WorldWideScience

Sample records for atlas tcga program

  1. TCGA-Assembler 2: Software Pipeline for Retrieval and Processing of TCGA/CPTAC Data.

    Science.gov (United States)

    Wei, Lin; Jin, Zhilin; Yang, Shengjie; Xu, Yanxun; Zhu, Yitan; Ji, Yuan

    2017-12-20

    The Cancer Genome Atlas (TCGA) program has produced huge amounts of cancer genomics data providing unprecedented opportunities for research. In 2014, we developed TCGA-Assembler (Zhu et al., 2014), a software pipeline for retrieval and processing of public TCGA data. In 2016, TCGA data were transferred from the TCGA data portal to the Genomic Data Commons (GDC), which is supported by a different set of data storage and retrieval mechanisms. In addition, new proteomics data of TCGA samples have been generated by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) program, which were not available for downloading through TCGA-Assembler. It is desirable to acquire and integrate data from both GDC and CPTAC. We develop TCGA-Assembler 2 (TA2) to automatically download and integrate data from GDC and CPTAC. We make substantial improvement on the functionality of TA2 to enhance user experience and software performance. TA2 together with its previous version have helped more than 2,000 researchers from 64 countries to access and utilize TCGA and CPTAC data in their research. Availability of TA2 will continue to allow existing and new users to conduct reproducible research based on TCGA and CPTAC data. http://www.compgenome.org/TCGA-Assembler/ or https://github.com/compgenome365/TCGA-Assembler-2. zhuyitan@gmail.com or koaeraser@gmail.com. Supplementary data are available at Bioinformatics online.

  2. TCGA head Neck

    Science.gov (United States)

    Investigators with The Cancer Genome Atlas (TCGA) Research Network have discovered genomic differences – with potentially important clinical implications – in head and neck cancers caused by infection with the human papillomavirus (HPV).

  3. CCG Programs with Clinical Data will Build on the Success of TCGA

    Science.gov (United States)

    Though TCGA will wrap up in 2016 with a concluding symposium, cancer genomics projects built upon the success of TCGA will continue to play a major part in the NCI’s mission to better understand and treat cancer in the years to come.

  4. Using New Maps to Navigate Cancer Treatment - TCGA

    Science.gov (United States)

    Drs.Scott Hwang and Chad Holder of Emory University discuss the development of VARSARI and The Cancer Imaging Program's TCGA Radiology Initiative. Learn more about their and Dr. Carl Jaffe's work in this TCGA In Action Case Study.

  5. TCGA researchers identify potential drug targets, markers for leukemia risk

    Science.gov (United States)

    Investigators for The Cancer Genome Atlas (TCGA) Research Network have detailed and broadly classified the genomic alterations that frequently underlie the development of acute myeloid leukemia (AML), a deadly cancer of the blood and bone marrow. Their wo

  6. TCGA study identifies genomic features of cervical cancer

    Science.gov (United States)

    Investigators with The Cancer Genome Atlas (TCGA) Research Network have identified novel genomic and molecular characteristics of cervical cancer that will aid in subclassification of the disease and may help target therapies that are most appropriate for each patient.

  7. TCGA researchers identify 4 subtypes of stomach cancer

    Science.gov (United States)

    Stomach cancers fall into four distinct molecular subtypes, researchers with The Cancer Genome Atlas (TCGA) Network have found. Scientists report that this discovery could change how researchers think about developing treatments for stomach cancer, also c

  8. TCGA Expedition: A Data Acquisition and Management System for TCGA Data.

    Science.gov (United States)

    Chandran, Uma R; Medvedeva, Olga P; Barmada, M Michael; Blood, Philip D; Chakka, Anish; Luthra, Soumya; Ferreira, Antonio; Wong, Kim F; Lee, Adrian V; Zhang, Zhihui; Budden, Robert; Scott, J Ray; Berndt, Annerose; Berg, Jeremy M; Jacobson, Rebecca S

    2016-01-01

    The Cancer Genome Atlas Project (TCGA) is a National Cancer Institute effort to profile at least 500 cases of 20 different tumor types using genomic platforms and to make these data, both raw and processed, available to all researchers. TCGA data are currently over 1.2 Petabyte in size and include whole genome sequence (WGS), whole exome sequence, methylation, RNA expression, proteomic, and clinical datasets. Publicly accessible TCGA data are released through public portals, but many challenges exist in navigating and using data obtained from these sites. We developed TCGA Expedition to support the research community focused on computational methods for cancer research. Data obtained, versioned, and archived using TCGA Expedition supports command line access at high-performance computing facilities as well as some functionality with third party tools. For a subset of TCGA data collected at University of Pittsburgh, we also re-associate TCGA data with de-identified data from the electronic health records. Here we describe the software as well as the architecture of our repository, methods for loading of TCGA data to multiple platforms, and security and regulatory controls that conform to federal best practices. TCGA Expedition software consists of a set of scripts written in Bash, Python and Java that download, extract, harmonize, version and store all TCGA data and metadata. The software generates a versioned, participant- and sample-centered, local TCGA data directory with metadata structures that directly reference the local data files as well as the original data files. The software supports flexible searches of the data via a web portal, user-centric data tracking tools, and data provenance tools. Using this software, we created a collaborative repository, the Pittsburgh Genome Resource Repository (PGRR) that enabled investigators at our institution to work with all TCGA data formats, and to interrogate these data with analysis pipelines, and associated tools

  9. TCGA Expedition: A Data Acquisition and Management System for TCGA Data.

    Directory of Open Access Journals (Sweden)

    Uma R Chandran

    Full Text Available The Cancer Genome Atlas Project (TCGA is a National Cancer Institute effort to profile at least 500 cases of 20 different tumor types using genomic platforms and to make these data, both raw and processed, available to all researchers. TCGA data are currently over 1.2 Petabyte in size and include whole genome sequence (WGS, whole exome sequence, methylation, RNA expression, proteomic, and clinical datasets. Publicly accessible TCGA data are released through public portals, but many challenges exist in navigating and using data obtained from these sites. We developed TCGA Expedition to support the research community focused on computational methods for cancer research. Data obtained, versioned, and archived using TCGA Expedition supports command line access at high-performance computing facilities as well as some functionality with third party tools. For a subset of TCGA data collected at University of Pittsburgh, we also re-associate TCGA data with de-identified data from the electronic health records. Here we describe the software as well as the architecture of our repository, methods for loading of TCGA data to multiple platforms, and security and regulatory controls that conform to federal best practices.TCGA Expedition software consists of a set of scripts written in Bash, Python and Java that download, extract, harmonize, version and store all TCGA data and metadata. The software generates a versioned, participant- and sample-centered, local TCGA data directory with metadata structures that directly reference the local data files as well as the original data files. The software supports flexible searches of the data via a web portal, user-centric data tracking tools, and data provenance tools. Using this software, we created a collaborative repository, the Pittsburgh Genome Resource Repository (PGRR that enabled investigators at our institution to work with all TCGA data formats, and to interrogate these data with analysis pipelines, and

  10. ATLAS forward physics program

    CERN Document Server

    HELLER, M; The ATLAS collaboration

    2010-01-01

    The variety of forward detectors installed in the vicinity of the ATLAS experiment allows to look over a wide range of forward physics topics. They ensure a good information about rapidity gaps, and the installation of very forward detectors (ALFA and AFP) will allow to tag the leading proton(s) remaining from the different processes studied. Most of the studies have to be done at low luminosity to avoid pile-up, but the AFP project offers a really exiting future for the ATLAS forward physics program. We also present how these forward detectors can be used to measure the relative and absolute luminosity.

  11. TCGA's Pan-Cancer Efforts and Expansion to Include Whole Genome Sequence - TCGA

    Science.gov (United States)

    Carolyn Hutter, Ph.D., Program Director of NHGRI's Division of Genomic Medicine, discusses the expansion of TCGA's Pan-Cancer efforts to include the Pan-Cancer Analysis of Whole Genomes (PAWG) project.

  12. Identifying Scientific Project-generated Data Citation from Full-text Articles: An Investigation of TCGA Data Citation

    Directory of Open Access Journals (Sweden)

    Jiao Li

    2016-06-01

    Full Text Available Purpose: In the open science era, it is typical to share project-generated scientific data by depositing it in an open and accessible database. Moreover, scientific publications are preserved in a digital library archive. It is challenging to identify the data usage that is mentioned in literature and associate it with its source. Here, we investigated the data usage of a government-funded cancer genomics project, The Cancer Genome Atlas (TCGA, via a full-text literature analysis. Design/methodology/approach: We focused on identifying articles using the TCGA dataset and constructing linkages between the articles and the specific TCGA dataset. First, we collected 5,372 TCGA-related articles from PubMed Central (PMC. Second, we constructed a benchmark set with 25 full-text articles that truly used the TCGA data in their studies, and we summarized the key features of the benchmark set. Third, the key features were applied to the remaining PMC full-text articles that were collected from PMC. Findings: The amount of publications that use TCGA data has increased significantly since 2011, although the TCGA project was launched in 2005. Additionally, we found that the critical areas of focus in the studies that use the TCGA data were glioblastoma multiforme, lung cancer, and breast cancer; meanwhile, data from the RNA-sequencing (RNA-seq platform is the most preferable for use. Research limitations: The current workflow to identify articles that truly used TCGA data is labor-intensive. An automatic method is expected to improve the performance. Practical implications: This study will help cancer genomics researchers determine the latest advancements in cancer molecular therapy, and it will promote data sharing and data-intensive scientific discovery. Originality/value: Few studies have been conducted to investigate data usage by government-funded projects/programs since their launch. In this preliminary study, we extracted articles that use TCGA data

  13. Exploring TCGA Pan-Cancer data at the UCSC Cancer Genomics Browser

    National Research Council Canada - National Science Library

    Cline, Melissa S; Craft, Brian; Swatloski, Teresa; Goldman, Mary; Ma, Singer; Haussler, David; Zhu, Jingchun

    2013-01-01

    The UCSC Cancer Genomics Browser (https://genome-cancer.ucsc.edu) offers interactive visualization and exploration of TCGA genomic, phenotypic, and clinical data, as produced by the Cancer Genome Atlas Research Network...

  14. Using Forensics to Untangle Batch Effects in TCGA Data - TCGA

    Science.gov (United States)

    Rehan Akbani, Ph.D., and colleagues at the University of Texas MD Anderson Cancer Center developed a tool called MBatch to detect, diagnose, and correct batch effects in TCGA data. Read more about batch effects in this Case Study.

  15. The ATLAS upgrade program

    CERN Document Server

    Gemme, C; The ATLAS collaboration

    2014-01-01

    After the rst successful LHC run in 2010-2012, plans are actively advancing for a series of upgrades leading eventually to about ve times the design-luminosity in about ten years. The larger luminosity will allow to perform precise measurements of the just discovered Higgs boson and to continue searching for new physics beyond the Standard Model. Coping with the high instantaneous and integrated luminosity will be a great challenge for the ATLAS detector and will require changes in most of the subsystems, specially those at low radii and large pseudorapidity, as well as in its trigger architecture. Plans to consolidate and, whenever possible, to improve the physics performance of the current detector over the next decade are summarized in this paper.

  16. The ATLAS upgrade program

    CERN Document Server

    Gemme, C

    2014-01-01

    After the first successful LHC run in 2010-2012, plans are actively advancing for a series of upgrades leading eventually to about above times the design-luminosity in about ten years. The larger luminosity will allow to perform precise measurements of the just discovered Higgs boson and to continue searching for new physics beyond the Standard Model. Coping with the high instantaneous and integrated luminosity will be a great challenge for the ATLAS detector and will require changes in most of the subsystems, specially those at low radii and large pseudorapidity, as well as in its trigger architecture. Plans to consolidate and, whenever possible, to improve the physics performance of the current detector over the next decade are summarized in this paper.

  17. Web-TCGA: an online platform for integrated analysis of molecular cancer data sets.

    Science.gov (United States)

    Deng, Mario; Brägelmann, Johannes; Schultze, Joachim L; Perner, Sven

    2016-02-06

    The Cancer Genome Atlas (TCGA) is a pool of molecular data sets publicly accessible and freely available to cancer researchers anywhere around the world. However, wide spread use is limited since an advanced knowledge of statistics and statistical software is required. In order to improve accessibility we created Web-TCGA, a web based, freely accessible online tool, which can also be run in a private instance, for integrated analysis of molecular cancer data sets provided by TCGA. In contrast to already available tools, Web-TCGA utilizes different methods for analysis and visualization of TCGA data, allowing users to generate global molecular profiles across different cancer entities simultaneously. In addition to global molecular profiles, Web-TCGA offers highly detailed gene and tumor entity centric analysis by providing interactive tables and views. As a supplement to other already available tools, such as cBioPortal (Sci Signal 6:pl1, 2013, Cancer Discov 2:401-4, 2012), Web-TCGA is offering an analysis service, which does not require any installation or configuration, for molecular data sets available at the TCGA. Individual processing requests (queries) are generated by the user for mutation, methylation, expression and copy number variation (CNV) analyses. The user can focus analyses on results from single genes and cancer entities or perform a global analysis (multiple cancer entities and genes simultaneously).

  18. Mining TCGA data using Boolean implications.

    Directory of Open Access Journals (Sweden)

    Subarna Sinha

    Full Text Available Boolean implications (if-then rules provide a conceptually simple, uniform and highly scalable way to find associations between pairs of random variables. In this paper, we propose to use Boolean implications to find relationships between variables of different data types (mutation, copy number alteration, DNA methylation and gene expression from the glioblastoma (GBM and ovarian serous cystadenoma (OV data sets from The Cancer Genome Atlas (TCGA. We find hundreds of thousands of Boolean implications from these data sets. A direct comparison of the relationships found by Boolean implications and those found by commonly used methods for mining associations show that existing methods would miss relationships found by Boolean implications. Furthermore, many relationships exposed by Boolean implications reflect important aspects of cancer biology. Examples of our findings include cis relationships between copy number alteration, DNA methylation and expression of genes, a new hierarchy of mutations and recurrent copy number alterations, loss-of-heterozygosity of well-known tumor suppressors, and the hypermethylation phenotype associated with IDH1 mutations in GBM. The Boolean implication results used in the paper can be accessed at http://crookneck.stanford.edu/microarray/TCGANetworks/.

  19. The commercial Atlas IIAR program

    Science.gov (United States)

    Hauser, Robert L.

    1998-01-01

    The space launch industry is experiencing a tremendous transition from a government-dominated customer base to a commercial customer base. According to the Teal Group World Space Briefing, nearly 75 percent of satellites launched from 1997 to 2006 will be commercial satellites (Caceres 1997). Of these, the vast majority are commercial ventures in mobile communications, broadband multimedia services, or direct broadcast television satellites. With the majority of the demand for launch services coming from commercial satellite providers, the needs and demands of the commercial satellite community are taking an ever increasing role in the development and design of launch vehicle systems. The Atlas IIAR, the R indicating re-engined, specifically addresses the call from commercial users for increased performance to orbit with higher reliability and launch availability. Lockheed Martin's Atlas IIAR launch vehicle will play a significant and crucial role in the launch of commercial satellites over the next several years, helping to bring satellite services to millions of people worldwide.

  20. The Education and Outreach Program of ATLAS

    CERN Multimedia

    Barnett, M.

    2006-01-01

    The ATLAS Education and Outreach (E&O) program began in 1997, but the advent of LHC has placed a new urgency in our efforts. Even a year away, we can feel the approaching impact of starting an experiment that could make revolutionary discoveries. The public and teachers are beginning to turn their attention our way, and the newsmedia are showing growing interest in ATLAS. When datataking begins, the interest will peak, and the demands on us are likely to be substantial. The collaboration is responding to this challenge in a number of ways. ATLAS management has begun consultation with experts. The official budget for the E&O group has been growing as have the contributions of many ATLAS institutions. The number of collaboration members joining these efforts has grown, and their time and effort is increasing. We are in ongoing consultation with the CERN Public Affairs Office, as well as the other LHC experiments and the European Particle Physics Outreach Group. The E&O group has expanded the scope...

  1. Identification of druggable cancer driver genes amplified across TCGA datasets.

    Directory of Open Access Journals (Sweden)

    Ying Chen

    Full Text Available The Cancer Genome Atlas (TCGA projects have advanced our understanding of the driver mutations, genetic backgrounds, and key pathways activated across cancer types. Analysis of TCGA datasets have mostly focused on somatic mutations and translocations, with less emphasis placed on gene amplifications. Here we describe a bioinformatics screening strategy to identify putative cancer driver genes amplified across TCGA datasets. We carried out GISTIC2 analysis of TCGA datasets spanning 16 cancer subtypes and identified 486 genes that were amplified in two or more datasets. The list was narrowed to 75 cancer-associated genes with potential "druggable" properties. The majority of the genes were localized to 14 amplicons spread across the genome. To identify potential cancer driver genes, we analyzed gene copy number and mRNA expression data from individual patient samples and identified 42 putative cancer driver genes linked to diverse oncogenic processes. Oncogenic activity was further validated by siRNA/shRNA knockdown and by referencing the Project Achilles datasets. The amplified genes represented a number of gene families, including epigenetic regulators, cell cycle-associated genes, DNA damage response/repair genes, metabolic regulators, and genes linked to the Wnt, Notch, Hedgehog, JAK/STAT, NF-KB and MAPK signaling pathways. Among the 42 putative driver genes were known driver genes, such as EGFR, ERBB2 and PIK3CA. Wild-type KRAS was amplified in several cancer types, and KRAS-amplified cancer cell lines were most sensitive to KRAS shRNA, suggesting that KRAS amplification was an independent oncogenic event. A number of MAP kinase adapters were co-amplified with their receptor tyrosine kinases, such as the FGFR adapter FRS2 and the EGFR family adapters GRB2 and GRB7. The ubiquitin-like ligase DCUN1D1 and the histone methyltransferase NSD3 were also identified as novel putative cancer driver genes. We discuss the patient tailoring implications

  2. Identification of druggable cancer driver genes amplified across TCGA datasets.

    Science.gov (United States)

    Chen, Ying; McGee, Jeremy; Chen, Xianming; Doman, Thompson N; Gong, Xueqian; Zhang, Youyan; Hamm, Nicole; Ma, Xiwen; Higgs, Richard E; Bhagwat, Shripad V; Buchanan, Sean; Peng, Sheng-Bin; Staschke, Kirk A; Yadav, Vipin; Yue, Yong; Kouros-Mehr, Hosein

    2014-01-01

    The Cancer Genome Atlas (TCGA) projects have advanced our understanding of the driver mutations, genetic backgrounds, and key pathways activated across cancer types. Analysis of TCGA datasets have mostly focused on somatic mutations and translocations, with less emphasis placed on gene amplifications. Here we describe a bioinformatics screening strategy to identify putative cancer driver genes amplified across TCGA datasets. We carried out GISTIC2 analysis of TCGA datasets spanning 16 cancer subtypes and identified 486 genes that were amplified in two or more datasets. The list was narrowed to 75 cancer-associated genes with potential "druggable" properties. The majority of the genes were localized to 14 amplicons spread across the genome. To identify potential cancer driver genes, we analyzed gene copy number and mRNA expression data from individual patient samples and identified 42 putative cancer driver genes linked to diverse oncogenic processes. Oncogenic activity was further validated by siRNA/shRNA knockdown and by referencing the Project Achilles datasets. The amplified genes represented a number of gene families, including epigenetic regulators, cell cycle-associated genes, DNA damage response/repair genes, metabolic regulators, and genes linked to the Wnt, Notch, Hedgehog, JAK/STAT, NF-KB and MAPK signaling pathways. Among the 42 putative driver genes were known driver genes, such as EGFR, ERBB2 and PIK3CA. Wild-type KRAS was amplified in several cancer types, and KRAS-amplified cancer cell lines were most sensitive to KRAS shRNA, suggesting that KRAS amplification was an independent oncogenic event. A number of MAP kinase adapters were co-amplified with their receptor tyrosine kinases, such as the FGFR adapter FRS2 and the EGFR family adapters GRB2 and GRB7. The ubiquitin-like ligase DCUN1D1 and the histone methyltransferase NSD3 were also identified as novel putative cancer driver genes. We discuss the patient tailoring implications for existing cancer

  3. TopFed: TCGA tailored federated query processing and linking to LOD.

    Science.gov (United States)

    Saleem, Muhammad; Padmanabhuni, Shanmukha S; Ngomo, Axel-Cyrille Ngonga; Iqbal, Aftab; Almeida, Jonas S; Decker, Stefan; Deus, Helena F

    2014-01-01

    The Cancer Genome Atlas (TCGA) is a multidisciplinary, multi-institutional effort to catalogue genetic mutations responsible for cancer using genome analysis techniques. One of the aims of this project is to create a comprehensive and open repository of cancer related molecular analysis, to be exploited by bioinformaticians towards advancing cancer knowledge. However, devising bioinformatics applications to analyse such large dataset is still challenging, as it often requires downloading large archives and parsing the relevant text files. Therefore, it is making it difficult to enable virtual data integration in order to collect the critical co-variates necessary for analysis. We address these issues by transforming the TCGA data into the Semantic Web standard Resource Description Format (RDF), link it to relevant datasets in the Linked Open Data (LOD) cloud and further propose an efficient data distribution strategy to host the resulting 20.4 billion triples data via several SPARQL endpoints. Having the TCGA data distributed across multiple SPARQL endpoints, we enable biomedical scientists to query and retrieve information from these SPARQL endpoints by proposing a TCGA tailored federated SPARQL query processing engine named TopFed. We compare TopFed with a well established federation engine FedX in terms of source selection and query execution time by using 10 different federated SPARQL queries with varying requirements. Our evaluation results show that TopFed selects on average less than half of the sources (with 100% recall) with query execution time equal to one third to that of FedX. With TopFed, we aim to offer biomedical scientists a single-point-of-access through which distributed TCGA data can be accessed in unison. We believe the proposed system can greatly help researchers in the biomedical domain to carry out their research effectively with TCGA as the amount and diversity of data exceeds the ability of local resources to handle its retrieval and

  4. The Cancer Digital Slide Archive - TCGA

    Science.gov (United States)

    Dr. David Gutman and Dr. Lee Cooper developed The Cancer Digital Slide Archive (CDSA), a web platform for accessing pathology slide images of TCGA samples. Find out how they did it and how to use the CDSA website in this Case Study.

  5. Pan-cancer analysis reveals technical artifacts in TCGA germline variant calls.

    Science.gov (United States)

    Buckley, Alexandra R; Standish, Kristopher A; Bhutani, Kunal; Ideker, Trey; Lasken, Roger S; Carter, Hannah; Harismendy, Olivier; Schork, Nicholas J

    2017-06-12

    Cancer research to date has largely focused on somatically acquired genetic aberrations. In contrast, the degree to which germline, or inherited, variation contributes to tumorigenesis remains unclear, possibly due to a lack of accessible germline variant data. Here we called germline variants on 9618 cases from The Cancer Genome Atlas (TCGA) database representing 31 cancer types. We identified batch effects affecting loss of function (LOF) variant calls that can be traced back to differences in the way the sequence data were generated both within and across cancer types. Overall, LOF indel calls were more sensitive to technical artifacts than LOF Single Nucleotide Variant (SNV) calls. In particular, whole genome amplification of DNA prior to sequencing led to an artificially increased burden of LOF indel calls, which confounded association analyses relating germline variants to tumor type despite stringent indel filtering strategies. The samples affected by these technical artifacts include all acute myeloid leukemia and practically all ovarian cancer samples. We demonstrate how technical artifacts induced by whole genome amplification of DNA can lead to false positive germline-tumor type associations and suggest TCGA whole genome amplified samples be used with caution. This study draws attention to the need to be sensitive to problems associated with a lack of uniformity in data generation in TCGA data.

  6. Recent Results from the ATLAS UPC Program

    CERN Document Server

    Cole, Brian; The ATLAS collaboration

    2018-01-01

    Recent results from ATLAS measurements of ultra-peripheral Pb+Pb collisions are presented. Measurements include gamma+gamma -> dimuon, photo-nuclear production of di/multi-jets, and light-by-light scattering.

  7. B-CAN: a resource sharing platform to improve the operation, visualization and integrated analysis of TCGA breast cancer data.

    Science.gov (United States)

    Wen, Can-Hong; Ou, Shao-Min; Guo, Xiao-Bo; Liu, Chen-Feng; Shen, Yan-Bo; You, Na; Cai, Wei-Hong; Shen, Wen-Jun; Wang, Xue-Qin; Tan, Hai-Zhu

    2017-12-12

    Breast cancer is a high-risk heterogeneous disease with myriad subtypes and complicated biological features. The Cancer Genome Atlas (TCGA) breast cancer database provides researchers with the large-scale genome and clinical data via web portals and FTP services. Researchers are able to gain new insights into their related fields, and evaluate experimental discoveries with TCGA. However, it is difficult for researchers who have little experience with database and bioinformatics to access and operate on because of TCGA's complex data format and diverse files. For ease of use, we build the breast cancer (B-CAN) platform, which enables data customization, data visualization, and private data center. The B-CAN platform runs on Apache server and interacts with the backstage of MySQL database by PHP. Users can customize data based on their needs by combining tables from original TCGA database and selecting variables from each table. The private data center is applicable for private data and two types of customized data. A key feature of the B-CAN is that it provides single table display and multiple table display. Customized data with one barcode corresponding to many records and processed customized data are allowed in Multiple Tables Display. The B-CAN is an intuitive and high-efficient data-sharing platform.

  8. Reducing confounding and suppression effects in TCGA data: an integrated analysis of chemotherapy response in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Hsu Fang-Han

    2012-10-01

    Full Text Available Abstract Background Despite initial response in adjuvant chemotherapy, ovarian cancer patients treated with the combination of paclitaxel and carboplatin frequently suffer from recurrence after few cycles of treatment, and the underlying mechanisms causing the chemoresistance remain unclear. Recently, The Cancer Genome Atlas (TCGA research network concluded an ovarian cancer study and released the dataset to the public. The TCGA dataset possesses large sample size, comprehensive molecular profiles, and clinical outcome information; however, because of the unknown molecular subtypes in ovarian cancer and the great diversity of adjuvant treatments TCGA patients went through, studying chemotherapeutic response using the TCGA data is difficult. Additionally, factors such as sample batches, patient ages, and tumor stages further confound or suppress the identification of relevant genes, and thus the biological functions and disease mechanisms. Results To address these issues, herein we propose an analysis procedure designed to reduce suppression effect by focusing on a specific chemotherapeutic treatment, and to remove confounding effects such as batch effect, patient's age, and tumor stages. The proposed procedure starts with a batch effect adjustment, followed by a rigorous sample selection process. Then, the gene expression, copy number, and methylation profiles from the TCGA ovarian cancer dataset are analyzed using a semi-supervised clustering method combined with a novel scoring function. As a result, two molecular classifications, one with poor copy number profiles and one with poor methylation profiles, enriched with unfavorable scores are identified. Compared with the samples enriched with favorable scores, these two classifications exhibit poor progression-free survival (PFS and might be associated with poor chemotherapy response specifically to the combination of paclitaxel and carboplatin. Significant genes and biological processes are

  9. TCGA bladder cancer study reveals potential drug targets

    Science.gov (United States)

    Investigators with TCGA have identified new potential therapeutic targets for a major form of bladder cancer, including important genes and pathways that are disrupted in the disease. They also discovered that, at the molecular level, some subtypes of bla

  10. Phlebotomy and the Amish Inspired this Geneticist - TCGA

    Science.gov (United States)

    Dr. Stacey Gabriel began her career in genetics while working on a rare disease in the Amish. Learn more about her experience witnessing the human element of genetics in this TCGA in Action Researcher Profile.

  11. The Persint visualization program for the ATLAS experiment

    CERN Document Server

    Pomarède, D

    2003-01-01

    The Persint program is designed for the three-dimensional representation of objects and for the interfacing and access to a variety of independent applications, in a fully interactive way. Facilities are provided for the spatial navigation and the definition of the visualization properties, in order to interactively set the viewing and viewed points, and to obtain the desired perspective. In parallel, applications may be launched through the use of dedicated interfaces, such as the interactive reconstruction and display of physics events. Recent developments have focalized on the interfacing to the XML ATLAS General Detector Description AGDD, making it a widely used tool for XML developers. The graphics capabilities of this program were exploited in the context of the ATLAS 2002 Muon Testbeam where it was used as an online event display, integrated in the online software framework and participating in the commissioning and debug of the detector system.

  12. Cancer Digital Slide Archive: an informatics resource to support integrated in silico analysis of TCGA pathology data

    Science.gov (United States)

    Gutman, David A; Cobb, Jake; Somanna, Dhananjaya; Park, Yuna; Wang, Fusheng; Kurc, Tahsin; Saltz, Joel H; Brat, Daniel J; Cooper, Lee A D

    2013-01-01

    Background The integration and visualization of multimodal datasets is a common challenge in biomedical informatics. Several recent studies of The Cancer Genome Atlas (TCGA) data have illustrated important relationships between morphology observed in whole-slide images, outcome, and genetic events. The pairing of genomics and rich clinical descriptions with whole-slide imaging provided by TCGA presents a unique opportunity to perform these correlative studies. However, better tools are needed to integrate the vast and disparate data types. Objective To build an integrated web-based platform supporting whole-slide pathology image visualization and data integration. Materials and methods All images and genomic data were directly obtained from the TCGA and National Cancer Institute (NCI) websites. Results The Cancer Digital Slide Archive (CDSA) produced is accessible to the public (http://cancer.digitalslidearchive.net) and currently hosts more than 20 000 whole-slide images from 22 cancer types. Discussion The capabilities of CDSA are demonstrated using TCGA datasets to integrate pathology imaging with associated clinical, genomic and MRI measurements in glioblastomas and can be extended to other tumor types. CDSA also allows URL-based sharing of whole-slide images, and has preliminary support for directly sharing regions of interest and other annotations. Images can also be selected on the basis of other metadata, such as mutational profile, patient age, and other relevant characteristics. Conclusions With the increasing availability of whole-slide scanners, analysis of digitized pathology images will become increasingly important in linking morphologic observations with genomic and clinical endpoints. PMID:23893318

  13. Recent results from the ATLAS heavy ion program

    CERN Document Server

    Havener, Laura Brittany; The ATLAS collaboration

    2018-01-01

    The heavy-ion program in the ATLAS experiment at the LHC originated as an extensive program to probe and characterize the hot, dense matter created in relativistic lead-lead collisions. In recent years, the program has also broadened to a detailed study of collective behavior in smaller systems. In particular, the techniques used to study larger systems are also applied to proton-proton and proton-lead collisions over a wide range of particle multiplicities, to try and understand the early-time dynamics which lead to similar flow-like features in all of the systems. Another recent development is a program studying ultra-peripheral collisions, which provide gamma-gamma and photonuclear processes over a wide range of CM energy, to probe the nuclear wavefunction. This talk presents a subset of the the most recent results from the ATLAS experiment based on Run 1 and Run 2 data, including measurements of collectivity over a wide range of collision systems, potential nPDF modifications — using electroweak bosons,...

  14. TCGA4U: A Web-Based Genomic Analysis Platform To Explore And Mine TCGA Genomic Data For Translational Research.

    Science.gov (United States)

    Huang, Zhenzhen; Duan, Huilong; Li, Haomin

    2015-01-01

    Large-scale human cancer genomics projects, such as TCGA, generated large genomics data for further study. Exploring and mining these data to obtain meaningful analysis results can help researchers find potential genomics alterations that intervene the development and metastasis of tumors. We developed a web-based gene analysis platform, named TCGA4U, which used statistics methods and models to help translational investigators explore, mine and visualize human cancer genomic characteristic information from the TCGA datasets. Furthermore, through Gene Ontology (GO) annotation and clinical data integration, the genomic data were transformed into biological process, molecular function, cellular component and survival curves to help researchers identify potential driver genes. Clinical researchers without expertise in data analysis will benefit from such a user-friendly genomic analysis platform.

  15. Review of the ATLAS B0 model coil test program

    CERN Document Server

    Dolgetta, N; Acerbi, E; Berriaud, C; Boxman, H; Broggi, F; Cataneo, F; Daël, A; Delruelle, N; Dudarev, A; Foussat, A; Haug, F; ten Kate, H H J; Mayri, C; Paccalini, A; Pengo, R; Rivoltella, G; Sbrissa, E

    2004-01-01

    The ATLAS B0 model coil has been extensively tested, reproducing the operational conditions of the final ATLAS Barrel Toroid coils. Two test campaigns have taken place on B0, at the CERN facility where the individual BT coils are about to be tested. The first campaign aimed to test the cool-down, warm-up phases and to commission the coil up to its nominal current of 20.5 kA, reproducing Lorentz forces similar to the ones on the BT coil. The second campaign aimed to evaluate the margins above the nominal conditions. The B0 was tested up to 24 kA and specific tests were performed to assess: the coil temperature margin with respect to the design value, the performance of the double pancake internal joints, static and dynamic heat loads, behavior of the coil under quench conditions. The paper reviews the overall test program with emphasis on second campaign results not covered before. 10 Refs.

  16. ATLAS

    Data.gov (United States)

    Federal Laboratory Consortium — ATLAS is a particle physics experiment at the Large Hadron Collider at CERN, the European Organization for Nuclear Research. Scientists from Brookhaven have played...

  17. Virtual Visit to the ATLAS Control Room by QuarkNet program in Portland

    CERN Multimedia

    2013-01-01

    The LHC fellows of the U.S. QuarkNet program will hold a workshop "Real LHC Data for the Classroom" for teachers using elements of the ATLAS masterclass on July 13, 2013. The workshop is part of the Summer 2013 Meeting of the American Association of Physics Teachers. In the workshop, teachers are introduced to particle physics, the ATLAS experiment, and ways to use actual data from the Large Hadron Collider at CERN to help their students understand fundamental physics. One of the highlights of this one-day workshop is an ATLAS Virtual Visit, in which the teachers connect by videoconference with the ATLAS control room. In the videoconferecne, the participants will be able to to ask questions of and have discussions with an ATLAS physicist.

  18. TCGA Workflow: Analyze cancer genomics and epigenomics data using Bioconductor packages [version 2; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Tiago C. Silva

    2016-12-01

    Full Text Available Biotechnological advances in sequencing have led to an explosion of publicly available data via large international consortia such as The Cancer Genome Atlas (TCGA, The Encyclopedia of DNA Elements (ENCODE, and The NIH Roadmap Epigenomics Mapping Consortium (Roadmap. These projects have provided unprecedented opportunities to interrogate the epigenome of cultured cancer cell lines as well as normal and tumor tissues with high genomic resolution. The Bioconductor project offers more than 1,000 open-source software and statistical packages to analyze high-throughput genomic data. However, most packages are designed for specific data types (e.g. expression, epigenetics, genomics and there is no one comprehensive tool that provides a complete integrative analysis of the resources and data provided by all three public projects. A need to create an integration of these different analyses was recently proposed. In this workflow, we provide a series of biologically focused integrative analyses of different molecular data. We describe how to download, process and prepare TCGA data and by harnessing several key Bioconductor packages, we describe how to extract biologically meaningful genomic and epigenomic data. Using Roadmap and ENCODE data, we provide a work plan to identify biologically relevant functional epigenomic elements associated with cancer. To illustrate our workflow, we analyzed two types of brain tumors: low-grade glioma (LGG versus high-grade glioma (glioblastoma multiform or GBM. This workflow introduces the following Bioconductor packages: AnnotationHub, ChIPSeeker, ComplexHeatmap, pathview, ELMER, GAIA, MINET, RTCGAToolbox, TCGAbiolinks.

  19. Molecular heterogeneity at the network level: high-dimensional testing, clustering and a TCGA case study.

    Science.gov (United States)

    Städler, Nicolas; Dondelinger, Frank; Hill, Steven M; Akbani, Rehan; Lu, Yiling; Mills, Gordon B; Mukherjee, Sach

    2017-09-15

    Molecular pathways and networks play a key role in basic and disease biology. An emerging notion is that networks encoding patterns of molecular interplay may themselves differ between contexts, such as cell type, tissue or disease (sub)type. However, while statistical testing of differences in mean expression levels has been extensively studied, testing of network differences remains challenging. Furthermore, since network differences could provide important and biologically interpretable information to identify molecular subgroups, there is a need to consider the unsupervised task of learning subgroups and networks that define them. This is a nontrivial clustering problem, with neither subgroups nor subgroup-specific networks known at the outset. We leverage recent ideas from high-dimensional statistics for testing and clustering in the network biology setting. The methods we describe can be applied directly to most continuous molecular measurements and networks do not need to be specified beforehand. We illustrate the ideas and methods in a case study using protein data from The Cancer Genome Atlas (TCGA). This provides evidence that patterns of interplay between signalling proteins differ significantly between cancer types. Furthermore, we show how the proposed approaches can be used to learn subtypes and the molecular networks that define them. As the Bioconductor package nethet. staedler.n@gmail.com or sach.mukherjee@dzne.de. Supplementary data are available at Bioinformatics online.

  20. ATLAS

    CERN Multimedia

    2002-01-01

    Barrel and END-CAP Toroids In order to produce a powerful magnetic field to bend the paths of the muons, the ATLAS detector uses an exceptionally large system of air-core toroids arranged outside the calorimeter volumes. The large volume magnetic field has a wide angular coverage and strengths of up to 4.7tesla. The toroids system contains over 100km of superconducting wire and has a design current of 20 500 amperes. (ATLAS brochure: The Technical Challenges)

  1. Discovery analysis of TCGA data reveals association between germline genotype and survival in ovarian cancer patients.

    Directory of Open Access Journals (Sweden)

    Rosemary Braun

    Full Text Available Ovarian cancer remains a significant public health burden, with the highest mortality rate of all the gynecological cancers. This is attributable to the late stage at which the majority of ovarian cancers are diagnosed, coupled with the low and variable response of advanced tumors to standard chemotherapies. To date, clinically useful predictors of treatment response remain lacking. Identifying the genetic determinants of ovarian cancer survival and treatment response is crucial to the development of prognostic biomarkers and personalized therapies that may improve outcomes for the late-stage patients who comprise the majority of cases.To identify constitutional genetic variations contributing to ovarian cancer mortality, we systematically investigated associations between germline polymorphisms and ovarian cancer survival using data from The Cancer Genome Atlas Project (TCGA. Using stage-stratified Cox proportional hazards regression, we examined >650,000 SNP loci for association with survival. We additionally examined whether the association of significant SNPs with survival was modified by somatic alterations.Germline polymorphisms at rs4934282 (AGAP11/C10orf116 and rs1857623 (DNAH14 were associated with stage-adjusted survival (p= 1.12e-07 and 1.80e-07, FDR q= 1.2e-04 and 2.4e-04, respectively. A third SNP, rs4869 (C10orf116, was additionally identified as significant in the exome sequencing data; it is in near-perfect LD with rs4934282. The associations with survival remained significant when somatic alterations.Discovery analysis of TCGA data reveals germline genetic variations that may play a role in ovarian cancer survival even among late-stage cases. The significant loci are located near genes previously reported as having a possible relationship to platinum and taxol response. Because the variant alleles at the significant loci are common (frequencies for rs4934282 A/C alleles = 0.54/0.46, respectively; rs1857623 A/G alleles = 0

  2. ATLAS

    CERN Multimedia

    Akhnazarov, V; Canepa, A; Bremer, J; Burckhart, H; Cattai, A; Voss, R; Hervas, L; Kaplon, J; Nessi, M; Werner, P; Ten kate, H; Tyrvainen, H; Vandelli, W; Krasznahorkay, A; Gray, H; Alvarez gonzalez, B; Eifert, T F; Rolando, G; Oide, H; Barak, L; Glatzer, J; Backhaus, M; Schaefer, D M; Maciejewski, J P; Milic, A; Jin, S; Von torne, E; Limbach, C; Medinnis, M J; Gregor, I; Levonian, S; Schmitt, S; Waananen, A; Monnier, E; Muanza, S G; Pralavorio, P; Talby, M; Tiouchichine, E; Tocut, V M; Rybkin, G; Wang, S; Lacour, D; Laforge, B; Ocariz, J H; Bertoli, W; Malaescu, B; Sbarra, C; Yamamoto, A; Sasaki, O; Koriki, T; Hara, K; Da silva gomes, A; Carvalho maneira, J; Marcalo da palma, A; Chekulaev, S; Tikhomirov, V; Snesarev, A; Buzykaev, A; Maslennikov, A; Peleganchuk, S; Sukharev, A; Kaplan, B E; Swiatlowski, M J; Nef, P D; Schnoor, U; Oakham, G F; Ueno, R; Orr, R S; Abouzeid, O; Haug, S; Peng, H; Kus, V; Vitek, M; Temming, K K; Dang, N P; Meier, K; Schultz-coulon, H; Geisler, M P; Sander, H; Schaefer, U; Ellinghaus, F; Rieke, S; Nussbaumer, A; Liu, Y; Richter, R; Kortner, S; Fernandez-bosman, M; Ullan comes, M; Espinal curull, J; Chiriotti alvarez, S; Caubet serrabou, M; Valladolid gallego, E; Kaci, M; Carrasco vela, N; Lancon, E C; Besson, N E; Gautard, V; Bracinik, J; Bartsch, V C; Potter, C J; Lester, C G; Moeller, V A; Rosten, J; Crooks, D; Mathieson, K; Houston, S C; Wright, M; Jones, T W; Harris, O B; Byatt, T J; Dobson, E; Hodgson, P; Hodgkinson, M C; Dris, M; Karakostas, K; Ntekas, K; Oren, D; Duchovni, E; Etzion, E; Oren, Y; Ferrer, L M; Testa, M; Doria, A; Merola, L; Sekhniaidze, G; Giordano, R; Ricciardi, S; Milazzo, A; Falciano, S; De pedis, D; Dionisi, C; Veneziano, S; Cardarelli, R; Verzegnassi, C; Soualah, R; Ochi, A; Ohshima, T; Kishiki, S; Linde, F L; Vreeswijk, M; Werneke, P; Muijs, A; Vankov, P H; Jansweijer, P P M; Dale, O; Lund, E; Bruckman de renstrom, P; Dabrowski, W; Adamek, J D; Wolters, H; Micu, L; Pantea, D; Tudorache, V; Mjoernmark, J; Klimek, P J; Ferrari, A; Abdinov, O; Akhoundov, A; Hashimov, R; Shelkov, G; Khubua, J; Ladygin, E; Lazarev, A; Glagolev, V; Dedovich, D; Lykasov, G; Zhemchugov, A; Zolnikov, Y; Ryabenko, M; Sivoklokov, S; Vasilyev, I; Shalimov, A; Lobanov, M; Paramoshkina, E; Mosidze, M; Bingul, A; Nodulman, L J; Guarino, V J; Yoshida, R; Drake, G R; Calafiura, P; Haber, C; Quarrie, D R; Alonso, J R; Anderson, C; Evans, H; Lammers, S W; Baubock, M; Anderson, K; Petti, R; Suhr, C A; Linnemann, J T; Richards, R A; Tollefson, K A; Holzbauer, J L; Stoker, D P; Pier, S; Nelson, A J; Isakov, V; Martin, A J; Adelman, J A; Paganini, M; Gutierrez, P; Snow, J M; Pearson, B L; Cleland, W E; Savinov, V; Wong, W; Goodson, J J; Li, H; Lacey, R A; Gordeev, A; Gordon, H; Lanni, F; Nevski, P; Rescia, S; Kierstead, J A; Liu, Z; Yu, W W H; Bensinger, J; Hashemi, K S; Bogavac, D; Cindro, V; Hoeferkamp, M R; Coelli, S; Iodice, M; Piegaia, R N; Alonso, F; Wahlberg, H P; Barberio, E L; Limosani, A; Rodd, N L; Jennens, D T; Hill, E C; Pospisil, S; Smolek, K; Schaile, D A; Rauscher, F G; Adomeit, S; Mattig, P M; Wahlen, H; Volkmer, F; Calvente lopez, S; Sanchis peris, E J; Pallin, D; Podlyski, F; Says, L; Boumediene, D E; Scott, W; Phillips, P W; Greenall, A; Turner, P; Gwilliam, C B; Kluge, T; Wrona, B; Sellers, G J; Millward, G; Adragna, P; Hartin, A; Alpigiani, C; Piccaro, E; Bret cano, M; Hughes jones, R E; Mercer, D; Oh, A; Chavda, V S; Carminati, L; Cavasinni, V; Fedin, O; Patrichev, S; Ryabov, Y; Nesterov, S; Grebenyuk, O; Sasso, J; Mahmood, H; Polsdofer, E; Dai, T; Ferretti, C; Liu, H; Hegazy, K H; Benjamin, D P; Zobernig, G; Ban, J; Brooijmans, G H; Keener, P; Williams, H H; Le geyt, B C; Hines, E J; Fadeyev, V; Schumm, B A; Law, A T; Kuhl, A D; Neubauer, M S; Shang, R; Gagliardi, G; Calabro, D; Conta, C; Zinna, M; Jones, G; Li, J; Stradling, A R; Hadavand, H K; Mcguigan, P; Chiu, P; Baldelomar, E; Stroynowski, R A; Kehoe, R L; De groot, N; Timmermans, C; Lach-heb, F; Addy, T N; Nakano, I; Moreno lopez, D; Grosse-knetter, J; Tyson, B; Rude, G D; Tafirout, R; Benoit, P; Danielsson, H O; Elsing, M; Fassnacht, P; Froidevaux, D; Ganis, G; Gorini, B; Lasseur, C; Lehmann miotto, G; Kollar, D; Aleksa, M; Sfyrla, A; Duehrssen-debling, K; Fressard-batraneanu, S; Van der ster, D C; Bortolin, C; Schumacher, J; Mentink, M; Geich-gimbel, C; Yau wong, K H; Lafaye, R; Crepe-renaudin, S; Albrand, S; Hoffmann, D; Pangaud, P; Meessen, C; Hrivnac, J; Vernay, E; Perus, A; Henrot versille, S L; Le dortz, O; Derue, F; Piccinini, M; Polini, A; Terada, S; Arai, Y; Ikeno, M; Fujii, H; Nagano, K; Ukegawa, F; Aguilar saavedra, J A; Conde muino, P; Castro, N F; Eremin, V; Kopytine, M; Sulin, V; Tsukerman, I; Korol, A; Nemethy, P; Bartoldus, R; Glatte, A; Chelsky, S; Van nieuwkoop, J; Bellerive, A; Sinervo, J K; Battaglia, A; Barbier, G J; Pohl, M; Rosselet, L; Alexandre, G B; Prokoshin, F; Pezoa rivera, R A; Batkova, L; Kladiva, E; Stastny, J; Kubes, T; Vidlakova, Z; Esch, H; Homann, M; Herten, L G; Zimmermann, S U; Pfeifer, B; Stenzel, H; Andrei, G V; Wessels, M; Buescher, V; Kleinknecht, K; Fiedler, F M; Schroeder, C D; Fernandez, E; Mir martinez, L; Vorwerk, V; Bernabeu verdu, J; Salt, J; Civera navarrete, J V; Bernard, R; Berriaud, C P; Chevalier, L P; Hubbard, R; Schune, P; Nikolopoulos, K; Batley, J R; Brochu, F M; Phillips, A W; Teixeira-dias, P J; Rose, M B D; Buttar, C; Buckley, A G; Nurse, E L; Larner, A B; Boddy, C; Henderson, J; Costanzo, D; Tarem, S; Maccarrone, G; Laurelli, P F; Alviggi, M; Chiaramonte, R; Izzo, V; Palumbo, V; Fraternali, M; Crosetti, G; Marchese, F; Yamaguchi, Y; Hessey, N P; Mechnich, J M; Liebig, W; Kastanas, K A; Sjursen, T B; Zalieckas, J; Cameron, D G; Banka, P; Kowalewska, A B; Dwuznik, M; Mindur, B; Boldea, V; Hedberg, V; Smirnova, O; Sellden, B; Allahverdiyev, T; Gornushkin, Y; Koultchitski, I; Tokmenin, V; Chizhov, M; Gongadze, A; Khramov, E; Sadykov, R; Krasnoslobodtsev, I; Smirnova, L; Kramarenko, V; Minaenko, A; Zenin, O; Beddall, A J; Ozcan, E V; Hou, S; Wang, S; Moyse, E; Willocq, S; Chekanov, S; Le compte, T J; Love, J R; Ciocio, A; Hinchliffe, I; Tsulaia, V; Gomez, A; Luehring, F; Zieminska, D; Huth, J E; Gonski, J L; Oreglia, M; Tang, F; Shochet, M J; Costin, T; Mcleod, A; Uzunyan, S; Martin, S P; Pope, B G; Schwienhorst, R H; Brau, J E; Ptacek, E S; Milburn, R H; Sabancilar, E; Lauer, R; Saleem, M; Mohamed meera lebbai, M R; Lou, X; Reeves, K B; Rijssenbeek, M; Novakova, P N; Rahm, D; Steinberg, P A; Wenaus, T J; Paige, F; Ye, S; Kotcher, J R; Assamagan, K A; Oliveira damazio, D; Maeno, T; Henry, A; Dushkin, A; Costa, G; Meroni, C; Resconi, S; Lari, T; Biglietti, M; Lohse, T; Gonzalez silva, M L; Monticelli, F G; Saavedra, A F; Patel, N D; Ciodaro xavier, T; Asevedo nepomuceno, A; Lefebvre, M; Albert, J E; Kubik, P; Faltova, J; Turecek, D; Solc, J; Schaile, O; Ebke, J; Losel, P J; Zeitnitz, C; Sturm, P D; Barreiro alonso, F; Modesto alapont, P; Soret medel, J; Garzon alama, E J; Gee, C N; Mccubbin, N A; Sankey, D; Emeliyanov, D; Dewhurst, A L; Houlden, M A; Klein, M; Burdin, S; Lehan, A K; Eisenhandler, E; Lloyd, S; Traynor, D P; Ibbotson, M; Marshall, R; Pater, J; Freestone, J; Masik, J; Haughton, I; Manousakis katsikakis, A; Sampsonidis, D; Krepouri, A; Roda, C; Sarri, F; Fukunaga, C; Nadtochiy, A; Kara, S O; Timm, S; Alam, S M; Rashid, T; Goldfarb, S; Espahbodi, S; Marley, D E; Rau, A W; Dos anjos, A R; Haque, S; Grau, N C; Havener, L B; Thomson, E J; Newcomer, F M; Hansl-kozanecki, G; Deberg, H A; Takeshita, T; Goggi, V; Ennis, J S; Olness, F I; Kama, S; Ordonez sanz, G; Koetsveld, F; Elamri, M; Mansoor-ul-islam, S; Lemmer, B; Kawamura, G; Bindi, M; Schulte, S; Kugel, A; Kretz, M P; Kurchaninov, L; Blanchot, G; Chromek-burckhart, D; Di girolamo, B; Francis, D; Gianotti, F; Nordberg, M Y; Pernegger, H; Roe, S; Boyd, J; Wilkens, H G; Pauly, T; Fabre, C; Tricoli, A; Bertet, D; Ruiz martinez, M A; Arnaez, O L; Lenzi, B; Boveia, A J; Gillberg, D I; Davies, J M; Zimmermann, R; Uhlenbrock, M; Kraus, J K; Narayan, R T; John, A; Dam, M; Padilla aranda, C; Bellachia, F; Le flour chollet, F M; Jezequel, S; Dumont dayot, N; Fede, E; Mathieu, M; Gensolen, F D; Alio, L; Arnault, C; Bouchel, M; Ducorps, A; Kado, M M; Lounis, A; Zhang, Z P; De vivie de regie, J; Beau, T; Bruni, A; Bruni, G; Grafstrom, P; Romano, M; Lasagni manghi, F; Massa, L; Shaw, K; Ikegami, Y; Tsuno, S; Kawanishi, Y; Benincasa, G; Blagov, M; Fedorchuk, R; Shatalov, P; Romaniouk, A; Belotskiy, K; Timoshenko, S; Hooft van huysduynen, L; Lewis, G H; Wittgen, M M; Mader, W F; Rudolph, C J; Gumpert, C; Mamuzic, J; Rudolph, G; Schmid, P; Corriveau, F; Belanger-champagne, C; Yarkoni, S; Leroy, C; Koffas, T; Harack, B D; Weber, M S; Beck, H; Leger, A; Gonzalez sevilla, S; Zhu, Y; Gao, J; Zhang, X; Blazek, T; Rames, J; Sicho, P; Kouba, T; Sluka, T; Lysak, R; Ristic, B; Kompatscher, A E; Von radziewski, H; Groll, M; Meyer, C P; Oberlack, H; Stonjek, S M; Cortiana, G; Werthenbach, U; Ibragimov, I; Czirr, H S; Cavalli-sforza, M; Puigdengoles olive, C; Tallada crespi, P; Marti i garcia, S; Gonzalez de la hoz, S; Guyot, C; Meyer, J; Schoeffel, L O; Garvey, J; Hawkes, C; Hillier, S J; Staley, R J; Salvatore, P F; Santoyo castillo, I; Carter, J; Yusuff, I B; Barlow, N R; Berry, T S; Savage, G; Wraight, K G; Steele, G E; Hughes, G; Walder, J W; Love, P A; Crone, G J; Waugh, B M; Boeser, S; Sarkar, A M; Holmes, A; Massey, R; Pinder, A; Nicholson, R; Korolkova, E; Katsoufis, I; Maltezos, S; Tsipolitis, G; Leontsinis, S; Levinson, L J; Shoa, M; Abramowicz, H E; Bella, G; Gershon, A; Urkovsky, E; Taiblum, N; Gatti, C; Della pietra, M; Lanza, A; Negri, A; Flaminio, V; Lacava, F; Petrolo, E; Pontecorvo, L; Rosati, S; Zanello, L; Pasqualucci, E; Di ciaccio, A; Giordani, M; Yamazaki, Y; Jinno, T; Nomachi, M; De jong, P J; Ferrari, P; Homma, J; Van der graaf, H; Igonkina, O B; Stugu, B S; Buanes, T; Pedersen, M; Turala, M; Olszewski, A J; Koperny, S Z; Onofre, A; Castro nunes fiolhais, M; Alexa, C; Cuciuc, C M; Akesson, T P A; Hellman, S L; Milstead, D A; Bondyakov, A; Pushnova, V; Budagov, Y; Minashvili, I; Romanov, V; Sniatkov, V; Tskhadadze, E; Kalinovskaya, L; Shalyugin, A; Tavkhelidze, A; Rumyantsev, L; Karpov, S; Soloshenko, A; Vostrikov, A; Borissov, E; Solodkov, A; Vorob'ev, A; Sidorov, S; Malyaev, V; Lee, S; Grudzinski, J J; Virzi, J S; Vahsen, S E; Lys, J; Penwell, J W; Yan, Z; Bernard, C S; Barreiro guimaraes da costa, J P; Oliver, J N; Merritt, F S; Brubaker, E M; Kapliy, A; Kim, J; Zutshi, V V; Burghgrave, B O; Abolins, M A; Arabidze, G; Caughron, S A; Frey, R E; Radloff, P T; Schernau, M; Murillo garcia, R; Porter, R A; Mccormick, C A; Karn, P J; Sliwa, K J; Demers konezny, S M; Strauss, M G; Mueller, J A; Izen, J M; Klimentov, A; Lynn, D; Polychronakos, V; Radeka, V; Sondericker, J I I I; Bathe, S; Duffin, S; Chen, H; De castro faria salgado, P E; Kersevan, B P; Lacker, H M; Schulz, H; Kubota, T; Tan, K G; Yabsley, B D; Nunes de moura junior, N; Pinfold, J; Soluk, R A; Ouellette, E A; Leitner, R; Sykora, T; Solar, M; Sartisohn, G; Hirschbuehl, D; Huning, D; Fischer, J; Terron cuadrado, J; Glasman kuguel, C B; Lacasta llacer, C; Lopez-amengual, J; Calvet, D; Chevaleyre, J; Daudon, F; Montarou, G; Guicheney, C; Calvet, S P J; Tyndel, M; Dervan, P J; Maxfield, S J; Hayward, H S; Beck, G; Cox, B; Da via, C; Paschalias, P; Manolopoulou, M; Ragusa, F; Cimino, D; Ezzi, M; Fiuza de barros, N F; Yildiz, H; Ciftci, A K; Turkoz, S; Zain, S B; Tegenfeldt, F; Chapman, J W; Panikashvili, N; Bocci, A; Altheimer, A D; Martin, F F; Fratina, S; Jackson, B D; Grillo, A A; Seiden, A; Watts, G T; Mangiameli, S; Johns, K A; O'grady, F T; Errede, D R; Darbo, G; Ferretto parodi, A; Leahu, M C; Farbin, A; Ye, J; Liu, T; Wijnen, T A; Naito, D; Takashima, R; Sandoval usme, C E; Zinonos, Z; Moreno llacer, M; Agricola, J B; Mcgovern, S A; Sakurai, Y; Trigger, I M; Qing, D; De silva, A S; Butin, F; Dell'acqua, A; Hawkings, R J; Lamanna, M; Mapelli, L; Passardi, G; Rembser, C; Tremblet, L; Andreazza, W; Dobos, D A; Koblitz, B; Bianco, M; Dimitrov, G V; Schlenker, S; Armbruster, A J; Rammensee, M C; Romao rodrigues, L F; Peters, K; Pozo astigarraga, M E; Yi, Y; Desch, K K; Huegging, F G; Muller, K K; Stillings, J A; Schaetzel, S; Xella, S; Hansen, J D; Colas, J; Daguin, G; Wingerter, I; Ionescu, G D; Ledroit, F; Lucotte, A; Clement, B E; Stark, J; Clemens, J; Djama, F; Knoops, E; Coadou, Y; Vigeolas-choury, E; Feligioni, L; Iconomidou-fayard, L; Imbert, P; Schaffer, A C; Nikolic, I; Trincaz-duvoid, S; Warin, P; Camard, A F; Ridel, M; Pires, S; Giacobbe, B; Spighi, R; Villa, M; Negrini, M; Sato, K; Gavrilenko, I; Akimov, A; Khovanskiy, V; Talyshev, A; Voronkov, A; Hakobyan, H; Mallik, U; Shibata, A; Konoplich, R; Barklow, T L; Koi, T; Straessner, A; Stelzer, B; Robertson, S H; Vachon, B; Stoebe, M; Keyes, R A; Wang, K; Billoud, T R V; Strickland, V; Batygov, M; Krieger, P; Palacino caviedes, G D; Gay, C W; Jiang, Y; Han, L; Liu, M; Zenis, T; Lokajicek, M; Staroba, P; Tasevsky, M; Popule, J; Svatos, M; Seifert, F; Landgraf, U; Lai, S T; Schmitt, K H; Achenbach, R; Schuh, N; Kiesling, C; Macchiolo, A; Nisius, R; Schacht, P; Von der schmitt, J G; Kortner, O; Atlay, N B; Segura sole, E; Grinstein, S; Neissner, C; Bruckner, D M; Oliver garcia, E; Boonekamp, M; Perrin, P; Gaillot, F M; Wilson, J A; Thomas, J P; Thompson, P D; Palmer, J D; Falk, I E; Chavez barajas, C A; Sutton, M R; Robinson, D; Kaneti, S A; Wu, T; Robson, A; Shaw, C; Buzatu, A; Qin, G; Jones, R; Bouhova-thacker, E V; Viehhauser, G; Weidberg, A R; Gilbert, L; Johansson, P D C; Orphanides, M; Vlachos, S; Behar harpaz, S; Papish, O; Lellouch, D J H; Turgeman, D; Benary, O; La rotonda, L; Vena, R; Tarasio, A; Marzano, F; Gabrielli, A; Di stante, L; Liberti, B; Aielli, G; Oda, S; Nozaki, M; Takeda, H; Hayakawa, T; Miyazaki, K; Maeda, J; Sugimoto, T; Pettersson, N E; Bentvelsen, S; Groenstege, H L; Lipniacka, A; Vahabi, M; Ould-saada, F; Chwastowski, J J; Hajduk, Z; Kaczmarska, A; Olszowska, J B; Trzupek, A; Staszewski, R P; Palka, M; Constantinescu, S; Jarlskog, G; Lundberg, B L A; Pearce, M; Ellert, M F; Bannikov, A; Fechtchenko, A; Iambourenko, V; Kukhtin, V; Pozdniakov, V; Topilin, N; Vorozhtsov, S; Khassanov, A; Fliaguine, V; Kharchenko, D; Nikolaev, K; Kotenov, K; Kozhin, A; Zenin, A; Ivashin, A; Golubkov, D; Beddall, A; Su, D; Dallapiccola, C J; Cranshaw, J M; Price, L; Stanek, R W; Gieraltowski, G; Zhang, J; Gilchriese, M; Shapiro, M; Ahlen, S; Morii, M; Taylor, F E; Miller, R J; Phillips, F H; Torrence, E C; Wheeler, S J; Benedict, B H; Napier, A; Hamilton, S F; Petrescu, T A; Boyd, G R J; Jayasinghe, A L; Smith, J M; Mc carthy, R L; Adams, D L; Le vine, M J; Zhao, X; Patwa, A M; Baker, M; Kirsch, L; Krstic, J; Simic, L; Filipcic, A; Seidel, S C; Cantore-cavalli, D; Baroncelli, A; Kind, O M; Scarcella, M J; Maidantchik, C L L; Seixas, J; Balabram filho, L E; Vorobel, V; Spousta, M; Strachota, P; Vokac, P; Slavicek, T; Bergmann, B L; Biebel, O; Kersten, S; Srinivasan, M; Trefzger, T; Vazeille, F; Insa, C; Kirk, J; Middleton, R; Burke, S; Klein, U; Morris, J D; Ellis, K V; Millward, L R; Giokaris, N; Ioannou, P; Angelidakis, S; Bouzakis, K; Andreazza, A; Perini, L; Chtcheguelski, V; Spiridenkov, E; Yilmaz, M; Kaya, U; Ernst, J; Mahmood, A; Saland, J; Kutnink, T; Holler, J; Kagan, H P; Wang, C; Pan, Y; Xu, N; Ji, H; Willis, W J; Tuts, P M; Litke, A; Wilder, M; Rothberg, J; Twomey, M S; Rizatdinova, F; Loch, P; Rutherfoord, J P; Varnes, E W; Barberis, D; Osculati-becchi, B; Brandt, A G; Turvey, A J; Benchekroun, D; Nagasaka, Y; Thanakornworakij, T; Quadt, A; Nadal serrano, J; Magradze, E; Nackenhorst, O; Musheghyan, H; Kareem, M; Chytka, L; Perez codina, E; Stelzer-chilton, O; Brunel, B; Henriques correia, A M; Dittus, F; Hatch, M; Haug, F; Hauschild, M; Huhtinen, M; Lichard, P; Schuh-erhard, S; Spigo, G; Avolio, G; Tsarouchas, C; Ahmad, I; Backes, M P; Barisits, M; Gadatsch, S; Cerv, M; Sicoe, A D; Nattamai sekar, L P; Fazio, D; Shan, L; Sun, X; Gaycken, G F; Hemperek, T; Petersen, T C; Alonso diaz, A; Moynot, M; Werlen, M; Hryn'ova, T; Gallin-martel, M; Wu, M; Touchard, F; Menouni, M; Fougeron, D; Le guirriec, E; Chollet, J C; Veillet, J; Barrillon, P; Prat, S; Krasny, M W; Roos, L; Boudarham, G; Lefebvre, G; Boscherini, D; Valentinetti, S; Acharya, B S; Miglioranzi, S; Kanzaki, J; Unno, Y; Yasu, Y; Iwasaki, H; Tokushuku, K; Maio, A; Rodrigues fernandes, B J; Pinto figueiredo raimundo ribeiro, N M; Bot, A; Shmeleva, A; Zaidan, R; Djilkibaev, R; Mincer, A I; Salnikov, A; Aracena, I A; Schwartzman, A G; Silverstein, D J; Fulsom, B G; Anulli, F; Kuhn, D; White, M J; Vetterli, M J; Stockton, M C; Mantifel, R L; Azuelos, G; Shoaleh saadi, D; Savard, P; Clark, A; Ferrere, D; Gaumer, O P; Diaz gutierrez, M A; Liu, Y; Dubnickova, A; Sykora, I; Strizenec, P; Weichert, J; Zitek, K; Naumann, T; Goessling, C; Klingenberg, R; Jakobs, K; Rurikova, Z; Werner, M W; Arnold, H R; Buscher, D; Hanke, P; Stamen, R; Dietzsch, T A; Kiryunin, A; Salihagic, D; Buchholz, P; Pacheco pages, A; Sushkov, S; Porto fernandez, M D C; Cruz josa, R; Vos, M A; Schwindling, J; Ponsot, P; Charignon, C; Kivernyk, O; Goodrick, M J; Hill, J C; Green, B J; Quarman, C V; Bates, R L; Allwood-spiers, S E; Quilty, D; Chilingarov, A; Long, R E; Barton, A E; Konstantinidis, N; Simmons, B; Davison, A R; Christodoulou, V; Wastie, R L; Gallas, E J; Cox, J; Dehchar, M; Behr, J K; Pickering, M A; Filippas, A; Panagoulias, I; Tenenbaum katan, Y D; Roth, I; Pitt, M; Citron, Z H; Benhammou, Y; Amram, N Y N; Soffer, A; Gorodeisky, R; Antonelli, M; Chiarella, V; Curatolo, M; Esposito, B; Nicoletti, G; Martini, A; Sansoni, A; Carlino, G; Del prete, T; Bini, C; Vari, R; Kuna, M; Pinamonti, M; Itoh, Y; Colijn, A P; Klous, S; Garitaonandia elejabarrieta, H; Rosendahl, P L; Taga, A V; Malecki, P; Malecki, P; Wolter, M W; Kowalski, T; Korcyl, G M; Caprini, M; Caprini, I; Dita, P; Olariu, A; Tudorache, A; Lytken, E; Hidvegi, A; Aliyev, M; Alexeev, G; Bardin, D; Kakurin, S; Lebedev, A; Golubykh, S; Chepurnov, V; Gostkin, M; Kolesnikov, V; Karpova, Z; Davkov, K I; Yeletskikh, I; Grishkevich, Y; Rud, V; Myagkov, A; Nikolaenko, V; Starchenko, E; Zaytsev, A; Fakhrutdinov, R; Cheine, I; Istin, S; Sahin, S; Teng, P; Chu, M L; Trilling, G H; Heinemann, B; Richoz, N; Degeorge, C; Youssef, S; Pilcher, J; Cheng, Y; Purohit, M V; Kravchenko, A; Calkins, R E; Blazey, G; Hauser, R; Koll, J D; Reinsch, A; Brost, E C; Allen, B W; Lankford, A J; Ciobotaru, M D; Slagle, K J; Haffa, B; Mann, A; Loginov, A; Cummings, J T; Loyal, J D; Skubic, P L; Boudreau, J F; Lee, B E; Redlinger, G; Wlodek, T; Carcassi, G; Sexton, K A; Yu, D; Deng, W; Metcalfe, J E; Panitkin, S; Sijacki, D; Mikuz, M; Kramberger, G; Tartarelli, G F; Farilla, A; Stanescu, C; Herrberg, R; Alconada verzini, M J; Brennan, A J; Varvell, K; Marroquim, F; Gomes, A A; Do amaral coutinho, Y; Gingrich, D; Moore, R W; Dolejsi, J; Valkar, S; Broz, J; Jindra, T; Kohout, Z; Kral, V; Mann, A W; Calfayan, P P; Langer, T; Hamacher, K; Sanny, B; Wagner, W; Flick, T; Redelbach, A R; Ke, Y; Higon-rodriguez, E; Donini, J N; Lafarguette, P; Adye, T J; Baines, J; Barnett, B; Wickens, F J; Martin, V J; Jackson, J N; Prichard, P; Kretzschmar, J; Martin, A J; Walker, C J; Potter, K M; Kourkoumelis, C; Tzamarias, S; Houiris, A G; Iliadis, D; Fanti, M; Bertolucci, F; Maleev, V; Sultanov, S; Rosenberg, E I; Krumnack, N E; Bieganek, C; Diehl, E B; Mc kee, S P; Eppig, A P; Harper, D R; Liu, C; Schwarz, T A; Mazor, B; Looper, K A; Wiedenmann, W; Huang, P; Stahlman, J M; Battaglia, M; Nielsen, J A; Zhao, T; Khanov, A; Kaushik, V S; Vichou, E; Liss, A M; Gemme, C; Morettini, P; Parodi, F; Passaggio, S; Rossi, L; Kuzhir, P; Ignatenko, A; Ferrari, R; Spairani, M; Pianori, E; Sekula, S J; Firan, A I; Cao, T; Hetherly, J W; Gouighri, M; Vassilakopoulos, V; Long, M C; Shimojima, M; Sawyer, L H; Brummett, R E; Losada, M A; Schorlemmer, A L; Mantoani, M; Bawa, H S; Mornacchi, G; Nicquevert, B; Palestini, S; Stapnes, S; Veness, R; Kotamaki, M J; Sorde, C; Iengo, P; Campana, S; Goossens, L; Zajacova, Z; Pribyl, L; Poveda torres, J; Marzin, A; Conti, G; Carrillo montoya, G D; Kroseberg, J; Gonella, L; Velz, T; Schmitt, S; Lobodzinska, E M; Lovschall-jensen, A E; Galster, G; Perrot, G; Cailles, M; Berger, N; Barnovska, Z; Delsart, P; Lleres, A; Tisserant, S; Grivaz, J; Matricon, P; Bellagamba, L; Bertin, A; Bruschi, M; De castro, S; Semprini cesari, N; Fabbri, L; Rinaldi, L; Quayle, W B; Truong, T N L; Kondo, T; Haruyama, T; Ng, C; Do valle wemans, A; Almeida veloso, F M; Konovalov, S; Ziegler, J M; Su, D; Lukas, W; Prince, S; Ortega urrego, E J; Teuscher, R J; Knecht, N; Pretzl, K; Borer, C; Gadomski, S; Koch, B; Kuleshov, S; Brooks, W K; Antos, J; Kulkova, I; Chudoba, J; Chyla, J; Tomasek, L; Bazalova, M; Messmer, I; Tobias, J; Sundermann, J E; Kuehn, S S; Kluge, E; Scharf, V L; Barillari, T; Kluth, S; Menke, S; Weigell, P; Schwegler, P; Ziolkowski, M; Casado lechuga, P M; Garcia, C; Sanchez, J; Costa mezquita, M J; Valero biot, J A; Laporte, J; Nikolaidou, R; Virchaux, M; Nguyen, V T H; Charlton, D; Harrison, K; Slater, M W; Newman, P R; Parker, A M; Ward, P; Mcgarvie, S A; Kilvington, G J; D'auria, S; O'shea, V; Mcglone, H M; Fox, H; Henderson, R; Kartvelishvili, V; Davies, B; Sherwood, P; Fraser, J T; Lancaster, M A; Tseng, J C; Hays, C P; Apolle, R; Dixon, S D; Parker, K A; Gazis, E; Papadopoulou, T; Panagiotopoulou, E; Karastathis, N; Hershenhorn, A D; Milov, A; Groth-jensen, J; Bilokon, H; Miscetti, S; Canale, V; Rebuzzi, D M; Capua, M; Bagnaia, P; De salvo, A; Gentile, S; Safai tehrani, F; Solfaroli camillocci, E; Sasao, N; Tsunada, K; Massaro, G; Magrath, C A; Van kesteren, Z; Beker, M G; Van den wollenberg, W; Bugge, L; Buran, T; Read, A L; Gjelsten, B K; Banas, E A; Turnau, J; Derendarz, D K; Kisielewska, D; Chesneanu, D; Rotaru, M; Maurer, J B; Wong, M L; Lund-jensen, B; Asman, B; Jon-and, K B; Silverstein, S B; Johansen, M; Alexandrov, I; Iatsounenko, I; Krumshteyn, Z; Peshekhonov, V; Rybaltchenko, K; Samoylov, V; Cheplakov, A; Kekelidze, G; Lyablin, M; Teterine, V; Bednyakov, V; Kruchonak, U; Shiyakova, M M; Demichev, M; Denisov, S P; Fenyuk, A; Djobava, T; Salukvadze, G; Cetin, S A; Brau, B P; Pais, P R; Proudfoot, J; Van gemmeren, P; Zhang, Q; Beringer, J A; Ely, R; Leggett, C; Pengg, F X; Barnett, M R; Quick, R E; Williams, S; Gardner jr, R W; Huston, J; Brock, R; Wanotayaroj, C; Unel, G N; Taffard, A C; Frate, M; Baker, K O; Tipton, P L; Hutchison, A; Walsh, B J; Norberg, S R; Su, J; Tsybyshev, D; Caballero bejar, J; Ernst, M U; Wellenstein, H; Vudragovic, D; Vidic, I; Gorelov, I V; Toms, K; Alimonti, G; Petrucci, F; Kolanoski, H; Smith, J; Jeng, G; Watson, I J; Guimaraes ferreira, F; Miranda vieira xavier, F; Araujo pereira, R; Poffenberger, P; Sopko, V; Elmsheuser, J; Wittkowski, J; Glitza, K; Gorfine, G W; Ferrer soria, A; Fuster verdu, J A; Sanchis lozano, A; Reinmuth, G; Busato, E; Haywood, S J; Mcmahon, S J; Qian, W; Villani, E G; Laycock, P J; Poll, A J; Rizvi, E S; Foster, J M; Loebinger, F; Forti, A; Plano, W G; Brown, G J A; Kordas, K; Vegni, G; Ohsugi, T; Iwata, Y; Cherkaoui el moursli, R; Sahin, M; Akyazi, E; Carlsen, A; Kanwal, B; Cochran jr, J H; Aronnax, M V; Lockner, M J; Zhou, B; Levin, D S; Weaverdyck, C J; Grom, G F; Rudge, A; Ebenstein, W L; Jia, B; Yamaoka, J; Jared, R C; Wu, S L; Banerjee, S; Lu, Q; Hughes, E W; Alkire, S P; Degenhardt, J D; Lipeles, E D; Spencer, E N; Savine, A; Cheu, E C; Lampl, W; Veatch, J R; Roberts, K; Atkinson, M J; Odino, G A; Polesello, G; Martin, T; White, A P; Stephens, R; Grinbaum sarkisyan, E; Vartapetian, A; Yu, J; Sosebee, M; Thilagar, P A; Spurlock, B; Bonde, R; Filthaut, F; Klok, P; Hoummada, A; Ouchrif, M; Pellegrini, G; Rafi tatjer, J M; Navarro, G A; Blumenschein, U; Weingarten, J C; Mueller, D; Graber, L; Gao, Y; Bode, A; Capeans garrido, M D M; Carli, T; Wells, P; Beltramello, O; Vuillermet, R; Dudarev, A; Salzburger, A; Torchiani, C I; Serfon, C L G; Sloper, J E; Duperrier, G; Lilova, P T; Knecht, M O; Lassnig, M; Anders, G; Deviveiros, P; Young, C; Sforza, F; Shaochen, C; Lu, F; Wermes, N; Wienemann, P; Schwindt, T; Hansen, P H; Hansen, J B; Pingel, A M; Massol, N; Elles, S L; Hallewell, G D; Rozanov, A; Vacavant, L; Fournier, D A; Poggioli, L; Puzo, P M; Tanaka, R; Escalier, M A; Makovec, N; Rezynkina, K; De cecco, S; Cavalleri, P G; Massa, I; Zoccoli, A; Tanaka, S; Odaka, S; Mitsui, S; Tomasio pina, J A; Santos, H F; Satsounkevitch, I; Harkusha, S; Baranov, S; Nechaeva, P; Kayumov, F; Kazanin, V; Asai, M; Mount, R P; Nelson, T K; Smith, D; Kenney, C J; Malone, C M; Kobel, M; Friedrich, F; Grohs, J P; Jais, W J; O'neil, D C; Warburton, A T; Vincter, M; Mccarthy, T G; Groer, L S; Pham, Q T; Taylor, W J; La marra, D; Perrin, E; Wu, X; Bell, W H; Delitzsch, C M; Feng, C; Zhu, C; Tokar, S; Bruncko, D; Kupco, A; Marcisovsky, M; Jakoubek, T; Bruneliere, R; Aktas, A; Narrias villar, D I; Tapprogge, S; Mattmann, J; Kroha, H; Crespo, J; Korolkov, I; Cavallaro, E; Cabrera urban, S; Mitsou, V; Kozanecki, W; Mansoulie, B; Pabot, Y; Etienvre, A; Bauer, F; Chevallier, F; Bouty, A R; Watkins, P; Watson, A; Faulkner, P J W; Curtis, C J; Murillo quijada, J A; Grout, Z J; Chapman, J D; Cowan, G D; George, S; Boisvert, V; Mcmahon, T R; Doyle, A T; Thompson, S A; Britton, D; Smizanska, M; Campanelli, M; Butterworth, J M; Loken, J; Renton, P; Barr, A J; Issever, C; Short, D; Crispin ortuzar, M; Tovey, D R; French, R; Rozen, Y; Alexander, G; Kreisel, A; Conventi, F; Raulo, A; Schioppa, M; Susinno, G; Tassi, E; Giagu, S; Luci, C; Nisati, A; Cobal, M; Ishikawa, A; Jinnouchi, O; Bos, K; Verkerke, W; Vermeulen, J; Van vulpen, I B; Kieft, G; Mora, K D; Olsen, F; Rohne, O M; Pajchel, K; Nilsen, J K; Wosiek, B K; Wozniak, K W; Badescu, E; Jinaru, A; Bohm, C; Johansson, E K; Sjoelin, J B R; Clement, C; Buszello, C P; Huseynova, D; Boyko, I; Popov, B; Poukhov, O; Vinogradov, V; Tsiareshka, P; Skvorodnev, N; Soldatov, A; Chuguev, A; Gushchin, V; Yazici, E; Lutz, M S; Malon, D; Vanyashin, A; Lavrijsen, W; Spieler, H; Biesiada, J L; Bahr, M; Kong, J; Tatarkhanov, M; Ogren, H; Van kooten, R J; Cwetanski, P; Butler, J M; Shank, J T; Chakraborty, D; Ermoline, I; Sinev, N; Whiteson, D O; Corso radu, A; Huang, J; Werth, M P; Kastoryano, M; Meirose da silva costa, B; Namasivayam, H; Hobbs, J D; Schamberger jr, R D; Guo, F; Potekhin, M; Popovic, D; Gorisek, A; Sokhrannyi, G; Hofsajer, I W; Mandelli, L; Ceradini, F; Graziani, E; Giorgi, F; Zur nedden, M E G; Grancagnolo, S; Volpi, M; Nunes hanninger, G; Rados, P K; Milesi, M; Cuthbert, C J; Black, C W; Fink grael, F; Fincke-keeler, M; Keeler, R; Kowalewski, R V; Berghaus, F O; Qi, M; Davidek, T; Tas, P; Jakubek, J; Duckeck, G; Walker, R; Mitterer, C A; Harenberg, T; Sandvoss, S A; Del peso, J; Llorente merino, J; Gonzalez millan, V; Irles quiles, A; Crouau, M; Gris, P L Y; Liauzu, S; Romano saez, S M; Gallop, B J; Jones, T J; Austin, N C; Morris, J; Duerdoth, I; Thompson, R J; Kelly, M P; Leisos, A; Garas, A; Pizio, C; Venda pinto, B A; Kudin, L; Qian, J; Wilson, A W; Mietlicki, D; Long, J D; Sang, Z; Arms, K E; Rahimi, A M; Moss, J J; Oh, S H; Parker, S I; Parsons, J; Cunitz, H; Vanguri, R S; Sadrozinski, H; Lockman, W S; Martinez-mc kinney, G; Goussiou, A; Jones, A; Lie, K; Hasegawa, Y; Olcese, M; Gilewsky, V; Harrison, P F; Janus, M; Spangenberg, M; De, K; Ozturk, N; Pal, A K; Darmora, S; Bullock, D J; Oviawe, O; Derkaoui, J E; Rahal, G; Sircar, A; Frey, A S; Stolte, P; Rosien, N; Zoch, K; Li, L; Schouten, D W; Catinaccio, A; Ciapetti, M; Delruelle, N; Ellis, N; Farthouat, P; Hoecker, A; Klioutchnikova, T; Macina, D; Malyukov, S; Spiwoks, R D; Unal, G P; Vandoni, G; Petersen, B A; Pommes, K; Nairz, A M; Wengler, T; Mladenov, D; Solans sanchez, C A; Lantzsch, K; Schmieden, K; Jakobsen, S; Ritsch, E; Sciuccati, A; Alves dos santos, A M; Ouyang, Q; Zhou, M; Brock, I C; Janssen, J; Katzy, J; Anders, C F; Nilsson, B S; Bazan, A; Di ciaccio, L; Yildizkaya, T; Collot, J; Malek, F; Trocme, B S; Breugnon, P; Godiot, S; Adam bourdarios, C; Coulon, J; Duflot, L; Petroff, P G; Zerwas, D; Lieuvin, M; Calderini, G; Laporte, D; Ocariz, J; Gabrielli, A; Ohska, T K; Kurochkin, Y; Kantserov, V; Vasilyeva, L; Speransky, M; Smirnov, S; Antonov, A; Bulekov, O; Tikhonov, Y; Sargsyan, L; Vardanyan, G; Budick, B; Kocian, M L; Luitz, S; Young, C C; Grenier, P J; Kelsey, M; Black, J E; Kneringer, E; Jussel, P; Horton, A J; Beaudry, J; Chandra, A; Ereditato, A; Topfel, C M; Mathieu, R; Bucci, F; Muenstermann, D; White, R M; He, M; Urban, J; Straka, M; Vrba, V; Schumacher, M; Parzefall, U; Mahboubi, K; Sommer, P O; Koepke, L H; Bethke, S; Moser, H; Wiesmann, M; Walkowiak, W A; Fleck, I J; Martinez-perez, M; Sanchez sanchez, C A; Jorgensen roca, S; Accion garcia, E; Sainz ruiz, C A; Valls ferrer, J A; Amoros vicente, G; Vives torrescasana, R; Ouraou, A; Formica, A; Hassani, S; Watson, M F; Cottin buracchio, G F; Bussey, P J; Saxon, D; Ferrando, J E; Collins-tooth, C L; Hall, D C; Cuhadar donszelmann, T; Dawson, I; Duxfield, R; Argyropoulos, T; Brodet, E; Livneh, R; Shougaev, K; Reinherz, E I; Guttman, N; Beretta, M M; Vilucchi, E; Aloisio, A; Patricelli, S; Caprio, M; Cevenini, F; De vecchi, C; Livan, M; Rimoldi, A; Vercesi, V; Ayad, R; Mastroberardino, A; Ciapetti, G; Luminari, L; Rescigno, M; Santonico, R; Salamon, A; Del papa, C; Kurashige, H; Homma, Y; Tomoto, M; Horii, Y; Sugaya, Y; Hanagaki, K; Bobbink, G; Kluit, P M; Koffeman, E N; Van eijk, B; Lee, H; Eigen, G; Dorholt, O; Strandlie, A; Strzempek, P B; Dita, S; Stoicea, G; Chitan, A; Leven, S S; Moa, T; Brenner, R; Ekelof, T J C; Olshevskiy, A; Roumiantsev, V; Chlachidze, G; Zimine, N; Gusakov, Y; Grigalashvili, N; Mineev, M; Potrap, I; Barashkou, A; Shoukavy, D; Shaykhatdenov, B; Pikelner, A; Gladilin, L; Ammosov, V; Abramov, A; Arik, M; Sahinsoy, M; Uysal, Z; Azizi, K; Hotinli, S C; Zhou, S; Berger, E; Blair, R; Underwood, D G; Einsweiler, K; Garcia-sciveres, M A; Siegrist, J L; Kipnis, I; Dahl, O; Holland, S; Barbaro galtieri, A; Smith, P T; Parua, N; Franklin, M; Mercurio, K M; Tong, B; Pod, E; Cole, S G; Hopkins, W H; Guest, D H; Severini, H; Marsicano, J J; Abbott, B K; Wang, Q; Lissauer, D; Ma, H; Takai, H; Rajagopalan, S; Protopopescu, S D; Snyder, S S; Undrus, A; Popescu, R N; Begel, M A; Blocker, C A; Amelung, C; Mandic, I; Macek, B; Tucker, B H; Citterio, M; Troncon, C; Orestano, D; Taccini, C; Romeo, G L; Dova, M T; Taylor, G N; Gesualdi manhaes, A; Mcpherson, R A; Sobie, R; Taylor, R P; Dolezal, Z; Kodys, P; Slovak, R; Sopko, B; Vacek, V; Sanders, M P; Hertenberger, R; Meineck, C; Becks, K; Kind, P; Sandhoff, M; Cantero garcia, J; De la torre perez, H; Castillo gimenez, V; Ros, E; Hernandez jimenez, Y; Chadelas, R; Santoni, C; Washbrook, A J; O'brien, B J; Wynne, B M; Mehta, A; Vossebeld, J H; Landon, M; Teixeira dias castanheira, M; Cerrito, L; Keates, J R; Fassouliotis, D; Chardalas, M; Manousos, A; Grachev, V; Seliverstov, D; Sedykh, E; Cakir, O; Ciftci, R; Edson, W; Prell, S A; Rosati, M; Stroman, T; Jiang, H; Neal, H A; Li, X; Gan, K K; Smith, D S; Kruse, M C; Ko, B R; Leung fook cheong, A M; Cole, B; Angerami, A R; Greene, Z S; Kroll, J I; Van berg, R P; Forbush, D A; Lubatti, H; Raisher, J; Shupe, M A; Wolin, S; Oshita, H; Gaudio, G; Das, R; Konig, A C; Croft, V A; Harvey, A; Maaroufi, F; Melo, I; Greenwood jr, Z D; Shabalina, E; Mchedlidze, G; Drechsler, E; Rieger, J K; Blackston, M; Colombo, T

    2002-01-01

    % ATLAS \\\\ \\\\ ATLAS is a general-purpose experiment for recording proton-proton collisions at LHC. The ATLAS collaboration consists of 144 participating institutions (June 1998) with more than 1750~physicists and engineers (700 from non-Member States). The detector design has been optimized to cover the largest possible range of LHC physics: searches for Higgs bosons and alternative schemes for the spontaneous symmetry-breaking mechanism; searches for supersymmetric particles, new gauge bosons, leptoquarks, and quark and lepton compositeness indicating extensions to the Standard Model and new physics beyond it; studies of the origin of CP violation via high-precision measurements of CP-violating B-decays; high-precision measurements of the third quark family such as the top-quark mass and decay properties, rare decays of B-hadrons, spectroscopy of rare B-hadrons, and $ B ^0 _{s} $-mixing. \\\\ \\\\The ATLAS dectector, shown in the Figure includes an inner tracking detector inside a 2~T~solenoid providing an axial...

  3. Bioinformatic Interrogation of 5p-arm and 3p-arm Specific miRNA Expression Using TCGA Datasets

    Directory of Open Access Journals (Sweden)

    Wei-Ting Kuo

    2015-09-01

    Full Text Available MicroRNAs (miRNAs play important roles in cellular functions and developmental processes. They are also implicated in oncogenesis mechanisms and could serve as potential cancer biomarkers. Using high-throughput miRNA sequencing information, expression of both the 5p-arm and 3p-arm mature miRNAs were demonstrated and generated from the single miRNA hairpin precursor. However, current miRNA annotations lack comprehensive 5p-arm/3p-arm feature annotations. Among known human mature miRNAs, only half of them are annotated with arm features. This generated ambiguous results in many miRNA-Sequencing (miRNA-Seq studies. In this report, we have interrogated the TCGA (the Cancer Genome Atlas miRNA expression datasets with an improved, fully annotated human 5p-arm and 3p-arm miRNA reference list. By utilizing this comprehensive miRNA arm-feature annotations, enhanced determinations and clear annotations were achieved for the miRNA isoforms (isomiRs recognized from the sequencing reads. In the gastric cancer (STAD dataset, as an example, 32 5p-arm/3p-arm OPEN ACCESS J. Clin. Med. 2015, 4 1799 specific miRNAs were found to be down-regulated and 24 5p-arm/3p-arm specific miRNAs were found to be up-regulated. We have further extended miRNA biomarker discoveries to additional TCGA miRNA-Seq datasets and provided extensive expression information on 5p-arm/3p-arm miRNAs across multiple cancer types. Our results identified several miRNAs that could be potential common biomarkers for human cancers.

  4. Bioinformatic Interrogation of 5p-arm and 3p-arm Specific miRNA Expression Using TCGA Datasets.

    Science.gov (United States)

    Kuo, Wei-Ting; Su, Ming-Wei; Lee, Yungling Leo; Chen, Chien-Hsiun; Wu, Chew-Wun; Fang, Wen-Liang; Huang, Kuo-Hung; Lin, Wen-Chang

    2015-09-15

    MicroRNAs (miRNAs) play important roles in cellular functions and developmental processes. They are also implicated in oncogenesis mechanisms and could serve as potential cancer biomarkers. Using high-throughput miRNA sequencing information, expression of both the 5p-arm and 3p-arm mature miRNAs were demonstrated and generated from the single miRNA hairpin precursor. However, current miRNA annotations lack comprehensive 5p-arm/3p-arm feature annotations. Among known human mature miRNAs, only half of them are annotated with arm features. This generated ambiguous results in many miRNA-Sequencing (miRNA-Seq) studies. In this report, we have interrogated the TCGA (the Cancer Genome Atlas) miRNA expression datasets with an improved, fully annotated human 5p-arm and 3p-arm miRNA reference list. By utilizing this comprehensive miRNA arm-feature annotations, enhanced determinations and clear annotations were achieved for the miRNA isoforms (isomiRs) recognized from the sequencing reads. In the gastric cancer (STAD) dataset, as an example, 32 5p-arm/3p-arm OPEN ACCESS J. Clin. Med. 2015, 4 1799 specific miRNAs were found to be down-regulated and 24 5p-arm/3p-arm specific miRNAs were found to be up-regulated. We have further extended miRNA biomarker discoveries to additional TCGA miRNA-Seq datasets and provided extensive expression information on 5p-arm/3p-arm miRNAs across multiple cancer types. Our results identified several miRNAs that could be potential common biomarkers for human cancers.

  5. Threshold Cryptography-based Group Authentication (TCGA) Scheme for the Internet of Things (IoT)

    DEFF Research Database (Denmark)

    Mahalle, Parikshit N.; Prasad, Neeli R.; Prasad, Ramjee

    2014-01-01

    Internet of things (IoT) is an emerging paradigm where the devices around us (persistent and non-persistent) are connected to each other to provide seamless communication, and contextual services. In the IoT, each device cannot be authenticated in the short time due to unbounded number of devices......, and receipt of their authentication request at the same time. Therefore, secure, and efficient group authentication, and authorization scheme is required that authenticates a group of devices at once in the context of resource constrained IoT. This paper presents novel Threshold Cryptography-based Group...... Authentication (TCGA) scheme for the IoT which verifies authenticity of all the devices taking part in the group communication. This paper also presents TCGA framework which is flexible and secure. The proposed TCGA scheme is implemented for WI-FI environment, and the result shows that TCGA scheme is lightweight...

  6. EnviroAtlas - Ecosystem Services Market-Based Programs Web Service, U.S., 2016, Forest Trends' Ecosystem Marketplace

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas web service contains layers depicting market-based programs and projects addressing ecosystem services protection in the United States. Layers...

  7. MO-DE-207B-05: Predicting Gene Mutations in Renal Cell Carcinoma Based On CT Imaging Features: Validation Using TCGA-TCIA Datasets

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X; Zhou, Z; Thomas, K; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: The goal of this work is to investigate the use of contrast enhanced computed tomographic (CT) features for the prediction of mutations of BAP1, PBRM1, and VHL genes in renal cell carcinoma (RCC). Methods: For this study, we used two patient databases with renal cell carcinoma (RCC). The first one consisted of 33 patients from our institution (UT Southwestern Medical Center, UTSW). The second one consisted of 24 patients from the Cancer Imaging Archive (TCIA), where each patient is connected by a unique identi?er to the tissue samples from the Cancer Genome Atlas (TCGA). From the contrast enhanced CT image of each patient, tumor contour was first delineated by a physician. Geometry, intensity, and texture features were extracted from the delineated tumor. Based on UTSW dataset, we completed feature selection and trained a support vector machine (SVM) classifier to predict mutations of BAP1, PBRM1 and VHL genes. We then used TCIA-TCGA dataset to validate the predictive model build upon UTSW dataset. Results: The prediction accuracy of gene expression of TCIA-TCGA patients was 0.83 (20 of 24), 0.83 (20 of 24), and 0.75 (18 of 24) for BAP1, PBRM1, and VHL respectively. For BAP1 gene, texture feature was the most prominent feature type. For PBRM1 gene, intensity feature was the most prominent. For VHL gene, geometry, intensity, and texture features were all important. Conclusion: Using our feature selection strategy and models, we achieved predictive accuracy over 0.75 for all three genes under the condition of using patient data from one institution for training and data from other institutions for testing. These results suggest that radiogenomics can be used to aid in prognosis and used as convenient surrogates for expensive and time consuming gene assay procedures.

  8. The National Toxicology Program Web-based nonneoplastic lesion atlas: a global toxicology and pathology resource.

    Science.gov (United States)

    Cesta, Mark F; Malarkey, David E; Herbert, Ronald A; Brix, Amy; Hamlin, Melvin H; Singletary, Emily; Sills, Robert C; Bucher, John R; Birnbaum, Linda S

    2014-01-01

    Toxicologists and pathologists worldwide will benefit from a new, website-based, and completely searchable Nonneoplastic Lesion Atlas just released by the U.S. National Toxicology Program (NTP). The atlas is a much-needed resource with thousands of high-quality, zoomable images and diagnostic guidelines for each rodent lesion. Liver, gallbladder, nervous system, bone marrow, lower urinary tract and skin lesion images, and diagnostic strategies are available now. More organ and biological systems will be added with a total of 22 chapters planned for the completed project. The atlas will be used by the NTP and its many pathology partners to standardize lesion diagnosis, terminology, and the way lesions are recorded. The goal is to improve our understanding of nonneoplastic lesions and the consistency and accuracy of their diagnosis between pathologists and laboratories. The atlas is also a useful training tool for pathology residents and can be used to bolster any organization's own lesion databases. Researchers have free access to this online resource at www.ntp.niehs.nih.gov/nonneoplastic.

  9. Wind Atlas Analysis and Application Program: WAsP 11 Help Facility

    DEFF Research Database (Denmark)

    2014-01-01

    The Wind Atlas Analysis and Application Program (WAsP) is a PC-program for horizontal and vertical extrapolation of wind climates. The program contains a complete set of models to calculate the effects on the wind of sheltering obstacles, surface roughness changes and terrain height variations...... of specific wind turbines and wind farms. The WAsP Help Facility includes a Quick Start Tutorial, a User's Guide and a Technical Reference. It further includes descriptions of the Observed Wind Climate Wizard, the WAsP Climate Analyst, the WAsP Map Editor tool, the WAsP Turbine Editor tool, the Air Density...

  10. A public program to get the magnetic field of ATLAS in any point 001

    CERN Document Server

    Nikitina, T

    2003-01-01

    This note presents a fortran 90 public program which gives the magnetic field of the ATLAS detector in an arbitrary point. In the tilecal the user has the possibility to obtain a global (averaged) field or a local field (individual tiles are visible). The contribution of all coils is included. The model used for the calculation is described in note ATL-MAGNET-2001-02.

  11. ATLAS9: Model atmosphere program with opacity distribution functions

    Science.gov (United States)

    Kurucz, Robert L.

    2017-10-01

    ATLAS9 computes model atmospheres using a fixed set of pretabulated opacities, allowing one to work on huge numbers of stars and interpolate in large grids of models to determine parameters quickly. The code works with two different sets of opacity distribution functions (ODFs), one with “big” wavelength intervals covering the whole spectrum and the other with 1221 “little” wavelength intervals covering the whole spectrum. The ODFs use a 12-step representation; the radiation field is computed starting with the highest step and working down. If a lower step does not matter because the line opacity is small relative to the continuum at all depths, all the lower steps are lumped together and not computed to save time.

  12. TU-CD-BRB-07: Identification of Associations Between Radiologist-Annotated Imaging Features and Genomic Alterations in Breast Invasive Carcinoma, a TCGA Phenotype Research Group Study

    Energy Technology Data Exchange (ETDEWEB)

    Rao, A; Net, J [University of Miami, Miami, Florida (United States); Brandt, K [Mayo Clinic, Rochester, Minnesota (United States); Huang, E [National Cancer Institute, NIH, Bethesda, MD (United States); Freymann, J; Kirby, J [Leidos Biomedical Research Inc., Frederick, MD (United States); Burnside, E [University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin (United States); Morris, E; Sutton, E [Memorial Sloan Kettering Cancer Center, New York, NY (United States); Bonaccio, E [Roswell Park Cancer Institute, Buffalo, NY (United States); Giger, M; Jaffe, C [Univ Chicago, Chicago, IL (United States); Ganott, M; Zuley, M [University of Pittsburgh Medical Center - Magee Womens Hospital, Pittsburgh, Pennsylvania (United States); Le-Petross, H [MD Anderson Cancer Center, Houston, TX (United States); Dogan, B [UT MDACC, Houston, TX (United States); Whitman, G [UTMDACC, Houston, TX (United States)

    2015-06-15

    Purpose: To determine associations between radiologist-annotated MRI features and genomic measurements in breast invasive carcinoma (BRCA) from the Cancer Genome Atlas (TCGA). Methods: 98 TCGA patients with BRCA were assessed by a panel of radiologists (TCGA Breast Phenotype Research Group) based on a variety of mass and non-mass features according to the Breast Imaging Reporting and Data System (BI-RADS). Batch corrected gene expression data was obtained from the TCGA Data Portal. The Kruskal-Wallis test was used to assess correlations between categorical image features and tumor-derived genomic features (such as gene pathway activity, copy number and mutation characteristics). Image-derived features were also correlated with estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2/neu) status. Multiple hypothesis correction was done using Benjamini-Hochberg FDR. Associations at an FDR of 0.1 were selected for interpretation. Results: ER status was associated with rim enhancement and peritumoral edema. PR status was associated with internal enhancement. Several components of the PI3K/Akt pathway were associated with rim enhancement as well as heterogeneity. In addition, several components of cell cycle regulation and cell division were associated with imaging characteristics.TP53 and GATA3 mutations were associated with lesion size. MRI features associated with TP53 mutation status were rim enhancement and peritumoral edema. Rim enhancement was associated with activity of RB1, PIK3R1, MAP3K1, AKT1,PI3K, and PIK3CA. Margin status was associated with HIF1A/ARNT, Ras/ GTP/PI3K, KRAS, and GADD45A. Axillary lymphadenopathy was associated with RB1 and BCL2L1. Peritumoral edema was associated with Aurora A/GADD45A, BCL2L1, CCNE1, and FOXA1. Heterogeneous internal nonmass enhancement was associated with EGFR, PI3K, AKT1, HF/MET, and EGFR/Erbb4/neuregulin 1. Diffuse nonmass enhancement was associated with HGF/MET/MUC20/SHIP

  13. EnviroAtlas - Acres of USDA Farm Service Agency Conservation Reserve Program land by 12-Digit HUC for the Conterminous United States.

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the acres of land enrolled in the US Department of Agriculture (USDA)'s Conservation Reserve Program (CRP). The CRP is administered by...

  14. ATLAS Forward Detectors and Physics

    CERN Document Server

    Soni, N

    2010-01-01

    In this communication I describe the ATLAS forward physics program and the detectors, LUCID, ZDC and ALFA that have been designed to meet this experimental challenge. In addition to their primary role in the determination of ATLAS luminosity these detectors - in conjunction with the main ATLAS detector - will be used to study soft QCD and diffractive physics in the initial low luminosity phase of ATLAS running. Finally, I will briefly describe the ATLAS Forward Proton (AFP) project that currently represents the future of the ATLAS forward physics program.

  15. ATLAS Status and First Results

    CERN Document Server

    Lankford, AJ; The ATLAS collaboration

    2010-01-01

    The ATLAS Experiment at the CERN Large Hadron Collider will study a broad range of particle physics at the highest available laboratory energies, from measurements of the standard model to searches for new physics beyond the standard model. The status of ATLAS commissioning and the ATLAS physics program will be reported, and physics prospects for the 2010 LHC run will be discussed.

  16. The Cancer Genome Atlas Clinical Explorer: a web and mobile interface for identifying clinical-genomic driver associations.

    Science.gov (United States)

    Lee, HoJoon; Palm, Jennifer; Grimes, Susan M; Ji, Hanlee P

    2015-10-27

    The Cancer Genome Atlas (TCGA) project has generated genomic data sets covering over 20 malignancies. These data provide valuable insights into the underlying genetic and genomic basis of cancer. However, exploring the relationship among TCGA genomic results and clinical phenotype remains a challenge, particularly for individuals lacking formal bioinformatics training. Overcoming this hurdle is an important step toward the wider clinical translation of cancer genomic/proteomic data and implementation of precision cancer medicine. Several websites such as the cBio portal or University of California Santa Cruz genome browser make TCGA data accessible but lack interactive features for querying clinically relevant phenotypic associations with cancer drivers. To enable exploration of the clinical-genomic driver associations from TCGA data, we developed the Cancer Genome Atlas Clinical Explorer. The Cancer Genome Atlas Clinical Explorer interface provides a straightforward platform to query TCGA data using one of the following methods: (1) searching for clinically relevant genes, micro RNAs, and proteins by name, cancer types, or clinical parameters; (2) searching for genomic/proteomic profile changes by clinical parameters in a cancer type; or (3) testing two-hit hypotheses. SQL queries run in the background and results are displayed on our portal in an easy-to-navigate interface according to user's input. To derive these associations, we relied on elastic-net estimates of optimal multiple linear regularized regression and clinical parameters in the space of multiple genomic/proteomic features provided by TCGA data. Moreover, we identified and ranked gene/micro RNA/protein predictors of each clinical parameter for each cancer. The robustness of the results was estimated by bootstrapping. Overall, we identify associations of potential clinical relevance among genes/micro RNAs/proteins using our statistical analysis from 25 cancer types and 18 clinical parameters that

  17. Possible Human Papillomavirus 38 Contamination of Endometrial Cancer RNA Sequencing Samples in The Cancer Genome Atlas Database

    OpenAIRE

    Kazemian, Majid; Ren, Min; Lin, Jian-Xin; Liao, Wei; Spolski, Rosanne; Leonard, Warren J.

    2015-01-01

    Viruses are causally associated with a number of human malignancies. In this study, we sought to identify new virus-cancer associations by searching RNA sequencing data sets from >2,000 patients, encompassing 21 cancers from The Cancer Genome Atlas (TCGA), for the presence of viral sequences. In agreement with previous studies, we found human papillomavirus 16 (HPV16) and HPV18 in oropharyngeal cancer and hepatitis B and C viruses in liver cancer. Unexpectedly, however, we found HPV38, a cuta...

  18. Fully automatic GBM segmentation in the TCGA-GBM dataset: Prognosis and correlation with VASARI features.

    Science.gov (United States)

    Rios Velazquez, Emmanuel; Meier, Raphael; Dunn, William D; Alexander, Brian; Wiest, Roland; Bauer, Stefan; Gutman, David A; Reyes, Mauricio; Aerts, Hugo J W L

    2015-11-18

    Reproducible definition and quantification of imaging biomarkers is essential. We evaluated a fully automatic MR-based segmentation method by comparing it to manually defined sub-volumes by experienced radiologists in the TCGA-GBM dataset, in terms of sub-volume prognosis and association with VASARI features. MRI sets of 109 GBM patients were downloaded from the Cancer Imaging archive. GBM sub-compartments were defined manually and automatically using the Brain Tumor Image Analysis (BraTumIA). Spearman's correlation was used to evaluate the agreement with VASARI features. Prognostic significance was assessed using the C-index. Auto-segmented sub-volumes showed moderate to high agreement with manually delineated volumes (range (r): 0.4 - 0.86). Also, the auto and manual volumes showed similar correlation with VASARI features (auto r = 0.35, 0.43 and 0.36; manual r = 0.17, 0.67, 0.41, for contrast-enhancing, necrosis and edema, respectively). The auto-segmented contrast-enhancing volume and post-contrast abnormal volume showed the highest AUC (0.66, CI: 0.55-0.77 and 0.65, CI: 0.54-0.76), comparable to manually defined volumes (0.64, CI: 0.53-0.75 and 0.63, CI: 0.52-0.74, respectively). BraTumIA and manual tumor sub-compartments showed comparable performance in terms of prognosis and correlation with VASARI features. This method can enable more reproducible definition and quantification of imaging based biomarkers and has potential in high-throughput medical imaging research.

  19. Validation of the GEANT4-Based Full Simulation Program for the ATLAS Detector An Overview of Performance and Robustness

    CERN Document Server

    Costanzo, D; Gallas, M; Nairz, A; Benekos, N; Rimoldi, A; Boudreau, J; Tsulaia, V

    2005-01-01

    This paper gives an overview of the validation tests of the ATLAS GEANT4 simulation package G4ATLAS, which were performed in the period from fall 2003 until the end of 2004. This spans the time from first comprehensive tests after G4ATLAS had been fully embedded into the ATLAS common framework in its full functionality and detail, the time of its development into a highly reliable, performant and robust tool, up to its extremely successful usage in ATLAS Data Challenge 2 (DC2) and (Combined) Testbeam simulation productions. In DC2, more than 12 million full physics events were successfully simulated in a world-wide, distributed way. During that validation phase, G4ATLAS became widely accepted as the simulation package for ATLAS.The paper describes in some detail the testing period from its beginning (ATLAS offline release 7.1.0) until arriving at a stable version of G4ATLAS for DC2 (release 8.0.5), and presents results from performance tests carried out after DC2 and in the context of (Combined) Testbeam simu...

  20. TP Atlas: integration and dissemination of advances in Targeted Proteins Research Program (TPRP)-structural biology project phase II in Japan.

    Science.gov (United States)

    Iwayanagi, Takao; Miyamoto, Sei; Konno, Takeshi; Mizutani, Hisashi; Hirai, Tomohiro; Shigemoto, Yasumasa; Gojobori, Takashi; Sugawara, Hideaki

    2012-09-01

    The Targeted Proteins Research Program (TPRP) promoted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan is the phase II of structural biology project (2007-2011) following the Protein 3000 Project (2002-2006) in Japan. While the phase I Protein 3000 Project put partial emphasis on the construction and maintenance of pipelines for structural analyses, the TPRP is dedicated to revealing the structures and functions of the targeted proteins that have great importance in both basic research and industrial applications. To pursue this objective, 35 Targeted Proteins (TP) Projects selected in the three areas of fundamental biology, medicine and pharmacology, and food and environment are tightly collaborated with 10 Advanced Technology (AT) Projects in the four fields of protein production, structural analyses, chemical library and screening, and information platform. Here, the outlines and achievements of the 35 TP Projects are summarized in the system named TP Atlas. Progress in the diversified areas is described in the modules of Graphical Summary, General Summary, Tabular Summary, and Structure Gallery of the TP Atlas in the standard and unified format. Advances in TP Projects owing to novel technologies stemmed from AT Projects and collaborative research among TP Projects are illustrated as a hallmark of the Program. The TP Atlas can be accessed at http://net.genes.nig.ac.jp/tpatlas/index_e.html .

  1. Preventing Substance Use among High School Athletes: The ATLAS and ATHENA Programs

    Science.gov (United States)

    Goldberg, Linn; Eliot, Diane

    2005-01-01

    This article will provide information about two worthwhile programs that deal with education of high school athletes about use and abuse of steroids and other areas. Based on rationale and expressed need, program descriptions will be provided including summaries of relevant program results. Guidelines for what practitioners need to consider when…

  2. Evaluation of K-ras and p53 expression in pancreatic adenocarcinoma using the cancer genome atlas.

    Directory of Open Access Journals (Sweden)

    Liming Lu

    Full Text Available Genetic alterations in K-ras and p53 are thought to be critical in pancreatic cancer development and progression. However, K-ras and p53 expression in pancreatic adenocarcinoma have not been systematically examined in The Cancer Genome Atlas (TCGA Data Portal. Information regarding K-ras and p53 alterations, mRNA expression data, and protein/protein phosphorylation abundance was retrieved from The Cancer Genome Atlas (TCGA databases, and analyses were performed by the cBioPortal for Cancer Genomics. The mutual exclusivity analysis showed that events in K-ras and p53 were likely to co-occur in pancreatic adenocarcinoma (Log odds ratio = 1.599, P = 0.006. The graphical summary of the mutations showed that there were hotspots for protein activation. In the network analysis, no solid association between K-ras and p53 was observed in pancreatic adenocarcinoma. In the survival analysis, neither K-ras nor p53 were associated with both survival events. As in the data mining study in the TCGA databases, our study provides a new perspective to understand the genetic features of K-ras and p53 in pancreatic adenocarcinoma.

  3. The genetic landscape of programmed death ligand-1 (PD-L1) alterations in head and neck cancer.

    Science.gov (United States)

    Heineman, Thomas E; Widman, Adam; Kuan, Edward C; St John, Maie

    2017-06-01

    Nivolumab has recently been shown in the phase III clinical trial CheckMate-141 to have superior survival rates compared to the current standard of care chemotherapy for recurrent or metastatic platinum-resistant head and neck squamous cell carcinoma (HNSCC). Nivolumab targets the immune inhibitory receptor programmed cell death 1 (PD-1). Programmed cell death ligand 1 (PD-L1) genomics have been poorly characterized in the context of HNSCC, including expression levels of PD-L1 in individual tumors as well as related up or down-regulated genes that might function as co-targets. Data mining of The Cancer Genome Atlas (TCGA). 530 patients with HNSCC were pulled from the TCGA using cBioPortal. Primary tumor site data was available in 279 of the samples (52.6%), of which oral cavity was the most common site (61.6%) followed by larynx (25.8%). Other PD-1-sensitive tumors were analyzed to compare PD-L1 expression in HNSCC relative to other tumors including bladder, renal cell carcinoma, melanoma, and lung carcinomas. A significant fraction of HNSCC tumors have genetic alterations in PD-L1 (6.2%). HNSCC has the highest PD-L1 expression of all of the tumor types examined, with a median 60-fold increase. Several important genes were identified in this study including Caspase 7, ZFYVE9, and Plg-R(KT) that have a strong relationship with alterations in PD-L1. In light of the role of PD-1 and PD-L1 as key immunotherapy targets in HNSCC, several potential co-targets identified in this study warrant further investigation. Further, while the number of genetic alterations were small in head and neck carcinomas, alterations in PD-L1 expression were highly significant. NA.

  4. 22 March 2012 - Canada Foundation for Innovation Senior Programs Officer H.-C. Bandulet with spouse in the ATLAS visitor centre guided by Former Spokesperson P. Jenni.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    CERN-HI-1203073 16: Senior Canadian Scientist, ATLAS Collaboration, University of Toronto/IPP R. Teuscher; L. Andrzejewski(Spouse); H.-C. Bandulet; R.Voss (behind);ATLAS Collaboration, University of Toronto N.Ilic; ;ATLAS Collaboration, University of Toronto, R. Rezvani; ATLAS Collaboration Former Spokesperson P. Jenni.

  5. The Herschel ATLAS

    Science.gov (United States)

    Eales, S.; Dunne, L.; Clements, D.; Cooray, A.; De Zotti, G.; Dye, S.; Ivison, R.; Jarvis, M.; Lagache, G.; Maddox, S.; hide

    2010-01-01

    The Herschel ATLAS is the largest open-time key project that will be carried out on the Herschel Space Observatory. It will survey 570 sq deg of the extragalactic sky, 4 times larger than all the other Herschel extragalactic surveys combined, in five far-infrared and submillimeter bands. We describe the survey, the complementary multiwavelength data sets that will be combined with the Herschel data, and the six major science programs we are undertaking. Using new models based on a previous submillimeter survey of galaxies, we present predictions of the properties of the ATLAS sources in other wave bands.

  6. An atlas of functions: with equator, the atlas function calculator

    National Research Council Canada - National Science Library

    Oldham, Keith

    2008-01-01

    ... of arguments. The first edition of An Atlas of Functions, the product of collaboration between a mathematician and a chemist, appeared during an era when the programmable calculator was the workhorse for the numerical evaluation of functions. That role has now been taken over by the omnipresent computer, and therefore the second edition delegates this duty to Equator, the Atlas function calculator. This is a software program that, as well as carrying out other tasks, will calculate va...

  7. ATLAS Overview Week 2009 Barcelona

    CERN Multimedia

    Claudia Marcelloni

    2009-01-01

    From October 5th to October 9th about 400 physicists from the ATLAS Collaboration met in Barcelona (Catalonia) to discuss the status of the experiment. The event was organized by the Institut de Física d'Altes Energies (IFAE), a member of the ATLAS Collaboration. Besides the Scientific program, few social events were organized, such as Reception at the Palau de Pedralbes, a visit to the Fundacio Joan Miro and a social dinner at Maremagnunm hall.

  8. Identification of lung adenocarcinoma specific dysregulated genes with diagnostic and prognostic value across 27 TCGA cancer types.

    Science.gov (United States)

    Shang, Jun; Song, Qian; Yang, Zuyi; Li, Dongyao; Chen, Wenjie; Luo, Lei; Wang, Yongkun; Yang, Jingcheng; Li, Shikang

    2017-10-20

    As the most common histologic subtype of lung cancer, lung adenocarcinoma (LUAD) contributes to a majority of cancer-related deaths worldwide annually. In order to find specific biomarkers of LUAD that are able to distinguish LUAD from other types of cancer so as to improve the early diagnostic and prognostic power in LUAD, we analyzed 10098 tumor tissue samples across 27 TCGA cancer types and identified 112 specific expressed genes in LUAD. Meantime, 8240 LUAD dysregulated genes in tumor and normal samples were identified. Combining with the results of specific expressed genes and dysregulated genes in LUAD, we found there were 70 specific dysregulated genes in LUAD (LUAD-SDGs). Then ROC curve revealed six LUAD-SDGs that may be of strong diagnostic value to predict the existence of cancer (area under curve[AUC] > 95%). Kaplan-Meier survival analysis was performed to identify 6 LUAD-SDGs associated with patients' prognosis (P-values SDGs were independent prognostic factors. Then, we used the six overall survival (OS)-related LUAD-SDGs constructing a six-gene signature. Multivariate Cox regression analysis suggested that the six-gene signature was an independent prognostic factor of other clinical variables (hazard ratio [HR] = 1.5098, 95%CI = 1.2996-1.7538, P SDGs for LUAD diagnosis and prognosis. Our results may provide efficient biomarkers to clinical diagnostic and prognostic evaluation in LUAD.

  9. The forward Detectors of the ATLAS experiment

    CERN Document Server

    Vittori, Camilla; The ATLAS collaboration

    2017-01-01

    In this poster, a review of the ATLAS forward detectors operating in the 2015-2016 data taking is given. This includes a description of LUCID, the preferred ATLAS luminosity provider; of the ALFA detector, aimed to measure elastically scattered protons at small angle for the total proton-proton cross section measurement; of the ATLAS Forward Proton project AFP, which was partially installed and took the first data in 2015, and of the Zero Degree Calorimeter ZDC built for the ATLAS Heavy Ions physics program. The near future plans for these detectors will also be addressed.

  10. Supporting ATLAS

    CERN Multimedia

    maximilien brice

    2003-01-01

    Eighteen feet made of stainless steel will support the barrel ATLAS detector in the cavern at Point 1. In total, the ATLAS feet system will carry approximately 6000 tons, and will give the same inclination to the detector as the LHC accelerator.

  11. Forward Detectors and Physics at ATLAS

    CERN Document Server

    Soni, N; The ATLAS collaboration

    2010-01-01

    This talk will cover the current Atlas forward detectors LUCID, ZDC, ALFA and the upgrade project AFP. The current forward detectors are dedicated for the luminosity measurements and the forward physics measurements at first low luminosity LHC phase. The AFP project will significantly extend the ATLAS physics program at high luminosities by tagging the very forward tagging protons.

  12. Supporting ATLAS

    CERN Multimedia

    2003-01-01

    Eighteen feet made of stainless steel will support the barrel ATLAS detector in the cavern at Point 1. In total, the ATLAS feet system will carry approximately 6000 tons, and will give the same inclination to the detector as the LHC accelerator. The installation of the feet is scheduled to finish during January 2004 with an installation precision at the 1 mm level despite their height of 5.3 metres. The manufacture was carried out in Russia (Company Izhorskiye Zavody in St. Petersburg), as part of a Russian and JINR Dubna in-kind contribution to ATLAS. Involved in the installation is a team from IHEP-Protvino (Russia), the ATLAS technical co-ordination team at CERN, and the CERN survey team. In all, about 15 people are involved. After the feet are in place, the barrel toroid magnet and the barrel calorimeters will be installed. This will keep the ATLAS team busy for the entire year 2004.

  13. Endometrial and acute myeloid leukemia cancer genomes characterized

    Science.gov (United States)

    Two studies from The Cancer Genome Atlas (TCGA) program reveal details about the genomic landscapes of acute myeloid leukemia (AML) and endometrial cancer. Both provide new insights into the molecular underpinnings of these cancers.

  14. Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set

    Science.gov (United States)

    Li, Hui; Zhu, Yitan; Burnside, Elizabeth S; Huang, Erich; Drukker, Karen; Hoadley, Katherine A; Fan, Cheng; Conzen, Suzanne D; Zuley, Margarita; Net, Jose M; Sutton, Elizabeth; Whitman, Gary J; Morris, Elizabeth; Perou, Charles M; Ji, Yuan; Giger, Maryellen L

    2016-01-01

    Using quantitative radiomics, we demonstrate that computer-extracted magnetic resonance (MR) image-based tumor phenotypes can be predictive of the molecular classification of invasive breast cancers. Radiomics analysis was performed on 91 MRIs of biopsy-proven invasive breast cancers from National Cancer Institute’s multi-institutional TCGA/TCIA. Immunohistochemistry molecular classification was performed including estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, and for 84 cases, the molecular subtype (normal-like, luminal A, luminal B, HER2-enriched, and basal-like). Computerized quantitative image analysis included: three-dimensional lesion segmentation, phenotype extraction, and leave-one-case-out cross validation involving stepwise feature selection and linear discriminant analysis. The performance of the classifier model for molecular subtyping was evaluated using receiver operating characteristic analysis. The computer-extracted tumor phenotypes were able to distinguish between molecular prognostic indicators; area under the ROC curve values of 0.89, 0.69, 0.65, and 0.67 in the tasks of distinguishing between ER+ versus ER−, PR+ versus PR−, HER2+ versus HER2−, and triple-negative versus others, respectively. Statistically significant associations between tumor phenotypes and receptor status were observed. More aggressive cancers are likely to be larger in size with more heterogeneity in their contrast enhancement. Even after controlling for tumor size, a statistically significant trend was observed within each size group (P=0.04 for lesions ⩽2 cm; P=0.02 for lesions >2 to ⩽5 cm) as with the entire data set (P-value=0.006) for the relationship between enhancement texture (entropy) and molecular subtypes (normal-like, luminal A, luminal B, HER2-enriched, basal-like). In conclusion, computer-extracted image phenotypes show promise for high-throughput discrimination of breast cancer subtypes and may yield a

  15. Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set.

    Science.gov (United States)

    Li, Hui; Zhu, Yitan; Burnside, Elizabeth S; Huang, Erich; Drukker, Karen; Hoadley, Katherine A; Fan, Cheng; Conzen, Suzanne D; Zuley, Margarita; Net, Jose M; Sutton, Elizabeth; Whitman, Gary J; Morris, Elizabeth; Perou, Charles M; Ji, Yuan; Giger, Maryellen L

    2016-01-01

    Using quantitative radiomics, we demonstrate that computer-extracted magnetic resonance (MR) image-based tumor phenotypes can be predictive of the molecular classification of invasive breast cancers. Radiomics analysis was performed on 91 MRIs of biopsy-proven invasive breast cancers from National Cancer Institute's multi-institutional TCGA/TCIA. Immunohistochemistry molecular classification was performed including estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, and for 84 cases, the molecular subtype (normal-like, luminal A, luminal B, HER2-enriched, and basal-like). Computerized quantitative image analysis included: three-dimensional lesion segmentation, phenotype extraction, and leave-one-case-out cross validation involving stepwise feature selection and linear discriminant analysis. The performance of the classifier model for molecular subtyping was evaluated using receiver operating characteristic analysis. The computer-extracted tumor phenotypes were able to distinguish between molecular prognostic indicators; area under the ROC curve values of 0.89, 0.69, 0.65, and 0.67 in the tasks of distinguishing between ER+ versus ER-, PR+ versus PR-, HER2+ versus HER2-, and triple-negative versus others, respectively. Statistically significant associations between tumor phenotypes and receptor status were observed. More aggressive cancers are likely to be larger in size with more heterogeneity in their contrast enhancement. Even after controlling for tumor size, a statistically significant trend was observed within each size group (P = 0.04 for lesions ≤ 2 cm; P = 0.02 for lesions >2 to ≤5 cm) as with the entire data set (P-value = 0.006) for the relationship between enhancement texture (entropy) and molecular subtypes (normal-like, luminal A, luminal B, HER2-enriched, basal-like). In conclusion, computer-extracted image phenotypes show promise for high-throughput discrimination of breast cancer subtypes and may yield a

  16. Taus at ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Demers, Sarah M. [Yale Univ., New Haven, CT (United States). Dept. of Physics

    2017-12-06

    The grant "Taus at ATLAS" supported the group of Sarah Demers at Yale University over a period of 8.5 months, bridging the time between her Early Career Award and her inclusion on Yale's grant cycle within the Department of Energy's Office of Science. The work supported the functioning of the ATLAS Experiment at CERN's Large Hadron Collider and the analysis of ATLAS data. The work included searching for the Higgs Boson in a particular mode of its production (with a W or Z boson) and decay (to a pair of tau leptons.) This was part of a broad program of characterizing the Higgs boson as we try to understand this recently discovered particle, and whether or not it matches our expectations within the current standard model of particle physics. In addition, group members worked with simulation to understand the physics reach of planned upgrades to the ATLAS experiment. Supported group members include postdoctoral researcher Lotte Thomsen and graduate student Mariel Pettee.

  17. An Icelandic wind atlas

    Science.gov (United States)

    Nawri, Nikolai; Nína Petersen, Gudrun; Bjornsson, Halldór; Arason, Þórður; Jónasson, Kristján

    2013-04-01

    While Iceland has ample wind, its use for energy production has been limited. Electricity in Iceland is generated from renewable hydro- and geothermal source and adding wind energy has not be considered practical or even necessary. However, adding wind into the energy mix is becoming a more viable options as opportunities for new hydro or geothermal power installation become limited. In order to obtain an estimate of the wind energy potential of Iceland a wind atlas has been developed as a part of the Nordic project "Improved Forecast of Wind, Waves and Icing" (IceWind). The atlas is based on mesoscale model runs produced with the Weather Research and Forecasting (WRF) Model and high-resolution regional analyses obtained through the Wind Atlas Analysis and Application Program (WAsP). The wind atlas shows that the wind energy potential is considerable. The regions with the strongest average wind are nevertheless impractical for wind farms, due to distance from road infrastructure and power grid as well as harsh winter climate. However, even in easily accessible regions wind energy potential in Iceland, as measured by annual average power density, is among the highest in Western Europe. There is a strong seasonal cycle, with wintertime power densities throughout the island being at least a factor of two higher than during summer. Calculations show that a modest wind farm of ten medium size turbines would produce more energy throughout the year than a small hydro power plants making wind energy a viable additional option.

  18. Exotics searches in ATLAS

    CERN Document Server

    Wang, Renjie; The ATLAS collaboration

    2017-01-01

    Many theories beyond the Standard Model predict new physics accessible by the LHC. The ATLAS experiment all have rigorous search programs ongoing with the aim to find indications for new physics involving state of the art analysis techniques. This talk reports on new results obtained using the pp collision data sample collected in 2015 and 2016 at the LHC with a centre-of-mass energy of 13 TeV.

  19. The ATLAS Trigger System

    CERN Document Server

    Owen, Rhys Edward; The ATLAS collaboration

    2018-01-01

    The ATLAS experiment employs a complex trigger system to enable the collaborations physics program. The LHC is now well in to its second running period delivering proton proton collisions at $\\sqrt{s}=13$ TeV with high instantaneous luminosity. This talk will describe the two level hardware and software trigger used to select events in this environment including recent improvements and the latest performance results.

  20. Overview of ATLAS results

    CERN Document Server

    Grabowska-Bold, Iwona; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at the Large Hadron Collider has undertaken a broad physics program to probe and characterize the hot nuclear matter created in relativistic lead-lead collisions. This talk presents recent results based on Run 2 data on production of jet, electroweak bosons and quarkonium, electromagnetic processes in ultra-peripheral collisions, and bulk particle collectivity from PbPb, pPb and pp collisions.

  1. A self-updating road map of The Cancer Genome Atlas.

    Science.gov (United States)

    Robbins, David E; Grüneberg, Alexander; Deus, Helena F; Tanik, Murat M; Almeida, Jonas S

    2013-05-15

    Since 2011, The Cancer Genome Atlas' (TCGA) files have been accessible through HTTP from a public site, creating entirely new possibilities for cancer informatics by enhancing data discovery and retrieval. Significantly, these enhancements enable the reporting of analysis results that can be fully traced to and reproduced using their source data. However, to realize this possibility, a continually updated road map of files in the TCGA is required. Creation of such a road map represents a significant data modeling challenge, due to the size and fluidity of this resource: each of the 33 cancer types is instantiated in only partially overlapping sets of analytical platforms, while the number of data files available doubles approximately every 7 months. We developed an engine to index and annotate the TCGA files, relying exclusively on third-generation web technologies (Web 3.0). Specifically, this engine uses JavaScript in conjunction with the World Wide Web Consortium's (W3C) Resource Description Framework (RDF), and SPARQL, the query language for RDF, to capture metadata of files in the TCGA open-access HTTP directory. The resulting index may be queried using SPARQL, and enables file-level provenance annotations as well as discovery of arbitrary subsets of files, based on their metadata, using web standard languages. In turn, these abilities enhance the reproducibility and distribution of novel results delivered as elements of a web-based computational ecosystem. The development of the TCGA Roadmap engine was found to provide specific clues about how biomedical big data initiatives should be exposed as public resources for exploratory analysis, data mining and reproducible research. These specific design elements align with the concept of knowledge reengineering and represent a sharp departure from top-down approaches in grid initiatives such as CaBIG. They also present a much more interoperable and reproducible alternative to the still pervasive use of data portals

  2. Mongolian Atlas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Climatic atlas dated 1985, in Mongolian, with introductory material also in Russian and English. One hundred eight pages in single page PDFs.

  3. Conference Report: The First ATLAS.ti User Conference

    Directory of Open Access Journals (Sweden)

    Jeanine C. Evers

    2014-01-01

    Full Text Available This report on the First ATLAS.ti User Conference shares our impressions and experiences as longstanding ATLAS.ti users and trainers about the First ATLAS.ti User Conference in Berlin 2013. The origins, conceptual principles and development of the program are outlined, the conference themes discussed and experiences shared. Finally, the future of the program is discussed. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs1401197

  4. Networks in ATLAS

    Science.gov (United States)

    McKee, Shawn; ATLAS Collaboration

    2017-10-01

    Networks have played a critical role in high-energy physics (HEP), enabling us to access and effectively utilize globally distributed resources to meet the needs of our physicists. Because of their importance in enabling our grid computing infrastructure many physicists have taken leading roles in research and education (R&E) networking, participating in, and even convening, network related meetings and research programs with the broader networking community worldwide. This has led to HEP benefiting from excellent global networking capabilities for little to no direct cost. However, as other science domains ramp-up their need for similar networking it becomes less clear that this situation will continue unchanged. What this means for ATLAS in particular needs to be understood. ATLAS has evolved its computing model since the LHC started based upon its experience with using globally distributed resources. The most significant theme of those changes has been increased reliance upon, and use of, its networks. We will report on a number of networking initiatives in ATLAS including participation in the global perfSONAR network monitoring and measuring efforts of WLCG and OSG, the collaboration with the LHCOPN/LHCONE effort, the integration of network awareness into PanDA, the use of the evolving ATLAS analytics framework to better understand our networks and the changes in our DDM system to allow remote access to data. We will also discuss new efforts underway that are exploring the inclusion and use of software defined networks (SDN) and how ATLAS might benefit from: • Orchestration and optimization of distributed data access and data movement. • Better control of workflows, end to end. • Enabling prioritization of time-critical vs normal tasks • Improvements in the efficiency of resource usage

  5. T2-FLAIR Mismatch, an Imaging Biomarker for IDH and 1p/19q Status in Lower-grade Gliomas: A TCGA/TCIA Project.

    Science.gov (United States)

    Patel, Sohil H; Poisson, Laila M; Brat, Daniel J; Zhou, Yueren; Cooper, Lee; Snuderl, Matija; Thomas, Cheddhi; Franceschi, Ana M; Griffith, Brent; Flanders, Adam E; Golfinos, John G; Chi, Andrew S; Jain, Rajan

    2017-10-15

    Purpose: Lower-grade gliomas (WHO grade II/III) have been classified into clinically relevant molecular subtypes based on IDH and 1p/19q mutation status. The purpose was to investigate whether T2/FLAIR MRI features could distinguish between lower-grade glioma molecular subtypes. Experimental Design: MRI scans from the TCGA/TCIA lower grade glioma database ( n = 125) were evaluated by two independent neuroradiologists to assess (i) presence/absence of homogenous signal on T2WI; (ii) presence/absence of "T2-FLAIR mismatch" sign; (iii) sharp or indistinct lesion margins; and (iv) presence/absence of peritumoral edema. Metrics with moderate-substantial agreement underwent consensus review and were correlated with glioma molecular subtypes. Somatic mutation, DNA copy number, DNA methylation, gene expression, and protein array data from the TCGA lower-grade glioma database were analyzed for molecular-radiographic associations. A separate institutional cohort ( n = 82) was analyzed to validate the T2-FLAIR mismatch sign. Results: Among TCGA/TCIA cases, interreader agreement was calculated for lesion homogeneity [ κ = 0.234 (0.111-0.358)], T2-FLAIR mismatch sign [ κ = 0.728 (0.538-0.918)], lesion margins [ κ = 0.292 (0.135-0.449)], and peritumoral edema [ κ = 0.173 (0.096-0.250)]. All 15 cases that were positive for the T2-FLAIR mismatch sign were IDH -mutant, 1p/19q non-codeleted tumors ( P IDH -mutant, 1p/19q non-codeleted tumors ( P IDH -mutant, 1p/19q non-codeleted molecular subtype. Clin Cancer Res; 23(20); 6078-85. ©2017 AACR . ©2017 American Association for Cancer Research.

  6. ATLAS Virtual Visits: bringing the world into the ATLAS control room

    Science.gov (United States)

    Goldfarb, Steven; Yacoob, Sahal; ATLAS Experiment

    2016-04-01

    ATLAS Virtual Visits is a project initiated in 2011 for the Education & Outreach program of the ATLAS Experiment at CERN [1]. Its goal is to promote public appreciation of the LHC physics program and particle physics, in general, through direct dialogue between ATLAS physicists and remote audiences. A Virtual Visit is an IP-based videoconference, coupled with a public webcast and video recording, between ATLAS physicists and remote locations around the world, that typically include high school or university classrooms, Masterclasses, science fairs, or other special events, usually hosted by collaboration members. Over the past two years, more than 10,000 people, from all of the world's continents, have actively participated in ATLAS Virtual Visits, with many more enjoying the experience from the publicly available webcasts and recordings. We present an overview of our experience and discuss potential development for the future.

  7. ATLAS Virtual Visits bringing the world into the ATLAS control room

    CERN Document Server

    AUTHOR|(CDS)2051192; The ATLAS collaboration; Yacoob, Sahal

    2016-01-01

    ATLAS Virtual Visits is a project initiated in 2011 for the Education & Outreach program of the ATLAS Experiment at CERN. Its goal is to promote public appreciation of the LHC physics program and particle physics, in general, through direct dialogue between ATLAS physicists and remote audiences. A Virtual Visit is an IP-based videoconference, coupled with a public webcast and video recording, between ATLAS physicists and remote locations around the world, that typically include high school or university classrooms, Masterclasses, science fairs, or other special events, usually hosted by collaboration members. Over the past two years, more than 10,000 people, from all of the world’s continents, have actively participated in ATLAS Virtual Visits, with many more enjoying the experience from the publicly available webcasts and recordings. We present an overview of our experience and discuss potential development for the future.

  8. Networks in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00260714; The ATLAS collaboration

    2017-01-01

    Networks have played a critical role in high-energy physics (HEP), enabling us to access and effectively utilize globally distributed resources to meet the needs of our physicists. Because of their importance in enabling our grid computing infrastructure many physicists have taken leading roles in research and education (R&E) networking, participating in, and even convening, network related meetings and research programs with the broader networking community worldwide. This has led to HEP benefiting from excellent global networking capabilities for little to no direct cost. However, as other science domains ramp-up their need for similar networking it becomes less clear that this situation will continue unchanged. What this means for ATLAS in particular needs to be understood. ATLAS has evolved its computing model since the LHC started based upon its experience with using globally distributed resources. The most significant theme of those changes has been increased reliance upon, and use of, its networks....

  9. Networks in ATLAS

    CERN Document Server

    Mc Kee, Shawn Patrick; The ATLAS collaboration

    2016-01-01

    Networks have played a critical role in high-energy physics (HEP), enabling us to access and effectively utilize globally distributed resources to meet the needs of our physicists. Because of their importance in enabling our grid computing infrastructure many physicists have taken leading roles in research and education (R&E) networking, participating in, and even convening, network related meetings and research programs with the broader networking community worldwide. This has led to HEP benefiting from excellent global networking capabilities for little to no direct cost. However, as other science domains ramp-up their need for similar networking it becomes less clear that this situation will continue unchanged. What this means for ATLAS in particular needs to be understood. ATLAS has evolved its computing model since the LHC started based upon its experience with using globally distributed resources. The most significant theme of those changes has been increased reliance upon, and use of, its networks....

  10. Pre and post test analyses for the core scenarios tested in the ATLAS facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Goo; Kim, H. J.; Cho, Y. J.; Yang, C. Y.; Yoo, S. O.; Choi, Y. S.; Bang, Y. S.; Shin, A. D.; Huh, B. G.; Kim, S. J. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2007-02-15

    The scope of present study is to establish an environment to operate ATLAS Standard Problem for the core scenarios. Following has been performed in this study : evaluation of the characteristics of ATLAS facility by using RELAP5 code, development of steady input data deck for ATLAS TRACE assessment, evaluation of QA requirements for the important thermal-hydraulic tests, organization of ATLAS standard problem. In this study, the characteristics of ATLAS, which is the first large IET facility, has been analyzed and it was confirmed that ATLAS program will provide meaningful date for the assurance of APR1400 safety. A comparing work on the characteristics of APR1400 and ATLAS confirmed general similarities between two installations. Also, some specific characteristics of each ones were founded in this study. It was recommended that special care should be given to them in developing a test scenario and code assessment. In this study, QA requirements for thermal hydraulic experiments used for proof test and/or code assessment were identified. Finally, an infrastructure for ATLAS Standard Problem (ASP) was successfully established. ASP will play important role of an systematic connection between ATLAS test and code assessment programs, and be actively operated for the next period of ATLAS program. QA requirements proposed in this study would be applied for the quality improvement of experimental programs in Korea. Also, an infrastructure for ATLAS Standard Problem will be directly applied for the next ATLAS program.

  11. Genetic Alterations in the Molecular Subtypes of Bladder Cancer: Illustration in the Cancer Genome Atlas Dataset.

    Science.gov (United States)

    Choi, Woonyoung; Ochoa, Andrea; McConkey, David J; Aine, Mattias; Höglund, Mattias; Kim, William Y; Real, Francisco X; Kiltie, Anne E; Milsom, Ian; Dyrskjøt, Lars; Lerner, Seth P

    2017-09-01

    Recent whole genome mRNA expression profiling studies revealed that bladder cancers can be grouped into molecular subtypes, some of which share clinical properties and gene expression patterns with the intrinsic subtypes of breast cancer and the molecular subtypes found in other solid tumors. The molecular subtypes in other solid tumors are enriched with specific mutations and copy number aberrations that are thought to underlie their distinct progression patterns, and biological and clinical properties. The availability of comprehensive genomic data from The Cancer Genome Atlas (TCGA) and other large projects made it possible to correlate the presence of DNA alterations with tumor molecular subtype membership. Our overall goal was to determine whether specific DNA mutations and/or copy number variations are enriched in specific molecular subtypes. We used the complete TCGA RNA-seq dataset and three different published classifiers developed by our groups to assign TCGA's bladder cancers to molecular subtypes, and examined the prevalence of the most common DNA alterations within them. We interpreted the results against the background of what was known from the published literature about the prevalence of these alterations in nonmuscle-invasive and muscle-invasive bladder cancers. The results confirmed that alterations involving RB1 and NFE2L2 were enriched in basal cancers, whereas alterations involving FGFR3 and KDM6A were enriched in luminal tumors. The results further reinforce the conclusion that the molecular subtypes of bladder cancer are distinct disease entities with specific genetic alterations. Our observation showed that some of subtype-enriched mutations and copy number aberrations are clinically actionable, which has direct implications for the clinical management of patients with bladder cancer. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  12. Virtual Visit to the ATLAS Control Room by the University of Genova

    CERN Multimedia

    ATLAS Experiment

    2012-01-01

    The ATLAS Virtual Visit is included in the program of the Course in Particle and Nuclear Experimental Physics at the Physics Department of the Genova University. Students are introduced to experimental techniques and instrumentation and run few experiences in the laboratory. Besides that, they visit the Department groups that are involved both in Nuclear or High Energy Particle physics experiments. In this context, the ATLAS team will open them the doors to laboratory where ~1/3 of the Pixel detector has been built and where we are currently assembling and qualifying part of the electrical services and modules for the Insertable B layer (IBL) that will be installed in 2014 in ATLAS. Students will be introduced to LHC, ATLAS and the physics program before having the possibility to meet ATLAS physicists in ATLAS control room. http://atlas-live-virtual-visit.web.cern.ch/atlas-live-virtual-visit/2012/Genova-2012.html

  13. Virtual Visit to the ATLAS Control Room by the Genova University

    CERN Multimedia

    2013-01-01

    The ATLAS Virtual Visit is included in the program of the Course in Particle and Nuclear Experimental Physics at the Physics Department of the Genova University. Students are introduced to experimental techniques and instrumentation and run few experiences in the laboratory. Besides that, they visit the Department groups that are involved both in Nuclear or High Energy Particle physics experiments. In this context, the ATLAS team will open them the doors to laboratory where ~1/3 of the Pixel detector has been built and where we are currently assembling and qualifying part of the electrical services and modules for the Insertable B layer (IBL) that will be installed in 2014 in ATLAS. Students will be introduced to LHC, ATLAS and the physics program before having the possibility to meet ATLAS physicists in ATLAS control room. http://atlas-live-virtual-visit.web.cern.ch/atlas-live-virtual-visit/2013/Genova-2013_1.html

  14. Virtual Visit to the ATLAS Control Room by the Genova University

    CERN Multimedia

    2013-01-01

    The ATLAS Virtual Visit is included in the program of the Course in Particle and Nuclear Experimental Physics at the Physics Department of the Genova University. Students are introduced to experimental techniques and instrumentation and run few experiences in the laboratory. Besides that, they visit the Department groups that are involved both in Nuclear or High Energy Particle physics experiments. In this context, the ATLAS team will open them the doors to laboratory where ~1/3 of the Pixel detector has been built and where we are currently assembling and qualifying part of the electrical services and modules for the Insertable B layer (IBL) that will be installed in 2014 in ATLAS. Students will be introduced to LHC, ATLAS and the physics program before having the possibility to meet ATLAS physicists in ATLAS control room. http://atlas-live-virtual-visit.web.cern.ch/atlas-live-virtual-visit/2013/Genova-2013_2.html

  15. ATLAS Nightly Build System Upgrade

    CERN Document Server

    Dimitrov, G; The ATLAS collaboration; Simmons, B; Undrus, A

    2013-01-01

    The ATLAS Nightly Build System is a facility for automatic production of software releases. Being the major component of ATLAS software infrastructure, it supports more than 50 multi-platform branches of nightly releases and provides ample opportunities for testing new packages, for verifying patches to existing software, and for migrating to new platforms and compilers. The Nightly System testing framework runs several hundred integration tests of different granularity and purpose. The nightly releases are distributed and validated, and some are transformed into stable releases used for data processing worldwide. The first LHC long shutdown (2013-2015) activities will elicit increased load on the Nightly System as additional releases and builds are needed to exploit new programming techniques, languages, and profiling tools. This paper describes the plan of the ATLAS Nightly Build System Long Shutdown upgrade. It brings modern database and web technologies into the Nightly System, improves monitoring of nigh...

  16. ATLAS Nightly Build System Upgrade

    CERN Document Server

    Dimitrov, G; The ATLAS collaboration; Simmons, B; Undrus, A

    2014-01-01

    The ATLAS Nightly Build System is a facility for automatic production of software releases. Being the major component of ATLAS software infrastructure, it supports more than 50 multi-platform branches of nightly releases and provides ample opportunities for testing new packages, for verifying patches to existing software, and for migrating to new platforms and compilers. The Nightly System testing framework runs several hundred integration tests of different granularity and purpose. The nightly releases are distributed and validated, and some are transformed into stable releases used for data processing worldwide. The first LHC long shutdown (2013-2015) activities will elicit increased load on the Nightly System as additional releases and builds are needed to exploit new programming techniques, languages, and profiling tools. This paper describes the plan of the ATLAS Nightly Build System Long Shutdown upgrade. It brings modern database and web technologies into the Nightly System, improves monitoring of nigh...

  17. Assessing the sustained impact of a school-based obesity prevention program for adolescent boys: the ATLAS cluster randomized controlled trial.

    Science.gov (United States)

    Lubans, David R; Smith, Jordan J; Plotnikoff, Ronald C; Dally, Kerry A; Okely, Anthony D; Salmon, Jo; Morgan, Philip J

    2016-08-20

    Obesity prevention interventions targeting 'at-risk' adolescents are urgently needed. The aim of this study is to evaluate the sustained impact of the 'Active Teen Leaders Avoiding Screen-time' (ATLAS) obesity prevention program. Cluster RCT in 14 secondary schools in low-income communities of New South Wales, Australia. Participants were 361 adolescent boys (aged 12-14 years) 'at risk' of obesity. The intervention was based on Self-Determination Theory and Social Cognitive Theory and involved: professional development, fitness equipment for schools, teacher-delivered physical activity sessions, lunch-time activity sessions, researcher-led seminars, a smartphone application, and parental strategies. Assessments for the primary (body mass index [BMI], waist circumference) and secondary outcomes were conducted at baseline, 8- (post-intervention) and 18-months (follow-up). Analyses followed the intention-to-treat principle using linear mixed models. After 18-months, there were no intervention effects for BMI or waist circumference. Sustained effects were found for screen-time, resistance training skill competency, and motivational regulations for school sport. There were no clinically meaningful intervention effects for the adiposity outcomes. However, the intervention resulted in sustained effects for secondary outcomes. Interventions that more intensively target the home environment, as well as other socio-ecological determinants of obesity may be needed to prevent unhealthy weight gain in adolescents from low-income communities. Australian Clinical Trial Registry ACTRN12612000978864.

  18. SUSY (ATLAS)

    CERN Document Server

    Sopczak, Andre; The ATLAS collaboration

    2017-01-01

    During the data-taking period at LHC (Run-II), several searches for supersymmetric particles were performed. The results from searches by the ATLAS collaborations are concisely reviewed. Model-independent and model-dependent limits on new particle production are set, and interpretations in supersymmetric models are given.

  19. ATLAS Story

    CERN Multimedia

    AUTHOR|(CDS)2108663

    2012-01-01

    This film produced in July 2012 explains how fundamental research connects to Society and what benefits collaborative way of working can and may generate in the future, using ATLAS Collaboration as a case study. The film is intellectually inspired by the book "Collisions and Collaboration" (OUP) by Max Boisot (ed.), see: collisionsandcollaboration.com. The film is directed by Andrew Millington (OMNI Communications)

  20. SUSY (ATLAS)

    CERN Document Server

    Sopczak, Andre; The ATLAS collaboration

    2017-01-01

    During the LHC Run-II data-taking period, several searches for supersymmetric particles were performed by the ATLAS collaboration. The results from these searches are concisely reviewed. Model-independent and model-dependent limits on new particle production are set, and interpretations in supersymmetric models are given.

  1. ATLAS Thesis Award 2017

    CERN Multimedia

    Anthony, Katarina

    2018-01-01

    Winners of the ATLAS Thesis Award were presented with certificates and glass cubes during a ceremony on 22 February, 2018. They are pictured here with Karl Jakobs (ATLAS Spokesperson), Max Klein (ATLAS Collaboration Board Chair) and Katsuo Tokushuku (ATLAS Collaboration Board Deputy Chair).

  2. ATLAS Outreach Highlights

    CERN Document Server

    Cheatham, Susan; The ATLAS collaboration

    2016-01-01

    The ATLAS outreach team is very active, promoting particle physics to a broad range of audiences including physicists, general public, policy makers, students and teachers, and media. A selection of current outreach activities and new projects will be presented. Recent highlights include the new ATLAS public website and ATLAS Open Data, the very recent public release of 1 fb-1 of ATLAS data.

  3. ATLAS Data Preservation Policy

    CERN Document Server

    The ATLAS collaboration

    2015-01-01

    The principal intent of this document is to describe the ATLAS policy ensuring that its data are maintained reliably in a form accessible to ATLAS members. A separate document describes the ATLAS policy for making its data available, and potentially useful, to scientists who are not members of ATLAS.

  4. Search for exotic physics with ATLAS

    CERN Document Server

    Delsart, Pierre-Antoine

    2006-01-01

    At the LHC, the program of research in particle physics beyond the Standard Model is extremely rich. With the ATLAS detector, besides SUSY mainstream studies, many exotic theoretical models will be investigated. They range from compositeness of fundamental fermions to extra dimension scenarii through GUT models and include many variants. I shall review some selected typical studies by the ATLAS collaboration on exotic physics, highlighting the discovery prospects and the recent analyses using the latest full detector simulations.

  5. PREIMS - AT Atlas | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available switchLanguage; BLAST Search Image Search Home About Archive Update History Data ...Targeted Proteins Research Program (TPRP). Data file File name: at_atlas_preims.zip File URL: ftp://ftp.biosciencedbc.jp/archiv...base Database Description Download License Update History of This Database Site Policy | Contact Us PREIMS - AT Atlas | LSDB Archive ...

  6. ATLAS Recordings

    CERN Multimedia

    Steven Goldfarb; Mitch McLachlan; Homer A. Neal

    Web Archives of ATLAS Plenary Sessions, Workshops, Meetings, and Tutorials from 2005 until this past month are available via the University of Michigan portal here. Most recent additions include the Trigger-Aware Analysis Tutorial by Monika Wielers on March 23 and the ROOT Workshop held at CERN on March 26-27.Viewing requires a standard web browser with RealPlayer plug-in (included in most browsers automatically) and works on any major platform. Lectures can be viewed directly over the web or downloaded locally.In addition, you will find access to a variety of general tutorials and events via the portal.Feedback WelcomeOur group is making arrangements now to record plenary sessions, tutorials, and other important ATLAS events for 2007. Your suggestions for potential recording, as well as your feedback on existing archives is always welcome. Please contact us at wlap@umich.edu. Thank you.Enjoy the Lectures!

  7. Heavy ion Physics with the ATLAS Detector

    CERN Document Server

    White, S N

    2006-01-01

    Soon after the LHC is commissioned with proton beams the ATLAS experiment will begin studies of Pb-Pb collisions with a center of mass energy of ?sNN = 5.5 TeV. The ATLAS program is a natural extension of measurements at RHIC in a direction that exploits the higher LHC energies and the superb ATLAS calorimeter and tracking coverage. At LHC energies, collisions will be produced with even higher energy density than observed at RHIC. The properties of the resulting hot medium can be studied with higher energy probes, which are more directly interpreted through modification of jet properties emerging from these collisions, for example. Other topics which are enabled by the 30-fold increase in center of mass energy include probing the partonic structure of nuclei with hard photoproduction (in UltraPeripheral collisions) and in p-Pb collisions. Here we report on evaluation of ATLAS capabilities for Heavy Ion Physics.

  8. Simulation strategies for the LHC ATLAS experiment

    CERN Document Server

    Buckley, A; The ATLAS collaboration

    2010-01-01

    The ATLAS experiment, operational at the new LHC collider, is fully simulated using the Geant4 tool. The simulation program has been built within the ATLAS common framework Athena. The simulation software for the ATLAS Experiment at the Large Hadron Collider is being used for large-scale production of events on the LHC Computing Grid. This simulation requires many components, from the generators that simulate particle collisions, through packages simulating the response of the various detectors and triggers. All of these components come together under the ATLAS simulation infrastructure. The latest developments went into the direction to better represent the reality of the detector in all the possible details. The latest developments provide increased functionality and robustness. The full process is constantly monitored and profiled. Increased performance guarantee the best use of available resources without any degradation in the quality and accuracy of the simulation itself. In the presentation emphasis is...

  9. EnviroAtlas

    Data.gov (United States)

    City and County of Durham, North Carolina — This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The layers in this web...

  10. Heavy-ion Physics (ATLAS)

    CERN Document Server

    Przybycien, Mariusz; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment at the Large Hadron Collider has undertaken a broad physics program to probe and characterize the hot nuclear matter created in relativistic heavy-ion collisions. This talk presents recent results on production of electroweak bosons and quarkonium, charged particles and jets, bulk particle collectivity and electromagnetic processes in ultra-peripheral collisions, from Pb+Pb and p+Pb collisions.

  11. ATLAS experimentet

    CERN Multimedia

    ATLAS Outreach Committee

    2000-01-01

    Filmen innehåller mycket information om fysik och varför LHC behövs tilsammans med stora detektorer och specielt om behovet av ATLAS Experimentet. Mycket bra film för att förklara det okända- som man undersöker i CERN för att ge svar på frågor som människor har försökt förklara under flere tusen år.

  12. NMFS Cooperative SharkTagging Program, 1962-93: An Atlas of SharkTag and Recapture Data

    OpenAIRE

    Kohler, Nancy E.; Casey, John G.; Turner, Patricia A.

    1998-01-01

    The National Marine Fisheries Service (NMFS) Cooperative Shark Tagging Program (CSTP) is part of continuing research directed to the study of the biology of large Atlantic sharks. The CSTP was initiated in 1962 at the Sandy Hook Laboratory in New Jersey under the Department of Interior's U.S. Fish and Wildlife Service (USFWS). During the late 1950's and early 1960's, sharks were considered a liability to the economy of resort communities, of little or no commercial value, and a detriment to f...

  13. Recent ATLAS Articles on WLAP

    CERN Multimedia

    J. Herr

    As reported in the September 2004 ATLAS eNews, the Web Lecture Archive Project is a system for the archiving and publishing of multimedia presentations, using the Web as medium. We list here newly available WLAP items relating to ATLAS: Atlas Physics Workshop 6-11 June 2005 June 2005 ATLAS Week Plenary Session Click here to browse WLAP for all ATLAS lectures.

  14. Berliner Philarmoniker ATLAS visit

    CERN Multimedia

    ATLAS Collaboration

    2017-01-01

    The Berliner Philarmoniker in on tour through Europe. They stopped on June 27th in Geneva, for a concert at the Victoria Hall. An ATLAS visit was organised the morning after, lead by the ATLAS spokesperson Karl Jakobs (welcome and overview talk) and two ATLAS guides (AVC visit and 3D movie).

  15. EnviroAtlas - Rare Ecosystems in the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset identifies rare ecosystems using base landcover data from the USGS GAP Analysis Program (Version 2, 2011) combined with landscape ecology...

  16. ATLAS Recordings

    CERN Multimedia

    Jeremy Herr; Homer A. Neal; Mitch McLachlan

    The University of Michigan Web Archives for the 2006 ATLAS Week Plenary Sessions, as well as the first of 2007, are now online. In addition, there are a wide variety of Software and Physics Tutorial sessions, recorded over the past couple years, to chose from. All ATLAS-specific archives are accessible here.Viewing requires a standard web browser with RealPlayer plug-in (included in most browsers automatically) and works on any major platform. Lectures can be viewed directly over the web or downloaded locally.In addition, you will find access to a variety of general tutorials and events via the portal. Shaping Collaboration 2006The Michigan group is happy to announce a complete set of recordings from the Shaping Collaboration conference held last December at the CICG in Geneva.The event hosted a mix of Collaborative Tool experts and LHC Users, and featured presentations by the CERN Deputy Director General, Prof. Jos Engelen, the President of Internet2, and chief developers from VRVS/EVO, WLAP, and other tools...

  17. ATLAS DBM Module Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Soha, Aria [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gorisek, Andrej [J. Stefan Inst., Ljubljana (Slovenia); Zavrtanik, Marko [J. Stefan Inst., Ljubljana (Slovenia); Sokhranyi, Grygorii [J. Stefan Inst., Ljubljana (Slovenia); McGoldrick, Garrin [Univ. of Toronto, ON (Canada); Cerv, Matevz [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2014-06-18

    This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of Jozef Stefan Institute, CERN, and University of Toronto who have committed to participate in beam tests to be carried out during the 2014 Fermilab Test Beam Facility program. Chemical Vapour Deposition (CVD) diamond has a number of properties that make it attractive for high energy physics detector applications. Its large band-gap (5.5 eV) and large displacement energy (42 eV/atom) make it a material that is inherently radiation tolerant with very low leakage currents and high thermal conductivity. CVD diamond is being investigated by the RD42 Collaboration for use very close to LHC interaction regions, where the most extreme radiation conditions are found. This document builds on that work and proposes a highly spatially segmented diamond-based luminosity monitor to complement the time-segmented ATLAS Beam Conditions Monitor (BCM) so that, when Minimum Bias Trigger Scintillators (MTBS) and LUCID (LUminosity measurement using a Cherenkov Integrating Detector) have difficulty functioning, the ATLAS luminosity measurement is not compromised.

  18. EnviroAtlas - Green Bay, WI - Atlas Area Boundary

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the boundary of the Green Bay, WI Atlas Area. It represents the outside edge of all the block groups included in the EnviroAtlas Area....

  19. EnviroAtlas - Paterson, NJ - Atlas Area Boundary

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the boundary of the Paterson, NJ Atlas Area. It represents the outside edge of all the block groups included in the EnviroAtlas Area....

  20. EnviroAtlas - Portland, ME - Atlas Area Boundary

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the boundary of the Portland, ME Atlas Area. It represents the outside edge of all the block groups included in the EnviroAtlas Area....

  1. ATLAS note ATL-COM-PHYS-2009.

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Boomsma, J.; High Energy Physics

    2009-12-22

    The program InvMass has been developed to perform a general model-independent search for new particles using the ATLAS detector at the Large Hadron Collider (LHC), a proton-proton collider at CERN. The search is performed by examining statistically significant variations from the Standard Model predictions in exclusive event classes classified according to the number of identified objects. The program, called InvMass, finds all relevant particle groups identified with the ATLAS detector and analyzes their production rates, invariant masses and the total transverse momenta. The generic code of InvMass can easily be adapted for any particle types identified with the ATLAS detector. Several benchmark tests are presented.

  2. Frontier use in ATLAS

    CERN Document Server

    Smith, D A; The ATLAS collaboration; DeStefano, J; Dewhurst, A; Donno, F; Dykstra, D; Front, D; Gallas, E; Hawkings, R; Luehring, F; Walker, R

    2010-01-01

    Frontier is a distributed database access system, including data caching, that was developed originally for the CMS experiment. This system has been in production for CMS for some time, providing world-wide access to the experiment's conditions data for all user jobs. The ATLAS experiment, which has had similar problems with global data distribution, investigated the use of the system for ATLAS jobs. After months of trials and verification, ATLAS put the Frontier system into production late in 2009. Frontier now supplies database access for ATLAS jobs at over 50 computing sites. This successful deployment of Frontier in ATLAS will be described, along with the scope of the system and necessary resources.

  3. ATLAS25: Facebook Live Events

    CERN Multimedia

    CERN

    2017-01-01

    This video is a montage of the 5 Facebook Live events that were broadcast on 2nd October 2017, to celebrate ATLAS25. For more details visit: http://atlas.cern/updates/atlas-news/celebrating-25-years-discovery

  4. ATLAS Distributed Computing Automation

    CERN Document Server

    Schovancova, J; The ATLAS collaboration; Borrego, C; Campana, S; Di Girolamo, A; Elmsheuser, J; Hejbal, J; Kouba, T; Legger, F; Magradze, E; Medrano Llamas, R; Negri, G; Rinaldi, L; Sciacca, G; Serfon, C; Van Der Ster, D C

    2012-01-01

    The ATLAS Experiment benefits from computing resources distributed worldwide at more than 100 WLCG sites. The ATLAS Grid sites provide over 100k CPU job slots, over 100 PB of storage space on disk or tape. Monitoring of status of such a complex infrastructure is essential. The ATLAS Grid infrastructure is monitored 24/7 by two teams of shifters distributed world-wide, by the ATLAS Distributed Computing experts, and by site administrators. In this paper we summarize automation efforts performed within the ATLAS Distributed Computing team in order to reduce manpower costs and improve the reliability of the system. Different aspects of the automation process are described: from the ATLAS Grid site topology provided by the ATLAS Grid Information System, via automatic site testing by the HammerCloud, to automatic exclusion from production or analysis activities.

  5. The ATLAS hadronic tau trigger

    CERN Document Server

    Black, C; The ATLAS collaboration

    2012-01-01

    With the high luminosities of proton-proton collisions achieved at the LHC, the strategies for triggering have become more important than ever for physics analysis. The naive inclusive single tau lepton triggers now suffer from severe rate limitations. To allow for a large program of physics analyses with taus, the development of topological triggers that combine tau signatures with other measured quantities in the event is required. These combined triggers open many opportunities to study new physics beyond the Standard Model and to search for the Standard Model Higgs. We present the status and performance of the hadronic tau trigger in ATLAS. We demonstrate that the ATLAS tau trigger ran remarkably well over 2011, and how the lessons learned from 2011 led to numerous improvements in the preparation of the 2012 run. These improvements include the introduction of tau selection criteria that are robust against varying pileup scenarios, and the implementation of multivariate selection techniques in the tau trig...

  6. The ATLAS hadronic tau trigger

    CERN Document Server

    Black, C; The ATLAS collaboration

    2012-01-01

    With the high luminosities of proton-proton collisions achieved at the LHC, the strategies for triggering have become more important than ever for physics analysis. The naïve inclusive single tau lepton triggers now suffer from severe rate limitations. To allow for a large program of physics analyses with taus, the development of topological triggers that combine tau signatures with other measured quantities in the event is required. These combined triggers open many opportunities to study new physics beyond the Standard Model and to search for the Standard Model Higgs. We present the status and performance of the hadronic tau trigger in ATLAS. We demonstrate that the ATLAS tau trigger ran remarkably well over 2011, and how the lessons learned from 2011 led to numerous improvements in the preparation of the 2012 run. These improvements include the introduction of tau selection criteria that are robust against varying pileup scenarios, and the implementation of multivariate selection techniques in the tau tri...

  7. Dark Matter Searches at ATLAS

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The astrophysical evidence of dark matter provides some of the most compelling clues to the nature of physics beyond the Standard Model. From these clues, ATLAS has developed a broad and systematic search program for dark matter production in LHC collisions. These searches are now entering their prime, with the LHC now colliding protons at the increased 13 TeV centre-of-mass energy and set to deliver much larger datasets than ever before. The results of these searches on the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  8. Constraining Dark Matter with ATLAS

    CERN Document Server

    Czodrowski, Patrick; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as their signature. The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC collisions. The results of these searches on the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  9. Consumer Energy Atlas

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    This first edition of the Atlas provides, in reference form, a central source of information to consumers on key contacts concerned with energy in the US. Energy consumers need information appropriate to local climates and characteristics - best provided by state and local governments. The Department of Energy recognizes the authority of state and local governments to manage energy programs on their own. Therefore, emphasis has been given to government organizations on both the national and state level that influence, formulate, or administer policies affecting energy production, distribution, and use, or that provide information of interest to consumers and non-specialists. In addition, hundreds of non-government energy-related membership organizations, industry trade associations, and energy publications are included.

  10. North American Atlas - Railroads - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A joint venture involving the National Atlas programs in Canada (Natural Resources Canada), Mexico (Instituto Nacional de Estadística Geografía e Informática), and...

  11. Heavy ion physics with the ATLAS detector

    CERN Document Server

    Przybycien, Mariusz; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment at the Large Hadron Collider has undertaken a broad physics program to probe and characterize the hot nuclear matter created in relativistic lead-lead collisions. This talk presents recent results on production of jet, electroweak bosons and quarkonium, electromagnetic processes in ultra-peripheral collisions, and bulk particle collectivity from Pb+Pb and p+Pb collisions.

  12. North American Atlas - Populated Places - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A joint venture involving the National Atlas programs in Canada (Natural Resources Canada), Mexico (Instituto Nacional de Estadística Geografía e Informática), and...

  13. North American Atlas - Glaciers - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A joint venture involving the National Atlas programs in Canada (Natural Resources Canada), Mexico (Instituto Nacional de Estadística Geografía e Informática), and...

  14. North American Atlas - Political Boundaries - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A joint venture involving the National Atlas programs in Canada (Natural Resources Canada), Mexico (Instituto Nacional de Estadística Geografía e Informática), and...

  15. North American Atlas - Sea Ice - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A joint venture involving the National Atlas programs in Canada (Natural Resources Canada), Mexico (Instituto Nacional de Estadística Geografía e Informática), and...

  16. North American Atlas - Bathymetry - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A joint venture involving the National Atlas programs in Canada (Natural Resources Canada), Mexico (Instituto Nacional de Estadística Geografía e Informática), and...

  17. North American Atlas - Roads - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A joint venture involving the National Atlas programs in Canada (Natural Resources Canada), Mexico (Instituto Nacional de Estadística Geografía e Informática), and...

  18. North American Atlas - Hydrography - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A joint venture involving the National Atlas programs in Canada (Natural Resources Canada), Mexico (Instituto Nacional de Estadística Geografía e Informática), and...

  19. Recent Heavy Ion results from ATLAS experiment

    CERN Document Server

    Olszewski, Andrzej; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at the Large Hadron Collider has undertaken a broad physics program to probe and characterize the hot nuclear matter created in relativistic lead-lead collisions. This talk presents recent results on production of jet, eletroweak bosons and quarkonium, electromagnetic processes in ultra-peripheral collisions, and bulk particle collectivity from PbPb and pPb collisions.

  20. Probabilistic liver atlas construction.

    Science.gov (United States)

    Dura, Esther; Domingo, Juan; Ayala, Guillermo; Marti-Bonmati, Luis; Goceri, E

    2017-01-13

    Anatomical atlases are 3D volumes or shapes representing an organ or structure of the human body. They contain either the prototypical shape of the object of interest together with other shapes representing its statistical variations (statistical atlas) or a probability map of belonging to the object (probabilistic atlas). Probabilistic atlases are mostly built with simple estimations only involving the data at each spatial location. A new method for probabilistic atlas construction that uses a generalized linear model is proposed. This method aims to improve the estimation of the probability to be covered by the liver. Furthermore, all methods to build an atlas involve previous coregistration of the sample of shapes available. The influence of the geometrical transformation adopted for registration in the quality of the final atlas has not been sufficiently investigated. The ability of an atlas to adapt to a new case is one of the most important quality criteria that should be taken into account. The presented experiments show that some methods for atlas construction are severely affected by the previous coregistration step. We show the good performance of the new approach. Furthermore, results suggest that extremely flexible registration methods are not always beneficial, since they can reduce the variability of the atlas and hence its ability to give sensible values of probability when used as an aid in segmentation of new cases.

  1. TU-AB-BRA-11: Evaluation of Fully Automatic Volumetric GBM Segmentation in the TCGA-GBM Dataset: Prognosis and Correlation with VASARI Features

    Energy Technology Data Exchange (ETDEWEB)

    Rios Velazquez, E [Dana-Farber Cancer Institute | Harvard Medical School, Boston, MA (United States); Meier, R [Institute for Surgical Technology and Biomechanics, Bern, NA (Switzerland); Dunn, W; Gutman, D [Emory University School of Medicine, Atlanta, GA (United States); Alexander, B [Dana- Farber Cancer Institute, Brigham and Womens Hospital, Harvard Medic, Boston, MA (United States); Wiest, R; Reyes, M [Institute for Surgical Technology and Biomechanics, University of Bern, Bern, NA (Switzerland); Bauer, S [Institute for Surgical Technology and Biomechanics, Support Center for Adva, Bern, NA (Switzerland); Aerts, H [Dana-Farber/Brigham Womens Cancer Center, Boston, MA (United States)

    2015-06-15

    Purpose: Reproducible definition and quantification of imaging biomarkers is essential. We evaluated a fully automatic MR-based segmentation method by comparing it to manually defined sub-volumes by experienced radiologists in the TCGA-GBM dataset, in terms of sub-volume prognosis and association with VASARI features. Methods: MRI sets of 67 GBM patients were downloaded from the Cancer Imaging archive. GBM sub-compartments were defined manually and automatically using the Brain Tumor Image Analysis (BraTumIA), including necrosis, edema, contrast enhancing and non-enhancing tumor. Spearman’s correlation was used to evaluate the agreement with VASARI features. Prognostic significance was assessed using the C-index. Results: Auto-segmented sub-volumes showed high agreement with manually delineated volumes (range (r): 0.65 – 0.91). Also showed higher correlation with VASARI features (auto r = 0.35, 0.60 and 0.59; manual r = 0.29, 0.50, 0.43, for contrast-enhancing, necrosis and edema, respectively). The contrast-enhancing volume and post-contrast abnormal volume showed the highest C-index (0.73 and 0.72), comparable to manually defined volumes (p = 0.22 and p = 0.07, respectively). The non-enhancing region defined by BraTumIA showed a significantly higher prognostic value (CI = 0.71) than the edema (CI = 0.60), both of which could not be distinguished by manual delineation. Conclusion: BraTumIA tumor sub-compartments showed higher correlation with VASARI data, and equivalent performance in terms of prognosis compared to manual sub-volumes. This method can enable more reproducible definition and quantification of imaging based biomarkers and has a large potential in high-throughput medical imaging research.

  2. Physics with Tau Lepton Final States in ATLAS

    Directory of Open Access Journals (Sweden)

    Pingel Almut M.

    2013-05-01

    Full Text Available The ATLAS detector records collisions from two high-energetic proton beams circulating in the LHC. An integral part of the ATLAS physics program are analyses with tau leptons in the final state. Here an overview is given over the studies done in ATLAS with hadronically-decaying final state tau leptons: Standard Model cross-section measurements of Z → ττ, W → τν and tt̅ → bb̅ e/μν τhadν; τ polarization measurements in W → τν decays; Higgs searches and various searches for physics beyond the Standard Model.

  3. ATLAS and ultra high energy cosmic ray physics

    Directory of Open Access Journals (Sweden)

    Pinfold James

    2017-01-01

    Full Text Available After a brief introduction to extended air shower cosmic ray physics the current and future deployment of forward detectors at ATLAS is discussed along with the various aspects of the current and future ATLAS programs to explore hadronic physics. The emphasis is placed on those results and future plans that have particular relevance for high-energy, and ultra high-energy, cosmic ray physics. The possible use of ATLAS as an “underground” cosmic muon observatory is briefly considered.

  4. Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    Science.gov (United States)

    Doyle, Monica; ONeil, Daniel A.; Christensen, Carissa B.

    2005-01-01

    The Advanced Technology Lifecycle Analysis System (ATLAS) is a decision support tool designed to aid program managers and strategic planners in determining how to invest technology research and development dollars. It is an Excel-based modeling package that allows a user to build complex space architectures and evaluate the impact of various technology choices. ATLAS contains system models, cost and operations models, a campaign timeline and a centralized technology database. Technology data for all system models is drawn from a common database, the ATLAS Technology Tool Box (TTB). The TTB provides a comprehensive, architecture-independent technology database that is keyed to current and future timeframes.

  5. The ATLAS Analysis Model

    CERN Multimedia

    Amir Farbin

    The ATLAS Analysis Model is a continually developing vision of how to reconcile physics analysis requirements with the ATLAS offline software and computing model constraints. In the past year this vision has influenced the evolution of the ATLAS Event Data Model, the Athena software framework, and physics analysis tools. These developments, along with the October Analysis Model Workshop and the planning for CSC analyses have led to a rapid refinement of the ATLAS Analysis Model in the past few months. This article introduces some of the relevant issues and presents the current vision of the future ATLAS Analysis Model. Event Data Model The ATLAS Event Data Model (EDM) consists of several levels of details, each targeted for a specific set of tasks. For example the Event Summary Data (ESD) stores calorimeter cells and tracking system hits thereby permitting many calibration and alignment tasks, but will be only accessible at particular computing sites with potentially large latency. In contrast, the Analysis...

  6. ATLAS Distributed Computing: Experience and Evolution

    CERN Document Server

    Nairz, A; The ATLAS collaboration

    2013-01-01

    The ATLAS experiment has just concluded its first running period which commenced in 2010. After two years of remarkable performance from the LHC and ATLAS, the experiment has accumulated more than 25 fb-1 of data. The total volume of beam and simulated data products exceeds 100 PB distributed across more than 150 computing centers around the world, managed by the experiment's distributed data management system. These sites have provided up to 150,000 computing cores to ATLAS's global production and analysis processing system, enabling a rich physics program including the discovery of the Higgs-like boson in 2012. The wealth of accumulated experience in global data-intensive computing at this massive scale, and the considerably more challenging requirements of LHC computing from 2014 when the LHC resumes operation, are driving a comprehensive design and development cycle to prepare a revised computing model together with data processing and management systems able to meet the demands of higher trigger rates, e...

  7. ATLAS Offline Software Performance Monitoring and Optimization

    CERN Document Server

    Chauhan, N; Kittelmann, T; Langenberg, R; Mandrysch , R; Salzburger, A; Seuster, R; Ritsch, E; Stewart, G; van Eldik, N; Vitillo, R

    2014-01-01

    In a complex multi-developer, multi-package software environment, such as the ATLAS offline Athena framework, tracking the performance of the code can be a non-trivial task in itself. In this paper we describe improvements in the instrumentation of ATLAS offline software that have given considerable insight into the performance of the code and helped to guide optimisation. Code can be instrumented firstly using the PAPI tool, which is a programing interface for accessing hardware performance counters. PAPI events can count floating point operations, cycles and instructions and cache accesses. Triggering PAPI to start/stop counting for each algorithm and processed event gives a good understanding of the whole algorithm level performance of ATLAS code. Further data can be obtained using pin, a dynamic binary instrumentation tool. Pintools can be used to obtain similar statistics as PAPI, but advantageously without requiring recompilation of the code. Fine grained routine and instruction level instrumentation is...

  8. ATLAS Offline Software Performance Monitoring and Optimization

    CERN Document Server

    Chauhan, N; The ATLAS collaboration; Kittelmann, T; Langenberg, R; Mandrysch , R; Salzburger, A; Seuster, R; Ritsch, E; Stewart, G; van Eldik, N; Vitillo, R

    2013-01-01

    In a complex multi-developer, multi-package software environment, such as the ATLAS offline Athena framework, tracking the performance of the code can be a non-trivial task in itself. In this paper we describe improvements in the instrumentation of ATLAS offline software that have given considerable insight into the performance of the code and helped to guide optimisation. Code can be instrumented firstly using the PAPI tool, which is a programing interface for accessing hardware performance counters. PAPI events can count floating point operations, cycles and instructions and cache accesses. Triggering PAPI to start/stop counting for each algorithm and processed event gives a good understanding of the whole algorithm level performance of ATLAS code. Further data can be obtained using pin, a dynamic binary instrumentation tool. Pintools can be used to obtain similar statistics as PAPI, but advantageously without requiring recompilation of the code. Fine grained routine and instruction level instrumentation is...

  9. Book review: World atlas of mangroves

    Science.gov (United States)

    Krauss, Ken W.; Friess, Daniel A.

    2011-01-01

    Nearly 14 years have passed since the first atlas, World Mangrove Atlas (Spalding et al. 1997), was published. While scientists throughout the world have shared their insights about these ecosystems from a handful of “classic” mangrove ecology treatises, no book since has provided the same platform for understanding the global importance of mangroves by simply defining their distribution. The vast majority of mangrove research programs are modest in size and limited in funding. Nonetheless, much knowledge has been gained since the last atlas, including a potential role for mangroves in storm protection, proactive adjustment of soil surface elevation with sea-level rise, coastal water conservation, economic importance locally, etc. Furthermore, by documenting what can be lost, this book allows the reader to imagine what a world without mangroves might look like (see also Science 317, 41–42). If the first atlas established a mere image of an important wetland community type in peril, then this current edition paints a picture rivaling what an artist may have envisioned. The World Atlas of Mangroves is a comprehensive, well-written, ambitious, and artistic work that we can certainly recommend, and that should be part of any serious wetland library.

  10. The ATLAS Missing ET trigger

    CERN Document Server

    Beauchemin, P; The ATLAS collaboration

    2010-01-01

    Over the last few months, the ATLAS detector collected 900 GeV LHC collision events which allowed for the study the performance of the ATLAS Trigger and Data Acquisition system (TDAQ). With the 7 TeV collision data collected recently, the performance studies of the trigger system are critical for a successful physics program. In particular a large spectrum of physics results will rely on the capacity of the ATLAS TDAQ system to collect events based on the estimate of the missing transverse energy (MET) contained in each event. The MET trigger would be, for example, the primary trigger to be used in new physics searches for processes involving new weakly interacting particles, which could account for the astronomically observed dark matter. In addition to discovery perspectives, the MET trigger can also be used in combination with other triggers to control the rate of signatures involving low energy objects. For example, the MET trigger is necessary in order to measure non-boosted W in the tau channel. Finally...

  11. ATLAS Nightly Build System Upgrade

    Science.gov (United States)

    Dimitrov, G.; Obreshkov, E.; Simmons, B.; Undrus, A.; Atlas Collaboration

    2014-06-01

    The ATLAS Nightly Build System is a facility for automatic production of software releases. Being the major component of ATLAS software infrastructure, it supports more than 50 multi-platform branches of nightly releases and provides ample opportunities for testing new packages, for verifying patches to existing software, and for migrating to new platforms and compilers. The Nightly System testing framework runs several hundred integration tests of different granularity and purpose. The nightly releases are distributed and validated, and some are transformed into stable releases used for data processing worldwide. The first LHC long shutdown (2013-2015) activities will elicit increased load on the Nightly System as additional releases and builds are needed to exploit new programming techniques, languages, and profiling tools. This paper describes the plan of the ATLAS Nightly Build System Long Shutdown upgrade. It brings modern database and web technologies into the Nightly System, improves monitoring of nightly build results, and provides new tools for offline release shifters. We will also outline our long-term plans for distributed nightly releases builds and testing.

  12. The Irish Wind Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R. [Univ. College Dublin, Dept. of Electronic and Electrical Engineering, Dublin (Ireland); Landberg, L. [Risoe National Lab., Meteorology and Wind Energy Dept., Roskilde (Denmark)

    1999-03-01

    The development work on the Irish Wind Atlas is nearing completion. The Irish Wind Atlas is an updated improved version of the Irish section of the European Wind Atlas. A map of the irish wind resource based on a WA{sup s}P analysis of the measured data and station description of 27 measuring stations is presented. The results of previously presented WA{sup s}P/KAMM runs show good agreement with these results. (au)

  13. Future ATLAS Higgs Studies

    CERN Document Server

    Smart, Ben; The ATLAS collaboration

    2017-01-01

    The High-Luminosity LHC will prove a challenging environment to work in, with for example $=200$ expected. It will however also provide great opportunities for advancing studies of the Higgs boson. The ATLAS detector will be upgraded, and Higgs prospects analyses have been performed to assess the reach of ATLAS Higgs studies in the HL-LHC era. These analyses are presented, as are Run-2 ATLAS di-Higgs analyses for comparison.

  14. NCI Blog Post: CPTAC, the Complementary Sibling of TCGA (An Interview with Dr. Henry Rodriguez about NCI’s Proteomics Program) | Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    What is proteomics? Proteomics is a highly automated and rapid method for measuring all the proteins in a biological sample. Proteins are the molecules that actually do most of the work inside a cell. When researchers develop cancer drugs, those drugs typically target proteins, so scientists and clinicians really have to understand what the proteins are doing. Proteomics researchers are now able to measure up to 10,000 proteins per tumor sample.

  15. Recent ATLAS Articles on WLAP

    CERN Multimedia

    Goldfarb, S

    2005-01-01

    As reported in the September 2004 ATLAS eNews, the Web Lecture Archive Project is a system for the archiving and publishing of multimedia presentations, using the Web as medium. We list here newly available WLAP items relating to ATLAS: Atlas Software Week Plenary 6-10 December 2004 North American ATLAS Physics Workshop (Tucson) 20-21 December 2004 (17 talks) Physics Analysis Tools Tutorial (Tucson) 19 December 2004 Full Chain Tutorial 21 September 2004 ATLAS Plenary Sessions, 17-18 February 2005 (17 talks) Coming soon: ATLAS Tutorial on Electroweak Physics, 14 Feb. 2005 Software Workshop, 21-22 February 2005 Click here to browse WLAP for all ATLAS lectures.

  16. ATLAS brochure (Polish version)

    CERN Document Server

    Lefevre, C

    2007-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  17. ATLAS TV PROJECT

    CERN Multimedia

    OMNI communication

    2005-01-01

    La Givrine near St Cergue Cross Country Skiing and Fondue at Basse Ruche with M Nordberg, P Jenni, M Nessi, F Gianotti and Co. ATLAS Management Fondu dinner, reviewing state of play of the experiment Many fun scenes from cross country skiing and after 41 minutes of the film starts the fondue dinner in a nice chalet with many persons working for ATLAS experiment

  18. ATLAS-Hadronic Calorimeter

    CERN Multimedia

    2003-01-01

    Hall 180 work on Hadronic Calorimeter The ATLAS hadronic tile calorimeter The Tile Calorimeter, which constitutes the central section of the ATLAS hadronic calorimeter, is a non-compensating sampling device made of iron and scintillating tiles. (IEEE Trans. Nucl. Sci. 53 (2006) 1275-81)

  19. ATLAS brochure (Catalan version)

    CERN Document Server

    Lefevre, C

    2008-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  20. ATLAS Colouring Book

    CERN Multimedia

    Anthony, Katarina

    2016-01-01

    The ATLAS Experiment Colouring Book is a free-to-download educational book, ideal for kids aged 5-9. It aims to introduce children to the field of High-Energy Physics, as well as the work being carried out by the ATLAS Collaboration.

  1. ATLAS Thesis Awards 2015

    CERN Multimedia

    Biondi, Silvia

    2016-01-01

    Winners of the ATLAS Thesis Award were presented with certificates and glass cubes during a ceremony on Thursday 25 February. The winners also presented their work in front of members of the ATLAS Collaboration. Winners: Javier Montejo Berlingen, Barcelona (Spain), Ruth Pöttgen, Mainz (Germany), Nils Ruthmann, Freiburg (Germany), and Steven Schramm, Toronto (Canada).

  2. ATLAS brochure (Danish version)

    CERN Multimedia

    Lefevre, C

    2010-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  3. ATLAS Visitors Centre

    CERN Multimedia

    claudia Marcelloni

    2009-01-01

    ATLAS Visitors Centre has opened its shiny new doors to the public. Officially launched on Monday February 23rd, 2009, the permanent exhibition at Point 1 was conceived as a tour resource for ATLAS guides, and as a way to preserve the public’s opportunity to get a close-up look at the experiment in action when the cavern is sealed.

  4. ATLAS brochure (Spanish version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  5. ATLAS Brochure (french version)

    CERN Multimedia

    Marcastel, F

    2007-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  6. ATLAS Brochure (english version)

    CERN Multimedia

    2004-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  7. ATLAS brochure (German version)

    CERN Multimedia

    Lefevre, C

    2012-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  8. ATLAS brochure (French version)

    CERN Multimedia

    Lefevre, C

    2012-01-01

    ATLAS is the largest detector at the LHC, the most powerful particle accelerator in the world. ATLAS is a multi-purpose detector, designed to throw light on fundamental questions such as the origin of mass and the nature of the Universe's dark matter.

  9. ATLAS TV PROJECT

    CERN Multimedia

    2005-01-01

    Budker Nuclear Physics Institute, Novosibirsk Sequence 1 Shots of aircraft factory where machining for ATLAS is done Shots of aircraft Work on components for ATLAS big wheel Discussions between Tikhonov and Nordberg in workshop Sequence 2 Shots of downtown Novosibirsk, including little church which is mid-point of Russian Federation Sequence 3 Interview of Yuri Tikhonov by Andrew Millington

  10. A Slice of ATLAS

    CERN Multimedia

    2004-01-01

    An entire section of the ATLAS detector is being assembled at Prévessin. Since May the components have been tested using a beam from the SPS, giving the ATLAS team valuable experience of operating the detector as well as an opportunity to debug the system.

  11. ATLAS people can run!

    CERN Multimedia

    Claudia Marcelloni de Oliveira; Pauline Gagnon

    It must be all the training we are getting every day, running around trying to get everything ready for the start of the LHC next year. This year, the ATLAS runners were in fine form and came in force. Nine ATLAS teams signed up for the 37th Annual CERN Relay Race with six runners per team. Under a blasting sun on Wednesday 23rd May 2007, each team covered the distances of 1000m, 800m, 800m, 500m, 500m and 300m taking the runners around the whole Meyrin site, hills included. A small reception took place in the ATLAS secretariat a week later to award the ATLAS Cup to the best ATLAS team. For the details on this complex calculation which takes into account the age of each runner, their gender and the color of their shoes, see the July 2006 issue of ATLAS e-news. The ATLAS Running Athena Team, the only all-women team enrolled this year, won the much coveted ATLAS Cup for the second year in a row. In fact, they are so good that Peter Schmid and Patrick Fassnacht are wondering about reducing the women's bonus in...

  12. The ATLAS tile calorimeter

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Louis Rose-Dulcina, a technician from the ATLAS collaboration, works on the ATLAS tile calorimeter. Special manufacturing techniques were developed to mass produce the thousands of elements in this detector. Tile detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  13. ATLAS rewards industry

    CERN Document Server

    Maximilien Brice

    2006-01-01

    For contributing vital pieces to the ATLAS puzzle, three industries were recognized on Friday 5 May during a supplier awards ceremony. After a welcome and overview of the ATLAS experiment by spokesperson Peter Jenni, CERN Secretary-General Maximilian Metzger stressed the importance of industry to CERN's scientific goals. Picture 30 : representatives of the three award-wining companies after the ceremony

  14. Wind Atlas for Egypt

    DEFF Research Database (Denmark)

    The results of a comprehensive, 8-year wind resource assessment programme in Egypt are presented. The objective has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricityproducing wind turbine installations. The regional wind...... climates of Egypt have been determined by two independent methods: a traditional wind atlas based on observations from more than 30 stations all over Egypt, and a numerical wind atlas based on long-term reanalysis data and a mesoscale model (KAMM). The mean absolute error comparing the two methods is about...... 10% for two large-scale KAMM domains covering all of Egypt, and typically about 5% for several smaller-scale regional domains. The numerical wind atlas covers all of Egypt, whereas the meteorological stations are concentrated in six regions. The Wind Atlas for Egypt represents a significant step...

  15. Wind Atlas for Egypt

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling; Said Said, Usama; Badger, Jake

    2006-01-01

    The results of a comprehensive, 8-year wind resource assessment programme in Egypt are presented. The objective has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricityproducing wind turbine installations. The regional wind...... climates of Egypt have been determined by two independent methods: a traditional wind atlas based on observations from more than 30 stations all over Egypt, and a numerical wind atlas based on long-term reanalysis data and a mesoscale model (KAMM). The mean absolute error comparing the two methods is about...... 10% for two large-scale KAMM domains covering all of Egypt, and typically about 5% for several smaller-scale regional domains. The numerical wind atlas covers all of Egypt, whereas the meteorological stations are concentrated in six regions. The Wind Atlas for Egypt represents a significant step...

  16. Dear ATLAS colleagues,

    CERN Multimedia

    PH Department

    2008-01-01

    We are collecting old pairs of glasses to take out to Mali, where they can be re-used by people there. The price for a pair of glasses can often exceed 3 months salary, so they are prohibitively expensive for many people. If you have any old spectacles you can donate, please put them in the special box in the ATLAS secretariat, bldg.40-4-D01 before the Christmas closure on 19 December so we can take them with us when we leave for Africa at the end of the month. (more details in ATLAS e-news edition of 29 September 2008: http://atlas-service-enews.web.cern.ch/atlas-service-enews/news/news_mali.php) many thanks! Katharine Leney co-driver of the ATLAS car on the Charity Run to Mali

  17. ATLAS' major cooling project

    CERN Multimedia

    2005-01-01

    In 2005, a considerable effort has been put into commissioning the various units of ATLAS' complex cryogenic system. This is in preparation for the imminent cooling of some of the largest components of the detector in their final underground configuration. The liquid helium and nitrogen ATLAS refrigerators in USA 15. Cryogenics plays a vital role in operating massive detectors such as ATLAS. In many ways the liquefied argon, nitrogen and helium are the life-blood of the detector. ATLAS could not function without cryogens that will be constantly pumped via proximity systems to the superconducting magnets and subdetectors. In recent weeks compressors at the surface and underground refrigerators, dewars, pumps, linkages and all manner of other components related to the cryogenic system have been tested and commissioned. Fifty metres underground The helium and nitrogen refrigerators, installed inside the service cavern, are an important part of the ATLAS cryogenic system. Two independent helium refrigerators ...

  18. ATLAS offline software performance monitoring and optimization

    Science.gov (United States)

    Chauhan, N.; Kabra, G.; Kittelmann, T.; Langenberg, R.; Mandrysch, R.; Salzburger, A.; Seuster, R.; Ritsch, E.; Stewart, G.; van Eldik, N.; Vitillo, R.; Atlas Collaboration

    2014-06-01

    In a complex multi-developer, multi-package software environment, such as the ATLAS offline framework Athena, tracking the performance of the code can be a non-trivial task in itself. In this paper we describe improvements in the instrumentation of ATLAS offline software that have given considerable insight into the performance of the code and helped to guide the optimization work. The first tool we used to instrument the code is PAPI, which is a programing interface for accessing hardware performance counters. PAPI events can count floating point operations, cycles, instructions and cache accesses. Triggering PAPI to start/stop counting for each algorithm and processed event results in a good understanding of the algorithm level performance of ATLAS code. Further data can be obtained using Pin, a dynamic binary instrumentation tool. Pin tools can be used to obtain similar statistics as PAPI, but advantageously without requiring recompilation of the code. Fine grained routine and instruction level instrumentation is also possible. Pin tools can additionally interrogate the arguments to functions, like those in linear algebra libraries, so that a detailed usage profile can be obtained. These tools have characterized the extensive use of vector and matrix operations in ATLAS tracking. Currently, CLHEP is used here, which is not an optimal choice. To help evaluate replacement libraries a testbed has been setup allowing comparison of the performance of different linear algebra libraries (including CLHEP, Eigen and SMatrix/SVector). Results are then presented via the ATLAS Performance Management Board framework, which runs daily with the current development branch of the code and monitors reconstruction and Monte-Carlo jobs. This framework analyses the CPU and memory performance of algorithms and an overview of results are presented on a web page. These tools have provided the insight necessary to plan and implement performance enhancements in ATLAS code by identifying

  19. Algorithm Acceleration from GPGPUs for the ATLAS Upgrade

    CERN Document Server

    Washbrook, A; The ATLAS collaboration

    2010-01-01

    The future upgrades to the LHC are expected to increase the design luminosity by an order of magnitude leading to new computational challenges for the ATLAS experiment. One such challenge will be the ability to handle a much higher rate of interesting physics events by the ATLAS High Level Trigger system. We will present results from the adoption of General Purpose Graphics Processing Units (GPGPUs) to provide computational acceleration for key algorithms in the ATLAS Inner Detector Trigger. The z-finder algorithm - used to determine the accurate z position of primary interactions - and the Kalman Filter based track reconstruction routine have been adapted for GPGPU execution using the CUDA parallel computing architecture. We describe the programming and benchmarking methods used and demonstrate the relative throughput performance for different trigger scenarios. Where significant performance boost is found we will outline how GPGPU acceleration could be exploited and incorporated into the future ATLAS comput...

  20. The simulation for the ATLAS experiment Present status and outlook

    CERN Document Server

    Rimoldi, A; Gallas, M; Nairz, A; Boudreau, J; Tsulaia, V; Costanzo, D

    2004-01-01

    The simulation program for the ATLAS experiment is presently operational in a full OO environment. This important physics application has been successfully integrated into ATLAS's common analysis framework, ATHENA. In the last year, following a well stated strategy of transition from a GEANT3 to a GEANT4-based simulation, a careful validation programme confirmed the reliability, performance and robustness of this new tool, as well as its consistency with the results of previous simulation. Generation, simulation and digitization steps on different sets of full physics events we retested for performance. The same software used to simulate the full the ATLAS detector is also used with testbeam configurations. Comparisons to real data in the testbeam validate both the detector description and the physics processes within each subcomponent. In this paper we present the current status of ATLAS GEANT4 simulation, describe the functionality tests performed during its validation phase, and the experience with distrib...

  1. Simulation Strategies for the ATLAS Experiment at LHC

    CERN Document Server

    Rimoldi, A; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment, operational at the new LHC collider, is fully simulated using the Geant4 tool. The simulation program has been built within the ATLAS common framework Athena. The simulation software for the ATLAS Experiment at the Large Hadron Collider is being used for large-scale production of events on the LHC Computing Grid. This simulation requires many components, from the generators that simulate particle collisions, through packages simulating the response of the various detectors and triggers. All of these components come together under the ATLAS simulation infrastructure. The latest developments went into the direction to better represent the reality of the detector in all the possible details. The latest developments provide increased functionality and robustness. The full process is constantly monitored and profiled. Increased performance guarantee the best use of available resources without any degradation in the quality and accuracy of the simulation itself. In the presentation emphasis is...

  2. Lecture Notes on a Machine Independent Compiler for ATLAS (MICA).

    Science.gov (United States)

    1980-10-01

    RESISTANCE 26 DISPLAY, RESULT, ’MEASUREMENT’ 30 DISPLAY, MESSAGE, KILOHMS 000255 REMVE, ALL 000265 FINISH 000270 TERMINATE , ATLAS PROGRAM ’TEST’$ Figure 5...CORAL PROCESO 66:z::z~Z::Z:::::::::::::::z::::.:. . .* . . . ..... .... CORAL 66OGRAM ... Figure.16 23 ..... SAMPLE CORAL 66 PROGRAM PRODUCED BY THE

  3. ATLAS: A Community Policing Response to Adverse Student Athlete Behavior

    Science.gov (United States)

    Williams, Robert

    2011-01-01

    The University at Albany Police and the University at Albany Athletics Department have teamed together to implement a ground breaking program aimed at identifying, addressing and managing negative behavior among student athletes. ATLAS stands for: Athletics, Team Building, Leadership Development, And Mentoring for Student Athletes. The program was…

  4. ATLAS-plus: Multimedia Instruction in Embryology, Gross Anatomy, and Histology

    Science.gov (United States)

    Chapman, CM; Miller, JG; Bush, LC; Bruenger, JA; Wysor, WJ; Meininger, ET; Wolf, FM; Fischer, TV; Beaudoin, AR; Burkel, WE; MacCallum, DK; Fisher, DL; Carlson, BM

    1992-01-01

    ATLAS-plus [Advanced Tools for Learning Anatomical Structure] is a multimedia program used to assist in the teaching of anatomy at the University of Michigan Medical School. ATLAS-plus contains three courses: Histology, Embryology, and Gross Anatomy. In addition to the three courses, a glossary containing terms from the three courses is available. All three courses and the glossary are accessible in the ATLAS-plus environment. The ATLAS-plus environment provides a consistent set of tools and options so that the user can navigate easily and intelligently in and between the various courses and modules in the ATLAS-plus world. The program is a collaboration between anatomy and cell biology faculty, medical students, graphic artists, systems analysts, and instructional designers. PMID:1482964

  5. EnviroAtlas - Cleveland, OH - EnviroAtlas Community Boundary

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the boundary of the Cleveland, OH EnviroAtlas Community. It represents the outside edge of all the block groups included in the...

  6. ATLAS Data Preservation

    CERN Document Server

    Jones, Roger; The ATLAS collaboration

    2015-01-01

    Complementary to parallel open access and analysis preservation initiatives, ATLAS is taking steps to ensure that the data taken by the experiment during run-1 remain accessible and available for future analysis by the collaboration. An evaluation of what is required to achieve this is underway, examining the ATLAS data production chain to establish the effort required and potential problems. Several alternatives are explored, but the favoured solution is to bring the run 1 data and software in line with the equivalent to that which will be used for run 2. This will result in a coherent ATLAS dataset for the data already taken and that to come in the future.

  7. Highlights from ATLAS

    CERN Document Server

    Charlton, D; The ATLAS collaboration

    2013-01-01

    Highlights of recent results from ATLAS were presented. The data collected to date, the detector and physics performance, and measurements of previously established Standard Model processes were reviewed briefly before summarising the latest ATLAS results in the Brout-Englert-Higgs sector, where big progress has been made in the year since the discovery. Finally, selected prospects for measurements including the data from the HL-LHC luminosity upgrade were presented, for both ATLAS and CMS. Many of the results mentioned are preliminary. These proceedings reflect only a brief summary of the material presented, and the status at the time of the conference is reported.

  8. ATLAS Event - First Splash of Particles in ATLAS

    CERN Multimedia

    ATLAS Outreach

    2008-01-01

    A simulated event. September 10, 2008 - The ATLAS detector lit up as a flood of particles traversed the detector when the beam was occasionally directed at a target near ATLAS. This allowed ATLAS physicists to study how well the various components of the detector were functioning in preparation for the forthcoming collisions. The first ATLAS data recorded on September 10, 2008 is seen here. Running time 24 seconds

  9. Multi-dimensional Crustal and Lithospheric Structure of the Atlas Mountains of Morocco by Magnetotelluric Imaging

    Science.gov (United States)

    Kiyan, D.; Jones, A. G.; Fullea, J.; Ledo, J.; Siniscalchi, A.; Romano, G.

    2014-12-01

    The PICASSO (Program to Investigate Convective Alboran Sea System Overturn) project and the concomitant TopoMed (Plate re-organization in the western Mediterranean: Lithospheric causes and topographic consequences - an ESF EUROSCORES TOPO-EUROPE project) project were designed to collect high resolution, multi-disciplinary lithospheric scale data in order to understand the tectonic evolution and lithospheric structure of the western Mediterranean. The over-arching objectives of the magnetotelluric (MT) component of the projects are (i) to provide new electrical conductivity constraints on the crustal and lithospheric structure of the Atlas Mountains, and (ii) to test the hypotheses for explaining the purported lithospheric cavity beneath the Middle and High Atlas inferred from potential-field lithospheric modeling. We present the results of an MT experiment we carried out in Morocco along two profiles: an approximately N-S oriented profile crossing the Middle Atlas, the High Atlas and the eastern Anti-Atlas to the east (called the MEK profile, for Meknes) and NE-SW oriented profile through western High Atlas to the west (called the MAR profile, for Marrakech). Our results are derived from three-dimensional (3-D) MT inversion of the MT data set employing the parallel version of Modular system for Electromagnetic inversion (ModEM) code. The distinct conductivity differences between the Middle-High Atlas (conductive) and the Anti-Atlas (resistive) correlates with the South Atlas Front fault, the depth extent of which appears to be limited to the uppermost mantle (approx. 60 km). In all inverse solutions, the crust and the upper mantle show resistive signatures (approx. 1,000 Ωm) beneath the Anti-Atlas, which is the part of stable West African Craton. Partial melt and/or exotic fluids enriched in volatiles produced by the melt can account for the high middle to lower crustal and uppermost mantle conductivity in the Folded Middle Atlas, the High Moulouya Plain and the

  10. California Ocean Uses Atlas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a result of the California Ocean Uses Atlas Project: a collaboration between NOAA's National Marine Protected Areas Center and Marine Conservation...

  11. ATLAS TV PROJECT

    CERN Multimedia

    2006-01-01

    CERN, Building 40 Interview with theorist Mr. Philip Hinchliffe (Berkeley) as well an interview with his wife Mrs. Hinchliffe who is also Physics Department head at Berkeley. They are both working in ATLAS Experiment.

  12. Lunar Sample Atlas

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Sample Atlas provides pictures of the Apollo samples taken in the Lunar Sample Laboratory, full-color views of the samples in microscopic thin-sections,...

  13. ATLAS TV PROJECT

    CERN Multimedia

    2005-01-01

    ATLAS Physics Workshop at the University of Roma Tre held from Monday 06 June 2005 to Saturday 11 June 2005. Experts establishing workshop, poster, people milling Shots of Peter Jenni introduction Many audience shots Sequences from various talks

  14. The Latest from ATLAS

    CERN Multimedia

    2009-01-01

    Since November 2008, ATLAS has undertaken detailed maintenance, consolidation and repair work on the detector (see Bulletin of 20 July 2009). Today, the fraction of the detector that is operational has increased compared to last year: less than 1% of dead channels for most of the sub-systems. "We are going to start taking data this year with a detector which is even more efficient than it was last year," agrees ATLAS Spokesperson, Fabiola Gianotti. By mid-September the detector was fully closed again, and the cavern sealed. The magnet system has been operated at nominal current for extensive periods over recent months. Once the cavern was sealed, ATLAS began two weeks of combined running. Right now, subsystems are joining the run incrementally until the point where the whole detector is integrated and running as one. In the words of ATLAS Technical Coordinator, Marzio Nessi: "Now we really start physics." In parallel, the analysis ...

  15. Consolidated Lunar Atlas

    Data.gov (United States)

    National Aeronautics and Space Administration — The Consolidated Lunar Atlas is a collection of the best photographic images of the moon, including low-oblique photography, full-moon photography, and tabular and...

  16. ATLAS Cavern baseplate

    CERN Multimedia

    It-UDS-Audiovisual Services

    2002-01-01

    This video shows the incredible amounth of iron used for ATLAS cavern. Please look at the related links and also videos that are concerning the civil engineering where you can see even more detailed cavern excavation work.

  17. VT Planning Atlas

    Data.gov (United States)

    Vermont Center for Geographic Information — The Planning Atlas provides easy access to commonly requested land use planning data – the status of local planning and regulation, state designation boundaries and...

  18. Apollo Image Atlas

    Data.gov (United States)

    National Aeronautics and Space Administration — The Apollo Image Atlas is a comprehensive collection of Apollo-Saturn mission photography. Included are almost 25,000 lunar images, both from orbit and from the...

  19. ATLAS Metadata Task Force

    Energy Technology Data Exchange (ETDEWEB)

    ATLAS Collaboration; Costanzo, D.; Cranshaw, J.; Gadomski, S.; Jezequel, S.; Klimentov, A.; Lehmann Miotto, G.; Malon, D.; Mornacchi, G.; Nemethy, P.; Pauly, T.; von der Schmitt, H.; Barberis, D.; Gianotti, F.; Hinchliffe, I.; Mapelli, L.; Quarrie, D.; Stapnes, S.

    2007-04-04

    This document provides an overview of the metadata, which are needed to characterizeATLAS event data at different levels (a complete run, data streams within a run, luminosity blocks within a run, individual events).

  20. PeptideAtlas

    Data.gov (United States)

    U.S. Department of Health & Human Services — PeptideAtlas is a multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass...

  1. ATLAS soft QCD results

    CERN Document Server

    Sykora, Tomas; The ATLAS collaboration

    2018-01-01

    Recent results of soft QCD measurements performed by the ATLAS collaboration are reported. The measurements include total, elastic and inelastic cross sections, inclusive spectra, underlying event and particle correlations in p-p and p-Pb collisions.

  2. Recent ATLAS Articles on WLAP

    CERN Multimedia

    Goldfarb, S.

    As reported in the September 2004 ATLAS eNews, the Web Lecture Archive Project is a system for the archiving and publishing of multimedia presentations, using the Web as medium. We list here newly available WLAP items relating to ATLAS: June ATLAS Plenary Meeting Tutorial on Physics EDM and Tools (June) Freiburg Overview Week Ketevi Assamagan's Tutorial on Analysis Tools Click here to browse WLAP for all ATLAS lectures.

  3. The Ethiopian Health Extension Program

    African Journals Online (AJOL)

    Bernt Lindtjorn

    Program, HEP is to provide equitable access to promotive, preventive and select ... two survey periods used the same sampling design and questionnaire, asking ..... database; gross national income per capita 2007, atlas method. p. 2007.

  4. ATLAS Tracking Detector Upgrade studies using the Fast Simulation Engine

    CERN Document Server

    Calace, Noemi; The ATLAS collaboration

    2015-01-01

    The successful physics program Run-1 of the LHC has put a strong emphasis on design studies for future upgrades of the existing LHC detectors. In ATLAS, testing alternative layouts through the full simulation and reconstruction chain is a work-intensive program, which can only be carried out for a few concept layouts. To facilitate layout prototyping, we have established a novel technique based on the ATLAS reconstruction geometry and a fast simulation engine that allows fast layout iterations and a realistic but fast Monte Carlo simulation. This approach is extended by a fast digitisation and reconstruction module.

  5. ATLAS Transitional Radiation Tracker

    CERN Multimedia

    ATLAS Outreach

    2006-01-01

    This colorful 3D animation is an excerpt from the film "ATLAS-Episode II, The Particles Strike Back." Shot with a bug's eye view of the inside of the detector. The viewer is taken on a tour of the inner workings of the transitional radiation tracker within the ATLAS detector. Subjects covered include what the tracker is used to measure, its structure, what happens when particles pass through the tracker, how it distinguishes between different types of particles within it.

  6. Budker INP in ATLAS

    CERN Multimedia

    2001-01-01

    The Novosibirsk group has proposed a new design for the ATLAS liquid argon electromagnetic end-cap calorimeter with a constant thickness of absorber plates. This design has signifi- cant advantages compared to one in the Technical Proposal and it has been accepted by the ATLAS Collaboration. The Novosibirsk group is responsible for the fabrication of the precision aluminium structure for the e.m.end-cap calorimeter.

  7. The ATLAS Multi-User Upgrade and Potential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mustapha, B.; Nolen, J. A.; Savard, G.; Ostroumov, P. N.

    2017-12-01

    With the recent integration of the CARIBU-EBIS charge breeder into the ATLAS accelerator system to provide for more pure and efficient charge breeding of radioactive beams, a multi-user upgrade of the ATLAS facility is being proposed to serve multiple users simultaneously. ATLAS was the first superconducting ion linac in the world and is the US DOE low-energy Nuclear Physics National User Facility. The proposed upgrade will take advantage of the continuous-wave nature of ATLAS and the pulsed nature of the EBIS charge breeder in order to simultaneously accelerate two beams with very close mass-to-charge ratios; one stable from the existing ECR ion source and one radioactive from the newly commissioned EBIS charge breeder. In addition to enhancing the nuclear physics program, beam extraction at different points along the linac will open up the opportunity for other potential applications; for instance, material irradiation studies at ~ 1 MeV/u and isotope production at ~ 6 MeV/u or at the full ATLAS energy of ~ 15 MeV/u. The concept and proposed implementation of the ATLAS multi-user upgrade will be presented. Future plans to enhance the flexibility of this upgrade will also be presented.

  8. A Roadmap to Continuous Integration for ATLAS Software Development

    Science.gov (United States)

    Elmsheuser, J.; Krasznahorkay, A.; Obreshkov, E.; Undrus, A.; ATLAS Collaboration

    2017-10-01

    The ATLAS software infrastructure facilitates efforts of more than 1000 developers working on the code base of 2200 packages with 4 million lines of C++ and 1.4 million lines of python code. The ATLAS offline code management system is the powerful, flexible framework for processing new package versions requests, probing code changes in the Nightly Build System, migration to new platforms and compilers, deployment of production releases for worldwide access and supporting physicists with tools and interfaces for efficient software use. It maintains multi-stream, parallel development environment with about 70 multi-platform branches of nightly releases and provides vast opportunities for testing new packages, for verifying patches to existing software and for migrating to new platforms and compilers. The system evolution is currently aimed on the adoption of modern continuous integration (CI) practices focused on building nightly releases early and often, with rigorous unit and integration testing. This paper describes the CI incorporation program for the ATLAS software infrastructure. It brings modern open source tools such as Jenkins and GitLab into the ATLAS Nightly System, rationalizes hardware resource allocation and administrative operations, provides improved feedback and means to fix broken builds promptly for developers. Once adopted, ATLAS CI practices will improve and accelerate innovation cycles and result in increased confidence in new software deployments. The paper reports the status of Jenkins integration with the ATLAS Nightly System as well as short and long term plans for the incorporation of CI practices.

  9. ATLAS Civil Engineering Point 1

    CERN Multimedia

    Jean-Claude Vialis

    1999-01-01

    Different phases of realisation to Point 1 : zone of the ATLAS experiment The ATLAS experimental area is located in Point 1, just across the main CERN entrance, in the commune of Meyrin. There people are ever so busy to finish the different infrastructures for ATLAS. Real underground video. The film has original working sound.

  10. EnviroAtlas - Phoenix, AZ - Meter-Scale Urban Land Cover (MULC) Data (2010)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EnviroAtlas Phoenix, AZ Meter-Scale Urban Land Cover (MULC) data and map were generated from USDA NAIP (National Agricultural Imagery Program) four band (red,...

  11. EnviroAtlas - Ecosystem Rarity Metrics by 12-digit HUC for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset identifies rare ecosystems using base landcover data from the USGS GAP Analysis Program (Version 2, 2011) combined with landscape ecology...

  12. EnviroAtlas - Portland, ME - Meter-Scale Urban Land Cover (MULC) Data (2010)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EnviroAtlas Portland, ME Meter-Scale Urban Land Cover (MULC) data was generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green,...

  13. EnviroAtlas - Tampa, FL - Meter-Scale Urban Land Cover (MULC) Data (2010)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EnviroAtlas Tampa, FL Meter-Scale Urban Land Cover (MULC) data was generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue...

  14. EnviroAtlas - Durham, NC - Meter-Scale Urban Land Cover (MULC) Data (2010)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EnviroAtlas Durham, NC Meter-Scale Urban Land Cover (MULC) data was generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue...

  15. EnviroAtlas - Milwaukee, WI - Meter-Scale Urban Land Cover Data (MULC) Data (2010)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EnviroAtlas Milwaukee, WI Meter Urban Land Cover (MULC) data and map were generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green,...

  16. EnviroAtlas - Woodbine, IA - Meter-Scale Urban Land Cover (MULC) Data (2011)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EnviroAtlas Woodbine, IA Meter-Scale Urban Land Cover (MULC) data and map were generated from USDA NAIP (National Agricultural Imagery Program) four band (red,...

  17. Atlas Fractures and Atlas Osteosynthesis: A Comprehensive Narrative Review.

    Science.gov (United States)

    Kandziora, Frank; Chapman, Jens R; Vaccaro, Alexander R; Schroeder, Gregory D; Scholz, Matti

    2017-09-01

    Most atlas fractures are the result of compression forces. They are often combined with fractures of the axis and especially with the odontoid process. Multiple classification systems for atlas fractures have been described. For an adequate diagnosis, a computed tomography is mandatory. To distinguish between stable and unstable atlas injury, it is necessary to evaluate the integrity of the transverse atlantal ligament (TAL) by magnetic resonance imaging and to classify the TAL lesion. Studies comparing conservative and operative management of unstable atlas fractures are unfortunately not available in the literature; neither are studies comparing different operative treatment strategies. Hence all treatment recommendations are based on low level evidence. Most of atlas fractures are stable and will be successfully managed by immobilization in a soft/hard collar. Unstable atlas fractures may be treated conservatively by halo-fixation, but nowadays more and more surgeons prefer surgery because of the potential discomfort and complications of halo-traction. Atlas fractures with a midsubstance ligamentous disruption of TAL or severe bony ligamentous avulsion can be treated by a C1/2 fusion. Unstable atlas fractures with moderate bony ligamentous avulsion may be treated by atlas osteosynthesis. Although the evidence for the different treatment strategies of atlas fractures is low, atlas osteosynthesis has the potential to change treatment philosophies. The reasons for this are described in this review.

  18. EnviroAtlas Community Boundaries Web Service

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the boundaries of all EnviroAtlas Communities. It represents the outside edge of all the block groups included in each EnviroAtlas...

  19. EnviroAtlas - Metrics for Austin, TX

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas). The layers in this web...

  20. EnviroAtlas - Metrics for Cleveland, OH

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas). The layers in this web...

  1. Developing a wind atlas for South Africa

    Science.gov (United States)

    Lennard, Chris; Hahman, Andrea; Prinsloo, Eric; Mabile, Eugene; Kruger, Andries

    2013-04-01

    The generation of the first verified Wind Atlas for South Africa (WASA) has been a joint undertaking between South African and Danish scientists to provide stakeholders with the best possible information about the wind climate over South Africa. The project is funded by the Royal Danish Embassy, the United Nations Development Programme, the South African Wind Energy Programme and the South African National Energy Development Institute. The project has focused on the western and southern regions of the country and includes a number of activities: 1. An observation campaign during which ten 65 metre masts were erected at selected sites with instruments at 4 levels that have recorded 2 years of data so far, this is ongoing. 2. Mesoscale and micro-scale modelling that consists of two phases. The first phase is complete and used the Karlsruhe Atmospheric Mesoscale Model (KAMM) run at 5 km with the Wind Atlas Analysis and Application Program (WAsP) to generate a wind atlas for the western and southern parts of South Africa. This is a statistical-dynamical method that assumes there is a robust relationship between meteorological situations at the large-scale and meteorological situations at the small-scale. The second phase, to be completed by the end of 2013, will develop a numerical wind atlas using the Weather Research and Forecasting model (WRF) to develop the mesoscale wind climate (4 km resolution) with a continuous 30 year integration from 1980 to 2010. This is a fully dynamical method. The WAsP model will again be used to develop the micro-scale wind climate. 3. An extreme wind climate assessment has identified extreme wind producing synoptic systems, their seasonal and spatial characteristics as well as regions in South Africa particularly prone to extreme wind conditions. 4. New wind climate assessment techniques have been developed in the production of the wind atlas and new techniques to produce the numerical wind atlas will be formulated. 5. Dissemination of

  2. Virtual Visit to the ATLAS Control Room by the University of Bern

    CERN Multimedia

    ATLAS Experiment

    2012-01-01

    Fresher's day for potential future bachelor students Infotage für Studieninteressierte Bachelor Once a year the University of Bern organizes two information days for young potential future bachelor students. Young aspiring candidates interested in a career in physics will be shown the forefront of physics research, where a trip around the university physics laboratories, and a direct video link to the ATLAS Control room at CERN's Large Hadron Collider is part of the program. A physicist from Bern will present directly from the ATLAS control room for a direct and personal view into the physics at the LHC, the Higgs particle, the generation of mass, antimatter, the origin of the universe and the involvement of the Bern high-energy physics team in the ATLAS experiment. This also allows for fruitful discussions about their own perspectives of perhaps becoming a CERN physicist one day. http://atlas-live-virtual-visit.web.cern.ch/atlas-live-virtual-visit/2012/Bern-2012.html

  3. The ATLAS Data Management Software Engineering Process

    CERN Document Server

    Lassnig, M; The ATLAS collaboration; Stewart, G A; Barisits, M; Beermann, T; Vigne, R; Serfon, C; Goossens, L; Nairz, A; Molfetas, A

    2014-01-01

    Rucio is the next-generation data management system of the ATLAS experiment. The software engineering process to develop Rucio is fundamentally different to existing software development approaches in the ATLAS distributed computing community. Based on a conceptual design document, development takes place using peer-reviewed code in a test-driven environment. The main objectives are to ensure that every engineer understands the details of the full project, even components usually not touched by them, that the design and architecture are coherent, that temporary contributors can be productive without delay, that programming mistakes are prevented before being committed to the source code, and that the source is always in a fully functioning state. This contribution will illustrate the workflows and products used, and demonstrate the typical development cycle of a component from inception to deployment within this software engineering process. Next to the technological advantages, this contribution will also hi...

  4. The ATLAS Data Management Software Engineering Process

    CERN Document Server

    Lassnig, M; The ATLAS collaboration; Stewart, G A; Barisits, M; Beermann, T; Vigne, R; Serfon, C; Goossens, L; Nairz, A

    2013-01-01

    Rucio is the next-generation data management system of the ATLAS experiment. The software engineering process to develop Rucio is fundamentally different to existing software development approaches in the ATLAS distributed computing community. Based on a conceptual design document, development takes place using peer-reviewed code in a test-driven environment. The main objectives are to ensure that every engineer understands the details of the full project, even components usually not touched by them, that the design and architecture are coherent, that temporary contributors can be productive without delay, that programming mistakes are prevented before being committed to the source code, and that the source is always in a fully functioning state. This contribution will illustrate the workflows and products used, and demonstrate the typical development cycle of a component from inception to deployment within this software engineering process. Next to the technological advantages, this contribution will also hi...

  5. The ATLAS Forward Proton Detector (AFP)

    Science.gov (United States)

    Grinstein, S.; AFP Collaboration

    2016-04-01

    The ATLAS Forward Proton (AFP) detector will identify events in which one or two protons emerge intact from the proton-proton collisions at the LHC. Tracking and timing detectors will be placed 2-3 mm from the beam, 210 m away from the ATLAS interaction point. The silicon-based tracker will provide momentum measurement, while the time of flight system is used to reduce the background from multiple proton-proton collisions. The study of soft and hard diffractive events at low luminosities (μ ≈ 1) is the core of the AFP physics program. This paper presents an overview of the project with particular emphasis on the qualification of the pixel and timing systems.

  6. ATLAS Future Framework Requirements Group Report

    CERN Document Server

    The ATLAS collaboration

    2016-01-01

    The Future Frameworks Requirements Group was constituted in Summer 2013 to consider and summarise the framework requirements from trigger and offline for configuring, scheduling and monitoring the data processing software needed by the ATLAS experiment. The principal motivation for such a re-examination arises from the current and anticipated evolution of CPUs, where multiple cores, hyper-threading and wide vector registers require a shift to a concurrent programming model. Such a model requires extensive changes in the current Gaudi/Athena frameworks and offers the opportunity to consider how HLT and offline processing can be better accommodated within the ATLAS framework. This note contains the report of the Future Frameworks Requirements Group.

  7. Wind Energy Resource Atlas of Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D; Schwartz, M; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2001-08-27

    The United States Department of Energy (DOE) and the United States Agency for International Development (USAID) sponsored a project to help accelerate the large-scale use of wind energy technologies in Mongolia through the development of a wind energy resource atlas of Mongolia. DOE's National Renewable Energy Laboratory (NREL) administered and conducted this project in collaboration with USAID and Mongolia. The Mongolian organizations participating in this project were the Scientific, Production, and Trade Corporation for Renewable Energy (REC) and the Institute of Meteorology and Hydrology (IMH). The primary goals of the project were to develop detailed wind resource maps for all regions of Mongolia for a comprehensive wind resource atlas, and to establish a wind-monitoring program to identify prospective sites for wind energy projects and help validate some of the wind resource estimates.

  8. Dark Matter Searches with the ATLAS detector

    CERN Document Server

    Elliot, Alison; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as its signature. The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC collisions. The results of these searches on the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  9. Dark Matter Searches with the ATLAS Detector

    CERN Document Server

    Elliot, Alison; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as their signature.  The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC collisions. The results of these searches on the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  10. Dark matter searches with the ATLAS detector

    CERN Document Server

    Whalen, Kathleen; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as its signature. The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC collisions. The results of these searches using the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  11. Dark Matter searches with the ATLAS Detector

    CERN Document Server

    Ippolito, Valerio; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as their signature. The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC collisions. The results of these searches on the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  12. Dark Matter Searches with the ATLAS detector

    Directory of Open Access Journals (Sweden)

    Elliot Alison

    2017-01-01

    Full Text Available The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as its signature. The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC collisions. The results of these searches on the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  13. ATLAS Review Office

    CERN Multimedia

    Szeless, B

    The ATLAS internal reviews, be it the mandatory Production Readiness Reviews, the now newly installed Production Advancement Reviews, or the more and more requested different Design Reviews, have become a part of our ATLAS culture over the past years. The Activity Systems Status Overviews are, for the time being, a one in time event and should be held for each system as soon as possible to have some meaning. There seems to a consensus that the reviews have become a useful project tool for the ATLAS management but even more so for the sub-systems themselves making achievements as well as possible shortcomings visible. One other recognized byproduct is the increasing cross talk between the systems, a very important ingredient to make profit all the systems from the large collective knowledge we dispose of in ATLAS. In the last two months, the first two PARs were organized for the MDT End Caps and the TRT Barrel Modules, both part of the US contribution to the ATLAS Project. Furthermore several different design...

  14. ATLAS: Exceeding all expectations

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    “One year ago it would have been impossible for us to guess that the machine and the experiments could achieve so much so quickly”, says Fabiola Gianotti, ATLAS spokesperson. The whole chain – from collision to data analysis – has worked remarkably well in ATLAS.   The first LHC proton run undoubtedly exceeded expectations for the ATLAS experiment. “ATLAS has worked very well since the beginning. Its overall data-taking efficiency is greater than 90%”, says Fabiola Gianotti. “The quality and maturity of the reconstruction and simulation software turned out to be better than we expected for this initial stage of the experiment. The Grid is a great success, and right from the beginning it has allowed members of the collaboration all over the world to participate in the data analysis in an effective and timely manner, and to deliver physics results very quickly”. In just a few months of data taking, ATLAS has observed t...

  15. Comparaison of Atlas Tilecal module

    CERN Document Server

    Batusov1, V; Gayde, J C; Khubua, J I; Lasseur, C; Lyablin, M V; Miralles-Verge, L; Nessi, Marzio; Rusakovitch, N A; Sissakian, A N; Topilin, N D

    2002-01-01

    The high precision assembly of a large experimental set-ups is of a principal necessity for the successful execution of the forthcoming LHC research program in the TeV-beams. The creation of an adequate Survey&Control METROLOGY METHODs are an essential part of the detector construction scenario. This work contains the dimension measurement data for ATLAS hadron calorimeter MODULE#8 (6m long, 22tons) which were obtained by LASER and by PHOTOGRAMMETRY methods. The comparative data analysis demonstrates the measurements agreement within ±70mm. It means these two clearly independent methods can be combined and lead to the rise of a new generation engineering culture: high precision metrology when precision assembly of large scale massive objects.

  16. New format for ATLAS e-news

    CERN Multimedia

    Pauline Gagnon

    ATLAS e-news got a new look! As of November 30, 2007, we have a new format for ATLAS e-news. Please go to: http://atlas-service-enews.web.cern.ch/atlas-service-enews/index.html . ATLAS e-news will now be published on a weekly basis. If you are not an ATLAS colaboration member but still want to know how the ATLAS experiment is doing, we will soon have a version of ATLAS e-news intended for the general public. Information will be sent out in due time.

  17. EnviroAtlas -Milwaukee, WI- One Meter Resolution Urban Land Cover Data (2010) Web Service

    Science.gov (United States)

    This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The EnviroAtlas Milwaukee, WI land cover data and map were generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from Late Summer 2010 at 1 m spatial resolution. Nine land cover classes were mapped: water, impervious surfaces (dark and light), soil and barren land, trees and forest, grass and herbaceous non-woody vegetation, agriculture, and wetlands (woody and emergent). An accuracy assessment using a completely random sampling of 600 samples yielded an overall accuracy of 85.39% percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Milwaukee. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-

  18. EnviroAtlas -- Woodbine, IA -- One Meter Resolution Urban Land Cover Data (2011) Web Service

    Science.gov (United States)

    This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The EnviroAtlas Woodbine, IA land cover (LC) data and map were generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from Late Summer 2011 at 1 m spatial resolution. Six land cover classes were mapped: water, impervious surfaces (dark and light), soil and barren land, trees and forest, grass and herbaceous non-woody vegetation, and agriculture. An accuracy assessment using a completely random sampling of 600 samples yielded an overall accuracy of 87.03% percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Woodbine. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  19. Multiple brain atlas database and atlas-based neuroimaging system.

    Science.gov (United States)

    Nowinski, W L; Fang, A; Nguyen, B T; Raphel, J K; Jagannathan, L; Raghavan, R; Bryan, R N; Miller, G A

    1997-01-01

    For the purpose of developing multiple, complementary, fully labeled electronic brain atlases and an atlas-based neuroimaging system for analysis, quantification, and real-time manipulation of cerebral structures in two and three dimensions, we have digitized, enhanced, segmented, and labeled the following print brain atlases: Co-Planar Stereotaxic Atlas of the Human Brain by Talairach and Tournoux, Atlas for Stereotaxy of the Human Brain by Schaltenbrand and Wahren, Referentially Oriented Cerebral MRI Anatomy by Talairach and Tournoux, and Atlas of the Cerebral Sulci by Ono, Kubik, and Abernathey. Three-dimensional extensions of these atlases have been developed as well. All two- and three-dimensional atlases are mutually preregistered and may be interactively registered with an actual patient's data. An atlas-based neuroimaging system has been developed that provides support for reformatting, registration, visualization, navigation, image processing, and quantification of clinical data. The anatomical index contains about 1,000 structures and over 400 sulcal patterns. Several new applications of the brain atlas database also have been developed, supported by various technologies such as virtual reality, the Internet, and electronic publishing. Fusion of information from multiple atlases assists the user in comprehensively understanding brain structures and identifying and quantifying anatomical regions in clinical data. The multiple brain atlas database and atlas-based neuroimaging system have substantial potential impact in stereotactic neurosurgery and radiotherapy by assisting in visualization and real-time manipulation in three dimensions of anatomical structures, in quantitative neuroradiology by allowing interactive analysis of clinical data, in three-dimensional neuroeducation, and in brain function studies.

  20. Atlas – a data warehouse for integrative bioinformatics

    Directory of Open Access Journals (Sweden)

    Yuen Macaire MS

    2005-02-01

    Full Text Available Abstract Background We present a biological data warehouse called Atlas that locally stores and integrates biological sequences, molecular interactions, homology information, functional annotations of genes, and biological ontologies. The goal of the system is to provide data, as well as a software infrastructure for bioinformatics research and development. Description The Atlas system is based on relational data models that we developed for each of the source data types. Data stored within these relational models are managed through Structured Query Language (SQL calls that are implemented in a set of Application Programming Interfaces (APIs. The APIs include three languages: C++, Java, and Perl. The methods in these API libraries are used to construct a set of loader applications, which parse and load the source datasets into the Atlas database, and a set of toolbox applications which facilitate data retrieval. Atlas stores and integrates local instances of GenBank, RefSeq, UniProt, Human Protein Reference Database (HPRD, Biomolecular Interaction Network Database (BIND, Database of Interacting Proteins (DIP, Molecular Interactions Database (MINT, IntAct, NCBI Taxonomy, Gene Ontology (GO, Online Mendelian Inheritance in Man (OMIM, LocusLink, Entrez Gene and HomoloGene. The retrieval APIs and toolbox applications are critical components that offer end-users flexible, easy, integrated access to this data. We present use cases that use Atlas to integrate these sources for genome annotation, inference of molecular interactions across species, and gene-disease associations. Conclusion The Atlas biological data warehouse serves as data infrastructure for bioinformatics research and development. It forms the backbone of the research activities in our laboratory and facilitates the integration of disparate, heterogeneous biological sources of data enabling new scientific inferences. Atlas achieves integration of diverse data sets at two levels. First

  1. ATLAS production system

    CERN Document Server

    Borodin, Mikhail; The ATLAS collaboration; De, Kaushik; Klimentov, Alexei; Golubkov, Dmitry; Maeno, Tadashi; Mashinistov, Ruslan; Wenaus, Torre; Padolski, Siarhei

    2016-01-01

    The second generation of the ATLAS production system called ProdSys2 is a distributed workload manager which used by thousands of physicists to analyze the data remotely, with the volume of processed data is beyond the exabyte scale, across a more than hundred heterogeneous sites. It achieves high utilization by combining dynamic job definition based on many criterias, such as input and output size, memory requirements and CPU consumption with manageable scheduling policies and by supporting different kind of computational resources, such as GRID, clouds, supercomputers and volunteering computers. Besides jobs definition Production System also includes flexible web user interface, which implements user-friendly environment for main ATLAS workflows, e.g. simple way of combining different data flows, and real-time monitoring, optimised for using with huge amount of information to present. We present an overview of the ATLAS Production System major components: job and task definition, workflow manager web user i...

  2. ATLAS rewards industry

    CERN Multimedia

    2006-01-01

    Showing excellence in mechanics, electronics and cryogenics, three industries are honoured for their contributions to the ATLAS experiment. Representatives of the three award-wining companies after the ceremony. For contributing vital pieces to the ATLAS puzzle, three industries were recognized on Friday 5 May during a supplier awards ceremony. After a welcome and overview of the ATLAS experiment by spokesperson Peter Jenni, CERN Secretary-General Maximilian Metzger stressed the importance of industry to CERN's scientific goals. Close interaction with CERN was a key factor in the selection of each rewarded company, in addition to the high-quality products they delivered to the experiment. Alu Menziken Industrie AG, of Switzerland, was honoured for the production of 380,000 aluminium tubes for the Monitored Drift Tube Chambers (MDT). As Giora Mikenberg, the Muon System Project Leader stressed, the aluminium tubes were delivered on time with an extraordinary quality and precision. Between October 2000 and Jan...

  3. Event visualization in ATLAS

    Science.gov (United States)

    Bianchi, R. M.; Boudreau, J.; Konstantinidis, N.; Martyniuk, A. C.; Moyse, E.; Thomas, J.; Waugh, B. M.; Yallup, D. P.; ATLAS Collaboration

    2017-10-01

    At the beginning, HEP experiments made use of photographical images both to record and store experimental data and to illustrate their findings. Then the experiments evolved and needed to find ways to visualize their data. With the availability of computer graphics, software packages to display event data and the detector geometry started to be developed. Here, an overview of the usage of event display tools in HEP is presented. Then the case of the ATLAS experiment is considered in more detail and two widely used event display packages are presented, Atlantis and VP1, focusing on the software technologies they employ, as well as their strengths, differences and their usage in the experiment: from physics analysis to detector development, and from online monitoring to outreach and communication. Towards the end, the other ATLAS visualization tools will be briefly presented as well. Future development plans and improvements in the ATLAS event display packages will also be discussed.

  4. Event visualization in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00211497; The ATLAS collaboration; Boudreau, Joseph; Konstantinidis, Nikolaos; Martyniuk, Alex; Moyse, Edward; Thomas, Juergen; Waugh, Ben; Yallup, David

    2017-01-01

    At the beginning, HEP experiments made use of photographical images both to record and store experimental data and to illustrate their findings. Then the experiments evolved and needed to find ways to visualize their data. With the availability of computer graphics, software packages to display event data and the detector geometry started to be developed. Here, an overview of the usage of event display tools in HEP is presented. Then the case of the ATLAS experiment is considered in more detail and two widely used event display packages are presented, Atlantis and VP1, focusing on the software technologies they employ, as well as their strengths, differences and their usage in the experiment: from physics analysis to detector development, and from online monitoring to outreach and communication. Towards the end, the other ATLAS visualization tools will be briefly presented as well. Future development plans and improvements in the ATLAS event display packages will also be discussed.

  5. ATLAS B Physics Reach

    CERN Document Server

    Smizanska, M

    2004-01-01

    The current scope and status of ATLAS B-physics trigger and off-line performance studies are presented. With the initial low-luminosity LHC runnings the high-statistics analyses will allow to make sensitivity tests of possible New physics contributions by searching for additional CP violation effects and for increased probabilities of rare B-decay channels. In physics of Bs meson system there is sensitivity to mass and width differences and to a weak mixing phase beyond SM expectation. ATLAS will be able to access rare B decays using also high-luminosity running. In beauty production ATLAS will perform measurements sensitive to higher order QCD terms providing new data to investigate present inconsistency between theory and experiment.

  6. Analyse d’atlas

    Directory of Open Access Journals (Sweden)

    2009-04-01

    Full Text Available Ouvrages de référence, de lecture, d’actualité, les atlas s’adressent à des publics très divers, de l’école à l’université.La Bibliothèque vient de recevoir des publications intéressantes à faire connaître aux lecteurs d’ EchoGéo. Les exemples choisis et analysés illustrent la variété formelle et thématique de ce type de document. L’atlas des atlas : le Monde vu d’ailleurs200 cartes proposées sous la direction de Philippe Thureau-Dangin, Christine Chameau et al. Paris : Arthaud, 2008. 191 p (...

  7. The ATLAS Tau Trigger

    CERN Document Server

    Rados, PK; The ATLAS collaboration

    2014-01-01

    Physics processes involving tau leptons play a crucial role in understanding particle physics at the high energy frontier. The ability to efficiently trigger on events containing hadronic tau decays is therefore of particular importance to the ATLAS experiment. During the 2012 run, the Large Hadronic Collder (LHC) reached instantaneous luminosities of nearly $10^{34} cm^{-2}s^{-1}$ with bunch crossings occurring every $50 ns$. This resulted in a huge event rate and a high probability of overlapping interactions per bunch crossing (pile-up). With this in mind it was necessary to design an ATLAS tau trigger system that could reduce the event rate to a manageable level, while efficiently extracting the most interesting physics events in a pile-up robust manner. In this poster the ATLAS tau trigger is described, its performance during 2012 is presented, and the outlook for the LHC Run II is briefly summarized.

  8. The ATLAS Trigger System

    CERN Document Server

    Hauser, R

    2004-01-01

    ATLAS is one of two general-purpose detectors at the next generation proton-proton collider, the LHC. The high rate of interactions and the large number of read-out channels make the trigger system for ATLAS a challenging task. The initial bunch crossing rate of 40~MHz has to be reduced to about 200 Hz while preserving the physics signals against a large background. ATLAS uses a three-level trigger system, with the first level implemented in custom hardware, while the high level trigger systems are implemented in software on commodity hardware. This note describes the physics motivation, the various selection strategies for different channels as well as the physical implementation of the trigger system.

  9. ATLAS TDAQ System Administration:

    CERN Document Server

    Lee, Christopher Jon; The ATLAS collaboration; Bogdanchikov, Alexander; Ballestrero, Sergio; Contescu, Alexandru Cristian; Dubrov, Sergei; Fazio, Daniel; Korol, Aleksandr; Scannicchio, Diana; Twomey, Matthew Shaun; Voronkov, Artem

    2015-01-01

    The ATLAS Trigger and Data Acquisition (TDAQ) system is responsible for the online processing of live data, streaming from the ATLAS experiment at the Large Hadron Collider (LHC) at CERN. The online farm is composed of ̃3000 servers, processing the data readout from ̃100 million detector channels through multiple trigger levels. During the two years of the first Long Shutdown (LS1) there has been a tremendous amount of work done by the ATLAS TDAQ System Administrators, implementing numerous new software applications, upgrading the OS and the hardware, changing some design philosophies and exploiting the High Level Trigger farm with different purposes. During the data taking only critical security updates are applied and broken hardware is replaced to ensure a stable operational environment. The LS1 provided an excellent opportunity to look into new technologies and applications that would help to improve and streamline the daily tasks of not only the System Administrators, but also of the scientists who wil...

  10. Two ATLAS suppliers honoured

    CERN Multimedia

    2007-01-01

    The ATLAS experiment has recognised the outstanding contribution of two firms to the pixel detector. Recipients of the supplier award with Peter Jenni, ATLAS spokesperson, and Maximilian Metzger, CERN Secretary-General.At a ceremony held at CERN on 28 November, the ATLAS collaboration presented awards to two of its suppliers that had produced sensor wafers for the pixel detector. The CiS Institut für Mikrosensorik of Erfurt in Germany has supplied 655 sensor wafers containing a total of 1652 sensor tiles and the firm ON Semiconductor has supplied 515 sensor wafers (1177 sensor tiles) from its foundry at Roznov in the Czech Republic. Both firms have successfully met the very demanding requirements. ATLAS’s huge pixel detector is very complicated, requiring expertise in highly specialised integrated microelectronics and precision mechanics. Pixel detector project leader Kevin Einsweiler admits that when the project was first propo...

  11. The ATLAS Computing Model

    CERN Document Server

    Adams, D; Bee, C P; Hawkings, R; Jarp, S; Jones, R; Malon, D; Poggioli, L; Poulard, G; Quarrie, D; Wenaus, T

    2005-01-01

    The ATLAS Offline Computing Model is described. The main emphasis is on the steady state, when normal running is established. The data flow from the output of the ATLAS trigger system through processing and analysis stages is analysed, in order to estimate the computing resources, in terms of CPU power, disk and tape storage and network bandwidth, which will be necessary to guarantee speedy access to ATLAS data to all members of the Collaboration. Data Challenges and the commissioning runs are used to prototype the Computing Model and test the infrastructure before the start of LHC operation. The initial planning for the early stages of data-taking is also presented. In this phase, a greater degree of access to the unprocessed or partially processed raw data is envisaged.

  12. $b$-hadron production at ATLAS and CMS experiments

    CERN Document Server

    De La Cruz Burelo, Eduard

    2016-01-01

    We report on a selected number of studies performed by the ATLAS and the CMS collaborations on b -hadron production. Both experiments have a rich program on b -hadron physics exploiting the large cross section of b -hadrons at the high energies of the LHC.

  13. Recent Heavy Ion Results from The ATLAS Experiment

    CERN Document Server

    Olszewski, Andrzej; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment at the Large Hadron Collider (LHC) has undertaken a broad physics program to probe and characterize the hot nuclear matter created in relativistic lead-lead collisions. This overview presents recent results on bulk particle collectivity and hard probes, the jets and heavy flavor production, measured in Pb+Pb, p+Pb and pp collisions at the LHC energies.

  14. Protein - AT Atlas | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available of data contents It is a table of proteins whose structures were solved using method(s) developed in the Technology Development proje...cts of the Targeted Proteins Research Program (TPRP). Data file File name: at_atlas

  15. Recent Heavy Ion Results from the ATLAS Experiment

    CERN Document Server

    Przybycien, Mariusz; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at the Large Hadron Collider has undertaken a broad physics program to probe and characterize the hot nuclear matter created in relativistic lead-lead collisions. This talk presents recent results on production of jet, electroweak bosons and quarkonium, electromagnetic processes in ultra-peripheral collisions, and bulk particle collectivity from PbPb and pPb collisions.

  16. Jet Physics in ATLAS

    CERN Document Server

    Sandoval, C; The ATLAS collaboration

    2012-01-01

    Measurements of hadronic jets provide tests of strong interactions which are interesting both in their own right and as backgrounds to many New Physics searches. It is also through tests of Quantum Chromodynamics that new physics may be discovered. The extensive dataset recorded with the ATLAS detector throughout the 7 TeV centre-of-mass LHC operation period allows QCD to be probed at distances never reached before. We present a review of selected ATLAS jet physics measurements. These measurements constitute precision tests of QCD in a new energy regime, and show sensitivity to the parton densities in the proton and to the value of the strong coupling, alpha_s.

  17. Analysis Preservation in ATLAS

    CERN Document Server

    Cranmer, Kyle; The ATLAS collaboration; Jones, Roger; South, David

    2015-01-01

    Long before data taking ATLAS established a policy that all analyses need to be preserved. In the initial data-taking period, this has been achieved by various tools and techniques. ATLAS is now reviewing the analysis preservation with the aim to bring coherence and robustness to the process and with a clearer view of the level of reproducibility that is reasonably achievable. The secondary aim is to reduce the load on the analysts. Once complete, this will serve for our internal preservation needs but also provide a basis for any subsequent sharing of analysis results with external parties.

  18. Atlas of Jordan

    OpenAIRE

    Ababsa, Myriam; Al-Bilbisi, Hussam; al-Muheisen, Zeydoun; al-Nahar, Maysoun; Alaime, Mathieu; Augé, Christian; Azizeh, Wael Abu; Bakhit, Adnan; De Bel-Air, Françoise; Bourke, Stephen; Courcier, Rémy; Crouzel, Isabelle; Daher, Rami; Daradkeh, Saleh Musa; Darmame, Khadija

    2014-01-01

    L’ambition de cet atlas est d’offrir au lecteur des clés d’analyse spatiale des dynamiques sociales, économiques et politiques qui animent la Jordanie, pays exemplaire de la complexité du Moyen-Orient. Produit de sept années de coopération scientifique entre l’Ifpo, le Centre Royal Jordanien de Géographie et l’Université de Jordanie, l’atlas réunit les contributions de 48 chercheurs européens, jordaniens et internationaux. La formation des territoires jordaniens sur le temps long est éclairée...

  19. South Baltic Wind Atlas

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Hahmann, Andrea N.; Hasager, Charlotte Bay

    A first version of a wind atlas for the South Baltic Sea has been developed using the WRF mesoscale model and verified by data from tall Danish and German masts. Six different boundary-layer parametrization schemes were evaluated by comparing the WRF results to the observed wind profiles at the m......A first version of a wind atlas for the South Baltic Sea has been developed using the WRF mesoscale model and verified by data from tall Danish and German masts. Six different boundary-layer parametrization schemes were evaluated by comparing the WRF results to the observed wind profiles...

  20. The ATLAS Simulation Infrastructure

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B.S.; Adams, D.L.; Addy, T.N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Aktas, A.; Alam, M.S.; Alam, M.A.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M.G.; Amako, K.; Amelung, C.; Amorim, A.; Amoros, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F.; Argyropoulos, T.; Arik, M.; Armbruster, A.J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Bach, A.M.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baker, S; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Barreiro Guimaraes da Costa, J.; Barrillon, P.; Bartoldus, R.; Bartsch, D.; Bates, R.L.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H.S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Beddall, A.J.; Beddall, A.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benincasa, G.P.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M.I.; Besson, N.; Bethke, S.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J-B; Blanchot, G.; Blocker, C.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G.J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Boser, S.; Bogaerts, J.A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boveia, A.; Boyd, J.; Boyko, I.R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodet, E.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Bruckman de Renstrom, P.A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A.G.; Budagov, I.A.; Budick, B.; Buscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Byatt, T.; Caballero, J.; Cabrera Urban, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Calvet, D.; Camarri, P.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M.D.M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G.D.; Carron Montero, S.; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Castaneda Hernandez, A.M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.F.; Cataldi, G.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, S.; Chen, X.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, V.; Choudalakis, G.; Chouridou, S.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Clark, P.J.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coggeshall, J.; Cogneras, E.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muino, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Cote, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crepe-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Via, C; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S.J.; Daly, C.H.; Dam, M.; Danielsson, H.O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A.R.; Dawson, I.; Daya, R.K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro Faria Salgado, P.E.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De Mora, L.; De Oliveira Branco, M.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J.B.; De Zorzi, G.; Dean, S.; Dedovich, D.V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S.P.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M.A.; Diblen, F.; Diehl, E.B.; Dietrich, J.; Dietzsch, T.A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M.A.B.; Do Valle Wemans, A.; Doan, T.K.O.; Dobos, D.; Dobson, E.; Dobson, M.; Doglioni, C.; Doherty, T.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M.T.; Doxiadis, A.; Doyle, A.T.; Drasal, Z.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Duhrssen, M.; Duflot, L.; Dufour, M-A.; Dunford, M.; Duran Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Duren, M.; Ebenstein, W.L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienvre, A.I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, W.; Feligioni, L.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M.J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L.R.; Flowerdew, M.J.; Fonseca Martin, T.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallo, V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gaponenko, A.; Garcia-Sciveres, M.; Garcia, C.; Garcia Navarro, J.E.; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gautard, V.; Gauzzi, P.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gilbert, L.M.; Gilchriese, M.; Gilewsky, V.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordani, M.P.; Giordano, R.; Giorgi, F.M.; Giovannini, P.; Giraud, P.F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Gopfert, T.; Goeringer, C.; Gossling, C.; Gottfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gomes, A.; Gomez Fajardo, L.S.; Goncalo, R.; Gonella, L.; Gong, C.; Gonzalez de la Hoz, S.; Gonzalez Silva, M.L.; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grafstrom, P.; Grahn, K-J.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Grishkevich, Y.V.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H.K.; Hadley, D.R.; Haefner, P.; Hartel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harrington, R.D.; Harris, O.M.; Harrison, K; Hartert, J.; Hartjes, F.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C.M.; Hawkings, R.J.; Hayakawa, T.; Hayward, H.S.; Haywood, S.J.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R.C.W.; Henke, M.; Henrichs, A.; Henriques Correia, A.M.; Henrot-Versille, S.; Hensel, C.; Henss, T.; Hernandez Jimenez, Y.; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Higon-Rodriguez, E.; Hill, J.C.; Hiller, K.H.; Hillert, S.; Hillier, S.J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holy, T.; Holzbauer, J.L.; Homma, Y.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J-Y.; Hou, S.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P.J.; Hsu, S.C.; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E.W.; Hughes, G.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwanski, W.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, B.; Jackson, J.N.; Jackson, P.; Jaekel, M.R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.K.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R.C.; Jarlskog, G.; Jeanty, L.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jezequel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, R.W.L.; Jones, T.J.; Jorge, P.M.; Joseph, J.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L.V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz Unel, M.; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kayumov, F.; Kazanin, V.A.; Kazarinov, M.Y.; Keates, J.R.; Keeler, R.; Keener, P.T.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kind, O.; Kind, P.; King, B.T.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E.E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N.S.; Kneringer, E.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Koneke, K.; Konig, A.C.; Koenig, S.; Kopke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Konoplich, R.; Konovalov, S.P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kostka, P.; Kostyukhin, V.V.; Kotov, S.; Kotov, V.M.; Kotov, K.Y.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasny, M.W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Kruger, H.; Krumshteyn, Z.V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L.L.; Kurochkin, Y.A.; Kus, V.; Kwee, R.; La Rotonda, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Lane, J.L.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Le Vine, M.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lefebvre, M.; Legendre, M.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lellouch, D.; Lellouch, J.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J-R.; Lester, C.G.; Leung Fook Cheong, A.; Leveque, J.; Levin, D.; Levinson, L.J.; Leyton, M.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lilley, J.N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S.C.; Linnemann, J.T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lissauer, D.; Lister, A.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, R.E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Loureiro, K.F.; Lovas, L.; Love, J.; Love, P.A.; Lowe, A.J.; Lu, F.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Macana Goia, J.A.; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mattig, P.; Mattig, S.; Magalhaes Martins, P.J.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Manjavidze, I.D.; Manning, P.M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C.P.; Marroquim, F.; Marshall, Z.; Marti-Garcia, S.; Martin, A.J.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, T.A.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martini, A.; Martyniuk, A.C.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Massa, I.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S.J.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mc Donald, J.; Mc Kee, S.P.; McCarn, A.; McCarthy, R.L.; McCubbin, N.A.; McFarlane, K.W.; McGlone, H.; Mchedlidze, G.; McMahon, S.J.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.M.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B.R.; Mendoza Navas, L.; Meng, Z.; Menke, S.; Meoni, E.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.M.; Metcalfe, J.; Mete, A.S.; Meyer, J-P.; Meyer, J.; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R.P.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikestikova, M.; Mikuz, M.; Miller, D.W.; Mills, W.J.; Mills, C.M.; Milov, A.; Milstead, D.A.; Milstein, D.; Minaenko, A.A.; Minano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L.M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V.A.; Miyagawa, P.S.; Mjornmark, J.U.; Mladenov, D.; Moa, T.; Moed, S.; Moeller, V.; Monig, K.; Moser, N.; Mohr, W.; Mohrdieck-Mock, S.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R.W.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llacer, M.; Morettini, P.; Morii, M.; Morley, A.K.; Mornacchi, G.; Morozov, S.V.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Muller, T.A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murillo Garcia, R.; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N.R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S.K.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Neubauer, M.S.; Neusiedl, A.; Neves, R.N.; Nevski, P.; Newcomer, F.M.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A.E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, J.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Oreglia, M.J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R.S.; Ortega, E.O.; Osculati, B.; Ospanov, R.; Osuna, C.; Ottersbach, J.P; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A; Ozcan, V.E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J.D.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th.D.; Park, S.J.; Park, W.; Parker, M.A.; Parker, S.I.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pasztor, G.; Pataraia, S.; Pater, J.R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L.S.; Pecsy, M.; Pedraza Morales, M.I.; Peleganchuk, S.V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Perez Garcia-Estan, M.T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Petersen, B.A.; Petersen, T.C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A.W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Pleier, M.A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomeroy, D.; Pommes, K.; Ponsot, P.; Pontecorvo, L.; Pope, B.G.; Popeneciu, G.A.; Popovic, D.S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G.E.; Pospisil, S.; Potekhin, M.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Potter, K.P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Pribyl, L.; Price, D.; Price, L.E.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qin, Z.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R.A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Roa Romero, D.A.; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, JEM; Robinson, M.; Robson, A.; Rocha de Lima, J.G.; Roda, C.; Roda Dos Santos, D.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Rohne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G.A.; Rosselet, L.; Rossetti, V.; Rossi, L.P.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Ruhr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N.A.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A.F.; Sadrozinski, H.F-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.S.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B.M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandhu, P.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A.Y.; Savinov, V.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schafer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.D.; Schamov, A.G.; Schegelsky, V.A.; Scheirich, D.; Schernau, M.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schultes, J.; Schultz-Coulon, H.C.; Schumacher, J.W.; Schumacher, M.; Schumm, B.A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siegert, F; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjoelin, J.; Sjursen, T.B.; Skovpen, K.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S.Yu.; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A.A.; Solovyanov, O.V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spano, F.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R.D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S.N.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.A.; Stockton, M.C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Strohmer, R.; Strom, D.M.; Stroynowski, R.; Strube, J.; Stugu, B.; Soh, D.A.; Su, D.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.H.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, T.; Suzuki, Y.; Sykora, I.; Sykora, T.; Szymocha, T.; Sanchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F.E.; Taylor, G.N.; Taylor, R.P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P.K.; Tennenbaum-Katan, Y.D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, R.J.; Thompson, A.S.; Thomson, E.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Tipton, P.; Tique Aires Viegas, F.J.; Tisserant, S.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokar, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torrence, E.; Torro Pastor, E.; Toth, J.; Touchard, F.; Tovey, D.R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocme, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C-L.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J.W.; Tsuno, S.; Tsybychev, D.; Tuggle, J.M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P.M.; Twomey, M.S.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J.A.; Van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vasilyeva, L.; Vassilakopoulos, V.I.; Vazeille, F.; Vellidis, C.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Villa, M.; Villani, E.G.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, S.M.; Warburton, A.; Ward, C.P.; Warsinsky, M.; Wastie, R.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Weber, M.D.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; White, A.; White, M.J.; White, S.; Whitehead, S.R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilkens, H.G.; Williams, E.; Williams, H.H.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S.L.; Wu, X.; Wulf, E.; Wynne, B.M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Z.; Yao, W-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.P.; Yu, D.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zivkovic, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zutshi, V.

    2010-01-01

    The simulation software for the ATLAS Experiment at the Large Hadron Collider is being used for large-scale production of events on the LHC Computing Grid. This simulation requires many components, from the generators that simulate particle collisions, through packages simulating the response of the various detectors and triggers. All of these components come together under the ATLAS simulation infrastructure. In this paper, that infrastructure is discussed, including that supporting the detector description, interfacing the event generation, and combining the GEANT4 simulation of the response of the individual detectors. Also described are the tools allowing the software validation, performance testing, and the validation of the simulated output against known physics processes.

  1. ATLAS TV PROJECT

    CERN Multimedia

    OMNI communication

    2005-01-01

    CAMERA ON TOROID The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two double-pancake windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. The video is about the slow lowering of the toroid down to the cavern of ATLAS. It is very demanding task. The camera is placed on top of the toroid.

  2. Improving ATLAS reprocessing software

    CERN Document Server

    Novak, Tadej

    2014-01-01

    For my CERN Summer Student programme I have been working with ATLAS reprocessing group. Data taken at ATLAS experiment is not only processed after being taken, but is also reprocessed multiple times afterwards. This allows applying new alignments, calibration of detector and using improved or faster algorithms. Reprocessing is usually done in campaigns for different periods of data or for different interest groups. The idea of my project was to simplify the definition of tasks and monitoring of their progress. I created a LIST configuration files generator script in Python and a monitoring webpage for tracking current reprocessing tasks.

  3. ATLAS Fast Physics Monitoring

    CERN Document Server

    Koeneke, K; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment at the LHC is recording data from proton-proton collisions with 7 TeV center-of-mass energy since spring 2010. The integrated luminosity has grown nearly exponentially since then and continues to rise fast. The ATLAS collaboration has set up a framework to automatically run over the rapidly growing dataset and produce performance and physics plots for the most interesting analyses. The system is designed to give fast feedback. The histograms are produced within hours of data reconstruction (2-3 days after data taking). Hints of potentially interesting physics signals obtained this way are followed up by physics groups.

  4. Heavy Flavour Production and Properties at ATLAS and CMS

    CERN Document Server

    Barton, Adam Edward; The ATLAS collaboration

    2017-01-01

    Measurements of heavy flavour properties and production are an important part of the physics program of the ATLAS and CMS experiments at LHC. They can potentially expose physics beyond the standard model, constrain supersymmetry and advance hadron spectroscopy and test QCD. In the past years, the two collaborations have published results in several different fields, such as rare decays, searches for new states, CP and P violation and quarkonia polarization. In this note, some of the most recent results from ATLAS and CMS are summarized

  5. Diffraction and Forward Physics in ATLAS: results and perspectives

    CERN Document Server

    Bruschi, Marco; The ATLAS collaboration

    2015-01-01

    The present and future potential of ATLAS for diffraction and forward physics is presented. As recent results the rapidity gap cross section and elastic and total pp cross sections are reported. The upgrade project AFP is presented and it is shown how it will complement the ALFA acceptance for diffractive physics in measurements taken with \\(\\beta^{*}\\)=90 m LHC\\ beam optics. Moreover, the AFP detector will guarantee good acceptance on diffractive events also with normal running conditions optics allowing not only to improve the ATLAS detector performances, but also being fundamental for potential discoveries (for instance, extra dimensions) in case the high luminosity program will be feasible.

  6. Diffraction and Forward Physics in ATLAS: results and perspectives

    CERN Document Server

    Bruschi, M; The ATLAS collaboration

    2014-01-01

    The present and future potential of ATLAS for diffraction and forward physics is presented. As recent results the rapidity gap cross section and elastic and total pp cross sections are reported. The phase 1 upgrade project AFP is presented and it is shown how it will complement the ALFA acceptance for diffractive physics in measurements taken with beta*=90m. Moreover, the AFP detector will guarantee good acceptance on diffractive events also with normal running conditions optics allowing not only to improve the ATLAS detector performances, but also being fundamental for potential discoveries (for instance, extra dimensions) in case the high luminosity program will be feasible.

  7. Integration of Titan supercomputer at OLCF with ATLAS production system

    CERN Document Server

    Panitkin, Sergey; The ATLAS collaboration

    2016-01-01

    The PanDA (Production and Distributed Analysis) workload management system was developed to meet the scale and complexity of distributed computing for the ATLAS experiment. PanDA managed resources are distributed worldwide, on hundreds of computing sites, with thousands of physicists accessing hundreds of Petabytes of data and the rate of data processing already exceeds Exabyte per year. While PanDA currently uses more than 200,000 cores at well over 100 Grid sites, future LHC data taking runs will require more resources than Grid computing can possibly provide. Additional computing and storage resources are required. Therefore ATLAS is engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. In this talk we will describe a project aimed at integration of ATLAS Production System with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF). Current approach utilizes modified PanDA Pilot framework for job...

  8. ATLAS Future Plans: Upgrade and the Physics with High Luminosity

    Directory of Open Access Journals (Sweden)

    Rajagopalan S.

    2013-05-01

    Full Text Available The ATLAS experiment is planning a series of detector upgrades to cope with the planned increases in instantaneous luminosity and multiple interactions per crossing to maintain its physics capabilities. During the coming decade, the Large Hadron Collider will collide protons on protons at a center of mass energy up to 14 TeV with luminosities steadily increasing in a phased approach to over 5 × 1034 cm−2s−1. The resulting large data sets will significantly enhance the physics reach of the ATLAS detector building on the recent discovery of the Higgs-like boson. The planned detector upgrades being designed to cope with the increasing luminosity and its impact on the ATLAS physics program will be discussed.

  9. Integration of Titan supercomputer at OLCF with ATLAS Production System

    CERN Document Server

    AUTHOR|(SzGeCERN)643806; The ATLAS collaboration; De, Kaushik; Klimentov, Alexei; Nilsson, Paul; Oleynik, Danila; Padolski, Siarhei; Panitkin, Sergey; Wenaus, Torre

    2017-01-01

    The PanDA (Production and Distributed Analysis) workload management system was developed to meet the scale and complexity of distributed computing for the ATLAS experiment. PanDA managed resources are distributed worldwide, on hundreds of computing sites, with thousands of physicists accessing hundreds of Petabytes of data and the rate of data processing already exceeds Exabyte per year. While PanDA currently uses more than 200,000 cores at well over 100 Grid sites, future LHC data taking runs will require more resources than Grid computing can possibly provide. Additional computing and storage resources are required. Therefore ATLAS is engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. In this paper we will describe a project aimed at integration of ATLAS Production System with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF). Current approach utilizes modified PanDA Pilot framework for jo...

  10. Performance of the ATLAS muon trigger in run 2

    CERN Document Server

    Morgenstern, Marcus; The ATLAS collaboration

    2017-01-01

    Triggering on muons is a crucial ingredient to fulfill the physics program of the ATLAS experiments. The ATLAS trigger system deploys a two stage strategy, a hardware-based Level-1 trigger and a software-based high-level trigger to select events of interest at a suitable recording rate. Both stages underwent upgrades to cope with the challenges in run-II data-taking at centre-of-mass energies of 13 TeV and instantaneous luminosities up to 2x10$^{34} cm^{-2}s^{-1}$. The design of the ATLAS muon triggers and their performance in proton-proton collisions at 13 TeV are presented.

  11. Online Monitoring software framework in the ATLAS experiment

    CERN Document Server

    Barczyk, M.; Caprini, M.; Da Silva Conceicao, J.; Dobson, M.; Flammer, J.; Jones, R.; Kazarov, A.; Kolos, S.; Liko, D.; Lucio, L.; Mapelli, L.; Soloviev, I.; Hart, R.; Amorim, A.; Klose, D.; Lima, J.; Pedro, L.; Wolters, H.; Badescu, E.; Alexandrov, I.; Kotov, V.; Mineev, M.; Ryabov, Yu.; CHEP 2003 Computing in High Energy Physics; Ryabov, Yu.

    2003-01-01

    A fast, efficient and comprehensive monitoring system is a vital part of any HEP experiment. This paper describes the software framework that will be used during ATLAS data taking to monitor the state of the data acquisition and the quality of physics data in the experiment. The framework has been implemented by the Online Software group of the ATLAS Trigger&Data Acquisition (TDAQ) project and has already been used for several years in the ATLAS test beams at CERN. The inter-process communication in the framework is implemented via CORBA, which provides portability between different operating systems and programming languages. This paper will describe the design and the most important aspects of the online monitoring framework implementation. It will also show some test results, which indicate the performance and scalability of the current implementation.

  12. Data Federation Strategies for ATLAS using XRootD

    CERN Document Server

    Gardner, R; The ATLAS collaboration; Duckeck, G; Elmsheuser, J; Hanushevski, A; Hönig, F; Iven, J; Legger, F; Vukotic, I; Yang, W

    2013-01-01

    In the past year the ATLAS Collaboration accelerated its program to federate data storage resources using an architecture based on XRootD with its attendant redirection and storage integration services. The main goal of the federation is an improvement in the data access experience for the end user while allowing more efficient and intelligent use of computing resources. Along with these advances come integration with existing ATLAS production services (PanDA and its pilot services) and data management services (DQ2, and in the next generation, Rucio). Functional testing of the federation has been integrated into the standard ATLAS and WLCG monitoring frameworks and a dedicated set of tools provides high granularity information on its current and historical usage. We use a federation topology designed to search from the site's local storage outward to its region and to globally distributed storage resources. We describe programmatic testing of various federation access modes including direct access over the w...

  13. Data Federation Strategies for ATLAS using XRootD

    CERN Document Server

    Gardner, R; The ATLAS collaboration; Duckeck, G; Elmsheuser, J; Hanushevski, A; Hönig, F; Iven, J; Legger, F; Vukotic, I; Yang, W

    2014-01-01

    In the past year the ATLAS Collaboration accelerated its program to federate data storage resources using an architecture based on XRootD with its attendant redirection and storage integration services. The main goal of the federation is an improvement in the data access experience for the end user while allowing more efficient and intelligent use of computing resources. Along with these advances come integration with existing ATLAS production services (PanDA and its pilot services) and data management services (DQ2, and in the next generation, Rucio). Functional testing of the federation has been integrated into the standard ATLAS and WLCG monitoring frameworks and a dedicated set of tools provides high granularity information on its current and historical usage. We use a federation topology designed to search from the site's local storage outward to its region and to globally distributed storage resources. We describe programmatic testing of various federation access modes including direct access over the w...

  14. Physics potential of ATLAS upgrades at HL-LHC

    CERN Document Server

    Testa, Marianna; The ATLAS collaboration

    2017-01-01

    The High Luminosity-Large Hadron Collider (HL-LHC) is expected to start in 2026 and to pro- vide an integrated luminosity of 3000 fb−1 in ten years, a factor 10 more than what will be collected by 2023. This high statistics will allow ATLAS to perform precise measurements in the Higgs sector and improve searches for new physics at the TeV scale. The luminosity needed is L ∼ 7.51034 cm−2 s−1, corresponding to ∼200 additional proton-proton pile- up interactions. To face such harsh environment some sub-detectors of the ATLAS experiment will be upgraded or completely substituted. The performances of the new or upgraded ATLAS sub-detectors are presented, focusing in particular on the new inner tracker and a proposed high granularity time device. The impact of those upgrades on crucial physics measurements for HL-LHC program is also shown.

  15. The ATLAS Trigger algorithms upgrade and performance in Run 2

    CERN Document Server

    Bernius, Catrin; The ATLAS collaboration

    2017-01-01

    Title: The ATLAS Trigger algorithms upgrade and performance in Run 2 (TDAQ) The ATLAS trigger has been used very successfully for the online event selection during the first part of the second LHC run (Run-2) in 2015/16 at a center-of-mass energy of 13 TeV. The trigger system is composed of a hardware Level-1 trigger and a software-based high-level trigger; it reduces the event rate from the bunch-crossing rate of 40 MHz to an average recording rate of about 1 kHz. The excellent performance of the ATLAS trigger has been vital for the ATLAS physics program of Run-2, selecting interesting collision events for wide variety of physics signatures with high efficiency. The trigger selection capabilities of ATLAS during Run-2 have been significantly improved compared to Run-1, in order to cope with the higher event rates and pile-up which are the result of the almost doubling of the center-of-mass collision energy and the increase in the instantaneous luminosity of the LHC. At the Level-1 trigger the undertaken impr...

  16. Crustal and uppermost mantle structures of Atlas Mountains of Morocco inferred from electromagnetic imaging

    Science.gov (United States)

    Kiyan, D.; Jones, A. G.; Fullea, J.; Ledo, J.; Siniscalchi, A.; Romano, G.

    2012-12-01

    The second phase of the PICASSO (Program to Investigate Convective Alboran Sea System Overturn) project and the concomitant TopoMed (Plate re-organization in the western Mediterranean: Lithospheric causes and topographic consequences - an ESF EUROCORES TOPO-EUROPE Collaborative Research Project) is designed to determine the internal structure of the crust and lithosphere of the Atlas Mountains of Morocco. A multi-institutional magnetotelluric (MT) experiment across the Atlas Mountains region comprises the acquisition of broadband and long period MT data along two profiles: a N-S oriented profile through Middle Atlas to the east and a NE-SW profile through Marrakech to the west. The preliminary results of interpretation of the MT data collected over the first profile were presented in the paper by Ledo et al. (2011). In this study, we present the results from 3D MT inversion using the codes WSINV3DMT (Siripunvaraporn et al., 2005) and Modular system for Electromagnetic Inversion (ModEM; Egbert and Kelbert, 2012). There is a general good agreement between the main features obtained from the 2D models and the new results of the 3D modelling. Models inverting for only off-diagonal tensor components showed a distinct conductivity contrast between Middle-High Atlas and Anti Atlas correlates with the South Atlas Front fault, the depth extent of which appears to be limited to uppermost mantle (approximately 55 km). The resistivity of the lithosphere is gradually increasing towards Anti Atlas. Beside this, a prominent conducting anomaly at the lower crust/uppermost mantle is imaged west of the profile in the junction between the High and Middle Atlas (Moulouya plain). The conductive body, which extends from the southern boundary of Middle Atlas to the northern boundary of High Atlas, is interpreted as due to the presence of partial melt and/or migrated fluids.

  17. ATLAS Civil Engineering Point 1

    CERN Multimedia

    Jean-Claude Vialis

    2000-01-01

    Different phases of realisation to Point 1 : zone of the ATLAS experiment The ATLAS experimental area is located in Point 1, just across the main CERN entrance, in the commune of Meyrin. There people are ever so busy to finish the different infrastructures for ATLAS. Real underground video. When passing throw the walls the succeeding can be heard and seen. The film has original working sound.

  18. Prime wires for ATLAS

    CERN Multimedia

    2003-01-01

    In an award ceremony on 3 September, ATLAS honoured the French company Axon Cable for its special coaxial cables, which were purpose-built for the Liquid Argon calorimeter modules. Working for CERN since the 1970s, Axon' Cable received the ATLAS supplier award last week for its contribution to the liquid argon calorimeter cables of ATLAS (LAL/Orsay, France and University of Victoria, Canada), started in 1996. Its two sets of minicoaxial cables, called harnesses "A" and "B", are designed to function in the harsh conditions in the liquid argon (at 90 Kelvin or -183°C) and under extreme radiation (up to several Mrads). The cables are mainly used for the readout of the calorimeters, and are connected to the outside world by 114 signal feedthroughs with 1920 channels each. The signal from the detectors is transmitted directly without any amplification, which imposes tight restrictions on the impedance and on the signal propagation time of the cables. Peter Jenni, ATLAS spokesperson, gives the award for best s...

  19. Hard Probes at ATLAS

    CERN Document Server

    Citron, Z; The ATLAS collaboration

    2014-01-01

    The ATLAS collaboration has measured several hard probe observables in Pb+Pb and p+Pb collisions at the LHC. These measurements include jets which show modification in the hot dense medium of heavy ion collisions as well as color neutral electro-weak bosons. Together, they elucidate the nature of heavy ion collisions.

  20. The ATLAS event filter

    CERN Document Server

    Beck, H P; Boissat, C; Davis, R; Duval, P Y; Etienne, F; Fede, E; Francis, D; Green, P; Hemmer, F; Jones, R; MacKinnon, J; Mapelli, Livio P; Meessen, C; Mommsen, R K; Mornacchi, Giuseppe; Nacasch, R; Negri, A; Pinfold, James L; Polesello, G; Qian, Z; Rafflin, C; Scannicchio, D A; Stanescu, C; Touchard, F; Vercesi, V

    1999-01-01

    An overview of the studies for the ATLAS Event Filter is given. The architecture and the high level design of the DAQ-1 prototype is presented. The current status if the prototypes is briefly given. Finally, future plans and milestones are given. (11 refs).

  1. A thermosiphon for ATLAS

    CERN Multimedia

    Rosaria Marraffino

    2013-01-01

    A new thermosiphon cooling system, designed for the ATLAS silicon detectors by CERN’s EN-CV team in collaboration with the experiment, will replace the current system in the next LHC run in 2015. Using the basic properties of density difference and making gravity do the hard work, the thermosiphon promises to be a very reliable solution that will ensure the long-term stability of the whole system.   Former compressor-based cooling system of the ATLAS inner detectors. The system is currently being replaced by the innovative thermosiphon. (Photo courtesy of Olivier Crespo-Lopez). Reliability is the major issue for the present cooling system of the ATLAS silicon detectors. The system was designed 13 years ago using a compressor-based cooling cycle. “The current cooling system uses oil-free compressors to avoid fluid pollution in the delicate parts of the silicon detectors,” says Michele Battistin, EN-CV-PJ section leader and project leader of the ATLAS thermosiphon....

  2. ATLAS Experiment Brochure

    CERN Multimedia

    AUTHOR|(INSPIRE)INSPIRE-00085461

    2016-01-01

    ATLAS is one of the four major experiments at the Large Hadron Collider at CERN. It is a general-purpose particle physics experiment run by an international collaboration, and is designed to exploit the full discovery potential and the huge range of physics opportunities that the LHC provides.

  3. ATLAS fast physics monitoring

    Indian Academy of Sciences (India)

    The ATLAS Collaboration has set up a framework to automatically process the rapidly growing dataset and produce performance and physics plots for the most interesting analyses. The system is designed to give fast feedback. The histograms are produced within hours of data reconstruction (2–3 days after data taking).

  4. ATLAS PDF Results

    CERN Document Server

    Stockton, Mark; The ATLAS collaboration

    2015-01-01

    Uncertainties from parton distribution functions can limit our measurements of new cross sections and searches beyond the SM. Results are presented on recent ATLAS measurements which are sensitive to parton distribution functions. These cover a wide range of cross section measurements, including those from: jets, photons, $W$/$Z$ bosons and top quarks.

  5. ATLAS starts moving in

    CERN Multimedia

    2004-01-01

    The first large active detector component was lowered into the ATLAS cavern on 1 March. It consisted of the 8 modules forming the lower part of the central barrel of the tile hadronic calorimeter. The work of assembling the barrel, which comprises 64 modules, started the following day.

  6. Prototype ATLAS straw tracker

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    This is an early prototype of the straw tracking device for the ATLAS detector at CERN. This detector will be part of the LHC project, scheduled to start operation in 2008. The straw tracker will consist of thousands of gas-filled straws, each containing a wire, allowing the tracks of particles to be followed.

  7. The observer's sky atlas

    CERN Document Server

    Karkoschka, E

    2007-01-01

    This title includes a short introduction to observing, a thorough description of the star charts and tables, a glossary and much more. It is perfect for both the beginner and seasoned observer. It is fully revised edition of a best-selling and highly-praised sky atlas.

  8. ATLAS solenoid operates underground

    CERN Document Server

    2006-01-01

    A new phase for the ATLAS collaboration started with the first operation of a completed sub-system: the Central Solenoid. Teams monitoring the cooling and powering of the ATLAS solenoid in the control room. The solenoid was cooled down to 4.5 K from 17 to 23 May. The first current was established the same evening that the solenoid became cold and superconductive. 'This makes the ATLAS Central Solenoid the very first cold and superconducting magnet to be operated in the LHC underground areas!', said Takahiko Kondo, professor at KEK. Though the current was limited to 1 kA, the cool-down and powering of the solenoid was a major milestone for all of the control, cryogenic, power and vacuum systems-a milestone reached by the hard work and many long evenings invested by various teams from ATLAS, all of CERN's departments and several large and small companies. Since the Central Solenoid and the barrel liquid argon (LAr) calorimeter share the same cryostat vacuum vessel, this achievement was only possible in perfe...

  9. ATLAS Experiment Brochure - French

    CERN Document Server

    2018-01-01

    ATLAS is one of the four major experiments at the Large Hadron Collider at CERN. It is a general-purpose particle physics experiment run by an international collaboration, and is designed to exploit the full discovery potential and the huge range of physics opportunities that the LHC provides.

  10. ATLAS Experiment Brochure - Serbian

    CERN Document Server

    2018-01-01

    ATLAS is one of the four major experiments at the Large Hadron Collider at CERN. It is a general-purpose particle physics experiment run by an international collaboration, and is designed to exploit the full discovery potential and the huge range of physics opportunities that the LHC provides.

  11. ATLAS Experiment Brochure - Italian

    CERN Multimedia

    2018-01-01

    ATLAS is one of the four major experiments at the Large Hadron Collider at CERN. It is a general-purpose particle physics experiment run by an international collaboration, and is designed to exploit the full discovery potential and the huge range of physics opportunities that the LHC provides.

  12. ATLAS Virtual Visit-Hue-05-08-2014

    CERN Multimedia

    2014-01-01

    Hue University of Sciences (HUSC) is a multidisciplinary education and training institution including graduate and undergraduate education programs, and research activities conducted in the fields of Natural Science, Engineering, Social Science and Humanity. On 5th August, HUSC in collaboration with the ICTP Physics without Frontiers program organized a particle physics masterclass for selected physics students. The goal of this program is to give young physics students the opportunity to learn about the experiments at CERN, in particular performing an analysis with real LHC data, and to motivate and inspire the students to continue onto phyiscs master and PhD programs. Physics without Frontiers: Vietnam is organised by Kate Shaw (ICTP), Loan Truong (SISSA-ICTP), Phuong Dang (Freiburg) and Lan Tran (DESY). - See more at: http://atlas-live-virtual-visit.web.cern.ch/atlas-live-virtual-visit/2014/Hue-2014.html#sthash.4FIZzsgh.dpuf

  13. Taking ATLAS to new heights

    CERN Document Server

    Abha Eli Phoboo, ATLAS experiment

    2013-01-01

    Earlier this month, 51 members of the ATLAS collaboration trekked up to the highest peak in the Atlas Mountains, Mt. Toubkal (4,167m), in North Africa.    The physicists were in Marrakech, Morocco, attending the ATLAS Overview Week (7 - 11 October), which was held for the first time on the African continent. Around 300 members of the collaboration met to discuss the status of the LS1 upgrades and plans for the next run of the LHC. Besides the trek, 42 ATLAS members explored the Saharan sand dunes of Morocco on camels.  Photos courtesy of Patrick Jussel.

  14. 17 April 2008 - Head of Internal Audit Network meeting visiting the ATLAS experimental area with CERN ATLAS Team Leader P. Fassnacht, ATLAS Technical Coordinator M. Nessi and ATLAS Resources Manager M. Nordberg.

    CERN Multimedia

    Mona Schweizer

    2008-01-01

    17 April 2008 - Head of Internal Audit Network meeting visiting the ATLAS experimental area with CERN ATLAS Team Leader P. Fassnacht, ATLAS Technical Coordinator M. Nessi and ATLAS Resources Manager M. Nordberg.

  15. EnviroAtlas - Number of Water Markets per HUC8 Watershed, U.S., 2015, Forest Trends' Ecosystem Marketplace

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset contains polygons depicting the number of watershed-level market-based programs, referred to herein as markets, in operation per 8-digit HUC...

  16. EnviroAtlas - Ecosystem Service Market and Project Enabling Conditions, U.S., 2016, Forest Trends' Ecosystem Marketplace

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset contains polygons depicting conditions enabling market-based programs, referred to herein as markets, and projects addressing ecosystem...

  17. EnviroAtlas - Ecosystem Service Market and Project Locations, U.S., 2015, Forest Trends' Ecosystem Marketplace

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset contains points depicting the location of market-based programs, referred to herein as markets, and projects addressing ecosystem services...

  18. EnviroAtlas - Ecosystem Service Market and Project Areas, U.S., 2015, Forest Trends' Ecosystem Marketplace

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset contains polygons depicting the geographic areas of market-based programs, referred to herein as markets, and projects addressing ecosystem...

  19. Significance of the BRAF mRNA Expression Level in Papillary Thyroid Carcinoma: An Analysis of The Cancer Genome Atlas Data.

    Directory of Open Access Journals (Sweden)

    Young Jun Chai

    Full Text Available BRAFV600E is the most common mutation in papillary thyroid carcinoma (PTC, and it is associated with high-risk prognostic factors. However, the significance of the BRAF mRNA level in PTC remains unknown. We evaluated the significance of BRAF mRNA expression level by analyzing PTC data from The Cancer Genome Atlas (TCGA database.Data from 499 patients were downloaded from the TCGA database. After excluding other PTC variants, we selected 353 cases of classic PTC, including 193 cases with BRAFV600E and 160 cases with the wild-type BRAF. mRNA abundances were measured using RNA-Seq with the Expectation Maximization algorithm.The mean BRAF mRNA level was significantly higher in BRAFV600E patients than in patients with wild-type BRAF (197.6 vs. 179.3, p = 0.031. In wild-type BRAF patients, the mean BRAF mRNA level was higher in cases with a tumor > 2 cm than those with a tumor ≤ 2.0 cm (189.4 vs. 163.8, p = 0.046, and was also higher in cases with lymph node metastasis than in those without lymph node metastasis (188.5 vs. 157.9, p = 0.040. Within BRAFV600E patients, higher BRAF mRNA expression was associated with extrathyroidal extension (186.4 vs. 216.4, p = 0.001 and higher T stage (188.1 vs. 210.2, p = 0.016.A higher BRAF mRNA expression level was associated with tumor aggressiveness in classic PTC regardless of BRAF mutational status. Evaluation of BRAF mRNA level may be helpful in prognostic risk stratification of PTC.

  20. Atlas – a data warehouse for integrative bioinformatics

    Science.gov (United States)

    Shah, Sohrab P; Huang, Yong; Xu, Tao; Yuen, Macaire MS; Ling, John; Ouellette, BF Francis

    2005-01-01

    Background We present a biological data warehouse called Atlas that locally stores and integrates biological sequences, molecular interactions, homology information, functional annotations of genes, and biological ontologies. The goal of the system is to provide data, as well as a software infrastructure for bioinformatics research and development. Description The Atlas system is based on relational data models that we developed for each of the source data types. Data stored within these relational models are managed through Structured Query Language (SQL) calls that are implemented in a set of Application Programming Interfaces (APIs). The APIs include three languages: C++, Java, and Perl. The methods in these API libraries are used to construct a set of loader applications, which parse and load the source datasets into the Atlas database, and a set of toolbox applications which facilitate data retrieval. Atlas stores and integrates local instances of GenBank, RefSeq, UniProt, Human Protein Reference Database (HPRD), Biomolecular Interaction Network Database (BIND), Database of Interacting Proteins (DIP), Molecular Interactions Database (MINT), IntAct, NCBI Taxonomy, Gene Ontology (GO), Online Mendelian Inheritance in Man (OMIM), LocusLink, Entrez Gene and HomoloGene. The retrieval APIs and toolbox applications are critical components that offer end-users flexible, easy, integrated access to this data. We present use cases that use Atlas to integrate these sources for genome annotation, inference of molecular interactions across species, and gene-disease associations. Conclusion The Atlas biological data warehouse serves as data infrastructure for bioinformatics research and development. It forms the backbone of the research activities in our laboratory and facilitates the integration of disparate, heterogeneous biological sources of data enabling new scientific inferences. Atlas achieves integration of diverse data sets at two levels. First, Atlas stores data of

  1. Physics with tau leptons at ATLAS

    CERN Document Server

    Morgenstern, M; The ATLAS collaboration

    2012-01-01

    Physics involving tau lepton signatures form an integral part of the ATLAS physics program, and are becoming more prevalent, given the large amounts of data accumulated in 2011 and 2012 LHC running. This talk reviews the increased sensitivity of searches for a Standard Model Higgs boson in the low mass region, as well as searches for neutral and charged supersymmetric Higgs bosons, decaying to tau final states. Other searches involving tau lepton signatures are also reviewed, including searches for heavy gauge bosons, leptoquarks, and supersymmetric decays. Standard Model processes from W, Z, and top pair production involving tau leptons are also investigated.

  2. EnviroAtlas -Portland, ME- One Meter Resolution Urban Land Cover (2010) Web Service

    Science.gov (United States)

    This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The Portland, ME land cover map was generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from Late Summer 2010 at 1 m spatial resolution. Nine land cover classes were mapped: water, impervious surfaces (dark and light), soil and barren land, trees and forest, grass and herbaceous non-woody vegetation, agriculture, and wetlands (woody and emergent). An accuracy assessment using a stratified random sampling of 600 samples yielded an overall accuracy of 87.5 percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Portland.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  3. Crustal and lithospheric imaging of the Atlas Mountains of Morocco inferred from magnetotelluric data

    Science.gov (United States)

    Kiyan, D.; Jones, A. G.; Fullea, J.; Hogg, C.; Ledo, J.; Sinischalchi, A.; Campanya, J.; Picasso Phase II Team

    2010-12-01

    The Atlas System of Morocco is an intra-continental mountain belt extending for more than 2,000 km along the NW African plate with a predominant NE-SW trend. The System comprises three main branches: the High Atlas, the Middle Atlas, and the Anti Atlas. We present the results of a very recent multi-institutional magnetotelluric (MT) experiment across the Atlas Mountains region that started in September, 2009 and ended in February, 2010, comprising acquisition of broadband and long-period MT data. The experiment consisted of two profiles: (1) a N-S oriented profile crossing the Middle Atlas through the Central High Atlas to the east and (2) a NE-SW profile crossing the western High Atlas towards the Anti Atlas to the west. The MT measurements are part of the PICASSO (Program to Investigate Convective Alboran Sea System Overturn) and the concomitant TopoMed (Plate re-organization in the western Mediterranean: Lithospheric causes and topographic consequences - an ESF EUROCORES TOPO-EUROPE project) projects, to develop a better understanding of the internal structure and evolution of the crust and lithosphere of the Atlas Mountains. The MT data have been processed with robust remote reference methods and submitted to comprehensive strike and dimensionality analysis. Two clearly depth-differentiated strike directions are apparent for crustal (5-35 km) and lithospheric (50-150 km) depth ranges. These two orientations are roughly consistent with the NW-SE Africa-Eurasia convergence acting since the late Cretaceous, and the NNE-SSW Middle Atlas, where Miocene to recent Alkaline volcanism is present. Two-dimensional (2-D) smooth electrical resistivity models were computed independently for both 50 degrees and 20 degrees E of N strike directions. At the crustal scale, our preliminary results reveal a middle to lower-crustal conductive layer stretching from the Middle Atlas southward towards the High Moulouya basin. The most resistive (and therefore potentially thickest

  4. Lowering the first ATLAS toroid

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The ATLAS detector on the LHC at CERN will consist of eight toroid magnets, the first of which was lowered into the cavern in these images on 26 October 2004. The coils are supported on platforms where they will be attached to form a giant torus. The platforms will hold about 300 tonnes of ATLAS' muon chambers and will envelop the inner detectors.

  5. ATLAS recognises its best suppliers

    CERN Multimedia

    2002-01-01

    The ATLAS Collaboration has recently rewarded two of its suppliers in the construction of very major detector components, fabricated in Japan. The ATLAS Supplier Award in recognition of excellent supplier performance has just been attributed to Kawasaki Heavy Industries, while Toshiba Corporation received the award two months ago at their headquarters in Japan.

  6. ATLAS: civil engineering Point 1

    CERN Multimedia

    Jean-Claude Vialis

    2000-01-01

    The ATLAS experimental area is located in Point 1, just across the main CERN entrance, in the commune of Meyrin. There people are busy to finish the different infrastructures for ATLAS. Real underground video. Nice view from the surface to the cavern from the pit side - all the big machines looked very small. The film has original working sound.

  7. Data challenges in ATLAS computing

    CERN Document Server

    Vaniachine, A

    2003-01-01

    ATLAS computing is steadily progressing towards a highly functional software suite, plus a World Wide computing model which gives all ATLAS equal and equal quality of access to ATLAS data. A key component in the period before the LHC is a series of Data Challenges of increasing scope and complexity. The goals of the ATLAS Data Challenges are the validation of the computing model, of the complete software suite, of the data model, and to ensure the correctness of the technical choices to be made. We are committed to 'common solutions' and look forward to the LHC Computing Grid being the vehicle for providing these in an effective way. In close collaboration between the Grid and Data Challenge communities ATLAS is testing large-scale testbed prototypes around the world, deploying prototype components to integrate and test Grid software in a production environment, and running DC1 production at 39 'tier' centers in 18 countries on four continents.

  8. ATLAS Award for Difficult Task

    CERN Multimedia

    2004-01-01

    Two Russian companies were honoured with an ATLAS Award, for supply of the ATLAS Inner Detector barrel support structure elements, last week. On 23 March the Russian company ORPE Technologiya and its subcontractor, RSP Khrunitchev, were jointly presented with an ATLAS Supplier Award. Since 1998, ORPE Technologiya has been actively involved in the development of the carbon-fibre reinforced plastic elements of the ATLAS Inner Detector barrel support structure. After three years of joint research and development, CERN and ORPE Technologiya launched the manufacturing contract. It had a tight delivery schedule and very demanding specifications in terms of mechanical tolerance and stability. The contract was successfully completed with the arrival of the last element of the structure at CERN on 8 January 2004. The delivery of this key component of the Inner Detector deserves an ATLAS Award given the difficulty of manufacturing the end-frames, which very few companies in the world would have been able to do at an ...

  9. Jet physics in ATLAS

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Measurements of hadronic jets provide tests of strong interactions which are interesting both in their own right and as backgrounds to many New Physics searches. It is also through tests of Quantum Chromodynamics that new physics may be discovered. The extensive dataset recorded with the ATLAS detector throughout the 7 TeV centre-of-mass LHC operation period allows QCD to be probed at distances never reached before. We present a review of selected ATLAS jet performance and physics measurements, together with results from new physics searches using the 2011 dataset. They include studies of the underlying event and fragmentation models, measurements of the inclusive jet, dijet and multijet cross sections, parton density functions, heavy flavours, jet shape, mass and substructure. Searches for new physics in monojet, dijet and photon-jet final states are also presented.

  10. Jet Physics in ATLAS

    CERN Document Server

    Sandoval, C; The ATLAS collaboration

    2012-01-01

    Measurements of hadronic jets provide tests of strong interactions which are interesting both in their own right and as backgrounds to many New Physics searches. It is also through tests of Quantum Chromodynamics that new physics may be discovered. The extensive dataset recorded with the ATLAS detector throughout the 7 TeV and 8 TeV centre-of-mass LHC operation periods allows QCD to be probed at distances never reached before. We present a review of selected ATLAS jet physics measurements. These measurements constitute precision tests of QCD in a new energy regime, and show sensitivity to the parton densities in the proton and to the value of the strong coupling, alpha_s.

  11. The ATLAS Tau Trigger

    CERN Document Server

    Rados, PK; The ATLAS collaboration

    2013-01-01

    The tau lepton plays a crucial role in understanding particle physics at the Tera scale. One of the most promising probes of the Higgs boson coupling to fermions is with detector signatures involving taus. In addition, many theories beyond the Standard Model, such as supersymmetry and exotic particles (Wʹ and Zʹ), predict new physics with large couplings to taus. The ability to trigger on hadronic tau decays is therefore critical to achieving the physics goals of the ATLAS experiment. The higher instantaneous luminosities of proton-proton collisions achieved by the Large Hadron Collider (LHC) in 2012 resulted in a larger probability of overlap (pile-up) between bunch crossings, and so it was critical for ATLAS to have an effective tau trigger strategy. The details of this strategy are summarized in this paper, and the results of the latest performance measurements are presented.

  12. The ATLAS Tau Trigger

    CERN Document Server

    Rados, PK; The ATLAS collaboration

    2013-01-01

    The tau lepton plays a crucial role in understanding particle physics at the Tera scale. One of the most promising probes of the Higgs boson coupling to fermions is with detector signatures involving taus. In addition, many theories beyond the Standard Model, such as supersymmetry and exotic particles (Wʹ′ and Zʹ′), predict new physics with large couplings to taus. The ability to trigger on hadronic tau decays is therefore critical to achieving the physics goals of the ATLAS experiment. The higher instantaneous luminosities of proton-proton collisions achieved by the Large Hadron Collider (LHC) in 2012 resulted in a larger probability of overlap (pile-up) between bunch crossings, and so it was critical for ATLAS to have an effective tau trigger strategy. The details of this strategy are summarized in this poster, and the latest performance measurements are presented.

  13. ATLAS IBL operational experience

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00237659; The ATLAS collaboration

    2016-01-01

    The Insertable B-Layer (IBL) is the inner most pixel layer in the ATLAS experiment, which was installed at 3.3 cm radius from the beam axis in 2014 to improve the tracking performance. To cope with the high radiation and hit occupancy due to proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed for the IBL. After the long shut-down period over 2013 and 2014, the ATLAS experiment started data-taking in May 2015 for Run-2 of the Large Hadron Collider (LHC). The IBL has been operated successfully since the beginning of Run-2 and shows excellent performance with the low dead module fraction, high data-taking efficiency and improved tracking capability. The experience and challenges in the operation of the IBL is described as well as its performance.

  14. Jet substructure in ATLAS

    CERN Document Server

    Miller, David W

    2011-01-01

    Measurements are presented of the jet invariant mass and substructure in proton-proton collisions at $\\sqrt{s} = 7$ TeV with the ATLAS detector using an integrated luminosity of 37 pb$^{-1}$. These results exercise the tools for distinguishing the signatures of new boosted massive particles in the hadronic final state. Two "fat" jet algorithms are used, along with the filtering jet grooming technique that was pioneered in ATLAS. New jet substructure observables are compared for the first time to data at the LHC. Finally, a sample of candidate boosted top quark events collected in the 2010 data is analyzed in detail for the jet substructure properties of hadronic "top-jets" in the final state. These measurements demonstrate not only our excellent understanding of QCD in a new energy regime but open the path to using complex jet substructure observables in the search for new physics.

  15. ATLAS latest results

    CERN Document Server

    Perez-Reale, V; The ATLAS collaboration

    2010-01-01

    With the LHC start-up and the first runs at 900 GeV, 2.36 TeV and 7 TeV centre-of-mass energy in the years 2009 and 2010, the ATLAS detector started to record its first collision events. The integrated luminosity has now reached one inverse pico barn. These data have been used to perform detailed studies on the performance of the detector, including measuring charged and neutral particle mass resonances and the study of QCD cross-sections. The data have already made it possible to commission and calibrate the various ATLAS subdetectors, and understand their performance in detail. The first observation of Standard Model electroweak processes, in particular mass resonances, is also being used as a benchmark for validating the analysis and simulation tools. The status and performance of the detector will be briefly reviewed, the latest physics results will be summarized and limits on new physics will be given.

  16. Highlights from ATLAS

    CERN Document Server

    Bellagamba, Lorenzo; The ATLAS collaboration

    2017-01-01

    This report presents an overview of some of the most recent results obtained by the ATLAS Collaboration using pp and heavy-ion collisions at LHC. The review is not intended to be comprehensive and includes recent updates on the Higgs boson properties, precision Standard Model measurements, as well as searches for new physics. Most of the results exploit the data collected in the last LHC run, providing pp collisions at a centre of mass energy of 13 TeV.

  17. The ATLAS Experiment Movie

    CERN Multimedia

    ATLAS Outreach Committee

    2000-01-01

    This award winning film gives a glimpse behind the scenes of building the ATLAS detector. This film asks: Why are so many physicists anxious to build this apparatus? Will they be able to answer fundamental questions such as: Where does mass come from? Why does the Universe have so little antimatter? Are there extra dimensions of space that are hidden from our view? Is there an underlying theory to find? Major surprises are likely in this unknown part of physics.

  18. L'esperimento ATLAS

    CERN Multimedia

    ATLAS Outreach Committee

    2000-01-01

    This award winning film gives a glimpse behind the scenes of building the ATLAS detector. This film asks: Why are so many physicists anxious to build this apparatus? Will they be able to answer fundamental questions such as: Where does mass come from? Why does the Universe have so little antimatter? Are there extra dimensions of space that are hidden from our view? Is there an underlying theory to find? Major surprises are likely in this unknown part of physics.

  19. El experimento ATLAS

    CERN Multimedia

    ATLAS Outreach Committee

    2000-01-01

    This award winning film gives a glimpse behind the scenes of building the ATLAS detector. This film asks: Why are so many physicists anxious to build this apparatus? Will they be able to answer fundamental questions such as: Where does mass come from? Why does the Universe have so little antimatter? Are there extra dimensions of space that are hidden from our view? Is there an underlying theory to find? Major surprises are likely in this unknown part of physics.

  20. Supersymmetry searches in ATLAS

    CERN Document Server

    Torro Pastor, Emma; The ATLAS collaboration

    2016-01-01

    Weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles. Weak and strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, taus or photons, as well as long-lived particle signatures.

  1. Higgs results from ATLAS

    Directory of Open Access Journals (Sweden)

    Chen Xin

    2016-01-01

    Full Text Available The updated Higgs measurements in various search channels with ATLAS Run 1 data are reviewed. Both the Standard Model (SM Higgs results, such as H → γγ, ZZ, WW, ττ, μμ, bb̄, and Beyond Standard Model (BSM results, such as the charged Higgs, Higgs invisible decay and tensor couplings, are summarized. Prospects for future Higgs searches are briefly discussed.

  2. Higgs results from ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00145153; The ATLAS collaboration

    2015-01-01

    The updated Higgs measurements in various search channels with ATLAS Run 1 data are reviewed. Both the Standard Model (SM) Higgs results, such as $H\\to\\gamma\\gamma,ZZ,WW,\\tau\\tau,\\mu\\mu,b\\bar{b}$, and Beyond Standard Model (BSM) results, such as the charged Higgs, Higgs invisible decay and tensor couplings, are summarized. Prospects for future Higgs searches are briefly discussed.

  3. ATLAS Job Transforms

    CERN Document Server

    Stewart, G A; The ATLAS collaboration; Maddocks, H J; Harenberg, T; Sandhoff, M; Sarrazin, B

    2013-01-01

    The need to run complex workflows for a high energy physics experiment such as ATLAS has always been present. However, as computing resources have become even more constrained, compared to the wealth of data generated by the LHC, the need to use resources efficiently and manage complex workflows within a single grid job have increased. In ATLAS, a new Job Transform framework has been developed that we describe in this paper. This framework manages the multiple execution steps needed to `transform' one data type into another (e.g., RAW data to ESD to AOD to final ntuple) and also provides a consistent interface for the ATLAS production system. The new framework uses a data driven workflow definition which is both easy to manage and powerful. After a transform is defined, jobs are expressed simply by specifying the input data and the desired output data. The transform infrastructure then executes only the necessary substeps to produce the final data products. The global execution cost of running the job is mini...

  4. ATLAS Job Transforms

    CERN Document Server

    Stewart, G A; The ATLAS collaboration; Maddocks, H J; Harenberg, T; Sandhoff, M; Sarrazin, B

    2013-01-01

    The need to run complex workflows for a high energy physics experiment such as ATLAS has always been present. However, as computing resources have become even more constrained, compared to the wealth of data generated by the LHC, the need to use resources efficiently and manage complex workflows within a single grid job have increased. In ATLAS, a new Job Transform framework has been developed that we describe in this paper. This framework manages the multiple execution steps needed to 'transform' one data type into another (e.g., RAW data to ESD to AOD to final ntuple) and also provides a consistent interface for the ATLAS production system. The new framework uses a data driven workflow definition which is both easy to manage and powerful. After a transform is defined, jobs are expressed simply by specifying the input data and the desired output data. The transform infrastructure then executes only the necessary substeps to produce the final data products. The global execution cost of running the job is mini...

  5. ATLAS overview week highlights

    CERN Document Server

    D. Froidevaux

    2005-01-01

    A warm and early October afternoon saw the beginning of the 2005 ATLAS overview week, which took place Rue de La Montagne Sainte-Geneviève in the heart of the Quartier Latin in Paris. All visitors had been warned many times by the ATLAS management and the organisers that the premises would be the subject of strict security clearance because of the "plan Vigipirate", which remains at some level of alert in all public buildings across France. The public building in question is now part of the Ministère de La Recherche, but used to host one of the so-called French "Grandes Ecoles", called l'Ecole Polytechnique (in France there is only one Ecole Polytechnique, whereas there are two in Switzerland) until the end of the seventies, a little while after it opened its doors also to women. In fact, the setting chosen for this ATLAS overview week by our hosts from LPNHE Paris has turned out to be ideal and the security was never an ordeal. For those seeing Paris for the first time, there we...

  6. Nova Scotia wind atlas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    In order to stimulate growth of the wind energy sector in the province of Nova Scotia and to optimize the development of an important renewable energy source in the province, the Nova Scotia Department of Energy has launched the Nova Scotia wind atlas project. The atlas provides valuable information regarding the identification of the optimal locations to install wind farm turbines, both at the large utility scale level and at the private or small business levels. This article presented information on the wind atlas website and on wind resource maps. Background information on the project was presented. The wind resource maps were developed in partnership by the K.C, Irving Chair in Sustainable Development at Moncton University and the Applied Geomatics Research Group at the Nova Scotia Community College. The wind resource maps are available for viewing on the website where users can click on tile section to obtain enlarged versions of wind resource maps for different parts of the province of Nova Scotia. The maps were developed using computer modelling. 7 figs.

  7. ATLAS Detector Upgrade Prospects

    CERN Document Server

    Dobre, Monica; The ATLAS collaboration

    2016-01-01

    After the successful operation at the center-of-mass energies of 7 and 8 TeV in 2010 - 2012, the LHC is ramped up and successfully took data at the center-of-mass energies of 13 TeV in 2015. Meanwhile, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, delivering of the order of five times the LHC nominal instantaneous luminosity along with luminosity leveling. The ultimate goal is to extend the dataset from about few hundred fb−1 expected for LHC running to 3000 fb−1 by around 2035 for ATLAS and CMS. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for a new all-silicon tracker, significant upgrades of the calorimeter and muon systems, as well as improved triggers and data acquisition. ATLAS is also examining potential benefits of extens...

  8. ATLAS Upgrade Plans

    CERN Document Server

    Hopkins, W; The ATLAS collaboration

    2014-01-01

    After the successful LHC operation at the center-of-mass energies of 7 and 8 TeV in 2010-2012, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, delivering of the order of five times the LHC nominal instantaneous luminosity along with luminosity leveling. The final goal is to extend the dataset from about few hundred fb−1 expected for LHC running to 3000/fb by around 2035 for ATLAS and CMS. In parallel, the experiments need to be keep lockstep with the accelerator to accommodate running beyond the nominal luminosity this decade. Current planning in ATLAS envisions significant upgrades to the detector during the consolidation of the LHC to reach full LHC energy and further upgrades. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for a new...

  9. Clean tracks for ATLAS

    CERN Multimedia

    2006-01-01

    First cosmic ray tracks in the integrated ATLAS barrel SCT and TRT tracking detectors. A snap-shot of a cosmic ray event seen in the different layers of both the SCT and TRT detectors. The ATLAS Inner Detector Integration Team celebrated a major success recently, when clean tracks of cosmic rays were detected in the completed semiconductor tracker (SCT) and transition radiation tracker (TRT) barrels. These tracking tests come just months after the successful insertion of the SCT into the TRT (See Bulletin 09/2006). The cosmic ray test is important for the experiment because, after 15 years of hard work, it is the last test performed on the fully assembled barrel before lowering it into the ATLAS cavern. The two trackers work together to provide millions of channels so that particles' tracks can be identified and measured with great accuracy. According to the team, the preliminary results were very encouraging. After first checks of noise levels in the final detectors, a critical goal was to study their re...

  10. Evolution of the ATLAS Distributed Computing during the LHC long shutdown

    CERN Document Server

    Campana, S; The ATLAS collaboration

    2013-01-01

    The ATLAS Distributed Computing project (ADC) was established in 2007 to develop and operate a framework, following the ATLAS computing model, to enable data storage, processing and bookkeeping on top of the WLCG distributed infrastructure. ADC development has always been driven by operations and this contributed to its success. The system has fulfilled the demanding requirements of ATLAS, daily consolidating worldwide up to 1PB of data and running more than 1.5 million payloads distributed globally, supporting almost one thousand concurrent distributed analysis users. Comprehensive automation and monitoring minimized the operational manpower required. The flexibility of the system to adjust to operational needs has been important to the success of the ATLAS physics program. The LHC shutdown in 2013-2015 affords an opportunity to improve the system in light of operational experience and scale it to cope with the demanding requirements of 2015 and beyond, most notably a much higher trigger rate and event pileu...

  11. Evolution of the ATLAS Distributed Computing system during the LHC Long shutdown

    CERN Document Server

    Campana, S; The ATLAS collaboration

    2014-01-01

    The ATLAS Distributed Computing project (ADC) was established in 2007 to develop and operate a framework, following the ATLAS computing model, to enable data storage, processing and bookkeeping on top of the WLCG distributed infrastructure. ADC development has always been driven by operations and this contributed to its success. The system has fulfilled the demanding requirements of ATLAS, daily consolidating worldwide up to 1PB of data and running more than 1.5 million payloads distributed globally, supporting almost one thousand concurrent distributed analysis users. Comprehensive automation and monitoring minimized the operational manpower required. The flexibility of the system to adjust to operational needs has been important to the success of the ATLAS physics program. The LHC shutdown in 2013-2015 affords an opportunity to improve the system in light of operational experience and scale it to cope with the demanding requirements of 2015 and beyond, most notably a much higher trigger rate and event pileu...

  12. An XML generic detector description system and geometry editor for the ATLAS detector at the LHC

    CERN Document Server

    Chevalier, L; Meyer, J

    2012-01-01

    In this paper we describe a system which was developed to describe the ATLAS muon spectrometer, which is based on a generic XML detector description system (ATLAS Generic Detector Description, AGDD), on the PERSINT visualization program and on a series of parsers, respectively converters which build a generic, transient geometry model and translate it into commonly used geometry descriptions like Geant4, the ATLAS GeoModel, ROOT TGeo or others. The presented system permits an easy, self descriptive approach to the detector description problem, intuitive visualization and rapid turn-around, since the results of the description process can be immediately fed into e.g. a Geant4 simulation for rapid prototyping. Examples of the current usage for the ATLAS detector description will be given and further developments needed to meet future requirements will be discussed.

  13. A Time for Atlases and Atlases for Time

    Science.gov (United States)

    Livneh, Yoav; Mizrahi, Adi

    2009-01-01

    Advances in neuroanatomy and computational power are leading to the construction of new digital brain atlases. Atlases are rising as indispensable tools for comparing anatomical data as well as being stimulators of new hypotheses and experimental designs. Brain atlases describe nervous systems which are inherently plastic and variable. Thus, the levels of brain plasticity and stereotypy would be important to evaluate as limiting factors in the context of static brain atlases. In this review, we discuss the extent of structural changes which neurons undergo over time, and how these changes would impact the static nature of atlases. We describe the anatomical stereotypy between neurons of the same type, highlighting the differences between invertebrates and vertebrates. We review some recent experimental advances in our understanding of anatomical dynamics in adult neural circuits, and how these are modulated by the organism's experience. In this respect, we discuss some analogies between brain atlases and the sequenced genome and the emerging epigenome. We argue that variability and plasticity of neurons are substantially high, and should thus be considered as integral features of high-resolution digital brain atlases. PMID:20204142

  14. A time for atlases and atlases for time

    Directory of Open Access Journals (Sweden)

    Yoav Livneh

    2010-02-01

    Full Text Available Advances in neuroanatomy and computational power are leading to the construction of new digital brain atlases. Atlases are rising as indispensable tools for comparing anatomical data as well as being stimulators of new hypotheses and experimental designs. Brain atlases describe nervous systems which are inherently plastic and variable. Thus, the levels of brain plasticity and stereotypy would be important to evaluate as limiting factors in the context of static brain atlases. In this review, we discuss the extent of structural changes which neurons undergo over time, and how these changes would impact the static nature of atlases. We describe the anatomical stereotypy between neurons of the same type, highlighting the differences between invertebrates and vertebrates. We review some recent experimental advances in our understanding of anatomical dynamics in adult neural circuits, and how these are modulated by the organism’s experience. In this respect, we discuss some analogies between brain atlases and the sequenced genome and the emerging epigenome. We argue that variability and plasticity of neurons are substantially high, and should thus be considered as integral features of high-resolution digital brain atlases.

  15. JAtlasView: a Java atlas-viewer for browsing biomedical 3D images and atlases

    Directory of Open Access Journals (Sweden)

    Scott Mark

    2005-03-01

    Full Text Available Abstract Background Many three-dimensional (3D images are routinely collected in biomedical research and a number of digital atlases with associated anatomical and other information have been published. A number of tools are available for viewing this data ranging from commercial visualization packages to freely available, typically system architecture dependent, solutions. Here we discuss an atlas viewer implemented to run on any workstation using the architecture neutral Java programming language. Results We report the development of a freely available Java based viewer for 3D image data, descibe the structure and functionality of the viewer and how automated tools can be developed to manage the Java Native Interface code. The viewer allows arbitrary re-sectioning of the data and interactive browsing through the volume. With appropriately formatted data, for example as provided for the Electronic Atlas of the Developing Human Brain, a 3D surface view and anatomical browsing is available. The interface is developed in Java with Java3D providing the 3D rendering. For efficiency the image data is manipulated using the Woolz image-processing library provided as a dynamically linked module for each machine architecture. Conclusion We conclude that Java provides an appropriate environment for efficient development of these tools and techniques exist to allow computationally efficient image-processing libraries to be integrated relatively easily.

  16. JAtlasView: a Java atlas-viewer for browsing biomedical 3D images and atlases.

    Science.gov (United States)

    Feng, Guangjie; Burton, Nick; Hill, Bill; Davidson, Duncan; Kerwin, Janet; Scott, Mark; Lindsay, Susan; Baldock, Richard

    2005-03-09

    Many three-dimensional (3D) images are routinely collected in biomedical research and a number of digital atlases with associated anatomical and other information have been published. A number of tools are available for viewing this data ranging from commercial visualization packages to freely available, typically system architecture dependent, solutions. Here we discuss an atlas viewer implemented to run on any workstation using the architecture neutral Java programming language. We report the development of a freely available Java based viewer for 3D image data, descibe the structure and functionality of the viewer and how automated tools can be developed to manage the Java Native Interface code. The viewer allows arbitrary re-sectioning of the data and interactive browsing through the volume. With appropriately formatted data, for example as provided for the Electronic Atlas of the Developing Human Brain, a 3D surface view and anatomical browsing is available. The interface is developed in Java with Java3D providing the 3D rendering. For efficiency the image data is manipulated using the Woolz image-processing library provided as a dynamically linked module for each machine architecture. We conclude that Java provides an appropriate environment for efficient development of these tools and techniques exist to allow computationally efficient image-processing libraries to be integrated relatively easily.

  17. Jet energy calibration in ATLAS

    CERN Document Server

    Schouten, Doug

    A correct energy calibration for jets is essential to the success of the ATLAS experi- ment. In this thesis I study a method for deriving an in situ jet energy calibration for the ATLAS detector. In particular, I show the applicability of the missing transverse energy projection fraction method. This method is shown to set the correct mean energy for jets. Pileup effects due to the high luminosities at ATLAS are also stud- ied. I study the correlations in lateral distributions of pileup energy, as well as the luminosity dependence of the in situ calibration metho

  18. The new European wind atlas

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Troen, Ib; Ejsing Jørgensen, Hans

    2014-01-01

    European Wind Atlas” aiming at reducing overall uncertainties in determining wind conditions; standing on three legs: A data bank from a series of intensive measuring campaigns; a thorough examination and redesign of the model chain from global, mesoscale to microscale models and creation of the wind atlas...... database. Although the project participants will come from the 27 member states it is envisioned that the project will be opened for global participation through test benches for model development and sharing of data – climatologically as well as experimental. Experiences from national wind atlases...... will be utilized, such as the Indian, the South African, the Finnish, the German, the Canadian atlases and others....

  19. Automated Loads Analysis System (ATLAS)

    Science.gov (United States)

    Gardner, Stephen; Frere, Scot; O’Reilly, Patrick

    2013-01-01

    ATLAS is a generalized solution that can be used for launch vehicles. ATLAS is used to produce modal transient analysis and quasi-static analysis results (i.e., accelerations, displacements, and forces) for the payload math models on a specific Shuttle Transport System (STS) flight using the shuttle math model and associated forcing functions. This innovation solves the problem of coupling of payload math models into a shuttle math model. It performs a transient loads analysis simulating liftoff, landing, and all flight events between liftoff and landing. ATLAS utilizes efficient and numerically stable algorithms available in MSC/NASTRAN.

  20. Data federation strategies for ATLAS using XRootD

    Science.gov (United States)

    Gardner, Robert; Campana, Simone; Duckeck, Guenter; Elmsheuser, Johannes; Hanushevsky, Andrew; Hönig, Friedrich G.; Iven, Jan; Legger, Federica; Vukotic, Ilija; Yang, Wei; Atlas Collaboration

    2014-06-01

    In the past year the ATLAS Collaboration accelerated its program to federate data storage resources using an architecture based on XRootD with its attendant redirection and storage integration services. The main goal of the federation is an improvement in the data access experience for the end user while allowing more efficient and intelligent use of computing resources. Along with these advances come integration with existing ATLAS production services (PanDA and its pilot services) and data management services (DQ2, and in the next generation, Rucio). Functional testing of the federation has been integrated into the standard ATLAS and WLCG monitoring frameworks and a dedicated set of tools provides high granularity information on its current and historical usage. We use a federation topology designed to search from the site's local storage outward to its region and to globally distributed storage resources. We describe programmatic testing of various federation access modes including direct access over the wide area network and staging of remote data files to local disk. To support job-brokering decisions, a time-dependent cost-of-data-access matrix is made taking into account network performance and key site performance factors. The system's response to production-scale physics analysis workloads, either from individual end-users or ATLAS analysis services, is discussed.

  1. The Numerical Wind Atlas - the KAMM/WAsP Method

    Energy Technology Data Exchange (ETDEWEB)

    Frank, H.P.; Rathmann, O.; Mortensen, N.G.; Landberg, L.

    2001-06-01

    The method of combining the Karlsruhe Atmospheric Mesoscale Model, KAMM, with the Wind Atlas Analysis and Application Program, WAsP, to make local predictions of the wind resource is presented. It combines the advantages of meso-scale modeling - overview over a big region and use of global data bases - with the local prediction capacity of the small-scale model WAsP. Results are presented for Denmark, Ireland, Northern Portugal and Galicia, and the Faroe Islands. Wind atlas files were calculated from wind data simulated with the meso-scale model using model grids with a resolution of 2.5, 5, and 10 km. Using these wind atlas files in WAsP the local prediction of the mean wind does not depend on the grid resolution of the meso-scale model. The local predictions combining KAMM and WAsP are much better than simple interpolation of the wind simulated by KAMM. In addition an investigation was made on the dependence of wind atlas data on the size of WAsP-maps. It is recommended that a topographic map around a site should extend 10 km out from it. If there is a major roughness change like a coast line further away in a frequent wind direction this should be included at even greater distances, perhaps up to 20 km away.

  2. The ATLAS Trigger system upgrade and performance in Run 2

    CERN Document Server

    Shaw, Savanna Marie; The ATLAS collaboration

    2017-01-01

    The ATLAS trigger has been used very successfully for the online event selection during the first part of the LHC Run-2 in 2015/16 at a centre-of-mass energy of 13 TeV. The trigger system is composed of a hardware Level-1 trigger and a software-based high-level trigger; it reduces the event rate from the bunch-crossing rate of 40 MHz to an average recording rate of about 1 kHz. The excellent performance of the ATLAS trigger has been vital for the ATLAS physics program of Run-2, selecting interesting collision events for wide variety of physics signatures with high efficiency. The trigger selection capabilities of ATLAS during Run-2 have been significantly improved compared to Run-1, in order to cope with the higher event rates and pile-up which are the result of the almost doubling of the center-of-mass collision energy and the increase in the instantaneous luminosity of the LHC. In order to prepare for the anticipated further luminosity increase of the LHC in 2017/18, improving the trigger performance remain...

  3. The ATLAS Trigger Algorithms Upgrade and Performance in Run-2

    CERN Document Server

    Bernius, Catrin; The ATLAS collaboration

    2017-01-01

    The ATLAS trigger has been used very successfully for the online event selection during the first part of the second LHC run (Run-2) in 2015/16 at a center-of-mass energy of 13 TeV. The trigger system is composed of a hardware Level-1 trigger and a software-based high-level trigger; it reduces the event rate from the bunch-crossing rate of 40 MHz to an average recording rate of about 1 kHz. The excellent performance of the ATLAS trigger has been vital for the ATLAS physics program of Run-2, selecting interesting collision events for wide variety of physics signatures with high efficiency. The trigger selection capabilities of ATLAS during Run-2 have been significantly improved compared to Run-1, in order to cope with the higher event rates and pile-up which are the result of the almost doubling of the center-of-mass collision energy and the increase in the instantaneous luminosity of the LHC. At the Level-1 trigger the undertaken improvements resulted in more pile-up robust selection efficiencies and event ra...

  4. The ATLAS Trigger system upgrade and performance in Run 2

    CERN Document Server

    Shaw, Savanna Marie; The ATLAS collaboration

    2018-01-01

    The ATLAS trigger has been used very successfully for the online event selection during the first part of the second LHC run (Run-2) in 2015/16 at a centre-of-mass energy of 13 TeV. The trigger system is composed of a hardware Level-1 trigger and a software-based high-level trigger; it reduces the event rate from the bunch-crossing rate of 40 MHz to an average recording rate of about 1 kHz. The excellent performance of the ATLAS trigger has been vital for the ATLAS physics program of Run-2, selecting interesting collision events for wide variety of physics signatures with high efficiency. The trigger selection capabilities of ATLAS during Run-2 have been significantly improved compared to Run-1, in order to cope with the higher event rates and pile-up which are the result of the almost doubling of the center-of-mass collision energy and the increase in the instantaneous luminosity of the LHC. At the Level-1 trigger the undertaken improvements resulted in more pile-up robust selection efficiencies and event ra...

  5. EnviroAtlas - Cleveland, OH - Block Groups

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset is the base layer for the Cleveland, OH EnviroAtlas community. The block groups are from the US Census Bureau and are included/excluded...

  6. EnviroAtlas - Metrics for Pittsburgh, PA

    Data.gov (United States)

    U.S. Environmental Protection Agency — These EnviroAtlas web services support research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The layers in these web...

  7. EnviroAtlas - Woodbine, IA - Block Groups

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset is the base layer for the Woodbine, IA EnviroAtlas area. The block groups are from the US Census Bureau and are included/excluded based on...

  8. EnviroAtlas - Durham, NC - Block Groups

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset is the base layer for the Durham, NC EnviroAtlas Area. The block groups are from the US Census Bureau and are included/excluded based on...

  9. EnviroAtlas - Austin, TX - Block Groups

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset is the base layer for the Austin, TX EnviroAtlas area. The block groups are from the US Census Bureau and are included/excluded based on...

  10. Argonne Tandem Linac Accelerator System (ATLAS)

    Data.gov (United States)

    Federal Laboratory Consortium — ATLAS is a national user facility at Argonne National Laboratory in Argonne, Illinois. The ATLAS facility is a leading facility for nuclear structure research in the...

  11. Women of ATLAS - International Women's Day 2016

    CERN Multimedia

    Biondi, Silvia

    2016-01-01

    Women play key roles in the ATLAS Experiment: from young physicists at the start of their careers to analysis group leaders and spokespersons of the collaboration. Celebrate International Women's Day by meeting a few of these inspiring ATLAS researchers.

  12. EnviroAtlas - Metrics for Portland, OR

    Data.gov (United States)

    U.S. Environmental Protection Agency — These EnviroAtlas web services support research and online mapping activities related to EnviroAtlas (http://www.epa.gov/enviroatlas). The layers in these web...

  13. EnviroAtlas - Metrics for Phoenix, AZ

    Data.gov (United States)

    U.S. Environmental Protection Agency — These EnviroAtlas web services support research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The layers in these web...

  14. EnviroAtlas - Metrics for Milwaukee, WI

    Data.gov (United States)

    U.S. Environmental Protection Agency — These EnviroAtlas web services support research and online mapping activities related to EnviroAtlas (http://www.epa.gov/enviroatlas). The layers in these web...

  15. EnviroAtlas - Metrics for Memphis, TN

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The layers in this web service...

  16. EnviroAtlas - Metrics for Tampa, FL

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The layers in this web service...

  17. EnviroAtlas - Metrics for Woodbine, IA

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The layers in this web service...

  18. EnviroAtlas - Metrics for Durham, NC

    Data.gov (United States)

    U.S. Environmental Protection Agency — These EnviroAtlas web services support research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas ). The layers in these web...

  19. EnviroAtlas - Metrics for Paterson, NJ

    Data.gov (United States)

    U.S. Environmental Protection Agency — These EnviroAtlas web services support research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The layers in these web...

  20. EnviroAtlas - Metrics for Fresno, CA

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The layers in this web service...

  1. EnviroAtlas - Metrics for Portland, ME

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The layers in this web service...

  2. ATLAS : civil engineering at Point 1

    CERN Multimedia

    2002-01-01

    The ATLAS experimental area is located in Point 1, just across the main CERN entrance, in the commune of Meyrin. There people are ever so busy to finish the different infrastructures for ATLAS. Real underground video.

  3. The Simulation of the ATLAS Experiment: Present Status and Outlook

    OpenAIRE

    Rimoldi, A.; Dell’Acqua, A.; Gallas, M; Nairz, A; Boudreau, J.; Tsulaia, V.; Costanzo, D.

    2004-01-01

    The simulation program for the ATLAS experiment is presently operational in a full OO environment. This important physics application has been successfully integrated into ATLAS’s common analysis framework, ATHENA. In the last year, following a well stated strategy of transition from a GEANT3 to a GEANT4-based simulation, a careful validation programme confirmed the reliability, performance and robustness of this new tool, as well as its consistency with the results of previous simulation. Ge...

  4. Prospects of diffractive physics with the ATLAS forward detectors

    CERN Document Server

    Lopez Paz, Ivan; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) detector provides measurements of the momentum and emission angle of very forward protons. This enables the observation and measurement of a range of processes where one or both protons remain intact. Such processes are associated with elastic and diffractive scattering. In this talk, we give on overview of the technical details of the AFP, its current status as well as its associated physics program.

  5. Recent heavy ion results from the ATLAS experiment

    CERN Document Server

    Przybycien, Mariusz; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at the LHC has undertaken a broad physics program to probe and characterize the hot nuclear matter created in relativistic lead-lead collisions. This overview presents recent results on production of electroweak bosons, charmonia, charged-particles, jets, and bulk particle collectivity from Pb+Pb and p+Pb collisions, as well as on electromagnetic processes in ultra-peripheral Pb+Pb collisions.

  6. Searches for Exotic New Physics with ATLAS and CMS

    CERN Document Server

    Hance, Michael; The ATLAS collaboration

    2018-01-01

    Many theories beyond the Standard Model predict new phenomena accessible by the LHC. The ATLAS, CMS, and LHCb experiments all have rigorous search programs ongoing with the aim to find indications for new physics involving state of the art analysis techniques. This talk reports on new results obtained using the pp collision data sample collected in 2015 and 2016 at the LHC with a centre-of-mass energy of 13 TeV.

  7. ATLAS Virtual Visit-Barcelona-03-04-2014

    CERN Multimedia

    he Institut de Fisica d`Altes Energies (IFAE) is a leading high energy physics research institute located in the Autonomous University of Barcelona (UAB), Spain. Among the numerous activities of the institute, IFAE is deeply involved in the research program of the LHC and plays a key role as a member of the ATLAS collaboration. IFAE scientists have regularly been promoting public awareness of science and making informal contributions to science education.

  8. CERN Open Days 2013, Point 1 - ATLAS: ATLAS Experiment

    CERN Multimedia

    CERN Photolab

    2013-01-01

    Stand description: The ATLAS Experiment at CERN is one of the largest and most complex scientific endeavours ever assembled. The detector, located at collision point 1 of the LHC, is designed to explore the fundamental components of nature and to study the forces that shape our universe. The past year’s discovery of a Higgs boson is one of the most important scientific achievements of our time, yet this is only one of many key goals of ATLAS. During a brief break in their journey, some of the 3000-member ATLAS collaboration will be taking time to share the excitement of this exploration with you. On surface no restricted access  The exhibit at Point 1 will give visitors a chance to meet these modern-day explorers and to learn from them how answers to the most fundamental questions of mankind are being sought. Activities will include a visit to the ATLAS detector, located 80m below ground; watching the prize-winning ATLAS movie in the ATLAS cinema; seeing real particle tracks in a cloud chamber and discussi...

  9. Diffractive measurements in ATLAS

    CERN Document Server

    Grafstrom, P; The ATLAS collaboration

    2011-01-01

    Several diffractive measurements in ATLAS are discussed. Using a diffractive enhanced event sample, the diffractive fraction of the inelastic cross section is determined to be in the range 25-30 % dependent on what model is used. Rapidity gap studies give similar percentages. The differential cross section as a function of the rapidity gap size has been determined at the hadron level. The diffractive cross section is roughly 1 mb per unit of gap size for gap sizes bigger than 3.5 units.

  10. SUSY Searches at ATLAS

    CERN Document Server

    Mamuzic, Judita; The ATLAS collaboration

    2017-01-01

    Supersymmetry (SUSY) is considered one of the best motivated extensions of the Standard Model. It postulates a fundamental symmetry between fermions and bosons, and introduces a set of new supersymmetric particles at the electroweak scale. It addresses the hierarchy and naturalness problem, gives a solution to the gauge coupling unification, and offers a cold dark matter candidate. Different aspects of SUSY searches, using strong, electroweak, third generation production, and R-parity violation and long lived particles are being studied at the LHC. An overview of most recent SUSY searches results using the 13 TeV ATLAS RUN2 data will be presented.

  11. Top Properties at ATLAS

    CERN Document Server

    Sandbach, Ruth Laura; The ATLAS collaboration

    2014-01-01

    Properties of the top quark are measured with the ATLAS detector using LHC proton-proton collisions data. Measurements of the top-quark mass and polarisation, as well as of the polarization of W bosons in top quark decays to probe the Wtb-vertex are presented. In addition, measurements of the spin correlation between top and anti-top quarks as well as of the top-quark charge asymmetry, which constitute important tests of QCD and are sensitive to new physics, are discussed.

  12. ATLAS TV PROJECT

    CERN Multimedia

    2005-01-01

    CPPM Laboratory Marseille Starting with the Workshop- adding modules to the strip 00:09:19 Exterior-entering the lab site by car, Sascha Rosanov and a PR lady walking, Lab sign on building -Physique des Particules de Marseille 00:20:00 Interviews of the ATLAS pixel work for bio-mediacal research 00:34:00 Interview of Roy Aleksov, Head of CPPM Laboratory, Working in international team, working with CERN and GRID The rest of the film inclusdes lab testingand some exterior shots.

  13. ATLAS TV PROJECT

    CERN Multimedia

    2005-01-01

    Budker Nuclear Physics Institute, Novosibirsk Sequence 1 Reception for Markus Nordberg and Andrew Millington by about 20 physicists from the Budker Nuclear Physics Institute Host: Yuri Tikhonov Various short talks and exchanges, with coffee Sequence 2 Visit to BINP Facilities Tikhonov and Nordberg walking and talking Visit to electron accelerator, old solar detector Sequence 3 Visit to BNIP workshops Work on big wheel segments shots over-exposed Work on Atlas coils LHC Magnets Men playing chess, exterior shots of Tikhonov, Nordberg arriving Sequence 4 Shots from car of journey from workshop to main BNIP building.

  14. Surveying the ATLAS cavern

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    The cathedral-like cavern into which the ATLAS experiment will be lowered and installed forms a vital part of the engineering work at CERN in preparation for the new LHC accelerator. This cavern, being measured by surveyors in these images, will have one of the largest spans of any man-made underground structure. The massive 46X25X25 cubic metre detector will be the largest of its type in the world when it is completed for the LHC start-up in 2008.

  15. The ATLAS IBL BOC

    CERN Document Server

    SCHROER, N; The ATLAS collaboration; BRUNI, G; BRUSCHI, M; DANTONE, I; FALCHIERI, D; DOPKE, J; FLICK, T; GABRIELLI, A; GROSSE-KNETTER, J; Heim, T; JOSEPH, J; KRIEGER, N; KUGEL, A; MORETTINI, P; Neumann, M; RIZZI, M; TRAVAGLINI, R; ZANNOLI, S; ZOCCOLI, A

    2011-01-01

    The pixel detector of the ATLAS experiment at CERN will be upgraded with an additional layer (IBL) in 2013. To handle the data readout the currently used VME card pairs consisting of a back of crate card (BOC) and a read out driver (ROD) are being redesigned. We present details of the hardware design of the new BOC prototype. It takes advantage from modern FPGA technology and commercial optical modules and abandons the need for a variety of custom components used on the old card. Also the throughput is four times higher and additional features are implemented.

  16. The ATLAS Upgrade programme

    CERN Document Server

    Gemme, C; The ATLAS collaboration

    2012-01-01

    After the ¯rst successful years of LHC running, plans are actively advancing for a series of upgrades leading eventually to about ¯ve times the design-luminosity some 10-years from now. Coping with the high instantaneous and integrated luminosity will be a great challenge for the ATLAS detector and will require changes in most of the subsystems, specially those at low radii and large pseudorapidity, as well as in its trigger architecture. Plans to consolidate and improve the physics capabilities of the current detector over the next decade are summarized in this paper.

  17. Higgs searches with ATLAS

    CERN Document Server

    Aurousseau, M; The ATLAS collaboration

    2013-01-01

    This document is an overview of the recent results from the ATLAS experiment in the search for a Standard Model Higgs boson, using an integrated luminosity of 4.8~\\ifb{} and 13~\\ifb{} of data at 7~\\TeV{} and 8~\\TeV{} in the center-of-mass, respectively. The results are presented in the \\HZZllll, \\Hgg, \\HWWlnln, \\Htautau{} and \\Hbb{} channels. An update on the combination of the various channels and on the properties measurement (spin, parity) of the observed state is given.

  18. ATLAS Style Guide

    CERN Document Server

    Eisenhandler, E F

    2008-01-01

    This is a compendium of rules, recommendations, information and advice for writing papers and notes within the ATLAS Experiment at the CERN Large Hadron Collider. It covers what to include in the paper, and some general guidelines and specific points about writing a scientific paper. There are sections on the use of English (though it is not a guide to grammar), punctuation, and typography. Advice about the use of LATEX is given in the main text, and there is an appendix on software tools containing general comments about LATEX and information on using Microsoft Word. Currently on version 2.6, 3 March 2017, 47pp.

  19. Overview of ATLAS results

    CERN Document Server

    Grabowska-Bold, Iwona; The ATLAS collaboration

    2016-01-01

    The heavy-ion programme in the ATLAS experiment at the Large Hadron Collider aims to probe and characterise hot and dense matter created in relativistic lead-lead collisions. Moreover, smaller collision systems involving nuclei and hadrons are of interest to disentangle initial- from final-state effects. This report presents new results based on lead-lead and proton-proton data collected at √sNN = 5.02 TeV in 2015, including measurements of bulk collectivity, charged-particle production, electroweak bosons, photon-jet correlations, and quarkonium suppression. First attempts to measure electromagnetic processes in ultra-peripheral collisions are also discussed.

  20. ATLAS Exotic Searches

    Directory of Open Access Journals (Sweden)

    Bousson Nicolas

    2012-06-01

    Full Text Available Thanks to the outstanding performance of the Large Hadron Collider (LHC that delivered more than 2 fb−1 of proton-proton collision data at center-of-mass energy of 7 TeV, the ATLAS experiment has been able to explore a wide range of exotic models trying to address the questions unanswered by the Standard Model of particle physics. Searches for leptoquarks, new heavy quarks, vector-like quarks, black holes, hidden valley and contact interactions are reviewed in these proceedings.

  1. Trigger Monitoring at ATLAS

    CERN Document Server

    Sidoti, A; The ATLAS collaboration

    2009-01-01

    Monitoring the trigger behavior through all the trigger level is of fundamental importance to assess the quality of the data taken, to give fast feedback for the trigger configuration design and to monitor the stability of the HLT farm components. In this paper we will present the online monitoring framework and the various tools available in the ATLAS trigger system going from the ones that build the basic monitoring infrastructure and test the basic functionalities of the system to the more elaborated ones that checks the quality of the data taking looking at physics variables reconstructed online. The early experience in the 2009 cosmics data taking period will also be shown.

  2. Two new wheels for ATLAS

    CERN Multimedia

    2002-01-01

    Juergen Zimmer (Max Planck Institute), Roy Langstaff (TRIUMF/Victoria) and Sergej Kakurin (JINR), in front of one of the completed wheels of the ATLAS Hadronic End Cap Calorimeter. A decade of careful preparation and construction by groups in three continents is nearing completion with the assembly of two of the four 4 m diameter wheels required for the ATLAS Hadronic End Cap Calorimeter. The first two wheels have successfully passed all their mechanical and electrical tests, and have been rotated on schedule into the vertical position required in the experiment. 'This is an important milestone in the completion of the ATLAS End Cap Calorimetry' explains Chris Oram, who heads the Hadronic End Cap Calorimeter group. Like most experiments at particle colliders, ATLAS consists of several layers of detectors in the form of a 'barrel' and two 'end caps'. The Hadronic Calorimeter layer, which measures the energies of particles such as protons and pions, uses two techniques. The barrel part (Tile Calorimeter) cons...

  3. ATLAS DDM integration in ARC

    DEFF Research Database (Denmark)

    Behrmann, Gerd; Cameron, David; Ellert, Mattias

    The Nordic Data Grid Facility (NDGF) consists of Grid resources running ARC middleware in Scandinavia and other countries. These resources serve many virtual organisations and contribute a large fraction of total worldwide resources for the ATLAS experiment, whose data is distributed and managed...... by the DQ2 software. Managing ATLAS data within NDGF and between NDGF and other Grids used by ATLAS (the LHC Computing Grid and the Open Science Grid) presents a unique challenge for several reasons. Firstly, the entry point for data, the Tier 1 centre, is physically distributed among heterogeneous...... environment. Also, the service used for cataloging the location of data files is different from other Grids but must still be useable by DQ2 and ATLAS users to locate data within NDGF. This paper presents in detail how we solve these issues to allow seamless access worldwide to data within NDGF....

  4. World Ocean Atlas 2005, Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World Ocean Atlas 2005 (WOA05) is a set of objectively analyzed (1° grid) climatological fields of in situ temperature, salinity, dissolved oxygen, Apparent Oxygen...

  5. The atlas of endangered species

    National Research Council Canada - National Science Library

    Mackay, R

    2009-01-01

    Vividly illustrated with full-color maps and detailed graphics, The Atlas of Endangered Species catalogs the inhabitants of a wide variety of ecosystems, including forests, mangroves, and coral reefs...

  6. ATLAS recognises its best suppliers

    CERN Multimedia

    Jenni, P

    The ATLAS Collaboration has recently rewarded two of its suppliers in the construction of very major detector components, fabricated in Japan. The ATLAS Supplier Award in recognition of excellent supplier performance was attributed on 2nd September 2002 during a ceremony in Hall 180 to Kawasaki Heavy Industries, while Toshiba Corporation received the award two months before at their headquarters in Japan. The ATLAS experiment will become a reality thanks to a large international collaboration partnership. The industrial suppliers for the components all over the world play a major role in the construction of this gigantic jigsaw for the LHC. And sometimes they perform so well, that their work deserves specially to be recognised. This is the case for Kawasaki Heavy Industries and Toshiba Corporation, producers of the Liquid Argon Barrel Cryostat and of the Superconducting Central Solenoid, respectively. With these awards, the ATLAS Collaboration wants to congratulate Kawasaki and Toshiba for fulfilling the hi...

  7. Linguistic Atlas of French Polynesia

    National Research Council Canada - National Science Library

    Charpentier, Jean-Michel; François, Alexandre

    2015-01-01

    ... François, the Linguistic Atlas of French Polynesia pays tribute to the rich linguistic landscape of the country by documenting thoroughly twenty different communalects, in the form of 2250 maps...

  8. ATLAS online data quality monitoring

    CERN Document Server

    Cuenca Almenar, C; The ATLAS collaboration; Hadavand, H; Ilchenko, Y; Kolos, S; Slagle, K; Taffard, A

    2010-01-01

    Every minute the ATLAS detector is taking data, the monitoring framework serves several thousands physics events to monitoring data analysis applications, handles millions of histogram updates coming from thousands applications, executes over forty thousand advanced data quality checks for a subset of those histograms, displays histograms and results of these checks on several dozens of monitors installed in main and satellite ATLAS control rooms. The online data quality monitoring system has been of great help in providing quick feedback to the subsystems about the functioning and performance of the different parts of ATLAS by providing a configurable easy and fast visualization of all this information. The Data Quality Monitoring Display (DQMD) is a visualization tool for the automatic data quality assessment of the ATLAS experiment. It is the interface through which the shift crew and experts can validate the quality of the data being recorded or processed, be warned of problems related to data quality, an...

  9. World Ocean Atlas 2005, Salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World Ocean Atlas 2005 (WOA05) is a set of objectively analyzed (1° grid) climatological fields of in situ temperature, salinity, dissolved oxygen, Apparent Oxygen...

  10. Nuclear Receptor Signaling Atlas (NURSA)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Nuclear Receptor Signaling Atlas (NURSA) is designed to foster the development of a comprehensive understanding of the structure, function, and role in disease...

  11. Wheels lining up for ATLAS

    CERN Document Server

    2003-01-01

    On 30 October, the mechanics test assembly of the central barrel of the ATLAS tile hadronic calorimeter was completed in building 185. It is the second wheel for the Tilecal completely assembled this year.

  12. Dartmouth Atlas of Health Care

    Data.gov (United States)

    U.S. Department of Health & Human Services — For more than 20 years, the Dartmouth Atlas Project has documented glaring variations in how medical resources are distributed and used in the United States. The...

  13. BioFuels Atlas (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, K.

    2011-02-01

    Presentation for biennial merit review of Biofuels Atlas, a first-pass visualization tool that allows users to explore the potential of biomass-to-biofuels conversions at various locations and scales.

  14. Transporting the first ATLAS toroid

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The first coil for the ATLAS toroid magnet is transported from its assembly hall at the CERN Meyrin site to the storage hall above the ATLAS cavern. This involves driving the massive transportation vehicle first through the Meyrin site and then across a main road only metres from the France-Swiss border. Eight magnets in total will be transported in this way before being lowered into the experimental cavern where they will be mounted in a huge ring surrounding the detector.

  15. Composition of the ATLAS Collaboration

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00221668; The ATLAS collaboration

    2016-01-01

    The ATLAS collaboration consists of about 5,000 members from 178 institutes in 38 countries. About half of the members of the collaboration are scientific authors of the papers, and there are about 1,200 students in the collaboration. This note presents data showing aspects of the composition of the collaboration; in particular the relative fraction of women is described at several levels within the hierarchy of the ATLAS experiment.

  16. Searches for Supersymmetry in ATLAS

    CERN Document Server

    Cervelli, Alberto; The ATLAS collaboration

    2017-01-01

    After the discovery of the Higgs boson in ATLAS first run of data taking, and due to the lack of observation of new physics, searches for new particles such as Supersymmetric states are one of the main area of interest for the general purpose detectors operating at LHC. In this talk we will present a review of the searches for Supersymmetric particles, performed by the ATLAS experiment

  17. The ATLAS Student Event Challenge

    CERN Document Server

    Fassouliotis, D; Roupas, Z; Vudragovic, D

    2007-01-01

    The ASEC (ATLAS Student Event Challenge) is an educational project which allows the students to learn about the elementary particles by studying "events", the products of beam collisions at the LHC. The events are collected by the ATLAS detector and displayed graphically using the ATLANTIS package. The students are given the means to select and analyse the events on-line, and subsequently present the results and draw conclusions.

  18. Diboson Physics Study with ATLAS

    CERN Document Server

    Simic, Lj

    2008-01-01

    The ATLAS prospects for the measurements of the $WW$, $WZ$ and $Wgamma$ cross sections and the limits on the anomalous $WWZ$ and $WWgamma$ couplings at 14 TeV are summarized. Study with full simulation of ATLAS detector leads to the conclusion that with 100 pb^{-1} of accumulated data $WW$, $Wgamma$ and $WZ$ signal can be established with more than 5$sigma$ statistical significance, while with 10-30 fb^{-1} of data systematic uncertainties will dominate diboson measurements.

  19. EnviroAtlas -Milwaukee, WI- One Meter Resolution Urban Land Cover Data (2010)

    Science.gov (United States)

    The EnviroAtlas Milwaukee, WI land cover data and map were generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from Late Summer 2010 at 1 m spatial resolution. Nine land cover classes were mapped: water, impervious surfaces (dark and light), soil and barren land, trees and forest, grass and herbaceous non-woody vegetation, agriculture, and wetlands (woody and emergent). An accuracy assessment using a completely random sampling of 600 samples yielded an overall accuracy of 85.39% percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Milwaukee. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  20. EnviroAtlas -- Woodbine, IA -- One Meter Resolution Urban Land Cover Data (2011)

    Science.gov (United States)

    The EnviroAtlas Woodbine, IA land cover (LC) data and map were generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from Late Summer 2011 at 1 m spatial resolution. Six land cover classes were mapped: water, impervious surfaces (dark and light), soil and barren land, trees and forest, grass and herbaceous non-woody vegetation, and agriculture. An accuracy assessment using a completely random sampling of 600 samples yielded an overall accuracy of 87.03% percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Woodbine. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  1. EnviroAtlas -- Paterson, New Jersey -- One Meter Resolution Urban Land Cover Data (2010)

    Science.gov (United States)

    The Paterson, New Jersey EnviroAtlas One Meter-scale Urban Land Cover data comprises approximately 66 km2 around the city of Paterson. The land cover data were generated from United States Department of Agriculture (USDA) National Agricultural Imagery Program (NAIP) four band (red, green, blue, and near infrared) aerial photography at 1 m pixel size. Imagery was collected in July 2010. Five land cover classes were mapped: water, impervious surfaces, soil and barren land, trees and forest, and grass and herbaceous non-woody vegetation. An accuracy assessment of 500 completely random and 64 stratified random reference points yielded an overall accuracy of 86.9 percent. Using a liberal interpretation for pixels that could conceivably be classified as multiple classes (e.g. soil & grass) the overall fuzzy accuracy is 92.5%. For more information on our accuracy assessment see the overview section. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sh

  2. EnviroAtlas - Paterson, New Jersey - One Meter Resolution Urban Land Cover (2010) Web Service

    Science.gov (United States)

    The Paterson, New Jersey EnviroAtlas One Meter-scale Urban Land Cover Web Service comprises approximately 66 km2 around the city of Paterson. The land cover data were generated from United States Department of Agriculture (USDA) National Agricultural Imagery Program (NAIP) four band (red, green, blue, and near infrared) aerial photography at 1 m pixel size. Imagery was collected in July 2010. Five land cover classes were mapped: water, impervious surfaces, soil and barren land, trees and forest, and grass and herbaceous non-woody vegetation. An accuracy assessment of 500 completely random and 64 stratified random reference points yielded an overall accuracy of 86.9 percent. Using a liberal interpretation for pixels that could conceivably be classified as multiple classes (e.g. soil & grass) the overall fuzzy accuracy is 92.5%. For more information on our accuracy assessment see the overview section. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas

  3. EnviroAtlas - New Bedford, MA - BenMAP Results by Block Group

    Science.gov (United States)

    This EnviroAtlas dataset demonstrates the effect of changes in pollution concentration on local populations in 128 block group in New Bedford, Massachusetts. The US EPA's Environmental Benefits Mapping and Analysis Program (BenMAP) was used to estimate the incidence of adverse health effects (i.e., mortality and morbidity) and associated monetary value that result from changes in pollution concentrations for Bristol County, MA. Incidence and value estimates for the block groups are calculated using i-Tree models (www.itreetools.org), local weather data, pollution data, and U.S. Census derived population data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  4. EnviroAtlas - Portland, OR - BenMAP Results by Block Group

    Science.gov (United States)

    This EnviroAtlas dataset demonstrates the effect of changes in pollution concentration on local populations in 1176 block groups in Portland, Oregon. The US EPA's Environmental Benefits Mapping and Analysis Program (BenMAP) was used to estimate the incidence of adverse health effects (i.e., mortality and morbidity) and associated monetary value that result from changes in pollution concentrations for Clackamas, Multnomah, and Washington Counties in Oregon and Clark County, WA. Incidence and value estimates for the block groups are calculated using i-Tree models (www.itreetools.org), local weather data, pollution data, and U.S. Census derived population data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  5. EnviroAtlas - Portland, ME - BenMAP Results by Block Group

    Science.gov (United States)

    This EnviroAtlas dataset demonstrates the effect of changes in pollution concentration on local populations in 146 block groups in Portland, Maine. The US EPA's Environmental Benefits Mapping and Analysis Program (BenMAP) was used to estimate the incidence of adverse health effects (i.e., mortality and morbidity) and associated monetary value that result from changes in pollution concentrations for Cumberland and York Counties, ME. Incidence and value estimates for the block groups are calculated using i-Tree models (www.itreetools.org), local weather data, pollution data, and U.S. Census derived population data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  6. EnviroAtlas - Paterson, NJ - BenMAP Results by Block Group

    Science.gov (United States)

    This EnviroAtlas dataset demonstrates the effect of changes in pollution concentration on local populations in 107 block groups in Paterson, New Jersey. The US EPA's Environmental Benefits Mapping and Analysis Program (BenMAP) was used to estimate the incidence of adverse health effects (i.e., mortality and morbidity) and associated monetary value that result from changes in pollution concentrations for Passaic County, NJ. Incidence and value estimates for the block groups are calculated using i-Tree models (www.itreetools.org), local weather data, pollution data, and U.S. Census derived population data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  7. EnviroAtlas - Woodbine, IA - BenMAP Results by Block Group

    Science.gov (United States)

    This EnviroAtlas dataset demonstrates the effect of changes in pollution concentration on local populations in 1 block group in Woodbine, Iowa. The US EPA's Environmental Benefits Mapping and Analysis Program (BenMAP) was used to estimate the incidence of adverse health effects (i.e., mortality and morbidity) and associated monetary value that result from changes in pollution concentrations for Harrison County, IA. Incidence and value estimates for the block groups are calculated using i-Tree models (www.itreetools.org), local weather data, pollution data, and U.S. Census derived population data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  8. EnviroAtlas - Tampa Bay, FL - BenMAP Results by Block Group

    Science.gov (United States)

    This EnviroAtlas dataset demonstrates the effect of changes in pollution concentration on local populations in 1,833 block groups in Tampa Bay, Florida. The US EPA's Environmental Benefits Mapping and Analysis Program (BenMAP) was used to estimate the incidence of adverse health effects (i.e., mortality and morbidity) and associated monetary value that result from changes in pollution concentrations for Hillsborough, Pinellas, and Pasco Counties, FL. Incidence and value estimates for the block groups are calculated using i-Tree models (www.itreetools.org), local weather data, pollution data, and U.S. Census derived population data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  9. EnviroAtlas - New York City, NY - BenMAP Results by Block Group

    Science.gov (United States)

    This EnviroAtlas dataset demonstrates the effect of changes in pollution concentration on local populations in 6,378 block groups in New York City, New York. The US EPA's Environmental Benefits Mapping and Analysis Program (BenMAP) was used to estimate the incidence of adverse health effects (i.e., mortality and morbidity) and associated monetary value that result from changes in pollution concentrations for New York, Kings, Queens, Richmond, and Bronx Counties, NY. Incidence and value estimates for the block groups are calculated using i-Tree models (www.itreetools.org), local weather data, pollution data, and U.S. Census derived population data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  10. EnviroAtlas - Memphis, TN - BenMAP Results by Block Group

    Science.gov (United States)

    This EnviroAtlas dataset demonstrates the effect of changes in pollution concentration on local populations in 703 block groups in Memphis, Tennessee. The US EPA's Environmental Benefits Mapping and Analysis Program (BenMAP) was used to estimate the incidence of adverse health effects (i.e., mortality and morbidity) and associated monetary value that result from changes in pollution concentrations for Crittenden County, AR, DeSoto County, MS, and Shelby County, TN. Incidence and value estimates for the block groups are calculated using i-Tree models (www.itreetools.org), local weather data, pollution data, and U.S. Census derived population data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  11. EnviroAtlas - Milwaukee, WI - BenMAP Results by Block Group

    Science.gov (United States)

    This EnviroAtlas dataset demonstrates the effect of changes in pollution concentration on local populations in 1,175 block groups in Milwaukee, Wisconsin. The US EPA's Environmental Benefits Mapping and Analysis Program (BenMAP) was used to estimate the incidence of adverse health effects (i.e., mortality and morbidity) and associated monetary value that result from changes in pollution concentrations for Milwaukee, Ozaukee, Washington, and Waukesha Counties, WI. Incidence and value estimates for the block groups are calculated using i-Tree models (www.itreetools.org), local weather data, pollution data, and U.S. Census derived population data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  12. EnviroAtlas - Pittsburgh, PA - BenMAP Results by Block Group

    Science.gov (United States)

    This EnviroAtlas dataset demonstrates the effect of changes in pollution concentration on local populations in 1,089 block groups in Pittsburgh, PA. The US EPA's Environmental Benefits Mapping and Analysis Program (BenMAP) was used to estimate the incidence of adverse health effects (i.e., mortality and morbidity) and associated monetary value that result from changes in pollution concentrations for Allegheny County, PA. Incidence and value estimates for the block groups are calculated using i-Tree models (www.itreetools.org), local weather data, pollution data, and U.S. Census derived population data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  13. EnviroAtlas - Phoenix, AZ - BenMAP Results by Block Group

    Science.gov (United States)

    This EnviroAtlas dataset demonstrates the effect of changes in pollution concentration on local populations in 2,434 block groups in Phoenix, AZ. The US EPA's Environmental Benefits Mapping and Analysis Program (BenMAP) was used to estimate the incidence of adverse health effects (i.e., mortality and morbidity) and associated monetary value that result from changes in pollution concentrations for Maricopa County, AZ. Incidence and value estimates for the block groups are calculated using i-Tree models (www.itreetools.org), local weather data, pollution data, and U.S. Census derived population data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  14. EnviroAtlas - Green Bay, WI - BenMAP Results by Block Group

    Science.gov (United States)

    This EnviroAtlas dataset demonstrates the effect of changes in pollution concentration on local populations in 155 block groups in Green Bay, Wisconsin. The US EPA's Environmental Benefits Mapping and Analysis Program (BenMAP) was used to estimate the incidence of adverse health effects (i.e., mortality and morbidity) and associated monetary value that result from changes in pollution concentrations for Brown and Outagamie Counties, WI. Incidence and value estimates for the block groups are calculated using i-Tree models (www.itreetools.org), local weather data, pollution data, and U.S. Census derived population data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  15. EnviroAtlas - Austin, TX - BenMAP Results by Block Group

    Science.gov (United States)

    This EnviroAtlas dataset demonstrates the effect of changes in pollution concentration on local populations in 750 block groups in Austin, Texas. The US EPA's Environmental Benefits Mapping and Analysis Program (BenMAP) was used to estimate the incidence of adverse health effects (i.e., mortality and morbidity) and associated monetary value that result from changes in pollution concentrations for Travis and Williamson Counties, TX. Incidence and value estimates for the block groups are calculated using i-Tree models (www.itreetools.org), local weather data, pollution data, and U.S. Census derived population data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  16. EnviroAtlas - Minneapolis/St. Paul, MN - BenMAP Results by Block Group

    Science.gov (United States)

    This EnviroAtlas dataset demonstrates the effect of changes in pollution concentration on local populations in 1,772 block groups in Minneapolis/St. Paul, Minnesota. The US EPA's Environmental Benefits Mapping and Analysis Program (BenMAP) was used to estimate the incidence of adverse health effects (i.e., mortality and morbidity) and associated monetary value that result from changes in pollution concentrations for Anoka, Dakota, Hennepin, and Ramsey Counties, MN. Incidence and value estimates for the block groups are calculated using i-Tree models (www.itreetools.org), local weather data, pollution data, and U.S. Census derived population data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  17. EnviroAtlas - Des Moines, IA - BenMAP Results by Block Group

    Science.gov (United States)

    This EnviroAtlas dataset demonstrates the effect of changes in pollution concentration on local populations in 312 block groups in Des Moines, Iowa. The US EPA's Environmental Benefits Mapping and Analysis Program (BenMAP) was used to estimate the incidence of adverse health effects (i.e., mortality and morbidity) and associated monetary value that result from changes in pollution concentrations for Dallas, Polk, and Warren Counties, IA. Incidence and value estimates for the block groups are calculated using i-Tree models (www.itreetools.org), local weather data, pollution data, and U.S. Census derived population data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  18. EnviroAtlas - Fresno, CA - BenMAP Results by Block Group

    Science.gov (United States)

    This EnviroAtlas dataset demonstrates the effect of changes in pollution concentration on local populations in 405 block groups in Fresno, California. The US EPA's Environmental Benefits Mapping and Analysis Program (BenMAP) was used to estimate the incidence of adverse health effects (i.e., mortality and morbidity) and associated monetary value that result from changes in pollution concentrations for Fresno County, CA. Incidence and value estimates for the block groups are calculated using i-Tree models (www.itreetools.org), local weather data, pollution data, and U.S. Census derived population data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  19. EnviroAtlas - Durham, NC - BenMAP Results by Block Group

    Science.gov (United States)

    This EnviroAtlas dataset demonstrates the effect of changes in pollution concentration on local populations in 193 block groups in Durham, North Carolina. The US EPA's Environmental Benefits Mapping and Analysis Program (BenMAP) was used to estimate the incidence of adverse health effects (i.e., mortality and morbidity) and associated monetary value that result from changes in pollution concentrations for Durham and Orange Counties, NC. Incidence and value estimates for the block groups are calculated using i-Tree models (www.itreetools.org), local weather data, pollution data, and U.S. Census derived population data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  20. EnviroAtlas - Cleveland, OH - BenMAP Results by Block Group

    Science.gov (United States)

    This EnviroAtlas dataset demonstrates the effect of changes in pollution concentration on local populations in 1,442 block groups in Cleveland, Ohio. The US EPA's Environmental Benefits Mapping and Analysis Program (BenMAP) was used to estimate the incidence of adverse health effects (i.e., mortality and morbidity) and associated monetary value that result from changes in pollution concentrations for Cuyahoga, Geauga, Lake, Lorain, Medina, Portage, and Summit Counties, OH. Incidence and value estimates for the block groups are calculated using i-Tree models (www.itreetools.org), local weather data, pollution data, and U.S. Census derived population data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  1. ATLAS experiment : mapping the secrets of the universe

    CERN Multimedia

    ATLAS Outreach

    2010-01-01

    This 4 page color brochure describes ATLAS and the LHC, the ATLAS inner detector, calorimeters, muon spectrometer, magnet system, a short definition of the terms "particles," "dark matter," "mass," "antimatter." It also explains the ATLAS collaboration and provides the ATLAS website address with some images of the detector and the ATLAS collaboration at work.

  2. ATLAS Award for Shield Supplier

    CERN Multimedia

    2004-01-01

    ATLAS technical coordinator Dr. Marzio Nessi presents the ATLAS supplier award to Vojtech Novotny, Director General of Skoda Hute.On 3 November, the ATLAS experiment honoured one of its suppliers, Skoda Hute s.r.o., of Plzen, Czech Republic, for their work on the detector's forward shielding elements. These huge and very massive cylinders surround the beampipe at either end of the detector to block stray particles from interfering with the ATLAS's muon chambers. For the shields, Skoda Hute produced 10 cast iron pieces with a total weight of 780 tonnes at a cost of 1.4 million CHF. Although there are many iron foundries in the CERN member states, there are only a limited number that can produce castings of the necessary size: the large pieces range in weight from 59 to 89 tonnes and are up to 1.5 metres thick.The forward shielding was designed by the ATLAS Technical Coordination in close collaboration with the ATLAS groups from the Czech Technical University and Charles University in Prague. The Czech groups a...

  3. ATLAS Cloud R&D

    Science.gov (United States)

    Panitkin, Sergey; Barreiro Megino, Fernando; Caballero Bejar, Jose; Benjamin, Doug; Di Girolamo, Alessandro; Gable, Ian; Hendrix, Val; Hover, John; Kucharczyk, Katarzyna; Medrano Llamas, Ramon; Love, Peter; Ohman, Henrik; Paterson, Michael; Sobie, Randall; Taylor, Ryan; Walker, Rodney; Zaytsev, Alexander; Atlas Collaboration

    2014-06-01

    The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R&D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R&D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R&D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R&D group has gained a significant insight into the cloud computing landscape and has identified points that still need to be addressed in order to fully utilize this technology. This contribution will explain the cloud integration models that are being evaluated and will discuss ATLAS' learning during the collaboration with leading commercial and academic cloud providers.

  4. ATLAS Future Upgrade

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00225024; The ATLAS collaboration

    2016-01-01

    After the successful operation at the center-of-mass energies of 7 and 8 TeV in 2010 - 2012, the LHC is ramped up and successfully took data at the center-of-mass energies of 13 TeV in 2015. Meanwhile, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, delivering of the order of five times the LHC nominal instantaneous luminosity along with luminosity leveling. The ultimate goal is to extend the dataset from about few hundred fb−1 expected for LHC running to 3000 fb−1 by around 2035 for ATLAS and CMS. In parallel, the experiments need to be keep lockstep with the accelerator to accommodate running beyond the nominal luminosity this decade. Along with maintenance and consolidation of the detector in the past few years, ATLAS has added inner b-layer to its tracking system. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requir...

  5. ATLAS muon detector

    CERN Multimedia

    Muon detectors from the outer layer of the ATLAS experiment at the Large Hadron Collider. Over a million individual detectors combine to make up the outer layer of ATLAS. All of this is exclusively to track the muons, the only detectable particles to make it out so far from the collision point. How the muon’s path curves in the magnetic field depends on how fast it is travelling. A fast muon curves only a very little, a slower one curves a lot. Together with the calorimeters, the muon detectors play an essential role in deciding which collisions to store and which to ignore. Certain signals from muons are a sure sign of exciting discoveries. To make sure the data from these collisions is not lost, some of the muon detectors react very quickly and trigger the electronics to record. The other detectors take a little longer, but are much more precise. Their job is to measure exactly where the muons have passed, calculating the curvature of their tracks in the magnetic field to the nearest five hundredths of a ...

  6. ATLAS Distributed Analysis Tools

    CERN Document Server

    Gonzalez de la Hoz, Santiago; Liko, Dietrich

    2008-01-01

    The ATLAS production system has been successfully used to run production of simulation data at an unprecedented scale. Up to 10000 jobs were processed in one day. The experiences obtained operating the system on several grid flavours was essential to perform a user analysis using grid resources. First tests of the distributed analysis system were then performed. In the preparation phase data was registered in the LHC File Catalog (LFC) and replicated in external sites. For the main test, few resources were used. All these tests are only a first step towards the validation of the computing model. The ATLAS management computing board decided to integrate the collaboration efforts in distributed analysis in only one project, GANGA. The goal is to test the reconstruction and analysis software in a large scale Data production using Grid flavors in several sites. GANGA allows trivial switching between running test jobs on a local batch system and running large-scale analyses on the Grid; it provides job splitting a...

  7. Jet Calibration at ATLAS

    CERN Document Server

    Camacho, R; The ATLAS collaboration

    2011-01-01

    The accurate measurement of jets at high transverse momentum produced in proton proton collision at a centre of mass energy at \\sqrt(s)=7 TeV is important in many physics analysis at LHC. Due to the non-compensating nature of the ATLAS calorimeter, signal losses due to noise thresholds and in dead material the jet energy needs to be calibrated. Presently, the ATLAS experiment derives the jet calibration from Monte Carlo simulation using a simple correction that relates the true and the reconstructed jet energy. The jet energy scale and its uncertainty are derived from in-situ measurements and variation in the Monte Carlo simulation. Other calibration schemes have been also developed, they use hadronic cell calibrations or the topology of the jet constituents to reduce hadronic fluctuations in the jet response, improving in that way the jet resolution. The performances of the various calibration schemes using data and simulation, the evaluation of the modelling of the properties used to derive each calibration...

  8. ATLAS construction schedule

    CERN Multimedia

    Kotamaki, M

    The goal during the last few months has been to freeze and baseline as much as possible the schedules of various ATLAS systems and activities. The main motivations for the re-baselining of the schedules have been the new LHC schedule aiming at first collisions in early 2006 and the encountered delays in civil engineering as well as in the production of some of the detectors. The process was started by first preparing a new installation schedule that takes into account all the new external constraints and the new ATLAS staging scenario. The installation schedule version 3 was approved in the March EB and it provides the Ready For Installation (RFI) milestones for each system, i.e. the date when the system should be available for the start of the installation. TCn is now interacting with the systems aiming at a more realistic and resource loaded version 4 before the end of the year. Using the new RFI milestones as driving dates a new summary schedule has been prepared, or is under preparation, for each system....

  9. ATLAS starts moving in

    CERN Multimedia

    Della Mussia, S

    2004-01-01

    The first large active detector component was lowered into the ATLAS cavern on 1st March. It consisted of the 8 modules forming the lower part of the central barrel of the tile hadronic calorimeter. The work of assembling the barrel, which comprises 64 modules, started the following day. Two road trailers each with 64 wheels, positioned side by side. This was the solution chosen to transport the lower part of the central barrel of ATLAS' tile hadronic calorimeter from Building 185 to the PX16 shaft at Point 1 (see Figure 1). The transportation, and then the installation of the component in the experimental cavern, which took place over three days were, to say the least, rather spectacular. On 25 February, the component, consisting of eight 6-metre modules, was loaded on to the trailers. The segment of the barrel was transported on a steel support so that it wouldn't move an inch during the journey. On 26 February, once all the necessary safety checks had been carried out, the convoy was able to leave Buildi...

  10. The ATLAS Event Builder

    CERN Document Server

    Vandelli, W; Battaglia, A; Beck, H P; Blair, R; Bogaerts, A; Bosman, M; Ciobotaru, M; Cranfield, R; Crone, G; Dawson, J; Dobinson, Robert W; Dobson, M; Dos Anjos, A; Drake, G; Ermoline, Y; Ferrari, R; Ferrer, M L; Francis, D; Gadomski, S; Gameiro, S; Gorini, B; Green, B; Haberichter, W; Haberli, C; Hauser, R; Hinkelbein, C; Hughes-Jones, R; Joos, M; Kieft, G; Klous, S; Korcyl, K; Kordas, K; Kugel, A; Leahu, L; Lehmann, G; Martin, B; Mapelli, L; Meessen, C; Meirosu, C; Misiejuk, A; Mornacchi, G; Müller, M; Nagasaka, Y; Negri, A; Pasqualucci, E; Pauly, T; Petersen, J; Pope, B; Schlereth, J L; Spiwoks, R; Stancu, S; Strong, J; Sushkov, S; Szymocha, T; Tremblet, L; Ünel, G; Vermeulen, J; Werner, P; Wheeler-Ellis, S; Wickens, F; Wiedenmann, W; Yu, M; Yasu, Y; Zhang, J; Zobernig, H; 2007 IEEE Nuclear Science Symposium and Medical Imaging Conference

    2008-01-01

    Event data from proton-proton collisions at the LHC will be selected by the ATLAS experiment in a three-level trigger system, which, at its first two trigger levels (LVL1+LVL2), reduces the initial bunch crossing rate of 40~MHz to $sim$3~kHz. At this rate, the Event Builder collects the data from the readout system PCs (ROSs) and provides fully assembled events to the Event Filter (EF). The EF is the third trigger level and its aim is to achieve a further rate reduction to $sim$200~Hz on the permanent storage. The Event Builder is based on a farm of O(100) PCs, interconnected via a Gigabit Ethernet to O(150) ROSs. These PCs run Linux and multi-threaded software applications implemented in C++. All the ROSs, and substantial fractions of the Event Builder and Event Filter PCs have been installed and commissioned. We report on performance tests on this initial system, which is capable of going beyond the required data rates and bandwidths for Event Building for the ATLAS experiment.

  11. Spring comes for ATLAS

    CERN Multimedia

    Butin, F.

    2004-01-01

    (First published in the CERN weekly bulletin 24/2004, 7 June 2004.) A short while ago the ATLAS cavern underwent a spring clean, marking the end of the installation of the detector's support structures and the cavern's general infrastructure. The list of infrastructure to be installed in the ATLAS cavern from September 2003 was long: a thousand tonnes of mechanical structures spread over 13 storeys, two lifts, two 65-tonne overhead travelling cranes 25 metres above cavern floor, with a telescopic boom and cradle to access the remaining 10 metres of the cavern, a ventilation system for the 55 000 cubic metre cavern, a drainage system, a standard sprinkler system and an innovative foam fire-extinguishing system, as well as the external cryogenic system for the superconducting magnets and the liquid argon calorimeters (comprising, amongst other things, two helium refrigeration units, a nitrogen refrigeration unit and 5 km of piping for gaseous or liquid helium and nitrogen), not to mention the handling eq...

  12. ATLAS Physicist in Space

    CERN Multimedia

    Bengt Lund-Jensen

    2007-01-01

    On December 9, the former ATLAS physicist Christer Fuglesang was launched into space onboard the STS-116 Space Shuttle flight from Kennedy Space Center in Florida. Christer worked on the development of the accordion-type liquid argon calorimeter and SUSY simulations in what eventually became ATLAS until summer 1992 when he became one out of six astronaut trainees with the European Space Agency (ESA). His selection out of a very large number of applicants from all over the ESA member states involved a number of tests in order to choose the most suitable candidates. As ESA astronaut Christer trained with the Russian Soyuz programme in Star City outside of Moscow from 1993 until 1996, when he moved to Houston to train for space shuttle missions with NASA. Christer belonged to the backup crew for the Euromir95 mission. After additional training in Russia, Christer qualified as ‘Soyuz return commander’ in 1998. Christer rerouting cables during his second space walk. (Photo: courtesy NASA) During...

  13. ATLAS Solenoid Integration

    CERN Multimedia

    Ruber, R

    Last month the central solenoid was installed in the barrel cryostat, which it shares with the liquid argon calorimeter. Figure 1: Some members of the solenoid and liquid argon teams proudly pose in front of the barrel cryosat, complete with detector and magnet. Some two years ago the central solenoid arrived at CERN after being manufactured and tested in Japan. It was kept in storage until last October when it was finally moved to the barrel cryostat integration area. Here a position survey of the solenoid (with respect to the cryostat's inner warm vessel) was performed. Figure 2: The alignment survey by Dirk Mergelkuhl and Aude Wiart. (EST-SU) At the start of the New Year the solenoid was moved to the cryostat insertion stand. Figure 3: The solenoid on the insertion stand, with Akira Yamamoto the solenoid designer and project leader. Figure 4: Taka Kondo, ATLAS Japan spokesperson, and Shoichi Mizumaki, Toshiba project engineer for the ATLAS solenoid, celebrate the insertion. Aft...

  14. ATLAS Christmas lunch

    CERN Multimedia

    Francois Butin; Markus Nordberg

    The end of the year ATLAS pit lunch is now a well established tradition: the 4th edition took place in the most prestigious place at CERN; the "Globe de l'innovation", or simply "the Globe". This end-of-year event is the opportunity to thank all those working so hard at Point 1. The first event took place in December 2003. At that time, there was no Globe yet, and the party took place in SX1 building, at the top of the shafts leading to the ATLAS cavern, with some 100 guests. In December 2004, we had the privilege to be the first to organize a lunch in the Globe with some 200 guests. Since then, many have followed our example! Well, almost: we were requested to refrain from serving "Tartiflette" again in there (a Savoyard specialty, using vast amounts of Reblochon, a smelly cheese...). It was said to have left a poignant odour for following events throughout 2004... Long queues formed for this special event. In December 2005, we were authorized to party in the Globe again (once we promised we would b...

  15. Trigger Monitoring at ATLAS

    CERN Document Server

    Sidoti, A; The ATLAS collaboration

    2010-01-01

    The Trigger and Data Acquisition system for the ATLAS experiment has to reduce the 40 MHz of LHC bunch crossing rate to ~200 Hz of recording rate. This is achieved through a complex distributed system composed by $sim$ 1.000 CPUs, about a third of the expected final size of the system. Monitoring the trigger behavior through all the trigger level is of fundamental importance to assess the quality of the data taken, to give fast feedback for the trigger configuration design and to monitor the stability of the HLT farm components. In this paper we will present the online monitoring framework and the various tools available in the ATLAS trigger system going from the ones that build the basic monitoring infrastructure and test the basic functionalities of the system to the more elaborated ones that checks the quality of the data taking looking at physics variables reconstructed online. The early experience in the 2009 cosmics data taking period will also be shown.

  16. Recently Published Lectures and Tutorials for ATLAS

    CERN Multimedia

    Herr, J.

    2006-01-01

    As reported in the September 2004 ATLAS eNews, the Web Lecture Archive Project, WLAP, a collaboration between the University of Michigan and CERN, has developed a synchronized system for recording and publishing educational multimedia presentations, using the Web as medium. This year, the University of Michigan team has been asked to record and publish all ATLAS Plenary sessions, as well as a large number of Physics and Computing tutorials. A significant amount of this material has already been published and can be accessed via the links below. The WLAP model is spreading. This summer, the CERN's High School Teachers program has used WLAP's system to record several physics lectures directed toward a broad audience. And a new project called MScribe, which is essentially the WLAP system coupled with an infrared tracking camera, is being used by the University of Michigan to record several University courses this academic year. All lectures can be viewed on any major platform with any common internet browser...

  17. The ATLAS data management software engineering process

    Science.gov (United States)

    Lassnig, M.; Garonne, V.; Stewart, G. A.; Barisits, M.; Beermann, T.; Vigne, R.; Serfon, C.; Goossens, L.; Nairz, A.; Molfetas, A.; Atlas Collaboration

    2014-06-01

    Rucio is the next-generation data management system of the ATLAS experiment. The software engineering process to develop Rucio is fundamentally different to existing software development approaches in the ATLAS distributed computing community. Based on a conceptual design document, development takes place using peer-reviewed code in a test-driven environment. The main objectives are to ensure that every engineer understands the details of the full project, even components usually not touched by them, that the design and architecture are coherent, that temporary contributors can be productive without delay, that programming mistakes are prevented before being committed to the source code, and that the source is always in a fully functioning state. This contribution will illustrate the workflows and products used, and demonstrate the typical development cycle of a component from inception to deployment within this software engineering process. Next to the technological advantages, this contribution will also highlight the social aspects of an environment where every action is subject to detailed scrutiny.

  18. The ATLAS Level-2 Trigger Pilot Project

    CERN Document Server

    Blair, R; Haberichter, W N; Schlereth, J L; Bock, R; Bogaerts, A; Boosten, M; Dobinson, Robert W; Dobson, M; Ellis, Nick; Elsing, M; Giacomini, F; Knezo, E; Martin, B; Shears, T G; Tapprogge, Stefan; Werner, P; Hansen, J R; Wäänänen, A; Korcyl, K; Lokier, J; George, S; Green, B; Strong, J; Clarke, P; Cranfield, R; Crone, G J; Sherwood, P; Wheeler, S; Hughes-Jones, R E; Kolya, S; Mercer, D; Hinkelbein, C; Kornmesser, K; Kugel, A; Männer, R; Müller, M; Sessler, M; Simmler, H; Singpiel, H; Abolins, M; Ermoline, Y; González-Pineiro, B; Hauser, R; Pope, B; Sivoklokov, S Yu; Boterenbrood, H; Jansweijer, P; Kieft, G; Scholte, R; Slopsema, R; Vermeulen, J C; Baines, J T M; Belias, A; Botterill, David R; Middleton, R; Wickens, F J; Falciano, S; Bystrický, J; Calvet, D; Gachelin, O; Huet, M; Le Dû, P; Mandjavidze, I D; Levinson, L; González, S; Wiedenmann, W; Zobernig, H

    2002-01-01

    The Level-2 Trigger Pilot Project of ATLAS, one of the two general purpose LHC experiments, is part of the on-going program to develop the ATLAS high-level triggers (HLT). The Level-2 Trigger will receive events at up to 100 kHz, which has to be reduced to a rate suitable for full event-building of the order of 1 kHz. To reduce the data collection bandwidth and processing power required for the challenging Level-2 task it is planned to use Region of Interest guidance (from Level-1) and sequential processing. The Pilot Project included the construction and use of testbeds of up to 48 processing nodes, development of optimized components and computer simulations of a full system. It has shown how the required performance can be achieved, using largely commodity components and operating systems, and validated an architecture for the Level-2 system. This paper describes the principal achievements and conclusions of this project. (28 refs).

  19. Photon identification with the ATLAS detector

    CERN Document Server

    Gessner, Gregor; The ATLAS collaboration

    2017-01-01

    Good photon identification capabilities are important for many aspects of the ATLAS physics program at the LHC, from Higgs boson measurements to new physics searches. The identification of prompt photons and the rejection of background coming mostly from photons in hadron decays relies on the high granularity of the ATLAS calorimeter. Several data-driven methods are used to measure the efficiency of the photon identification requirements, covering a broad energy spectrum. At low energies, photons from radiative $Z$ boson decays are used. In the medium energy range, similarities between electron and photon showers are exploited using $Z \\rightarrow ee$ decays. At high energies, inclusive photon samples are used. The results of these measurements performed in proton-proton collisions data at a center-of-mass energy of $\\sqrt{s} = 13$ TeV taken in 2015 and 2016 corresponding to an integrated luminosity of $\\mathcal{L}$ = 36.1 fb$^{-1}$ and $\\mathcal{L}$ = 37.1 fb$^{-1}$, respectively, are presented.

  20. Virtual Visit to the ATLAS Control Room by University of São Paulo

    CERN Multimedia

    2013-01-01

    On 03/07/2013, we will have a conference to students from the University of São Paulo (USP), part of the Post Graduation Program in Interdisciplinary Science Education. This program comprises the following areas: Teaching of Physics, Teaching of Chemistry and Teaching of Biology. The event will be enriched by a Virtual Visit to the ATLAS Detector at CERN/Switzerland. The attendees to the virtual tour are enrolled on the course "Complements of Electromagnetism", from the Teaching of Physics area. A total of 21 students are expected, most of them are high school teachers in public and private schools in the State of São Paulo, Brazil. - See more at: http://atlas-live-virtual-visit.web.cern.ch/atlas-live-virtual-visit/2013/SaoPaulo2013.html

  1. The Origin of the Term 'Atlas'

    Directory of Open Access Journals (Sweden)

    Miljenko Lapaine

    2008-05-01

    Full Text Available In this paper the origin of the term 'atlas', as a bound collection of maps, is considered. It is usually thought to derive from the name of the Titan, Atlas, who was punished by being forced to bear the entire celestial sphere or universe on his shoulders. However, on the basis of research into and translation of the original Preface of Mercator's Atlas sive cosmographicae meditationes de fabrica mvndi et fabricati figvra, it has been determined that Mercator did not refer to this legend, but named his atlas for the completely different characteristics, such as wisdom, erudition and humanity, of another Atlas.

  2. Last piece of the puzzle for ATLAS

    CERN Multimedia

    Clare Ryan

    At around 15.40 on Friday 29th February the ATLAS collaboration cracked open the champagne as the second of the small wheels was lowered into the cavern. Each of ATLAS' small wheels are 9.3 metres in diameter and weigh 100 tonnes including the massive shielding elements. They are the final parts of ATLAS' muon spectrometer. The first piece of ATLAS was installed in 2003 and since then many detector elements have journeyed down the 100 metre shaft into the ATLAS underground cavern. This last piece completes this gigantic puzzle.

  3. ATLAS Maintenance and Operation management system

    CERN Multimedia

    Copy, B

    2007-01-01

    The maintenance and operation of the ATLAS detector will involve thousands of contributors from 170 physics institutes. Planning and coordinating the action of ATLAS members, ensuring their expertise is properly leveraged and that no parts of the detector are understaffed or overstaffed will be a challenging task. The ATLAS Maintenance and Operation application (referred to as Operation Task Planner inside the ATLAS experiment) offers a fluent web based interface that combines the flexibility and comfort of a desktop application, intuitive data visualization and navigation techniques, with a lightweight service oriented architecture. We will review the application, its usage within the ATLAS experiment, its underlying design and implementation.

  4. EnviroAtlas Proximity to Parks Web Service

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). This EnviroAtlas dataset shows...

  5. EnviroAtlas Near Road Tree Buffer Web Service

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). This EnviroAtlas dataset...

  6. EnviroAtlas - Metrics for Minneapolis/St. Paul, MN

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas). The layers in this web...

  7. EnviroAtlas - Metrics for Des Moines, IA

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas). The layers in this web...

  8. Vector and Scalar Bosons at DØ and ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Lammers, Sabine Sabine [Indiana University

    2014-09-26

    Vector Boson Fusion (VBF) has never been measured in hadron collisions, but it is one of the most sensitive modes for low mass Standard Model Higgs production at ATLAS. The objective of this proposal is to measure VBF production of W and Z bosons at the DØ Experiment taking place at the Tevatron Collider near Chicago, Illinois, and at the ATLAS Experiment, running at the Large Hadron Collider in Geneva, Switzerland. The framework developed in these measurements will be used to discover and study the Higgs Boson produced through the same mechanism (VBF) at ATLAS. The 10 f b-1 dataset recently collected by the DØ experiment provides a unique opportunity to observe evidence of VBF production of W Bosons, which will provide the required theoretical knowledge - VBF cross sections - and experimental knowledge - tuning of measurement techniques - on which to base the VBF measurements at the LHC. At the time of this writing, the ATLAS experiment has recorded 5 fb-1 of data at √s = 7 TeV, and expects to collect at least another 5 in 2012. Assuming Standard Model cross sections, this dataset will allow for the observation of VBF production of W, Z and Higgs bosons. The major challenges for the first observation of VBF interactions are: developing highly optimized forward jet identification algorithms, and accurately modeling both rates and kinematics of background processes. With the research program outlined in this grant proposal, I plan to address each of these areas, paving the way for VBF observation. The concentration on VBF production for the duration of this grant will be at ATLAS where the anticipated high pileup rates necessitates a cleaner signal. My past experience with forward jet identification at the ZEUS experiment, and with W+(n)Jets measurements at DØ , puts me in a unique position to lead this effort. The proposed program will have a dual focus: on DØ where the VBF analysis effort is mature and efforts of a postdoc will be required to bring the VBF W

  9. Extending ATLAS Computing to Commercial Clouds and Supercomputers

    CERN Document Server

    Nilsson, P; The ATLAS collaboration; Filipcic, A; Klimentov, A; Maeno, T; Oleynik, D; Panitkin, S; Wenaus, T; Wu, W

    2014-01-01

    The Large Hadron Collider will resume data collection in 2015 with substantially increased computing requirements relative to its first 2009-2013 run. A near doubling of the energy and the data rate, high level of event pile-up, and detector upgrades will mean the number and complexity of events to be analyzed will increase dramatically. A naive extrapolation of the Run 1 experience would suggest that a 5-6 fold increase in computing resources are needed - impossible within the anticipated flat computing budgets in the near future. Consequently ATLAS is engaged in an ambitious program to expand its computing to all available resources, notably including opportunistic use of commercial clouds and supercomputers. Such resources present new challenges in managing heterogeneity, supporting data flows, parallelizing workflows, provisioning software, and other aspects of distributed computing, all while minimizing operational load. We will present the ATLAS experience to date with clouds and supercomputers, and des...

  10. Results and Perspectives in Forward Physics with ATLAS

    CERN Document Server

    Giacobbe, Benedetto; The ATLAS collaboration

    2015-01-01

    A review of the ATLAS forward physics results is given with particular emphasis on the aspects of relevance for the cosmic rays community. These include proton-proton cross section measurements at $\\sqrt{s} = 7$~TeV, diffractive physics studies using rapidity gaps, measurements of energy flow as a function of pseudorapidity, and the first cross section measurement performed in the recently started Run 2 at $\\sqrt{s} = 13$~TeV. The ATLAS future perspectives will also be discussed, focused on the phase 1 upgrade project AFP, underlying its complementarity with the existing ALFA detector in terms of acceptance for diffractive processes, and its potential for a wide forward physics program both at low and high luminosity.

  11. Physics potential of ATLAS upgrades at HL-LHC

    CERN Document Server

    Testa, Marianna; The ATLAS collaboration

    2017-01-01

    The High Luminosity-Large Hadron Collider (HL-LHC) is expected to start in 2026 and to provide an integrated luminosity of 3000 fb-1 in ten year, a factor 10 more than what will be collected by 2021. This high statistics will allow to perform precise measurements in the Higgs sector and improve searches of new physics at the TeV scale. The luminosity needed is L ~7.5 1034 cm-2 s-1, correspondent to ~200 additional proton-proton pile-up interactions. To face such harsh environment some sub-detectors of the ATLAS experiment will be upgraded or completely substituted. In this poster, the performances of the new or upgraded ATLAS sub-detectors will be described, focusing in particular on the new inner tracker and a proposed high granularity time device. The poster will also show the impact of those upgrades on crucial physics measurements for HL-LHC program

  12. Diffractive Measurements in ATLAS

    CERN Document Server

    Shaw, K

    2012-01-01

    Measurements made using the ATLAS detector at the LHC at \\surd s = 7 TeV incorporating diffractive processes are presented. A first measurement of the inelastic cross-section using 20 \\mu b-1 of data is given, yielding a result of {\\sigma}inel ({\\xi} > 5 \\times 10-6) = 60.3 \\pm 2.1 mb, for single (p p \\rightarrow X p) and double (p p \\rightarrow XY) diffractive processes for a kinematic range corresponding to detector acceptance {\\xi} = M2X /s calculated from the invariant mass MX of the heavier dissociation system X. Furthermore a study is made of pseudorapidity gap distributions using 7.1 \\pm 0.2 \\mu b-1 of data collected to tune the diffractive fraction of the inelastic cross-section in Monte Carlo (MC) models, and a measurement is made of the differential cross-section for events with large gaps in pseudorapidity where diffractive processes dominate.

  13. Exotic physics at ATLAS

    CERN Document Server

    Meehan, S; The ATLAS collaboration

    2014-01-01

    A number of proposed explanations to observed phenomena predict new physics that will be directly observable at the LHC. Each new theory is manifested in the experiments as an experimental signature that sets it apart from the many well understood Standard Model processes. Presented here is a summary of a selection of such searches performed using 8 TeV center of mass energy data produced by the LHC and collected with the ATLAS detector. As no significant deviations from the standard model are observed in any search channel presented here, the results are interpreted in terms of constraints on new physics in a number of scenarios including dark matter, sequential standard model extensions, and model independent interpretations depending on the given search channel.

  14. Atlas of Nuclear Isomers

    Science.gov (United States)

    Jain, Ashok Kumar; Maheshwari, Bhoomika; Garg, Swati; Patial, Monika; Singh, Balraj

    2015-09-01

    We present an atlas of nuclear isomers containing the experimental data for the isomers with a half-life ≥ 10 ns together with their various properties such as excitation-energy, half-life, decay mode(s), spin-parity, energies and multipolarities of emitted gamma transitions, etc. The ENSDF database complemented by the XUNDL database has been extensively used in extracting the relevant data. Recent literature from primary nuclear physics journals, and the NSR bibliographic database have been searched to ensure that the compiled data Table is as complete and current as possible. The data from NUBASE-12 have also been checked for completeness, but as far as possible original references have been cited. Many interesting systematic features of nuclear isomers emerge, some of them new; these are discussed and presented in various graphs and figures. The cutoff date for the extraction of data from the literature is August 15, 2015.

  15. Higgs in ATLAS

    CERN Document Server

    Ouellette, E A; The ATLAS collaboration

    2013-01-01

    The search for the Higgs boson in the $H \\rightarrow\\gamma\\gamma$ and $H \\rightarrow ZZ^*$ has led to the discovery of a new boson at ATLAS using 2011 and 2012 data. A further push is needed to confirm that the discovered particle is in fact the Standard Model Higgs. Thus, Higgs searches in fermionic decay channels have become very important. This talk presents the results of the search for the SM Higgs boson produced in association with a $W$ or $Z$ and decaying to $b\\bar{b}$ using 4.7 fb-1 of LHC data at $\\sqrt{s}=7$TeV and 13.0 fb-1 at 8TeV. In addition, results from the SM Higgs search in the $ttH (H\\rightarrow b\\bar{b})$ using 4.7fb-1 of $\\sqrt{s}=7$TeV data are presented.

  16. Atlas of Astronomical Discoveries

    CERN Document Server

    Schilling, Govert

    2011-01-01

    Four hundred years ago in Middelburg, in the Netherlands, the telescope was invented. The invention unleashed a revolution in the exploration of the universe. Galileo Galilei discovered mountains on the Moon, spots on the Sun, and moons around Jupiter. Christiaan Huygens saw details on Mars and rings around Saturn. William Herschel discovered a new planet and mapped binary stars and nebulae. Other astronomers determined the distances to stars, unraveled the structure of the Milky Way, and discovered the expansion of the universe. And, as telescopes became bigger and more powerful, astronomers delved deeper into the mysteries of the cosmos. In his Atlas of Astronomical Discoveries, astronomy journalist Govert Schilling tells the story of 400 years of telescopic astronomy. He looks at the 100 most important discoveries since the invention of the telescope. In his direct and accessible style, the author takes his readers on an exciting journey encompassing the highlights of four centuries of astronomy. Spectacul...

  17. The ATLAS experiment

    CERN Document Server

    Dunford, Monica Lynn

    2014-01-01

    In particle physics experiments, the discovery of increasingly more massive particles has brought deep understanding of the basic constituents of matter and of the fundamental forces among them. In order to explore Nature in its deepest elementary secrets, the Large Hadron Collider (LHC) was built at CERN, Geneva. The LHC provides the highest energy collisions in a laboratory, at very high rates to allow one to study very rare reactions. Two independent sophisticated huge instruments, called ATLAS and CMS detectors, are operated to explore in a most broad way the physics of these collisions. In addition to these two general-purpose detectors, smaller specialized experiments (LHCb, ALICE and some others) are collecting collision data as well.

  18. ATLAS ITk Pixel detector

    CERN Document Server

    Gemme, Claudia; The ATLAS collaboration

    2016-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenge to the ATLAS tracker. The current inner detector will be replaced with a whole silicon tracker which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation level are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the HL-LHC ATLA Pixel detector developments as well as the various layout options will be reviewed.

  19. Atlas of Nuclear Isomers

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Ashok Kumar, E-mail: ajainfph@iitr.ac.in [Department of Physics, Indian Institute of Technology, Roorkee-247667 (India); Maheshwari, Bhoomika; Garg, Swati; Patial, Monika [Department of Physics, Indian Institute of Technology, Roorkee-247667 (India); Singh, Balraj [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario-L8S 4M1 (Canada)

    2015-09-15

    We present an atlas of nuclear isomers containing the experimental data for the isomers with a half-life ≥ 10 ns together with their various properties such as excitation-energy, half-life, decay mode(s), spin-parity, energies and multipolarities of emitted gamma transitions, etc. The ENSDF database complemented by the XUNDL database has been extensively used in extracting the relevant data. Recent literature from primary nuclear physics journals, and the NSR bibliographic database have been searched to ensure that the compiled data Table is as complete and current as possible. The data from NUBASE-12 have also been checked for completeness, but as far as possible original references have been cited. Many interesting systematic features of nuclear isomers emerge, some of them new; these are discussed and presented in various graphs and figures. The cutoff date for the extraction of data from the literature is August 15, 2015.

  20. Atlas of neutron resonances

    CERN Document Server

    Mughabghab, Said

    2018-01-01

    Atlas of Neutron Resonances: Resonance Properties and Thermal Cross Sections Z= 1-60, Sixth Edition, contains an extensive list of detailed individual neutron resonance parameters for Z=1-60, as well as thermal cross sections, capture resonance integrals, average resonance parameters and a short survey of the physics of thermal and resonance neutrons. The long introduction contains: nuclear physics formulas aimed at neutron physicists; topics of special interest such as valence neutron capture, nuclear level density parameters, and s-, p-, and d-wave neutron strength functions; and various comparisons of measured quantities with the predictions of nuclear models, such as the optical model. As in the last edition, additional features have been added to appeal to a wider spectrum of users. These include: spin-dependent scattering lengths that are of interest to solid-state physicists, nuclear physicists and neutron evaluators; calculated and measured Maxwellian average 5-keV and 30-keV capture cross sections o...

  1. ATLAS TRT barrel

    CERN Multimedia

    CERN Video Productions

    2005-01-01

    On 3 February 2005, members of the US-TRT team proceeded to the installation of the last TRT barrel module for the Transition Radiation Tracker, which will be used for tracking in the Atlas detector. The TRT barrel is made of 96 modules containing around 52 000 4-mm straws, each of them equipped with a 20 microns sense wire. The modules were first designed at CERN, then built in the USA between 1996 and 2003. Duke, Hampton and Indiana Universities, tested in details at CERN between 2003 and 2005 by members of the US-TRT group, and mounted on the support structure in the SR-1 building where this video was taken. During assembly of the last module, one can see Kirill Egorov (PNPI, Gatchina, Russia), Chuck Mahlong (Hampton) as well as John Callahan and Pauline Gagnon (Indiana). (Written by Pauline Gagnon)

  2. The human cell atlas

    DEFF Research Database (Denmark)

    Regev, Aviv; Teichmann, Sarah A.; Lander, Eric S.

    2017-01-01

    The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international...... collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells...... in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early...

  3. Electroweak and BSM Searches in B Physics with ATLAS

    CERN Document Server

    Cerri, Alessandro; The ATLAS collaboration

    2017-01-01

    A wide program of studies is performed by ATLAS in the B0 and B0s systems.  The talk will discuss the measurement of the width difference in the B0 system (currently, the most precise single measurement) and the recent study of the angular correlations in the B0 to K* mu+mu- decays.  
The ongoing programs on the rare decays of B0(s) to muon pairs and on the B0s width difference and CP violating phase phi_s in the decay B0s to J/psi phi will also be discussed.

  4. The ATLAS distributed analysis system

    Science.gov (United States)

    Legger, F.; Atlas Collaboration

    2014-06-01

    In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of Grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During the first run of the LHC, the ATLAS Distributed Analysis (DA) service has operated stably and scaled as planned. More than 1600 users submitted jobs in 2012, with 2 million or more analysis jobs per week, peaking at about a million jobs per day. The system dynamically distributes popular data to expedite processing and maximally utilize resources. The reliability of the DA service is high and steadily improving; Grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters provides user support and communicates user problems to the sites. Both the user support techniques and the direct feedback of users have been effective in improving the success rate and user experience when utilizing the distributed computing environment. In this contribution a description of the main components, activities and achievements of ATLAS distributed analysis is given. Several future improvements being undertaken will be described.

  5. First ATLAS Events Recorded Underground

    CERN Multimedia

    Teuscher, R

    As reported in the CERN Bulletin, Issue No.30-31, 25 July 2005 The ATLAS barrel Tile calorimeter has recorded its first events underground using a cosmic ray trigger, as part of the detector commissioning programme. This is not a simulation! A cosmic ray muon recorded by the barrel Tile calorimeter of ATLAS on 21 June 2005 at 18:30. The calorimeter has three layers and a pointing geometry. The light trapezoids represent the energy deposited in the tiles of the calorimeter depicted as a thick disk. On the evening of June 21, the ATLAS detector, now being installed in the underground experimental hall UX15, reached an important psychological milestone: the barrel Tile calorimeter recorded the first cosmic ray events in the underground cavern. An estimated million cosmic muons enter the ATLAS cavern every 3 minutes, and the ATLAS team decided to make good use of some of them for the commissioning of the detector. Although only 8 of the 128 calorimeter slices ('superdrawers') were included in the trigg...

  6. ATLAS DDM integration in ARC

    DEFF Research Database (Denmark)

    Behrmann, Gerd; Cameron, David; Ellert, Mattias

    2008-01-01

    The Nordic Data Grid Facility (NDGF) consists of Grid resources running ARC middleware in Denmark, Finland, Norway and Sweden. These resources serve many virtual organisations and contribute a large fraction of total worldwide resources for the ATLAS experiment, whose data is distributed and mana......The Nordic Data Grid Facility (NDGF) consists of Grid resources running ARC middleware in Denmark, Finland, Norway and Sweden. These resources serve many virtual organisations and contribute a large fraction of total worldwide resources for the ATLAS experiment, whose data is distributed...... and managed by the DQ2 software. Managing ATLAS data within NDGF and between NDGF and other Grids used by ATLAS (the Enabling Grids for E-sciencE Grid and the Open Science Grid) presents a unique challenge for several reasons. Firstly, the entry point for data, the Tier 1 centre, is physically distributed...... outside the worker node environment. Also, the service used for cataloging the location of data files is different from otherGrids but must still be useable by DQ2 and ATLAS users to locate data within NDGF. This paper presents in detail how we solve these issues to allow seamless access worldwide to data...

  7. ATLAS Cloud R&D

    CERN Document Server

    Panitkin, S; The ATLAS collaboration; Caballero Bejar, J; Benjamin, D; DiGirolamo, A; Gable, I; Hendrix, V; Hover, J; Kucharczuk, K; Medrano LLamas, R; Love, P; Ohman, H; Paterson, M; Sobie, R; Taylor, R; Walker, R; Zaytsev, A

    2014-01-01

    The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R&D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R&D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R&D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R&D group has gained...

  8. The ATLAS Electromagnetic Calorimeter Calibration Workshop

    CERN Multimedia

    Hong Ma; Isabelle Wingerter

    The ATLAS Electromagnetic Calorimeter Calibration Workshop took place at LAPP-Annecy from the 1st to the 3rd of October; 45 people attended the workshop. A detailed program was setup before the workshop. The agenda was organised around very focused presentations where questions were raised to allow arguments to be exchanged and answers to be proposed. The main topics were: Electronics calibration Handling of problematic channels Cluster level corrections for electrons and photons Absolute energy scale Streams for calibration samples Calibration constants processing Learning from commissioning Forty-five people attended the workshop. The workshop was on the whole lively and fruitful. Based on years of experience with test beam analysis and Monte Carlo simulation, and the recent operation of the detector in the commissioning, the methods to calibrate the electromagnetic calorimeter are well known. Some of the procedures are being exercised in the commisssioning, which have demonstrated the c...

  9. Tau identification using multivariate techniques in ATLAS

    CERN Document Server

    O'Neil, D; The ATLAS collaboration

    2011-01-01

    Tau leptons will play an important role in the physics program at the LHC. They will be used in electroweak measurements and in detector related studies like the determination of the missing transverse energy scale, but also in searches for new phenomena like the Higgs boson or Supersymmetry. Due to the huge background from QCD processes, efficient tau identification techniques with large fake rejection are essential. Tau object appear as collimated jets with low track multiplicity and single variable criteria are not enough to efficiently separate them from jets and electrons. This can be achieved using modern multivariate techniques which make optimal use of all the information available. They are particularly useful when the discriminating variables are not independent and no single variable provides good signal and background separation. In ATLAS several advanced algorithms are applied to identify taus, in particular a projective likelihood estimator and boosted decision trees. All multivariate methods ap...

  10. EnviroAtlas - Minneapolis/St. Paul, MN - EnviroAtlas Community Boundary

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the boundary of the Minneapolis/St. Paul, MN EnviroAtlas Community. It represents the outside edge of all the block groups included in...

  11. World ocean atlas 2001 [electronic resource]: World ocean atlas 2001 figures : objective analyses and statistics

    National Research Council Canada - National Science Library

    2001-01-01

    World ocean atlas 2001 (WOA01) is an update of World ocean atlas 1998. WOA01 expands on WOA98 with the addition of the monthly nutrients fields and the introduction of annual and seasonal zooplankton biomass fields...

  12. ATLAS Online Data Quality Monitoring

    CERN Document Server

    Cuenca Almenar, C; The ATLAS collaboration

    2010-01-01

    With the delivery of the first proton-proton collisions by the LHC, the ATLAS collaboration had the opportunity to operate the detector under the environment it was designed for. These first events have been of great interest not only for the high energy physics outcome, but also as a means to perform a general commissioning of system. A highly scalable distributed monitoring framework assesses the quality of the data and the operational conditions of the detector, trigger and data acquisition system. Every minute of an ATLAS data taking session the monitoring framework serves several thousands physics events to monitoring data analysis applications, handles millions of histogram updates coming from thousands applications, executes over forty thousand advanced data quality checks for a subset of those histograms, displays histograms and results of these checks on several dozens of monitors installed in main and satellite ATLAS control rooms. The online data quality monitoring system has been of great help in ...

  13. ATLAS online data quality monitoring

    CERN Document Server

    Cuenca Almenar, C; The ATLAS collaboration

    2010-01-01

    With the delivery of the first proton-proton collisions by the LHC, the ATLAS collaboration had the opportunity to operate the detector under the environment it was designed for. These first events have been of great interest not only for the high energy physics outcome, but also as a means to perform a general commissioning of system. A highly scalable distributed monitoring framework assesses the quality of the data and the operational conditions of the detector, trigger and data acquisition system. Every minute of an ATLAS data taking session the monitoring framework serves several thousands physics events to monitoring data analysis applications, handles millions of histogram updates coming from thousands applications, executes over forty thousand advanced data quality checks for a subset of those histograms, displays histograms and results of these checks on several dozens of monitors installed in main and satellite ATLAS control rooms. The online data quality monitoring system has been of great help in ...

  14. The ATLAS Glasgow Overview Week

    CERN Multimedia

    Richard Hawkings

    2007-01-01

    The ATLAS Overview Weeks always provide a good opportunity to see the status and progress throughout the experiment, and the July week at Glasgow University was no exception. The setting, amidst the traditional buildings of one of the UK's oldest universities, provided a nice counterpoint to all the cutting-edge research and technology being discussed. And despite predictions to the contrary, the weather at these northern latitudes was actually a great improvement on the previous few weeks in Geneva. The meeting sessions comprehensively covered the whole ATLAS project, from the subdetector and TDAQ systems and their commissioning, through to offline computing, analysis and physics. As a long-time ATLAS member who remembers plenary meetings in 1991 with 30 people drawing detector layouts on a whiteboard, the hardware and installation sessions were particularly impressive - to see how these dreams have been translated into 7000 tons of reality (and with attendant cabling, supports and services, which certainly...

  15. The Pig PeptideAtlas

    DEFF Research Database (Denmark)

    Hesselager, Marianne O.; Codrea, Marius C.; Sun, Zhi

    2016-01-01

    underrepresented in existing repositories. We here present a significantly improved build of the Pig PeptideAtlas, which includes pig proteome data from 25 tissues and three body fluid types mapped to 7139 canonical proteins. The content of the Pig PeptideAtlas reflects actively ongoing research within...... the veterinary proteomics domain, and this article demonstrates how the expression of isoform-unique peptides can be observed across distinct tissues and body fluids. The Pig PeptideAtlas is a unique resource for use in animal proteome research, particularly biomarker discovery and for preliminary design of SRM...... assays, which are equally important for progress in research that supports farm animal production and veterinary health, as for developing pig models with relevance to human health research....

  16. Two ATLAS trackers become one

    CERN Multimedia

    2006-01-01

    The ATLAS inner detector barrel comes one step closer to completion as the semiconductor tracker is merged with the transition radiation tracker. ATLAS collaborators prepare for the insertion of the semiconductor tracker (SCT, behind) into the transition radiation tracker (TRT, in front). Some had hoped it would fall on Valentine's Day. But despite the slight delay, Friday 17 February was lovingly embraced as 'Conception Day,' when dozens of physicists and engineers from the international collaboration gathered to witness the insertion of the ATLAS semiconductor tracker into the transition radiation tracker, a major milestone in the assembly of the experiment's inner detector. With just millimeters of room for error, the cylindrical trackers were slid into each other as inner detector integration coordinator Heinz Pernegger issued commands and scientists held out flashlights, lay on their backs and stood on ladders to take careful measurements. Each tracker is the result of about 10 years of international ...

  17. New ATLAS Software & Computing Organization

    CERN Multimedia

    Barberis, D

    Following the election by the ATLAS Collaboration Board of Dario Barberis (Genoa University/INFN) as Computing Coordinator and David Quarrie (LBNL) as Software Project Leader, it was considered necessary to modify the organization of the ATLAS Software & Computing ("S&C") project. The new organization is based upon the following principles: separation of the responsibilities for computing management from those of software development, with the appointment of a Computing Coordinator and a Software Project Leader who are both members of the Executive Board; hierarchical structure of responsibilities and reporting lines; coordination at all levels between TDAQ, S&C and Physics working groups; integration of the subdetector software development groups with the central S&C organization. A schematic diagram of the new organization can be seen in Fig.1. Figure 1: new ATLAS Software & Computing organization. Two Management Boards will help the Computing Coordinator and the Software Project...

  18. The ATLAS positive ion injector

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Bollinger, L.M.; Pardo, R.C.

    1990-01-01

    This paper reviews the design, construction status, and beam tests to date of the positive ion injector (PII) which is replacing the tandem injector for the ATLAS heavy-ion facility. PII consists of an ECR ion source on a 350 KV platform injecting a very low velocity superconducting linac. The linac is composed of an independently-phased array of superconducting four-gap interdigital resonators which accelerate over a velocity range of .006 to .05c. In finished form, PII will be able to inject ions as heavy as uranium into the existing ATLAS linac. Although at the present time little more than 50% of the linac is operational, the indenpently-phased array is sufficiently flexible that ions in the lower half of the periodic table can be accelerated and injected into ATLAS. Results of recent operational experience will be discussed. 5 refs.

  19. The ATLAS Detector Control System

    CERN Document Server

    Schlenker, S; Kersten, S; Hirschbuehl, D; Braun, H; Poblaguev, A; Oliveira Damazio, D; Talyshev, A; Zimmermann, S; Franz, S; Gutzwiller, O; Hartert, J; Mindur, B; Tsarouchas, CA; Caforio, D; Sbarra, C; Olszowska, J; Hajduk, Z; Banas, E; Wynne, B; Robichaud-Veronneau, A; Nemecek, S; Thompson, PD; Mandic, I; Deliyergiyev, M; Polini, A; Kovalenko, S; Khomutnikov, V; Filimonov, V; Bindi, M; Stanecka, E; Martin, T; Lantzsch, K; Hoffmann, D; Huber, J; Mountricha, E; Santos, HF; Ribeiro, G; Barillari, T; Habring, J; Arabidze, G; Boterenbrood, H; Hart, R; Marques Vinagre, F; Lafarguette, P; Tartarelli, GF; Nagai, K; D'Auria, S; Chekulaev, S; Phillips, P; Ertel, E; Brenner, R; Leontsinis, S; Mitrevski, J; Grassi, V; Karakostas, K; Iakovidis, G.; Marchese, F; Aielli, G

    2011-01-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC), constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub-detectors as well as the common experimental infrastructure are supervised by the Detector Control System (DCS). The DCS enables equipment supervision of all ATLAS sub-detectors by using a system of >130 server machines running the industrial SCADA product PVSS. This highly distributed system reads, processes and archives of the order of 106 operational parameters. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, and manage the communication with external systems such as the LHC. This contribution firstly describes the status of the ATLAS DCS and the experience gained during the LHC commissioning and the first physics data taking operation period. Secondly, the future evolution and maintenance constraints for the coming years an...

  20. The Pig PeptideAtlas

    DEFF Research Database (Denmark)

    Hesselager, Marianne Overgaard; Codrea, Marius; Sun, Zhi

    2016-01-01

    Biological research of Sus scrofa, the domestic pig, is of immediate relevance for food production sciences, and for developing pig as a model organism for human biomedical research. Publicly available data repositories play a fundamental role for all biological sciences, and protein data...... repositories are in particular essential for the successful development of new proteomic methods. Cumulative proteome data repositories, including the PeptideAtlas, provide the means for targeted proteomics, system-wide observations, and cross-species observational studies, but pigs have so far been...... underrepresented in existing repositories. We here present a significantly improved build of the Pig PeptideAtlas, which includes pig proteome data from 25 tissues and three body fluid types mapped to 7139 canonical proteins. The content of the Pig PeptideAtlas reflects actively ongoing research within...

  1. ATLAS honours two Swiss companies

    CERN Multimedia

    2003-01-01

    On 18 June 2003, ATLAS presented awards to two Swiss companies, Cicorel SA and Isola Composites AG, the suppliers of the electrodes and the composite bars for the electromagnetic calorimeter. "Physicists' dreams could not become reality without industry's active participation and creativity", said Peter Jenni, ATLAS spokesman, congratulating two of the collaboration's suppliers, to which it presented awards on 18 June. Swiss quality was the order of the day, since the two companies, Cicorel SA and Isola Composites AG, which are both involved in the production of components for the electromagnetic calorimeter, are located in Switzerland's Jura region. "You have taken up and met a challenge that bordered on the impossible", added Peter Jenni. The suppliers who received the ATLAS award: Hans Wyss from Cicorel SA (left) and Constant Gentile from Isola Composites (right).Circorel SA produced enough electrodes to cover an entire football pitch. Each electrode, measuring 2 square metres, consists of three layers of...

  2. USGS Small-scale Dataset - North American Atlas - Political Boundaries 200406 Shapefile

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A joint venture involving the National Atlas programs in Canada (Natural Resources Canada), Mexico (Instituto Nacional de Estadística Geografía e Informática),...

  3. USGS Small-scale Dataset - North American Atlas - Populated Places 200406 Shapefile

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A joint venture involving the National Atlas programs in Canada (Natural Resources Canada), Mexico (Instituto Nacional de Estadística Geografía e Informática),...

  4. USGS Small-scale Dataset - North American Atlas - Roads 200406 Shapefile

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A joint venture involving the National Atlas programs in Canada (Natural Resources Canada), Mexico (Instituto Nacional de Estadística Geografía e Informática),...

  5. USGS Small-scale Dataset - North American Atlas - Railroads 200406 Shapefile

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A joint venture involving the National Atlas programs in Canada (Natural Resources Canada), Mexico (Instituto Nacional de Estadística Geografía e Informática),...

  6. USGS Small-scale Dataset - North American Atlas - Glaciers 200406 Shapefile

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A joint venture involving the National Atlas programs in Canada (Natural Resources Canada), Mexico (Instituto Nacional de Estadística Geografía e Informática),...

  7. USGS Small-scale Dataset - North American Atlas - Hydrography 200406 Shapefile

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A joint venture involving the National Atlas programs in Canada (Natural Resources Canada), Mexico (Instituto Nacional de Estadística Geografía e Informática),...

  8. USGS Small-scale Dataset - North American Atlas - Sea Ice 200406 Shapefile

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A joint venture involving the National Atlas programs in Canada (Natural Resources Canada), Mexico (Instituto Nacional de Estadística Geografía e Informática),...

  9. USGS Small-scale Dataset - North American Atlas - Glaciers 200406 ArcExport

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A joint venture involving the National Atlas programs in Canada (Natural Resources Canada), Mexico (Instituto Nacional de Estadística Geografía e Informática),...

  10. USGS Small-scale Dataset - North American Atlas - Political Boundaries 200406 ArcExport

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A joint venture involving the National Atlas programs in Canada (Natural Resources Canada), Mexico (Instituto Nacional de Estadística Geografía e Informática),...

  11. USGS Small-scale Dataset - North American Atlas - Sea Ice 200406 ArcExport

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A joint venture involving the National Atlas programs in Canada (Natural Resources Canada), Mexico (Instituto Nacional de Estadística Geografía e Informática),...

  12. USGS Small-scale Dataset - North American Atlas - Roads 200406 ArcExport

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A joint venture involving the National Atlas programs in Canada (Natural Resources Canada), Mexico (Instituto Nacional de Estadística Geografía e Informática),...

  13. USGS Small-scale Dataset - North American Atlas - Railroads 200406 ArcExport

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A joint venture involving the National Atlas programs in Canada (Natural Resources Canada), Mexico (Instituto Nacional de Estadística Geografía e Informática),...

  14. USGS Small-scale Dataset - North American Atlas - Bathymetry 200406 ArcExport

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A joint venture involving the National Atlas programs in Canada (Natural Resources Canada), Mexico (Instituto Nacional de Estadística Geografía e Informática),...

  15. USGS Small-scale Dataset - North American Atlas - Hydrography 200406 ArcExport

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A joint venture involving the National Atlas programs in Canada (Natural Resources Canada), Mexico (Instituto Nacional de Estadística Geografía e Informática),...

  16. USGS Small-scale Dataset - North American Atlas - Bathymetry 200406 Shapefile

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A joint venture involving the National Atlas programs in Canada (Natural Resources Canada), Mexico (Instituto Nacional de Estadística Geografía e Informática),...

  17. USGS Small-scale Dataset - North American Atlas - Populated Places 200406 ArcExport

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A joint venture involving the National Atlas programs in Canada (Natural Resources Canada), Mexico (Instituto Nacional de Estadística Geografía e Informática),...

  18. SU-E-J-132: Automated Segmentation with Post-Registration Atlas Selection Based On Mutual Information

    Energy Technology Data Exchange (ETDEWEB)

    Ren, X; Gao, H [Shanghai Jiao Tong University, Shanghai, Shanghai (China); Sharp, G [Massachusetts General Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: The delineation of targets and organs-at-risk is a critical step during image-guided radiation therapy, for which manual contouring is the gold standard. However, it is often time-consuming and may suffer from intra- and inter-rater variability. The purpose of this work is to investigate the automated segmentation. Methods: The automatic segmentation here is based on mutual information (MI), with the atlas from Public Domain Database for Computational Anatomy (PDDCA) with manually drawn contours.Using dice coefficient (DC) as the quantitative measure of segmentation accuracy, we perform leave-one-out cross-validations for all PDDCA images sequentially, during which other images are registered to each chosen image and DC is computed between registered contour and ground truth. Meanwhile, six strategies, including MI, are selected to measure the image similarity, with MI to be the best. Then given a target image to be segmented and an atlas, automatic segmentation consists of: (a) the affine registration step for image positioning; (b) the active demons registration method to register the atlas to the target image; (c) the computation of MI values between the deformed atlas and the target image; (d) the weighted image fusion of three deformed atlas images with highest MI values to form the segmented contour. Results: MI was found to be the best among six studied strategies in the sense that it had the highest positive correlation between similarity measure (e.g., MI values) and DC. For automated segmentation, the weighted image fusion of three deformed atlas images with highest MI values provided the highest DC among four proposed strategies. Conclusion: MI has the highest correlation with DC, and therefore is an appropriate choice for post-registration atlas selection in atlas-based segmentation. Xuhua Ren and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)

  19. A geochemical atlas of North Carolina, USA

    Science.gov (United States)

    Reid, J.C.

    1993-01-01

    A geochemical atlas of North Carolina, U.S.A., was prepared using National Uranium Resource Evaluation (NURE) stream-sediment data. Before termination of the NURE program, sampling of nearly the entire state (48,666 square miles of land area) was completed and geochemical analyses were obtained. The NURE data are applicable to mineral exploration, agriculture, waste disposal siting issues, health, and environmental studies. Applications in state government include resource surveys to assist mineral exploration by identifying geochemical anomalies and areas of mineralization. Agriculture seeks to identify areas with favorable (or unfavorable) conditions for plant growth, disease, and crop productivity. Trace elements such as cobalt, copper, chromium, iron, manganese, zinc, and molybdenum must be present within narrow ranges in soils for optimum growth and productivity. Trace elements as a contributing factor to disease are of concern to health professionals. Industry can use pH and conductivity data for water samples to site facilities which require specific water quality. The North Carolina NURE database consists of stream-sediment samples, groundwater samples, and stream-water analyses. The statewide database consists of 6,744 stream-sediment sites, 5,778 groundwater sample sites, and 295 stream-water sites. Neutron activation analyses were provided for U, Br, Cl, F, Mn, Na, Al, V, Dy in groundwater and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in stream sediments. Supplemental analyses by other techniques were reported on U (extractable), Ag, As, Ba, Be, Ca, Co, Cr, Cu, K, Li, Mg, Mo, Nb, Ni, P, Pb, Se, Sn, Sr, W, Y, and Zn for 4,619 stream-sediment samples. A small subset of 334 stream samples was analyzed for gold. The goal of the atlas was to make available the statewide NURE data with minimal interpretation to enable prospective users to modify and manipulate the data for their end use. The atlas provides only

  20. Large scale digital atlases in neuroscience

    Science.gov (United States)

    Hawrylycz, M.; Feng, D.; Lau, C.; Kuan, C.; Miller, J.; Dang, C.; Ng, L.

    2014-03-01

    Imaging in neuroscience has revolutionized our current understanding of brain structure, architecture and increasingly its function. Many characteristics of morphology, cell type, and neuronal circuitry have been elucidated through methods of neuroimaging. Combining this data in a meaningful, standardized, and accessible manner is the scope and goal of the digital brain atlas. Digital brain atlases are used today in neuroscience to characterize the spatial organization of neuronal structures, for planning and guidance during neurosurgery, and as a reference for interpreting other data modalities such as gene expression and connectivity data. The field of digital atlases is extensive and in addition to atlases of the human includes high quality brain atlases of the mouse, rat, rhesus macaque, and other model organisms. Using techniques based on histology, structural and functional magnetic resonance imaging as well as gene expression data, modern digital atlases use probabilistic and multimodal techniques, as well as sophisticated visualization software to form an integrated product. Toward this goal, brain atlases form a common coordinate framework for summarizing, accessing, and organizing this knowledge and will undoubtedly remain a key technology in neuroscience in the future. Since the development of its flagship project of a genome wide image-based atlas of the mouse brain, the Allen Institute for Brain Science has used imaging as a primary data modality for many of its large scale atlas projects. We present an overview of Allen Institute digital atlases in neuroscience, with a focus on the challenges and opportunities for image processing and computation.