. In this study so-called Mesan data have been consistently used for the meteorological forcing of the 3D-models. Relative the assessed data that can be accepted as adequate, the outcome of the

  19. Vertical spectral representation in primitive equation models of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Mizzi, A.; Tribbia, J. [National Center for Atmospheric Research, Boulder, CO (United States); Curry, J. [Univ. of Colorado, Boulder, CO (United States)

    1995-08-01

    Attempts to represent the vertical structure in primitive equation models of the atmosphere with the spectral method have been unsuccessful to date. Linear stability analysis showed that small time steps were required for computational stability near the upper boundary with a vertical spectral representation and found it necessary to use an artificial constraint to force temperature to zero when pressure was zero to control the upper-level horizontal velocities. This ad hoc correction is undesirable, and an analysis that shows such a correction is unnecessary is presented. By formulating the model in terms of velocity and geopotential and then using the hydrostatic equation to calculate temperature from geopotential, temperature is necessarily zero when pressure is zero. The authors applied this technique to the dry-adiabatic primitive equations on the equatorial {beta} and tropical f planes. Vertical and horizontal normal modes were used as the spectral basis functions. The vertical modes are based on vertical normal modes, and the horizontal modes are normal modes for the primitive equations on a {beta} or f plane. The results show that the upper-level velocities do not necessarily increase, total energy is conserved, and kinetic energy is bounded. The authors found an upper-level temporal oscillation in the horizontal domain integral of the horizontal velocity components that is related to mass and velocity field imbalances in the initial conditions or introduced during the integration. Through nonlinear normal-mode initialization, the authors effectively removed the initial condition imbalance and reduced the amplitude of this oscillation. It is hypothesized that the vertical spectral representation makes the model more sensitive to initial condition imbalances, or it introduces imbalance during the integration through vertical spectral truncation. 20 refs., 12 figs.

  20. An analytical model for soil-atmosphere feedback

    NARCIS (Netherlands)

    Schaefli, B.; Van der Ent, R.J.; Woods, R.; Savenije, H.H.G.

    2012-01-01

    Soil-atmosphere feedback is a key for understanding the hydrological cycle and the direction of potential system changes. This paper presents an analytical framework to study the interplay between soil and atmospheric moisture, using as input only the boundary conditions at the upstream end of traje

  1. A Description of the Framework of the Atmospheric Boundary Layer Environment (ABLE) Model

    Science.gov (United States)

    2012-09-01

    AND ADDRESS(ES) U.S. Army Research Laboratory ATTN: RDRL- CIE -D 2800 Powder Mill Road Adelphi, MD 20783-1197 8. PERFORMING ORGANIZATION REPORT...from the color -coded planes. The results were compared with the laboratory test data from Prasad and Keosseff (1989...sections denoted from the color - coded planes. The results were compared with the laboratory test data from Prasad and Kosseff (1989). We have also

  2. A global hybrid coupled model based on Atmosphere-SST feedbacks

    CERN Document Server

    Cimatoribus, Andrea A; Dijkstra, Henk A

    2011-01-01

    A global hybrid coupled model is developed, with the aim of studying the effects of ocean-atmosphere feedbacks on the stability of the Atlantic meridional overturning circulation. The model includes a global ocean general circulation model and a statistical atmosphere model. The statistical atmosphere model is based on linear regressions of data from a fully coupled climate model on sea surface temperature both locally and hemispherically averaged, being the footprint of Atlantic meridional overturning variability. It provides dynamic boundary conditions to the ocean model for heat, freshwater and wind-stress. A basic but consistent representation of ocean-atmosphere feedbacks is captured in the hybrid coupled model and it is more than ten times faster than the fully coupled climate model. The hybrid coupled model reaches a steady state with a climate close to the one of the fully coupled climate model, and the two models also have a similar response (collapse) of the Atlantic meridional overturning circulati...

  3. Directional Time-Distance Probing of Model Sunspot Atmospheres

    CERN Document Server

    Moradi, H; Przybylski, D; Shelyag, S

    2015-01-01

    A crucial feature not widely accounted for in local helioseismology is that surface magnetic regions actually open a window from the interior into the solar atmosphere, and that the seismic waves leak through this window, reflect high in the atmosphere, and then re-enter the interior to rejoin the seismic wave field normally confined there. In a series of recent numerical studies using translation invariant atmospheres, we utilised a "directional time-distance helioseismology" measurement scheme to study the implications of the returning fast and Alfv\\'en waves higher up in the solar atmosphere on the seismology at the photosphere (Cally & Moradi 2013; Moradi & Cally 2014). In this study, we extend our directional time-distance analysis to more realistic sunspot-like atmospheres to better understand the direct effects of the magnetic field on helioseismic travel-time measurements in sunspots. In line with our previous findings, we uncover a distinct frequency-dependant directional behaviour in the tra...

  4. A New Mathematical Model for Description of the Liquid Discrete Flow Within a Packed Bed

    Institute of Scientific and Technical Information of China (English)

    WANG Cheng-shan; MU Xiao-jing; ZHENG Shao-bo; JIANG Guo-chang; XIAO Xing-guo; WANG Wen-zhong

    2008-01-01

    The molten liquid discrete flow inside a packed bed is a typical transport phenomenon in the blast furnace.As for the reportcd mathematieal models presenting the liquid discrete flow within the packed bed,there are some barriers for their application to an engineering scale-up,or some imperfections in model descriptions. To overcome these deficieneies,the effects of the packed bed on the liquid discrete flow have been divided into reststance action and dispcrsal action,and appropriate descriptions have been given for thc two actions,respectively.Consequently,a new mathematical model has been built to present the liquid discrete flow inside a coke bed in the blast furnace. The mathcmatical model can predict the distribution of liquid flux and the liquid flowing range inside the packed bed at any time.The prediction of this model accords well with the experimental data.The model will be much better for the simulation of the ironmaking process,compared with the existent model.

  5. Atmospheric dispersion models and pre-processing of meteorological data for real-time application

    DEFF Research Database (Denmark)

    Mikkelsen, T.; Desiato, F.

    1993-01-01

    and selects a series of suitable local scale atmospheric flow and dispersion models for RODOS, covering a variety of release types, terrain types and atmospheric stability conditions. The identification and ranking of suitable models is based on a discussion of principal modelling requirements, scale...... considerations, model performance and evaluation records, computational needs, user expertise, and type of sources to be modelled. Models suitable for a given accident scenario are chosen from this hierarchy in order to provide the dose assessments via the dispersion module. A forecasting feasibility......-processor provides the flow and dispersion models with on-site wind and atmospheric stability measures....

  6. A general pairwise interaction model provides an accurate description of in vivo transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Marc Santolini

    Full Text Available The identification of transcription factor binding sites (TFBSs on genomic DNA is of crucial importance for understanding and predicting regulatory elements in gene networks. TFBS motifs are commonly described by Position Weight Matrices (PWMs, in which each DNA base pair contributes independently to the transcription factor (TF binding. However, this description ignores correlations between nucleotides at different positions, and is generally inaccurate: analysing fly and mouse in vivo ChIPseq data, we show that in most cases the PWM model fails to reproduce the observed statistics of TFBSs. To overcome this issue, we introduce the pairwise interaction model (PIM, a generalization of the PWM model. The model is based on the principle of maximum entropy and explicitly describes pairwise correlations between nucleotides at different positions, while being otherwise as unconstrained as possible. It is mathematically equivalent to considering a TF-DNA binding energy that depends additively on each nucleotide identity at all positions in the TFBS, like the PWM model, but also additively on pairs of nucleotides. We find that the PIM significantly improves over the PWM model, and even provides an optimal description of TFBS statistics within statistical noise. The PIM generalizes previous approaches to interdependent positions: it accounts for co-variation of two or more base pairs, and predicts secondary motifs, while outperforming multiple-motif models consisting of mixtures of PWMs. We analyse the structure of pairwise interactions between nucleotides, and find that they are sparse and dominantly located between consecutive base pairs in the flanking region of TFBS. Nonetheless, interactions between pairs of non-consecutive nucleotides are found to play a significant role in the obtained accurate description of TFBS statistics. The PIM is computationally tractable, and provides a general framework that should be useful for describing and predicting

  7. Contribution to the modeling of atmospheric pollution in cities; Contribution a la modelisation de la pollution atmospherique dans les villes

    Energy Technology Data Exchange (ETDEWEB)

    Glockmer, St.

    2000-07-01

    Pollution generated by urban traffic and by industry at its periphery is a serious problem of our cities. Once emitted in the atmosphere, pollutants undergo two types of constraints: on one side they react chemically one with another and, on the other side, they are transported by the wind. We have chosen to work on the dynamical, thermal and chemical aspects of the pollution at different scales of the phenomena: local scale (around a group of buildings) and meso-scale (a whole city). Our ambition is not to realize a complete model but to advance step by step on each aspect. We have contributed to the realization of a numerical tool that will be completed and used for concrete pollution episodes. The first chapter is a description of the atmospheric boundary layer. Chapters two and three present models and results of numerical simulations. We stress on k-{epsilon}, RNG and v{sup 2}-f turbulence models, radiative heat transfer models and dynamical and thermal wall laws that allow to take in consideration surface roughness. The last chapter is dedicated to atmospheric chemistry. We have moreover developed a general solver of any number of transport equations coupled by a stiff chemistry and simplified ozone kinetics. (author)

  8. Meteorological input for atmospheric dispersion models: an inter-comparison between new generation models

    Energy Technology Data Exchange (ETDEWEB)

    Busillo, C.; Calastrini, F.; Gualtieri, G. [Lab. for Meteorol. and Environ. Modell. (LaMMA/CNR-IBIMET), Florence (Italy); Carpentieri, M.; Corti, A. [Dept. of Energetics, Univ. of Florence (Italy); Canepa, E. [INFM, Dept. of Physics, Univ. of Genoa (Italy)

    2004-07-01

    The behaviour of atmospheric dispersion models is strongly influenced by meteorological input, especially as far as new generation models are concerned. More sophisticated meteorological pre-processors require more extended and more reliable data. This is true in particular when short-term simulations are performed, while in long-term modelling detailed data are less important. In Europe no meteorological standards exist about data, therefore testing and evaluating the results of new generation dispersion models is particularly important in order to obtain information on reliability of model predictions. (orig.)

  9. Stable isotope composition of atmospheric carbon monoxide. A modelling study

    Energy Technology Data Exchange (ETDEWEB)

    Gromov, Sergey S.

    2014-11-01

    This study aims at an improved understanding of the stable carbon and oxygen isotope composition of the carbon monoxide (CO) in the global atmosphere by means of numerical simulations. At first, a new kinetic chemistry tagging technique for the most complete parameterisation of isotope effects has been introduced into the Modular Earth Submodel System (MESSy) framework. Incorporated into the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model, an explicit treatment of the isotope effects on the global scale is now possible. The expanded model system has been applied to simulate the chemical system containing up to five isotopologues of all carbon- and oxygen-bearing species, which ultimately determine the δ{sup 13}C, δ{sup 18}O and Δ{sup 17}O isotopic signatures of atmospheric CO. As model input, a new stable isotope-inclusive emission inventory for the relevant trace gases has been compiled. The uncertainties of the emission estimates and of the resulting simulated mixing and isotope ratios have been analysed. The simulated CO mixing and stable isotope ratios have been compared to in-situ measurements from ground-based observatories and from the civil-aircraft-mounted CARIBIC-1 measurement platform. The systematically underestimated {sup 13}CO/{sup 12}CO ratios of earlier, simplified modelling studies can now be partly explained. The EMAC simulations do not support the inferences of those studies, which suggest for CO a reduced input of the highly depleted in {sup 13}C methane oxidation source. In particular, a high average yield of 0.94 CO per reacted methane (CH{sub 4}) molecule is simulated in the troposphere, to a large extent due to the competition between the deposition and convective transport processes affecting the CH{sub 4} to CO reaction chain intermediates. None of the other factors, assumed or disregarded in previous studies, however hypothesised to have the potential in enriching tropospheric CO in {sup 13}C, were found significant

  10. Fluctuations, Response, and Resonances in a Simple Atmospheric Model

    CERN Document Server

    Gritsun, Andrey

    2016-01-01

    We study the response of a simple quasi-geostrophic barotropic model of the atmosphere to various classes of perturbations affecting its forcing and its dissipation using the formalism of the Ruelle response theory. We investigate the geometry of such perturbations using the covariant Lyapunov vectors on the unperturbed system and discover in one specific case - orographic forcing - a substantial projection of the perturbation onto the stable directions of the flow. As a result, we find a clear violation of the fluctuation-dissipation theorem, in agreement with the basic tenets of nonequilibrium statistical mechanics. This results into a very strong response in the form of a forced Rossby-like wave that has no resemblance to the natural variability in the same range of spatial and temporal scales. We further analyze such a feature and discover it can be interpreted as resonant response to a specific group of rarely visited unstable periodic orbits of the unperturbed system. Our results reinforce the idea of u...

  11. Aircraft/Air Traffic Management Functional Analysis Model: Technical Description. 2.0

    Science.gov (United States)

    Etheridge, Melvin; Plugge, Joana; Retina, Nusrat

    1998-01-01

    The Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 (FAM 2.0), is a discrete event simulation model designed to support analysis of alternative concepts in air traffic management and control. FAM 2.0 was developed by the Logistics Management Institute (LMI) under a National Aeronautics and Space Administration (NASA) contract. This document provides a technical description of FAM 2.0 and its computer files to enable the modeler and programmer to make enhancements or modifications to the model. Those interested in a guide for using the model in analysis should consult the companion document, Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 Users Manual.

  12. Strategy for a Rock Mechanics Site Descriptive Model. Development and testing of the theoretical approach

    Energy Technology Data Exchange (ETDEWEB)

    Staub, Isabelle; Fredriksson, Anders; Outters, Nils [Golder Associates AB, Uppsala (Sweden)

    2002-05-01

    In the purpose of studying the possibilities of a Deep Repository for spent fuel, the Swedish Nuclear and Fuel Management Company (SKB) is currently planning for Site Investigations. Data collected from these Site Investigations are interpreted and analysed to achieve the full Site Description, which is built up of models from all the disciplines that are considered of importance for the Site Description. One of these models is the Rock Mechanical Descriptive Model,which would be developed for any site in hard crystalline rock, and is a combination and evaluation of the characterisation of rock mass by means of empirical relationships and a theoretical approach based on numerical modelling. The present report describes the theoretical approach. The characterisation of the mechanical properties of the rock mass, viewed as a unit consisting of intact rock and fractures, is achieved by numerical simulations with following input parameters: initial stresses, fracture geometry, distribution of rock mechanical properties, such as deformation and strength parameters, for the intact rock and for the fractures. The numerical modelling was performed with the two-dimensional code UDEC, and the rock block models were generated from 2D trace sections extracted from the 3D Discrete Fracture Network (DFN) model. Assumptions and uncertainties related to the set-up of the model are considered. The numerical model was set-up to simulate a plain strain-loading test. Different boundary conditions were applied on the model for simulating stress conditions (I) in the undisturbed rock mass, and (II) at the proximity of a tunnel. In order to assess the reliability of the model sensitivity analyses have been conducted on some rock block models for defining the dependency of mechanical properties to in situ stresses, the influence of boundary conditions, rock material and joint constitutive models used to simulate the behaviour of intact rock and fractures, domain size and anisotropy. To

  13. Improving the Ni I atomic model for solar and stellar atmospheric models

    CERN Document Server

    Vieytes, Mariela C

    2013-01-01

    Neutral nickel (Ni I) is abundant in the solar atmosphere and is one of the important elements that contribute to the emission and absorption of radiation in the spectral range between 1900 and 3900 A. Previously, the Solar Radiation Physical Modeling (SRPM) models of the solar atmosphere considered only few levels of this species. Here we improve the Ni I atomic model by taking into account 61 levels and 490 spectral lines. We compute the populations of these levels in full NLTE using the SRPM code and compare the resulting emerging spectrum with observations. The present atomic model improves significantly the calculation of the solar spectral irradiance at near-UV wavelengths that are important for Earth atmo spheric studies, and particularly for ozone chemistry.

  14. Simulation of atmospheric aerosols in East Asia using modeling system RAMS-CMAQ: Model evaluation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The modeling system RAMS-CMAQ is applied in this paper to East Asia to simulate the temporo-spatial concentration distributions of atmospheric aerosols. For evaluating its performances, modeled concentrations of aerosols such as sulfate, nitrate, ammonium, black carbon and organic carbon were compared with observations obtained in East Asia on board of two aircrafts in the springtime of 2001. The comparison showed generally good agreement, and, in particular, that the modeling system captured most of the important observed features, including vertical gradients of the aerosols of the Asian outflow over the western Pacific. The evaluation results provide us with much confidence for further use of the modeling system to investigate the transport and transformation processes of atmospheric aerosols over East Asia and to assess their impacts on the Earth's radiation budget.

  15. Coupled Atmosphere-Fire Simulations of Fireflux: Impacts of Model Resolution on Model Performance

    CERN Document Server

    Kochanski, Adam K; Jenkins, M A; Mandel, J; Beezley, J D

    2011-01-01

    The ability to forecast grass fire spread could be of a great importance for agencies making decisions about prescribed burns. However, the usefulness of the models used for fire-spread predictions is limited by the time required for completing the coupled atmosphere-fire simulations. In this study we analyze the sensitivity of a coupled model with respect to the vertical resolution of the atmospheric grid and the resolution of fire mesh that both affect computational performance of the model. Based on the observations of the plume properties recorded during the FireFlux experiment (Clements et al., 2007), we try to establish the optimal model configuration that provides realistic results for the least computational expense.

  16. Photochemistry in Terrestrial Exoplanet Atmospheres I: Photochemistry Model and Benchmark Cases

    CERN Document Server

    Hu, Renyu; Bains, William

    2012-01-01

    We present a comprehensive photochemistry model for exploration of the chemical composition of terrestrial exoplanet atmospheres. The photochemistry model is designed from the ground up to have the capacity to treat all types of terrestrial planet atmospheres, ranging from oxidizing through reducing, which makes the code suitable for applications for the wide range of anticipated terrestrial exoplanet compositions. The one-dimensional chemical transport model treats up to 800 chemical reactions, photochemical processes, dry and wet deposition, surface emission and thermal escape of O, H, C, N and S bearing species, as well as formation and deposition of elemental sulfur and sulfuric acid aerosols. We validate the model by computing the atmospheric composition of current Earth and Mars and find agreement with observations of major trace gases in Earth's and Mars' atmospheres. We simulate several plausible atmospheric scenarios of terrestrial exoplanets, and choose three benchmark cases for atmospheres from red...

  17. Geothermal loan guaranty cash flow model: description and users' manual

    Energy Technology Data Exchange (ETDEWEB)

    Keimig, M.A.; Rosenberg, J.I.; Entingh, D.J.

    1980-11-01

    This is the users guide for the Geothermal Loan Guaranty Cash Flow Model (GCFM). GCFM is a Fortran code which designs and costs geothermal fields and electric power plants. It contains a financial analysis module which performs life cycle costing analysis taking into account various types of taxes, costs and financial structures. The financial module includes a discounted cash flow feature which calculates a levelized breakeven price for each run. The user's guide contains descriptions of the data requirements and instructions for using the model.

  18. Wind Turbine Blockset in Matlab/Simulink. General Overview and Description of the Model

    DEFF Research Database (Denmark)

    Iov, Florin; Hansen, A. D.; Soerensen, P.

    This report presents a new developed Matlab/Simulink Toolbox for wind turbine applications. This toolbox has been developed during the research project ?Simulation Platform to model, optimize and design wind turbines? and it has been used as a general developer tool for other three simulation tools......: Saber, DIgSILENT, HAWC. The report provides first a quick overview over Matlab issues and then explains the structure of the developed toolbox. The attention in the report is mainly drawn to the description of the most important mathematical models, which have been developed in the Toolbox. Then, some...

  19. Development of a pressure based room acoustic model using impedance descriptions of surfaces

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Brunskog, Jonas; Jeong, Cheol-Ho

    2013-01-01

    If a simulation tool is to be used for the optimization of absorbent ceilings, it is important that the simulation tool includes a good description of the surface. This study therefore aims at developing a model which can describe surfaces by their impedance values and not just by their statistical...... and acoustic radiosity will account for the diffuse reflections. This paper presents the motivation for the new model in the form of results in literature, which show the importance of retaining the angle dependence and phase information in reflections along with simple examples of angle dependent reflection...... from a porous absorber....

  20. An Extended Ontology Model and Ontology Checking Based on Description Logics

    Institute of Scientific and Technical Information of China (English)

    王洪伟; 蒋馥; 吴家春

    2004-01-01

    Ontology is defined as an explicit specification of a conceptualization. In this paper, an extended ontology model was constructed using description logics, which is a 5-tuples including term set, individual set, term definition set, instantiation assertion set and term restriction set. Based on the extended model, the issue on ontology checking was studied with the conclusion that the four kinds of term checking, including term satisfiability checking, term subsumption checking, term equivalence checking and term disjointness checking, can be reduced to the satisfiability checking, and satisfiability checking can be transformed into instantiation consistence checking.

  1. Description of a digital computer simulation of an Annular Momentum Control Device (AMCD) laboratory test model

    Science.gov (United States)

    Woolley, C. T.; Groom, N. J.

    1981-01-01

    A description of a digital computer simulation of an Annular Momentum Control Device (AMCD) laboratory model is presented. The AMCD is a momentum exchange device which is under development as an advanced control effector for spacecraft attitude control systems. The digital computer simulation of this device incorporates the following models: six degree of freedom rigid body dynamics; rim warp; controller dynamics; nonlinear distributed element axial bearings; as well as power driver and power supply current limits. An annotated FORTRAN IV source code listing of the computer program is included.

  2. Integrating Cloud Processes in the Community Atmosphere Model, Version 5.

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.; Bretherton, Christopher S.; Rasch, Philip J.

    2014-09-15

    This paper provides a description on the parameterizations of global cloud system in CAM5. Compared to the previous versions, CAM5 cloud parameterization has the following unique characteristics: (1) a transparent cloud macrophysical structure that has horizontally non-overlapped deep cumulus, shallow cumulus and stratus in each grid layer, each of which has own cloud fraction, mass and number concentrations of cloud liquid droplets and ice crystals, (2) stratus-radiation-turbulence interaction that allows CAM5 to simulate marine stratocumulus solely from grid-mean RH without relying on the stability-based empirical empty stratus, (3) prognostic treatment of the number concentrations of stratus liquid droplets and ice crystals with activated aerosols and detrained in-cumulus condensates as the main sources and evaporation-sedimentation-precipitation of stratus condensate as the main sinks, and (4) radiatively active cumulus. By imposing consistency between diagnosed stratus fraction and prognosed stratus condensate, CAM5 is free from empty or highly-dense stratus at the end of stratus macrophysics. CAM5 also prognoses mass and number concentrations of various aerosol species. Thanks to the aerosol activation and the parameterizations of the radiation and stratiform precipitation production as a function of the droplet size, CAM5 simulates various aerosol indirect effects associated with stratus as well as direct effects, i.e., aerosol controls both the radiative and hydrological budgets. Detailed analysis of various simulations revealed that CAM5 is much better than CAM3/4 in the global performance as well as the physical formulation. However, several problems were also identifed, which can be attributed to inappropriate regional tuning, inconsistency between various physics parameterizations, and incomplete model physics. Continuous efforts are going on to further improve CAM5.

  3. Thermospheric/Ionospheric Extension of the Whole Atmosphere Community Climate Model (WACCM-X)

    Science.gov (United States)

    2008-09-30

    the three­ dimensional chemical transport Model for Ozone and Related chemical Tracers ( MOZART ) [Brasseur et al., 1998], which solves 51 neutral...growth in a whole atmosphere climate model, J. Atmos. Sci., in press, 2008.) Deng et al. examined the non-hydrostatic effect on the upper atmosphere...Deng, Y., A. D. Richmond, A. J. Ridley, and H.-L. Liu, Assessment of the non­ hydrostatic effect on the upper atmosphere using a general circulation

  4. Carbon Abundances In The Light Of 3D Model Stellar Atmospheres

    DEFF Research Database (Denmark)

    Collet, Remo

    ) hydrodynamic modelling of stellar atmospheres and stellar spectra. In this contribution, I describe quantitatively the impact of realistic, time-dependent, 3D hydrodynamic model atmospheres on the spectroscopic determination of carbon abundances from CH molecular lines for stars with a wide range of stellar...... carbon abundance corrections on the oxygen abundance in carbon-enhanced metal-poor (CEMP) stars and show that such corrections are extremely sensitive to the atmospheric C/O ratio....

  5. The interaction between atmospheric gravity waves and large-scale flows: an efficient description beyond the non-acceleration paradigm

    Science.gov (United States)

    Ribstein, Bruno; Bölöni, Gergely; Muraschko, Jewgenija; Sgoff, Christine; Wei, Junhong; Achatz, Ulrich

    2016-11-01

    With the aim of contributing to the improvement of subgrid-scale gravity wave (GW) parameterizations in numerical-weather-prediction and climate models, the comparative relevance in GW drag of direct GW-mean-flow interactions and turbulent wave breakdown are investigated. Of equal interest is how well Wentzel-Kramer-Brillouin (WKB) theory can capture direct wave-mean-flow interactions, that are excluded by applying the steady-state approximation. WKB is implemented in a very efficient Lagrangian ray-tracing approach that considers wave action density in phasespace, thereby avoiding numerical instabilities due to caustics. It is supplemented by a simple wave-breaking scheme based on a static-instability saturation criterion. Idealized test cases of horizontally homogeneous GW packets are considered where wave-resolving Large-Eddy Simulations (LES) provide the reference. In all of theses cases the WKB simulations including direct GW-mean-flow interactions reproduce the LES data, to a good accuracy, already without wave-breaking scheme. The latter provides a next-order correction that is useful for fully capturing the total-energy balance between wave and mean flow. This is not the case when a steady-state WKB implementation is used, as used in present GW parameterizations.

  6. The Chemistry CATT-BRAMS model (CCATT-BRAMS 4.5: a regional atmospheric model system for integrated air quality and weather forecasting and research

    Directory of Open Access Journals (Sweden)

    K. M. Longo

    2013-09-01

    Full Text Available Coupled Chemistry Aerosol-Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CCATT-BRAMS, version 4.5 is an on-line regional chemical transport model designed for local and regional studies of atmospheric chemistry from the surface to the lower stratosphere suitable both for operational and research purposes. It includes gaseous/aqueous chemistry, photochemistry, scavenging and dry deposition. The CCATT-BRAMS model takes advantage of BRAMS-specific development for the tropics/subtropics as well as the recent availability of preprocessing tools for chemical mechanisms and fast codes for photolysis rates. BRAMS includes state-of-the-art physical parameterizations and dynamic formulations to simulate atmospheric circulations down to the meter. This on-line coupling of meteorology and chemistry allows the system to be used for simultaneous weather and chemical composition forecasts as well as potential feedback between the two. The entire system is made of three preprocessing software tools for user-defined chemical mechanisms, aerosol and trace gas emissions fields and the interpolation of initial and boundary conditions for meteorology and chemistry. In this paper, the model description is provided along with the evaluations performed by using observational data obtained from ground-based stations, instruments aboard aircrafts and retrieval from space remote sensing. The evaluation accounts for model applications at different scales from megacities and the Amazon Basin up to the intercontinental region of the Southern Hemisphere.

  7. Description of a practice model for pharmacist medication review in a general practice setting

    DEFF Research Database (Denmark)

    Brandt, Mette; Hallas, Jesper; Hansen, Trine Graabæk;

    2014-01-01

    BACKGROUND: Practical descriptions of procedures used for pharmacists' medication reviews are sparse. OBJECTIVE: To describe a model for medication review by pharmacists tailored to a general practice setting. METHODS: A stepwise model is described. The model is based on data from the medical chart...... and clinical or laboratory data. The medication review focuses on the diagnoses of the patient instead of the individual drugs. Patient interviews are not part of the model. The model was tested in a pilot study by conducting medical reviews on 50 polypharmacy patients (i.e. receiving 7 or more drugs...... concerned the reporting of interventions and the considerations of the GPs. 208 interventions were proposed among the 50 patients. The acceptance rate among the GPs was 82%. The most common interventions were lack of clinical or laboratory data (n=57, 27%) and drugs that should be discontinued as they had...

  8. From Detailed Description of Chemical Reacting Carbon Particles to Subgrid Models for CFD

    OpenAIRE

    Schulze S.; Kestel M.; Nikrityuk P. A.; Safronov D.

    2013-01-01

    This work is devoted to the development and validation of a sub-model for the partial oxidation of a spherical char particle moving in an air/steam atmosphere. The particle diameter is 2 mm. The coal particle is represented by moisture- and ash-free nonporous carbon while the coal rank is implemented using semi-global reaction rate expressions taken from the literature. The submodel includes six gaseous chemical species (O2, C...

  9. On the applicability of jellium model to the description of alkali clusters

    DEFF Research Database (Denmark)

    Matveentsev, Anton; Lyalin, Andrey G.; Solov'yov, Ilia;

    2003-01-01

    This work is devoted to the elucidation of the applicability of the jellium model to the description of alkali cluster properties. We compare the jellium model results with those derived within ab initio theoretical approaches and with experiments. On the basis of Hartree–Fock and local-density a......This work is devoted to the elucidation of the applicability of the jellium model to the description of alkali cluster properties. We compare the jellium model results with those derived within ab initio theoretical approaches and with experiments. On the basis of Hartree–Fock and local......-density approximations we have calculated the binding energies per atom, ionization potentials, deformation parameters and optimized values of the Wigner–Seitz radii for neutral and singly charged sodium clusters with the number of atoms N... role of the cluster shape deformations in the formation cluster properties and quite reasonable level of applicability of the deformed jellium model. This elucidates the similarities of atomic cluster physics with the physics of atomic nuclei....

  10. Extension of the AURIC Radiative Transfer Model for Mars Atmospheric Research

    Science.gov (United States)

    Evans, J. S.; Lumpe, J. D.; Correira, J.; Stewart, A. I.; Schneider, N. M.; Deighan, J.

    2013-12-01

    We present recent updates to the Atmospheric Ultraviolet Radiance Integrated Code (AURIC) model that allow it to be used as a forward model for Mars atmospheric research. AURIC is a state of the art far ultraviolet (FUV) to near-infrared (NIR) atmospheric radiance model that has been used extensively for analysis and modeling of terrestrial upper atmospheric remote sensing data. We present recent updates to the Atmospheric Ultraviolet Radiance Integrated Code (AURIC) model that allow it to be used as a forward model for Mars atmospheric research. AURIC is a state of the art far ultraviolet (FUV) to near-infrared (NIR) atmospheric radiance model that has been used extensively for analysis and modeling of terrestrial upper atmospheric remote sensing data. The airglow modeling capabilities of AURIC make it a powerful tool that can be used to characterize optical backgrounds, simulate data from both rocket and satellite-borne optical instrumentation, and serve as a forward model driver for geophysical retrieval algorithms. Upgrades made to allow modeling of the Martian atmosphere include 1-D Mars photochemistry and molecular transport and the addition of the following molecular band systems: CO Cameron; CO Fourth Positive Group; CO2+ Fox-Duffendack-Barker; CO2+ UV Doublet; CO Hopfield-Birge (B-X); and CO+ First Negative Group. Furthermore, a prototype AURIC-Titan model has also been developed, allowing comparison of AURIC spectral radiances with Cassini-Huygens/UVIS data [Stevens et al., 2011; Stevens et al., in preparation]. Extension of AURIC to the atmospheres of Pluto and it's largest moon, Charon, is also ongoing in support of NASA's New Horizons mission [Stevens, Evans, and Gladstone, 2012; 2013].

  11. Uncertainities in carbon dioxide radiative forcing in atmospheric general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Cess, R.D.; Zhang, M.H. (State Univ. of New York, Stony Brook, NY (United States)); Potter, G.L.; Gates, W.L.; Taylor, K.E. (Lawrence Livermore National Laboratory, CA (United States)); Colman, R.A.; Fraser, J.R.; McAvaney, B.J. (Bureau of Meterorology Research Centre, Victoria (Australia)); Dazlich, D.A.; Randall, D.A. (Colorado State Univ., Fort Collins, CO (United States)); Del Genio, A.D.; Lacis, A.A. (Goddard Institute for Space Studies, New York, NY (United States)); Esch, M.; Roeckner, E. (Max Planck Institute for Meteorology, Hamburg (Germany)); Galin, V. (Russian Academy of Sciences, Moscow (Russian Federation)); Hack, J.J.; Kiehl, J.T. (National Center for Atmospheric Research, Boulder, CO (United States)); Ingram, W.J. (Hadley Centre for Climate Prediction and Research, Berkshire (United Kingdom)); Le Treut, H.; Lli, Z.X. (Laboratoire de Meteorologie Dynamique, Paris (France)); Liang, X.Z.; Wang, W.C. (State Univ. of New York, Albany, NY (United States)); Mahfouf,

    1993-11-19

    Global warming, caused by an increase in the concentrations of greenhouse gases, is the direct result of greenhouse gas-induced radiative forcing. When a doubling of atmospheric carbon dioxide is considered, this forcing differed substantially among 15 atmospheric general circulation models. Although there are several potential causes, the largest contributor was the carbon dioxide radiation parameterizations of the models.

  12. Computer Modeling of the Effects of Atmospheric Conditions on Sound Signatures

    Science.gov (United States)

    2016-02-01

    ARL-TR-7602 ● FEB 2016 US Army Research Laboratory Computer Modeling of the Effects of Atmospheric Conditions on Sound...Laboratory Computer Modeling of the Effects of Atmospheric Conditions on Sound Signatures by Sarah Wagner Science and Engineering Apprentice...Program (SEAP), George Washington University Adrienne Raglin and John Noble Computational and Information Sciences Directorate, ARL

  13. Scale-consistent two-way coupling of land-surface and atmospheric models

    Science.gov (United States)

    Schomburg, A.; Venema, V.; Ament, F.; Simmer, C.

    2009-04-01

    Processes at the land surface and in the atmosphere act on different spatial scales. While in the atmosphere small-scale heterogeneity is smoothed out quickly by turbulent mixing, this is not the case at the land surface where small-scale variability of orography, land cover, soil texture, soil moisture etc. varies only slowly in time. For the modelling of the fluxes between the land-surface and the atmosphere it is consequently more scale consistent to model the surface processes at a higher spatial resolution than the atmospheric processes. The mosaic approach is one way to deal with this problem. Using this technique the Soil Vegetation Atmosphere Transfer (SVAT) scheme is solved on a higher resolution than the atmosphere, which is possible since a SVAT module generally demands considerably less computation time than the atmospheric part. The upscaling of the turbulent fluxes of sensible and latent heat at the interface to the atmosphere is realized by averaging, due to the nonlinearities involved this is a more sensible approach than averaging the soil properties and computing the fluxes in a second step. The atmospheric quantities are usuall