WorldWideScience

Sample records for atlas slhc pixel

  1. Study of the Radiation Hardness Performance of PiN diodes for the ATLAS Pixel Detector at the SLHC upgrade

    CERN Document Server

    Abi, B

    2009-01-01

    We study the radiation tolerance of the silicon and GaAs PiN diodes that will be the part of the readout system of the upgraded ATLAS pixel detector. The components were irradiated by 200 MeV protons up to total accumulated dose 1.2×1015 p/cm2 and by 24 GeV protons up to 2.6×1015 p/cm2. Based on obtained results, we conclude that radiation hardness does not depend on the sensitive area or cut off frequency of PiN diodes. We identify two diodes that can be used for the SLHC upgrade.

  2. TCAD Simulations of ATLAS Pixel Guard Ring and Edge Structure for SLHC Upgrade

    CERN Document Server

    Lounis, A; The ATLAS collaboration; Calderini, G; Marchiori, G; Benoit, M; Dinu, N

    2010-01-01

    In this work, the magnitude of the electric field and the depletion inside a simplified two dimensional model of the ATLAS planar pixel sensor for the insertable b-layer and the super-LHC upgrade have been studied. The parameters influencing the breakdown behavior were studied using a finite-element method to solve the drift-diffusion equations coupled to Poisson's equation. Using these models, the number of guard rings, dead edge width and sensor's thickness were modified with respect to the ATLAS actual pixel sensor to investigate their influence on the sensor's depletion at the edge and on its internal electrical field distribution. The goal of the simulation is to establish a model to discriminate between different designs and to select the most optimized to fit the needs in radiation hardness and low material budget of ATLAS inner detector during super-LHC operation. A three defects level model has been implemented in the simulations to study the behavior of such sensors under different level of irradiat...

  3. SLHC and ATLAS, Initial Plans

    CERN Document Server

    Nessi, M

    2008-01-01

    The recent developments in the plans and scenarios proposed by the LHC machine experts towards the SLHC, have triggered various concerns and reserves in the ATLAS community. In particular the eventual need to insert dipoles, quadrupoles and protection elements inside the detector creates major concerns, because of its complex logistics and the risk of reducing the effectiveness of the ATLAS internal radiation shielding. Justifications and constraints on how to best use this space are given.

  4. Silicon Strip Detectors for the ATLAS sLHC Upgrade

    CERN Document Server

    Soldevila, U; The ATLAS collaboration

    2011-01-01

    While the Large Hadron Collider (LHC) at CERN is continuing to deliver an ever-increasing luminosity to the experiments, plans for an upgraded machine called Super-LHC (sLHC) are progressing. The upgrade is foreseen to increase the LHC design luminosity by a factor ten. The ATLAS experiment will need to build a new tracker for sLHC operation, which needs to be suited to the harsh sLHC conditions in terms of particle rates and radiation doses. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. To successfully face the increased radiation dose, a new generation of extremely radiation hard silicon detectors is being designed. Silicon sensors with sufficient radiation hardness are the subject of an international R&D programme, working on pixel and strip sensors. The efforts presented here concentrate on the innermost strip layers. We have developed a large number of prototype planar detectors produced on p-type wafers in a...

  5. Silicon Strip Detectors for ATLAS sLHC Upgrade

    CERN Document Server

    Affolder, A; The ATLAS collaboration

    2011-01-01

    While the Large Hadron Collider (LHC) at CERN is continuing to deliver an ever-increasing luminosity to the experiments, plans for an upgraded machine called Super-LHC (sLHC) are progressing. The upgrade is foreseen to increase the LHC design luminosity by a factor ten. The ATLAS experiment will need to build a new tracker for sLHC operation, which needs to be suited to the harsh sLHC conditions in terms of particle rates and radiation doses. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. To successfully face the increased radiation dose, a new generation of extremely radiation hard silicon detectors is being designed. Silicon sensors with sufficient radiation hardness are the subject of an international R&D programme, working on pixel and strip sensors. The efforts presented here concentrate on the innermost strip layers. We have developed a large number of prototype planar detectors produced on p-type wafers in a number of d...

  6. The ATLAS Tracker Upgrade: Short Strips Detectors for the SLHC

    CERN Document Server

    Soldevila, U; Lacasta, C; Marti i García, S; Miñano, M

    2009-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN around 2018 by about an order of magnitude, with the upgraded machine dubbed Super-LHC or sLHC. The ATLAS experiment will require a new tracker for SLHC operation. In order to cope with the order of magnitude increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. A massive R&D programme is underway to develop silicon sensors with sufficient radiation hardness. New front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics ...

  7. The ATLAS pixel detector

    OpenAIRE

    Cristinziani, M.

    2007-01-01

    After a ten years planning and construction phase, the ATLAS pixel detector is nearing its completion and is scheduled to be integrated into the ATLAS detector to take data with the first LHC collisions in 2007. An overview of the construction is presented with particular emphasis on some of the major and most recent problems encountered and solved.

  8. ATLAS Liquid Argon Endcap Calorimeter R and D for sLHC

    CERN Document Server

    Schacht, P; The ATLAS collaboration

    2009-01-01

    The performance of the ATLAS liquid argon endcap has been studied for luminosities as expected for the operation at sLHC. The increase of integrated luminosity by a factor of ten has serious consequences for the signal reconstruction, radiation hardness requirements and operation of the forward liquid argon calorimeters. The response has been studied with small modules of the type as built for ATLAS in a very high intensity beam at IHEP/Protvino. The highest intensity obtained was well above the level of energy impact expected for ATLAS at sLHC. The signal processing of the ATLAS Hadronic Endcap Calorimeters employs the concept of 'active pads' which keeps the detector capacities at the input of the amplifiers small and thereby achieves a fast rise time of the signal. This concept is realized using highly integrated amplifier and summing chips in GaAs technology. With an increase of luminosity by a factor of ten the safety factor for the radiation hardness is essentially eliminated. Therefore new more radiati...

  9. ATLAS Liquid Argon Endcap Calorimeter R and D for sLHC

    CERN Document Server

    Schacht, P; The ATLAS collaboration

    2009-01-01

    The performance of the ATLAS liquid argon endcap has been studied for luminosities as expected for the operation at sLHC. The increase of integrated luminosity by a factor of ten has serious consequences for the signal reconstruction, radiation hardness requirements and operations of the forward liquid argon calorimeters. The response has been studied with small modules of the type as built for ATLAS in a very high intensity beam at IHEP/Protvino. The highest intensity obtained was well above the level of energy impact expected for ATLAS at sLHC. The signal processing of the ATLAS Hadronic Endcap Calorimeter employs the concept of 'active pads' which keeps the detector capacities at the input of the amplifiers small and thereby achieves a fast rise time of the signal. This concept is realized using highly integrated amplifier and summing chips in GaAs technology. With an increase of luminosity by a factor of ten the safety factor for the radiation hardness is essentially eliminated. Therefore new more radiati...

  10. The ATLAS pixel stave emulator for serial powering

    International Nuclear Information System (INIS)

    A serial powering scheme is being developed for the upgrade of the ATLAS pixel detector in view of sLHC. It offers in fact significant advantages over the presently used parallel powering scheme, namely reduced material budget in active area and power losses on cables, smaller number of power supplies, and no need for external, distant regulation of voltages. The development of this powering scheme requires not only the design of custom-developed voltage regulators, the basic elements of serial powering, but also the early study of system aspects connected to it, for instance the safety of the powering chain and AC-coupled data transmission. To this aim a test system emulating an ATLAS pixel stave is being developed. It will provide a realistic environment to test both concepts and sub-components. Due to its flexibility, it will offer the possibility to study not only serial powering concepts, but more generally system aspects related to the ATLAS pixel detector. In particular alternative powering schemes, data coding schemes, physical layer data transmission, and Detector Control System concepts will also be evaluated with this test system. The description and development of the ATLAS pixel stave emulator are presented and first results are discussed

  11. ATLAS Pixel Detector Operational Experience

    CERN Document Server

    Di Girolamo, B; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.9% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  12. The ATLAS Tracker Upgrade Short Strips Detectors for the sLHC

    CERN Document Server

    Soldevila, U; Lacasta, C; Marti i García, S; Miñano, M

    2010-01-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN around 2018 by about an order of magnitude, with the upgraded machine dubbed Super-LHC or sLHC. The ATLAS experiment will require a new tracker for SLHC operation. In order to cope with the order of magnitude increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. The new strip detector will use significantly shorter strips than the current SCT in order to minimise the occupancy. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. A massive R&D programme is underway to develop silicon sensors with sufficient radiation hardness. New front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics ...

  13. Sensor studies of n+-in-n planar pixel sensors for the ATLAS upgrades

    International Nuclear Information System (INIS)

    The ATLAS experiment at the LHC is planning upgrades of its pixel detector to cope with the luminosity increase foreseen in the coming years within the transition from LHC to Super-LHC (SLHC/HL-LHC). Associated with an increase in instantaneous luminosity is a rise of the target integrated luminosity from 730 fb-1 to about 3000 fb-1 which directly translates into significantly higher radiation damage. These upgrades consist of the installation of a 4th pixel layer, the insertable b-layer IBL, with a mean sensor radius of only 32 mm from the beam axis, before 2016/17. In addition, the complete pixel detector will be exchanged before 2020/21. Being very close to the beam, the radiation damage of the IBL sensors might be as high as 5.1015neqcm-2 at their end-of-life. The total fluence of the innermost pixel layer after the SLHC upgrade might even reach 2.1016neqcm-2. We have performed systematic measurements of planar pixel detectors based on the current ATLAS readout chip FE-I3 and obtained first experience with the new IBL readout chip FE-I4. First results will be presented.

  14. The ATLAS Silicon Pixel Sensors

    CERN Document Server

    Alam, M S; Einsweiler, K F; Emes, J; Gilchriese, M G D; Joshi, A; Kleinfelder, S A; Marchesini, R; McCormack, F; Milgrome, O; Palaio, N; Pengg, F; Richardson, J; Zizka, G; Ackers, M; Andreazza, A; Comes, G; Fischer, P; Keil, M; Klasen, V; Kühl, T; Meuser, S; Ockenfels, W; Raith, B; Treis, J; Wermes, N; Gössling, C; Hügging, F G; Wüstenfeld, J; Wunstorf, R; Barberis, D; Beccherle, R; Darbo, G; Gagliardi, G; Gemme, C; Morettini, P; Musico, P; Osculati, B; Parodi, F; Rossi, L; Blanquart, L; Breugnon, P; Calvet, D; Clemens, J-C; Delpierre, P A; Hallewell, G D; Laugier, D; Mouthuy, T; Rozanov, A; Valin, I; Aleppo, M; Caccia, M; Ragusa, F; Troncon, C; Lutz, Gerhard; Richter, R H; Rohe, T; Brandl, A; Gorfine, G; Hoeferkamp, M; Seidel, SC; Boyd, GR; Skubic, P L; Sícho, P; Tomasek, L; Vrba, V; Holder, M; Ziolkowski, M; D'Auria, S; del Papa, C; Charles, E; Fasching, D; Becks, K H; Lenzen, G; Linder, C

    2001-01-01

    Prototype sensors for the ATLAS silicon pixel detector have been developed. The design of the sensors is guided by the need to operate them in the severe LHC radiation environment at up to several hundred volts while maintaining a good signal-to-noise ratio, small cell size, and minimal multiple scattering. The ability to be operated under full bias for electrical characterization prior to the attachment of the readout integrated circuit electronics is also desired.

  15. ATLAS Pixel Opto-Electronics

    OpenAIRE

    Arms, K.E; Buchholz, P.; Gan, K. K.; Holder, M; Jackson, P.; Johnson, M.; Kagan, H.; Kass, R; Rahimi, A. M.; Roggenbuck, A.; Rush, C; Schade, P.; Smith, S.; Ter-Antonian, R.; Ziolkowski, M.

    2005-01-01

    We have developed two radiation-hard ASICs for optical data transmission in the ATLAS pixel detector at the LHC at CERN: a driver chip for a Vertical Cavity Surface Emitting Laser (VCSEL) diode for 80 Mbit/s data transmission from the detector, and a Bi-Phase Mark decoder chip to recover the control data and 40 MHz clock received optically by a PIN diode. We have successfully implemented both ASICs in 0.25 micron CMOS technology using enclosed layout transistors and guard rings for increased ...

  16. ATLAS Pixel Opto-Electronics

    CERN Document Server

    Arms, K E; Gan, K K; Holder, M; Jackson, P; Johnson, M; Kagan, H; Kass, R; Rahimi, A M; Roggenbuck, A; Rush, C; Schade, P; Smith, S; Ter-Antonian, R; Ziolkowski, M; Zoeller, M M

    2005-01-01

    We have developed two radiation-hard ASICs for optical data transmission in the ATLAS pixel detector at the LHC at CERN: a driver chip for a Vertical Cavity Surface Emitting Laser (VCSEL) diode for 80 Mbit/s data transmission from the detector, and a Bi-Phase Mark decoder chip to recover the control data and 40 MHz clock received optically by a PIN diode. We have successfully implemented both ASICs in 0.25 micron CMOS technology using enclosed layout transistors and guard rings for increased radiation hardness. We present results of the performance of these chips, including irradiation with 24 GeV protons up to 61 Mrad (2.3 x 10e15 p/cm^2).

  17. Commissioning of the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    ATLAS Collaboration; Golling, Tobias

    2008-09-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of the ATLAS pixel system are presented.

  18. Operational experience of the ATLAS Pixel Detector

    CERN Document Server

    Marcisovsky, M; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  19. Operational experience of the ATLAS Pixel detector

    CERN Document Server

    Hirschbuehl, D; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  20. Operational experience with the ATLAS Pixel Detector

    CERN Document Server

    Ince, T; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost element of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.2% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  1. Commissioning of the ATLAS Pixel Detector

    OpenAIRE

    Golling, Tobias; ATLAS Collaboration

    2008-01-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and su...

  2. Study of planar pixel sensors hardener to radiations for the upgrade of the ATLAS vertex detector

    International Nuclear Information System (INIS)

    In this work, we present a study, using TCAD (Technology Computer-Assisted Design) simulation, of the possible methods of designing planar pixel sensors by reducing their inactive area and improving their radiation hardness for use in the Insertable B-Layer (IBL) project and for SLHC upgrade phase for the ATLAS experiment. Different physical models available have been studied to develop a coherent model of radiation damage in silicon that can be used to predict silicon pixel sensor behavior after exposure to radiation. The Multi-Guard Ring Structure, a protection structure used in pixel sensor design was studied to obtain guidelines for the reduction of inactive edges detrimental to detector operation while keeping a good sensor behavior through its lifetime in the ATLAS detector. A campaign of measurement of the sensor process parameters and electrical behavior to validate and calibrate the TCAD simulation models and results are also presented. A model for diode charge collection in highly irradiated environment was developed to explain the high charge collection observed in highly irradiated devices. A simple planar pixel sensor digitization model to be used in test beam and full detector system is detailed. It allows for easy comparison between experimental data and prediction by the various radiation damage models available. The digitizer has been validated using test beam data for unirradiated sensors and can be used to produce the first full scale simulation of the ATLAS detector with the IBL that include sensor effects such as slim edge and thinning of the sensor. (author)

  3. Operational Experience with the ATLAS Pixel Detector

    CERN Document Server

    Lantzsch, Kerstin; The ATLAS collaboration

    2016-01-01

    Run 2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). In addition the Pixel detector was refurbished with new service quarter panels to recover about 3% of defective modules lost during run 1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning, operation and performance of the 4-layer Pixel Detector will be presented.

  4. Physics performance of the ATLAS Pixel Detector

    CERN Document Server

    Tsuno, Soshi; The ATLAS collaboration

    2016-01-01

    One noticeable upgrade from Run-1 to Run-2 with ATLAS detector in proton-proton collisions at LHC is the introduction of the new pixel detector, IBL, located on the beam pipe as the extra innermost pixel layer. The tracking and vertex reconstruction are significantly improved and good performance is expected in high level object such a $b$-quark jet tagging, in turn, it leads the better physics results. This note summarizes what is the impact on the IBL detector to the physics results especially focusing on the analyses using the $b$-quark jets throughout 2016 summer physics program.

  5. Upgrades of the ATLAS Pixel Detector

    CERN Document Server

    Hügging, F; The ATLAS collaboration

    2013-01-01

    The upgrade for the ATLAS detector will undergo different phases towards HL-LHC. The first upgrade for the Pixel Detector (Phase 1) consists in the construction of a new pixel layer, which will be installed during the 1st long shutdown of the LHC machine (LS1) in 2013/14. The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of about 3.2 cm. The IBL requires the development of several new technologies to cope with the increase of radiation and pixel occupancy as well as to improve the physics performance of the existing pixel detector. The pixel size is reduced and the material budget is minimized by using new lightweight mechanical support materials and a CO2 based cooling system. For Phase 2 upgrade of LHC a complete new 4-layer pixel system is planned as part of a new all silicon Inner Detector. The increase in luminosity to about $5\\cdot 10^{34}$cm$^{-2}$s$^{-1}$ together with a total expected lifetime of ab...

  6. Optical Link of the Atlas Pixel Detector

    OpenAIRE

    Gan, K. K.

    2007-01-01

    The on-detector optical link of the ATLAS pixel detector contains radiation-hard receiver chips to decode bi-phase marked signals received on PIN arrays and data transmitter chips to drive VCSEL arrays. The components are mounted on hybrid boards (opto-boards). We present results from the irradiation studies with 24 GeV protons up to 32 Mrad (1.2 x 10^15 p/cm^2) and the experience from the production.

  7. ATLAS rewards two pixel detector suppliers

    CERN Multimedia

    2007-01-01

    Peter Jenni, ATLAS spokesperson, presented the ATLAS supplier award to Herbert Reichl, IZM director, and to Simonetta Di Gioia, from the SELEX company.Two of ATLAS’ suppliers were awarded prizes at a ceremony on Wednesday 13 June attended by representatives of the experiment’s management and of CERN. The prizes went to the Fraunhofer Institut für Zuverlässigkeit und Mikrointegration (IZM) in Berlin and the company SELEX Sistemi Integrati in Rome for the manufacture of modules for the ATLAS pixel detector. SELEX supplied 1500 of the modules for the tracker, while IZM produced a further 1300. The modules, each made up of 46080 channels, form the active part of the ATLAS pixel detector. IZM and SELEX received the awards for the excellent quality of their work: the average number of faulty channels per module was less than 2.10-3. They also stayed within budget and on schedule. The difficulty they faced was designing modules based on electronic components and sensor...

  8. Development of thin sensors and a novel interconnection technology for the upgrade of the ATLAS pixel system

    Energy Technology Data Exchange (ETDEWEB)

    Beimforde, Michael

    2010-07-19

    To extend the discovery potential of the experiments at the LHC accelerator a two phase luminosity upgrade towards the super LHC (sLHC) with a maximum instantaneous luminosity of 10{sup 35}/cm{sup 2}s{sup 1} is planned. Retaining the reconstruction efficiency and spatial resolution of the ATLAS tracking detector at the sLHC, new pixel modules have to be developed that have a higher granularity, can be placed closer to the interaction point, and allow for a cost-efficient coverage of a larger pixel detector volume compared to the present one. The reduced distance to the interaction point calls for more compact modules that have to be radiation hard to supply a sufficient charge collection efficiency up to an integrated particle fluence equivalent to that of (1-2).10{sup 16} 1-MeV-neutrons per square centimeter (n{sub eq}/cm{sup 2}). Within this thesis a new module concept was partially realised and evaluated for the operation within an ATLAS pixel detector at the sLHC. This module concept utilizes a novel thin sensor production process for thin n-in-p silicon sensors which potentially allow for a higher radiation hardness at a reduced cost. Furthermore, the new 3D-integration technology ICV-SLID is explored which will allow for increasing the active area of the modules from 71% to about 90% and hence, for employing the modules in the innermost layer of the upgraded ATLAS pixel detector. A semiconductor simulation and measurements of irradiated test sensors are used to optimize the implantation parameters for the inter-pixel isolation of the thin sensors. These reduce the crosstalk between the pixel channels and should allow for operating the sensors during the whole runtime of the experiment without causing junction breakdowns. The characterization of the first production of sensors with active thicknesses of 75 {mu}m and 150 {mu}m proved that thin pixel sensors can be successfully produced with the new process technology. Thin pad sensors with a reduced inactive

  9. Development of thin sensors and a novel interconnection technology for the upgrade of the ATLAS pixel system

    International Nuclear Information System (INIS)

    To extend the discovery potential of the experiments at the LHC accelerator a two phase luminosity upgrade towards the super LHC (sLHC) with a maximum instantaneous luminosity of 1035/cm2s1 is planned. Retaining the reconstruction efficiency and spatial resolution of the ATLAS tracking detector at the sLHC, new pixel modules have to be developed that have a higher granularity, can be placed closer to the interaction point, and allow for a cost-efficient coverage of a larger pixel detector volume compared to the present one. The reduced distance to the interaction point calls for more compact modules that have to be radiation hard to supply a sufficient charge collection efficiency up to an integrated particle fluence equivalent to that of (1-2).1016 1-MeV-neutrons per square centimeter (neq/cm2). Within this thesis a new module concept was partially realised and evaluated for the operation within an ATLAS pixel detector at the sLHC. This module concept utilizes a novel thin sensor production process for thin n-in-p silicon sensors which potentially allow for a higher radiation hardness at a reduced cost. Furthermore, the new 3D-integration technology ICV-SLID is explored which will allow for increasing the active area of the modules from 71% to about 90% and hence, for employing the modules in the innermost layer of the upgraded ATLAS pixel detector. A semiconductor simulation and measurements of irradiated test sensors are used to optimize the implantation parameters for the inter-pixel isolation of the thin sensors. These reduce the crosstalk between the pixel channels and should allow for operating the sensors during the whole runtime of the experiment without causing junction breakdowns. The characterization of the first production of sensors with active thicknesses of 75 μm and 150 μm proved that thin pixel sensors can be successfully produced with the new process technology. Thin pad sensors with a reduced inactive edge demonstrate that the active sensor

  10. Analysis methods of testbeam data of irradiated ATLAS Planar Pixel Sensors

    International Nuclear Information System (INIS)

    The ATLAS Pixel detector is the innermost subdetector of the ATLAS-Experiment at CERN. The development of new sensor technologies is going on as detector-upgrades are foreseen to cope with higher fluences and more pile-up-events after accelerator upgrades (SLHC). For testing properties of sensors, testbeams are used. Beam-telescopes such as the EUDET-Telescope have been used for measuring the exact position of beam-tracks to determine the properties of different sensor technologies. Several sensors with different designs (e.g. slim edges) were read-out in testbeam after irradiation at differing fluences (up to 2.1016 neqcm-2) and voltages (up to 1500 V) to observe the performance of the sensors under conditions up to the end-lifetime of the ATLAS detector. The reconstruction chain of the so called Eutelescope framework including adaptions and the evaluation of the reconstructed data are presented. Typical results including hit- and charge-efficiency plots are shown and interpreted.

  11. Reliability and performance studies of DC-DC conversion powering scheme for the CMS pixel tracker at SLHC

    Energy Technology Data Exchange (ETDEWEB)

    Todri, A; Rivera, R; Kwan, S [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Perera, L, E-mail: atodri@gmail.co [University of Mississippi, University, MS 38677 (United States)

    2010-12-15

    The upgrades of the Large Hadron Collider (LHC) introduce a significant challenge to the power distribution of the detectors. DC-DC conversion is the preferred powering scheme proposed to be integrated for the CMS tracker to deliver high input voltage levels and performing a step-down conversion nearby the detector modules. In this work, we propose a step-up/step-down powering scheme by performing voltage step up at the CAEN supply unit and voltage step down near the detector. We designed step-up converters and investigate the pixel performance and power loss on the FPIX power distribution system. Tests are performed using the PSI46 pixel readout chips on a forward pixel panel module and the DC-DC converters developed at CERN and Fermilab. Reliability studies include the voltage drop measurements on the readout chips and the power supply noise generated from the converter. Performance studies include pixel noise and threshold dispersion results. Comparison between step-down only and step-up/step-down conversion powering schemes are provided.

  12. Reliability and performance studies of DC-DC conversion powering scheme for the CMS pixel tracker at SLHC

    CERN Document Server

    Todri, A; Rivera, R; Kwan, S; 10.1088/1748-0221/5/12/C12010

    2010-01-01

    The upgrades of the Large Hadron Collider (LHC) introduce a significant challenge to the power distribution of the detectors. DC-DC conversion is the preferred powering scheme proposed to be integrated for the CMS tracker to deliver high input voltage levels and performing a step-down conversion nearby the detector modules. In this work, we propose a step-up/step-down powering scheme by performing voltage step up at the CAEN supply unit and voltage step down near the detector. We designed step-up converters and investigate the pixel performance and power loss on the FPIX power distribution system. Tests are performed using the PSI46 pixel readout chips on a forward pixel panel module and the DC-DC converters developed at CERN and Fermilab. Reliability studies include the voltage drop measurements on the readout chips and the power supply noise generated from the converter. Performance studies include pixel noise and threshold dispersion results. Comparison between step-down only and step-up/step-down conversi...

  13. Reliability and performance studies of DC-DC conversion powering scheme for the CMS pixel tracker at SLHC

    International Nuclear Information System (INIS)

    The upgrades of the Large Hadron Collider (LHC) introduce a significant challenge to the power distribution of the detectors. DC-DC conversion is the preferred powering scheme proposed to be integrated for the CMS tracker to deliver high input voltage levels and performing a step-down conversion nearby the detector modules. In this work, we propose a step-up/step-down powering scheme by performing voltage step up at the CAEN supply unit and voltage step down near the detector. We designed step-up converters and investigate the pixel performance and power loss on the FPIX power distribution system. Tests are performed using the PSI46 pixel readout chips on a forward pixel panel module and the DC-DC converters developed at CERN and Fermilab. Reliability studies include the voltage drop measurements on the readout chips and the power supply noise generated from the converter. Performance studies include pixel noise and threshold dispersion results. Comparison between step-down only and step-up/step-down conversion powering schemes are provided.

  14. Reliability and performance studies of DC-DC conversion powering scheme for the CMS pixel tracker at SLHC

    Science.gov (United States)

    Todri, A.; Perera, L.; Rivera, R.; Kwan, S.

    2010-12-01

    The upgrades of the Large Hadron Collider (LHC) introduce a significant challenge to the power distribution of the detectors. DC-DC conversion is the preferred powering scheme proposed to be integrated for the CMS tracker to deliver high input voltage levels and performing a step-down conversion nearby the detector modules. In this work, we propose a step-up/step-down powering scheme by performing voltage step up at the CAEN supply unit and voltage step down near the detector. We designed step-up converters and investigate the pixel performance and power loss on the FPIX power distribution system. Tests are performed using the PSI46 pixel readout chips on a forward pixel panel module and the DC-DC converters developed at CERN and Fermilab. Reliability studies include the voltage drop measurements on the readout chips and the power supply noise generated from the converter. Performance studies include pixel noise and threshold dispersion results. Comparison between step-down only and step-up/step-down conversion powering schemes are provided.

  15. optical links for the atlas pixel detector

    CERN Document Server

    Stucci, Stefania Antonia; The ATLAS collaboration

    2015-01-01

    Optical links are necessary to satisfy the high speed readout over long distances for advanced silicon detector systems. We report on the optical readout used in the newly installed central pixel layer (IBL) in the ATLAS experiment. The off detector readout employs commercial optical to analog converters, which were extensively tested for this application. Performance measurements during installation and commissioning will be shown. With the increasing instantaneous luminosity in the next years, the next layers outwards of IBL of the ATLAS Pixel detector (Layer 1 and Layer 2) will reach their bandwidth limits. A plan to increase the bandwidth by upgrading the off detector readout chain is put in place. The plan also involves new optical readout components, in particular the optical receivers, for which commercial units cannot be used and a new design has been made. The latter allows for a wider operational range in term of data frequency and light input power to match the on-detector sending units on the pres...

  16. Optical links for the ATLAS Pixel detector

    CERN Document Server

    Stucci, Stefania Antonia; The ATLAS collaboration

    2015-01-01

    Optical links are necessary to satisfy the high speed readout over long distances for advanced silicon detector systems. We report on the optical readout used in the newly installed central pixel layer (IBL) in the ATLAS experiment. The off detector readout employs commercial optical to analog converters, which were extensively tested for this application. Performance measurements during installation and commissioning will be shown. With the increasing instantaneous luminosity in the next years, the next layers outwards of IBL of the ATLAS Pixel detector (Layer 1 and Layer 2) will reach their bandwidth limits. A plan to increase the bandwidth by upgrading the off detector readout chain is put in place. The plan also involves new optical readout components, in particular the optical receivers, for which commercial units cannot be used and a new design has been made. The latter allows for a wider operational range in term of data frequency and light input power to match the on-detector sending units on the pres...

  17. Pixel electronics for the ATLAS experiment

    CERN Document Server

    Fischer, P

    2001-01-01

    The ATLAS experiment at LHC will use 3 barrel layers and 2*5 disks of silicon pixel detectors as the innermost elements of the semiconductor tracker. The basic building blocks are pixel modules with an active area of 16.4 mm*60.8 mm which include an n/sup +/ on n-type silicon sensor and 16 VLSI front-end (FE) chips. Every FE chip contains a low power, high speed charge sensitive preamplifier, a fast discriminator, and a readout system which operates at the 40 MHz rate of LHC. The addresses of hit pixels (as well as a low resolution pulse height information) are stored on the FE chips until arrival of a level 1 trigger signal. Hits are then transferred to a module controller chip (MCC) which collects the data of all 16 FE chips, builds complete events and sends the data through two optical links to the data acquisition system. The MCC receives clock and data through an additional optical link and provides timing and configuration information for the FE chips. Two additional chips are used to amplify and decode...

  18. The Phase-2 ATLAS ITk Pixel Upgrade

    CERN Document Server

    Flick, Tobias; The ATLAS collaboration

    2016-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown (foreseen to take place around 2025) by an all-silicon detector called the “ITk” (Inner Tracker). The pixel detector will comprise the five innermost layers, and will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation. The total surface area of silicon in the new pixel system could measure up to 14 m2, depending on the final layout choice, which is expected to take place in early 2017. Four layout options are being investigated at the moment, two with forward coverage to |eta| < 3.2 and two to |eta| < 4. For each coverage option, a layout with long barrel staves and a layout with novel inclined support structures in the barrel-endcap overlap region are considered. All potential layouts include modules mounted on ring-shaped supports in the endcap regions...

  19. Operational experience with the ATLAS Pixel Detector at the LHC

    Science.gov (United States)

    Lapoire, C.; Atlas Collaboration

    2013-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as B-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures and detector performance. The detector performance is excellent: 96.2% of the pixels are operational, noise occupancy is sufficiently low and hit efficiency exceed the design specification.

  20. Operational experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Hirschbuehl, D; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.7% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  1. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Keil, M; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  2. Operational experience with the ATLAS Pixel detector at the LHC

    CERN Document Server

    Deluca, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5\\% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, ...

  3. Operational experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Ince, T; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.8% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  4. Operational experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Lapoire, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  5. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Lapoire, C; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as B-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures and detector performance. The detector performance is excellent: 96.2% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification.

  6. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Lange, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump- bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, a...

  7. Operational experience with the ATLAS Pixel detector at the LHC

    CERN Document Server

    Deluca, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  8. DAQ hardware and software development for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    In 2014, the Pixel Detector of the ATLAS experiment has been extended by about 12 million pixels thanks to the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented along with newly designed read-out hardware to support high bandwidth for data readout and calibration. The hardware is supported by an embedded software stack running on the read-out boards. The same boards will be used to upgrade the read-out bandwidth for the two outermost layers of the ATLAS Pixel Barrel (54 million pixels). We present the IBL read-out hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  9. DAQ Hardware and software development for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    In 2014, the Pixel Detector of the ATLAS experiment was extended by about 12 million pixels with the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented by employing newly designed read-out hardware, which supports the full detector bandwidth even for calibration. The hardware is supported by an embedded software stack running on the read-out boards. The same boards will be used to upgrade the read-out bandwidth for the two outermost layers of the ATLAS Pixel Barrel (54 million pixels). We present the IBL read-out hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  10. ATLAS Pixel Radiation Monitoring with HVPP4 System

    CERN Document Server

    Gorelov, Igor; Seidel, Sally; Toms, Konstantin

    2009-01-01

    In this talk we present the basis for the protocol for radiation monitoring of the ATLAS Pixel Sensors. The monitoring is based on a current measurement system, HVPP4. The status on the ATLAS HVPP4 system development is also presented.

  11. DAQ hardware and software development for the ATLAS Pixel Detector

    Science.gov (United States)

    Stramaglia, Maria Elena

    2016-07-01

    In 2014, the Pixel Detector of the ATLAS experiment has been extended by about 12 million pixels thanks to the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented along with newly designed readout hardware to support high bandwidth for data readout and calibration. The hardware is supported by an embedded software stack running on the readout boards. The same boards will be used to upgrade the readout bandwidth for the two outermost barrel layers of the ATLAS Pixel Detector. We present the IBL readout hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel Detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  12. Neural network based cluster creation in the ATLAS Pixel Detector

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2012-01-01

    The read-out from individual pixels on planar semi-conductor sensors are grouped into clusters to reconstruct the location where a charged particle passed through the sensor. The resolution given by individual pixel sizes is significantly improved by using the information from the charge sharing be- tween pixels. Such analog cluster creation techniques have been used by the ATLAS experiment for many years to obtain an excellent performance. How- ever, in dense environments, such as those inside high-energy jets, clusters have an increased probability of merging the charge deposited by multiple particles. Recently, a neural network based algorithm which estimates both the cluster position and whether a cluster should be split has been developed for the ATLAS Pixel Detector. The algorithm significantly reduces ambigui- ties in the assignment of pixel detector measurement to tracks and improves the position accuracy with respect to standard techniques by taking into account the 2-dimensional charge distribution.

  13. ATLAS Inner Detector (Pixel Detector and Silicon Tracker)

    CERN Multimedia

    ATLAS Outreach

    2006-01-01

    To raise awareness of the basic functions of the Pixel Detector and Silicon Tracker in the ATLAS detector on the LHC at CERN. This colorful 3D animation is an excerpt from the film "ATLAS-Episode II, The Particles Strike Back." Shot with a bug's eye view of the inside of the detector. The viewer is taken on a tour of the inner workings of the detector, seeing critical pieces of the detector and hearing short explanations of how each works.

  14. A Novel Optical Package for ATLAS Pixel Detector

    CERN Document Server

    Gan, K K

    2001-01-01

    An optical package of novel design has been developed for the ATLAS pixel detector. The package contains two VCSELs and one PIN diode to transmit and receive optical signals. The design is based on a simple connector-type concept and is made of radiation-hard material. Several packages have been fabricated and show promising results.

  15. Overview of the ATLAS Insertable B-Layer Pixel Detector

    CERN Document Server

    Pernegger, H; The ATLAS collaboration

    2011-01-01

    ATLAS currently develops a new pixel detector for the first upgrade of its tracking system: The ATLAS Insertable B-Layer Pixel detector (IBL). The new layer will be inserted between the inner most layer of the current pixel detector and a new beam pipe. The sensors are placed at a radius of 3.4cm. The expected high radiation levels and high hit occupancy require new developments for front-end chip and the sensor which can stand radiation levels beyond 5E15 neq/cm2. ATLAS has developed the new FEI4 and new silicon sensors to be used as pixel modules. Furthermore a new lightweight support and cooling structure was developed, which minimizes the overall radiation and allows detector cooling with CO2 at -40C coolant temperature. Currently the overall integration and installation procedure is being developed and test ready for installation in ATLAS in 2013. The presentation summarizes the current state of development of IBL modules, first preliminary test results of the new chip with new sensors, the construction ...

  16. Operational Experience with the ATLAS Pixel Detector at LHC

    CERN Document Server

    Keil, M

    2013-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus crucial for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via front-end chips bump-bonded to 1744 n-on-n silicon substrates. In this paper results from the successful operation of the Pixel Detector at the LHC will be presented, including calibration procedures, detector performance and measurements of radiation damage. The detector performance is excellent: more than 95% of the pixels are operational, noise occupancy and hit efficiency exceed the des...

  17. Online calibrations and performance of the ATLAS Pixel Detector

    CERN Document Server

    Keil, M; The ATLAS collaboration

    2010-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. It consists of 1744 silicon sensors equipped with approximately 80 M electronic channels, providing typically three measurement points with high resolution for particles emerging from the beam-interaction region, thus allowing measuring particle tracks and secondary vertices with very high precision. The readout system of the Pixel Detector is based on a bi-directional optical data transmission system between the detector and the data acquisition system with an individual link for each of the 1744 modules. Signal conversion components are located on both ends, approximately 80 m apart. The talk will give an overview of the calibration and performance of both the detector and its optical readout. The most basic parameter to be tuned and calibrated for the detector electronics is the readout threshold of the individual pixel channels. These need to be carefully tuned to optimise position resolution a...

  18. High-voltage pixel sensors for ATLAS upgrade

    Science.gov (United States)

    Perić, I.; Kreidl, C.; Fischer, P.; Bompard, F.; Breugnon, P.; Clemens, J.-C.; Fougeron, D.; Liu, J.; Pangaud, P.; Rozanov, A.; Barbero, M.; Feigl, S.; Capeans, M.; Ferrere, D.; Pernegger, H.; Ristic, B.; Muenstermann, D.; Gonzalez Sevilla, S.; La Rosa, A.; Miucci, A.; Nessi, M.; Iacobucci, G.; Backhaus, M.; Hügging, Fabian; Krüger, H.; Hemperek, T.; Obermann, T.; Wermes, N.; Garcia-Sciveres, M.; Quadt, A.; Weingarten, J.; George, M.; Grosse-Knetter, J.; Rieger, J.; Bates, R.; Blue, A.; Buttar, C.; Hynds, D.

    2014-11-01

    The high-voltage (HV-) CMOS pixel sensors offer several good properties: a fast charge collection by drift, the possibility to implement relatively complex CMOS in-pixel electronics and the compatibility with commercial processes. The sensor element is a deep n-well diode in a p-type substrate. The n-well contains CMOS pixel electronics. The main charge collection mechanism is drift in a shallow, high field region, which leads to a fast charge collection and a high radiation tolerance. We are currently evaluating the use of the high-voltage detectors implemented in 180 nm HV-CMOS technology for the high-luminosity ATLAS upgrade. Our approach is replacing the existing pixel and strip sensors with the CMOS sensors while keeping the presently used readout ASICs. By intelligence we mean the ability of the sensor to recognize a particle hit and generate the address information. In this way we could benefit from the advantages of the HV sensor technology such as lower cost, lower mass, lower operating voltage, smaller pitch, smaller clusters at high incidence angles. Additionally we expect to achieve a radiation hardness necessary for ATLAS upgrade. In order to test the concept, we have designed two HV-CMOS prototypes that can be readout in two ways: using pixel and strip readout chips. In the case of the pixel readout, the connection between HV-CMOS sensor and the readout ASIC can be established capacitively.

  19. Robustness of the ATLAS pixel clustering neural network algorithm

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00407780; The ATLAS collaboration

    2016-01-01

    Proton-proton collisions at the energy frontier puts strong constraints on track reconstruction algorithms. In the ATLAS track reconstruction algorithm, an artificial neural network is utilised to identify and split clusters of neighbouring read-out elements in the ATLAS pixel detector created by multiple charged particles. The robustness of the neural network algorithm is presented, probing its sensitivity to uncertainties in the detector conditions. The robustness is studied by evaluating the stability of the algorithm's performance under a range of variations in the inputs to the neural networks. Within reasonable variation magnitudes, the neural networks prove to be robust to most variation types.

  20. Online Calibration and Performance of the ATLAS Pixel Detector

    CERN Document Server

    Keil, M

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. It consists of 1744 silicon sensors equipped with approximately 80 million electronic channels, providing typically three measurement points with high resolution for particles emerging from the beam-interaction region, thus allowing measuring particle tracks and secondary vertices with very high precision. The readout system of the Pixel Detector is based on a bi-directional optical data transmission system between the detector and the data acquisition system with an individual link for each of the 1744 modules. Signal conversion components are located on both ends, approximately 80 m apart. This paper describes the tuning and calibration of the optical links and the detector modules, including measurements of threshold, noise, charge measurement, timing performance and the sensor leakage current.

  1. Optical Links for the ATLAS Pixel Detector

    CERN Document Server

    Gregor, Ingrid-Maria

    In der vorliegenden Dissertation wird eine strahlentolerante optische Datenstrecke mit hoher Datenrate für den Einsatz in dem Hochenergiephysikexperiment Atlas am Lhc Beschleuniger entwickelt. Da die Lhc-Experimente extremen Strahlenbelastungen ausgesetzt sind, müssen die Komponenten spezielle Ansprüche hinsichtlich der Strahlentoleranz erfüllen. Die Qualifikation der einzelnen Bauteile wurde im Rahmen dieser Arbeit durchgeführt. Die zu erwartenden Fluenzen im Atlas Inner Detector für Silizium und Gallium Arsenid (GaAs) wurden berechnet. Siliziumbauteile werden einer Fluenz von bis zu 1.1.1015neq /cm2 in 1 MeV äquivalenten Neutronen ausgesetzt sein, wohingegen GaAs Bauteile bis zu 7.8.1015neq /cm2 ausgesetzt sein werden. Die Strahlentoleranz der einzelnen benötigten Komponenten wie z.B. der Laserdioden sowie der jeweiligen Treiberchips wurde untersucht. Sowohl die Photo- als auch die Laserdioden haben sich als strahlentolerant für die Fluenzen an dem vorgesehenen Radius erwiesen. Aus de...

  2. Monitoring Radiation Damage in the ATLAS Pixel Detector

    CERN Document Server

    Schorlemmer, André Lukas; Große-Knetter, Jörn; Rembser, Christoph; Di Girolamo, Beniamino

    2014-11-05

    Radiation hardness is one of the most important features of the ATLAS pixel detector in order to ensure a good performance and a long lifetime. Monitoring of radiation damage is crucial in order to assess and predict the expected performance of the detector. Key values for the assessment of radiation damage in silicon, such as the depletion voltage and depletion depth in the sensors, are measured on a regular basis during operations. This thesis summarises the monitoring program that is conducted in order to assess the impact of radiation damage and compares it to model predictions. In addition, the physics performance of the ATLAS detector highly depends on the amount of disabled modules in the ATLAS pixel detector. A worrying amount of module failures was observed during run I. Thus it was decided to recover repairable modules during the long shutdown (LS1) by extracting the pixel detector. The impact of the module repairs and module failures on the detector performance is analysed in this thesis.

  3. Planar pixel detector module development for the HL-LHC ATLAS pixel system

    Energy Technology Data Exchange (ETDEWEB)

    Bates, Richard L., E-mail: richard.bates@glasgow.ac.uk [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Buttar, C.; Stewart, A.; Blue, A.; Doonan, K.; Ashby, J. [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Casse, G.; Dervan, P.; Forshaw, D.; Tsurin, I. [The University of Liverpool, Liverpool (United Kingdom); Brown, S.; Pater, J. [The Univiersty of Manchester, Manchester (United Kingdom)

    2013-12-11

    The ATLAS pixel detector for the HL-LHC requires the development of large area pixel modules that can withstand doses up to 10{sup 16} 1 MeV n{sub eq} cm{sup −2}. The area of the pixel detector system will be over 5 m{sup 2} and as such low cost, large area modules are required. The development of a quad module based on 4 FE-I4 readout integrated chips (ROIC) will be discussed. The FE-I4 ROIC is a large area chip and the yield of the flip-chip process to form an assembly is discussed for single chip assemblies. The readout of the quad module for laboratory tests will be reported.

  4. Planar pixel detector module development for the HL-LHC ATLAS pixel system

    Science.gov (United States)

    Bates, Richard L.; Buttar, C.; Stewart, A.; Blue, A.; Doonan, K.; Ashby, J.; Casse, G.; Dervan, P.; Forshaw, D.; Tsurin, I.; Brown, S.; Pater, J.

    2013-12-01

    The ATLAS pixel detector for the HL-LHC requires the development of large area pixel modules that can withstand doses up to 1016 1 MeV neq cm-2. The area of the pixel detector system will be over 5 m2 and as such low cost, large area modules are required. The development of a quad module based on 4 FE-I4 readout integrated chips (ROIC) will be discussed. The FE-I4 ROIC is a large area chip and the yield of the flip-chip process to form an assembly is discussed for single chip assemblies. The readout of the quad module for laboratory tests will be reported.

  5. Planar pixel detector module development for the HL-LHC ATLAS pixel system

    International Nuclear Information System (INIS)

    The ATLAS pixel detector for the HL-LHC requires the development of large area pixel modules that can withstand doses up to 1016 1 MeV neq cm−2. The area of the pixel detector system will be over 5 m2 and as such low cost, large area modules are required. The development of a quad module based on 4 FE-I4 readout integrated chips (ROIC) will be discussed. The FE-I4 ROIC is a large area chip and the yield of the flip-chip process to form an assembly is discussed for single chip assemblies. The readout of the quad module for laboratory tests will be reported

  6. The ATLAS muon Micromegas R&D project towards large-size chambers for the s-LHC

    CERN Document Server

    Alexopoulos, T; Alviggi, M; Arik, M; Cetin, S A; Chernyatine, V; Cheu, E; Della Volpe, D; Dris, M; Fassouliotis, D; Gazis, E N; Giordano, R; Gratchev, V; Guan, L; Iengo, P; Ioannou, P; Li, C; Kaushik, V; Khodinov, A; Kourkoumelis, C; Maltezos, S; Mermigka, K; Müller, H; Nikolopoulos, K; Park, W; Persembe, S; Petridou, C; Petti, R; Polychronakos, V; Purohit, M V; Sampsonidis, D; Sekhniaidze, G; Shao, M; Sun, Y J; Tsipolitis, G; Veenhof, R; Wang, X L; Wotschack, J; Wu, S X; Zhao, T; Zhao, Z G

    2009-01-01

    Detectors based on the bulk-Micromegas technology exhibit position resolution better than 100 μm at counting rates of up to several tens of kHz/cm2, along with trigger capabilities. These characteristics, combined with the detector's mechanical robustness and the possibility for cost-effective industrial production, makes them a promising candidate for the ATLAS Muon Spectrometer upgrade in a future luminosity enhancement of the LHC. The R&D project status will be presented together with the obtained results in the effort to define the baseline system specifications.

  7. Calibration Analysis Software for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    The calibration of the ATLAS Pixel detector at LHC fulfils two main purposes: to tune the front-end configuration parameters for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel detector scans and analyses is called Calibration Console. The introduction of a new layer, equipped with new Front End-I4 Chips, required an update the Console architecture. It now handles scans and scans analyses applied together to chips with different characteristics. An overview of the newly developed Calibration Analysis Software will be presented, together with some preliminary result.

  8. Calibration analysis software for the ATLAS Pixel Detector

    Science.gov (United States)

    Stramaglia, Maria Elena

    2016-07-01

    The calibration of the ATLAS Pixel Detector at LHC fulfils two main purposes: to tune the front-end configuration parameters for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel Detector scans and analyses is called calibration console. The introduction of a new layer, equipped with new FE-I4 chips, required an update of the console architecture. It now handles scans and scan analyses applied together to chips with different characteristics. An overview of the newly developed calibration analysis software will be presented, together with some preliminary results.

  9. Pixel detector modules performance for ATLAS IBL and future pixel detectors

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00355104; Pernegger, Heinz

    2015-11-06

    The ATLAS Detector is one of the four big particle physics experiments at CERN’s LHC. Its innermost tracking system consisted of the 3-Layer silicon Pixel Detector (~80M readout channels) in the first run (2010-2012). Over the past two years it was refurbished and equipped with new services as well as a new beam monitor. The major upgrade, however, was the Insertable B-Layer (IBL). It adds ~12M readout channels for improved vertexing, tracking robustness and b-tagging performance for the upcoming runs, before the high luminosity upgrade of the LHC will take place. This thesis covers two main aspects of Pixel detector performance studies: The main work was the planning, commissioning and operation of a test bench that meets the requirements of current pixel detector components. Each newly built ATLAS IBL stave was thoroughly tested, following a specifically developed procedure, and initially calibrated in that setup. A variety of production accompanying measurements as well as preliminary results after integ...

  10. Module and electronics developments for the ATLAS ITK pixel system

    CERN Document Server

    Nellist, Clara; The ATLAS collaboration

    2016-01-01

    Summary ATLAS is preparing for an extensive modification of its detector in the course of the planned HL‐ LHC accelerator upgrade around 2025 which includes a replacement of the entire tracking system by an all‐silicon detector (Inner Tracker, ITk). A revised trigger and data taking system is foreseen with triggers expected at lowest level at an average rate of 1 MHz. The five innermost layers of ITk will comprise of a pixel detector built of new sensor and readout electronics technologies to improve the tracking performance and cope with the severe HL‐LHC environment in terms of occupancy and radiation. The total area of the new pixel system could measure up to 14 m2, depending on the final layout choice that is expected to take place in early 2017. A new on‐detector readout chip is designed in the context of the RD53 collaboration in 65 nm CMOS technology. This paper will present the on‐going R&D within the ATLAS ITK project towards the new pixel modules and the off‐detector electronics. Pla...

  11. Development of a Micro Pixel Chamber for the ATLAS Upgrade

    CERN Document Server

    Ochi, Atsuhiko; Komai, Hidetoshi; Edo, Yuki; Yamaguchi, Takahiro

    2012-01-01

    The Micro Pixel Chamber (μ-PIC) is being developed a sacandidate for the muon system of the ATLAS detector for upgrading in LHC experiments. The μ-PIC is a micro-pattern gaseous detector that doesn’t have floating structure such as wires, mesh, or foil. This detector can be made by printed-circuit-board (PCB) technology, which is commercially available and suited for mass production. Operation tests have been performed under high flux neutrons under similar conditions to the ATLAS cavern. Spark rates are measured using several gas mixtures under 7 MeV neutron irradiation, and good properties were observed using neon, ethane, and CF4 mixture of gases.Using resistive materials as electrodes, we are also developing a new μ-PIC, which is not expected to damage the electrodes in the case of discharge sparks.

  12. ATLAS Phase-II-Upgrade Pixel Data Transmission Development

    CERN Document Server

    Wensing, Marius; The ATLAS collaboration

    2016-01-01

    The ATLAS tracking system will be replaced by an all-silicon detector (ITk) in the course of the planned HL-LHC accelerator upgrade around 2025. The readout of the ITk pixel system will be most challenging in terms of data rate and readout speed. Simulation of the on-detector electronics based on the currently foreseen trigger rate of 1 MHz indicate that a readout speed of up to 5 Gbps per data link is necessary. Due to radiation levels, the first part of transmission has to be implemented electrically. System simulation and test results of cable candidates will be presented.

  13. Robustness of the ATLAS pixel clustering neural network algorithm

    CERN Document Server

    Sidebo, Per Edvin; The ATLAS collaboration

    2016-01-01

    Proton-proton collisions at the energy frontier puts strong constraints on track reconstruction algorithms. The algorithms depend heavily on accurate estimation of the position of particles as they traverse the inner detector elements. An artificial neural network algorithm is utilised to identify and split clusters of neighbouring read-out elements in the ATLAS pixel detector created by multiple charged particles. The method recovers otherwise lost tracks in dense environments where particles are separated by distances comparable to the size of the detector read-out elements. Such environments are highly relevant for LHC run 2, e.g. in searches for heavy resonances. Within the scope of run 2 track reconstruction performance and upgrades, the robustness of the neural network algorithm will be presented. The robustness has been studied by evaluating the stability of the algorithm’s performance under a range of variations in the pixel detector conditions.

  14. Validation studies of the ATLAS pixel detector control system

    Energy Technology Data Exchange (ETDEWEB)

    Schultes, Joachim [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany)]. E-mail: schultes@physik.uni-wuppertal.de; Becks, Karl-Heinz [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Flick, Tobias [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Henss, Tobias [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Imhaeuser, Martin [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Kersten, Susanne [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Kind, Peter [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Lantzsch, Kerstin [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Maettig, Peter [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Reeves, Kendall [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Weingarten, Jens [University of Bonn, Nussallee 12, 53115 Bonn (Germany)

    2006-09-01

    The ATLAS pixel detector consists of 1744 identical silicon pixel modules arranged in three barrel layers providing coverage for the central region, and three disk layers on either side of the primary interaction point providing coverage of the forward regions. Once deployed into the experiment, the detector will employ optical data transfer, with the requisite powering being provided by a complex system of commercial and custom-made power supplies. However, during normal performance and production tests in the laboratory, only single modules are operated and electrical readout is used. In addition, standard laboratory power supplies are used. In contrast to these normal tests, the data discussed here were obtained from a multi-module assembly which was powered and read out using production items: the optical data path, the final design power supply system using close to final services, and the Detector Control System (DCS)

  15. Module and Electronics Developments for the ATLAS ITK Pixel System

    CERN Document Server

    Rummler, Andr{e}; The ATLAS collaboration

    2016-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown around 2025 by an all-silicon detector (Inner Tracker, ITk). The pixel detector will be composed by the five innermost layers, instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the severe HL-LHC environment in terms of occupancy and radiation. The total area of the new pixel system could measure up to 14 m^2, depending on the final layout choice that is expected to take place in early 2017. Different designs of planar, 3D, CMOS sensors are being investigated to identify the optimal technology for the different pixel layers. In parallel sensor-chip interconnection options are evaluated in collaboration with industrial partners to identify reliable technologies when employing 100-150 μm thin chips. While the new read-out chip is being developed by the RD53 Collaboration, the pixel off detector read-out electronics will be implemented in the frame...

  16. Pixel-Cluster Counting Luminosity Measurement in ATLAS

    CERN Document Server

    McCormack, William Patrick; The ATLAS collaboration

    2016-01-01

    A precision measurement of the delivered luminosity is a key component of the ATLAS physics program at the Large Hadron Collider (LHC). A fundamental ingredient of the strategy to control the systematic uncertainties affecting the absolute luminosity has been to compare the measurements of several luminometers, most of which use more than one counting technique. The level of consistency across the various methods provides valuable cross-checks as well as an estimate of the detector-related systematic uncertainties. This poster describes the development of a luminosity algorithm based on pixel-cluster counting in the recently installed ATLAS inner b-layer (IBL), using data recorded during the 2015 pp run at the LHC. The noise and background contamination of the luminosity-associated cluster count is minimized by a multi-component fit to the measured cluster-size distribution in the forward pixel modules of the IBL. The linearity, long-term stability and statistical precision of the cluster-counting method are ...

  17. ATLAS Pixel Detector Design For HL-LHC

    CERN Document Server

    Smart, Ben; The ATLAS collaboration

    2016-01-01

    The ATLAS Inner Detector will be replaced for the High-Luminosity LHC (HL-LHC) running in 2026. The new Inner Detector will be called the Inner Tracker (ITk). The ITk will cover an extended eta-range: at least to |eta|<3.2, and likely up to |eta|<4.0. The ITk will be an all-Silicon based detector, consisting of a Silicon strip detector outside of a radius of 362mm, and a Silicon pixel detector inside of this radius. Several novel designs are being considered for the ITk pixel detector, to cope with high-eta charged particle tracks. These designs are grouped into 'extended' and 'inclined' design-types. Extended designs have long pixel staves with sensors parallel to the beamline. High-eta particles will therefore hit these sensors at shallow angles, leaving elongated charge clusters. The length of such a charge cluster can be used to estimate the angle of the passing particle. This information can then be used in track reconstruction to improve tracking efficiency and reduce fake rates. Inclined designs ...

  18. ATLAS pixel detector timing optimisation with the back of crate card of the optical pixel readout system

    Energy Technology Data Exchange (ETDEWEB)

    Flick, T; Gerlach, P; Reeves, K; Maettig, P [Department of Physics, Bergische Universitaet Wuppertal (Germany)

    2007-04-15

    As with all detector systems at the Large Hadron Collider (LHC), the assignment of data to the correct bunch crossing, where bunch crossings will be separated in time by 25 ns, is one of the challenges for the ATLAS pixel detector. This document explains how the detector system will accomplish this by describing the general strategy, its implementation, the optimisation of the parameters, and the results obtained during a combined testbeam of all ATLAS subdetectors.

  19. Development and characterization of diamond and 3D-silicon pixel detectors with ATLAS-pixel readout electronics

    Energy Technology Data Exchange (ETDEWEB)

    Mathes, Markus

    2008-12-15

    Hybrid pixel detectors are used for particle tracking in the innermost layers of current high energy experiments like ATLAS. After the proposed luminosity upgrade of the LHC, they will have to survive very high radiation fluences of up to 10{sup 16} particles per cm{sup 2} per life time. New sensor concepts and materials are required, which promise to be more radiation tolerant than the currently used planar silicon sensors. Most prominent candidates are so-called 3D-silicon and single crystal or poly-crystalline diamond sensors. Using the ATLAS pixel electronics different detector prototypes with a pixel geometry of 400 x 50 {mu}m{sup 2} have been built. In particular three devices have been studied in detail: a 3D-silicon and a single crystal diamond detector with an active area of about 1 cm{sup 2} and a poly-crystalline diamond detector of the same size as a current ATLAS pixel detector module (2 x 6 cm{sup 2}). To characterize the devices regarding their particle detection efficiency and spatial resolution, the charge collection inside a pixel cell as well as the charge sharing between adjacent pixels was studied using a high energy particle beam. (orig.)

  20. ATLAS Pixel-Optoboard Production and Simulation Studies

    CERN Document Server

    Nderitu, Simon

    At CERN, a Large collider will collide protons at high energies. There are four experiments being built to study the particle properties from the collision. The ATLAS experiment is the largest. It has many sub detectors among which is the Pixel detector which is the innermost part. The Pixel detector has eighty million channels that have to be read out. An optical link is utilized for the read out. It has optical to electronic interfaces both on the detector and off the detector at the counting room. The component on the detector in called the opto-board. This work discusses the production testing of the opto-boards to be installed on the detector. A total of 300 opto-boards including spares have been produced. The production was done in three laboratories among which is the laboratory at the University of Wuppertal which had the responsibility of Post production testing of all the one third of the total opto-boards. The results are discussed in this work. The analysis of the results from the total productio...

  1. Realisation of serial powering of ATLAS pixel modules

    CERN Document Server

    Stockmanns, Tobias; Fischer, P; Hügging, Fabian Georg; Peric, Ivan; Runólfsson, Ogmundur; Wermes, Norbert

    2004-01-01

    Modern hybrid pixel detectors as they will be used for the next generation of high energy collider experiments like LHC avail deep sub micron technology for the readout electronics. To operate chips in this technology low supply voltages of 2.0 V to 2.5 V and high currents to achieve the desired performance are needed. Due to the long and low mass supply cables this high current leads to a significant voltage drop so that voltage fluctuations at the chip result, when the supply current changes. Therefore the parallel connection of the readout electronics with the power supplies imposes severe constraints on a detector with respect to voltage fluctuations and cable mass. To bypass this problem a new concept of serially connecting modules in a supply chain was developed. The basic idea of the concept, the potential risk and ways to minimize these risks are presented. In addition, studies of the implementation of this technology as an alternative for a possible upgrade of the ATLAS pixel detector are shown. In p...

  2. Development and Characterization of Diamond and 3D-Silicon Pixel Detectors with ATLAS-Pixel Readout Electronics

    CERN Document Server

    Mathes, Markus

    2008-01-01

    Abstract: Hybrid pixel detectors are used for particle tracking in the innermost layers of current high energy experiments like ATLAS. After the proposed luminosity upgrade of the LHC, they will have to survive very high radiation fluences of up to 10^16 particles per cm^2 per life time. New sensor concepts and materials are required, which promise to be more radiation tolerant than the currently used planar silicon sensors. Most prominent candidates are so-called 3D-silicon and single crystal or poly-crystalline diamond sensors. Using the ATLAS pixel electronics different detector prototypes with a pixel geometry of 400 × 50 um^2 have been built. In particular three devices have been studied in detail: a 3D-silicon and a single crystal diamond detector with an active area of about 1 cm^2 and a poly-crystalline diamond detector of the same size as a current ATLAS pixel detector module (2 × 6 cm^2). To characterize the devices regarding their particle detection efficiency and spatial resolution, the charge c...

  3. Simulation of gas mixture drift properties for GasPixel detector for modernization of ATLAS

    International Nuclear Information System (INIS)

    Results of simulation of gas mixture drift properties for GasPixel detector are presented. The properties of gaseous mixtures for the GasPixel detector have been studied in view of its use in high luminosity tracking applications for the ATLAS Inner Detector in a future super-LHC collider

  4. Simulations of 3D-Si sensors for the innermost layer of the ATLAS pixel upgrade

    CERN Document Server

    Baselga, Marta; Quirion, David

    2016-01-01

    The LHC is expected to reach luminosities up to 3000fb-1 and the innermost layer of the ATLAS upgrade plans to cope with higher occupancy and to decrease the pixel size. 3D-Si sensors are a good candidate for the innermost layer of the ATLAS pixel upgrade since they exhibit good performance under high fluences and the new designs will have smaller pixel size to fulfill the electronics expectations. This paper reports TCAD simulations of the 3D-Si sensors designed at IMB-CNM with non passing-through columns that are being fabricated for the next innermost layer of the ATLAS pixel upgrade, shows the charge collection response before and after irradiation, and the response of 3D-Si sensors located at large $\\eta$ angles.

  5. The upgraded Pixel Detector of the ATLAS Experiment for Run 2 at the Large Hadron Collider

    Science.gov (United States)

    Backhaus, M.

    2016-09-01

    During Run 1 of the Large Hadron Collider (LHC), the ATLAS Pixel Detector has shown excellent performance. The ATLAS collaboration took advantage of the first long shutdown of the LHC during 2013 and 2014 and extracted the ATLAS Pixel Detector from the experiment, brought it to surface and maintained the services. This included the installation of new service quarter panels, the repair of cables, and the installation of the new Diamond Beam Monitor (DBM). Additionally, a completely new innermost pixel detector layer, the Insertable B-Layer (IBL), was constructed and installed in May 2014 between a new smaller beam pipe and the existing Pixel Detector. With a radius of 3.3 cm the IBL is located extremely close to the interaction point. Therefore, a new readout chip and two new sensor technologies (planar and 3D) are used in the IBL. In order to achieve best possible physics performance the material budget was improved with respect to the existing Pixel Detector. This is realized using lightweight staves for mechanical support and a CO2 based cooling system. This paper describes the improvements achieved during the maintenance of the existing Pixel Detector as well as the performance of the IBL during the construction and commissioning phase. Additionally, first results obtained during the LHC Run 2 demonstrating the distinguished tracking performance of the new Four Layer ATLAS Pixel Detector are presented.

  6. Status and future of the ATLAS Pixel Detector at the LHC

    International Nuclear Information System (INIS)

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. The detector provides hermetic coverage with three cylindrical layers and three layers of disks in each forward end-cap. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-on-n silicon substrates. Intensive calibration, tuning, timing optimization and monitoring resulted in the successful five years of operation with good detector performance. The record breaking instantaneous luminosities of 7.7×1033cm−2s−1 recently surpassed at the LHC generated a rapidly increasing particle fluence in the ATLAS Pixel Detector. As the radiation dose accumulated, the first effects of radiation damage became observable in the silicon sensors as an increase in the silicon leakage current and the change of the voltage required to fully deplete the sensor. A fourth pixel layer at a radius of 3.3 cm will be added during the long shutdown (2013–2014) together with the replacement of pixel services. A letter of intent was submitted for a completely new Pixel Detector after 2023, capable to take data with extremely high leveled luminosities of 5×1034cm−2s−1 at the high luminosity LHC. -- Highlights: •The ATLAS Pixel Detector provides hermetic coverage with three layers with 80 million pixels. •Calibration, tuning, timing optimization and monitoring resulted in the successful five years of operation with good detector performance. •First effects of radiation damage became observable in the silicon sensors. •A fourth pixel layer at a radius of 3.3 cm will be added during the long shutdown (2013–2014). •Replacement of pixel services in 2013–2014. •A letter of intent was submitted for new Pixel Detector after 2023 for high luminosity LHC

  7. Results on 0.7% X0 thick pixel modules for the ATLAS detector

    CERN Document Server

    Netchaeva, P; Darbo, G; Einsweiler, Kevin F; Gagliardi, G; Gemme, C; Gilchriese, M G D; Oppizzi, P; Richardson, J; Rossi, L; Ruscino, E; Vernocchi, F; Znizka, G

    2001-01-01

    Modules are the basic building blocks of the ATLAS pixel detector system, they are made of a silicon sensor tile containing ~46000 pixel cells of 50 mu m*400 mu m, 16 front-end chips connected to the sensor through bump bonding, a kapton flex circuit and the module controller chip. The pixel detector is the first to encounter particles emerging from LHC interactions, minimization of radiation length of pixel modules is therefore very important. We report here on the construction techniques and on the operation of the first ATLAS pixel modules of 0.7% radiation length thickness. We have operated these modules with threshold of 3700*10+or-300*10, mean noise value of 225*10 and 0.3% dead channels. (3 refs).

  8. Neural network based cluster creation in the ATLAS silicon Pixel Detector

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2013-01-01

    The read-out from individual pixels on planar semi-conductor sensors are grouped into clusters to reconstruct the location where a charged particle passed through the sensor. The resolution given by individual pixel sizes is significantly improved by using the information from the charge sharing between pixels. Such analog cluster creation techniques have been used by the ATLAS experiment for many years to obtain an excellent performance. However, in dense environments, such as those inside high-energy jets, clusters have an increased probability of merging the charge deposited by multiple particles. Recently, a neural network based algorithm which estimates both the cluster position and whether a cluster should be split has been developed for the ATLAS Pixel Detector. The algorithm significantly reduces ambiguities in the assignment of pixel detector measurement to tracks within jets and improves the position accuracy with respect to standard interpolation techniques by taking into account the 2-dimensional ...

  9. Neural network based cluster creation in the ATLAS silicon Pixel Detector

    CERN Document Server

    Perez Cavalcanti, T; The ATLAS collaboration

    2012-01-01

    The hit signals read out from pixels on planar semi-conductor sensors are grouped into clusters, to reconstruct the location where a charged particle passed through. The resolution of the individual pixel sizes can be improved significantly using the information from the cluster of adjacent pixels. Such analog cluster creation techniques have been used by the ATLAS experiment for many years giving an excellent performance. However, in dense environments, such as those inside high-energy jets, is likely that the charge deposited by two or more close-by tracks merges into one single cluster. A new pattern recognition algorithm based on neural network methods has been developed for the ATLAS Pixel Detector. This can identify the shared clusters, split them if necessary, and estimate the positions of all particles traversing the cluster. The algorithm significantly reduces ambiguities in the assignment of pixel detector measurements to tracks within jets, and improves the positional accuracy with respect to stand...

  10. Test Beam Results of 3D Silicon Pixel Sensors for the ATLAS upgrade

    CERN Document Server

    Grenier, P; Barbero, M; Bates, R; Bolle, E; Borri, M; Boscardin, M; Buttar, C; Capua, M; Cavalli-Sforza, M; Cobal, M; Cristofoli, A; Dalla Betta, G F; Darbo, G; Da Via, C; Devetak, E; DeWilde, B; Di Girolamo, B; Dobos, D; Einsweiler, K; Esseni, D; Fazio, S; Fleta, C; Freestone, J; Gallrapp, C; Garcia-Sciveres, M; Gariano, G; Gemme, C; Giordani, M P; Gjersdal, H; Grinstein, S; Hansen, T; Hansen, T E; Hansson, P; Hasi, J; Helle, K; Hoeferkamp, M; Hugging, F; Jackson, P; Jakobs, K; Kalliopuska, J; Karagounis, M; Kenney, C; Köhler, M; Kocian, M; Kok, A; Kolya, S; Korokolov, I; Kostyukhin, V; Krüger, H; La Rosa, A; Lai, C H; Lietaer, N; Lozano, M; Mastroberardino, A; Micelli, A; Nellist, C; Oja, A; Oshea, V; Padilla, C; Palestri, P; Parker, S; Parzefall, U; Pater, J; Pellegrini, G; Pernegger, H; Piemonte, C; Pospisil, S; Povoli, M; Roe, S; Rohne, O; Ronchin, S; Rovani, A; Ruscino, E; Sandaker, H; Seidel, S; Selmi, L; Silverstein, D; Sjøbaek, K; Slavicek, T; Stapnes, S; Stugu, B; Stupak, J; Su, D; Susinno, G; Thompson, R; Tsung, J W; Tsybychev, D; Watts, S J; Wermes, N; Young, C; Zorzi, N

    2011-01-01

    Results on beam tests of 3D silicon pixel sensors aimed at the ATLAS Insertable-B-Layer and High Luminosity LHC (HL-LHC)) upgrades are presented. Measurements include charge collection, tracking efficiency and charge sharing between pixel cells, as a function of track incident angle, and were performed with and without a 1.6 T magnetic field oriented as the ATLAS Inner Detector solenoid field. Sensors were bump bonded to the front-end chip currently used in the ATLAS pixel detector. Full 3D sensors, with electrodes penetrating through the entire wafer thickness and active edge, and double-sided 3D sensors with partially overlapping bias and read-out electrodes were tested and showed comparable performance.

  11. Testbeam Measurements with Pixel Sensors for the ATLAS Insertable b-Layer Project

    CERN Document Server

    George, Matthias; Quadt, Arnulf

    During the current long machine shutdown of the Large Hadron Collider (LHC) at CERN (Geneva), the innermost part of the ATLAS experiment, the pixel detector, is upgraded. The existing ATLAS pixel system is equipped with silicon sensors, organized in three barrel layers and three end cap disks on either side. To cope with the higher instantaneous luminosity in the future and for compensation of radiation damages due to past and near future running time of the experiment, a new fourth pixel detector layer is inserted into the existing system. This additional pixel layer is called “Insertable b-Layer” (IBL). The IBL is a detector system, based on silicon pixel sensors. Due to the smaller radius, compared to all other detectors of the ATLAS experiment, it has to be more radiation tolerant, than e.g. the current pixel layers. Furthermore, a reduced pixel size is necessary to cope with the expected higher particle flux. During the planning phase for the IBL upgrade, three different sensor technologies were comp...

  12. DC-DC conversion powering for the CMS tracker at SLHC

    Energy Technology Data Exchange (ETDEWEB)

    Feld, L., E-mail: Lutz.Feld@cern.c [RWTH Aachen University, Sommerfeldstrasse 14, D-52074 Aachen (Germany); Jussen, R.; Karpinski, W.; Klein, K.; Merz, J.; Sammet, J. [RWTH Aachen University, Sommerfeldstrasse 14, D-52074 Aachen (Germany)

    2011-02-01

    A tracker powering scheme based on DC-DC converters close to the detector modules can supply more power through thinner cables. This will allow to satisfy the increased power demands of tracking systems at the SLHC. This article describes the development of DC-DC converters for upgrades of the CMS pixel and tracking systems and addresses system integration issues.

  13. DC-DC Conversion Powering for the CMS Tracker at SLHC

    CERN Document Server

    Feld, Lutz

    2010-01-01

    A tracker powering scheme based on DC-DC converters close to the detector modules can supply more power through thinner cables. This will allow to satisfy the increased power demands of tracking systems at the SLHC. This article describes the development of DC-DC converters for upgrades of the CMS pixel and tracking systems and addresses system integration issues.

  14. Performance of silicon pixel detectors at small track incidence angles for the ATLAS Inner Tracker upgrade

    Science.gov (United States)

    Viel, Simon; Banerjee, Swagato; Brandt, Gerhard; Carney, Rebecca; Garcia-Sciveres, Maurice; Hard, Andrew Straiton; Kaplan, Laser Seymour; Kashif, Lashkar; Pranko, Aliaksandr; Rieger, Julia; Wolf, Julian; Wu, Sau Lan; Yang, Hongtao

    2016-09-01

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of the ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of the ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN.

  15. Simulations of planar pixel sensors for the ATLAS high luminosity upgrade

    OpenAIRE

    Calderini, G.; Benoit, M; Dinu, N.; Lounis, A.; Marchiori, G.

    2011-01-01

    A physics-based device simulation was used to study the charge carrier distribution and the electric field configuration inside simplified two-dimensional models for pixel layouts based on the ATLAS pixel sensor. In order to study the behavior of such detectors under different levels of irradiation, a three-level defect model was implemented into the simulation. Using these models, the number of guard rings, the dead edge width and the detector thickness were modified to investigate their inf...

  16. Commissioning and Operation of the ATLAS Pixel Detector at the CERN LHC Collider

    CERN Document Server

    Djama, F; The ATLAS collaboration

    2010-01-01

    Physics program at the CERN LHC collider started in autumn 2009. Since then, LHC daily delivers collisions between its two proton beams. This talk was devoted to the commissioning and early operation of the ATLAS Pixel Detector. The Pixel Detector is working nicely and all the required performances like efficiency, resolution and low noise were met. The fraction of working modules is as high as 97.4 %. The Pixel Detector fully participates in the reconstruction of charged particles trajectories, and is a key element in finding primary and secondary verticies and in tagging of short-lived particles.

  17. Optical Readout in a Multi-Module System Test for the ATLAS Pixel Detector

    CERN Document Server

    Flick, T; Gerlach, P; Kersten, S; Mättig, P; Kirichu, S N; Reeves, K; Richter, J; Schultes, J; Flick, Tobias; Becks, Karl-Heinz; Gerlach, Peter; Kersten, Susanne; Maettig, Peter; Kirichu, Simon Nderitu; Reeves, Kendall; Richter, Jennifer; Schultes, Joachim

    2006-01-01

    The innermost part of the ATLAS experiment at the LHC, CERN, will be a pixel detector. The command messages and the readout data of the detector are transmitted over an optical data path. The readout chain consists of many components which are produced at several locations around the world, and must work together in the pixel detector. To verify that these parts are working together as expected a system test has been built up. In this paper the system test setup and the operation of the readout chain is described. Also, some results of tests using the final pixel detector readout chain are given.

  18. Studies for the detector control system of the ATLAS pixel at the HL-LHC

    International Nuclear Information System (INIS)

    In the context of the LHC upgrade to the HL-LHC the inner detector of the ATLAS experiment will be replaced completely. As part of this redesign there will also be a new pixel detector. This new pixel detector requires a control system which meets the strict space requirements for electronics in the ATLAS experiment. To accomplish this goal we propose a DCS (Detector Control System) network with the smallest form factor currently available. This network consists of a DCS chip located in close proximity to the interaction point and a DCS controller located in the outer regions of the ATLAS detector. These two types of chips form a star shaped network with several DCS chips being controlled by one DCS controller. Both chips are manufactured in deep sub-micron technology. We present prototypes with emphasis on studies concerning single event upsets.

  19. Commissioning of the upgraded ATLAS Pixel Detector for Run2 at LHC

    CERN Document Server

    Dobos, Daniel; The ATLAS collaboration

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL), a fourth layer of pixel detectors, installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. An overview of the refurbishing of the Pixel Detector and of the IBL project as well as early performance tests using cosmic rays and beam data will be presented.

  20. Commissioning of the upgraded ATLAS Pixel Detector for Run2 at LHC

    Science.gov (United States)

    Dobos, Daniel

    2016-07-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to the surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer, a fourth layer of pixel detectors, installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. An overview of the refurbishing of the Pixel Detector and of the IBL project as well as early performance tests using cosmic rays and beam data will be presented.

  1. Operational Performance and Status of the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Jentzsch, J; The ATLAS collaboration

    2014-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experi- ment at the Large Hadron Collider at CERN. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individu- ally read out via chips bump-bonded to 1744 n+-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC and its status after three years of operation will be presented, including moni- toring, calibration procedures, timing optimization and detector performance. The record breaking instantaneous luminosities of 7.7 · 1033 cm−2s−1 recently surpassed at the Large Hadron Collider generate a rapidly increasing particle fluence in the ATLAS Pixel Detector. As the radiation dose accumulates, the first effects of radiation damage are now observable in the silicon sensors. A regular monitoring program has been conducted and reveals an increase in the silico...

  2. The upgraded Pixel Detector of the ATLAS Experiment for Run2 at the Large Hadron Collider

    CERN Document Server

    Backhaus, Malte; The ATLAS collaboration

    2015-01-01

    During Run-1 of the Large Hadron Collider (LHC), the ATLAS Pixel Detector has shown excellent performance. The ATLAS collaboration took advantage of the first long shutdown of the LHC during 2013 and 2014 and extracted the ATLAS Pixel Detector from the experiment, brought it to surface and maintained the services. This includes the installation of new service quarter panels, the repair of cables, and the installation of the new Diamond Beam Monitor (DBM). Additionally a completely new innermost pixel detector layer, the Insertable B-Layer (IBL), was constructed and installed in May 2014 between a new smaller beam pipe and the existing Pixel Detector. With a radius of 3.3 cm the IBL is located extremely close to the interaction point. Therefore a new readout chip and two new sensor technologies (planar and 3D) are used in IBL. In order to achieve best possible physics performance the material budget was improved with respect to the existing Pixel Detector. This is realized using lightweight staves for mechanic...

  3. Novel Silicon n-in-p Pixel Sensors for the future ATLAS Upgrades

    CERN Document Server

    La Rosa, A; Macchiolo, A; Nisius, R; Pernegger, H; Richter,R H; Weigell, P

    2013-01-01

    In view of the LHC upgrade phases towards HL-LHC the ATLAS experiment plans to upgrade the Inner Detector with an all silicon system. The n-in-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost eectiveness, that allow for enlarging the area instrumented with pixel detectors. We present the characterization and performance of novel n-in-p planar pixel sensors produced by CiS (Germany) connected by bump bonding to the ATLAS readout chip FE-I3. These results are obtained before and after irradiation up to a fluence of 1016 1-MeV $n_{eq}cm^{-2}$, and prove the operability of this kind of sensors in the harsh radiation environment foreseen for the pixel system at HL-LHC. We also present an overview of the new pixel production, which is on-going at CiS for sensors compatible with the new ATLAS readout chip FE-I4.

  4. Novel silicon n-in-p pixel sensors for the future ATLAS upgrades

    Science.gov (United States)

    La Rosa, A.; Gallrapp, C.; Macchiolo, A.; Nisius, R.; Pernegger, H.; Richter, R. H.; Weigell, P.

    2013-08-01

    In view of the LHC upgrade phases towards HL-LHC the ATLAS experiment plans to upgrade the inner detector with an all silicon system. The n-in-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost effectiveness that allow for enlarging the area instrumented with pixel detectors. We present the characterization and performance of novel n-in-p planar pixel sensors produced by CiS (Germany) connected by bump bonding to the ATLAS readout chip FE-I3. These results are obtained before and after irradiation up to a fluence of 10161-MeV neq cm-2, and prove the operability of this kind of sensors in the harsh radiation environment foreseen for the pixel system at HL-LHC. We also present an overview of the new pixel production, which is on-going at CiS for sensors compatible with the new ATLAS readout chip FE-I4.

  5. Thin n-in-p planar pixel modules for the ATLAS upgrade at HL-LHC

    CERN Document Server

    Savic, N; Breuer, J; La Rosa, A; Macchiolo, A; Nisius, R; Terzo, S

    2016-01-01

    The ATLAS experiment will undergo a major upgrade of the tracker system in view of the high luminosity phase of the LHC (HL-LHC) foreseen to start around 2025. Thin planar pixel modules are promising candidates to instrument the new pixel system, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. New designs of the pixel cells, with an optimized biasing structure, have been implemented in n-in-p planar pixel productions with sensor thicknesses of 270 um. Using beam tests, the gain in hit efficiency is investigated as a function of the received irradiation fluence. The outlook for future thin planar pixel sensor productions will be discussed, with a focus on thin sensors with a thickness of 100 and 150 um and a novel design with the optimized biasing structure and small pixel cells (50 um x 50 um and 25 um x 100 um). These dimensions are foreseen for the new ATLAS read-out chip in 65 nm CMOS technology and the fine segmentation will represen...

  6. Calibration Analysis Software for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    The calibration of the Pixel detector fulfills two main purposes: to tune front-end registers for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel detector scans and analyses is called Calibration Console. The introduction of a new layer, equipped with new Front End-I4 Chips, required an update the Console architecture. It now handles scans and scans analyses applied toghether to chips with dierent characteristics. An overview of the newly developed Calibration Analysis Software will be presented, together with some preliminary result.

  7. Operational Experience of the ATLAS SemiConductor Tracker and Pixel Detector

    CERN Document Server

    Robinson, Dave; The ATLAS collaboration

    2016-01-01

    The tracking performance of the ATLAS detector relies critically on the silicon and gaseous tracking subsystems that form the ATLAS Inner Detector. Those subsystems have undergone significant hardware and software upgrades to meet the challenges imposed by the higher collision energy, pileup and luminosity that are being delivered by the LHC during Run2. The key status and performance metrics of the Pixel Detector and the Semi Conductor Tracker are summarised, and the operational experience and requirements to ensure optimum data quality and data taking efficiency are described.

  8. ATLAS Pixel IBL Modules Construction Experience and Developments for Future Upgrade

    CERN Document Server

    Gaudiello, Andrea; The ATLAS collaboration

    2015-01-01

    The first upgrade of the ATLAS Pixel Detector is the Insertable B-Layer (IBL), just installed in May 2014 in the core of ATLAS. Two different silicon sensor technologies, planar n-in-n and 3D, were used, connected with the new generation 130nm IBM CMOS FE-I4 readout chip via solder bump-bonds. Production quality control tests were set up to verify and rate the performance of the modules before integration into staves. An overview of module design and construction, the quality control results and production yield will be discussed, as well as future developments foreseen for future detector upgrades.

  9. ATLAS Pixel IBL modules construction experience and developments for future upgrade

    CERN Document Server

    Gaudiello, A; The ATLAS collaboration

    2014-01-01

    The first upgrade of the ATLAS Pixel Detector is the Insertable B-Layer (IBL), just installed in May 2014 in the core of ATLAS. Two different silicon sensor technologies, planar n-in-n and 3D, were used, connected with the new generation 130nm IBM CMOS FE-I4 readout chip via solder bump-bonds. Production quality control tests were set up to verify and rate the performance of the modules before integration into staves. An overview of module design and construction, the quality control results and production yield will be discussed, as well as future developments foreseen for future detector upgrades.

  10. ATLAS pixel IBL modules construction experience and developments for future upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gaudiello, A.

    2015-10-01

    The first upgrade of the ATLAS Pixel Detector is the Insertable B-Layer (IBL), installed in May 2014 in the core of ATLAS. Two different silicon sensor technologies, planar n-in-n and 3D, are used. Sensors are connected with the new generation 130 nm IBM CMOS FE-I4 read-out chip via solder bump-bonds. Production quality control tests were set up to verify and rate the performance of the modules before integration into staves. An overview of module design and construction, the quality control results and production yield will be discussed, as well as future developments foreseen for future detector upgrades.

  11. The Pixel Detector of the ATLAS Experiment for the Run 2 at the Large Hadron Collider

    CERN Document Server

    Mandelli, B; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run 1 of LHC. Taking advantage of the long shutdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). The IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO$_2$ based cooling system have been adopted. The IBL construction and installation in the ATLAS Experiment has been completed very successfu...

  12. A Leakage Current-based Measurement of the Radiation Damage in the ATLAS Pixel Detector

    CERN Document Server

    Gorelov, Igor; The ATLAS collaboration

    2015-01-01

    A measurement has been made of the radiation damage incurred by the ATLAS Pixel Detector barrel silicon modules from the beginning of operations through the end of 2012. This translates to hadronic fluence received over the full period of operation at energies up to and including 8 TeV. The measurement is based on a per-module measurement of the silicon sensor leakage current. The results are presented as a function of integrated luminosity and compared to predictions by the Hamburg Model. This information can be used to predict limits on the lifetime of the Pixel Detector due to current, for various operating scenarios.

  13. Status of the ATLAS Pixel Detector at the LHC and its performance after three years of operation

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC and its status after three years of operation will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: ~96 % of the pixels are operational, noise occupancy and hit ...

  14. Studies for the detector control system of the ATLAS pixel at the HL-LHC

    CERN Document Server

    Püllen, L; Boek, J; Kersten, S; Kind, P; Mättig, P; Zeitnitz, C

    2012-01-01

    experiment will be replaced completely. As part of this redesign there will also be a new pixel detector. This new pixel detector requires a control system which meets the strict space requirements for electronics in the ATLAS experiment. To accomplish this goal we propose a DCS (Detector Control System) network with the smallest form factor currently available. This network consists of a DCS chip located in close proximity to the interaction point and a DCS controller located in the outer regions of the ATLAS detector. These two types of chips form a star shaped network with several DCS chips being controlled by one DCS controller. Both chips are manufactured in deep sub-micron technology. We present prototypes with emphasis on studies concerning single event upsets.

  15. The Pixels find their way to the heart of ATLAS

    CERN Multimedia

    Kevin Einsweiler

    Since the last e-news article on the Pixel Detector in December 2006, there has been much progress. At that time, we were just about to receive the Beryllium beampipe, and to integrate the innermost layer of the Pixel Detector around it. This innermost layer is referred to as the B-layer because of the powerful role it plays in finding the secondary vertices that are the key signature for the presence of b-quarks, and with somewhat greater difficulty, c-quarks and tau leptons. The integration of the central 7m long beampipe into the Pixel Detector was completed in December, and the B-layer was successfully integrated around it. In January this year, we had largely completed the central 1.5m long detector, including the three barrel layers and the three disk layers on each end of the barrel. Although this region contains all of the 80 million readout channels, it cannot be integrated into the Inner Detector without additional services and infrastructure. Therefore, the next step was to add the Service Panels...

  16. Radiation-Hard Opto-Link for the Atlas Pixel Detector

    OpenAIRE

    Gan, K. K.

    2004-01-01

    The on-detector optical link of the ATLAS pixel detector contains radiation-hard receiver chips to decode bi-phase marked signals received on PIN arrays and data transmitter chips to drive VCSEL arrays. The components are mounted on hybrid boards (opto-boards). We present results from the opto-boards and from irradiation studies with 24 GeV protons up to 33 Mrad (1.2 x 10^15 p/cm^2).

  17. Development of n-in-p pixel modules for the ATLAS upgrade at HL-LHC

    Science.gov (United States)

    Macchiolo, A.; Nisius, R.; Savic, N.; Terzo, S.

    2016-09-01

    Thin planar pixel modules are promising candidates to instrument the inner layers of the new ATLAS pixel detector for HL-LHC, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. 100-200 μm thick sensors, interconnected to FE-I4 read-out chips, have been characterized with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements are reported for devices before and after irradiation up to a fluence of 14 ×1015 neq /cm2 . The charge collection and tracking efficiency of the different sensor thicknesses are compared. The outlook for future planar pixel sensor production is discussed, with a focus on sensor design with the pixel pitches (50×50 and 25×100 μm2) foreseen for the RD53 Collaboration read-out chip in 65 nm CMOS technology. An optimization of the biasing structures in the pixel cells is required to avoid the hit efficiency loss presently observed in the punch-through region after irradiation. For this purpose the performance of different layouts have been compared in FE-I4 compatible sensors at various fluence levels by using beam test data. Highly segmented sensors will represent a challenge for the tracking in the forward region of the pixel system at HL-LHC. In order to reproduce the performance of 50×50 μm2 pixels at high pseudo-rapidity values, FE-I4 compatible planar pixel sensors have been studied before and after irradiation in beam tests at high incidence angle (80°) with respect to the short pixel direction. Results on cluster shapes, charge collection and hit efficiency will be shown.

  18. The Layer 1 / Layer 2 readout upgrade for the ATLAS Pixel Detector

    CERN Document Server

    Mullier, Geoffrey; The ATLAS collaboration

    2016-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of the Large Hadron Collider (LHC). The increase of instantaneous luminosity foreseen during the LHC Run 2, will lead to an increased detector occupancy that is expected to saturate the readout links of the outermost layers of the pixel detector: Layers 1 and 2. To ensure a smooth data taking under such conditions, the read out system of the recently installed fourth innermost pixel layer, the Insertable B-Layer, was modified to accomodate the needs of the older detector. The Layer 2 upgrade installation took place during the 2015 winter shutdown, with the Layer 1 installation scheduled for 2016. A report of the successful installation, together with the design of novel dedicated optical to electrical converters and the software and firmware updates will be presented.

  19. The Pixel Detector of the ATLAS experiment for the Run2 at the Large Hadron Collider

    CERN Document Server

    Takubo, Y; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long shutdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair the modules and to ease installation of the Insertable B-Layer (IBL). The IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using light weight staves and CO$_{2}$ based cooling system have been adopted. An overview of the refurbishing of the Pixel Detector and the IBL pr...

  20. The Pixel Detector of the ATLAS Experiment for LHC Run-2

    CERN Document Server

    Pernegger, H; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detector and of the IBL project as ...

  1. The Pixel Detector of the ATLAS experiment for the Run2 at the Large Hadron Collider

    CERN Document Server

    Takubo, Yosuke

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detect or and of the IBL project as...

  2. The ATLAS Pixel Detector for Run II at the Large Hadron Collider

    CERN Document Server

    Marx, Marilyn; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detector and of the IBL project as ...

  3. The upgraded Pixel Detector of the ATLAS Experiment for Run2 at the Large Hadron Collider

    CERN Document Server

    Backhaus, Malte; The ATLAS collaboration

    2015-01-01

    Run-2 of the LHC will provide new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, two different silicon sensor technologies (planar and 3D) have been developed as well as a new read-out chip within CMOS 130nm technology and with larger area, smaller pixel size and faster readout capability. The new detector is the first large scale application of of 3D detectors and CMOS 130nm technology. An overview of the lessons learned during the IBL project will be presented, focusing on the challenges and highlighting the issues met during the productio...

  4. The Upgraded Pixel Detector of the ATLAS Experiment for Run-2

    CERN Document Server

    Ferrere, Didier; The ATLAS collaboration

    2016-01-01

    Run-2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with high radiation and expected occupancy, is the first large scale application of 3D detectors and CMOS 130nm technology. In addition the Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during run-1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning and performance of the 4-layer Pixel Detector, in particular the IBL, will be presented, using collision data.

  5. The upgraded Pixel Detector of the ATLAS experiment for Run-2 at the Large Hadron Collider

    CERN Document Server

    Giordani, MarioPaolo; The ATLAS collaboration

    2016-01-01

    Run-2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with high radiation and expected occupancy, is the first large scale application of 3D detectors and CMOS 130nm technology. In addition the Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during run-1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning and performance of the 4-layer Pixel Detector, in particular the IBL, will be presented, using collision data.

  6. The upgraded Pixel Detector of the ATLAS experiment for Run-2 at the Large Hadron Collider

    International Nuclear Information System (INIS)

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of the Large Hadron Collider (LHC) . Taking advantage of Long Shutdown 1 (LS1) during 2014/2015, the Pixel Detector was brought to surface to equip it with new service panels and to repair modules. The Insertable B-Layer (IBL), a fourth layer of pixel sensors, was installed in-between the existing Pixel Detector and a new beam-pipe at a radius of 3.3 cm. To cope with the high radiation and increased pixel occupancy due to the proximity to the interaction point, two different silicon sensor technologies (planar and 3D) were used and a new readout chip has been designed with CMOS 130 nm technology with larger area, smaller pixel size and faster readout capability. Dedicated design features in combination with a new composite material were considered and used in order to reduce the material budget of the support structure while keeping the optimal thermo-mechanical performance. An overview of the lessons learned during the IBL project is presented, focusing on the challenges and highlighting the issues met during the production, integration, installation and commissioning phases of the detector. Early performance tests using cosmic and beam data are also presented

  7. Study of FPGA and GPU based pixel calibration for ATLAS IBL

    CERN Document Server

    Dopke, J; The ATLAS collaboration; Flick, T; Gabrielli, A; Grosse-Knetter, J; Krieger, N; Kugel, A; Polini, A; Schroer, N

    2010-01-01

    The insertable B-layer (IBL) is a new stage of the ATLAS pixel detector to be installed around 2014. 12 million pixel are attached to new FE-I4 readout ASICs, each controlling 26680 pixel. Compared to the existing FE-I3 based detector the new system features higher readout speed of 160Mbit/s per ASIC and simplified control. For calibration defined charges are applied to all pixels and the resulting time-over-threshold values are evaluated. In the present system multiple sets of two custom VME cards which employ a combination of FPGA and DSP technology are used for I/O interfacing, formatting and processing. The execution time of 51s to perform a threshold scan on a FE-I3 module of 46080 pixel is composed of 8s control, 29s transfer, 7.5s histogramming and 7s analysis. Extrapolating to FE-I4 the times per module of 53760 pixels are 12ms, 5.8s, 9.4s and 8.3s, a total of 23.5s. We present a proposal for a novel approach to the dominant tasks for FE-I4: histogramming and ananlysis. An FPGA-based histogramming uni...

  8. Commissioning of the upgraded ATLAS Pixel Detector for Run2 at LHC

    CERN Document Server

    ATLAS Pixel Collaboration; The ATLAS collaboration

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detector and of the IBL project as ...

  9. DC-DC buck converters for the CMS Tracker upgrade at SLHC

    Energy Technology Data Exchange (ETDEWEB)

    Feld, L; Jussen, R; Karpinski, W; Klein, K; Sammet, J, E-mail: Katja.Klein@cern.ch [1. Physikalisches Institut B, RWTH Aachen University, Sommerfeldstrasse 14, 52074 Aachen (Germany)

    2011-01-15

    The CMS experiment at the Large Hadron Collider (LHC) at CERN, Geneva, is planning major upgrades of its current pixel and strip detectors for the LHC luminosity upgrade, known as the SLHC. Due to the larger channel count and - in case of the strip tracker - increased functionality, the powering scheme adopted today, namely parallel powering of several detector modules, has to be abandoned. Instead, a powering scheme based on the DC-DC conversion technique is foreseen, which would lead to lower power losses in the supply cables, and would allow to reduce the material budget of cables and associated electronic boards in the sensitive detector volume. This paper deals with the development, characterisation and optimisation of DC-DC buck converter prototypes for the upgrades of the CMS pixel and strip detectors at the SLHC.

  10. Spectroscopic measurements with the ATLAS FE-I4 pixel readout chip

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, David-Leon; Janssen, Jens; Hemperek, Tomasz; Huegging, Fabian; Wermes, Norbert [Physikalisches Institut der Univeristaet Bonn (Germany)

    2015-07-01

    The ATLAS FE-I4 pixel readout chip is a large (2 x 2 cm{sup 2}) state of the art ASIC used in high energy physics experiments as well as for research and development purposes. While the FE-I4 is optimized for high hit rates it provides very limited charge resolution. Therefore two methods were developed to obtain high resolution single pixel charge spectra with the ATLAS FE-I4. The first method relies on the ability to change the detection threshold in small steps while counting hits from a particle source and has a resolution limited by electronic noise only. The other method uses a FPGA based time-to-digital-converter to digitize the analog charge signal with high precision. The feasibility, performance and challenges of these methods are discussed. First results of sensor characterizations from radioactive sources and test beams with the ATLAS FE-I4 in view of the charge collection efficiency after irradiation are presented.

  11. Studies on irradiated pixel detectors for the ATLAS IBL and HL-LHC upgrade

    International Nuclear Information System (INIS)

    The constant demand for higher luminosity in high energy physics is the reason for the continuous effort to adapt the accelerators and the experiments. The upgrade program for the experiments and the accelerators at CERN already includes several expansion stages of the Large Hadron Collider (LHC) which will increase the luminosity and the energy of the accelerator. Simultaneously the LHC experiments prepare the individual sub-detectors for the increasing demands in the coming years. Especially the tracking detectors have to cope with fluence levels unprecedented for high energy physics experiments. Correspondingly to the fluence increases the impact of the radiation damage which reduces the life time of the detectors by decreasing the detector performance and efficiency. To cope with this effect new and more radiation hard detector concepts become necessary to extend the life time. This work concentrates on the impact of radiation damage on the pixel sensor technologies to be used in the next upgrade of the ATLAS Pixel Detector as well as for applications in the ATLAS Experiment at HL-LHC conditions. The sensors considered in this work include various designs based on silicon and diamond as sensor material. The investigated designs include a planar silicon pixel design currently used in the ATLAS Experiment as well as a 3D pixel design which uses electrodes penetrating the entire sensor material. The diamond designs implement electrodes similar to the design used by the planar technology with diamond sensors made out of single- and poly-crystalline material. To investigate the sensor properties characterization tests are performed before and after irradiation with protons or neutrons. The measurements are used to determine the interaction between the read-out electronics and the sensors to ensure the signal transfer after irradiation. Further tests focus on the sensor performance itself which includes the analysis of the leakage current behavior and the charge

  12. The Pixel Detector of the ATLAS experiment for the Run2 at the Large Hadron Collider

    CERN Document Server

    Mandelli, B; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long shutdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and will be installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. IBL construction is now completed. An overview of the IBL project as well as the ...

  13. The Pixel Detector of the ATLAS experiment for the Run2 at the Large Hadron Collider

    CERN Document Server

    Oide, H; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and will be installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. IBL construction is now completed. An overview of the IBL project as well as the ...

  14. The Pixel Detector of the ATLAS Experiment for LHC Run-2

    CERN Document Server

    Pernegger, Heinz; The ATLAS collaboration

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long shutdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and hit occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detector and of the IBL project as we...

  15. The upgraded Pixel Detector of the ATLAS Experiment for Run2 at the Large Hadron Collider

    CERN Document Server

    Mullier, Geoffrey Andre; The ATLAS collaboration

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL), a fourth layer of pixel detectors, installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and increased pixel occupancy due to the proximity to the interaction point, two different silicon sensor technologies (planar and 3D) have been developed. A new readout chip has been developed within CMOS 130nm technology with larger area, smaller pixel size and faster readout capability. Dedicated design features in combination with a new composite material were considered and used in order to reduce the material budget of the support structure while keeping the optimal thermo-mechanical performan...

  16. Development of n-in-p pixel modules for the ATLAS Upgrade at HL-LHC

    CERN Document Server

    Macchiolo, Anna; Savic, Natascha; Terzo, Stefano

    2016-01-01

    Thin planar pixel modules are promising candidates to instrument the inner layers of the new ATLAS pixel detector for HL-LHC, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. 100-200 $\\mu$m thick sensors, interconnected to FE-I4 read-out chips, have been characterized with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements are reported for devices before and after irradiation up to a fluence of $14\\times10^{15}$ n$_{eq}$/cm$^2$. The charge collection and tracking efficiency of the different sensor thicknesses are compared. The outlook for future planar pixel sensor production is discussed, with a focus on sensor design with the pixel pitches (50x50 and 25x100 $\\mu$m$^2$) foreseen for the RD53 Collaboration read-out chip in 65 nm CMOS technology. An optimization of the biasing structures in the pixel cells is required to avoid the hit efficiency loss presently observed in the punch-through region...

  17. Development of n-in-p pixel modules for the ATLAS upgrade at HL-LHC

    CERN Document Server

    Macchiolo, A.; Savic, N.; Terzo, S.

    2016-01-01

    Thin planar pixel modules are promising candidates to instrument the inner layers of the new ATLAS pixel detector for HL-LHC, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. 100–200 μm thick sensors, interconnected to FE-I4 read-out chips, have been characterized with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements are reported for devices before and after irradiation up to a fluence of 14×1015 neq/cm2. The charge collection and tracking efficiency of the different sensor thicknesses are compared. The outlook for future planar pixel sensor production is discussed, with a focus on sensor design with the pixel pitches (50×50 and 25×100 μm2) foreseen for the RD53 Collaboration read-out chip in 65 nm CMOS technology. An optimization of the biasing structures in the pixel cells is required to avoid the hit efficiency loss presently observed in the punch-through region after irradiation. F...

  18. Recent Results of the ATLAS Upgrade Planar Pixel Sensors R&D Project

    CERN Document Server

    Weigell, Philipp

    2013-01-01

    To cope with the higher occupancy and radiation damage at the HL-LHC also the LHC experiments will be upgraded. The ATLAS Planar Pixel Sensor R&D Project (PPS) is an international collaboration of 17 institutions and more than 80 scientists, exploring the feasibility of employing planar pixel sensors for this scenario. Depending on the radius, different pixel concepts are investigated using laboratory and beam test measurements. At small radii the extreme radiation environment and strong space constraints are addressed with very thin pixel sensors active thickness in the range of (75-150) mum, and the development of slim as well as active edges. At larger radii the main challenge is the cost reduction to allow for instrumenting the large area of (7-10) m^2. To reach this goal the pixel productions are being transferred to 6 inch production lines. Additionally, investigated are more cost-efficient and industrialised interconnection techniques as well as the n-in-p technology, which, being a single-sided pr...

  19. The Pixel Detector of the ATLAS experiment for the Run 2 at the Large Hadron Collider

    CERN Document Server

    Oide, H; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run 1 of LHC. Taking advantage of the long shutdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). The IBL is the fourth layer of the Run 2 Pixel Detector, and it was installed in May 2014 between the existing Pixel Detector and the new smaller-radius beam pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. IBL construction is now completed. An overview of the IBL project...

  20. High bandwidth pixel detector modules for the ATLAS Insertable B-Layer

    Energy Technology Data Exchange (ETDEWEB)

    Backhaus, Malte

    2014-01-15

    The investigation of the nature of the recently discovered electro-weak symmetry breaking mechanism of the standard model of particle physics as well as the search for physics beyond the standard model with the LHC require to collect even more data. To achieve this goal, the luminosity of the LHC will be increased in two steps. The increased luminosity results in serious challenges for the inner tracking systems of the experiments at the LHC. The ATLAS pixel detector will also be upgraded in a two stage program. During the shutdown in 2013 and 2014 a fourth hybrid pixel detector layer, the socalled Insertable B-Layer (IBL) is inserted inside the existing pixel detector. This thesis focuses on the characterization, performance measurement, and production quality assurance of the central sensitive elements of the IBL, the modules. This includes a full characterization of the readout chip (FE-I4) and of the assembled modules. A completely new inner tracking system is mandatory in ATLAS after the second luminosity increase in the shutdown of 2022 and 2023. The final chapter of this thesis introduces a new module concept that uses an industrial high voltage CMOS technology as sensor layer, which is capacitively coupled to the FE-I4 readout chip.

  1. 3D silicon pixel detectors for the ATLAS Forward Physics experiment

    CERN Document Server

    Lange, Jörn; Grinstein, Sebastian; Paz, Ivan Lopez

    2015-01-01

    The ATLAS Forward Physics (AFP) project plans to install 3D silicon pixel detectors about 210 m away from the interaction point and very close to the beamline (2-3 mm). This implies the need of slim edges of about 100-200 $\\mu$m width for the sensor side facing the beam to minimise the dead area. Another challenge is an expected non-uniform irradiation of the pixel sensors. It is studied if these requirements can be met using slightly-modified FE-I4 3D pixel sensors from the ATLAS Insertable B-Layer production. AFP-compatible slim edges are obtained with a simple diamond-saw cut. Electrical characterisations and beam tests are carried out and no detrimental impact on the leakage current and hit efficiency is observed. For devices without a 3D guard ring a remaining insensitive edge of less than 15 $\\mu$m width is found. Moreover, 3D detectors are non-uniformly irradiated up to fluences of several 10$^{15}$ n$_{eq}$/cm$^2$ with either a focussed 23 GeV proton beam or a 23 MeV proton beam through holes in Al ma...

  2. SLID-ICV Vertical Integration Technology for the ATLAS Pixel Upgrades

    CERN Document Server

    Macchiolo, A; Moser, H G; Nisius, R; Richter, R H; Weigell, P

    2012-01-01

    We present the results of the characterization of pixel modules composed of 75 μm thick n-in-p sensors and ATLAS FE-I3 chips, interconnected with the SLID (Solid Liquid Inter-Diffusion) technology. This technique, developed at Fraunhofer-EMFT, is explored as an alternative to the bump-bonding process. These modules have been designed to demonstrate the feasibility of a very compact detector to be employed in the future ATLAS pixel upgrades, making use of vertical integration technologies. This module concept also envisages Inter-Chip-Vias (ICV) to extract the signals from the backside of the chips, thereby achieving a higher fraction of active area with respect to the present pixel module design. In the case of the demonstrator module, ICVs are etched over the original wire bonding pads of the FE-I3 chip. In the modules with ICVs the FE-I3 chips will be thinned down to 50 um. The status of the ICV preparation is presented.

  3. High bandwidth pixel detector modules for the ATLAS Insertable B-Layer

    CERN Document Server

    Backhaus, Malte

    2014-02-19

    The investigation of the nature of the recently discovered electro-weak symmetry breaking mechanism of the standard model of particle physics as well as the search for physics beyond the standard model with the LHC require to collect even more data. To achieve this goal, the luminosity of the LHC will be increased in two steps. The increased luminosity results in serious challenges for the inner tracking systems of the experiments at the LHC. The ATLAS pixel detector will also be upgraded in a two stage program. During the shutdown in 2013 and 2014 a fourth hybrid pixel detector layer, the so-called Insertable B-Layer (IBL) is inserted inside the existing pixel detector. This thesis focuses on the characterization, performance measurement, and production quality assurance of the central sensitive elements of the IBL, the modules. This includes a full characterization of the readout chip (FE-I4) and of the assembled modules. A completely new inner tracking system is mandatory in ATLAS after the second luminosi...

  4. Simulations of planar pixel sensors for the ATLAS high luminosity upgrade

    CERN Document Server

    Calderini, G; Dinu, N; Lounis, A; Marchiori, G

    2011-01-01

    A physics-based device simulation was used to study the charge carrier distribution and the electric field configuration inside simplified two-dimensional models for pixel layouts based on the ATLAS pixel sensor. In order to study the behavior of such detectors under different levels of irradiation, a three-level defect model was implemented into the simulation. Using these models, the number of guard rings, the dead edge width and the detector thickness were modified to investigate their influence on the detector depletion at the edge and on its internal electric field distribution in order to optimize the layout parameters. Simulations indicate that the number of guard rings can be reduced by a few hundred microns with respect to the layout used for the present ATLAS sensors, with a corresponding extension of the active area of the sensors. A study of the inter-pixel capacitance and of the capacitance between the implants and the high-voltage contact as a function of several parameters affecting the geometr...

  5. High bandwidth pixel detector modules for the ATLAS Insertable B-Layer

    International Nuclear Information System (INIS)

    The investigation of the nature of the recently discovered electro-weak symmetry breaking mechanism of the standard model of particle physics as well as the search for physics beyond the standard model with the LHC require to collect even more data. To achieve this goal, the luminosity of the LHC will be increased in two steps. The increased luminosity results in serious challenges for the inner tracking systems of the experiments at the LHC. The ATLAS pixel detector will also be upgraded in a two stage program. During the shutdown in 2013 and 2014 a fourth hybrid pixel detector layer, the socalled Insertable B-Layer (IBL) is inserted inside the existing pixel detector. This thesis focuses on the characterization, performance measurement, and production quality assurance of the central sensitive elements of the IBL, the modules. This includes a full characterization of the readout chip (FE-I4) and of the assembled modules. A completely new inner tracking system is mandatory in ATLAS after the second luminosity increase in the shutdown of 2022 and 2023. The final chapter of this thesis introduces a new module concept that uses an industrial high voltage CMOS technology as sensor layer, which is capacitively coupled to the FE-I4 readout chip.

  6. A neural network clustering algorithm for the ATLAS silicon pixel detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Almond, John; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel

    2014-01-01

    A novel technique to identify and split clusters created by multiple charged particles in the ATLAS pixel detector using a set of artificial neural networks is presented. Such merged clusters are a common feature of tracks originating from highly energetic objects, such as jets. Neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. This technique replaces the former clustering approach based on a connected component analysis and charge interpolation. The performance of the neural network splitting technique is quantified using data from proton-proton collisions at the LHC collected by the ATLAS detector in 2011 and from Monte Carlo simulations. This technique reduces the number of clusters shared between tracks in highly energetic jets by up to a factor of three. It also provides more precise position and error estimates of the clusters in both the transverse and longitudinal impact parameter resolution.

  7. Test su fascio di prototipi del rivelatore a pixel per l'esperimento ATLAS

    CERN Document Server

    Matera, Andrea; Andreazza, A

    2005-01-01

    Silicon pixel detectors, developed to meet LHC requirements, were tested within the ATLAS collaboration in the H8 beam at CERN. Different sensor designs were studied using various versions of front end electronics developed during the R&D process. In this thesis a detailed experimental study of the overall performance of both irradiated and unirradiated detectors is presented, with special enphasis on efficiency, charge collection and spatial resolution. For the first time their dependence on timewalk is carefully investigated. Possible solutions to avoid spatial resolution deterioration due to timewalk are presented and discussed.

  8. The phase-II ATLAS pixel tracker upgrade: layout and mechanics.

    CERN Document Server

    Sharma, Abhishek; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment will upgrade its tracking detector during the Phase-II LHC shutdown, to better take advantage of the increased luminosity of the HL-LHC. The upgraded tracker will consist of silicon-strip modules surrounding a pixel detector, and will likely cover an extended eta range, perhaps as far as |eta|<4.0. A number of layout and supporting-structure options are being considered for the pixel detector, with the final choice expected to be made in early 2017. The proposed supporting structures are based on lightweight, highly-thermally-conductive carbon-based materials and are cooled by evaporative carbon dioxide. The various layouts will be described and a description of the supporting structures will be presented, along with results from testing of prototypes.

  9. Design, production, and reliability of the new ATLAS pixel opto-boards

    International Nuclear Information System (INIS)

    New fiber optical transceivers, opto-boards, were designed and produced to replace the first generation opto-boards installed in the ATLAS pixel detector and for the new pixel layer, the insertable barrel layer (IBL). Each opto-board contains one 12-channel PIN array and two 12-channel VCSEL arrays along with associated receiver and driver ASICs. The new opto-board design benefits from the production and operational experience of the first generation opto-boards and contains several improvements. The new opto-boards have been successfully installed. Additionally, a set of the new opto-boards have been subjected to an accelerated lifetime experiment at 85 C and 85% relative humidity for over 1,000 hours. No failures were observed. We are cautiously optimistic that the new opto-boards will survive until the shutdown for the detector upgrade for the high-luminosity Large Hadron Collider (HL-LHC)

  10. Prototypes for components of a control system for the ATLAS pixel detector at the HL-LHC

    CERN Document Server

    Boek, J; Kind, P; Mättig, P; Püllen, L; Zeitnitz, C

    2013-01-01

    inner detector of the ATLAS experiment will be replaced entirely including the pixel detector. This new pixel detector requires a specific control system which complies with the strict requirements in terms of radiation hardness, material budget and space for the electronics in the ATLAS experiment. The University ofWuppertal is developing a concept for a DCS (Detector Control System) network consisting of two kinds of ASICs. The first ASIC is the DCS Chip which is located on the pixel detector, very close to the interaction point. The second ASIC is the DCS Controller which is controlling 4x4 DCS Chips from the outer regions of ATLAS via differential data lines. Both ASICs are manufactured in 130 nm deep sub micron technology. We present results from measurements from new prototypes of components for the DCS network.

  11. Slim edge studies, design and quality control of planar ATLAS IBL pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wittig, Tobias

    2013-05-08

    One of the four large experiments at the LHC at CERN is the ATLAS detector, a multi purpose detector. Its pixel detector, composed of three layers, is the innermost part of the tracker. As it is closest to the interaction point, it represents a basic part of the track reconstruction. Besides the requested high resolution one main requirement is the radiation hardness. In the coming years the radiation damage will cause deteriorations of the detector performance. With the planned increase of the luminosity, especially after the upgrade to the High Luminosity LHC, this radiation damage will be even intensified. This circumstance necessitates a new pixel detector featuring improved radiation hard sensors and read-out chips. The present shutdown of the LHC is already utilized to insert an additional b-layer (IBL) into the existing ATLAS pixel detector. The current n-in-n pixel sensor design had to be adapted to the new read-out chip and the module specifications. The new stave geometry requests a reduction of the inactive sensor edge. In a prototype wafer production all modifications have been implemented. The sensor quality control was supervised which led to the decision of the final sensor thickness. In order to evaluate the performance of the sensor chip assemblies with an innovative slim edge design, they have been operated in test beam setups before and after irradiation. Furthermore, the quality control of the planar IBL sensor wafer production was supervised from the stage of wafer delivery to that before the flip chip process to ensure a sufficient amount of functional sensors for the module production.

  12. Recent results of the ATLAS upgrade Planar Pixel Sensors R&D project

    Science.gov (United States)

    Forshaw, Dean

    2013-12-01

    To extend the physics reach of the LHC, upgrades to the accelerator are planned which will increase the integrated annual luminosity by a factor of 5-10. This will increase the occupancy and the radiation damage of the inner trackers. To cope with the elevated occupancy, the ATLAS experiment plans to introduce an all silicon inner tracker for High Luminosity LHC (HL-LHC) operation. With silicon, the occupancy can be adjusted by using the appropriate pitch for the pixels/micro-strips. Constraints due to high radiation damage mean that only sensors with electrode configuration designed to read out the electron signal (n-in-p and n-in-n) are considered. To investigate the suitability of planar pixel sensors (PPS) for the ATLAS tracker upgrade, a dedicated R&D project was established, with 17 institutes and more than 80 scientists. The main focuses of research are the performance of planar pixel sensors after the high fluences expected during HL-LHC operation, the optimisation of the detector and module production technologies for cost reduction to enable the instrumentation of large volumes and the reduction of the inactive areas needed for electrical insulation of the sensitive region from the cut edge of the sensors. An overview of recent accomplishments of the PPS (Planar Pixel Sensors) R&D project is given. The performance in terms of charge collection and tracking efficiency, evaluated with radioactive sources in the laboratory and from beam tests, is presented. Sensors with different thicknesses (ranging from 75 to 300 μm) were irradiated to several fluences up to 2 ×1016neqcm-2 to study the effect of varying thickness on the radiation hardness. The significant progresses made towards the reduction of the edge distance are reported.

  13. The Pixel Detector of the ATLAS Experiment for the Run-2 at the Large Hadron Collider

    CERN Document Server

    Guescini, F; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radial distance of 3.3 cm from the beam axis. The realization of the IBL required the development of several new technologies and solutions in order to overcome the challenges introduced by the extreme environment and working conditions, such as the high radiation levels, the high pixel occupancy and the need of an exceptionally low material budget. Two silicon sensor technologies have been adopted for the IBL modules: planar n-in-n and 3D. Both of these are connected via bump bonding to the new generation 130 nm IBM CMOS FE-I4 ...

  14. Firmware development and testing of the ATLAS Pixel Detector / IBL ROD card

    Science.gov (United States)

    Gabrielli, A.; Backhaus, M.; Balbi, G.; Bindi, M.; Chen, S. P.; Falchieri, D.; Flick, T.; Hauck, S.; Hsu, S. C.; Kretz, M.; Kugel, A.; Lama, L.; Travaglini, R.; Wensing, M.

    2015-03-01

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shut down. In particular, the Pixel detector has inserted an additional inner layer called the Insertable B-Layer (IBL). The Readout-Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL's off-detector DAQ system. The strategy for IBL ROD firmware development was three-fold: keeping as much of the Pixel ROD datapath firmware logic as possible, employing a complete new scheme of steering and calibration firmware, and designing the overall system to prepare for a future unified code version integrating IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBL DAQ test bench using a realistic front-end chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBL ROD data path implementation, test on the test bench and ROD prototypes, will be reported. Recent Pixel collaboration efforts focus on finalizing hardware and firmware tests for the IBL. The plan is to approach a complete IBL DAQ hardware-software installation by the end of 2014.

  15. Investigation of thin n-in-p planar pixel modules for the ATLAS upgrade

    CERN Document Server

    Savic, N; Macchiolo, A; Nisius, R

    2016-01-01

    In view of the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), planned to start around 2023-2025, the ATLAS experiment will undergo a replacement of the Inner Detector. A higher luminosity will imply higher irradiation levels and hence will demand more ra- diation hardness especially in the inner layers of the pixel system. The n-in-p silicon technology is a promising candidate to instrument this region, also thanks to its cost-effectiveness because it only requires a single sided processing in contrast to the n-in-n pixel technology presently employed in the LHC experiments. In addition, thin sensors were found to ensure radiation hardness at high fluences. An overview is given of recent results obtained with not irradiated and irradiated n-in-p planar pixel modules. The focus will be on n-in-p planar pixel sensors with an active thickness of 100 and 150 {\\mu}m recently produced at ADVACAM. To maximize the active area of the sensors, slim and active edges are implemented. The performance of th...

  16. Status of the ATLAS Pixel Detector at the LHC and its performance after three years of operation

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experi- ment at the Large Hadron Collider at CERN, providing high-resolution mea- surements of charged particle tracks in the high radiation environment close to the collision region. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. After three years of operation the detector performance is excellent: 96% of the pixels are opera- tional, at 3500 e threshold noise occupancy and efficiency exceed the design specification. The effect of radiation on the silicon sensor is measured and compared with model of radiation damage.

  17. The ATLAS Insertable B-Layer Detector (IBL)

    CERN Document Server

    Huegging, F; The ATLAS collaboration

    2010-01-01

    The upgrade for the ATLAS detector will undergo different phases towards SLHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during a longer shutdown of the LHC machine, the so-called Phase I Upgrade. The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of about 3.2 cm. The IBL requires the development of several new technologies to cope with the increase of radiation and pixel occupancy as well as to improve the physics performance of the existing pixel detector. In order to achieve these goals the pixel size is reduced and the material budget is minimized by using new lightweight mechanical support materials and a CO2 based cooling system. Main component of the module development for the IBL is the new ATLAS pixel readout chip, FE-I4, designed in 130 nm technology which features an array of 80 by 336 pixels with a pixel size of 50x250 µ...

  18. 3D silicon pixel detectors for the ATLAS Forward Physics experiment

    International Nuclear Information System (INIS)

    The ATLAS Forward Physics (AFP) project plans to install 3D silicon pixel detectors about 210 m away from the interaction point and very close to the beamline (2–3 mm). This implies the need of slim edges of about 100–200 μm width for the sensor side facing the beam to minimise the dead area. Another challenge is an expected non-uniform irradiation of the pixel sensors. It is studied if these requirements can be met using slightly-modified FE-I4 3D pixel sensors from the ATLAS Insertable B-Layer production. AFP-compatible slim edges are obtained with a simple diamond-saw cut. Electrical characterisations and beam tests are carried out and no detrimental impact on the leakage current and hit efficiency is observed. For devices without a 3D guard ring a remaining insensitive edge of less than 15 μm width is found. Moreover, 3D detectors are non-uniformly irradiated up to fluences of several 1015 neq/cm2 with either a focussed 23 GeV proton beam or a 23 MeV proton beam through holes in Al masks. The efficiency in the irradiated region is found to be similar to the one in the non-irradiated region and exceeds 97% in case of favourable chip-parameter settings. Only in a narrow transition area at the edge of the hole in the Al mask, a significantly lower efficiency is seen. A follow-up study of this effect using arrays of small pad diodes for position-resolved dosimetry via the leakage current is carried out

  19. Silicon strip detectors for the ATLAS HL-LHC upgrade

    CERN Document Server

    Bernabeu, J; The ATLAS collaboration

    2011-01-01

    While the Large Hadron Collider (LHC) at CERN is continuing to deliver an ever-increasing luminosity to the experiments, plans for an upgraded machine called Super-LHC (sLHC) are progressing. The upgrade is foreseen to increase the LHC design luminosity by a factor ten. The ATLAS experiment will need to build a new tracker for sLHC operation, which needs to be suited to the harsh sLHC conditions in terms of particle rates and radiation doses. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. To successfully face the increased radiation dose, a new generation of extremely radiation hard silicon detectors is being designed. Silicon sensors with sufficient radiation hardness are the subject of an international R&D programme, working on pixel and strip sensors. The efforts presented here concentrate on the innermost strip layers. We have developed a large number of prototype planar detectors produced on p-type wafers in a number of d...

  20. Silicon Strip Detectors for the ATLAS HL-LHC Upgrade

    CERN Document Server

    Dervan, Paul; The ATLAS collaboration

    2011-01-01

    While the Large Hadron Collider (LHC) at CERN is continuing to deliver an ever-increasing luminosity to the experiments, plans for an upgraded machine called Super-LHC (sLHC) are progressing. The upgrade is foreseen to increase the LHC design luminosity by a factor ten. The ATLAS experiment will need to build a new tracker for sLHC operation, which needs to be suited to the harsh sLHC conditions in terms of particle rates and radiation doses. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. To successfully face the increased radiation dose, a new generation of extremely radiation hard silicon detectors is being designed. Silicon sensors with sufficient radiation hardness are the subject of an international R&D programme, working on pixel and strip sensors. The efforts presented here concentrate on the innermost strip layers. We have developed a large number of prototype planar detectors produced on p-type wafers in a num...

  1. ATLAS Pixel Detector ROD card from IBL towards Layers 2 and 1

    Science.gov (United States)

    Balbi, G.; Falchieri, D.; Gabrielli, A.; Lama, L.; Giangiacomi, N.; Travaglini, R.

    2016-01-01

    The incoming and future upgrades of LHC will require better performance by the data acquisition system, especially in terms of throughput due to the higher luminosity that is expected. For this reason, during the first shutdown of the LHC collider in 2013/14, the ATLAS Pixel Detector has been equipped with a fourth layer— the Insertable B-Layer or IBL—located at a radius smaller than the present three layers. To read out the new layer of pixels, with a smaller pixel size with respect to the other outer layers, a front end ASIC (FE-I4) was designed as well as a new off-detector read-out chain. The latter, accordingly to the structure of the other layers of pixels, is composed mainly of two 9U-VME read-out off-detector cards called the Back-Of-Crate (BOC) and Read-Out Driver (ROD). The ROD is used for data and event formatting and for configuration and control of the overall read-out electronics. After some prototyping samples were completed, a pre-production batch of 5 ROD cards was delivered with the final layout. Another production of 15 ROD cards was done in Fall 2013, and commissioning was completed in 2014. Altogether 14 cards are necessary for the 14 staves of the IBL detector, one additional card is required by the Diamond Beam Monitor (DBM), and additional spare ROD cards were produced for a total initial batch of 20 boards. This paper describes some integration tests that were performed and our plan to install the new DAQ chain for the layer 2, which is the outermost, and layer 1, which is external to the B-layer. This latter is the only layer that will not be upgraded to a higher readout speed. Rather, it will be switched off in the near future as it has too many damaged sensors that were not possible to rework. To do that, slices of the IBL read-out chain have been instrumented, and ROD performance is verified on a test bench mimicking a small-sized final setup. Thus, this contribution reports also how the adoption of the IBL ROD for ATLAS Pixel

  2. System test and noise performance studies at the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Weingarten, J.

    2007-09-15

    The central component of the ATLAS Inner Tracker is the pixel detector. It consists of three barrel layers and three disk-layers in the end-caps in both forward directions. The innermost barrel layer is mounted at a distance of about 5 cm from the interaction region. With its very high granularity, truly two-dimensional hit information, and fast readout it is well suited to cope with the high densities of charged tracks, expected this close to the interaction region. The huge number of readout channels necessitates a very complex services infrastructure for powering, readout and safety. After a description of the pixel detector and its services infrastructure, key results from the system test at CERN are presented. Furthermore the noise performance of the pixel detector, crucial for high tracking and vertexing efficiencies, is studied. Measurements of the single-channel random noise are presented together with studies of common mode noise and measurements of the noise occupancy using a random trigger generator. (orig.)

  3. Firmware development and testing of the ATLAS Pixel Detector / IBL ROD card

    CERN Document Server

    Gabrielli, Alessandro; The ATLAS collaboration; Balbi, Gabriele; Bindi, Marcello; Chen, Shaw-pin; Falchieri, Davide; Flick, Tobias; Hauck, Scott Alan; Hsu, Shih-Chieh; Kretz, Moritz; Kugel, Andreas; Lama, Luca; Travaglini, Riccardo; Wensing, Marius; ATLAS Pixel Collaboration

    2015-01-01

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shut down. In particular, the Pixel detector has inserted an additional inner layer called Insertable B-Layer (IBL). The Readout-Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL’s off-detector DAQ system. The strategy for IBL ROD firmware development was three-fold: keeping as much of the Pixel ROD datapath firmware logic as possible, employing a complete new scheme of steering and calibration firmware and designing the overall system to prepare for a future unified code version integrating IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBL DAQ testbench using realistic frontend chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBL ROD data pat...

  4. Firmware development and testing of the ATLAS Pixel Detector / IBL ROD card

    CERN Document Server

    Balbi, G; The ATLAS collaboration; Gabrielli, A; Lama, L; Travaglini, R; Backhaus, M; Bindi, M; Chen, S-P; Flick, T; Kretz, M; Kugel, A; Wensing, M

    2014-01-01

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shut down. In particular, the Pixel detector has inserted an additional inner layer called Insertable B-Layer (IBL). The Readout-Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL’s off-detector DAQ system. The strategy for IBLROD firmware development was three-fold: keeping as much of the PixelROD datapath firmware logic as possible, employing a complete new scheme of steering and calibration firmware and designing the overall system to prepare for a future unified code version integrating IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBLDAQ testbench using realistic frontend chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBLROD data path im...

  5. System test and noise performance studies at the ATLAS pixel detector

    International Nuclear Information System (INIS)

    The central component of the ATLAS Inner Tracker is the pixel detector. It consists of three barrel layers and three disk-layers in the end-caps in both forward directions. The innermost barrel layer is mounted at a distance of about 5 cm from the interaction region. With its very high granularity, truly two-dimensional hit information, and fast readout it is well suited to cope with the high densities of charged tracks, expected this close to the interaction region. The huge number of readout channels necessitates a very complex services infrastructure for powering, readout and safety. After a description of the pixel detector and its services infrastructure, key results from the system test at CERN are presented. Furthermore the noise performance of the pixel detector, crucial for high tracking and vertexing efficiencies, is studied. Measurements of the single-channel random noise are presented together with studies of common mode noise and measurements of the noise occupancy using a random trigger generator. (orig.)

  6. Studio di un algoritmo lineare di ricostruzione analogica della posizione per il rivelatore a pixel di ATLAS

    CERN Document Server

    Arelli-Maffioli, A; Troncon, C; Lari, T

    2007-01-01

    A detailed study of spatial resolution of Atlas pixel sensors prototypes was performed. Charge interpolation was used and allowed for a significant improvement with respect to digital resolution. A simplified algorithm for charge interpolation was developed. Its application to both unirradiated and irradiated sensors is presented and discussed.

  7. Beam Test Studies of 3D Pixel Sensors Irradiated Non-Uniformly for the ATLAS Forward Physics Detector

    CERN Document Server

    Grinstein, S; Boscardin, M; Christophersen, M; Da Via, C; Betta, G -F Dalla; Darbo, G; Fadeyev, V; Fleta, C; Gemme, C; Grenier, P; Jimenez, A; Lopez, I; Micelli, A; Nelist, C; Parker, S; Pellegrini, G; Phlips, B; Pohl, D L; Sadrozinski, H F -W; Sicho, P; Tsiskaridze, S

    2013-01-01

    Pixel detectors with cylindrical electrodes that penetrate the silicon substrate (so called 3D detectors) offer advantages over standard planar sensors in terms of radiation hardness, since the electrode distance is decoupled from the bulk thickness. In recent years significant progress has been made in the development of 3D sensors, which culminated in the sensor production for the ATLAS Insertable B-Layer (IBL) upgrade carried out at CNM (Barcelona, Spain) and FBK (Trento, Italy). Based on this success, the ATLAS Forward Physics (AFP) experiment has selected the 3D pixel sensor technology for the tracking detector. The AFP project presents a new challenge due to the need for a reduced dead area with respect to IBL, and the in-homogeneous nature of the radiation dose distribution in the sensor. Electrical characterization of the first AFP prototypes and beam test studies of 3D pixel devices irradiated non-uniformly are presented in this paper.

  8. Beam test studies of 3D pixel sensors irradiated non-uniformly for the ATLAS forward physics detector

    Energy Technology Data Exchange (ETDEWEB)

    Grinstein, S., E-mail: sgrinstein@ifae.es [ICREA and Institut de Física d' Altes Energies (IFAE), Barcelona (Spain); Baselga, M. [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona (Spain); Boscardin, M. [Fondazione Bruno Kessler, FBK-CMM, Trento (Italy); Christophersen, M. [U.S. Naval Research Laboratory, Washington (United States); Da Via, C. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Dalla Betta, G.-F. [Universita degli Studi di Trento and INFN, Trento (Italy); Darbo, G. [INFN Sezione di Genova, Genova (Italy); Fadeyev, V. [Santa Cruz Institute for Particle Physics, University of California, Santa Cruz (United States); Fleta, C. [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona (Spain); Gemme, C. [Universita degli Studi di Trento and INFN, Trento (Italy); Grenier, P. [SLAC National Accelerator Laboratory, Menlo Park (United States); Jimenez, A.; Lopez, I.; Micelli, A. [ICREA and Institut de Física d' Altes Energies (IFAE), Barcelona (Spain); Nelist, C. [INFN Sezione di Genova, Genova (Italy); Parker, S. [University of Hawaii, c/o Lawrence Berkeley Laboratory, Berkeley (United States); Pellegrini, G. [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona (Spain); Phlips, B. [U.S. Naval Research Laboratory, Washington (United States); Pohl, D.-L. [University of Bonn, Bonn (Germany); Sadrozinski, H.F.-W. [Santa Cruz Institute for Particle Physics, University of California, Santa Cruz (United States); and others

    2013-12-01

    Pixel detectors with cylindrical electrodes that penetrate the silicon substrate (so called 3D detectors) offer advantages over standard planar sensors in terms of radiation hardness, since the electrode distance is decoupled from the bulk thickness. In recent years significant progress has been made in the development of 3D sensors, which culminated in the sensor production for the ATLAS Insertable B-Layer (IBL) upgrade carried out at CNM (Barcelona, Spain) and FBK (Trento, Italy). Based on this success, the ATLAS Forward Physics (AFP) experiment has selected the 3D pixel sensor technology for the tracking detector. The AFP project presents a new challenge due to the need for a reduced dead area with respect to IBL, and the in-homogeneous nature of the radiation dose distribution in the sensor. Electrical characterization of the first AFP prototypes and beam test studies of 3D pixel devices irradiated non-uniformly are presented in this paper.

  9. Radiation-hard ASICs for optical data transmission in the ATLAS pixel detector

    CERN Document Server

    Kass, R; Gan, K K; Johnson, M; Kagan, H; Rush, C J; Rahimi, A; Smith, S; Ter-Antonian, R; Zoeller, M M; Ciliox, A; Holder, M; Nderitu, S; Ziolkowski, M

    2003-01-01

    We have developed two radiation-hard ASICs for optical data transmission in the ATLAS pixel detector at the LHC at CERN: a driver chip for a Vertical Cavity Surface Emitting Laser (VCSEL) diode for 80 Mbit/s data transmission from the detector, and a Bi-Phase Mark decoder chip to recover the control data and 40 MHz clock received optically by a PIN diode. We have successfully implemented both ASICs in 0.25 um CMOS technology using enclosed layout transistors and guard rings for increased radiation hardness. We present results from prototype circuits and from irradiation studies with 24 GeV protons up to 57 Mrad (1.9 x 10e15 p/cm2).

  10. Radiation-hard ASICs for optical data transmission in the ATLAS pixel detector

    CERN Document Server

    Gan, K K; Johnson, M; Kagan, H; Kass, R; Rush, C; Smith, S; Ter-Antonian, R; Zoeller, M M; Ciliox, A; Holder, M; Ziolkowski, M

    2005-01-01

    We have developed two radiation-hard ASICs for optical data transmission in the ATLAS pixel detector at the LHC at CERN: a driver chip for a Vertical Cavity Surface Emitting Laser (VCSEL) diode for 80 Mbit/s data transmission from the detector, and a Bi-Phase Mark decoder chip to recover the control data and 40 MHz clock received optically by a PIN diode. We have successfully implemented both ASICs in 0.25 mm CMOS technology using enclosed layout transistors and guard rings for increased radiation hardness. We present results from circuits of final design and from irradiation studies with 24 GeV protons up to 62 Mrad (2.3 x 10^15 p/cm^2).

  11. Radiation-Hard ASICs for Optical Data Transmission in the ATLAS Pixel Detector

    CERN Document Server

    Gan, K K; Johnson, M; Kagan, H; Kass, R; Rush, C; Smith, S; Ter-Antonian, R; Zöller, M; Ciliox, A; Holderb, M; Ziolkowski, M

    2006-01-01

    We have developed two radiation-hard ASICs for optical data transmission in the ATLAS pixel detector at the LHC at CERN: a driver chip for a Vertical Cavity Surface Emitting Laser (VCSEL) diode for 80 Mbit/s data transmission from the detector, and a Bi-Phase Mark decoder chip to recover the control data and 40 MHz clock received optically by a PIN diode. We have successfully implemented both ASICs in 0.25 mm CMOS technology using enclosed layout transistors and guard rings for increased radiation hardness. We present results from circuits of final design and from irradiation studies with 24 GeV protons up to 80 Mrad (2.6 x 10^15 p/cm^2).

  12. Radiation-hard ASICs for optical data transmission in the ATLAS pixel detector

    CERN Document Server

    Ziolkowski, M; Buchholz, P; Ciliox, A; Gan, K K; Holder, M; Johnson, M; Kagan, H; Kass, R; Nderitu, S; Rahimi, A; Rush, C J; Smith, S; Ter-Antonian, R; Zoeller, M M

    2004-01-01

    We have developed two radiation-hard ASICs for optical data transmission in the ATLAS pixel detector at the CERN Large Hadron Collider (LHC). The first circuit is a driver chip for a Vertical Cavity Surface Emitting Laser (VCSEL) diode to be used for 80 Mbit/s data transmission from the detector. The second circuit is a Bi-Phase Mark, decoder chip to recover the control data and 40 MHz clock received optically by a PIN diode on the detector side. During ten years of operation at the LHC, the ATLAS optical link circuitry will be exposed to a maximum total fluence of 10/sup 15/ 1-MeV-equivalent neutrons per cm/sup 2/. We have successfully implemented both ASICs in a commercial 0.25 mu m CMOS technology using standard layout techniques to enhance the radiation tolerance. Both chips are four- channel devices compatible with common cathode PIN and VCSEL arrays. We present results from final prototype circuits and from irradiation studies of both circuits with 24 GeV protons up to a total dose of 57 Mrad. (3 refs).

  13. Studio di Rivelatori a Pixel di nuova generazione per il Sistema di Tracciamento di ATLAS.

    CERN Document Server

    Gaudiello, Andrea; Schiavi, Carlo

    In 2013 the LHC will undergo a long shutdown (Phase 0) in preparation for a an energy and luminosity upgrade. During this period the ATLAS Pixel Detector (that is the tracking detector closest to the beamline) will be upgraded. The new detector, called Insertable B-Layer (IBL), will be installed between the existing pixel detector and a new beam-pipe of smaller radius in order to ensure and maintain excellent performance of tracking, vertexing and jet flavor tagging. To satisfy the new requirements a new electronic front- end (FE-I4) and 2 sensor technologies have been developed: Planar and 3D. Genova is one of two sites dedicated to the assembly of the modules of IBL. The work is then carried out in two parallel directions: on one hand the production and its optimization; on the other the comparison and testing of these new technologies. Chapter 1 gives an overview of the theoretical framework needed to understand the importance and the goals of the experiments operating at the Large Hadron Collider (LHC), w...

  14. Three Generations of FPGA DAQ Development for the ATLAS Pixel Detector

    CERN Document Server

    AUTHOR|(CDS)2091916; Hsu, Shih-Chieh; Hauck, Scott Alan

    The Large Hadron Collider (LHC) at the European Center for Nuclear Research (CERN) tracks a schedule of long physics runs, followed by periods of inactivity known as Long Shutdowns (LS). During these LS phases both the LHC, and the experiments around its ring, undergo maintenance and upgrades. For the LHC these upgrades improve their ability to create data for physicists; the more data the LHC can create the more opportunities there are for rare events to appear that physicists will be interested in. The experiments upgrade so they can record the data and ensure the event won’t be missed. Currently the LHC is in Run 2 having completed the first LS of three. This thesis focuses on the development of Field-Programmable Gate Array (FPGA)-based readout systems that span across three major tasks of the ATLAS Pixel data acquisition (DAQ) system. The evolution of Pixel DAQ’s Readout Driver (ROD) card is presented. Starting from improvements made to the new Insertable B-Layer (IBL) ROD design, which was part of t...

  15. Silvaco ATLAS model of ESA's Gaia satellite e2v CCD91-72 pixels

    CERN Document Server

    Seabroke, G M; Burt, D; Robbins, M S; 10.1117/12.856958

    2010-01-01

    The Gaia satellite is a high-precision astrometry, photometry and spectroscopic ESA cornerstone mission, currently scheduled for launch in 2012. Its primary science drivers are the composition, formation and evolution of the Galaxy. Gaia will achieve its unprecedented accuracy requirements with detailed calibration and correction for CCD radiation damage and CCD geometric distortion. In this paper, the third of the series, we present our 3D Silvaco ATLAS model of the Gaia e2v CCD91-72 pixel. We publish e2v's design model predictions for the capacities of one of Gaia's pixel features, the supplementary buried channel (SBC), for the first time. Kohley et al. (2009) measured the SBC capacities of a Gaia CCD to be an order of magnitude smaller than e2v's design. We have found the SBC doping widths that yield these measured SBC capacities. The widths are systematically 2 {\\mu}m offset to the nominal widths. These offsets appear to be uncalibrated systematic offsets in e2v photolithography, which could either be du...

  16. Development of Edgeless n-on-p Planar Pixel Sensors for future ATLAS Upgrades

    CERN Document Server

    Bomben, M; Boscardin, M; Bosisio, L; Calderini, G; Chauveau, J; Giacomini, G; La Rosa, A; Marchori, G; Zorzi, N

    2012-01-01

    The development of n-on-p "edgeless" planar pixel sensors being fabricated at FBK (Trento, Italy), aimed at the upgrade of the ATLAS Inner Detector for the High Luminosity phase of the Large Hadron Collider (HL-LHC), is reported. A characterizing feature of the devices is the reduced dead area at the edge, achieved by adopting the "active edge" technology, based on a deep etched trench, suitably doped to make an ohmic contact to the substrate. The project is presented, along with the active edge process, the sensor design for this first n-on-p production and a selection of simulation results, including the expected charge collection efficiency after radiation fluence of $1 \\times 10^{15} {\\rm n_{eq}}/{\\rm cm}^2$ comparable to those expected at HL-LHC (about ten years of running, with an integrated luminosity of 3000 fb$^{-1}$) for the outer pixel layers. We show that, after irradiation, more than 50% of the signal should be collected in the edge region; this confirms the validity of the active edge approach.

  17. Development of Edgeless n-on-p Planar Pixel Sensors for future ATLAS Upgrades

    CERN Document Server

    Bomben, M

    2013-01-01

    The development of n-on-p “edgeless” planar pixel sensors being fabricated at FBK (Trento, Italy), aimed at the upgrade of the ATLAS Inner Detector for the High Luminosity phase of the Large Hadron Collider (HL-LHC), is reported. A characterizing feature of the devices is the reduced dead area at the edge, achieved by adopting the “active edge” technology, based on a deep etched trench, suitably doped to make an ohmic contact to the substrate. The project is presented, along with the active edge process, the sensor design for this first n-on-p production and a selection of simulation results, including the expected charge collection efficiency after radiation fluence of View the MathML source1×1015neq/cm2 comparable to those expected at HL-LHC (about ten years of running, with an integrated luminosity of 3000 fb−1) for the outer pixel layers. We show that, after irradiation and at a bias voltage of 500 V, more than 50% of the signal should be collected in the edge region; this confirms the validity...

  18. Development of edgeless n-on-p planar pixel sensors for future ATLAS upgrades

    Science.gov (United States)

    Bomben, Marco; Bagolini, Alvise; Boscardin, Maurizio; Bosisio, Luciano; Calderini, Giovanni; Chauveau, Jacques; Giacomini, Gabriele; La Rosa, Alessandro; Marchiori, Giovanni; Zorzi, Nicola

    2013-06-01

    The development of n-on-p "edgeless" planar pixel sensors being fabricated at FBK (Trento, Italy), aimed at the upgrade of the ATLAS Inner Detector for the High Luminosity phase of the Large Hadron Collider (HL-LHC), is reported. A characterizing feature of the devices is the reduced dead area at the edge, achieved by adopting the "active edge" technology, based on a deep etched trench, suitably doped to make an ohmic contact to the substrate. The project is presented, along with the active edge process, the sensor design for this first n-on-p production and a selection of simulation results, including the expected charge collection efficiency after radiation fluence of 1×1015 neq/cm2 comparable to those expected at HL-LHC (about ten years of running, with an integrated luminosity of 3000 fb-1) for the outer pixel layers. We show that, after irradiation and at a bias voltage of 500 V, more than 50% of the signal should be collected in the edge region; this confirms the validity of the active edge approach.

  19. TFA pixel sensor technology for vertex detectors

    OpenAIRE

    Jarron, P.; Moraes, D.; Despeisse, M.; Dissertori, G.; Dunand, S.; Kaplon. J.; Miazza, C.; Shah, Arvind; Viertel, G M.; Wyrsch, Nicolas

    2008-01-01

    Pixel microvertex detectors at the SLHC and a future linear collider face very challenging issues: extreme radiation hardness, cooling design, interconnections density and fabrication cost. As an alternative approach we present a novel pixel detector based on the deposition of a Hydrogenated Amorphous Silicon (a-Si:H) film on top of a readout ASIC. The Thin-Film on ASIC (TFA) technology is inspired by an emerging microelectronic technology envisaged for visible light Active Pixel Sensor (APS)...

  20. Total Ionising Dose effects in the FE-I4 front-end chip of the ATLAS Pixel IBL detector

    CERN Document Server

    Dette, Karola; The ATLAS collaboration

    2016-01-01

    The ATLAS Pixel Insertable B-Layer (IBL) detector was installed into the ATLAS experiment in 2014 and has been in operation since 2015. During the first year of data taking, an increase of the LV current, produced by the FE-I4 chip, was observed. This increase was traced back to radiation damage in the chip. The dependence of the current from the Total Ionizing Dose (TID) and temperature has been tested with X-ray irradiations. This report presents the measurement results and gives a parameterisation of the leakage current and detector operation guidelines.

  1. The Pixel Detector of the ATLAS experiment for the Run2 at the Large Hadron Collider -- Plot Approval (Pixel, IBL) : This is a submission of plot approval request for Pixel+IBL, facing on a talk at ICHEP 2014 conference

    CERN Document Server

    Mandelli, B; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and will be installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. IBL construction is now completed. An overview of the IBL project as well as the ...

  2. Prototypes for components of a control system for the ATLAS pixel detector at the HL-LHC

    International Nuclear Information System (INIS)

    In the years around 2020 an upgrade of the LHC to the HL-LHC is scheduled, which will increase the accelerator's instantaneous luminosity by a factor of 5 and the integrated luminosity by a factor of 10. In the context of this upgrade, the inner detector (including the pixel detector) of the ATLAS experiment will be replaced. This new pixel detector requires a specific control system which complies with strict requirements in terms of radiation hardness, material budget and space for the electronics in the ATLAS experiment. The University of Wuppertal is developing a concept for a DCS (Detector Control System) network consisting of two kinds of ASICs. The first ASIC is the DCS chip which is located on the pixel detector, very close to the interaction point. The second ASIC is the DCS Controller which is controlling 4×4 DCS chips from the outer regions of ATLAS via differential data lines. Both ASICs are manufactured in 130 nm deep sub-micron technology. We present results from reliability measurements under irradiation from new prototypes of components for the DCS network.

  3. Module concepts with ultra thin FE chips and Through Silicon Vias for the upgrades of the ATLAS pixel detector

    International Nuclear Information System (INIS)

    The development of trackers for High Energy Physics experiments at high luminosity poses strict requirements on the material budget to allow good vertexing and b-tagging performance. State-of-the-art silicon technologies offer a variety of processes that can be used to achieve light modules design. Together with IZM Berlin we investigated the thinning of FE (Front-End) chips down to 90 μm, and developed a dedicated flip chip process to assure a reliable mechanical and electrical connection between thin FE chips and sensor. The selected flip chip method is currently used for the production of modules for the IBL (Insertable B-Layer) project, the first ATLAS pixel detector upgrade. Results from the characterization of IBL modules with 100 and 150 μm thin FE chip are shown. For future upgrades of the ATLAS pixel detector we propose more advanced module concepts with Through Silicon Vias (TSVs). IZM offers two via last TSV processes, Straight Side Wall TSVs and Tapered Side Wall TSVs. Both processes were successfully demonstrated with ATLAS pixel readout electronics (FE-I2/3). Results from prototype modules with planar sensor and 90 μm thin FE-I2 with Tapered TSV and back side redistribution layer are shown.

  4. Active Pixel Sensors in ams H18/H35 HV-CMOS Technology for the ATLAS HL-LHC Upgrade

    CERN Document Server

    Ristic, Branislav

    2016-01-01

    Deep sub micron HV-CMOS processes offer the opportunity for sensors built by industry standard techniques while being HV tolerant, making them good candidates for drift-based, fast collecting, thus radiation-hard pixel detectors. For the upgrade of the ATLAS Pixel Detector towards the HL-LHC requirements, active pixel sensors in HV-CMOS technology were investigated. These implement amplifier and discriminator stages directly in insulating deep n-wells, which also act as collecting electrodes. The deep n-wells allow for bias voltages up to 150V leading to a depletion depth of several 10um. Prototype sensors in the ams H18 180nm and H35 350nm HV-CMOS processes have been manufactured, acting as a potential drop-in replacement for the current ATLAS Pixel sensors, thus leaving higher level processing such as trigger handling to dedicated read-out chips. Sensors were thoroughly tested in lab measurements as well as in testbeam experiments. Irradiation with X-rays and protons revealed a tolerance to ionizing doses o...

  5. Radiation tests of photodiodes for the ATLAS SCT and PIXEL opto- links

    CERN Document Server

    Hou, L S; Lee, S C; Su, D S; Teng, P K

    2005-01-01

    In previous research, epitaxial Si PIN photodiodes produced by Centronic which will be used in the ATLAS semiconductor tracker have been irradiated with 1 MeV neutrons and 24 GeV protons with fluences up to an equivalent of $10^{15}$ 1 MeV neutrons (1,2) . In this work 30 MeV proton beams were used to irradiate Centronic and Truelight epitaxial Si PIN diodes with accumulated fluences of up to 2.1 multiplied by $10^{14}$-30 MeV p $cm^{-2}$, an equivalent of 5.7 multiplied by $10^{14} cm^{-2}$ 1 MeV neutrons, to reach the pixel radiation environment. The responsivity was measured with different levels of fluence in order to study the responsivity behaviour of two different types of photodiodes. The responsivity behaviour of these two photodiodes was similar: a linear degradation at large fluences, greater than $10^{14}$ 30 MeV p $cm^{-2}$, but with different slopes. The response of the Centronic PIN diode showed a degradation to 73% after a proton fluence of $10^{13}$ p $cm^{-2}$ of 30 MeV and a linear degradat...

  6. Measurements and TCAD simulation of novel ATLAS planar pixel detector structures for the HL-LHC upgrade

    International Nuclear Information System (INIS)

    The LHC accelerator complex will be upgraded between 2020–2022, to the High-Luminosity-LHC, to considerably increase statistics for the various physics analyses. To operate under these challenging new conditions, and maintain excellent performance in track reconstruction and vertex location, the ATLAS pixel detector must be substantially upgraded and a full replacement is expected. Processing techniques for novel pixel designs are optimised through characterisation of test structures in a clean room and also through simulations with Technology Computer Aided Design (TCAD). A method to study non-perpendicular tracks through a pixel device is discussed. Comparison of TCAD simulations with Secondary Ion Mass Spectrometry (SIMS) measurements to investigate the doping profile of structures and validate the simulation process is also presented

  7. Experience with 3D integration technologies in the framework of the ATLAS pixel detector upgrade for the HL-LHC

    CERN Document Server

    Aruntinov, D; Gonella, L; Hemperek, T; Hügging, F; Krüger, H; Wermes, N; Breugnon, P; Chantepie, B; Clemens, J.C; Fei, R; Fougeron, D; Godiot, S; Pangaud, P; Rozanov, A; Garcia-Sciveres, M; Mekkaoui, A

    2013-01-01

    3D technologies are investigated for the upgrade of the ATLAS pixel detector at the HL-LHC. R&D focuses on both, IC design in 3D, as well as on post-processing 3D technologies such as Through Silicon Via (TSV). The first one uses a so-called via first technology, featuring the insertion of small aspect ratio TSV at the pixel level. As discussed in the paper, this technology can still present technical challenges for the industrial partners. The second one consists of etching the TSV via last. This technology is investigated to enable 4-side abuttable module concepts, using today's pixel detector technology. Both approaches are presented in this paper and results from first available prototypes are discussed.

  8. The upgraded Pixel Detector of the ATLAS Experiment for Run-II at the Large Hadron Collider

    CERN Document Server

    Mullier, Geoffrey; The ATLAS collaboration

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of the LHC. Taking advantage of the detector development period 2013 – 2014, the detector was extracted from the experiment and brought to surface to equip it with new service panels and to repair modules furthermore this helped with the installation of the Insertable B-Layer (IBL), fourth layer of pixel, installed in between the existing Pixel Detector and a new beam-pipe at a radius of 3.3 cm. To cope with the high radiation and increased pixel occupancy due to the proximity to the interaction point, two different silicon sensor technologies (planar and 3D) have been used. A new readout chip has been designed with CMOS 130nm technology with larger area, smaller pixel size and faster readout capability. Dedicated design features in combination with a new composite material were considered and used in order to reduce the material budget of the support structure while keeping the optimal thermo-mechanical perfor...

  9. Thin n-in-p planar pixel sensors and active edge sensors for the ATLAS upgrade at HL-LHC

    CERN Document Server

    Terzo, S; Nisius, R; Paschen, B

    2014-01-01

    Silicon pixel modules employing n-in-p planar sensors with an active thickness of 200 $\\mu$m, produced at CiS, and 100-200 $\\mu$m thin active/slim edge sensor devices, produced at VTT in Finland have been interconnected to ATLAS FE-I3 and FE-I4 read-out chips. The thin sensors are designed for high energy physics collider experiments to ensure radiation hardness at high fluences. Moreover, the active edge technology of the VTT production maximizes the sensitive region of the assembly, allowing for a reduced overlap of the modules in the pixel layer close to the beam pipe. The CiS production includes also four chip sensors according to the module geometry planned for the outer layers of the upgraded ATLAS pixel detector to be operated at the HL-LHC. The modules have been characterized using radioactive sources in the laboratory and with high precision measurements at beam tests to investigate the hit efficiency and charge collection properties at different bias voltages and particle incidence angles. The perfo...

  10. Thin n-in-p planar pixel sensors and active edge sensors for the ATLAS upgrade at HL-LHC

    Science.gov (United States)

    Terzo, S.; Macchiolo, A.; Nisius, R.; Paschen, B.

    2014-12-01

    Silicon pixel modules employing n-in-p planar sensors with an active thickness of 200 μm, produced at CiS, and 100-200 μm thin active/slim edge sensor devices, produced at VTT in Finland have been interconnected to ATLAS FE-I3 and FE-I4 read-out chips. The thin sensors are designed for high energy physics collider experiments to ensure radiation hardness at high fluences. Moreover, the active edge technology of the VTT production maximizes the sensitive region of the assembly, allowing for a reduced overlap of the modules in the pixel layer close to the beam pipe. The CiS production includes also four chip sensors according to the module geometry planned for the outer layers of the upgraded ATLAS pixel detector to be operated at the HL-LHC. The modules have been characterized using radioactive sources in the laboratory and with high precision measurements at beam tests to investigate the hit efficiency and charge collection properties at different bias voltages and particle incidence angles. The performance of the different sensor thicknesses and edge designs are compared before and after irradiation up to a fluence of 1.4 × 1016 neq/cm2.

  11. A Parallel FPGA Implementation for Real-Time 2D Pixel Clustering for the ATLAS Fast TracKer Processor

    CERN Document Server

    Sotiropoulou, C-L; The ATLAS collaboration; Annovi, A; Beretta, M; Kordas, K; Nikolaidis, S; Petridou, C; Volpi, G

    2014-01-01

    The parallel 2D pixel clustering FPGA implementation used for the input system of the ATLAS Fast TracKer (FTK) processor is presented. The input system for the FTK processor will receive data from the Pixel and micro-strip detectors from inner ATLAS read out drivers (RODs) at full rate, for total of 760Gbs, as sent by the RODs after level1 triggers. Clustering serves two purposes, the first is to reduce the high rate of the received data before further processing, the second is to determine the cluster centroid to obtain the best spatial measurement. For the pixel detectors the clustering is implemented by using a 2D-clustering algorithm that takes advantage of a moving window technique to minimize the logic required for cluster identification. The cluster detection window size can be adjusted for optimizing the cluster identification process. Additionally, the implementation can be parallelized by instantiating multiple cores to identify different clusters independently thus exploiting more FPGA resources. T...

  12. A Parallel FPGA Implementation for Real-Time 2D Pixel Clustering for the ATLAS Fast TracKer Processor

    CERN Document Server

    Sotiropoulou, C-L; The ATLAS collaboration; Annovi, A; Beretta, M; Kordas, K; Nikolaidis, S; Petridou, C; Volpi, G

    2014-01-01

    The parallel 2D pixel clustering FPGA implementation used for the input system of the ATLAS Fast TracKer (FTK) processor is presented. The input system for the FTK processor will receive data from the Pixel and micro-strip detectors from inner ATLAS read out drivers (RODs) at full rate, for total of 760Gbs, as sent by the RODs after level-1 triggers. Clustering serves two purposes, the first is to reduce the high rate of the received data before further processing, the second is to determine the cluster centroid to obtain the best spatial measurement. For the pixel detectors the clustering is implemented by using a 2D-clustering algorithm that takes advantage of a moving window technique to minimize the logic required for cluster identification. The cluster detection window size can be adjusted for optimizing the cluster identification process. Additionally, the implementation can be parallelized by instantiating multiple cores to identify different clusters independently thus exploiting more FPGA resources. ...

  13. Selected results from the static characterization of edgeless n-on-p planar pixel sensors for ATLAS upgrades

    CERN Document Server

    Giacomini, Gabriele; Bomben, Marco; Boscardin, Maurizio; Bosisio, Luciano; Calderini, Giovanni; Chauveau, Jacques; La Rosa, Alessandro; Marchiori, Giovanni; Zorzi, Nicola

    2014-01-01

    In view of the LHC upgrade for the High Luminosity Phase (HL-LHC), the ATLAS experiment is planning to replace the Inner Detector with an all-Silicon system. The n-on-p technology represents a valid solution for the modules of most of the layers, given the significant radiation hardness of this option and the reduced cost. There is also the demand to reduce the inactive areas to a minimum. The ATLAS LPNHE Paris group and FBK Trento started a collaboration for the development on a novel n-on-p edgeless planar pixel design, based on the deep-trench process which can cope with all these requirements. This paper reports selected results from the electrical characterization, both before and after irradiation, of test structures from the first production batch.

  14. Development of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    CERN Document Server

    Calderini, G; Bomben, M; Boscardin, M; Bosisio, L; Chauveau, J; Giacomini, G; La Rosa, A; Marchiori, G; Zorzi, N

    2014-01-01

    In view of the LHC upgrade for the high luminosity phase (HL-LHC), the ATLAS experiment is planning to replace the inner detector with an all-silicon system. The n-in-p bulk technology represents a valid solution for the modules of most of the layers, given the significant radiation hardness of this option and the reduced cost. The large area necessary to instrument the outer layers will demand to tile the sensors, a solution for which the inefficient region at the border of each sensor needs to be reduced to the minimum size. This paper reports on a joint R&D project by the ATLAS LPNHE Paris group and FBK Trento on a novel n-in-p edgeless planar pixel design, based on the deep-trench process available at FBK.

  15. Thin n-in-p planar pixel sensors and active edge sensors for the ATLAS upgrade at HL-LHC

    OpenAIRE

    Terzo, S.; Macchiolo, A; Nisius, R.; Paschen, B.

    2014-01-01

    Silicon pixel modules employing n-in-p planar sensors with an active thickness of 200 $\\mu$m, produced at CiS, and 100-200 $\\mu$m thin active/slim edge sensor devices, produced at VTT in Finland have been interconnected to ATLAS FE-I3 and FE-I4 read-out chips. The thin sensors are designed for high energy physics collider experiments to ensure radiation hardness at high fluences. Moreover, the active edge technology of the VTT production maximizes the sensitive region of the assembly, allowin...

  16. Performance of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    CERN Document Server

    Bomben, Marco; Boscardin, Maurizio; Bosisio, Luciano; Calderini, Giovanni; Chauveau, Jacques; Ducourthial, Audrey; Giacomini, Gabriele; Marchiori, Giovanni; Zorzi, Nicola

    2016-01-01

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate to achieve a large area instrumented with pixel sensors, since it is radiation hard and cost effective. The paper reports on the performance of novel n-on-p edgeless planar pixel sensors produced by FBK-CMM, making use of the active trench for the reduction of the dead area at the periphery of the device. After discussing the sensor technology an overview of the first beam test results will be given.

  17. Development of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    Science.gov (United States)

    Calderini, G.; Bagolini, A.; Beccherle, R.; Bomben, M.; Boscardin, M.; Bosisio, L.; Chauveau, J.; Giacomini, G.; La Rosa, A.; Marchiori, G.; Zorzi, N.

    2016-09-01

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate to achieve a large area instrumented with pixel sensors, since it is radiation hard and cost effective. The presentation describes the performance of novel n-in-p edgeless planar pixel sensors produced by FBK-CMM, making use of the active trench for the reduction of the dead area at the periphery of the device. After discussing the sensor technology, some feedback from preliminary results of the first beam test will be discussed.

  18. A parallel FPGA implementation for real-time 2D pixel clustering for the ATLAS Fast Tracker Processor

    Science.gov (United States)

    Sotiropoulou, C. L.; Gkaitatzis, S.; Annovi, A.; Beretta, M.; Kordas, K.; Nikolaidis, S.; Petridou, C.; Volpi, G.

    2014-10-01

    The parallel 2D pixel clustering FPGA implementation used for the input system of the ATLAS Fast TracKer (FTK) processor is presented. The input system for the FTK processor will receive data from the Pixel and micro-strip detectors from inner ATLAS read out drivers (RODs) at full rate, for total of 760Gbs, as sent by the RODs after level-1 triggers. Clustering serves two purposes, the first is to reduce the high rate of the received data before further processing, the second is to determine the cluster centroid to obtain the best spatial measurement. For the pixel detectors the clustering is implemented by using a 2D-clustering algorithm that takes advantage of a moving window technique to minimize the logic required for cluster identification. The cluster detection window size can be adjusted for optimizing the cluster identification process. Additionally, the implementation can be parallelized by instantiating multiple cores to identify different clusters independently thus exploiting more FPGA resources. This flexibility makes the implementation suitable for a variety of demanding image processing applications. The implementation is robust against bit errors in the input data stream and drops all data that cannot be identified. In the unlikely event of missing control words, the implementation will ensure stable data processing by inserting the missing control words in the data stream. The 2D pixel clustering implementation is developed and tested in both single flow and parallel versions. The first parallel version with 16 parallel cluster identification engines is presented. The input data from the RODs are received through S-Links and the processing units that follow the clustering implementation also require a single data stream, therefore data parallelizing (demultiplexing) and serializing (multiplexing) modules are introduced in order to accommodate the parallelized version and restore the data stream afterwards. The results of the first hardware tests of

  19. High-voltage pixel detectors in commercial CMOS technologies for ATLAS, CLIC and Mu3e experiments

    CERN Document Server

    Peric,I et al.

    2013-01-01

    High-voltage particle detectors in commercial CMOS technologies are a detector family that allows implementation of low-cost, thin and radiation-tolerant detectors with a high time resolution. In the R/D phase of the development, a radiation tolerance of 1015 neq=cm2 , nearly 100% detection efficiency and a spatial resolution of about 3 μm were demonstrated. Since 2011 the HV detectors have first applications: the technology is presently the main option for the pixel detector of the planned Mu3e experiment at PSI (Switzerland). Several prototype sensors have been designed in a standard 180 nm HV CMOS process and successfully tested. Thanks to its high radiation tolerance, the HV detectors are also seen at CERN as a promising alternative to the standard options for ATLAS upgrade and CLIC. In order to test the concept, within ATLAS upgrade R/D, we are currently exploring an active pixel detector demonstrator HV2FEI4; also implemented in the 180 nm HV process.

  20. High speed data transmission on small gauge cables for the ATLAS Phase-II Pixel detector upgrade

    International Nuclear Information System (INIS)

    The High Luminosity LHC will present a number of challenges for the upgraded ATLAS detector. In particular, data transmission requirements for the upgrade of the ATLAS Pixel detector will be difficult to meet. The expected trigger rate and occupancy imply multi-gigabit per second transmission rates will be required but radiation levels at the smallest radius preclude completely optical solutions. Electrical transmission up to distances of 7m will be necessary to move optical components to an area with lower radiation levels. Here, we explore the use of small gauge electrical cables as a high-bandwidth, radiation hard solution with a sufficiently small radiation length. In particular, we present a characterization of various twisted wire pair (TWP) configurations of various material structures, including measurements of their bandwidth, crosstalk, and radiation hardness. We find that a custom ''hybrid'' cable consisting of 1m of a multi-stranded TWP with Poly-Ether-Ether-Ketone (PEEK) insulation and a thin Al shield followed by 6m of a thin twin-axial cable presents a low-mass solution that fulfills bandwidth requirements and is expected to be sufficiently radiation hard. Additionally, we discuss preliminary results of using measured S-parameters to produce a SPICE model for a 1m sample of the custom TWP to be used for the development of new pixel readout chips

  1. High-voltage pixel detectors in commercial CMOS technologies for ATLAS, CLIC and Mu3e experiments

    CERN Document Server

    Peric, Ivan; Backhaus, Malte; Barbero, Marlon; Benoit, Mathieu; Berger, Niklaus; Bompard, Frederic; Breugnon, Patrick; Clemens, Jean-Claude; Dannheim, Dominik; Dierlamm, Alexander; Feigl, Simon; Fischer, Peter; Fougeron, Denis; Garcia-Sciveres, Maurice; Heim, Timon; Hügging, Fabian; Kiehn, Moritz; Kreidl, Christian; Krüger, Hans; La Rosa, Alessandro; Liu, Jian; Lütticke, Florian; Mariñas, Carlos; Meng, Lingxin; Miucci, Antonio; Münstermann, Daniel; Nguyen, Hong Hanh; Obermann, Theresa; Pangaud, Patrick; Perrevoort, Ann-Kathrin; Rozanov, Alexandre; Schöning, André; Schwenker, Benjamin; Wiedner, Dirk

    2013-01-01

    High-voltage particle detectors in commercial CMOS technologies are a detector family that allows implementation of low-cost, thin and radiation-tolerant detectors with a high time resolution. In the R/D phase of the development, a radiation tolerance of 10 15 n eq = cm 2 , nearly 100% detection ef fi ciency and a spatial resolution of about 3 μ m were demonstrated. Since 2011 the HV detectors have fi rst applications: the technology is presently the main option for the pixel detector of the planned Mu3e experiment at PSI (Switzerland). Several prototype sensors have been designed in a standard 180 nm HV CMOS process and successfully tested. Thanks to its high radiation tolerance, the HV detectors are also seen at CERN as a promising alternative to the standard options for ATLAS upgrade and CLIC. In order to test the concept, within ATLAS upgrade R/D, we are currently exploring an active pixel detector demonstrator HV2FEI4; also implemented in the 180 nm HV process

  2. High speed data transmission on small gauge cables for the ATLAS Phase-II Pixel detector upgrade

    Science.gov (United States)

    Shahinian, J.; Volk, J.; Fadeyev, V.; Grillo, A. A.; Meimban, B.; Nielsen, J.; Wilder, M.

    2016-03-01

    The High Luminosity LHC will present a number of challenges for the upgraded ATLAS detector. In particular, data transmission requirements for the upgrade of the ATLAS Pixel detector will be difficult to meet. The expected trigger rate and occupancy imply multi-gigabit per second transmission rates will be required but radiation levels at the smallest radius preclude completely optical solutions. Electrical transmission up to distances of 7m will be necessary to move optical components to an area with lower radiation levels. Here, we explore the use of small gauge electrical cables as a high-bandwidth, radiation hard solution with a sufficiently small radiation length. In particular, we present a characterization of various twisted wire pair (TWP) configurations of various material structures, including measurements of their bandwidth, crosstalk, and radiation hardness. We find that a custom ``hybrid'' cable consisting of 1m of a multi-stranded TWP with Poly-Ether-Ether-Ketone (PEEK) insulation and a thin Al shield followed by 6m of a thin twin-axial cable presents a low-mass solution that fulfills bandwidth requirements and is expected to be sufficiently radiation hard. Additionally, we discuss preliminary results of using measured S-parameters to produce a SPICE model for a 1m sample of the custom TWP to be used for the development of new pixel readout chips.

  3. Development of a Standardised Readout System for Active Pixel Sensors in HV/HR-CMOS Technologies for ATLAS Inner Detector Upgrades

    International Nuclear Information System (INIS)

    The LHC Phase-II Upgrade results in new challenges for tracking detectors for example in terms of cost effectiveness, resolution and radiation hardness. Active Pixel Sensors in HV/HR-CMOS technologies show promising results coping with these challenges. In order to demonstrate the feasibility of hybrid modules with active CMOS sensors and readout chips for the future ATLAS Inner Tracker, ATLAS R and D activities have started. After introducing the basic concepts and the demonstrator program, the development of an ATLAS compatible readout system will be presented as well as tuning procedures and measurements with demonstrator modules to test the readout system

  4. Active pixel sensors in AMS H18/H35 HV-CMOS technology for the ATLAS HL-LHC upgrade

    Science.gov (United States)

    Ristic, Branislav

    2016-09-01

    Deep sub micron HV-CMOS processes offer the opportunity for sensors built by industry standard techniques while being HV tolerant, making them good candidates for drift-based, fast collecting, thus radiation-hard pixel detectors. For the upgrade of the ATLAS Pixel Detector towards the HL-LHC requirements, active pixel sensors in HV-CMOS technology were investigated. These implement signal processing electronics in deep n-wells, which also act as collecting electrodes. The deep n-wells allow for bias voltages up to 150 V leading to a depletion depth of several 10 μm. Prototype sensors in the AMS H18 180 nm and H35 350 nm HV-CMOS processes were thoroughly tested in lab measurements as well as in testbeam experiments. Irradiations with X-rays and protons revealed a tolerance to ionizing doses of 1 Grad while Edge-TCT studies assessed the effects of radiation on the charge collection. The sensors showed high detection efficiencies after neutron irradiation to 1015neq cm-2 in testbeam experiments. A full reticle size demonstrator chip, implemented in the H35 process is being submitted to prove the large scale feasibility of the HV-CMOS concept.

  5. Development of thin sensors and a novel interconnection technology for the upgrade of the ATLAS pixel system

    International Nuclear Information System (INIS)

    A new pixel module concept is presented utilizing thin sensors and a novel vertical integration technique for the ATLAS pixel detector in view of the foreseen LHC luminosity upgrades. A first set of pixel sensors with active thicknesses of 75 and 150μm has been produced from wafers of standard thickness using a thinning process developed at the Max-Planck-Institut Halbleiterlabor (HLL) and the Max-Planck-Institut fuer Physik (MPP). Pre-irradiation characterizations of these sensors show a very good device yield and high break down voltage. First proton irradiations up to a fluence of 1015 neq cm-2 have been carried out and their impact on the electrical properties of thin sensors has been studied. The novel ICV-SLID vertical integration technology will allow for routing signals vertically to the back side of the readout chips. With this, four-side buttable detector devices with an increased active area fraction are made possible. A first production of SLID test structures was performed and showed a high connection efficiency for different pad sizes and a mild sensitivity to disturbances of the surface planarity.

  6. Design and development of the IBL-BOC firmware for the ATLAS Pixel IBL optical datalink system

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00356268

    The Insertable $b$-Layer (IBL) is the first upgrade of the ATLAS Pixel detector at the LHC. It will be installed in the Pixel detector in 2013. The IBL will use a new sensor and readout technology, therefore the readout components of the current Pixel detector are redesigned for the readout of the IBL. In this diploma thesis the design and development of the firmware for the new IBL Back-of-Crate card (IBL-BOC) are described. The IBL-BOC is located on the off-detector side of the readout and performs the optical-electrical conversion and vice versa for the optical connection to and from the detector. To process the data transmitted to and received from the detector, the IBL-BOC uses multiple Field Programmable Gate Arrays (FPGA). The transmitted signal is a 40~Mb/s BiPhase Mark (BPM) encoded data stream, providing the timing, trigger and control to the detector. The received signal is a 160~Mb/s 8b10b encoded data stream, containing data from the detector. The IBL-BOC encodes and decodes these data streams. T...

  7. Qualification measurements of the voltage supply system as well as conceptionation of a state machine for the detector control of the ATLAS pixel detector

    International Nuclear Information System (INIS)

    The supply system and the control system of the ATLAS pixel detector represent important building blocks of the pixel detector. Corresponding studies of the supply system, which were performed within a comprehensive test system, the so-called system test, with nearly all final components and the effects on the pixel detector are object of this thesis. A further point of this thesis is the coordination and further development of the detector-control-system software under regardment of the different partial systems. A main topic represents thereby the conceptionation of the required state machine as interface for the users and the connection to the data acquisition system

  8. Thermal Grease Evaluation for ATLAS Upgrade Micro-Strip Detector.

    CERN Document Server

    Barbier, G; The ATLAS collaboration; Clark, A; Ferrère, D; Pernecker, S; Perrin, E; Streit, KP; Weber, M

    2010-01-01

    The ATLAS upgrade detector foreseen at the phase 2 upgrade of LHC requires a complete new inner detector using silicon pixel and strip detectors. For both technologies, a specific mechanical and thermal design is required. Such a design may use soft thermal interfaces such as grease between the various parts. One foreseeable use would be between the cooling pipe and the thermal block allowing the strip modules to be decoupled from the mechanical and cooling structure. This note describes the technique used and the results obtained when characterizing a few grease samples. The results have been compared with thermal FEA simulations. A thermal conductivity measurement for each sample could be extracted from the measurements, with a systematic uncertainty of less than 6%. Some samples were irradiated to the expected fluence at sLHC and their resulting thermal conductivity compared with the non-irradiated samples.

  9. Low noise DC to DC converters for the sLHC experiments

    Energy Technology Data Exchange (ETDEWEB)

    Allongue, B; Blanchot, G; Faccio, F; Fuentes, C; Michelis, S; Orlandi, S, E-mail: georges.blanchot@cern.c [CERN, Route de Meyrin, CH-1211 Geneva 23 (Switzerland)

    2010-11-15

    The development of front-end systems for the ATLAS tracker at the sLHC is now in progress and the availability of radiation tolerant buck converter ASICs enables the implementation of DC to DC converter based powering schemes. The front-end systems powered in this manner will be exposed to the radiated and conducted noise emitted by the converters. The electromagnetic compatibility between DC to DC converters and ATLAS short strip tracker hybrid prototypes has been studied with specific susceptibility tests. Different DC to DC converter prototypes have been designed following a noise optimization methodology to match the noise requirements of these front-end systems. The DC to DC converter developed in this manner presents a negligible emission of noise that was confirmed by system tests on an ATLAS tracker front-end module prototype. As a result of this, power converters can now be integrated in close vicinity of front-end chips without compromising their overall noise performance.

  10. Ultra-light and stable composite structure to support and cool the ATLAS pixel detector barrel electronics modules

    CERN Document Server

    Olcese, M; Castiglioni, G; Cereseto, R; Cuneo, S; Dameri, M; Gemme, C; Glitza, K W; Lenzen, G; Mora, F; Netchaeva, P; Ockenfels, W; Piano, E; Pizzorno, C; Puppo, R; Rebora, A; Rossi, L; Thadome, J; Vernocchi, F; Vigeolas, E; Vinci, A

    2004-01-01

    The design of an ultra light structure, the so-called "stave", to support and cool the sensitive elements of the Barrel Pixel detector, the innermost part of the ATLAS detector to be installed on the new Large Hadron Collider at CERN (Geneva), is presented. Very high- dimensional stability, minimization of the material and ability of operating 10 years in a high radiation environment are the key design requirements. The proposed solution consists of a combination of different carbon-based materials (impregnated carbon-carbon, ultra high modulus carbon fibre composites) coupled to a thin aluminum tube to form a very light support with an integrated cooling channel. Our design has proven to successfully fulfil the requirements. The extensive prototyping and testing program to fully qualify the design and release the production are discussed.

  11. Evaluation of novel KEK/HPK n-in-p pixel sensors for ATLAS upgrade with testbeam

    International Nuclear Information System (INIS)

    A new type of n-in-p planar pixel sensors have been developed at KEK/HPK in order to cope with the maximum particle fluence of 1–3×1016 1 MeV equivalent neutrons per square centimeter (neq/cm2) in the upcoming LHC upgrades. Four n-in-p devices were connected by bump-bonding to the new ATLAS Pixel front-end chip (FE-I4A) and characterized before and after the irradiation to 2×1015neq/cm2. These planar sensors are 150μm thick, using biasing structures made out of polysilicon or punch-through dot and isolation structures of common or individual p-stop. Results of measurements with radioactive 90Sr source and with a 120 GeV/c momentum pion beam at the CERN Super Proton Synchrotron (SPS) are presented. The common p-stop isolation structure shows a better performance than the individual p-stop design, after the irradiation. The flat distribution of the collected charge in the depth direction after the irradiation implies that the effect of charge trapping is small, at the fluence, with the bias voltage well above the full depletion voltage.

  12. Qualification measurements of the voltage supply system as well as conceptionation of a state machine for the detector control of the ATLAS pixel detector; Qualifizierungsmessungen des Spannungsversorgungssystems sowie Konzeptionierung einer Zustandsmaschine fuer die Detektorkontrolle des ATLAS-Pixeldetektors

    Energy Technology Data Exchange (ETDEWEB)

    Schultes, Joachim

    2007-02-15

    The supply system and the control system of the ATLAS pixel detector represent important building blocks of the pixel detector. Corresponding studies of the supply system, which were performed within a comprehensive test system, the so-called system test, with nearly all final components and the effects on the pixel detector are object of this thesis. A further point of this thesis is the coordination and further development of the detector-control-system software under regardment of the different partial systems. A main topic represents thereby the conceptionation of the required state machine as interface for the users and the connection to the data acquisition system.

  13. Radiationhard components for the control system of a future ATLAS pixel detector

    CERN Document Server

    Becker, K; Kersten, S; Kind, P; Mättig, P; Püllen, L; Zeitnitz, C

    2015-01-01

    will include a new pixel detector. A completely new detector control system (DCS) for this pixel detector will be required in order to cope with the substantial increase in radiation at the HL-LHC. The DCS has to have a very high reliability and all components installed within the detector volume have to be radiationhard. This will ensure a safe operation of the pixel detector and the experiment. A further design constraint is the minimization of the used material and cables in order to limit the impact on the tracking performance to a minimum. To meet these requirements we propose a DCS network which consists of a DCS chip and a DCS controller. In the following we present the development of the first prototypes for the DCS chip and the DCS controller with a special focus on the communication interface, radiation hardness and robustness against single event upsets.

  14. The Read-Out Driver (ROD) card for the ATLAS experiment: commissioning for the IBL detector and upgrade studies for the Pixel Layers 1 and 2

    CERN Document Server

    Travaglini, R; The ATLAS collaboration; Bindi, M; Falchieri, D; Gabrielli, A; Lama, L; Chen, S P; Hsu, S C; Hauck, S; Kugel, A; Flick, T; Wensing, M

    2013-01-01

    The upgrade of the ATLAS experiment at LHC foresees the insertion of an innermost silicon layer, called Insertable B-layer (IBL). IBL read-out system will be equipped with new electronics. The Readout-Driver card (ROD) is a VME board devoted to data processing, configuration and control. A pre-production batch has been delivered in order to perform tests with instrumented slices of the overall acquisition chain, aiming to finalize strategies for system commissioning. In this contribution both setups and results will be described, as well as preliminary studies on changes in order to adopt the ROD for the ATLAS Pixel Layers 1 and 2.

  15. Development of a detector control system for the serially powered ATLAS pixel detector at the HL-LHC

    International Nuclear Information System (INIS)

    In the years around 2020 the LHC will be upgraded to the HL-LHC. In terms of this upgrade, the ATLAS detector will also be upgraded. This also includes the pixel detector, the innermost of the sub-detectors in ATLAS. Thereby the powering concept of the pixel detector will be changed to reduce the material budget of the detector. From individual powering of each detector module, the concept changes to serial powering, where all modules of a powering group are connected in series. This change makes the development of a new detector control system (DCS) mandatory. Therefore, a new concept for the ATLAS pixel DCS is being developed at the University of Wuppertal. This concept is split into three paths: a safety path, a control path, and a diagnostics path. The safety path is a hard wired interlock system. The concept of this system will not differ significantly, compared to the interlock system of the current detector. The diagnostics path is embedded into the optical data read-out of the detector and will be used for detector tuning with high precision and granularity. The control path supervises the detector and provides a user interface to the hardware components. A concept for this path, including a prototype and proof-of-principle studies, has been developed in terms of this thesis. The control path consists of the DCS network, a read-out and controlling topology created by two types of ASICs: the DCS controller and the DCS chip. These ASICs measure and control all values, necessary for a safe detector operation in situ. This reduces the number of required cables and hence the material budget of the system. For the communication between these ASICs, two very fault tolerant bus protocols have been chosen: CAN bus carries data from the DCS computers, outside of the detector, to the DCS controllers at the edge of the pixel detector. For the communication between the DCS controller and the DCS chip, which is located close to each detector module, an enhanced I2C

  16. Development of a detector control system for the serially powered ATLAS pixel detector at the HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Puellen, Lukas

    2015-02-10

    In the years around 2020 the LHC will be upgraded to the HL-LHC. In terms of this upgrade, the ATLAS detector will also be upgraded. This also includes the pixel detector, the innermost of the sub-detectors in ATLAS. Thereby the powering concept of the pixel detector will be changed to reduce the material budget of the detector. From individual powering of each detector module, the concept changes to serial powering, where all modules of a powering group are connected in series. This change makes the development of a new detector control system (DCS) mandatory. Therefore, a new concept for the ATLAS pixel DCS is being developed at the University of Wuppertal. This concept is split into three paths: a safety path, a control path, and a diagnostics path. The safety path is a hard wired interlock system. The concept of this system will not differ significantly, compared to the interlock system of the current detector. The diagnostics path is embedded into the optical data read-out of the detector and will be used for detector tuning with high precision and granularity. The control path supervises the detector and provides a user interface to the hardware components. A concept for this path, including a prototype and proof-of-principle studies, has been developed in terms of this thesis. The control path consists of the DCS network, a read-out and controlling topology created by two types of ASICs: the DCS controller and the DCS chip. These ASICs measure and control all values, necessary for a safe detector operation in situ. This reduces the number of required cables and hence the material budget of the system. For the communication between these ASICs, two very fault tolerant bus protocols have been chosen: CAN bus carries data from the DCS computers, outside of the detector, to the DCS controllers at the edge of the pixel detector. For the communication between the DCS controller and the DCS chip, which is located close to each detector module, an enhanced I2C

  17. Charge Pump Clock Generation PLL for the Data Output Block of the Upgraded ATLAS Pixel Front-End in 130 nm CMOS

    CERN Document Server

    Kruth, A; Arutinov, D; Barbero, M; Gronewald, M; Hemperek, T; Karagounis, M; Krueger, H; Wermes, N; Fougeron, D; Menouni, M; Beccherle, R; Dube, S; Ellege, D; Garcia-Sciveres, M; Gnani, D; Mekkaoui, A; Gromov, V; Kluit, R; Schipper, J

    2009-01-01

    FE-I4 is the 130 nm ATLAS pixel IC currently under development for upgraded Large Hadron Collider (LHC) luminosities. FE-I4 is based on a low-power analog pixel array and digital architecture concepts tuned to higher hit rates [1]. An integrated Phase Locked Loop (PLL) has been developed that locally generates a clock signal for the 160 Mbit/s output data stream from the 40 MHz bunch crossing reference clock. This block is designed for low power, low area consumption and recovers quickly from loss of lock related to single-event transients in the high radiation environment of the ATLAS pixel detector. After a general introduction to the new FE-I4 pixel front-end chip, this work focuses on the FE-I4 output blocks and on a first PLL prototype test chip submitted in early 2009. The PLL is nominally operated from a 1.2V supply and consumes 3.84mW of DC power. Under nominal operating conditions, the control voltage settles to within 2% of its nominal value in less than 700 ns. The nominal operating frequency for t...

  18. Analog front-end cell designed in a commercial 025 mu m process for the ATLAS pixel detector at LHC

    CERN Document Server

    Blanquart, L; Comes, G; Denes, P; Einsweiler, Kevin F; Fischer, P; Mandelli, E; Meddeler, G; Peric, I; Richardson, J

    2002-01-01

    A new analog pixel front-end cell has been developed for the ATLAS detector at the future Large Hadron Collider (LHC) at the European Laboratory for Particle Physics (CERN). This analog cell has been submitted in two commercial 0.25 mu m CMOS processes (in an analog test chip format), using special layout techniques for radiation hardness purposes. It is composed of two cascaded amplifiers followed by a fast discriminator featuring a detection threshold within the range of 1000 to 10000 electrons. The first preamplifier has the principal role of providing a large bandwidth, low input impedance, and fast rise time in order to enhance the time-walk and crosstalk performance, whereas the second fully differential amplifier is aimed at delivering a sufficiently high-voltage gain for optimum comparison. A new do feedback concept renders the cell tolerant of sensor leakage current up to 300 nA and provides monitoring of this current. Two 5-bit digital-to-analog converters tolerant to single- event upset have been i...

  19. Studies on irradiated pixel detectors for the ATLAS IBL and HL-LHC upgrade

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00371978; Gößling, Claus; Pernegger, Heinz

    The constant demand for higher luminosity in high energy physics is the reason for the continuous effort to adapt the accelerators and the experiments. The upgrade program for the experiments and the accelerators at CERN already includes several expansion stages of the Large Hadron Collider (LHC) which will increase the luminosity and the energy of the accelerator. Simultaneously the LHC experiments prepare the individual sub-detectors for the increasing demands in the coming years. Especially the tracking detectors have to cope with fluence levels unprecedented for high energy physics experiments. Correspondingly to the fluence increases the impact of the radiation damage which reduces the life time of the detectors by decreasing the detector performance and efficiency. To cope with this effect new and more radiation hard detector concepts become necessary to extend the life time. This work concentrates on the impact of radiation damage on the pixel sensor technologies to be used in the next upgrade of the ...

  20. Development of pixel detectors for the IBL and HL-LHC ATLAS experiment upgrade

    CERN Document Server

    Baselga Bacardit, Marta

    2016-03-18

    This thesis presents the development of advanced silicon technology detectors fabricated at CNM-Barcelona for High Energy Physics (HEP) experiments. The pixel size of the tracking silicon detectors for the upgrade of the HL-LHC will have to decrease in size in order to enhance the resolution in position for the measurements and they need to have lower occupancy for the electronics. The future experiments at CERN will cope with fuences up to 2 x 10^^16 neq/cm2, and the smaller 3D silicon detectors will have less trapping of the electron-holes generated in the bulk leading to a better performance under high radiation environment. This thesis studies silicon detectors fabricated at CNM-Barcelona applied to HEP experiments with two different kinds of novel technologies: 3D and Low Gain Avalanche Detectors (LGAD). The 3D detectors make it possible to reduce the size of the depleted region inside the detector and to work at lower voltages, whereas the LGAD detectors have an intrinsic gain which increases the collec...

  1. The upgraded Pixel detector and the commissioning of the Inner Detector tracking of the ATLAS experiment for Run-2 at the Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00019188; The ATLAS collaboration

    2016-01-01

    Run-2 of the Large Hadron Collider (LHC) will provide new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). The IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with the high radiation and expected occupancy, is the first large scale application of 3D detectors and CMOS 130~nm technology. In addition, the Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during Run-1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. Complementing detector improvements, many improvements to Inner Detector track and vertex reconstr...

  2. Thin n-in-p pixel sensors and the SLID-ICV vertical integration technology for the ATLAS upgrade at the HL-LHC

    CERN Document Server

    Macchiolo, A

    2013-01-01

    The R&D activity presented is focused on the development of new modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The performance after irradiation of n-in-p pixel sensors of different active thicknesses is studied, together with an investigation of a novel interconnection technique offered by the Fraunhofer Institute EMFT in Munich, the Solid-Liquid-InterDiffusion (SLID), which is an alternative to the standard solder bump-bonding. The pixel modules are based on thin n-in-p sensors, with an active thickness of 75 um or 150 um, produced at the MPI Semiconductor Laboratory (MPI HLL) and on 100 um thick sensors with active edges, fabricated at VTT, Finland. Hit efficiencies are derived from beam test data for thin devices irradiated up to a fluence of 4e15 neq/cm^2. For the active edge devices, the charge collection properties of the edge pixels before irradiation is discussed in detail, with respect to the inner ones, using measurements with radioactive sources. Beyond ...

  3. Performance of the Insertable B-Layer for the ATLAS Pixel Detector during Quality Assurance and a Novel Pixel Detector Readout Concept based on PCIe

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00356268; Pernegger, Heinz

    2016-07-27

    During the first long shutdown of the LHC the Pixel detector has been upgraded with a new 4th innermost layer, the Insertable B-Layer (IBL). The IBL will increase the tracking performance and help with higher than nominal luminosity the LHC will produce. The IBL is made up of 14 staves and in total 20 staves have been produced for the IBL. This thesis presents the results of the final quality tests performed on these staves in an detector-like environment, in order to select the 14 best of the 20 staves for integration onto the detector. The test setup as well as the testing procedure is introduced and typical results of each testing stage are shown and discussed. The overall performance of all staves is presented in regards to: tuning performance, radioactive source measurements, and number of failing pixels. Other measurement, which did not directly impact the selection of staves, but will be important for the operation of the detector or production of a future detector, are included. Based on the experienc...

  4. TFA pixel sensor technology for vertex detectors

    International Nuclear Information System (INIS)

    Pixel microvertex detectors at the SLHC and a future linear collider face very challenging issues: extreme radiation hardness, cooling design, interconnections density and fabrication cost. As an alternative approach we present a novel pixel detector based on the deposition of a Hydrogenated Amorphous Silicon (a-Si:H) film on top of a readout ASIC. The Thin-Film on ASIC (TFA) technology is inspired by an emerging microelectronic technology envisaged for visible light Active Pixel Sensor (APS) devices. We present results obtained with a-Si:H sensor films deposited on a glass substrate and on ASIC, including the radiation hardness of this material up to a fluence of 3.5x1015 p/cm2

  5. Characterization of the FE-I4B pixel readout chip production run for the ATLAS Insertable B-layer upgrade

    Science.gov (United States)

    Backhaus, M.

    2013-03-01

    The Insertable B-layer (IBL) is a fourth pixel layer that will be added inside the existing ATLAS pixel detector during the long LHC shutdown of 2013 and 2014. The new four layer pixel system will ensure excellent tracking, vertexing and b-tagging performance in the high luminosity pile-up conditions projected for the next LHC run. The peak luminosity is expected to reach 3·1034 cm-2s-1with an integrated luminosity over the IBL lifetime of 300 fb-1 corresponding to a design lifetime fluence of 5·1015 neqcm-2 and ionizing dose of 250 Mrad including safety factors. The production front-end electronics FE-I4B for the IBL has been fabricated at the end of 2011 and has been extensively characterized on diced ICs as well as at the wafer level. The production tests at the wafer level were performed during 2012. Selected results of the diced IC characterization are presented, including measurements of the on-chip voltage regulators. The IBL powering scheme, which was chosen based on these results, is described. Preliminary wafer to wafer distributions as well as yield calculations are given.

  6. Characterization of the FE-I4B pixel readout chip production run for the ATLAS Insertable B-layer upgrade

    CERN Document Server

    Backhaus, Malte

    2013-01-01

    The Insertable B-layer (IBL) is a fourth pixel layer that will be added inside the existing ATLAS pixel detector during the long LHC shutdown of 2013 and 2014. The new four layer pixel system will ensure excellent tracking, vertexing and b-tagging performance in the high luminosity pile-up conditions projected for the next LHC run. The peak luminosity is expected to reach 3 x 10^34 cm^-2 s^-1 with an integrated luminosity over the IBL lifetime of 300 fb^-1 corresponding to a design lifetime fluence of 5 x 10^15 n_eq cm^-2 and ionizing dose of 250 Mrad including safety factors. The production front-end electronics FE-I4B for the IBL has been fabricated at the end of 2011 and has been extensively characterized on diced ICs as well as at the wafer level. The production tests at the wafer level were performed during 2012. Selected results of the diced IC characterization are presented, including measurements of the on-chip voltage regulators. The IBL powering scheme, which was chosen based on these results, is de...

  7. Characterization of the FE-I4B pixel readout chip production run for the ATLAS Insertable B-layer upgrade

    CERN Document Server

    Backhaus, M

    2013-01-01

    The Insertable B-layer (IBL) is a fourth pixel layer that will be added inside the existing ATLAS pixel detector during the long LHC shutdown of 2013 and 2014. The new four layer pixel system will ensure excellent tracking, vertexing and b-tagging performance in the high luminosity pile-up conditions projected for the next LHC run. The peak luminosity is expected to reach 3• 10^34 cm^−2 s ^−1with an integrated luminosity over the IBL lifetime of 300 fb^−1 corresponding to a design lifetime fluence of 5 • 10^15 n_eqcm^−2 and ionizing dose of 250 Mrad including safety factors. The production front-end electronics FE-I4B for the IBL has been fabricated at the end of 2011 and has been extensively characterized on diced ICs as well as at the wafer level. The production tests at the wafer level were performed during 2012. Selected results of the diced IC characterization are presented, including measurements of the on-chip voltage regulators. The IBL powering scheme, which was chosen based on these resu...

  8. A High Performance Multi-Core FPGA Implementation for 2D Pixel Clustering for the ATLAS Fast TracKer (FTK) Processor

    CERN Document Server

    Sotiropoulou, C-L; The ATLAS collaboration; Beretta, M; Gkaitatzis, S; Kordas, K; Nikolaidis, S; Petridou, C; Volpi, G

    2014-01-01

    The high performance multi-core 2D pixel clustering FPGA implementation used for the input system of the ATLAS Fast TracKer (FTK) processor is presented. The input system for the FTK processor will receive data from the Pixel and micro-strip detectors read out drivers (RODs) at 760Gbps, the full rate of level 1 triggers. Clustering is required as a method to reduce the high rate of the received data before further processing, as well as to determine the cluster centroid for obtaining obtain the best spatial measurement. Our implementation targets the pixel detectors and uses a 2D-clustering algorithm that takes advantage of a moving window technique to minimize the logic required for cluster identification. The design is fully generic and the cluster detection window size can be adjusted for optimizing the cluster identification process. Τhe implementation can be parallelized by instantiating multiple cores to identify different clusters independently thus exploiting more FPGA resources. This flexibility mak...

  9. Design and implementation of an expert system for the detector control systems of the ATLAS pixel detector

    International Nuclear Information System (INIS)

    In the framework of this thesis an expert system ''Pixel-Advisor'' for the control system of the pixel detector was designed and implemented. This supports the operational personnel in the diagnosis and removal of possible problems, which are in connection with the detector control system and unburdens the few available DCS experts

  10. Measurement of charm and beauty-production in deep inelastic scattering at HERA and test beam studies of ATLAS pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Libov, Vladyslav

    2013-08-15

    A measurement of charm and beauty production in Deep Inelastic Scattering at HERA is presented. The analysis is based on the data sample collected by the ZEUS detector in the period from 2003 to 2007 corresponding to an integrated luminosity of 354 pb{sup -1}. The kinematic region of the measurement is given by 54.2(5) GeV for charm (beauty) and -1.6<{eta}{sup jet}<2.2 for both charm and beauty, where E{sup jet}{sub T} and {eta}{sup jet} are the transverse energy and pseudorapidity of the jet, respectively. The significance of the decay length and the invariant mass of charged tracks associated with the secondary vertex are used as discriminating variables to distinguish between signal and background. Differential cross sections of jet production in charm and beauty events as a function of Q{sup 2}, y, E{sup jet}{sub T} and {eta}{sup jet} are measured. Results are compared to Next-to-Leading Order (NLO) predictions from Quantum Chromodynamics (QCD) in the fixed flavour number scheme. Good agreement between data and theory is observed. Contributions of the charm and beauty production to the inclusive proton structure function, F{sup cbar} {sup c}{sub 2} and F{sup b} {sup anti} {sup b}{sub 2}, are determined by extrapolating the double differential cross sections using NLO QCD predictions. Contributions to the test beam program for the Insertable B-Layer upgrade project of the ATLAS pixel detector are discussed. The test beam data analysis software package EUTelescope was extended, which allowed an efficient analysis of ATLAS pixel sensors. The USBPix DAQ system was integrated into the EUDET telescope allowing test beam

  11. Thin n-in-p pixel sensors and the SLID-ICV vertical integration technology for the ATLAS upgrade at the HL-LHC

    Science.gov (United States)

    Macchiolo, A.; Andricek, L.; Ellenburg, M.; Moser, H. G.; Nisius, R.; Richter, R. H.; Terzo, S.; Weigell, P.

    2013-12-01

    This R&D activity is focused on the development of new modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The performance after irradiation of n-in-p pixel sensors of different active thicknesses is studied, together with an investigation of a novel interconnection technique offered by the Fraunhofer Institute EMFT in Munich, the Solid-Liquid-InterDiffusion (SLID), which is an alternative to the standard solder bump-bonding. The pixel modules are based on thin n-in-p sensors, with an active thickness of 75 μm or 150 μm, produced at the MPI Semiconductor Laboratory (MPI HLL) and on 100 μm thick sensors with active edges, fabricated at VTT, Finland. Hit efficiencies are derived from beam test data for thin devices irradiated up to a fluence of 4×1015 neq/cm2. For the active edge devices, the charge collection properties of the edge pixels before irradiation are discussed in detail, with respect to the inner ones, using measurements with radioactive sources. Beyond the active edge sensors, an additional ingredient needed to design four side buttable modules is the possibility of moving the wire bonding area from the chip surface facing the sensor to the backside, avoiding the implementation of the cantilever extruding beyond the sensor area. The feasibility of this process is under investigation with the FE-I3 SLID modules, where Inter Chip Vias are etched, employing an EMFT technology, with a cross section of 3 μm×10 μm, at the positions of the original wire bonding pads.

  12. Commissioning of the read-out driver (ROD) card for the ATLAS IBL detector and upgrade studies for the pixel Layers 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Balbi, G.; Bindi, M. [Istituto Nazionale di Fisica Nucleare (INFN), Bologna (Italy); Falchieri, D. [Istituto Nazionale di Fisica Nucleare (INFN), Bologna (Italy); Department of Physics and Astronomy, University of Bologna (Italy); Gabrielli, A., E-mail: alessandro.gabrielli@bo.infn.it [Istituto Nazionale di Fisica Nucleare (INFN), Bologna (Italy); Department of Physics and Astronomy, University of Bologna (Italy); Travaglini, R. [Istituto Nazionale di Fisica Nucleare (INFN), Bologna (Italy); Chen, S.-P.; Hsu, S.-C.; Hauck, S. [University of Washington, Seattle (United States); Kugel, A. [ZITI – Institute for Computer Engineering, University of Heidelberg at Mannheim (Germany)

    2014-11-21

    The higher luminosity that is expected for the LHC after future upgrades will require better performance by the data acquisition system, especially in terms of throughput. In particular, during the first shutdown of the LHC collider in 2013/14, the ATLAS Pixel Detector will be equipped with a fourth layer – the Insertable B-Layer or IBL – located at a radius smaller than the present three layers. Consequently, a new front end ASIC (FE-I4) was designed as well as a new off-detector chain. The latter is composed mainly of two 9U-VME cards called the Back-Of-Crate (BOC) and Read-Out Driver (ROD). The ROD is used for data and event formatting and for configuration and control of the overall read-out electronics. After some prototyping samples were completed, a pre-production batch of 5 ROD cards was delivered with the final layout. Actual production of another 15 ROD cards is ongoing in Fall 2013, and commissioning is scheduled in 2014. Altogether 14 cards are necessary for the 14 staves of the IBL detector, one additional card is required by the Diamond Beam Monitor (DBM), and additional spare ROD cards will be produced for a total of 20 boards. This paper describes some integration tests that were performed and our plan to test the production of the ROD cards. Slices of the IBL read-out chain have been instrumented, and ROD performance is verified on a test bench mimicking a small-sized final setup. This contribution will report also one view on the possible adoption of the IBL ROD for ATLAS Pixel Detector Layer 2 (firstly) and, possibly, in the future, for Layer 1.

  13. Progress with the single-sided module prototype for the ATLAS tracker upgrade server

    NARCIS (Netherlands)

    P.P. Allport; . et al; A.P. Colijn; N.P. Hessey; E. Koffeman

    2011-01-01

    The ATLAS experiment is preparing for the planned luminosity upgrade of the LHC (the super-luminous LHC or sLHC) with a programme of development for tracking able to withstand an order of greater magnitude radiation fluence and much greater hit occupancy rates than the current detector. This has led

  14. Chip development in 65 nm CMOS technology for the high luminosity upgrade of the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Germic, Leonard; Hemperek, Tomasz; Kishishita, Testsuichi; Krueger, Hans; Rymaszewski, Piotr; Wermes, Norbert [University of Bonn, Bonn (Germany); Havranek, Miroslav [University of Bonn, Bonn (Germany); Institute of Physics of the Academy of Sciences, Prague (Czech Republic)

    2015-07-01

    The LHC High Luminosity upgrade will result in a significant change of environment in which particle detectors are going to operate, especially for devices very close to the interaction point like pixel detector electronics. Challenges coming from the higher hit rate will have to be solved by designing faster and more complex circuits, while at the same time keeping in mind very high radiation hardness requirements. Therefore matching the specification set by the high luminosity upgrade requires a large R and D effort. Our group is participating in such a joint development * namely the RD53 collaboration * which goal is to design a new pixel chip using an advanced 65 nm CMOS technology. During this presentation motivations and benefits of using this very deep-submicron technology will be shown together with a comparison with older technologies (130 nm, 250 nm). Most of the talk is allocated to presenting some of the circuits designed by our group, along with their performance measurement results.

  15. Multi-chip module development for the ATLAS pixel detector. Analysis of the front-end chip electronics in radiation hard 0.25-{mu}m technology as well as development and realization of a serial power concept; Multi-Chip-Modul-Entwicklung fuer den ATLAS-Pixeldetektor. Analyse der Front-End-Chip-Elektronik in strahlenharter0,25-{mu}m-Technologie sowie Entwicklung und Realisierung eines Serial-Powering-Konzeptes

    Energy Technology Data Exchange (ETDEWEB)

    Stockmanns, T.

    2004-08-01

    The innermost layer of the ATLAS tracking system is a silicon pixel detector. The use of radiation tolerant components is mandatory due to the harsh radiation environment. The smallest independent component of the pixel detector is a hybride pixel module consisting of a large oxygen enriched silicon sensor and 16 specifically developed ASICs. To achieve the necessary radiation tolerance the ASICs are produced in a 0.25 {mu}m technology in combination with special design techniques. The measurements of the readout electronics during all stages of production of a full module are presented and the performance of the modules is compared with the strict requirements of the ATLAS pixel detector. Furthermore a new powering scheme for pixel detectors is presented, aiming at reducing the total power consumption, the material for the electrical services and the amount of power cables. The advantages and disadvantages of this concept are discussed on the example of the ATLAS pixel detector with pixel modules modified accounting to the new powering scheme. The performance of six of those modules operating at the same time in a small system test is compared to that of normal ATLAS pixel modules. (orig.)

  16. Radiation-hard ASICS for sLHC optical data transmission

    International Nuclear Information System (INIS)

    High-speed data transmission in a high radiation environment poses an immense challenge in the detector design. We investigate the feasibility of using optical links for the silicon trackers of the ATLAS experiment for the planned upgrade of the LHC. The planned upgrade with ten times higher collision rate will produce a similar increase in the radiation. One possibility for the optical transmission is to use VCSEL arrays operating at 850 nm to transmit optical signals while using PIN arrays to convert the optical signals into electrical signals. We have designed a prototype chip containing building blocks for future SLHC optical links using a 130 nm CMOS 8RF process. The chip contains four main blocks; a VCSEL driver optimized for operation at 640 Mb/s, a VCSEL driver optimized for 3.2 Gb/s, a PIN receiver with a clock/data recovery circuit for operation at 40, 160, and 320 Mb/s, and two clock multipliers designed to operate at 640 Mb/s. The clock multiplier is designed to produce the high speed clock to serialize the data for transmission. All circuitry was designed following test results and guidelines from CERN on radiation tolerant design for the process. We have irradiated the chips with 24 GeV protons at CERN. For the VDC, the duty cycle of the output signal and the current consumption of the LVDS receiver remained constant during the irradiation. However, we observed significant decreases in the current consumption of the VCSEL driver circuit and the output drive current. This indicated that the think oxide layout used in the VCSEL driver portion of the chip might not be as radiation-hard and the circuit had been redesigned to minimize this sensitivity. For the PIN receiver, we found that the radiation produced no significant degradation, including the single event upset rate. The upset rate decreased with larger PIN current and was higher for a chip coupled to a PIN diode as expected. For the clock multipliers, we observed that the clocks of some chips

  17. Development of large size Micromegas detector for the upgrade of the ATLAS Muon system

    Energy Technology Data Exchange (ETDEWEB)

    Alexopoulos, T. [NTUA, National Technical University of Athens, Zografou Campus, GR-157, 80 Zografou (Greece); Altintas, A.A. [Bogazici University of Istanbul (Turkey); Alviggi, M. [University of Naples, via Cintia I-80126, Naples (Italy); Arik, M. [Bogazici University of Istanbul (Turkey); Cetin, S.A. [Dogus University of Istanbul (Turkey); Chernyatine, V. [BNL, Brookhaven National Laboratory, Bldg. 510A, Upton, NY (United States); Cheu, E. [University of Arizona, Tucson, AZ 85721 (United States); Della Volpe, D. [University of Naples, via Cintia I-80126, Naples (Italy); Dris, M. [NTUA, National Technical University of Athens, Zografou Campus, GR-157, 80 Zografou (Greece); Fassouliotis, D. [University of Athens, 15701 Ilissia (Greece); Gazis, E.N. [NTUA, National Technical University of Athens, Zografou Campus, GR-157, 80 Zografou (Greece); Giordano, R. [University of Naples, via Cintia I-80126, Naples (Italy); Gratchev, V. [PNPI, Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188350 (Russian Federation); Guan, L. [University of Science and Technology of China, 96 Jing Zhai Road He Fei, An Hui 230026 (China); Iengo, P., E-mail: paolo.iengo@cern.c [LAPP, Laboratoire d' Annecy-le-Vieux de Physique des Particules, CNRS/IN2P3, 9 Chemin de Bellevue, F-74941 Annecy-le-Vieux (France); Ioannou, P. [University of Athens, 15701 Ilissia (Greece); Li, C. [University of Science and Technology of China, 96 Jing Zhai Road He Fei, An Hui 230026 (China); Johns, K.; Kaushik, V. [University of Arizona, Tucson, AZ 85721 (United States); Khodinov, A. [Stony Brook University, Nicolls Road, Stony Brook, NY 11794-3800 (United States)

    2010-05-21

    With the luminosity upgrade of the LHC machine (SLHC, Super-LHC), the Muon system of the ATLAS experiment at CERN will also need a detector upgrade in the highest rapidity region. MAMMA, Muon ATLAS Micromegas Activity, is an ongoing R and D activity with the aim to develop large detectors based on the bulk-Micromegas technology for use in the ATLAS Muon Spectrometer. Micromegas is a good potential candidate for the construction of large muon chambers that combine trigger and tracking capability and can sustain high particle rates expected at the SLHC. A medium size Micromegas prototype, in scale 1:10 of the final chambers, has been built and evaluated in the laboratory and in beam tests at CERN. Results from the analysis of test-beam data are presented. The results indicate that large size Micromegas is a viable candidate for ATLAS Muon upgrade

  18. Development of high performance CFRP shell structures for the pixel detector in the ATLAS experiment at CERN

    CERN Document Server

    Himmel, N; Pfaff, Thomas; Schmitt, Uwe

    2003-01-01

    The "Large Hadron Collider (LHC)" which will be the world's largest and most powerful accelerator and particle collider for particle research experiments is planned to start operation at CERN in 2007. The reported work includes the development of three interleaved cylindrical CFRP shell support structures for a high-resolution detector device within an experimental test equipment named ATLAS, which will be installed into LHC. As the shell structures will be positioned only a few centimetres apart from the point of particle collision, an ultra-light weight component design with extremely tight geometrical tolerances, applying composite materials with extreme stiffness and high radiation hardness is stipulated. The article describes the development of these structures including the design of all components and the manufacturing technology to be used. Furthermore, it reports on geometry testing efforts on a prototype structure to prove the design concept and to derive optimisation potential.

  19. R&D for the local support structure and cooling channel for the ATLAS PIXEL Detector Insertable B-Layer (IBL)

    CERN Document Server

    Coelli, S; The ATLAS collaboration

    2010-01-01

    ABSTRACT: The scope of the present R&D is to develop an innovative support, with an integrated cooling and based on carbon composites, for the electronic sensors of the Silicon Pixel Tracker, to be installed into the ATLAS Experiment on the Large Hadron Collider at CERN. The inner layer of the detector is installed immediately outside the Beryllium beam pipe at a distance of 50 mm from the Interaction Point, where the high energy protons collide: the intense radiation field induce a radiation damage on the sensors so that a cooling system is necessary to remove the electrical power dissipated as heat, maintaining the sensor temperature sufficiently low. The task of the support system is to hold the detector modules in positions with high accuracy, minimizing the deformation induced by the cooling; this must be done with the lower possible mass because there are tight requirements in terms of material budget. An evaporative boiling system to remove the power dissipated by the sensors is incorporated in the...

  20. ATLAS

    Data.gov (United States)

    Federal Laboratory Consortium — ATLAS is a particle physics experiment at the Large Hadron Collider at CERN, the European Organization for Nuclear Research. Scientists from Brookhaven have played...

  1. What's A Pixel Particle Sensor Chip?

    CERN Multimedia

    2008-01-01

    ATLAS particle physics experiment aided with collaboration ON Semiconductor was recently honored by the European Council for Nuclear Research (CERN), with an Industrial Award recognizing the company's contribution in supplying complex "Pixel Particle Sensor" chips for use in CERN's ATLAS particle physics experiment.

  2. Inductor based switching DC-DC converter for low voltage power distribution in SLHC

    CERN Document Server

    Michelis, S; Marchioro, A; Kayal, M; PH-EP

    2007-01-01

    In view of a power distribution scheme compatible with the requirements of the SLHC environment, we are evaluating the feasibility of on-board inductor-based DC-DC step-down conversion. Such converter should be an integrated circuit and capable of operating in harsh radiation environments and in the high magnetic field of the experiments. In this paper we present results concerning the choice of the technology, the search for the magnetic components and the calculations of the expected efficiency.

  3. Custom DC-DC converters for distributing power in SLHC trackers

    CERN Document Server

    Allongue, B; Blanchot, G; Faccio, F; Fuentes, C; Mattavelli, P; Michelis, S; Orlandis, S; Spiazzi, G

    2008-01-01

    A power distribution scheme based on the use of on-board DC-DC converters is proposed to efficiently distribute power to the on-detector electronics of SLHC trackers. A comparative analysis of different promising converter topologies is presented, leading to the choice of a magneticbased buck converter as a first conversion stage followed by an on-chip switched capacitors converter. An overall efficiency above 80% is estimated for the practical implementation proposed.

  4. The GBT-SCA, a radiation tolerant ASIC for detector control applications in SLHC experiments

    CERN Document Server

    Gabrielli, A; Kloukinas, K; Marchioro, A; Moreira, P; Ranieri, A; De Robertis, D

    2009-01-01

    This work describes the architecture of the GigaBit Transceiver – Slow Control Adapter (GBT–SCA) ASIC suitable for the control and monitoring applications of the embedded front-end electronics in the future SLHC experiments. The GBT–SCA is part the GBT chipset currently under development for the SLHC detector upgrades. It is designed for radiation tolerance and it will be fabricated in a commercial 130 nm CMOS technology. The paper discusses the GBT-SCA architecture, the data transfer protocol, the ASIC interfaces, and its integration with the GBT optical link. The GBT–SCA is one the components of the GBT system chipset. It is proposed for the future SLHC experiments and is designed to be configurable matching different front-end system requirements. The GBT-SCA is intended for the slow control and monitoring of the embedded front end electronics and implements a point-to-multi point connection between one GBT optical link ASIC and several front end ASICs. The GBT-SCA connects to a dedicated electrica...

  5. ATLAS

    CERN Multimedia

    2002-01-01

    Barrel and END-CAP Toroids In order to produce a powerful magnetic field to bend the paths of the muons, the ATLAS detector uses an exceptionally large system of air-core toroids arranged outside the calorimeter volumes. The large volume magnetic field has a wide angular coverage and strengths of up to 4.7tesla. The toroids system contains over 100km of superconducting wire and has a design current of 20 500 amperes. (ATLAS brochure: The Technical Challenges)

  6. Progress with the single-sided module prototypes for the ATLAS tracker upgrade stave

    CERN Document Server

    Allport, P P; Wiik, L; Dressnandt, N; Matheson, J; Li, Z; Viehhauser, G; Gallop, B; Jones, T J; Dwuznik, M; Greenall, A; Eklund, L; Maddock, P; Pernecker, S; Wright, J; Puldon, D; Jakobs, K; Holt, R; Sevilla, S G; Koffeman, E; Dabrowski, W; Gilchriese, M; Wastie, R; Gibson, M; Robinson, D; Fadeyev, V; Gerling, M; Betancourt, C; Dawson, N; Bates, R; French, R; Kierstead, J; Anghinolfi, F; Weidberg, A; Martinez-McKinney, F; Paganis, S; Sutcliffe, P; Maunu, R; Newcomer, M; Weber, M; Parzefall, U; Clark, A; Colijn, A P; Xu, D; la Marra, D; Buttar, C; Grillo, A A; Schamberger, D; DeWilde, B; Poltorak, K; Affolder, A A; Tsionou, D; Hessey, N P; Casse, G; Fox, H; Ferrere, D; Villani, E G; Seiden, A; Tyndel, M; Sadrozinski, H F W; Wiimut, I; Carter, J R; Lacasta, C; Chilingarov, A; Santoyo, D; Lynn, D; Garcia, C; Haber, C H; Hommels, L B A; Dhawan, S; Lindgren, S; Farthouat, P; Nickerson, R; Chen, H; Kohler, M; Sattari, S; Civera, J V; McCarthy, R; Phillips, P; Unno, Y; Kaplon, J; Swientek, K; Wormald, M; Goodrick, M; Von Wilpert, J; Mahboubi, K

    2011-01-01

    The ATLAS experiment is preparing for the planned luminosity upgrade of the LHC (the super-luminous LHC or sLHC) with a programme of development for tracking able to withstand an order of greater magnitude radiation fluence and much greater hit occupancy rates than the current detector. This has led to the concept of an all-silicon tracker with an enhanced performance pixel-based inner region and short-strips for much of the higher radii. Both sub-systems employ many common technologies, including the proposed ``stave{''} concept for integrated cooling and support. For the short-strip region, use of this integrated stave concept requires single-sided modules mounted on either side of a thin central lightweight support. Each sensor is divided into four rows of 23.82 mm length strips; within each row, there are 1280 strips of 74.5 mu m pitch. Well over a hundred prototype sensors are being delivered by Hamamatsu Photonics (HPK) to Japan, Europe and the US. We present results of the first 20 chip ABCN25 ASIC hyb...

  7. ATLAS

    CERN Multimedia

    Akhnazarov, V; Canepa, A; Bremer, J; Burckhart, H; Cattai, A; Voss, R; Hervas, L; Kaplon, J; Nessi, M; Werner, P; Ten kate, H; Tyrvainen, H; Vandelli, W; Krasznahorkay, A; Gray, H; Alvarez gonzalez, B; Eifert, T F; Rolando, G; Oide, H; Barak, L; Glatzer, J; Backhaus, M; Schaefer, D M; Maciejewski, J P; Milic, A; Jin, S; Von torne, E; Limbach, C; Medinnis, M J; Gregor, I; Levonian, S; Schmitt, S; Waananen, A; Monnier, E; Muanza, S G; Pralavorio, P; Talby, M; Tiouchichine, E; Tocut, V M; Rybkin, G; Wang, S; Lacour, D; Laforge, B; Ocariz, J H; Bertoli, W; Malaescu, B; Sbarra, C; Yamamoto, A; Sasaki, O; Koriki, T; Hara, K; Da silva gomes, A; Carvalho maneira, J; Marcalo da palma, A; Chekulaev, S; Tikhomirov, V; Snesarev, A; Buzykaev, A; Maslennikov, A; Peleganchuk, S; Sukharev, A; Kaplan, B E; Swiatlowski, M J; Nef, P D; Schnoor, U; Oakham, G F; Ueno, R; Orr, R S; Abouzeid, O; Haug, S; Peng, H; Kus, V; Vitek, M; Temming, K K; Dang, N P; Meier, K; Schultz-coulon, H; Geisler, M P; Sander, H; Schaefer, U; Ellinghaus, F; Rieke, S; Nussbaumer, A; Liu, Y; Richter, R; Kortner, S; Fernandez-bosman, M; Ullan comes, M; Espinal curull, J; Chiriotti alvarez, S; Caubet serrabou, M; Valladolid gallego, E; Kaci, M; Carrasco vela, N; Lancon, E C; Besson, N E; Gautard, V; Bracinik, J; Bartsch, V C; Potter, C J; Lester, C G; Moeller, V A; Rosten, J; Crooks, D; Mathieson, K; Houston, S C; Wright, M; Jones, T W; Harris, O B; Byatt, T J; Dobson, E; Hodgson, P; Hodgkinson, M C; Dris, M; Karakostas, K; Ntekas, K; Oren, D; Duchovni, E; Etzion, E; Oren, Y; Ferrer, L M; Testa, M; Doria, A; Merola, L; Sekhniaidze, G; Giordano, R; Ricciardi, S; Milazzo, A; Falciano, S; De pedis, D; Dionisi, C; Veneziano, S; Cardarelli, R; Verzegnassi, C; Soualah, R; Ochi, A; Ohshima, T; Kishiki, S; Linde, F L; Vreeswijk, M; Werneke, P; Muijs, A; Vankov, P H; Jansweijer, P P M; Dale, O; Lund, E; Bruckman de renstrom, P; Dabrowski, W; Adamek, J D; Wolters, H; Micu, L; Pantea, D; Tudorache, V; Mjoernmark, J; Klimek, P J; Ferrari, A; Abdinov, O; Akhoundov, A; Hashimov, R; Shelkov, G; Khubua, J; Ladygin, E; Lazarev, A; Glagolev, V; Dedovich, D; Lykasov, G; Zhemchugov, A; Zolnikov, Y; Ryabenko, M; Sivoklokov, S; Vasilyev, I; Shalimov, A; Lobanov, M; Paramoshkina, E; Mosidze, M; Bingul, A; Nodulman, L J; Guarino, V J; Yoshida, R; Drake, G R; Calafiura, P; Haber, C; Quarrie, D R; Alonso, J R; Anderson, C; Evans, H; Lammers, S W; Baubock, M; Anderson, K; Petti, R; Suhr, C A; Linnemann, J T; Richards, R A; Tollefson, K A; Holzbauer, J L; Stoker, D P; Pier, S; Nelson, A J; Isakov, V; Martin, A J; Adelman, J A; Paganini, M; Gutierrez, P; Snow, J M; Pearson, B L; Cleland, W E; Savinov, V; Wong, W; Goodson, J J; Li, H; Lacey, R A; Gordeev, A; Gordon, H; Lanni, F; Nevski, P; Rescia, S; Kierstead, J A; Liu, Z; Yu, W W H; Bensinger, J; Hashemi, K S; Bogavac, D; Cindro, V; Hoeferkamp, M R; Coelli, S; Iodice, M; Piegaia, R N; Alonso, F; Wahlberg, H P; Barberio, E L; Limosani, A; Rodd, N L; Jennens, D T; Hill, E C; Pospisil, S; Smolek, K; Schaile, D A; Rauscher, F G; Adomeit, S; Mattig, P M; Wahlen, H; Volkmer, F; Calvente lopez, S; Sanchis peris, E J; Pallin, D; Podlyski, F; Says, L; Boumediene, D E; Scott, W; Phillips, P W; Greenall, A; Turner, P; Gwilliam, C B; Kluge, T; Wrona, B; Sellers, G J; Millward, G; Adragna, P; Hartin, A; Alpigiani, C; Piccaro, E; Bret cano, M; Hughes jones, R E; Mercer, D; Oh, A; Chavda, V S; Carminati, L; Cavasinni, V; Fedin, O; Patrichev, S; Ryabov, Y; Nesterov, S; Grebenyuk, O; Sasso, J; Mahmood, H; Polsdofer, E; Dai, T; Ferretti, C; Liu, H; Hegazy, K H; Benjamin, D P; Zobernig, G; Ban, J; Brooijmans, G H; Keener, P; Williams, H H; Le geyt, B C; Hines, E J; Fadeyev, V; Schumm, B A; Law, A T; Kuhl, A D; Neubauer, M S; Shang, R; Gagliardi, G; Calabro, D; Conta, C; Zinna, M; Jones, G; Li, J; Stradling, A R; Hadavand, H K; Mcguigan, P; Chiu, P; Baldelomar, E; Stroynowski, R A; Kehoe, R L; De groot, N; Timmermans, C; Lach-heb, F; Addy, T N; Nakano, I; Moreno lopez, D; Grosse-knetter, J; Tyson, B; Rude, G D; Tafirout, R; Benoit, P; Danielsson, H O; Elsing, M; Fassnacht, P; Froidevaux, D; Ganis, G; Gorini, B; Lasseur, C; Lehmann miotto, G; Kollar, D; Aleksa, M; Sfyrla, A; Duehrssen-debling, K; Fressard-batraneanu, S; Van der ster, D C; Bortolin, C; Schumacher, J; Mentink, M; Geich-gimbel, C; Yau wong, K H; Lafaye, R; Crepe-renaudin, S; Albrand, S; Hoffmann, D; Pangaud, P; Meessen, C; Hrivnac, J; Vernay, E; Perus, A; Henrot versille, S L; Le dortz, O; Derue, F; Piccinini, M; Polini, A; Terada, S; Arai, Y; Ikeno, M; Fujii, H; Nagano, K; Ukegawa, F; Aguilar saavedra, J A; Conde muino, P; Castro, N F; Eremin, V; Kopytine, M; Sulin, V; Tsukerman, I; Korol, A; Nemethy, P; Bartoldus, R; Glatte, A; Chelsky, S; Van nieuwkoop, J; Bellerive, A; Sinervo, J K; Battaglia, A; Barbier, G J; Pohl, M; Rosselet, L; Alexandre, G B; Prokoshin, F; Pezoa rivera, R A; Batkova, L; Kladiva, E; Stastny, J; Kubes, T; Vidlakova, Z; Esch, H; Homann, M; Herten, L G; Zimmermann, S U; Pfeifer, B; Stenzel, H; Andrei, G V; Wessels, M; Buescher, V; Kleinknecht, K; Fiedler, F M; Schroeder, C D; Fernandez, E; Mir martinez, L; Vorwerk, V; Bernabeu verdu, J; Salt, J; Civera navarrete, J V; Bernard, R; Berriaud, C P; Chevalier, L P; Hubbard, R; Schune, P; Nikolopoulos, K; Batley, J R; Brochu, F M; Phillips, A W; Teixeira-dias, P J; Rose, M B D; Buttar, C; Buckley, A G; Nurse, E L; Larner, A B; Boddy, C; Henderson, J; Costanzo, D; Tarem, S; Maccarrone, G; Laurelli, P F; Alviggi, M; Chiaramonte, R; Izzo, V; Palumbo, V; Fraternali, M; Crosetti, G; Marchese, F; Yamaguchi, Y; Hessey, N P; Mechnich, J M; Liebig, W; Kastanas, K A; Sjursen, T B; Zalieckas, J; Cameron, D G; Banka, P; Kowalewska, A B; Dwuznik, M; Mindur, B; Boldea, V; Hedberg, V; Smirnova, O; Sellden, B; Allahverdiyev, T; Gornushkin, Y; Koultchitski, I; Tokmenin, V; Chizhov, M; Gongadze, A; Khramov, E; Sadykov, R; Krasnoslobodtsev, I; Smirnova, L; Kramarenko, V; Minaenko, A; Zenin, O; Beddall, A J; Ozcan, E V; Hou, S; Wang, S; Moyse, E; Willocq, S; Chekanov, S; Le compte, T J; Love, J R; Ciocio, A; Hinchliffe, I; Tsulaia, V; Gomez, A; Luehring, F; Zieminska, D; Huth, J E; Gonski, J L; Oreglia, M; Tang, F; Shochet, M J; Costin, T; Mcleod, A; Uzunyan, S; Martin, S P; Pope, B G; Schwienhorst, R H; Brau, J E; Ptacek, E S; Milburn, R H; Sabancilar, E; Lauer, R; Saleem, M; Mohamed meera lebbai, M R; Lou, X; Reeves, K B; Rijssenbeek, M; Novakova, P N; Rahm, D; Steinberg, P A; Wenaus, T J; Paige, F; Ye, S; Kotcher, J R; Assamagan, K A; Oliveira damazio, D; Maeno, T; Henry, A; Dushkin, A; Costa, G; Meroni, C; Resconi, S; Lari, T; Biglietti, M; Lohse, T; Gonzalez silva, M L; Monticelli, F G; Saavedra, A F; Patel, N D; Ciodaro xavier, T; Asevedo nepomuceno, A; Lefebvre, M; Albert, J E; Kubik, P; Faltova, J; Turecek, D; Solc, J; Schaile, O; Ebke, J; Losel, P J; Zeitnitz, C; Sturm, P D; Barreiro alonso, F; Modesto alapont, P; Soret medel, J; Garzon alama, E J; Gee, C N; Mccubbin, N A; Sankey, D; Emeliyanov, D; Dewhurst, A L; Houlden, M A; Klein, M; Burdin, S; Lehan, A K; Eisenhandler, E; Lloyd, S; Traynor, D P; Ibbotson, M; Marshall, R; Pater, J; Freestone, J; Masik, J; Haughton, I; Manousakis katsikakis, A; Sampsonidis, D; Krepouri, A; Roda, C; Sarri, F; Fukunaga, C; Nadtochiy, A; Kara, S O; Timm, S; Alam, S M; Rashid, T; Goldfarb, S; Espahbodi, S; Marley, D E; Rau, A W; Dos anjos, A R; Haque, S; Grau, N C; Havener, L B; Thomson, E J; Newcomer, F M; Hansl-kozanecki, G; Deberg, H A; Takeshita, T; Goggi, V; Ennis, J S; Olness, F I; Kama, S; Ordonez sanz, G; Koetsveld, F; Elamri, M; Mansoor-ul-islam, S; Lemmer, B; Kawamura, G; Bindi, M; Schulte, S; Kugel, A; Kretz, M P; Kurchaninov, L; Blanchot, G; Chromek-burckhart, D; Di girolamo, B; Francis, D; Gianotti, F; Nordberg, M Y; Pernegger, H; Roe, S; Boyd, J; Wilkens, H G; Pauly, T; Fabre, C; Tricoli, A; Bertet, D; Ruiz martinez, M A; Arnaez, O L; Lenzi, B; Boveia, A J; Gillberg, D I; Davies, J M; Zimmermann, R; Uhlenbrock, M; Kraus, J K; Narayan, R T; John, A; Dam, M; Padilla aranda, C; Bellachia, F; Le flour chollet, F M; Jezequel, S; Dumont dayot, N; Fede, E; Mathieu, M; Gensolen, F D; Alio, L; Arnault, C; Bouchel, M; Ducorps, A; Kado, M M; Lounis, A; Zhang, Z P; De vivie de regie, J; Beau, T; Bruni, A; Bruni, G; Grafstrom, P; Romano, M; Lasagni manghi, F; Massa, L; Shaw, K; Ikegami, Y; Tsuno, S; Kawanishi, Y; Benincasa, G; Blagov, M; Fedorchuk, R; Shatalov, P; Romaniouk, A; Belotskiy, K; Timoshenko, S; Hooft van huysduynen, L; Lewis, G H; Wittgen, M M; Mader, W F; Rudolph, C J; Gumpert, C; Mamuzic, J; Rudolph, G; Schmid, P; Corriveau, F; Belanger-champagne, C; Yarkoni, S; Leroy, C; Koffas, T; Harack, B D; Weber, M S; Beck, H; Leger, A; Gonzalez sevilla, S; Zhu, Y; Gao, J; Zhang, X; Blazek, T; Rames, J; Sicho, P; Kouba, T; Sluka, T; Lysak, R; Ristic, B; Kompatscher, A E; Von radziewski, H; Groll, M; Meyer, C P; Oberlack, H; Stonjek, S M; Cortiana, G; Werthenbach, U; Ibragimov, I; Czirr, H S; Cavalli-sforza, M; Puigdengoles olive, C; Tallada crespi, P; Marti i garcia, S; Gonzalez de la hoz, S; Guyot, C; Meyer, J; Schoeffel, L O; Garvey, J; Hawkes, C; Hillier, S J; Staley, R J; Salvatore, P F; Santoyo castillo, I; Carter, J; Yusuff, I B; Barlow, N R; Berry, T S; Savage, G; Wraight, K G; Steele, G E; Hughes, G; Walder, J W; Love, P A; Crone, G J; Waugh, B M; Boeser, S; Sarkar, A M; Holmes, A; Massey, R; Pinder, A; Nicholson, R; Korolkova, E; Katsoufis, I; Maltezos, S; Tsipolitis, G; Leontsinis, S; Levinson, L J; Shoa, M; Abramowicz, H E; Bella, G; Gershon, A; Urkovsky, E; Taiblum, N; Gatti, C; Della pietra, M; Lanza, A; Negri, A; Flaminio, V; Lacava, F; Petrolo, E; Pontecorvo, L; Rosati, S; Zanello, L; Pasqualucci, E; Di ciaccio, A; Giordani, M; Yamazaki, Y; Jinno, T; Nomachi, M; De jong, P J; Ferrari, P; Homma, J; Van der graaf, H; Igonkina, O B; Stugu, B S; Buanes, T; Pedersen, M; Turala, M; Olszewski, A J; Koperny, S Z; Onofre, A; Castro nunes fiolhais, M; Alexa, C; Cuciuc, C M; Akesson, T P A; Hellman, S L; Milstead, D A; Bondyakov, A; Pushnova, V; Budagov, Y; Minashvili, I; Romanov, V; Sniatkov, V; Tskhadadze, E; Kalinovskaya, L; Shalyugin, A; Tavkhelidze, A; Rumyantsev, L; Karpov, S; Soloshenko, A; Vostrikov, A; Borissov, E; Solodkov, A; Vorob'ev, A; Sidorov, S; Malyaev, V; Lee, S; Grudzinski, J J; Virzi, J S; Vahsen, S E; Lys, J; Penwell, J W; Yan, Z; Bernard, C S; Barreiro guimaraes da costa, J P; Oliver, J N; Merritt, F S; Brubaker, E M; Kapliy, A; Kim, J; Zutshi, V V; Burghgrave, B O; Abolins, M A; Arabidze, G; Caughron, S A; Frey, R E; Radloff, P T; Schernau, M; Murillo garcia, R; Porter, R A; Mccormick, C A; Karn, P J; Sliwa, K J; Demers konezny, S M; Strauss, M G; Mueller, J A; Izen, J M; Klimentov, A; Lynn, D; Polychronakos, V; Radeka, V; Sondericker, J I I I; Bathe, S; Duffin, S; Chen, H; De castro faria salgado, P E; Kersevan, B P; Lacker, H M; Schulz, H; Kubota, T; Tan, K G; Yabsley, B D; Nunes de moura junior, N; Pinfold, J; Soluk, R A; Ouellette, E A; Leitner, R; Sykora, T; Solar, M; Sartisohn, G; Hirschbuehl, D; Huning, D; Fischer, J; Terron cuadrado, J; Glasman kuguel, C B; Lacasta llacer, C; Lopez-amengual, J; Calvet, D; Chevaleyre, J; Daudon, F; Montarou, G; Guicheney, C; Calvet, S P J; Tyndel, M; Dervan, P J; Maxfield, S J; Hayward, H S; Beck, G; Cox, B; Da via, C; Paschalias, P; Manolopoulou, M; Ragusa, F; Cimino, D; Ezzi, M; Fiuza de barros, N F; Yildiz, H; Ciftci, A K; Turkoz, S; Zain, S B; Tegenfeldt, F; Chapman, J W; Panikashvili, N; Bocci, A; Altheimer, A D; Martin, F F; Fratina, S; Jackson, B D; Grillo, A A; Seiden, A; Watts, G T; Mangiameli, S; Johns, K A; O'grady, F T; Errede, D R; Darbo, G; Ferretto parodi, A; Leahu, M C; Farbin, A; Ye, J; Liu, T; Wijnen, T A; Naito, D; Takashima, R; Sandoval usme, C E; Zinonos, Z; Moreno llacer, M; Agricola, J B; Mcgovern, S A; Sakurai, Y; Trigger, I M; Qing, D; De silva, A S; Butin, F; Dell'acqua, A; Hawkings, R J; Lamanna, M; Mapelli, L; Passardi, G; Rembser, C; Tremblet, L; Andreazza, W; Dobos, D A; Koblitz, B; Bianco, M; Dimitrov, G V; Schlenker, S; Armbruster, A J; Rammensee, M C; Romao rodrigues, L F; Peters, K; Pozo astigarraga, M E; Yi, Y; Desch, K K; Huegging, F G; Muller, K K; Stillings, J A; Schaetzel, S; Xella, S; Hansen, J D; Colas, J; Daguin, G; Wingerter, I; Ionescu, G D; Ledroit, F; Lucotte, A; Clement, B E; Stark, J; Clemens, J; Djama, F; Knoops, E; Coadou, Y; Vigeolas-choury, E; Feligioni, L; Iconomidou-fayard, L; Imbert, P; Schaffer, A C; Nikolic, I; Trincaz-duvoid, S; Warin, P; Camard, A F; Ridel, M; Pires, S; Giacobbe, B; Spighi, R; Villa, M; Negrini, M; Sato, K; Gavrilenko, I; Akimov, A; Khovanskiy, V; Talyshev, A; Voronkov, A; Hakobyan, H; Mallik, U; Shibata, A; Konoplich, R; Barklow, T L; Koi, T; Straessner, A; Stelzer, B; Robertson, S H; Vachon, B; Stoebe, M; Keyes, R A; Wang, K; Billoud, T R V; Strickland, V; Batygov, M; Krieger, P; Palacino caviedes, G D; Gay, C W; Jiang, Y; Han, L; Liu, M; Zenis, T; Lokajicek, M; Staroba, P; Tasevsky, M; Popule, J; Svatos, M; Seifert, F; Landgraf, U; Lai, S T; Schmitt, K H; Achenbach, R; Schuh, N; Kiesling, C; Macchiolo, A; Nisius, R; Schacht, P; Von der schmitt, J G; Kortner, O; Atlay, N B; Segura sole, E; Grinstein, S; Neissner, C; Bruckner, D M; Oliver garcia, E; Boonekamp, M; Perrin, P; Gaillot, F M; Wilson, J A; Thomas, J P; Thompson, P D; Palmer, J D; Falk, I E; Chavez barajas, C A; Sutton, M R; Robinson, D; Kaneti, S A; Wu, T; Robson, A; Shaw, C; Buzatu, A; Qin, G; Jones, R; Bouhova-thacker, E V; Viehhauser, G; Weidberg, A R; Gilbert, L; Johansson, P D C; Orphanides, M; Vlachos, S; Behar harpaz, S; Papish, O; Lellouch, D J H; Turgeman, D; Benary, O; La rotonda, L; Vena, R; Tarasio, A; Marzano, F; Gabrielli, A; Di stante, L; Liberti, B; Aielli, G; Oda, S; Nozaki, M; Takeda, H; Hayakawa, T; Miyazaki, K; Maeda, J; Sugimoto, T; Pettersson, N E; Bentvelsen, S; Groenstege, H L; Lipniacka, A; Vahabi, M; Ould-saada, F; Chwastowski, J J; Hajduk, Z; Kaczmarska, A; Olszowska, J B; Trzupek, A; Staszewski, R P; Palka, M; Constantinescu, S; Jarlskog, G; Lundberg, B L A; Pearce, M; Ellert, M F; Bannikov, A; Fechtchenko, A; Iambourenko, V; Kukhtin, V; Pozdniakov, V; Topilin, N; Vorozhtsov, S; Khassanov, A; Fliaguine, V; Kharchenko, D; Nikolaev, K; Kotenov, K; Kozhin, A; Zenin, A; Ivashin, A; Golubkov, D; Beddall, A; Su, D; Dallapiccola, C J; Cranshaw, J M; Price, L; Stanek, R W; Gieraltowski, G; Zhang, J; Gilchriese, M; Shapiro, M; Ahlen, S; Morii, M; Taylor, F E; Miller, R J; Phillips, F H; Torrence, E C; Wheeler, S J; Benedict, B H; Napier, A; Hamilton, S F; Petrescu, T A; Boyd, G R J; Jayasinghe, A L; Smith, J M; Mc carthy, R L; Adams, D L; Le vine, M J; Zhao, X; Patwa, A M; Baker, M; Kirsch, L; Krstic, J; Simic, L; Filipcic, A; Seidel, S C; Cantore-cavalli, D; Baroncelli, A; Kind, O M; Scarcella, M J; Maidantchik, C L L; Seixas, J; Balabram filho, L E; Vorobel, V; Spousta, M; Strachota, P; Vokac, P; Slavicek, T; Bergmann, B L; Biebel, O; Kersten, S; Srinivasan, M; Trefzger, T; Vazeille, F; Insa, C; Kirk, J; Middleton, R; Burke, S; Klein, U; Morris, J D; Ellis, K V; Millward, L R; Giokaris, N; Ioannou, P; Angelidakis, S; Bouzakis, K; Andreazza, A; Perini, L; Chtcheguelski, V; Spiridenkov, E; Yilmaz, M; Kaya, U; Ernst, J; Mahmood, A; Saland, J; Kutnink, T; Holler, J; Kagan, H P; Wang, C; Pan, Y; Xu, N; Ji, H; Willis, W J; Tuts, P M; Litke, A; Wilder, M; Rothberg, J; Twomey, M S; Rizatdinova, F; Loch, P; Rutherfoord, J P; Varnes, E W; Barberis, D; Osculati-becchi, B; Brandt, A G; Turvey, A J; Benchekroun, D; Nagasaka, Y; Thanakornworakij, T; Quadt, A; Nadal serrano, J; Magradze, E; Nackenhorst, O; Musheghyan, H; Kareem, M; Chytka, L; Perez codina, E; Stelzer-chilton, O; Brunel, B; Henriques correia, A M; Dittus, F; Hatch, M; Haug, F; Hauschild, M; Huhtinen, M; Lichard, P; Schuh-erhard, S; Spigo, G; Avolio, G; Tsarouchas, C; Ahmad, I; Backes, M P; Barisits, M; Gadatsch, S; Cerv, M; Sicoe, A D; Nattamai sekar, L P; Fazio, D; Shan, L; Sun, X; Gaycken, G F; Hemperek, T; Petersen, T C; Alonso diaz, A; Moynot, M; Werlen, M; Hryn'ova, T; Gallin-martel, M; Wu, M; Touchard, F; Menouni, M; Fougeron, D; Le guirriec, E; Chollet, J C; Veillet, J; Barrillon, P; Prat, S; Krasny, M W; Roos, L; Boudarham, G; Lefebvre, G; Boscherini, D; Valentinetti, S; Acharya, B S; Miglioranzi, S; Kanzaki, J; Unno, Y; Yasu, Y; Iwasaki, H; Tokushuku, K; Maio, A; Rodrigues fernandes, B J; Pinto figueiredo raimundo ribeiro, N M; Bot, A; Shmeleva, A; Zaidan, R; Djilkibaev, R; Mincer, A I; Salnikov, A; Aracena, I A; Schwartzman, A G; Silverstein, D J; Fulsom, B G; Anulli, F; Kuhn, D; White, M J; Vetterli, M J; Stockton, M C; Mantifel, R L; Azuelos, G; Shoaleh saadi, D; Savard, P; Clark, A; Ferrere, D; Gaumer, O P; Diaz gutierrez, M A; Liu, Y; Dubnickova, A; Sykora, I; Strizenec, P; Weichert, J; Zitek, K; Naumann, T; Goessling, C; Klingenberg, R; Jakobs, K; Rurikova, Z; Werner, M W; Arnold, H R; Buscher, D; Hanke, P; Stamen, R; Dietzsch, T A; Kiryunin, A; Salihagic, D; Buchholz, P; Pacheco pages, A; Sushkov, S; Porto fernandez, M D C; Cruz josa, R; Vos, M A; Schwindling, J; Ponsot, P; Charignon, C; Kivernyk, O; Goodrick, M J; Hill, J C; Green, B J; Quarman, C V; Bates, R L; Allwood-spiers, S E; Quilty, D; Chilingarov, A; Long, R E; Barton, A E; Konstantinidis, N; Simmons, B; Davison, A R; Christodoulou, V; Wastie, R L; Gallas, E J; Cox, J; Dehchar, M; Behr, J K; Pickering, M A; Filippas, A; Panagoulias, I; Tenenbaum katan, Y D; Roth, I; Pitt, M; Citron, Z H; Benhammou, Y; Amram, N Y N; Soffer, A; Gorodeisky, R; Antonelli, M; Chiarella, V; Curatolo, M; Esposito, B; Nicoletti, G; Martini, A; Sansoni, A; Carlino, G; Del prete, T; Bini, C; Vari, R; Kuna, M; Pinamonti, M; Itoh, Y; Colijn, A P; Klous, S; Garitaonandia elejabarrieta, H; Rosendahl, P L; Taga, A V; Malecki, P; Malecki, P; Wolter, M W; Kowalski, T; Korcyl, G M; Caprini, M; Caprini, I; Dita, P; Olariu, A; Tudorache, A; Lytken, E; Hidvegi, A; Aliyev, M; Alexeev, G; Bardin, D; Kakurin, S; Lebedev, A; Golubykh, S; Chepurnov, V; Gostkin, M; Kolesnikov, V; Karpova, Z; Davkov, K I; Yeletskikh, I; Grishkevich, Y; Rud, V; Myagkov, A; Nikolaenko, V; Starchenko, E; Zaytsev, A; Fakhrutdinov, R; Cheine, I; Istin, S; Sahin, S; Teng, P; Chu, M L; Trilling, G H; Heinemann, B; Richoz, N; Degeorge, C; Youssef, S; Pilcher, J; Cheng, Y; Purohit, M V; Kravchenko, A; Calkins, R E; Blazey, G; Hauser, R; Koll, J D; Reinsch, A; Brost, E C; Allen, B W; Lankford, A J; Ciobotaru, M D; Slagle, K J; Haffa, B; Mann, A; Loginov, A; Cummings, J T; Loyal, J D; Skubic, P L; Boudreau, J F; Lee, B E; Redlinger, G; Wlodek, T; Carcassi, G; Sexton, K A; Yu, D; Deng, W; Metcalfe, J E; Panitkin, S; Sijacki, D; Mikuz, M; Kramberger, G; Tartarelli, G F; Farilla, A; Stanescu, C; Herrberg, R; Alconada verzini, M J; Brennan, A J; Varvell, K; Marroquim, F; Gomes, A A; Do amaral coutinho, Y; Gingrich, D; Moore, R W; Dolejsi, J; Valkar, S; Broz, J; Jindra, T; Kohout, Z; Kral, V; Mann, A W; Calfayan, P P; Langer, T; Hamacher, K; Sanny, B; Wagner, W; Flick, T; Redelbach, A R; Ke, Y; Higon-rodriguez, E; Donini, J N; Lafarguette, P; Adye, T J; Baines, J; Barnett, B; Wickens, F J; Martin, V J; Jackson, J N; Prichard, P; Kretzschmar, J; Martin, A J; Walker, C J; Potter, K M; Kourkoumelis, C; Tzamarias, S; Houiris, A G; Iliadis, D; Fanti, M; Bertolucci, F; Maleev, V; Sultanov, S; Rosenberg, E I; Krumnack, N E; Bieganek, C; Diehl, E B; Mc kee, S P; Eppig, A P; Harper, D R; Liu, C; Schwarz, T A; Mazor, B; Looper, K A; Wiedenmann, W; Huang, P; Stahlman, J M; Battaglia, M; Nielsen, J A; Zhao, T; Khanov, A; Kaushik, V S; Vichou, E; Liss, A M; Gemme, C; Morettini, P; Parodi, F; Passaggio, S; Rossi, L; Kuzhir, P; Ignatenko, A; Ferrari, R; Spairani, M; Pianori, E; Sekula, S J; Firan, A I; Cao, T; Hetherly, J W; Gouighri, M; Vassilakopoulos, V; Long, M C; Shimojima, M; Sawyer, L H; Brummett, R E; Losada, M A; Schorlemmer, A L; Mantoani, M; Bawa, H S; Mornacchi, G; Nicquevert, B; Palestini, S; Stapnes, S; Veness, R; Kotamaki, M J; Sorde, C; Iengo, P; Campana, S; Goossens, L; Zajacova, Z; Pribyl, L; Poveda torres, J; Marzin, A; Conti, G; Carrillo montoya, G D; Kroseberg, J; Gonella, L; Velz, T; Schmitt, S; Lobodzinska, E M; Lovschall-jensen, A E; Galster, G; Perrot, G; Cailles, M; Berger, N; Barnovska, Z; Delsart, P; Lleres, A; Tisserant, S; Grivaz, J; Matricon, P; Bellagamba, L; Bertin, A; Bruschi, M; De castro, S; Semprini cesari, N; Fabbri, L; Rinaldi, L; Quayle, W B; Truong, T N L; Kondo, T; Haruyama, T; Ng, C; Do valle wemans, A; Almeida veloso, F M; Konovalov, S; Ziegler, J M; Su, D; Lukas, W; Prince, S; Ortega urrego, E J; Teuscher, R J; Knecht, N; Pretzl, K; Borer, C; Gadomski, S; Koch, B; Kuleshov, S; Brooks, W K; Antos, J; Kulkova, I; Chudoba, J; Chyla, J; Tomasek, L; Bazalova, M; Messmer, I; Tobias, J; Sundermann, J E; Kuehn, S S; Kluge, E; Scharf, V L; Barillari, T; Kluth, S; Menke, S; Weigell, P; Schwegler, P; Ziolkowski, M; Casado lechuga, P M; Garcia, C; Sanchez, J; Costa mezquita, M J; Valero biot, J A; Laporte, J; Nikolaidou, R; Virchaux, M; Nguyen, V T H; Charlton, D; Harrison, K; Slater, M W; Newman, P R; Parker, A M; Ward, P; Mcgarvie, S A; Kilvington, G J; D'auria, S; O'shea, V; Mcglone, H M; Fox, H; Henderson, R; Kartvelishvili, V; Davies, B; Sherwood, P; Fraser, J T; Lancaster, M A; Tseng, J C; Hays, C P; Apolle, R; Dixon, S D; Parker, K A; Gazis, E; Papadopoulou, T; Panagiotopoulou, E; Karastathis, N; Hershenhorn, A D; Milov, A; Groth-jensen, J; Bilokon, H; Miscetti, S; Canale, V; Rebuzzi, D M; Capua, M; Bagnaia, P; De salvo, A; Gentile, S; Safai tehrani, F; Solfaroli camillocci, E; Sasao, N; Tsunada, K; Massaro, G; Magrath, C A; Van kesteren, Z; Beker, M G; Van den wollenberg, W; Bugge, L; Buran, T; Read, A L; Gjelsten, B K; Banas, E A; Turnau, J; Derendarz, D K; Kisielewska, D; Chesneanu, D; Rotaru, M; Maurer, J B; Wong, M L; Lund-jensen, B; Asman, B; Jon-and, K B; Silverstein, S B; Johansen, M; Alexandrov, I; Iatsounenko, I; Krumshteyn, Z; Peshekhonov, V; Rybaltchenko, K; Samoylov, V; Cheplakov, A; Kekelidze, G; Lyablin, M; Teterine, V; Bednyakov, V; Kruchonak, U; Shiyakova, M M; Demichev, M; Denisov, S P; Fenyuk, A; Djobava, T; Salukvadze, G; Cetin, S A; Brau, B P; Pais, P R; Proudfoot, J; Van gemmeren, P; Zhang, Q; Beringer, J A; Ely, R; Leggett, C; Pengg, F X; Barnett, M R; Quick, R E; Williams, S; Gardner jr, R W; Huston, J; Brock, R; Wanotayaroj, C; Unel, G N; Taffard, A C; Frate, M; Baker, K O; Tipton, P L; Hutchison, A; Walsh, B J; Norberg, S R; Su, J; Tsybyshev, D; Caballero bejar, J; Ernst, M U; Wellenstein, H; Vudragovic, D; Vidic, I; Gorelov, I V; Toms, K; Alimonti, G; Petrucci, F; Kolanoski, H; Smith, J; Jeng, G; Watson, I J; Guimaraes ferreira, F; Miranda vieira xavier, F; Araujo pereira, R; Poffenberger, P; Sopko, V; Elmsheuser, J; Wittkowski, J; Glitza, K; Gorfine, G W; Ferrer soria, A; Fuster verdu, J A; Sanchis lozano, A; Reinmuth, G; Busato, E; Haywood, S J; Mcmahon, S J; Qian, W; Villani, E G; Laycock, P J; Poll, A J; Rizvi, E S; Foster, J M; Loebinger, F; Forti, A; Plano, W G; Brown, G J A; Kordas, K; Vegni, G; Ohsugi, T; Iwata, Y; Cherkaoui el moursli, R; Sahin, M; Akyazi, E; Carlsen, A; Kanwal, B; Cochran jr, J H; Aronnax, M V; Lockner, M J; Zhou, B; Levin, D S; Weaverdyck, C J; Grom, G F; Rudge, A; Ebenstein, W L; Jia, B; Yamaoka, J; Jared, R C; Wu, S L; Banerjee, S; Lu, Q; Hughes, E W; Alkire, S P; Degenhardt, J D; Lipeles, E D; Spencer, E N; Savine, A; Cheu, E C; Lampl, W; Veatch, J R; Roberts, K; Atkinson, M J; Odino, G A; Polesello, G; Martin, T; White, A P; Stephens, R; Grinbaum sarkisyan, E; Vartapetian, A; Yu, J; Sosebee, M; Thilagar, P A; Spurlock, B; Bonde, R; Filthaut, F; Klok, P; Hoummada, A; Ouchrif, M; Pellegrini, G; Rafi tatjer, J M; Navarro, G A; Blumenschein, U; Weingarten, J C; Mueller, D; Graber, L; Gao, Y; Bode, A; Capeans garrido, M D M; Carli, T; Wells, P; Beltramello, O; Vuillermet, R; Dudarev, A; Salzburger, A; Torchiani, C I; Serfon, C L G; Sloper, J E; Duperrier, G; Lilova, P T; Knecht, M O; Lassnig, M; Anders, G; Deviveiros, P; Young, C; Sforza, F; Shaochen, C; Lu, F; Wermes, N; Wienemann, P; Schwindt, T; Hansen, P H; Hansen, J B; Pingel, A M; Massol, N; Elles, S L; Hallewell, G D; Rozanov, A; Vacavant, L; Fournier, D A; Poggioli, L; Puzo, P M; Tanaka, R; Escalier, M A; Makovec, N; Rezynkina, K; De cecco, S; Cavalleri, P G; Massa, I; Zoccoli, A; Tanaka, S; Odaka, S; Mitsui, S; Tomasio pina, J A; Santos, H F; Satsounkevitch, I; Harkusha, S; Baranov, S; Nechaeva, P; Kayumov, F; Kazanin, V; Asai, M; Mount, R P; Nelson, T K; Smith, D; Kenney, C J; Malone, C M; Kobel, M; Friedrich, F; Grohs, J P; Jais, W J; O'neil, D C; Warburton, A T; Vincter, M; Mccarthy, T G; Groer, L S; Pham, Q T; Taylor, W J; La marra, D; Perrin, E; Wu, X; Bell, W H; Delitzsch, C M; Feng, C; Zhu, C; Tokar, S; Bruncko, D; Kupco, A; Marcisovsky, M; Jakoubek, T; Bruneliere, R; Aktas, A; Narrias villar, D I; Tapprogge, S; Mattmann, J; Kroha, H; Crespo, J; Korolkov, I; Cavallaro, E; Cabrera urban, S; Mitsou, V; Kozanecki, W; Mansoulie, B; Pabot, Y; Etienvre, A; Bauer, F; Chevallier, F; Bouty, A R; Watkins, P; Watson, A; Faulkner, P J W; Curtis, C J; Murillo quijada, J A; Grout, Z J; Chapman, J D; Cowan, G D; George, S; Boisvert, V; Mcmahon, T R; Doyle, A T; Thompson, S A; Britton, D; Smizanska, M; Campanelli, M; Butterworth, J M; Loken, J; Renton, P; Barr, A J; Issever, C; Short, D; Crispin ortuzar, M; Tovey, D R; French, R; Rozen, Y; Alexander, G; Kreisel, A; Conventi, F; Raulo, A; Schioppa, M; Susinno, G; Tassi, E; Giagu, S; Luci, C; Nisati, A; Cobal, M; Ishikawa, A; Jinnouchi, O; Bos, K; Verkerke, W; Vermeulen, J; Van vulpen, I B; Kieft, G; Mora, K D; Olsen, F; Rohne, O M; Pajchel, K; Nilsen, J K; Wosiek, B K; Wozniak, K W; Badescu, E; Jinaru, A; Bohm, C; Johansson, E K; Sjoelin, J B R; Clement, C; Buszello, C P; Huseynova, D; Boyko, I; Popov, B; Poukhov, O; Vinogradov, V; Tsiareshka, P; Skvorodnev, N; Soldatov, A; Chuguev, A; Gushchin, V; Yazici, E; Lutz, M S; Malon, D; Vanyashin, A; Lavrijsen, W; Spieler, H; Biesiada, J L; Bahr, M; Kong, J; Tatarkhanov, M; Ogren, H; Van kooten, R J; Cwetanski, P; Butler, J M; Shank, J T; Chakraborty, D; Ermoline, I; Sinev, N; Whiteson, D O; Corso radu, A; Huang, J; Werth, M P; Kastoryano, M; Meirose da silva costa, B; Namasivayam, H; Hobbs, J D; Schamberger jr, R D; Guo, F; Potekhin, M; Popovic, D; Gorisek, A; Sokhrannyi, G; Hofsajer, I W; Mandelli, L; Ceradini, F; Graziani, E; Giorgi, F; Zur nedden, M E G; Grancagnolo, S; Volpi, M; Nunes hanninger, G; Rados, P K; Milesi, M; Cuthbert, C J; Black, C W; Fink grael, F; Fincke-keeler, M; Keeler, R; Kowalewski, R V; Berghaus, F O; Qi, M; Davidek, T; Tas, P; Jakubek, J; Duckeck, G; Walker, R; Mitterer, C A; Harenberg, T; Sandvoss, S A; Del peso, J; Llorente merino, J; Gonzalez millan, V; Irles quiles, A; Crouau, M; Gris, P L Y; Liauzu, S; Romano saez, S M; Gallop, B J; Jones, T J; Austin, N C; Morris, J; Duerdoth, I; Thompson, R J; Kelly, M P; Leisos, A; Garas, A; Pizio, C; Venda pinto, B A; Kudin, L; Qian, J; Wilson, A W; Mietlicki, D; Long, J D; Sang, Z; Arms, K E; Rahimi, A M; Moss, J J; Oh, S H; Parker, S I; Parsons, J; Cunitz, H; Vanguri, R S; Sadrozinski, H; Lockman, W S; Martinez-mc kinney, G; Goussiou, A; Jones, A; Lie, K; Hasegawa, Y; Olcese, M; Gilewsky, V; Harrison, P F; Janus, M; Spangenberg, M; De, K; Ozturk, N; Pal, A K; Darmora, S; Bullock, D J; Oviawe, O; Derkaoui, J E; Rahal, G; Sircar, A; Frey, A S; Stolte, P; Rosien, N; Zoch, K; Li, L; Schouten, D W; Catinaccio, A; Ciapetti, M; Delruelle, N; Ellis, N; Farthouat, P; Hoecker, A; Klioutchnikova, T; Macina, D; Malyukov, S; Spiwoks, R D; Unal, G P; Vandoni, G; Petersen, B A; Pommes, K; Nairz, A M; Wengler, T; Mladenov, D; Solans sanchez, C A; Lantzsch, K; Schmieden, K; Jakobsen, S; Ritsch, E; Sciuccati, A; Alves dos santos, A M; Ouyang, Q; Zhou, M; Brock, I C; Janssen, J; Katzy, J; Anders, C F; Nilsson, B S; Bazan, A; Di ciaccio, L; Yildizkaya, T; Collot, J; Malek, F; Trocme, B S; Breugnon, P; Godiot, S; Adam bourdarios, C; Coulon, J; Duflot, L; Petroff, P G; Zerwas, D; Lieuvin, M; Calderini, G; Laporte, D; Ocariz, J; Gabrielli, A; Ohska, T K; Kurochkin, Y; Kantserov, V; Vasilyeva, L; Speransky, M; Smirnov, S; Antonov, A; Bulekov, O; Tikhonov, Y; Sargsyan, L; Vardanyan, G; Budick, B; Kocian, M L; Luitz, S; Young, C C; Grenier, P J; Kelsey, M; Black, J E; Kneringer, E; Jussel, P; Horton, A J; Beaudry, J; Chandra, A; Ereditato, A; Topfel, C M; Mathieu, R; Bucci, F; Muenstermann, D; White, R M; He, M; Urban, J; Straka, M; Vrba, V; Schumacher, M; Parzefall, U; Mahboubi, K; Sommer, P O; Koepke, L H; Bethke, S; Moser, H; Wiesmann, M; Walkowiak, W A; Fleck, I J; Martinez-perez, M; Sanchez sanchez, C A; Jorgensen roca, S; Accion garcia, E; Sainz ruiz, C A; Valls ferrer, J A; Amoros vicente, G; Vives torrescasana, R; Ouraou, A; Formica, A; Hassani, S; Watson, M F; Cottin buracchio, G F; Bussey, P J; Saxon, D; Ferrando, J E; Collins-tooth, C L; Hall, D C; Cuhadar donszelmann, T; Dawson, I; Duxfield, R; Argyropoulos, T; Brodet, E; Livneh, R; Shougaev, K; Reinherz, E I; Guttman, N; Beretta, M M; Vilucchi, E; Aloisio, A; Patricelli, S; Caprio, M; Cevenini, F; De vecchi, C; Livan, M; Rimoldi, A; Vercesi, V; Ayad, R; Mastroberardino, A; Ciapetti, G; Luminari, L; Rescigno, M; Santonico, R; Salamon, A; Del papa, C; Kurashige, H; Homma, Y; Tomoto, M; Horii, Y; Sugaya, Y; Hanagaki, K; Bobbink, G; Kluit, P M; Koffeman, E N; Van eijk, B; Lee, H; Eigen, G; Dorholt, O; Strandlie, A; Strzempek, P B; Dita, S; Stoicea, G; Chitan, A; Leven, S S; Moa, T; Brenner, R; Ekelof, T J C; Olshevskiy, A; Roumiantsev, V; Chlachidze, G; Zimine, N; Gusakov, Y; Grigalashvili, N; Mineev, M; Potrap, I; Barashkou, A; Shoukavy, D; Shaykhatdenov, B; Pikelner, A; Gladilin, L; Ammosov, V; Abramov, A; Arik, M; Sahinsoy, M; Uysal, Z; Azizi, K; Hotinli, S C; Zhou, S; Berger, E; Blair, R; Underwood, D G; Einsweiler, K; Garcia-sciveres, M A; Siegrist, J L; Kipnis, I; Dahl, O; Holland, S; Barbaro galtieri, A; Smith, P T; Parua, N; Franklin, M; Mercurio, K M; Tong, B; Pod, E; Cole, S G; Hopkins, W H; Guest, D H; Severini, H; Marsicano, J J; Abbott, B K; Wang, Q; Lissauer, D; Ma, H; Takai, H; Rajagopalan, S; Protopopescu, S D; Snyder, S S; Undrus, A; Popescu, R N; Begel, M A; Blocker, C A; Amelung, C; Mandic, I; Macek, B; Tucker, B H; Citterio, M; Troncon, C; Orestano, D; Taccini, C; Romeo, G L; Dova, M T; Taylor, G N; Gesualdi manhaes, A; Mcpherson, R A; Sobie, R; Taylor, R P; Dolezal, Z; Kodys, P; Slovak, R; Sopko, B; Vacek, V; Sanders, M P; Hertenberger, R; Meineck, C; Becks, K; Kind, P; Sandhoff, M; Cantero garcia, J; De la torre perez, H; Castillo gimenez, V; Ros, E; Hernandez jimenez, Y; Chadelas, R; Santoni, C; Washbrook, A J; O'brien, B J; Wynne, B M; Mehta, A; Vossebeld, J H; Landon, M; Teixeira dias castanheira, M; Cerrito, L; Keates, J R; Fassouliotis, D; Chardalas, M; Manousos, A; Grachev, V; Seliverstov, D; Sedykh, E; Cakir, O; Ciftci, R; Edson, W; Prell, S A; Rosati, M; Stroman, T; Jiang, H; Neal, H A; Li, X; Gan, K K; Smith, D S; Kruse, M C; Ko, B R; Leung fook cheong, A M; Cole, B; Angerami, A R; Greene, Z S; Kroll, J I; Van berg, R P; Forbush, D A; Lubatti, H; Raisher, J; Shupe, M A; Wolin, S; Oshita, H; Gaudio, G; Das, R; Konig, A C; Croft, V A; Harvey, A; Maaroufi, F; Melo, I; Greenwood jr, Z D; Shabalina, E; Mchedlidze, G; Drechsler, E; Rieger, J K; Blackston, M; Colombo, T

    2002-01-01

    % ATLAS \\\\ \\\\ ATLAS is a general-purpose experiment for recording proton-proton collisions at LHC. The ATLAS collaboration consists of 144 participating institutions (June 1998) with more than 1750~physicists and engineers (700 from non-Member States). The detector design has been optimized to cover the largest possible range of LHC physics: searches for Higgs bosons and alternative schemes for the spontaneous symmetry-breaking mechanism; searches for supersymmetric particles, new gauge bosons, leptoquarks, and quark and lepton compositeness indicating extensions to the Standard Model and new physics beyond it; studies of the origin of CP violation via high-precision measurements of CP-violating B-decays; high-precision measurements of the third quark family such as the top-quark mass and decay properties, rare decays of B-hadrons, spectroscopy of rare B-hadrons, and $ B ^0 _{s} $-mixing. \\\\ \\\\The ATLAS dectector, shown in the Figure includes an inner tracking detector inside a 2~T~solenoid providing an axial...

  8. Progress on DC-DC Converters for a Silicon Tracker for the sLHC Upgrade

    CERN Document Server

    Dhawan, S; Chen, H; Khanna, R; Kierstead, J; Lanni, F; Lynn, D; Musso, C; Rescia, S; Smith, H; Tipton, P; M. Weber, M

    2009-01-01

    There is a need for DC-DC converters which can operate in the extremely harsh environment of the sLHC Si Tracker. The environment requires radiation qualification to a total ionizing radiation dose of 50 Mrad and a displacement damage fluence of 5 x 1014 /cm2 of 1 MeV equivalent neutrons. In addition a static magnetic field of 2 Tesla or greater prevents the use of any magnetic components or materials. In February 2007 an Enpirion EN5360 was qualified for the sLHC radiation dosage but the converter has an input voltage limited to a maximum of 5.5V. From a systems point of view this input voltage was not sufficient for the application. Commercial LDMOS FETs have developed using a 0.25 μm process which provided a 12 volt input and were still radiation hard. These results are reported here and in previous papers. Plug in power cards with ×10 voltage ratio are being developed for testing the hybrids with ABCN chips. These plug-in cards have air coils but use commercial chips that are not designed to be radiatio...

  9. Recent advancements in the development of radiation hard semiconductor detectors for S-LHC

    CERN Document Server

    Fretwurst, E; Al-Ajili, A A; Alfieri, G; Allport, P P; Artuso, M; Assouak, S; Avset, B S; Barabash, L; Barcz, A; Bates, R; Biagi, S F; Bilei, G M; Bisello, D; Blue, A; Blumenau, A; Boisvert, V; Bölla, G; Bondarenko, G B; Borchi, E; Borrello, L; Bortoletto, D; Boscardin, M; Bosisio, L; Bowcock, T J V; Brodbeck, T J; Broz, J; Bruzzi, M; Brzozowski, A; Buda, M; Buhmann, P; Buttar, C; Campabadal, F; Campbell, D; Candelori, A; Casse, G; Cavallini, A; Charron, S; Chilingarov, A G; Chren, D; Cindro, V; Collins, P; Coluccia, R; Contarato, D; Coutinho, J; Creanza, D; Cunningham, L; Dalla Betta, G F; Dawson, I; de Boer, Wim; De Palma, M; Demina, R; Dervan, P; Dittongo, S; Dolezal, Z; Dolgolenko, A; Eberlein, T; Eremin, V; Fall, C; Fasolo, F; Ferbel, T; Fizzotti, F; Fleta, C; Focardi, E; Forton, E; García, C; García-Navarro, J E; Gaubas, E; Genest, M H; Gill, K A; Giolo, K; Glaser, M; Gössling, C; Golovine, V; González-Sevilla, S; Gorelov,I; Goss, J; Gouldwell-Bates, A; Grégoire, G; Gregori, P; Grigoriev, E; Grillo, A A; Groza, A; Guskov, J; Haddad, L; Härkönen, J; Hauler, F; Hoeferkamp, M; Honniger, F; Horazdovsky, T; Horisberger, R P; Horn, M; Houdayer, A; Hourahine, B; Hughes, G; Ilyashenko, Yu S; Irmscher, K; Ivanov, A; Jarasiunas, K; Johansen, K M H; Jones, B K; Jones, R; Joram, C; Jungermann, L; Kalinina, E; Kaminski, P; Karpenko, A; Karpov, A; Kazlauskiene, V; Kazukauskas, V; Khivrich, V; Khomenkov, V P; Kierstead, J A; Klaiber Lodewigs, J M; Klingenberg, R; Kodys, P; Kohout, Z; Korjenevski, S; Koski, M; Kozlowski, R; Kozodaev, M; Kramberger, G; Krasel, O; Kuznetsov, A; Kwan, S; Lagomarsino, S; Lassila-Perini, K M; Lastovetsky, V F; Latino, G; Lazanu, I; Lazanu, S; Lebedev, A; Lebel, C; Leinonen, K; Leroy, C; Li, Z; Lindström, G; Linhart, V; Litovchenko, P G; Litovchenko, A P; Lo Giudice, A; Lozano, M; Luczynski, Z; Luukka, Panja; Macchiolo, A; Makarenko, L F; Mandic, I; Manfredotti, C; Manna, N; Martí i García, S; Marunko, S; Mathieson, K; Melone, J; Menichelli, D; Messineo, A; Metcalfe, J; Miglio, S; Mikuz, M; Miyamoto, J; Moll, M; Monakhov, E; Moscatelli, F; Naoumov, D; Nossarzhevska, E; Nysten, J; Olivero, P; O'Shea, V; Palviainen, T; Paolini, C; Parkes, C; Passeri, D; Pein, U; Pellegrini, G; Perera, L; Petasecca, M; Piemonte, C; Pignatel, G U; Pinho, N; Pintilie, I; Pintilie, L; Polivtsev, L; Polozov, P; Popa, A; Populea, J; Pospísil, S; Pozza, A; Radicci, V; Rafí, J M; Rando, R; Röder, R; Rohe, T; Ronchin, S; Rott, C; Roy, A; Ruzin, A; Sadrozinski, H F W; Sakalauskas, S; Scaringella, M; Schiavulli, L; Schnetzer, S; Schumm, B; Sciortino, S; Scorzoni, A; Segneri, G; Seidela, S; Seiden, A; Sellberg, G; Sellin, P J; Sentenac, D; Shipsey, I; Sícho, P; Sloan, T; Solar, M; Son, S; Sopko, B; Sopko, V; Spencer, N; Stahl, J; Stolze, D; Stone, R; Storasta, J; Strokan, N; Sudzius, M; Surma, B; Suvorov, A; Svensson, B G; Tipton, P; Tomasek, M; Tsvetkov, A; Tuominen, E; Tuovinen, E; Tuuva, T; Tylchin, M; Uebersee, H; Uher, J; Ullán, M; Vaitkus, J V; Velthuis, J; Verbitskaya, E; Vrba, V; Wagner, G; Wilhelm, I; Worm, S; Wright, V; Wunstorf, R; Yiuri, Y; Zabierowski, P; Zaluzhny, A; Zavrtanik, M; Zen, M; Zhukov, V; Zorzi, N

    2005-01-01

    The proposed luminosity upgrade of the Large Hadron Collider (S-LHC) at CERN will demand the innermost layers of the vertex detectors to sustain fluences of about 1016 hadrons/cm2. Due to the high multiplicity of tracks, the required spatial resolution and the extremely harsh radiation field new detector concepts and semiconductor materials have to be explored for a possible solution of this challenge. The CERN RD50 collaboration “Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders” has started in 2002 an R&D program for the development of detector technologies that will fulfill the requirements of the S-LHC. Different strategies are followed by RD50 to improve the radiation tolerance. These include the development of defect engineered silicon like Czochralski, epitaxial and oxygen-enriched silicon and of other semiconductor materials like SiC and GaN as well as extensive studies of the microscopic defects responsible for the degradation of irradiated sensors. Furthe...

  10. Development of pixel readout integrated circuits for extreme rate and radiation

    CERN Document Server

    Garcia-Sciveres, M; CERN. Geneva. The LHC experiments Committee; LHCC

    2013-01-01

    Letter of Intent for RD Collaboration Proposal focused on development of a next generation pixel readout integrated circuits needed for high luminosity LHC detector upgrades. Brings together ATLAS and CMS pixel chip design communities.

  11. Design and implementation of an expert system for the detector control systems of the ATLAS pixel detector; Entwurf und Implementation eines Expertensystems fuer das Detektorkontrollsystem des ATLAS-Pixeldetektors

    Energy Technology Data Exchange (ETDEWEB)

    Henss, Tobias

    2008-12-15

    In the framework of this thesis an expert system ''Pixel-Advisor'' for the control system of the pixel detector was designed and implemented. This supports the operational personnel in the diagnosis and removal of possible problems, which are in connection with the detector control system and unburdens the few available DCS experts.

  12. Pixel detectors

    CERN Document Server

    Passmore, M S

    2001-01-01

    positions on the detector. The loss of secondary electrons follows the profile of the detector and increases with higher energy ions. studies of the spatial resolution predict a value of 5.3 lp/mm. The image noise in photon counting systems is investigated theoretically and experimentally and is shown to be given by Poisson statistics. The rate capability of the LAD1 was measured to be 250 kHz per pixel. Theoretical and experimental studies of the difference in contrast for ideal charge integrating and photon counting imaging systems were carried out. It is shown that the contrast differs and that for the conventional definition (contrast = (background - signal)/background) the photon counting device will, in some cases, always give a better contrast than the integrating system. Simulations in MEDICI are combined with analytical calculations to investigate charge collection efficiencies (CCE) in semiconductor detectors. Different pixel sizes and biasing conditions are considered. The results show charge shari...

  13. Status report on a MicroTCA card for HCAL trigger and readout at SLHC

    Energy Technology Data Exchange (ETDEWEB)

    Mans, J; Frahm, E, E-mail: frahm@physics.umn.edu [University of Minnesota, Minneapolis, MN 55455 (United States)

    2010-12-15

    We present recent measurements performed using a prototype MicroTCA card for CMS-HCAL Trigger and Readout at SLHC. Our second generation prototype uses a Xilinx XC5VFX70T FPGA to perform the high-speed communication and data processing for up to eight Readout Module fibers that are streaming data at 4.8 Gbps each. The FPGA also uses two SFP+ optical interfaces at 6.4 Gbps each for data transfer to the Trigger System. A local DAQ interface in the FPGA communicates via Gigabit Ethernet with the MicroTCA MCH. Bit Error Rate Test (BERT) results and data integrity analyses are presented in challenging clocking environments including a legacy TTC system. In addition, the status of the IPbus concept for control of deeply embedded devices is presented.

  14. Status report on a MicroTCA card for HCAL trigger and readout at SLHC

    CERN Document Server

    Mans, J; 10.1088/1748-0221/5/12/C12027

    2010-01-01

    We present recent measurements performed using a prototype MicroTCA card for CMS-HCAL Trigger and Readout at SLHC. Our second generation prototype uses a Xilinx XC5VFX70T FPGA to perform the high-speed communication and data processing for up to eight Readout Module fibers that are streaming data at 4.8 Gbps each. The FPGA also uses two SFP+ optical interfaces at 6.4 Gbps each for data transfer to the Trigger System. A local DAQ interface in the FPGA communicates via Gigabit Ethernet with the MicroTCA MCH. Bit Error Rate Test (BERT) results and data integrity analyses are presented in challenging clocking environments including a legacy TTC system. In addition, the status of the IPbus concept for control of deeply embedded devices is presented

  15. Pixel Experiments

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Augustesen, Christina

    2015-01-01

    for using LED lighting in lighting design practice. The speculative experiments that have been set-up have aimed to clarify the variables that can be used as parameters in the design of lighting applications; including, for example, the structuring and software control of light. The experiments also...... design it became relevant to investigate the use of LEDs as the physical equivalent of a pixel as a design approach. In this book our interest has been in identifying how the qualities of LEDs can be used in lighting applications. With experiences in the planning and implementation of architectural...... lighting design in practice, one quickly experiences and realises that there are untapped potentials in the attributes of LED technology. In this research, speculative studies have been made working with the attributes of LEDs in architectural contexts, with the ambition to ascertain new strategies...

  16. Two ATLAS suppliers honoured

    CERN Multimedia

    2007-01-01

    The ATLAS experiment has recognised the outstanding contribution of two firms to the pixel detector. Recipients of the supplier award with Peter Jenni, ATLAS spokesperson, and Maximilian Metzger, CERN Secretary-General.At a ceremony held at CERN on 28 November, the ATLAS collaboration presented awards to two of its suppliers that had produced sensor wafers for the pixel detector. The CiS Institut für Mikrosensorik of Erfurt in Germany has supplied 655 sensor wafers containing a total of 1652 sensor tiles and the firm ON Semiconductor has supplied 515 sensor wafers (1177 sensor tiles) from its foundry at Roznov in the Czech Republic. Both firms have successfully met the very demanding requirements. ATLAS’s huge pixel detector is very complicated, requiring expertise in highly specialised integrated microelectronics and precision mechanics. Pixel detector project leader Kevin Einsweiler admits that when the project was first propo...

  17. Diamond pixel modules

    CERN Document Server

    Gan, K K; Robichaud, A; Potenza, R; Kuleshov, S; Kagan, H; Kass, R; Wermes, N; Dulinski, W; Eremin, V; Smith, S; Sopko, B; Olivero, P; Gorisek, A; Chren, D; Kramberger, G; Schnetzer, S; Weilhammer, P; Martemyanov, A; Hugging, F; Pernegger, H; Lagomarsino, S; Manfredotti, C; Mishina, M; Trischuk, W; Dobos, D; Cindro, V; Belyaev, V; Duris, J; Claus, G; Wallny, R; Furgeri, A; Tuve, C; Goldstein, J; Sciortino, S; Sutera, C; Asner, D; Mikuz, M; Lo Giudice, A; Velthuis, J; Hits, D; Griesmayer, E; Oakham, G; Frais-Kolbl, H; Bellini, V; D'Alessandro, R; Cristinziani, M; Barbero, M; Schaffner, D; Costa, S; Goffe, M; La Rosa, A; Bruzzi, M; Schreiner, T; de Boer, W; Parrini, G; Roe, S; Randrianarivony, K; Dolenc, I; Moss, J; Brom, J M; Golubev, A; Mathes, M; Eusebi, R; Grigoriev, E; Tsung, J W; Mueller, S; Mandic, I; Stone, R; Menichelli, D

    2011-01-01

    With the commissioning of the LHC in 2010 and upgrades expected in 2015, ATLAS and CMS are planning to upgrade their innermost tracking layers with radiation hard technologies. Chemical Vapor Deposition diamond has been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle, CDF and all LHC experiments. This material is now being considered as a sensor material for use very close to the interaction region where the most extreme radiation conditions exist Recently the RD42 collaboration constructed, irradiated and tested polycrystalline and single-crystal chemical vapor deposition diamond sensors to the highest fluences expected at the super-LHC. We present beam test results of chemical vapor deposition diamond up to fluences of 1.8 x 10(16) protons/cm(2) illustrating that both polycrystalline and single-crystal chemical vapor deposition diamonds follow a single damage curve. We also present beam test results of irradiated complete diamond pixel m...

  18. System Tests with DC-DC Converters for the CMS Silicon Strip Tracker at SLHC

    CERN Document Server

    Klein, K; Karpinski, W; Merz, J; Sammet, J

    2008-01-01

    The delivery of power is considered to be one of the major challenges for the upgrade of the CMS silicon strip tracker for SLHC. The inevitable increase in granularity and complexity of the device is expected to result in a power consumption comparable or even higher than the power consumption of todays' strip tracker. However, the space available for cables will remain the same. In addition, a further increase of the tracker material budget due to cables and cooling is considered inacceptable, as the performance of the CMS detector must not be compromised for the upgrade. Novel powering schemes such as serial powering or usage of DC-DC converters have been proposed to solve the problem. To test the second option, substructures of the current CMS silicon strip tracker have been operated for the first time with off-the-shelf DC-DC buck converters as well as with first prototypes of custom-designed DC-DC converters. The tests are described and the results are discussed.

  19. Powering via Cooling Pipes: an Optimized Design for an SLHC Silicon Tracker

    CERN Document Server

    de Boer, Wim

    2008-01-01

    Silicon trackers at the SLHC will suffer high radiation damage from particles produced during the collisions, which leads to high leakage currents. Reducing these currents in the sensors requires efficient cooling to -30 C. The large heat of evaporation of CO2 and the low viscosity allows for a two-phase cooling system with thin and long cooling pipes, because the small flow of liquid needed leads to negligible temperature drops. In order to reduce the material budget a system is proposed in which a large scale tracker requiring ca. 50 kW of power is powered via 1-2 mm diameter aluminum cooling pipes with a length of several m. These long cooling pipes allow to have all service connections outside the tracking volume, thus reducing the material budget significantly. The whole system is designed to have negligible thermal stresses. A CO2 blow system has been designed and first tests show the feasibility of a barrel detector with long ladders and disks at small radii leading to an optimized design with respect ...

  20. The FE-I4 pixel readout integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sciveres, M., E-mail: mgarcia-sciveres@bl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Arutinov, D.; Barbero, M. [University of Bonn, Bonn (Germany); Beccherle, R. [Istituto Nazionale di Fisica Nucleare Sezione di Genova, Genova (Italy); Dube, S.; Elledge, D. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Fleury, J. [Laboratoire de l' Accelerateur Lineaire, Orsay (France); Fougeron, D.; Gensolen, F. [Centre de Physique des Particules de Marseille, Marseille (France); Gnani, D. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Gromov, V. [Nationaal Instituut voor Subatomaire Fysica, Amsterdam (Netherlands); Hemperek, T.; Karagounis, M. [University of Bonn, Bonn (Germany); Kluit, R. [Nationaal Instituut voor Subatomaire Fysica, Amsterdam (Netherlands); Kruth, A. [University of Bonn, Bonn (Germany); Mekkaoui, A. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Menouni, M. [Centre de Physique des Particules de Marseille, Marseille (France); Schipper, J.-D. [Nationaal Instituut voor Subatomaire Fysica, Amsterdam (Netherlands)

    2011-04-21

    A new pixel readout integrated circuit denominated FE-I4 is being designed to meet the requirements of ATLAS experiment upgrades. It will be the largest readout IC produced to date for particle physics applications, filling the maximum allowed reticle area. This will significantly reduce the cost of future hybrid pixel detectors. In addition, FE-I4 will have smaller pixels and higher rate capability than the present generation of LHC pixel detectors. Design features are described along with simulation and test results, including low power and high rate readout architecture, mixed signal design strategy, and yield hardening.

  1. Electrical Characteristics of Silicon Pixel Sensors

    CERN Document Server

    Gorelov, I; Hoeferkamp, M; Mata-Bruni, V; Santistevan, G; Seidel, S C; Ciocio, A; Einsweiler, K F; Emes, J; Gilchriese, M G D; Joshi, A; Kleinfelder, S A; Marchesini, R; McCormack, F; Milgrome, O; Palaio, N; Pengg, F; Richardson, J; Zizka, G; Ackers, M; Comes, G; Fischer, P; Keil, M; Klasen, V; Kühl, T; Meuser, S; Ockenfels, W; Raith, B; Treis, J; Wermes, N; Gössling, C; Hügging, F G; Klaiber Lodewigs, Jonas M; Krasel, O; Wüstenfeld, J; Wunstorf, R; Barberis, D; Beccherle, R; Caso, Carlo; Cervetto, M; Darbo, G; Gagliardi, G; Gemme, C; Morettini, P; Netchaeva, P; Osculati, B; Rossi, L; Charles, E; Fasching, D; Blanquart, L; Breugnon, P; Calvet, D; Clemens, J-C; Delpierre, P A; Hallewell, G D; Laugier, D; Mouthuy, T; Rozanov, A; Valin, I; Andreazza, A; Caccia, M; Citterio, M; Lari, T; Meroni, C; Ragusa, F; Troncon, C; Vegni, G; Lutz, Gerhard; Richter, R H; Rohe, T; Boyd, GR; Skubic, P L; Sícho, P; Tomasek, L; Vrba, V; Holder, M; Ziolkowski, M; Cauz, D; Cobal-Grassmann, M; D'Auria, S; De Lotto, B; del Papa, C; Grassmann, H; Santi, L; Becks, K H; Lenzen, G; Linder, C

    2001-01-01

    Prototype sensors for the ATLAS silicon pixel detector have been electrically characterized. The current and voltage characteristics, charge collection efficiencies, and resolutions have been examined. Devices were fabricated on oxygenated and standard detector-grade silicon wafers. Results from prototypes which examine p-stop and standard and moderated p-spray isolation are presented for a variety of geometrical options. Some of the comparisons relate unirradiated sensors with those that have received fluences relevant to LHC operation.

  2. Electrical characteristics of silicon pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gorelov, I.; Gorfine, G.; Hoeferkamp, M.; Mata-Bruni, V.; Santistevan, G.; Seidel, S.C. E-mail: seidel@dot.phys.unm.edu; Ciocio, A.; Einsweiler, K.; Emes, J.; Gilchriese, M.; Joshi, A.; Kleinfelder, S.; Marchesini, R.; McCormack, F.; Milgrome, O.; Palaio, N.; Pengg, F.; Richardson, J.; Zizka, G.; Ackers, M.; Comes, G.; Fischer, P.; Keil, M.; Martinez, G.; Peric, I.; Runolfsson, O.; Stockmanns, T.; Treis, J.; Wermes, N.; Goessling, C.; Huegging, F.; Klaiber-Lodewigs, J.; Krasel, O.; Wuestenfeld, J.; Wunstorf, R.; Barberis, D.; Beccherle, R.; Caso, C.; Cervetto, M.; Darbo, G.; Gagliardi, G.; Gemme, C.; Morettini, P.; Netchaeva, P.; Osculati, B.; Rossi, L.; Charles, E.; Fasching, D.; Blanquart, L.; Breugnon, P.; Calvet, D.; Clemens, J.-C.; Delpierre, P.; Hallewell, G.; Laugier, D.; Mouthuy, T.; Rozanov, A.; Valin, I.; Andreazza, A.; Caccia, M.; Citterio, M.; Lari, T.; Meroni, C.; Ragusa, F.; Troncon, C.; Vegni, G.; Lutz, G.; Richter, R.H.; Rohe, T.; Boyd, G.R.; Skubic, P.L.; Sicho, P.; Tomasek, L.; Vrba, V.; Holder, M.; Ziolkowski, M.; Cauz, D.; Cobal-Grassmann, M.; D' Auria, S.; De Lotto, B.; Del Papa, C.; Grassmann, H.; Santi, L.; Becks, K.H.; Lenzen, G.; Linder, C

    2002-08-21

    Prototype sensors for the ATLAS silicon pixel detector have been electrically characterized. The current and voltage characteristics, charge-collection efficiencies, and resolutions have been examined. Devices were fabricated on oxygenated and standard detector-grade silicon wafers. Results from prototypes which examine p-stop and standard and moderated p-spray isolation are presented for a variety of geometrical options. Some of the comparisons relate unirradiated sensors with those that have received fluences relevant to LHC operation.

  3. Diamond Pixel Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D' Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Gobbi, B.; Grim, G.P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; Lynne, L.M.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L. E-mail: perera@physics.rutgers.edu; Pirollo, S.; Plano, R.; Procario, M.; Riester, J.L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M

    2001-06-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles.

  4. Diamond pixel detectors

    CERN Document Server

    Adam, W; Bergonzo, P; Bertuccio, G; Bognai, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Deneuville, A; Doroshenko, J; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foster, J; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Gobbi, B; Grim, G P; Hallewell, G D; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Kass, R; Koeth, T W; Krammer, Manfred; Lander, R; Lo Giudice, A; Lü, R; MacLynne, L; Manfredotti, C; Meier, D; Mishina, M; Moroni, L; Oh, A; Pan, L S; Pernicka, Manfred; Perera, L P; Pirollo, S; Plano, R; Procario, M; Riester, J L; Roe, S; Rott, C; Rousseau, L; Rudge, A; Russ, J; Sala, S; Sampietro, M; Schnetzer, S; Sciortino, S; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R; Trischuk, W; Tromson, D; Vittone, E; Wedenig, R; Weilhammer, Peter; White, C; Zeuner, W; Zöller, M

    2001-01-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles. (3 refs).

  5. Diamond Pixel Detectors

    International Nuclear Information System (INIS)

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles

  6. Serial powering of pixel modules

    CERN Document Server

    Stockmanns, Tobias; Hügging, Fabian Georg; Peric, I; Runólfsson, O; Wermes, Norbert

    2003-01-01

    Modern pixel detectors for the next generation of high-energy collider experiments like LHC use readout electronics in deep sub- micron technology. Chips in this technology need a low supply voltage of 2-2.5 V alongside high current consumption to achieve the desired performance. The high supply current leads to significant voltage drops in the long and low mass supply cables so that voltage fluctuations at the chips are induced, when the supply current changes. This problem scales with the number of modules when connected in parallel to the power supplies. An alternative powering scheme connects several modules in series resulting in a higher supply voltage but a lower current consumption of the chain and therefore a much lower voltage drop in the cables. In addition the amount of cables needed to supply the detector is vastly reduced. The concept and features of serial powering are presented and studies of the implementation of this technology as an alternative for the ATLAS pixel detector are shown. In par...

  7. SOI monolithic pixel detector

    Science.gov (United States)

    Miyoshi, T.; Ahmed, M. I.; Arai, Y.; Fujita, Y.; Ikemoto, Y.; Takeda, A.; Tauchi, K.

    2014-05-01

    We are developing monolithic pixel detector using fully-depleted (FD) silicon-on-insulator (SOI) pixel process technology. The SOI substrate is high resistivity silicon with p-n junctions and another layer is a low resistivity silicon for SOI-CMOS circuitry. Tungsten vias are used for the connection between two silicons. Since flip-chip bump bonding process is not used, high sensor gain in a small pixel area can be obtained. In 2010 and 2011, high-resolution integration-type SOI pixel sensors, DIPIX and INTPIX5, have been developed. The characterizations by evaluating pixel-to-pixel crosstalk, quantum efficiency (QE), dark noise, and energy resolution were done. A phase-contrast imaging was demonstrated using the INTPIX5 pixel sensor for an X-ray application. The current issues and future prospect are also discussed.

  8. EnviroAtlas Estimated Intersection Density of Walkable Roads Web Service

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in each EnviroAtlas community....

  9. The Pixels system: last but not late!

    CERN Multimedia

    Kevin Einsweiler

    The Pixel Detector for ATLAS is one of the smallest, but most challenging components of the experiment. It lives in the dangerous territory directly outside the beampipe, where the radiation environment is particularly fierce, and it must be roughly one million times more radiation-hard than its human designers. Starting at a radius of just 5cm from the interaction point where the proton beams collide, it occupies a volume of slightly more than one meter in length and a half meter in diameter. In this compact region, there are eighty million channels of electronics (most of the electronics channels in ATLAS!), each capable of measuring the charge deposited by a track in a silicon pixel measuring only 50 microns by 400 microns in size (a volume of 0.005 cubic millimeters). A total cooling capacity of 15 KWatts is available to keep it operating comfortably at -5C. This detector is built around, and provides the support for, the central beampipe of ATLAS. It is supported on carbon fiber rails inside of the Pix...

  10. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    Verlaat, Bartholomeus; The ATLAS collaboration

    2016-01-01

    The Atlas Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity. This paper describes the design, development, construction and commissioning of the IBL CO2 cooling system. It describes the challenges overcome and the important lessons learned for the development of future systems which are now under design for the Phase-II upgrade detectors.

  11. Readout of TPC Tracking Chambers with GEMs and Pixel Chip

    Energy Technology Data Exchange (ETDEWEB)

    Kadyk, John; Kim, T.; Freytsis, M.; Button-Shafer, J.; Kadyk, J.; Vahsen, S.E.; Wenzel, W.A.

    2007-12-21

    Two layers of GEMs and the ATLAS Pixel Chip, FEI3, have been combined and tested as a prototype for Time Projection Chamber (TPC) readout at the International Linear Collider (ILC). The double-layer GEM system amplifies charge with gain sufficient to detect all track ionization. The suitability of three gas mixtures for this application was investigated, and gain measurements are presented. A large sample of cosmic ray tracks was reconstructed in 3D by using the simultaneous timing and 2D spatial information from the pixel chip. The chip provides pixel charge measurement as well as timing. These results demonstrate that a double GEM and pixel combination, with a suitably modified pixel ASIC, could meet the stringent readout requirements of the ILC.

  12. CMS pixel detector Overview

    CERN Document Server

    Cremaldi, L M

    2003-01-01

    An overview of the compact muon solenoid pixel detector effort is presented. Pixel detectors are being built for use at the large hadron collider beginning in the year 2007. It is reported that a good progress is made in 2002 on the critical issues of readout chip and token bit manager design, bump bonding and sensor testing. (Edited abstract) 8 Refs.

  13. The FE-I4 Pixel Readout Chip and the IBL Module

    Energy Technology Data Exchange (ETDEWEB)

    Barbero, Marlon; Arutinov, David; Backhaus, Malte; Fang, Xiao-Chao; Gonella, Laura; Hemperek, Tomasz; Karagounis, Michael; Hans, Kruger; Kruth, Andre; Wermes, Norbert; /Bonn U.; Breugnon, Patrick; Fougeron, Denis; Gensolen, Fabrice; Menouni, Mohsine; Rozanov, Alexander; /Marseille, CPPM; Beccherle, Roberto; Darbo, Giovanni; /INFN, Genoa; Caminada, Lea; Dube, Sourabh; Fleury, Julien; Gnani, Dario; /LBL, Berkeley /NIKHEF, Amsterdam /Gottingen U. /SLAC

    2012-05-01

    FE-I4 is the new ATLAS pixel readout chip for the upgraded ATLAS pixel detector. Designed in a CMOS 130 nm feature size process, the IC is able to withstand higher radiation levels compared to the present generation of ATLAS pixel Front-End FE-I3, and can also cope with higher hit rate. It is thus suitable for intermediate radii pixel detector layers in the High Luminosity LHC environment, but also for the inserted layer at 3.3 cm known as the 'Insertable B-Layer' project (IBL), at a shorter timescale. In this paper, an introduction to the FE-I4 will be given, focusing on test results from the first full size FE-I4A prototype which has been available since fall 2010. The IBL project will be introduced, with particular emphasis on the FE-I4-based module concept.

  14. Planar pixel sensors in commercial CMOS technologies

    Energy Technology Data Exchange (ETDEWEB)

    Gonella, Laura; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Physikalisches Institut der Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany); Macchiolo, Anna [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany)

    2015-07-01

    For the upgrade of the ATLAS experiment at the high luminosity LHC, an all-silicon tracker is foreseen to cope with the increased rate and radiation levels. Pixel and strip detectors will have to cover an area of up to 200m2. To produce modules in high number at reduced costs, new sensor and bonding technologies have to be investigated. Commercial CMOS technologies on high resistive substrates can provide significant advantages in this direction. They offer cost effective, large volume sensor production. In addition to this, production is done on 8'' wafers allowing wafer-to-wafer bonding to the electronics, an interconnection technology substantially cheaper than the bump bonding process used for hybrid pixel detectors at the LHC. Both active and passive n-in-p pixel sensor prototypes have been submitted in a 150 nm CMOS technology on a 2kΩ cm substrate. The passive sensor design will be used to characterize sensor properties and to investigate wafer-to-wafer bonding technologies. This first prototype is made of a matrix of 36 x 16 pixels of size compatible with the FE-I4 readout chip (i.e. 50 μm x 250 μm). Results from lab characterization of this first submission are shown together with TCAD simulations. Work towards a full size FE-I4 sensor for wafer-to-wafer bonding is discussed.

  15. Track parameter resolution study of a pixel only detector for LHC geometry and future high rate experiments

    Energy Technology Data Exchange (ETDEWEB)

    Blago, Michele Piero; Schoening, Andre [Physikalisches Institut, Heidelberg Univ. (Germany)

    2015-07-01

    Recent progress in pixel detector technology in general and in the HV-MAPS technology in particular make it feasible to construct an all-silicon pixel detector for large scale particle experiments like ATLAS or CMS. Previous studies have indicated that six to nine layers of pixel sensors, in comparison to the 14 detector layers planned for Inner Tracker ATLAS upgrade, are sufficient to reliably reconstruct particle trajectories. The performance of an all-pixel detector and the minimum number of required pixel layers is studied based on a full GEANT simulation for high luminosity conditions at the upgraded LHC. Furthermore, the ability of an all-pixel detector to form trigger decisions using a special triplet pixel layer design is studied. Such a design could be used to reconstruct all tracks originating from the proton-proton interaction at the first hardware level at 40 MHz collision frequency.

  16. The pixelated detector

    CERN Multimedia

    Sutton, C

    1990-01-01

    "Collecting data as patterns of light or subatomic particles is vitally important in all the sciences. The new generation of solid-state detectors called pixel devices could transform experimental research at all levels" (4 pages).

  17. ATLAS Fact Sheet : To raise awareness of the ATLAS detector and collaboration on the LHC

    CERN Multimedia

    ATLAS Outreach

    2010-01-01

    Facts on the Detector, Calorimeters, Muon System, Inner Detector, Pixel Detector, Semiconductor Tracker, Transition Radiation Tracker,, Surface hall, Cavern, Detector, Magnet system, Solenoid, Toroid, Event rates, Physics processes, Supersymmetric particles, Comparing LHC with Cosmic rays, Heavy ion collisions, Trigger and Data Acquisition TDAQ, Computing, the LHC and the ATLAS collaboration. This fact sheet also contains images of ATLAS and the collaboration as well as a short list of videos on ATLAS available for viewing.

  18. TCT and TFM measurements for ATLAS ITK

    CERN Document Server

    Dungs, Sascha

    2016-01-01

    The ATLAS ITK Pixel detector for the Phase-II upgrade of LHC is in a prototyping phase. The CERN ATLAS Pixel group is involved in different activities. One activity is the characterization of pixel sensors with an infrared Laser using a transient current technique (TCT) to measure the depletion depth and charge collection properties and compare it to effective field theory simulations. Another activity is the measurement of the Thermal Figure of Merit (TFM) of different stave prototypes using silicon heaters and an evaporative CO2 cooling system. This document describes the contributions to each of the two activities.

  19. RD Collaboration Proposal: Development of pixel readout integrated circuits for extreme rate and radiation

    CERN Document Server

    Chistiansen, J (CERN)

    2013-01-01

    This proposal describes a new RD collaboration to develop the next genrration of hybrid pixel readout chips for use in ATLAS and CMS PHase 2 upgrades. extrapolation of hybrid pixel technology to the HL-LHC presents major challenges on several fronts. Challenges include: smaller pixels to resolve tracks in boosted jets, much higher hit rates (1-2 GHz/cm2 ), unprecedented radiation tolerance (10 MGy), much higher output bandwidth, and large IC format with low power consumption in order to instrument large areas while keeping the material budget low. This collaboration is specifically focused on design of hybrid pixel readout chips, and not on more general chip design or on other aspects of hybrid pixel technology. Participants include 7 institutes on ATLAS and 7 on CMS, plus 2 on both experiments.

  20. System Test Measurements with a DC-DC Conversion Powering Scheme for the CMS Tracker at SLHC

    CERN Document Server

    Sammet, Jan; Feld, Lutz

    2009-01-01

    A potential luminosity upgrade of the LHC, the so-called SLHC implies challenging upgrades for the experiments at the LHC. Concerning the upgrade of the CMS silicon strip tracker, the delivery of power isconsidered to be one of the major challenges. The higher instantaneous luminosity makes an increase ingranularity and complexity of the device inevitable. Both are expected to result in a power consumptioncomparable or even higher than the power consumption of today’s strip tracker. However, the space availablefor cables will remain the same. In addition, a further increase of the tracker material budget due to cablesand cooling is considered unacceptable, as the performance of the CMS detector must not be compromisedfor the upgrade. Novel powering schemes such as serial powering or the usage of DC-DC converters havebeen proposed to solve the problem. To test the second option, substructures of the current CMS siliconstrip tracker have been operated for the first time with off-the-shelf DC-DC buck convert...

  1. A 3D photograph with 92 million pixels for tagging particles

    CERN Multimedia

    Antonella Del Rosso

    2013-01-01

    Where was a given particle born? How can we tag it precisely enough to be able to then follow it along its track and through its decays? This is the job of the pixel detector installed at the heart of the ATLAS detector, only centimeters away from the LHC collisions. In order to improve its identification and tagging capabilities, the ATLAS collaboration has recently taken a big step towards the completion of the upgrade of its Pixel detector, which will include the insertion of a brand-new layer of 12 million pixels.   The 7 metre long beryllium beam pipe inserted in the carbon-fibre positioning tool is being prepared ready for the new innermost layer of the Pixel detector to be mounted. Photo: ATLAS Collaboration. With its three layers and 80 million channels concentrated in 2.2 square metres, the ATLAS pixel detector was already the world’s largest pixel-based system used in particle physics. Its excellent performance was instrumental in the discovery of the Higgs boson in July ...

  2. 3D silicon pixel sensors: Recent test beam results

    CERN Document Server

    Hansson, P; Sandaker, H; Korolkov, I; Barrera, C; Wermes, N; Borri, M; Grinstein, S; Troyano, I; Grenier, P; Devetak, E; Fleta, C; Kenney, C; Tsybychev, D; Nellist, C; Chmeissan, M; Su, D; DeWilde, B; Silverstein, D; Dorholt, O; Tsung, J; Sjoebaek, K; Stupak, J; Slaviec, T; Micelli, A; Helle, K; Bolle, E; Huegging, F; Kocian, M; Fazio, S; Balbuena, J; Dalla Betta, G F; La Rosa, A; Rivero, F; Mastroberardino, A; Hasi, J; Darbo, G; Boscardin, M; Da Via, C; Nordahl, P; Giordani, M; Jackson, P; Rohne, O; Gemme, C; Young, C

    2011-01-01

    The 3D silicon sensors aimed for the ATLAS pixel detector upgrade have been tested with a high energy pion beam at the CERN SPS in 2009. Two types of sensor layouts were tested: full-3D assemblies fabricated in Stanford, where the electrodes penetrate the entire silicon wafer thickness, and modified-3D assemblies fabricated at FBK-irst with partially overlapping electrodes. In both cases three read-out electrodes are ganged together to form pixels of dimension 50 x 400 mu m(2). Data on the pulse height distribution, tracking efficiency and resolution were collected for various particle incident angles, with and without a 1.6 T magnetic field. Data from a planar sensor of the type presently used in the ATLAS detector were used at the same time to give comparison. Published by Elsevier B.V.

  3. Diamond and silicon pixel detectors in high radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Tsung, Jieh-Wen

    2012-10-15

    Diamond pixel detector is a promising candidate for tracking of collider experiments because of the good radiation tolerance of diamond. The diamond pixel detector must withstand the radiation damage from 10{sup 16} particles per cm{sup 2}, which is the expected total fluence in High Luminosity Large Hadron Collider. The performance of diamond and silicon pixel detectors are evaluated in this research in terms of the signal-to-noise ratio (SNR). Single-crystal diamond pixel detectors with the most recent readout chip ATLAS FE-I4 are produced and characterized. Based on the results of the measurement, the SNR of diamond pixel detector is evaluated as a function of radiation fluence, and compared to that of planar-silicon ones. The deterioration of signal due to radiation damage is formulated using the mean free path of charge carriers in the sensor. The noise from the pixel readout circuit is simulated and calculated with leakage current and input capacitance to the amplifier as important parameters. The measured SNR shows good agreement with the calculated and simulated results, proving that the performance of diamond pixel detectors can exceed the silicon ones if the particle fluence is more than 10{sup 15} particles per cm{sup 2}.

  4. Lapis SOI Pixel Process

    CERN Document Server

    Okihara, Masao; Miura, Noriyuki; Kuriyama, Naoya; Nagatomo, Yoshiki

    2015-01-01

    0.2 um fully-depleted SOI technology has been developed a for X-ray pixel detectors. To improve the detector performance, some advanced process technologies are developing continuously. To utilize the high resistivity FZ-SOI, slow ramp up and ramp down recipes are applied for the thermal processes in both of SOI wafer fabrication and pixel detector process. The suitable backside treatment is also applied to prevent increase of leakage current at backside damaged layer in the case of full depletion of substrate. Large detector chip about 66mm width and 30mm height can be obtained by stitching exposure technique for large detector chip. To improve cross-talk and radiation tolerance, the nested well structure and double- SOI wafer are now under investigation for advanced pixel structure.

  5. Lapis SOI Pixel Process

    OpenAIRE

    Okihara, Masao; Kasai, Hiroki; Miura, Noriyuki; Kuriyama, Naoya; Nagatomo, Yoshiki

    2015-01-01

    0.2 um fully-depleted SOI technology has been developed a for X-ray pixel detectors. To improve the detector performance, some advanced process technologies are developing continuously. To utilize the high resistivity FZ-SOI, slow ramp up and ramp down recipes are applied for the thermal processes in both of SOI wafer fabrication and pixel detector process. The suitable backside treatment is also applied to prevent increase of leakage current at backside damaged layer in the case of full depl...

  6. Ideas on DC-DC Converters for Delivery of Low Voltage and High Currents for the SLHC / ILC Detector Electronics in Magnetic field and Radiation environments

    CERN Document Server

    Dhawan, Satish; Neal, H; Sumner, R; Weber, M; Weber, R

    2007-01-01

    For more efficient power transport to the electronics embedded inside large colliding beam detectors, we explore the feasibility of supplying 48 Volts DC and using local DCDC conversion to 2 V (or lower, depending upon on the lithography of the embedded electronics) using switch mode regulators located very close to the front end electronics. These devices will be exposed to high radiation and high magnetic fields, 10 – 100 Mrads and 2 - 4 Tesla at the SLHC, and 20 Krads and 6 Tesla at the ILC.

  7. Multi-scale feature learning on pixels and super-pixels for seminal vesicles MRI segmentation

    Science.gov (United States)

    Gao, Qinquan; Asthana, Akshay; Tong, Tong; Rueckert, Daniel; Edwards, Philip "Eddie"

    2014-03-01

    We propose a learning-based approach to segment the seminal vesicles (SV) via random forest classifiers. The proposed discriminative approach relies on the decision forest using high-dimensional multi-scale context-aware spatial, textual and descriptor-based features at both pixel and super-pixel level. After affine transformation to a template space, the relevant high-dimensional multi-scale features are extracted and random forest classifiers are learned based on the masked region of the seminal vesicles from the most similar atlases. Using these classifiers, an intermediate probabilistic segmentation is obtained for the test images. Then, a graph-cut based refinement is applied to this intermediate probabilistic representation of each voxel to get the final segmentation. We apply this approach to segment the seminal vesicles from 30 MRI T2 training images of the prostate, which presents a particularly challenging segmentation task. The results show that the multi-scale approach and the augmentation of the pixel based features with the super-pixel based features enhances the discriminative power of the learnt classifier which leads to a better quality segmentation in some very difficult cases. The results are compared to the radiologist labeled ground truth using leave-one-out cross-validation. Overall, the Dice metric of 0:7249 and Hausdorff surface distance of 7:0803 mm are achieved for this difficult task.

  8. ALICE Silicon Pixel Detector

    CERN Multimedia

    Manzari, V

    2013-01-01

    The Silicon Pixel Detector (SPD) forms the innermost two layers of the 6-layer barrel Inner Tracking System (ITS). The SPD plays a key role in the determination of the position of the primary collision and in the reconstruction of the secondary vertices from particle decays.

  9. Pixel detector insertion

    CERN Multimedia

    CMS

    2015-01-01

    Insertion of the Pixel Tracker, the 66-million-channel device used to pinpoint the vertex of each colliding proton pair, located at the heart of the detector. The geometry of CMS is a cylinder lying on its side (22 meters long and 15 meters high in dia

  10. Pixel detector readout chip

    CERN Multimedia

    1991-01-01

    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  11. EnviroAtlas - Dasymetric Population for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset intelligently reallocates 2010 population from census blocks to 30 meter pixels based on land cover and slope. This dataset was produced by...

  12. The ATLAS Diamond Beam Monitor

    CERN Document Server

    Schaefer, Douglas; The ATLAS collaboration

    2015-01-01

    After the first three years of the LHC running the ATLAS experiment extracted it's pixel detector system to refurbish and re-position the optical readout drivers and install a new barrel layer of pixels. The experiment has also taken advantage of this access to also install a set of beam monitoring telescopes with pixel sensors, four each in the forward and backward regions. These telescopes were assembled based on chemical vapour deposited (CVD) diamond sensors to survive in this high radiation environment without needing extensive cooling. This talk will describe the lessons learned in construction and commissioning of the ATLAS x Diamond Beam Monitor (DBM). We will show results from the construction quality assurance tests, commissioning performance, including results from cosmic ray running in early 2015 and also expected first results from LHC run 2 collisions.

  13. Digital Power Consumption Estimations for CHIPIX65 Pixel Readout Chip

    CERN Document Server

    Marcotulli, Andrea

    2016-01-01

    New hybrid pixel detectors with improved resolution capable of dealing with hit rates up to 3 GHz/cm2 will be required for future High Energy Physics experiments in the Large Hadron Collider (LHC) at CERN. Given this, the RD53 collaboration works on the design of the next generation pixel readout chip needed for both the ATLAS and CMS detector phase 2 pixel upgrades. For the RD53 demonstrator chip in 65nm CMOS technology, different architectures are considered. In particular the purpose of this work is estimating the power consumption of the digital architecture of the readout ASIC developed by CHIPIX65 project of the INFN National Scientific Committee. This has been done with modern chip design tools integrated with the VEPIX53 simulation framework that has been developed within the RD53 collaboration in order to assess the performance of the system in very high rate, high energy physics experiments.

  14. 3D electronics for hybrid pixel detectors – TWEPP-09

    CERN Document Server

    Godiot, S; Chantepie, B; Clémens, J C; Fei, R; Fleury, J; Fougeron, D; Garcia-Sciveres, M; Hemperek, T; Karagounis, M; Krueger, H; Mekkaoui, A; Pangaud, P; Rozanov, A; Wermes, N

    2009-01-01

    Future hybrid pixel detectors are asking for smaller pixels in order to improve spatial resolution and to deal with an increasing counting rate. Facing these requirements is foreseen to be done by microelectronics technology shrinking. However, this straightforward approach presents some disadvantages in term of performances and cost. New 3D technologies offer an alternative way with the advantage of technology mixing. For the upgrade of ATLAS pixel detector, a 3D conception of the read-out chip appeared as an interesting solution. Splitting the pixel functionalities into two separate levels will reduce pixel size and open the opportunity to take benefit of technology's mixing. Based on a previous prototype of the read-out chip FE-I4 (IBM 130nm), this paper presents the design of a hybrid pixel read-out chip using threedimensional Tezzaron-Chartered technology. In order to disentangle effects due to Chartered 130nm technology from effects involved by 3D architecture, a first translation of FEI4 prototype had ...

  15. LAPAS: A SiGe Front End Prototype for the Upgraded ATLAS LAr Calorimeter

    CERN Document Server

    Dressnandt, N; Rescia, S; Vernon, E

    2009-01-01

    We have designed and fabricated a very low noise preamplifier and shaper to replace the existing ATLAS Liquid Argon readout for use at the Large Hadron Collider upgrade (sLHC). IBM’s 8WL 130nm SiGe process was chosen for it’s radiation tolerance, low noise bipolar NPN devices, wide voltage rand and potential use in other sLHC detector subsystems. Although the requirements for the final design can not be set at this time, the prototype was designed to accommodate a 16 bit dynamic range. This was accomplished by using a single stage, low noise, wide dynamic range preamp followed by a dual range shaper. The low noise of the preamp is made possible by the low base spreading resistance of the Silicon Germanium NPN bipolar transistors. The relatively high voltage rating of the NPN transistors is exploited to allow a gain of 650V/A in the preamplifier which eases the input voltage noise requirement on the shaper. Each shaper stage is designed as a cascaded differential operational amplifier doublet with a common...

  16. Spectrally tunable pixel sensors

    Science.gov (United States)

    Langfelder, G.; Buffa, C.; Longoni, A. F.; Zaraga, F.

    2013-01-01

    They are here reported the developments and experimental results of fully operating matrices of spectrally tunable pixels based on the Transverse Field Detector (TFD). Unlike several digital imaging sensors based on color filter arrays or layered junctions, the TFD has the peculiar feature of having electrically tunable spectral sensitivities. In this way the sensor color space is not fixed a priori but can be real-time adjusted, e.g. for a better adaptation to the scene content or for multispectral capture. These advantages come at the cost of an increased complexity both for the photosensitive elements and for the readout electronics. The challenges in the realization of a matrix of TFD pixels are analyzed in this work. First experimental results on an 8x8 (x 3 colors) and on a 64x64 (x 3 colors) matrix will be presented and analyzed in terms of colorimetric and noise performance, and compared to simulation predictions.

  17. Development of pixel readout integrated circuits for extreme rate and radiation

    CERN Multimedia

    Marconi, S; Loddo, F; Liberali, V; Rizzi, A; Bellazzini, R; Re, V; Minuti, M; Pangaud, P; Barbero, M B; Le dortz, O; Pacher, L; Hessey, N P; Kluit, R; Hinchliffe, I; Giubilato, P; Faccio, F; Pernegger, H; Krueger, H; Gensolen, F D; Vrba, V; Prydderch, M L; Bilei, G M; Da rocha rolo, M D; Fanucci, L; Grillo, A A; Michelis, S; Huegging, F G; Kishishita, T; Marchiori, G; Christian, D C; Kaestli, H C; Meier, B; Key-charriere, M; Andreazza, A; Traversi, G; De canio, F; Linssen, L; Dannheim, D; Conti, E; Hemperek, T; Menouni, M; Fougeron, D; Genat, J; Bomben, M; Marzocca, C; Demaria, N; Mazza, G; Monteil, E; Van bakel, N A; Palla, F; Grippo, M T; Magazzu, G; Ratti, L; Abbaneo, D; Crescioli, F; Deptuch, G W; Tomasek, L; Neue, G; De robertis, G; Passeri, D; Placidi, P; Gromov, V; Morsani, F; Paccagnella, A; Christiansen, J; Dho, E; Wermes, N; Rymaszewski, P; Rozanov, A; Wang, A; Lipton, R J; Havranek, M; Neviani, A; Karagounis, M; Godiot, S; Calderini, G; Seidel, S C; Horisberger, R P; Garcia-sciveres, M A; Stabile, A; Shojaii, S R; Beccherle, R; Manghisoni, M; Bacchetta, N; Bisello, D

    The present hybrid pixel detectors in operation at the LHC represent a major achievement. They deployed a new technology on an unprecedented scale and their success firmly established pixel tracking as indispensable for future HEP experiments. However, extrapolation of hybrid pixel technology to the HL-LHC presents major challenges on several fronts. We propose a new RD collaboration specifically focused on the development of pixel readout Integrated Circuits (IC). The IC challenges include: smaller pixels to resolve tracks in boosted jets, much higher hit rates (1-2 GHz/cm$^{2}$), unprecedented radiation tolerance (10 MGy), much higher output bandwidth, and large IC format with low power consumption in order to instrument large areas while keeping the material budget low. We propose a collaboration to design the next generation of hybrid pixel readout chips to enable the ATLAS and CMS Phase 2 pixel upgrades. This does not imply that ATLAS and CMS must use the same exact pixel readout chip, as most of the dev...

  18. Design and Realisation of Integrated Circuits for the Readout of Pixel Sensors in High Energy Physics and Biomedical Imaging

    CERN Document Server

    Peric, Ivan

    2004-01-01

    Several application specific microchips (ASICs) for the readout of pixel detectors have been designed, tested and described in this thesis. The first chapter gives the detailed description of the pixel-readout chip for the ATLAS pixel detector (FEI). The chip is now in operation as the innermost electronic component of the ATLAS detector. The chip for steering of DEPFET matrix (SWITCHER) is described in the second chapter. The chip is implemented in a high-voltage CMOS technology, it generates fast high voltage signals. Finally, a novel pixel readout chip for a hybrid x-ray pixel detector based on direct conversion is introduced. The chip (CIX) has joint photon counting and integrating capability.

  19. The Kepler Pixel Response Function

    CERN Document Server

    Bryson, Stephen T; Jenkins, Jon M; Chandrasekaran, Hema; Klaus, Todd; Caldwell, Douglas A; Gilliland, Ronald L; Haas, Michael R; Dotson, Jessie L; Koch, David G; Borucki, William J

    2010-01-01

    Kepler seeks to detect sequences of transits of Earth-size exoplanets orbiting Solar-like stars. Such transit signals are on the order of 100 ppm. The high photometric precision demanded by Kepler requires detailed knowledge of how the Kepler pixels respond to starlight during a nominal observation. This information is provided by the Kepler pixel response function (PRF), defined as the composite of Kepler's optical point spread function, integrated spacecraft pointing jitter during a nominal cadence and other systematic effects. To provide sub-pixel resolution, the PRF is represented as a piecewise-continuous polynomial on a sub-pixel mesh. This continuous representation allows the prediction of a star's flux value on any pixel given the star's pixel position. The advantages and difficulties of this polynomial representation are discussed, including characterization of spatial variation in the PRF and the smoothing of discontinuities between sub-pixel polynomial patches. On-orbit super-resolution measurement...

  20. Gallium arsenide pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bates, R.; DaVia, C.; O`Shea, V.; Raine, C.; Smith, K. [Glasgow Univ. (United Kingdom). Dept. of Physics and Astronomy; Campbell, M.; Cantatore, E.; Heijne, E.M.; Middelkamp, P.; Ropotar, I.; Scharfetter, L.; Snoeys, W. [CERN, ECP Div., CH-1211 Geneva 23 (Switzerland); D`Auria, S.; Papa, C. del [Department of Physics, University of Udine and INFN Trieste, Via delle Scienze 208, I-33100 Udine (Italy); RD8 Collaboration

    1998-06-01

    GaAs detectors can be fabricated with bidimensional single-sided electrode segmentation. They have been successfully bonded using flip-chip technology to the Omega-3 silicon read-out chip. We present here the design features of the GaAs pixel detectors and results from a test performed at the CERN SpS with a 120 GeV {pi}{sup -} beam. The detection efficiency was 99.2% with a nominal threshold of 5000 e{sup -}. (orig.) 10 refs.

  1. Modelling semiconductor pixel detectors

    CERN Document Server

    Mathieson, K

    2001-01-01

    expected after 200 ps in most cases. The effect of reducing the charge carrier lifetime and examining the charge collection efficiency has been utilised to explore how these detectors would respond in a harsh radiation environment. It is predicted that over critical carrier lifetimes (10 ps to 0.1 ns) an improvement of 40 % over conventional detectors can be expected. This also has positive implications for fabricating detectors, in this geometry, from materials which might otherwise be considered substandard. An analysis of charge transport in CdZnTe pixel detectors has been performed. The analysis starts with simulation studies into the formation of contacts and their influence on the internal electric field of planar detectors. The models include a number of well known defect states and these are balanced to give an agreement with a typical experimental I-V curve. The charge transport study extends to the development of a method for studying the effect of charge sharing in highly pixellated detectors. The ...

  2. The ALICE pixel detector

    CERN Document Server

    Mercado Perez, J

    2002-01-01

    The present document is a brief summary of the performed activities during the 2001 Summer Student Programme at CERN under the Scientific Summer at Foreign Laboratories Program organized by the Particles and Fields Division of the Mexican Physical Society (Sociedad Mexicana de Fisica). In this case, the activities were related with the ALICE Pixel Group of the EP-AIT Division, under the supervision of Jeroen van Hunen, research fellow in this group. First, I give an introduction and overview to the ALICE experiment; followed by a description of wafer probing. A brief summary of the test beam that we had from July 13th to July 25th is given as well. (3 refs).

  3. Heavily irradiated N-in-p thin planar pixel sensors with and without active edges

    Science.gov (United States)

    Terzo, S.; Andricek, L.; Macchiolo, A.; Moser, H. G.; Nisius, R.; Richter, R. H.; Weigell, P.

    2014-05-01

    We present the results of the characterization of silicon pixel modules employing n-in-p planar sensors with an active thickness of 150 μm, produced at MPP/HLL, and 100-200 μm thin active edge sensor devices, produced at VTT in Finland. These thin sensors are designed as candidates for the ATLAS pixel detector upgrade to be operated at the HL-LHC, as they ensure radiation hardness at high fluences. They are interconnected to the ATLAS FE-I3 and FE-I4 read-out chips. Moreover, the n-in-p technology only requires a single side processing and thereby it is a cost-effective alternative to the n-in-n pixel technology presently employed in the LHC experiments. High precision beam test measurements of the hit efficiency have been performed on these devices both at the CERN SpS and at DESY, Hamburg. We studied the behavior of these sensors at different bias voltages and different beam incident angles up to the maximum one expected for the new Insertable B-Layer of ATLAS and for HL-LHC detectors. Results obtained with 150 μm thin sensors, assembled with the new ATLAS FE-I4 chip and irradiated up to a fluence of 4 × 1015 neq/cm2, show that they are excellent candidates for larger radii of the silicon pixel tracker in the upgrade of the ATLAS detector at HL-LHC. In addition, the active edge technology of the VTT devices maximizes the active area of the sensor and reduces the material budget to suit the requirements for the innermost layers. The edge pixel performance of VTT modules has been investigated at beam test experiments and the analysis after irradiation up to a fluence of 5 × 1015 neq/cm2 has been performed using radioactive sources in the laboratory.

  4. Development of radiation hard CMOS active pixel sensors for HL-LHC

    Science.gov (United States)

    Pernegger, Heinz

    2016-07-01

    New pixel detectors, based on commercial high voltage and/or high resistivity full CMOS processes, hold promise as next-generation active pixel sensors for inner and intermediate layers of the upgraded ATLAS tracker. The use of commercial CMOS processes allow cost-effective detector construction and simpler hybridisation techniques. The paper gives an overview of the results obtained on AMS-produced CMOS sensors coupled to the ATLAS Pixel FE-I4 readout chips. The SOI (silicon-on-insulator) produced sensors by XFAB hold great promise as radiation hard SOI-CMOS sensors due to their combination of partially depleted SOI transistors reducing back-gate effects. The test results include pre-/post-irradiation comparison, measurements of charge collection regions as well as test beam results.

  5. ATLAS TV PROJECT

    CERN Multimedia

    2005-01-01

    CPPM Laboratory Marseille Starting with the Workshop- adding modules to the strip 00:09:19 Exterior-entering the lab site by car, Sascha Rosanov and a PR lady walking, Lab sign on building -Physique des Particules de Marseille 00:20:00 Interviews of the ATLAS pixel work for bio-mediacal research 00:34:00 Interview of Roy Aleksov, Head of CPPM Laboratory, Working in international team, working with CERN and GRID The rest of the film inclusdes lab testingand some exterior shots.

  6. ATLAS Inner Detector developments

    CERN Document Server

    Barberis, D

    2000-01-01

    The ATLAS Inner Detector consists of three layers of silicon pixels, four double layers of silicon microstrips and a Transition Radiation Tracker (straw tubes). The good performance of the track and vertex reconstruction algorithms is a direct consequence of the small radius (4.3, 10.1 and 13.2 cm), fine pitch ($50 \\times 300~\\mu$m) and low occupancy ($<3 \\times 10^{-4}$ at design luminosity) of the pixel detectors, and of the good tracking capabilities of the SCT and the TRT. The full detector simulation is used to evaluate the performance of the detector and of the reconstruction algorithms. Results are presented on track and vertex reconstruction efficiencies and resolutions, and on the separation between $b$-jets and jets produced by light quarks.

  7. Last ATLAS TRT module installed

    CERN Multimedia

    2005-01-01

    The ATLAS transition radiation tracker (TRT) consists of 96 modules and will join the pixel detector and silicon tracker at the heart of the experiment to map the trajectories of particles and identify electrons produced when proton beams collide. Images with the team responsible for assembly : Kirill Egorov (Petersburg Nuclear Physics Institute), Pauline Gagnon (Indiana University), Ben Legeyt (University of Pennsylvania), Chuck Long (Hampton University), John Callahan (Indiana University) and Alex High (University of Pennsylvania).

  8. Development of a counting pixel detector for 'Digitales Roentgen'

    International Nuclear Information System (INIS)

    The development of a single photon counting X-ray imaging detector for medical applications using hybrid pixel detectors is reported. The electronics development from the first prototype derived from detector development for particle physics experiments (ATLAS) to the imaging chip MPEC (multi picture element counters) for medical applications is described. This chip consists of 32 x 32 pixels of 200 μm x 200 μm size, each containing the complete read out electronics, i.e. an amplifier, two discriminators with adjustable thresholds and two 18-bit linear feedback shift-counters allowing energy windowing for contrast increase. Results on electronics performance are shown as well as measurements with several semiconductor materials (Si, GaAs, CdTe). Important aspects like detection efficiency, sensor homogeneity, linearity and spatial resolution are discussed. (orig.)

  9. CMS upgrades for SLHC

    CERN Document Server

    Palla, Fabrizio

    2006-01-01

    I will discuss the impact of the LHC luminosity upgrade on CMS detector. While most of the CMS can possibly cope with the increased luminosity, the Tracker must undergo a major redesign in technology both in terms of detector substrates as well as in the data transfer links. I will show the impact on CMS of reduced bunch length and machine elements close to the interaction point.

  10. Design and realisation of integrated circuits for the readout of pixel sensors in high-energy physics and biomedical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Peric, I.

    2004-08-01

    Radiation tolerant pixel-readout chip for the ATLAS pixel detector has been designed, implemented in a deep-submicron CMOS technology and successfully tested. The chip contains readout-channels with complex analog and digital circuits. Chip for steering of the DEPFET active-pixel matrix has been implemented in a high-voltage CMOS technology. The chip contains channels which generate fast sequences of high-voltage signals. Detector containing this chip has been successfully tested. Pixel-readout test chip for an X-ray imaging pixel sensor has been designed, implemented in a CMOS technology and tested. Pixel-readout channels are able to simultaneously count the signals generated by passage of individual photons and to sum the total charge generated during exposure time. (orig.)

  11. From Pixels to Planets

    Science.gov (United States)

    Brownston, Lee; Jenkins, Jon M.

    2015-01-01

    The Kepler Mission was launched in 2009 as NASAs first mission capable of finding Earth-size planets in the habitable zone of Sun-like stars. Its telescope consists of a 1.5-m primary mirror and a 0.95-m aperture. The 42 charge-coupled devices in its focal plane are read out every half hour, compressed, and then downlinked monthly. After four years, the second of four reaction wheels failed, ending the original mission. Back on earth, the Science Operations Center developed the Science Pipeline to analyze about 200,000 target stars in Keplers field of view, looking for evidence of periodic dimming suggesting that one or more planets had crossed the face of its host star. The Pipeline comprises several steps, from pixel-level calibration, through noise and artifact removal, to detection of transit-like signals and the construction of a suite of diagnostic tests to guard against false positives. The Kepler Science Pipeline consists of a pipeline infrastructure written in the Java programming language, which marshals data input to and output from MATLAB applications that are executed as external processes. The pipeline modules, which underwent continuous development and refinement even after data started arriving, employ several analytic techniques, many developed for the Kepler Project. Because of the large number of targets, the large amount of data per target and the complexity of the pipeline algorithms, the processing demands are daunting. Some pipeline modules require days to weeks to process all of their targets, even when run on NASA's 128-node Pleiades supercomputer. The software developers are still seeking ways to increase the throughput. To date, the Kepler project has discovered more than 4000 planetary candidates, of which more than 1000 have been independently confirmed or validated to be exoplanets. Funding for this mission is provided by NASAs Science Mission Directorate.

  12. EnviroAtlas - Des Moines, IA - Estimated Intersection Density of Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections...

  13. EnviroAtlas - Portland, ME - Estimated Intersection Density of Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections...

  14. EnviroAtlas - New Bedford, MA - Estimated Intersection Density of Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections...

  15. EnviroAtlas - Portland, OR - Estimated Intersection Density of Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections...

  16. EnviroAtlas - Phoenix, AZ - Estimated Intersection Density of Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections...

  17. EnviroAtlas - Fresno, CA - Estimated Intersection Density of Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections...

  18. EnviroAtlas - Pittsburgh, PA - Estimated Intersection Density of Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections...

  19. EnviroAtlas - New York, NY - Estimated Intersection Density of Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections...

  20. EnviroAtlas - Durham, NC - Estimated Intersection Density of Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections...

  1. EnviroAtlas - Memphis, TN - Estimated Intersection Density of Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections...

  2. EnviroAtlas - Woodbine, IA - Estimated Intersection Density of Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections...

  3. EnviroAtlas - Milwaukee, WI - Estimated Intersection Density of Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections...

  4. EnviroAtlas - Austin, TX - Estimated Intersection Density of Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections...

  5. EnviroAtlas - Paterson, NJ - Estimated Intersection Density of Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections...

  6. EnviroAtlas - Tampa, FL - Estimated Intersection Density of Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections...

  7. EnviroAtlas - Green Bay, WI - Estimated Intersection Density of Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections...

  8. A Sub Pixel Resolution Method

    CERN Document Server

    Khademi, Siamak; Abbasi, Zahra

    2012-01-01

    One of the main limitations for the resolution of optical instruments is the size of the sensor's pixels. In this paper we introduce a new sub pixel resolution algorithm to enhance the resolution of images. This method is based on the analysis of multi-images which are fast recorded during the fine relative motion of image and pixel arrays of CCDs. It is shown that by applying this method for a sample noise free image one will enhance the resolution with order of error.

  9. Bump bonding of pixel systems

    CERN Document Server

    Lozano, M; Collado, A; Santander, J; Ullán, M

    2001-01-01

    A pixel detector consists of an array of radiation sensing elements which is connected to an electronic read-out unit. Many different ways of making this connection between these two different devices are currently being used or considered to be used in the next future. Bonding techniques such as flip chip technology can present real advantages because they allow very fine pitch and a high number of I/Os. This paper presents a review of the different flip chip technologies available and their suitability for manufacturing pixel detectors. The particular problems concerning testing of pixel detectors and thermal issues related to them are pointed out.

  10. Bump bonding of pixel systems

    Energy Technology Data Exchange (ETDEWEB)

    Lozano, M. E-mail: manuel.lozano@cnm.es; Cabruja, E.; Collado, A.; Santander, J.; Ullan, M

    2001-11-01

    A pixel detector consists of an array of radiation sensing elements which is connected to an electronic read-out unit. Many different ways of making this connection between these two different devices are currently being used or considered to be used in the next future. Bonding techniques such as flip chip technology can present real advantages because they allow very fine pitch and a high number of I/Os. This paper presents a review of the different flip chip technologies available and their suitability for manufacturing pixel detectors. The particular problems concerning testing of pixel detectors and thermal issues related to them are pointed out.

  11. Virtual Visit to the ATLAS Control Room by the Genova University

    CERN Multimedia

    2013-01-01

    The ATLAS Virtual Visit is included in the program of the Course in Particle and Nuclear Experimental Physics at the Physics Department of the Genova University. Students are introduced to experimental techniques and instrumentation and run few experiences in the laboratory. Besides that, they visit the Department groups that are involved both in Nuclear or High Energy Particle physics experiments. In this context, the ATLAS team will open them the doors to laboratory where ~1/3 of the Pixel detector has been built and where we are currently assembling and qualifying part of the electrical services and modules for the Insertable B layer (IBL) that will be installed in 2014 in ATLAS. Students will be introduced to LHC, ATLAS and the physics program before having the possibility to meet ATLAS physicists in ATLAS control room. http://atlas-live-virtual-visit.web.cern.ch/atlas-live-virtual-visit/2013/Genova-2013_2.html

  12. Virtual Visit to the ATLAS Control Room by the Genova University

    CERN Multimedia

    2013-01-01

    The ATLAS Virtual Visit is included in the program of the Course in Particle and Nuclear Experimental Physics at the Physics Department of the Genova University. Students are introduced to experimental techniques and instrumentation and run few experiences in the laboratory. Besides that, they visit the Department groups that are involved both in Nuclear or High Energy Particle physics experiments. In this context, the ATLAS team will open them the doors to laboratory where ~1/3 of the Pixel detector has been built and where we are currently assembling and qualifying part of the electrical services and modules for the Insertable B layer (IBL) that will be installed in 2014 in ATLAS. Students will be introduced to LHC, ATLAS and the physics program before having the possibility to meet ATLAS physicists in ATLAS control room. http://atlas-live-virtual-visit.web.cern.ch/atlas-live-virtual-visit/2013/Genova-2013_1.html

  13. Virtual Visit to the ATLAS Control Room by the University of Genova

    CERN Multimedia

    ATLAS Experiment

    2012-01-01

    The ATLAS Virtual Visit is included in the program of the Course in Particle and Nuclear Experimental Physics at the Physics Department of the Genova University. Students are introduced to experimental techniques and instrumentation and run few experiences in the laboratory. Besides that, they visit the Department groups that are involved both in Nuclear or High Energy Particle physics experiments. In this context, the ATLAS team will open them the doors to laboratory where ~1/3 of the Pixel detector has been built and where we are currently assembling and qualifying part of the electrical services and modules for the Insertable B layer (IBL) that will be installed in 2014 in ATLAS. Students will be introduced to LHC, ATLAS and the physics program before having the possibility to meet ATLAS physicists in ATLAS control room. http://atlas-live-virtual-visit.web.cern.ch/atlas-live-virtual-visit/2012/Genova-2012.html

  14. Development of pixel front-end electronics using advanced deep submicron CMOS technologies

    International Nuclear Information System (INIS)

    The content of this thesis is oriented on the R and D of microelectronic integrated circuits for processing the signal from particle sensors and partially on the sensors themselves. This work is motivated by ongoing upgrades of the ATLAS Pixel Detector at CERN laboratory and by exploration of new technologies for the future experiments in particle physics. Evolution of technologies for the fabrication of microelectronic circuits follows Moore's laws. Transistors become smaller and electronic chips reach higher complexity. Apart from this, silicon foundries become more open to smaller customers and often provide non-standard process options. Two new directions in pixel technologies are explored in this thesis: design of pixel electronics using ultra deep submicron (65 nm) CMOS technology and Depleted Monolithic Active Pixel Sensors (DMAPS). An independent project concerning the measurement of pixel capacitance with a dedicated measurement chip is a part of this thesis. Pixel capacitance is one of the key parameters for design of the pixel front-end electronics and thus it is closely related to the content of the thesis. The theoretical background, aspects of chip design, performance of chip prototypes and prospect for design of large pixel chips are comprehensively described in five chapters of the thesis.

  15. Neutron and Proton Tests of Different Technologies for the Upgrade of Cold Readout Electronics of the ATLAS Hadronic Endcap Calorimeter

    CERN Document Server

    Nagel, M; The ATLAS collaboration

    2011-01-01

    The expected increase of total integrated luminosity by a factor ten at the sLHC compared to the design goals for LHC essentially eliminates the safety factor for radiation hardness realized at the current cold amplifiers of the ATLAS Hadronic Endcap Calorimeter (HEC). New more radiation hard technologies have been studied: SiGe bipolar, Si CMOS FET and GaAs FET transistors have been irradiated with neutrons up to an integrated fluence of 2.2 x 10^16 n/cm2 and with 200 MeV protons up to an integrated fluence of 3.4 x 10^14 p/cm2. Comparisons of transistor parameters such as the gain for both types of irradiations are presented.

  16. Neutron and Proton Tests of Different Technologies for the Upgrade of Cold Readout Electronics of the ATLAS Hadronic Endcap Calorimeter

    CERN Document Server

    Nagel, M; The ATLAS collaboration

    2012-01-01

    The expected increase of total integrated luminosity by a factor ten at the sLHC compared to the design goals for LHC essentially eliminates the safety factor for radiation hardness realized at the current cold amplifiers of the ATLAS Hadronic Endcap Calorimeter (HEC). New more radiation hard technologies have been studied: SiGe bipolar, Si CMOS FET and GaAs FET transistors have been irradiated with neutrons up to an integrated fluence of 2.2 x 10^16 neutrons/cm^2 and with 200 MeV protons up to an integrated fluence of 3.4 x 10^14 protons/cm^2. Comparisons of transistor parameters such as the gain for both types of irradiations are presented.

  17. Neutron and Proton Tests of Different Technologies for the Upgrade of Cold Readout Electronics of the ATLAS Hadronic Endcap Calorimeter

    CERN Document Server

    Nagel, M; The ATLAS collaboration

    2011-01-01

    The expected increase of total integrated luminosity by a factor ten at the sLHC compared to the design goals for LHC essentially eliminates the safety factor for radiation hardness realized at the current cold amplifiers of the ATLAS Hadronic Endcap Calorimeter (HEC). New more radiation hard technologies have been studied: SiGe bipolar, Si CMOS FET and GaAs FET transistors have been irradiated with neutrons up to an integrated fluence of 2.2 x 10^16 n/cm^2 and with 200 MeV protons up to an integrated fluence of 3.4 x 10^14 p/cm^2. Comparisons of transistor parameters such as the gain for both types of irradiations are presented.

  18. Local Pixel Bundles: Bringing the Pixels to the People

    Science.gov (United States)

    Anderson, Jay

    2014-12-01

    The automated galaxy-based alignment software package developed for the Frontier Fields program (hst2galign, see Anderson & Ogaz 2014 and http://www.stsci.edu/hst/campaigns/frontier-fields/) produces a direct mapping from the pixels of the flt frame of each science exposure into a common master frame. We can use these mappings to extract the flt-pixels in the vicinity of a source of interest and package them into a convenient "bundle". In addition to the pixels, this data bundle can also contain "meta" information that will allow users to transform positions from the flt pixels to the reference frame and vice-versa. Since the un-resampled pixels in the flt frames are the only true constraints we have on the astronomical scene, the ability to inter-relate these pixels will enable many high-precision studies, such as: point-source-fitting and deconvolution with accurate PSFs, easy exploration of different image-combining algorithms, and accurate faint-source finding and photometry. The data products introduced in this ISR are a very early attempt to provide the flt-level pixel constraints in a package that is accessible to more than the handful of experts in HST astrometry. The hope is that users in the community might begin using them and will provide feedback as to what information they might want to see in the bundles and what general analysis packages they might find useful. For that reason, this document is somewhat informally written, since I know that it will be modified and updated as the products and tools are optimized.

  19. Signal and noise of diamond pixel detectors at high radiation fluences

    Science.gov (United States)

    Tsung, J.-W.; Havranek, M.; Hügging, F.; Kagan, H.; Krüger, H.; Wermes, N.

    2012-09-01

    CVD diamond is an attractive material option for LHC vertex detectors mainly because of its strong radiation-hardness causal to its large band gap and strong lattice. In particular, pixel detectors operating close to the interaction point profit from tiny leakage currents and small pixel capacitances of diamond resulting in low noise figures when compared to silicon. On the other hand, the charge signal from traversing high energy particles is smaller in diamond than in silicon by a factor of about 2.2. Therefore, a quantitative determination of the signal-to-noise ratio (S/N) of diamond in comparison with silicon at fluences in excess of 1015 neq cm-2, which are expected for the LHC upgrade, is important. Based on measurements of irradiated diamond sensors and the FE-I4 pixel readout chip design and performance, we determine the signal and the noise of diamond pixel detectors irradiated with high particle fluences. To characterize the effect of the radiation damage on the materials and the signal decrease, the change of the mean free path λe/h of the charge carriers is determined as a function of irradiation fluence. We make use of the FE-I4 pixel chip developed for ATLAS upgrades to realistically estimate the expected noise figures: the expected leakage current at a given fluence is taken from calibrated calculations and the pixel capacitance is measured using a purposely developed chip (PixCap). We compare the resulting S/N figures with those for planar silicon pixel detectors using published charge loss measurements and the same extrapolation methods as for diamond. It is shown that the expected S/N of a diamond pixel detector with pixel pitches typical for LHC, exceeds that of planar silicon pixels at fluences beyond 1015 particles cm-2, the exact value only depending on the maximum operation voltage assumed for irradiated silicon pixel detectors.

  20. SNOWMASS WHITE PAPER - SLHC Endcap 1.4

    CERN Document Server

    Bilki, Burak; Winn, David R; Yetkin, Taylan

    2013-01-01

    Radiation damage in the plastic scintillator and/or readout WLS fibers in the HE endcap calorimeter 1.4SLHC will require remediation after 2018. We describe one alternative using the existing brass absorber in the Endcap calorimeter, to replace the plastic scintillator tiles with BaF2 tiles, or quartz tiles coated with thin(1-5 micron) films of radiation-hard pTerphenyl(pTP) or the fast phosphor ZnO:Ga. These tiles would be read-out by easily replaceable arrays of straight, parallel WLS fibers coupled to clear plastic-cladded quartz fibers of proven radiation resistance. We describe a second alternative with a new absorber matrix extending to 1.4

  1. Expected performance of the ATLAS Inner Tracker upgrade

    CERN Document Server

    Viel, Simon; The ATLAS collaboration

    2016-01-01

    The design of the ATLAS Inner Tracker upgrade is underway. This tracking detector, consisting of silicon pixel and strip modules, will replace the current ATLAS Inner Detector to reconstruct tracks from charged particles produced at the very high collision rate expected from the High-Luminosity Large Hadron Collider. The latest Inner Tracker designs considered, and the most recent expected performance results from simulation are presented.

  2. The alignment of the ATLAS Inner Detector in Run 2

    CERN Document Server

    Ripellino, Giulia; The ATLAS collaboration

    2016-01-01

    The ATLAS reconstruction of charged particle trajectories relies on the Inner Detector tracking system. The accuracy of the reconstruction is limited by the finite resolution of the detector elements and the imperfect knowledge about their positions. A precise alignment of the detector is therefore essential. Here, the strategy and the status of the Inner Detector alignment in ATLAS during the LHC Run 2 are presented and the alignment challenges related to the distortion of the new innermost Pixel layer, the IBL, are discussed.

  3. Development of active edge pixel sensors and four-side buttable modules using vertical integration technologies

    CERN Document Server

    Macchiolo, A; Moser, H-G; Nisius, R; Richter, R H; Terzo, S; Weigell, P

    2014-01-01

    We present an R&D activity focused on the development of novel modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The modules consist of n-in-p pixel sensors, 100 or 200 $\\mu$m thick, produced at VTT (Finland) with an active edge technology, which considerably reduces the dead area at the periphery of the device. The sensors are interconnected with solder bump-bonding to the ATLAS FE-I3 and FE-I4 read-out chips, and characterized with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements will be discussed for devices before and after irradiation up to a fluence of $5\\times 10^{15}$ \

  4. Serial powering Proof of principle demonstration of a scheme for the operation of a large pixel detector at the LHC

    CERN Document Server

    Ta, D B; Hugging, F; Fischer, P; Grosse-Knetter, J; Runólfsson, O; Wermes, N

    2006-01-01

    Large detectors in high-energy physics experiments are mostly built from many identical individual building blocks, called modules, which possess individual parts of the services. The modules are usually also powered by parallel power lines such that they can be individually operated. The main disadvantage of such a parallel powering scheme is the vast amount of necessary power cables which constitutes also a large amount of material in the path of the particles to be detected. For the LHC experiments already now this is a major problem for the optimal performance of the detectors and it has become evident, that for an upgrade programme alternative powering schemes must be investigated. We prove and demonstrate here for the example of the large scale pixel detector of ATLAS that Serial Powering of pixel modules is a viable alternative. A powering scheme using dedicated voltage regulators and modified flex hybrid circuits has been devised and implemented for ATLAS pixel modules. The modules have been intensive...

  5. Overview of the BTeV Pixel Detector

    International Nuclear Information System (INIS)

    BTeV is a new Fermilab beauty and charm experiment designed to operate in the CZero region of the Tevatron collider. Critical to the success of BTeV is its pixel detector. The unique features of this pixel detector include its proximity to the beam, its operation with a beam crossing time of 132 ns, and the need for the detector information to be read out quickly enough to be used for the lowest level trigger. This talk presents an overview of the pixel detector design, giving the motivations for the technical choices made. The status of the current RandD on detector components is also reviewed. Additional Pixel 2002 talks on the BTeV pixel detector are given by Dave Christian[1], Mayling Wong[2], and Sergio Zimmermann[3]. Table 1 gives a selection of pixel detector parameters for the ALICE, ATLAS, BTeV, and CMS experiments. Comparing the progression of this table, which I have been updating for the last several years, has shown a convergence of specifications. Nevertheless, significant differences endure. The BTeV data-driven readout, horizontal and vertical position resolution better than 9 (micro)m with the ± 300 mr forward acceptance, and positioning in vacuum and as close as 6 mm from the circulating beams remain unique. These features are driven by the physics goals of the BTeV experiment. Table 2 demonstrates that the vertex trigger performance made possible by these features is requisite for a very large fraction of the B meson decay physics which is so central to the motivation for BTeV. For most of the physics quantities of interest listed in the table, the vertex trigger is essential. The performance of the BTeV pixel detector may be summarized by looking at particular physics examples; e.g., the Bs meson decay Bs → Ds- K+. For that decay, studies using GEANT3 simulations provide quantitative measures of performance. For example, the separation between the Bs decay point and the primary proton-antiproton interaction can be measured with an rms

  6. Studies on the Optical Readout for the ATLAS Pixel Detector

    CERN Document Server

    Flick, Tobias

    The particle physics is concentrating on the research of the structure of the matter which is observable in our world. How is this world built. Which particles exist, which are necessary to build up the world? How is this matter kept together, what are the interactions between the known particles? The answers to these questions are obtained by observing the known particles, to study their properties, and to search new for particles. Models are developed to describe all the observations. Experiments are performed to proove the models. The best prooven model to describe many of the observations is the Standard Model. The Standard Model is elucidated in Chapter 1. It is tested very precisely by experimental measurements in the last years, but cannot explain all phenomena of nature. To discover the last not observed particle of the Standard Model, the Higgs boson, and to extend the model further experiments are needed. To study the elementary particles machines and instruments are necessary to produce and measur...

  7. Heavily Irradiated N-in-p Thin Planar Pixel Sensors with and without Active Edges

    CERN Document Server

    Terzo, S; Macchiolo, A; Moser, H G; Nisius, R; Richter, R H; Weigell, P

    2014-01-01

    We present the results of the characterization of silicon pixel modules employing n-in-p planar sensors with an active thickness of 150 $\\mathrm{\\mu}$m, produced at MPP/HLL, and 100-200 $\\mathrm{\\mu}$m thin active edge sensor devices, produced at VTT in Finland. These thin sensors are designed as candidates for the ATLAS pixel detector upgrade to be operated at the HL-LHC, as they ensure radiation hardness at high fluences. They are interconnected to the ATLAS FE-I3 and FE-I4 read-out chips. Moreover, the n-in-p technology only requires a single side processing and thereby it is a cost-effective alternative to the n-in-n pixel technology presently employed in the LHC experiments. High precision beam test measurements of the hit efficiency have been performed on these devices both at the CERN SpS and at DESY, Hamburg. We studied the behavior of these sensors at different bias voltages and different beam incident angles up to the maximum one expected for the new Insertable B-Layer of ATLAS and for HL-LHC detect...

  8. Development of active edge pixel sensors and four-side buttable modules using vertical integration technologies

    Energy Technology Data Exchange (ETDEWEB)

    Macchiolo, A., E-mail: Anna.Macchiolo@mpp.mpg.de [Max-Planck-Institut for Physics, Föhringer Ring 6, D-80805 Munich (Germany); Andricek, L. [Semiconductor Laboratory of the Max-Planck-Society, Otto Hahn Ring 6, D-81739 Munich (Germany); Moser, H.-G.; Nisius, R. [Max-Planck-Institut for Physics, Föhringer Ring 6, D-80805 Munich (Germany); Richter, R.H. [Semiconductor Laboratory of the Max-Planck-Society, Otto Hahn Ring 6, D-81739 Munich (Germany); Terzo, S.; Weigell, P. [Max-Planck-Institut for Physics, Föhringer Ring 6, D-80805 Munich (Germany)

    2014-11-21

    We present an R and D activity focused on the development of novel modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The modules consist of n-in-p pixel sensors, 100 or 200 μm thick, produced at VTT (Finland) with an active edge technology, which considerably reduces the dead area at the periphery of the device. The sensors are interconnected with solder bump-bonding to the ATLAS FE-I3 and FE-I4 read-out chips, and characterised with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements will be discussed for devices before and after irradiation up to a fluence of 5×10{sub 15}n{sub eq}/cm{sup 2}. We will also report on the R and D activity to obtain Inter Chip Vias (ICVs) on the ATLAS read-out chip in collaboration with the Fraunhofer Institute EMFT. This step is meant to prove the feasibility of the signal transport to the newly created readout pads on the backside of the chips allowing for four side buttable devices without the presently used cantilever for wire bonding. The read-out chips with ICVs will be interconnected to thin pixel sensors, 75 μm and 150 μm thick, with the Solid Liquid Interdiffusion (SLID) technology, which is an alternative to the standard solder bump-bonding.

  9. Development of active edge pixel sensors and four-side buttable modules using vertical integration technologies

    Science.gov (United States)

    Macchiolo, A.; Andricek, L.; Moser, H.-G.; Nisius, R.; Richter, R. H.; Terzo, S.; Weigell, P.

    2014-11-01

    We present an R&D activity focused on the development of novel modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The modules consist of n-in-p pixel sensors, 100 or 200 μm thick, produced at VTT (Finland) with an active edge technology, which considerably reduces the dead area at the periphery of the device. The sensors are interconnected with solder bump-bonding to the ATLAS FE-I3 and FE-I4 read-out chips, and characterised with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements will be discussed for devices before and after irradiation up to a fluence of 5 ×1015neq /cm2. We will also report on the R&D activity to obtain Inter Chip Vias (ICVs) on the ATLAS read-out chip in collaboration with the Fraunhofer Institute EMFT. This step is meant to prove the feasibility of the signal transport to the newly created readout pads on the backside of the chips allowing for four side buttable devices without the presently used cantilever for wire bonding. The read-out chips with ICVs will be interconnected to thin pixel sensors, 75 μm and 150 μm thick, with the Solid Liquid Interdiffusion (SLID) technology, which is an alternative to the standard solder bump-bonding.

  10. Overview of HVCMOS pixel sensors

    International Nuclear Information System (INIS)

    High voltage CMOS (HVCMOS) sensors are presently considered for the use in Mu3e experiment, ATLAS and CLIC. These sensors can be implemented in commercial HVCMOS processes. HVCMOS sensors feature fast charge collection by drift and high radiation tolerance. The sensor element is an n-well/p-type diode. This proceeding-paper gives an overview of HVCMOS projects and the recent results

  11. Supporting ATLAS

    CERN Multimedia

    maximilien brice

    2003-01-01

    Eighteen feet made of stainless steel will support the barrel ATLAS detector in the cavern at Point 1. In total, the ATLAS feet system will carry approximately 6000 tons, and will give the same inclination to the detector as the LHC accelerator.

  12. Supporting ATLAS

    CERN Multimedia

    2003-01-01

    Eighteen feet made of stainless steel will support the barrel ATLAS detector in the cavern at Point 1. In total, the ATLAS feet system will carry approximately 6000 tons, and will give the same inclination to the detector as the LHC accelerator. The installation of the feet is scheduled to finish during January 2004 with an installation precision at the 1 mm level despite their height of 5.3 metres. The manufacture was carried out in Russia (Company Izhorskiye Zavody in St. Petersburg), as part of a Russian and JINR Dubna in-kind contribution to ATLAS. Involved in the installation is a team from IHEP-Protvino (Russia), the ATLAS technical co-ordination team at CERN, and the CERN survey team. In all, about 15 people are involved. After the feet are in place, the barrel toroid magnet and the barrel calorimeters will be installed. This will keep the ATLAS team busy for the entire year 2004.

  13. Development of SOI pixel detector in Cracow

    OpenAIRE

    Bugiel, Szymon; Dasgupta, Roma; Glab, Sebastian; Idzik, Marek; Moron, Jakub; Kapusta, Piotr Julian; Kucewicz, Wojciech; Turala, Michal

    2015-01-01

    This paper presents the design of a new monolithic Silicon-On-Insulator pixel sensor in $200~nm$ SOI CMOS technology. The main application of the proposed pixel detector is the spectroscopy, but it can also be used for the minimum ionizing particle (MIP) tracking in particle physics experiments. For this reason few different versions of pixel cells are developed: a source-follower based pixel for tracking, a low noise pixel with preamplifier for spectroscopy, and a self-triggering pixel for t...

  14. 3D silicon pixel detectors for the High-Luminosity LHC

    CERN Document Server

    Lange, J; Cavallaro, E; Förster, F; Grinstein, S; Paz, I López; Manna, M; Pellegrini, G; Quirion, D; Terzo, S; Furelos, D Vázquez

    2016-01-01

    3D silicon pixel detectors have been investigated as radiation-hard candidates for the innermost layers of the HL-LHC upgrade of the ATLAS pixel detector. 3D detectors are already in use today in the ATLAS IBL and AFP experiments. These are based on 50x250 um2 large pixels connected to the FE-I4 readout chip. Detectors of this generation were irradiated to HL-LHC fluences and demonstrated excellent radiation hardness with operational voltages as low as 180 V and power dissipation of 12--15 mW/cm2 at a fluence of about 1e16 neq/cm2, measured at -25 degree C. Moreover, to cope with the higher occupancies expected at the HL-LHC, a first run of a new generation of 3D detectors designed for the HL-LHC was produced at CNM with small pixel sizes of 50x50 and 25x100 um2, matched to the FE-I4 chip. They demonstrated a good performance in the laboratory and in beam tests with hit efficiencies of about 97% at already 1--2V before irradiation.

  15. The INFN-FBK pixel R&D program for HL-LHC

    Science.gov (United States)

    Meschini, M.; Dalla Betta, G. F.; Boscardin, M.; Calderini, G.; Darbo, G.; Giacomini, G.; Messineo, A.; Ronchin, S.

    2016-09-01

    We report on the ATLAS and CMS joint research activity, which is aiming at the development of new, thin silicon pixel detectors for the Large Hadron Collider Phase-2 detector upgrades. This R&D is performed under special agreement between Istituto Nazionale di Fisica Nucleare and FBK foundation (Trento, Italy). New generations of 3D and planar pixel sensors with active edges are being developed in the R&D project, and will be fabricated at FBK. A first planar pixel batch, which was produced by the end of year 2014, will be described in this paper. First clean room measurement results on planar sensors obtained before and after neutron irradiation will be presented.

  16. SAR Image Complex Pixel Representations

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Complex pixel values for Synthetic Aperture Radar (SAR) images of uniform distributed clutter can be represented as either real/imaginary (also known as I/Q) values, or as Magnitude/Phase values. Generally, these component values are integers with limited number of bits. For clutter energy well below full-scale, Magnitude/Phase offers lower quantization noise than I/Q representation. Further improvement can be had with companding of the Magnitude value.

  17. CMOS digital pixel sensors: technology and applications

    Science.gov (United States)

    Skorka, Orit; Joseph, Dileepan

    2014-04-01

    CMOS active pixel sensor technology, which is widely used these days for digital imaging, is based on analog pixels. Transition to digital pixel sensors can boost signal-to-noise ratios and enhance image quality, but can increase pixel area to dimensions that are impractical for the high-volume market of consumer electronic devices. There are two main approaches to digital pixel design. The first uses digitization methods that largely rely on photodetector properties and so are unique to imaging. The second is based on adaptation of a classical analog-to-digital converter (ADC) for in-pixel data conversion. Imaging systems for medical, industrial, and security applications are emerging lower-volume markets that can benefit from these in-pixel ADCs. With these applications, larger pixels are typically acceptable, and imaging may be done in invisible spectral bands.

  18. Last ATLAS transition radiation tracker module installed

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The ATLAS transition radiation tracker consists of 96 modules and will join the pixel detector and silicon tracker at the heart of the experiment to map the trajectories of particles and identify electrons produced when proton beams collide. In the last image the team responsible for assembly are shown from left to right: Kirill Egorov (Petersburg Nuclear Physics Institute), Pauline Gagnon (Indiana University), Ben Legeyt (University of Pennsylvania), Chuck Long (Hampton University), John Callahan (Indiana University) and Alex High (University of Pennsylvania).

  19. ATLAS IBL Stave QA - In and Around SR1

    CERN Document Server

    Carney, Rebecca

    2013-01-01

    During the Phase-I upgrade the ATLAS Inner tracker will have a whole new layer of pixels inserted between the existing B-layer and a new, smaller, beam pipe. Briefly, there are 14 assemblies of 32 single and double-chip hybrid silicon pixel chips arranged side-by-side on light-weight, thermally conductive carbon-fibre coated carbon foam supports called staves. When the staves arrive at CERN, fully assembled, they undergo a QA procedure, which checks the power characteristics of sensors and read-out chips, and assess the quality of individual pixels.

  20. CVD diamond pixel detectors for LHC experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wedenig, R.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A.M.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.; Blanquart, L.; Breugnion, P.; Charles, E.; Ciocio, A.; Clemens, J.C.; Dao, K.; Einsweiler, K.; Fasching, D.; Fischer, P.; Joshi, A.; Keil, M.; Klasen, V.; Kleinfelder, S.; Laugier, D.; Meuser, S.; Milgrome, O.; Mouthuy, T.; Richardson, J.; Sinervo, P.; Treis, J.; Wermes, N

    1999-08-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described.

  1. CMS has a heart of pixels

    CERN Multimedia

    2003-01-01

    In the immediate vicinity of the collision point, CMS will be equipped with pixel detectors consisting of no fewer than 50 million pixels measuring 150 microns along each side. Each of the pixels, which receive the signal, is connected to its own electronic circuit by a tiny sphere (seen here in the electron microscope image) measuring 15 to 20 microns in diameter.

  2. CVD diamond pixel detectors for LHC experiments

    International Nuclear Information System (INIS)

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described

  3. CVD diamond pixel detectors for LHC experiments

    CERN Document Server

    Wedenig, R; Bauer, C; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Pretzl, Klaus P; Procario, M; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Runólfsson, O; Russ, J; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R J; Trawick, M L; Trischuk, W; Vittone, E; Wagner, A; Walsh, A M; Weilhammer, Peter; White, C; Zeuner, W; Ziock, H J; Zöller, M

    1999-01-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described. (9 refs).

  4. Mongolian Atlas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Climatic atlas dated 1985, in Mongolian, with introductory material also in Russian and English. One hundred eight pages in single page PDFs.

  5. The ATLAS Insertable B-Layer: from construction to operation

    CERN Document Server

    La Rosa, Alessandro; The ATLAS collaboration

    2016-01-01

    The ATLAS Insertable B-Layer (IBL) is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm from the beam axis and between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with high radiation and occupancy, is the first large scale application of 3D detectors and CMOS 130nm technology. The IBL detector construction was achieved within about two years starting from mid-2012 to the May 2014 installation in ATLAS, a very tight schedule to meet the ATLAS installation and detector closure before starting the Run2 in Spring 2015. The key features and challenges met during the IBL project will be presented, as well as its commissioning and operational experience at the LHC.

  6. Experience on 3D Silicon Sensors for ATLAS IBL

    CERN Document Server

    Darbo, Giovanni

    2015-01-01

    3D silicon sensors, where plasma micro-machining is used to etch deep narrow apertures in the silicon substrate to form electrodes of PIN junctions, represent possible solutions for inner pixel layers of the tracking detectors in high energy physics experiments. This type of sensors has been developed for the Insertable B-Layer (IBL), an additional pixel layer that has been installed in ATLAS during the present shutdown of the LHC collider at CERN. It is presented here the experience in designing, testing and qualifying sensors and detector modules that have been used to equip part of the IBL. Based on the gained experience with 3D silicon sensors for the ATLAS IBL, we discuss possible new developments for the upgrade of ATLAS and CMS at the high-luminosity LHC (HL-LHC).

  7. The ATLAS Insertable B-Layer: from construction to operation

    CERN Document Server

    La Rosa, Alessandro; The ATLAS collaboration

    2016-01-01

    The ATLAS Insertable B-Layer (IBL) is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with high radiation and occupancy, is the first large scale application of 3D detectors and CMOS 130nm technology. The IBL detector construction was achieved within about two years starting from mid-2012 to the May 2014 installation in ATLAS, a very tight schedule to meet the ATLAS installation and detector closure before starting the Run2 in Spring 2015. The key features and challenges met during the IBL project will be presented, as well as its commissioning and operational experience in LHC.

  8. Experience on 3D silicon sensors for ATLAS IBL

    International Nuclear Information System (INIS)

    3D silicon sensors, where plasma micro-machining is used to etch deep narrow apertures in the silicon substrate to form electrodes of PIN junctions, represent possible solutions for inner pixel layers of the tracking detectors in high energy physics experiments. This type of sensors has been developed for the Insertable B-Layer (IBL), an additional pixel layer that has been installed in ATLAS during the present shutdown of the LHC collider at CERN. It is presented here the experience in designing, testing and qualifying sensors and detector modules that have been used to equip part of the IBL. Based on the gained experience with 3D silicon sensors for the ATLAS IBL, we discuss possible new developments for the upgrade of ATLAS and CMS at the high-luminosity LHC (HL-LHC)

  9. The ATLAS Insertable B-Layer: from construction to operation

    CERN Document Server

    La Rosa, Alessandro

    2016-01-01

    The ATLAS Insertable B-Layer (IBL) is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm from the beam axis and between the existing Pixel detector and a new smaller radius beam-pipe. The new detector, built to cope with high radiation and occupancy, is the first large scale application of 3D detectors and CMOS 130 nm technology. The IBL detector construction was achieved within about two years starting from mid-2012 to the May 2014 installation in ATLAS, a very tight schedule to meet the ATLAS installation and detector closure before starting the Run2 in Spring 2015. The key features and challenges met during the IBL project will be presented, as well as its commissioning and operational experience at the LHC.

  10. Making a trillion pixels dance

    Science.gov (United States)

    Singh, Vivek; Hu, Bin; Toh, Kenny; Bollepalli, Srinivas; Wagner, Stephan; Borodovsky, Yan

    2008-03-01

    In June 2007, Intel announced a new pixelated mask technology. This technology was created to address the problem caused by the growing gap between the lithography wavelength and the feature sizes patterned with it. As this gap has increased, the quality of the image has deteriorated. About a decade ago, Optical Proximity Correction (OPC) was introduced to bridge this gap, but as this gap continued to increase, one could not rely on the same basic set of techniques to maintain image quality. The computational lithography group at Intel sought to alleviate this problem by experimenting with additional degrees of freedom within the mask. This paper describes the resulting pixelated mask technology, and some of the computational methods used to create it. The first key element of this technology is a thick mask model. We realized very early in the development that, unlike traditional OPC methods, the pixelated mask would require a very accurate thick mask model. Whereas in the traditional methods, one can use the relatively coarse approximations such as the boundary layer method, use of such techniques resulted not just in incorrect sizing of parts of the pattern, but in whole features missing. We built on top of previously published domain decomposition methods, and incorporated limitations of the mask manufacturing process, to create an accurate thick mask model. Several additional computational techniques were invoked to substantially increase the speed of this method to a point that it was feasible for full chip tapeout. A second key element of the computational scheme was the comprehension of mask manufacturability, including the vital issue of the number of colors in the mask. While it is obvious that use of three or more colors will give the best image, one has to be practical about projecting mask manufacturing capabilities for such a complex mask. To circumvent this serious issue, we eventually settled on a two color mask - comprising plain glass and etched

  11. The pixel detector for the CMS phase-II upgrade

    CERN Document Server

    Dinardo, Mauro

    2015-01-01

    The high luminosity phase of the Large Hadron Collider (HL-LHC) requires a major pixel detector R\\&D effort to develop both readout chip and sensor that are capable to withstand unprecedented extremely high radiation. The target integrated luminosity of 3000~fb$^{-1}$, that the HL-LHC is expected to deliver over about 10 years of operation, translates into a hadron fluence of $2\\times10^{16}$~1MeV~eq.n.~/~cm$^2$, or equivalently 10~MGy of radiation dose in silicon, at about 3~cm from the interaction region where the first layer of the pixel detector could be located. The CMS collaboration has undertaken two baseline sensor R\\&D programs on thin n-on-p planar and 3D silicon sensor technologies. Together with the ATLAS collaboration it has also been established a common R\\&D effort for the development of the readout chip in the 65~nm CMOS technology. Status, progresses, and prospects of the CMS R\\&D effort are presented and discussed in this article.

  12. The pixel detector for the CMS phase-II upgrade

    Science.gov (United States)

    Dinardo, M. E.

    2015-04-01

    The high luminosity phase of the Large Hadron Collider (HL-LHC) requires a major pixel detector R&D effort to develop both readout chip and sensor that are capable to withstand unprecedented extremely high radiation. The target integrated luminosity of 3000 fb-1, that the HL-LHC is expected to deliver over about 10 years of operation, translates into a hadron fluence of 2×1016 1 MeV eq.n. / cm2, or equivalently 10 MGy of radiation dose in silicon, at about 3 cm from the interaction region where the first layer of the pixel detector could be located. The CMS collaboration has undertaken two baseline sensor R&D programs on thin n-on-p planar and 3D silicon sensor technologies. Together with the ATLAS collaboration it has also been established a common R&D effort for the development of the readout chip in the 65 nm CMOS technology. Status, progresses, and prospects of the CMS R&D effort are presented and discussed in this article.

  13. The pixel detector for the CMS phase-II upgrade

    International Nuclear Information System (INIS)

    The high luminosity phase of the Large Hadron Collider (HL-LHC) requires a major pixel detector R and D effort to develop both readout chip and sensor that are capable to withstand unprecedented extremely high radiation. The target integrated luminosity of 3000 fb−1, that the HL-LHC is expected to deliver over about 10 years of operation, translates into a hadron fluence of 2×1016 1 MeV eq.n. / cm2, or equivalently 10 MGy of radiation dose in silicon, at about 3 cm from the interaction region where the first layer of the pixel detector could be located. The CMS collaboration has undertaken two baseline sensor R and D programs on thin n-on-p planar and 3D silicon sensor technologies. Together with the ATLAS collaboration it has also been established a common R and D effort for the development of the readout chip in the 65 nm CMOS technology. Status, progresses, and prospects of the CMS R and D effort are presented and discussed in this article

  14. The ATLAS Insertable B-Layer (IBL) Project

    CERN Document Server

    Bilbao de Mendizabal, J; The ATLAS collaboration

    2012-01-01

    Preparing the hight luminosity LHC phase, the ATLAS experiment will upgrade his Pixel tracking system with the installation of a new pixel layer. The new sub detector, called the Insertable B-layer (IBL), will be installed during the LHC first shut down in 2013-2014, in between the innermost actual pixel layer and the beampipe. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip FE-I4 and two different silicon sensor technologies, planar and 3D have been developed. Furthermore, the physics performance should be improved through the reduction of pixel size and a new mechanical support using lightweight staves. Two pre-series staves were made in order to qualify the assembly procedure, the loaded module electrical integrity and the read-out chain before going into production.

  15. Development of SOI pixel detector in Cracow

    CERN Document Server

    Bugiel, Szymon; Glab, Sebastian; Idzik, Marek; Moron, Jakub; Kapusta, Piotr Julian; Kucewicz, Wojciech; Turala, Michal

    2015-01-01

    This paper presents the design of a new monolithic Silicon-On-Insulator pixel sensor in $200~nm$ SOI CMOS technology. The main application of the proposed pixel detector is the spectroscopy, but it can also be used for the minimum ionizing particle (MIP) tracking in particle physics experiments. For this reason few different versions of pixel cells are developed: a source-follower based pixel for tracking, a low noise pixel with preamplifier for spectroscopy, and a self-triggering pixel for time and amplitude measurements. In addition the design of a Successive Approximation Register Analog-to-Digital Converter (SAR ADC) is also presented. A 10-bit SAR ADC is developed for spectroscopic measurements and a lower resolution 6-bit SAR ADC is integrated in the pixel matrix as a column ADC, for tracking applications.

  16. The ATLAS Diamond Beam Monitor : Luminosity Detector on the LHC

    CERN Document Server

    Schaefer, Douglas; The ATLAS collaboration

    2015-01-01

    After the first three years of the LHC running the ATLAS experiment extracted it's pixel detector system to refurbish and re-position the optical readout drivers and install a new barrel layer of pixels. The experiment has also taken advantage of this access to also install a set of beam monitoring telescopes with pixel sensors, four each in the forward and backward regions. These telescopes were assembled based on chemical vapour deposited (CVD) diamond sensors to survive in this high radiation environment without needing extensive cooling. This talk will describe the lessons learned in construction and commissioning of the ATLAS x Diamond Beam Monitor (DBM). We will show results from the construction quality assurance tests, commissioning performance, including results from cosmic ray running in early 2015 and also expected first results from LHC run 2 collisions.

  17. The ATLAS Diamond Beam Monitor: Luminosity detector at the LHC

    Science.gov (United States)

    Schaefer, D. M.

    2016-07-01

    After the first three years of the LHC running, the ATLAS experiment extracted its pixel detector system to refurbish and re-position the optical readout drivers and install a new barrel layer of pixels. The experiment has also taken advantage of this access to install a set of beam monitoring telescopes with pixel sensors, four each in the forward and backward regions. These telescopes are based on chemical vapor deposited (CVD) diamond sensors to survive in this high radiation environment without needing extensive cooling. This paper describes the lessons learned in construction and commissioning of the ATLAS Diamond Beam Monitor (DBM). We show results from the construction quality assurance tests and commissioning performance, including results from cosmic ray running in early 2015.

  18. Proceedings of PIXEL98 -- International pixel detector workshop

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.F.; Kwan, S. [eds.

    1998-08-01

    Experiments around the globe face new challenges of more precision in the face of higher interaction rates, greater track densities, and higher radiation doses, as they look for rarer and rarer processes, leading many to incorporate pixelated solid-state detectors into their plans. The highest-readout rate devices require new technologies for implementation. This workshop reviewed recent, significant progress in meeting these technical challenges. Participants presented many new results; many of them from the weeks--even days--just before the workshop. Brand new at this workshop were results on cryogenic operation of radiation-damaged silicon detectors (dubbed the Lazarus effect). Other new work included a diamond sensor with 280-micron collection distance; new results on breakdown in p-type silicon detectors; testing of the latest versions of read-out chip and interconnection designs; and the radiation hardness of deep-submicron processes.

  19. Serial Pixel Analog-to-Digital Converter

    Energy Technology Data Exchange (ETDEWEB)

    Larson, E D

    2010-02-01

    This method reduces the data path from the counter to the pixel register of the analog-to-digital converter (ADC) from as many as 10 bits to a single bit. The reduction in data path width is accomplished by using a coded serial data stream similar to a pseudo random number (PRN) generator. The resulting encoded pixel data is then decoded into a standard hexadecimal format before storage. The high-speed serial pixel ADC concept is based on the single-slope integrating pixel ADC architecture. Previous work has described a massively parallel pixel readout of a similar architecture. The serial ADC connection is similar to the state-of-the art method with the exception that the pixel ADC register is a shift register and the data path is a single bit. A state-of-the-art individual-pixel ADC uses a single-slope charge integration converter architecture with integral registers and “one-hot” counters. This implies that parallel data bits are routed among the counter and the individual on-chip pixel ADC registers. The data path bit-width to the pixel is therefore equivalent to the pixel ADC bit resolution.

  20. Pixel-clarity-based multifocus image fusion

    Institute of Scientific and Technical Information of China (English)

    Zhenhua Li(李振华); Zhongliang Jing(敬忠良); Shaoyuan Sun(孙韶媛)

    2004-01-01

    @@ Due to the limited depth-of-field of optical lenses,it is difficult to get an image with all objects in focus.One way to overcome this problem is to take several images with different focus points and combine theminto a single composite which contains all the regions full focused.This paper describes a pixel-clarity-based multifocus image fusion algorithm.The characteristic of this approach is that the pixels of the fusedimage are selected from the clearest pixels in the input images according to pixel clarity criteria.For eachpixel in the source images,the pixel clarity is calculated.The fusion procedure is performed by a selectionmode according to the magnitude of pixel clarity.Consistency verification is performed on the selectedpixels.Experiments show that the proposed algorithm works well in multifocus image fusion.

  1. Advanced pixel architectures for scientific image sensors

    CERN Document Server

    Coath, R; Godbeer, A; Wilson, M; Turchetta, R

    2009-01-01

    We present recent developments from two projects targeting advanced pixel architectures for scientific applications. Results are reported from FORTIS, a sensor demonstrating variants on a 4T pixel architecture. The variants include differences in pixel and diode size, the in-pixel source follower transistor size and the capacitance of the readout node to optimise for low noise and sensitivity to small amounts of charge. Results are also reported from TPAC, a complex pixel architecture with ~160 transistors per pixel. Both sensors were manufactured in the 0.18μm INMAPS process, which includes a special deep p-well layer and fabrication on a high resistivity epitaxial layer for improved charge collection efficiency.

  2. Penrose Pixels for Super-Resolution.

    Science.gov (United States)

    Ben-Ezra, M; Lin, Zhouchen; Wilburn, Bennett; Zhang, Wei

    2011-07-01

    We present a novel approach to reconstruction-based super-resolution that uses aperiodic pixel tilings, such as a Penrose tiling or a biological retina, for improved performance. To this aim, we develop a new variant of the well-known error back projection super-resolution algorithm that makes use of the exact detector model in its back projection operator for better accuracy. Pixels in our model can vary in shape and size, and there may be gaps between adjacent pixels. The algorithm applies equally well to periodic or aperiodic pixel tilings. We present analysis and extensive tests using synthetic and real images to show that our approach using aperiodic layouts substantially outperforms existing reconstruction-based algorithms for regular pixel arrays. We close with a discussion of the feasibility of manufacturing CMOS or CCD chips with pixels arranged in Penrose tilings.

  3. Equivalence of a Bit Pixel Image to a Quantum Pixel Image

    Science.gov (United States)

    Ortega, Laurel Carlos; Dong, Shi-Hai; Cruz-Irisson, M.

    2015-11-01

    We propose a new method to transform a pixel image to the corresponding quantum-pixel using a qubit per pixel to represent each pixels classical weight in a quantum image matrix weight. All qubits are linear superposition, changing the coefficients level by level to the entire longitude of the gray scale with respect to the base states of the qubit. Classically, these states are just bytes represented in a binary matrix, having code combinations of 1 or 0 at all pixel locations. This method introduces a qubit-pixel image representation of images captured by classical optoelectronic methods. Supported partially by the project 20150964-SIP-IPN, Mexico

  4. Region based elimination of noise pixels towards optimized classifier models for skin pixel detection

    OpenAIRE

    Gagandeep Kaur; Seema Pahwa

    2015-01-01

    The extraction of the skin pixels in a human image and rejection of non-skin pixels is called the skin segmentation. Skin pixel detection is the process of extracting the skin pixels in a human image which is typically used as a pre-processing step to extract the face regions from human image. In past, there are several computer vision approaches and techniques have been developed for skin pixel detection. In the process of skin detection, given pixels are been transformed into an...

  5. Optimisation de la Performance Thermique du Détecteur Pixel Alpine

    CERN Document Server

    Zhang, Zhan

    The ATLAS (A Toroidal LHC ApparatuS) detector is the largest detector of the Large Hadron Collider (LHC). One of the most important goals of ATLAS was to search for the missing piece of the Standard Model, the Higgs boson that had been found in 2012. In order to keep looking for the unknowns, it is planned to upgrade the LHC. The High Luminosity LHC (HL-LHC) is a novel configuration of the accelerator, aiming at increasing the luminosity by a factor five or more above the nominal LHC design. In parallel with the accelerator upgrade also the ATLAS will be upgraded to cope with detector aging and to achieve the same or better performance under increased event rate and radiation dose expected at the HL-LHC. This thesis discusses a novel design for the ATLAS Pixel Detector called the "Alpine" layout for the HL-LHC. To support this design, a local support structure is proposed, optimized and tested with an advanced CO2 evaporative cooling system. A numerical program called “CoBra” simulating the twophase heat ...

  6. Implementation of TDI based digital pixel ROIC with 15μm pixel pitch

    Science.gov (United States)

    Ceylan, Omer; Shafique, Atia; Burak, A.; Caliskan, Can; Abbasi, Shahbaz; Yazici, Melik; Gurbuz, Yasar

    2016-05-01

    A 15um pixel pitch digital pixel for LWIR time delay integration (TDI) applications is implemented which occupies one fourth of pixel area compared to previous digital TDI implementation. TDI is implemented on 8 pixels with oversampling rate of 2. ROIC provides 16 bits output with 8 bits of MSB and 8 bits of LSB. Pixel can store 75 M electrons with a quantization noise of 500 electrons. Digital pixel TDI implementation is advantageous over analog counterparts considering power consumption, chip area and signal-to-noise ratio. Digital pixel TDI ROIC is fabricated with 0.18um CMOS process. In digital pixel TDI implementation photocurrent is integrated on a capacitor in pixel and converted to digital data in pixel. This digital data triggers the summation counters which implements TDI addition. After all pixels in a row contribute, the summed data is divided to the number of TDI pixels(N) to have the actual output which is square root of N improved version of a single pixel output in terms of signal-to-noise-ratio (SNR).

  7. ATLAS Outreach Highlights

    CERN Document Server

    Cheatham, Susan; The ATLAS collaboration

    2016-01-01

    The ATLAS outreach team is very active, promoting particle physics to a broad range of audiences including physicists, general public, policy makers, students and teachers, and media. A selection of current outreach activities and new projects will be presented. Recent highlights include the new ATLAS public website and ATLAS Open Data, the very recent public release of 1 fb-1 of ATLAS data.

  8. Land Cover Heterogeneity Effects on Sub-Pixel and Per-Pixel Classifications

    Directory of Open Access Journals (Sweden)

    Trung V. Tran

    2014-04-01

    Full Text Available Per-pixel and sub-pixel are two common classification methods in land cover studies. The characteristics of a landscape, particularly the land cover itself, can affect the accuracies of both methods. The objectives of this study were to: (1 compare the performance of sub-pixel vs. per-pixel classification methods for a broad heterogeneous region; and (2 analyze the impact of land cover heterogeneity (i.e., the number of land cover classes per pixel on both classification methods. The results demonstrated that the accuracy of both per-pixel and sub-pixel classification methods were generally reduced by increasing land cover heterogeneity. Urban areas, for example, were found to have the lowest accuracy for the per-pixel method, because they had the highest heterogeneity. Conversely, rural areas dominated by cropland and grassland had low heterogeneity and high accuracy. When a sub-pixel method was used, the producer’s accuracy for artificial surfaces was increased by more than 20%. For all other land cover classes, sub-pixel and per-pixel classification methods performed similarly. Thus, the sub-pixel classification was only advantageous for heterogeneous urban landscapes. Both creators and users of land cover datasets should be aware of the inherent landscape heterogeneity and its potential effect on map accuracy.

  9. ISPA (imaging silicon pixel array) experiment

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The bump-bonded silicon pixel detector, developed at CERN by the EP-MIC group, is shown here in its ceramic carrier. Both represent the ISPA-tube anode. The chip features between 1024 (called OMEGA-1) and 8196 (ALICE-1) active pixels.

  10. Module production of the one-arm AFP 3D pixel tracker

    CERN Document Server

    Grinstein, S; Chmeissani, M; Dorholt, O; Foerster, F; Lange, J; Paz, I Lopez; Manna, M; Pellegrini, G; Quirion, D; Rijssenbeek, M; Rohne, O; Stugu, B

    2016-01-01

    The ATLAS Forward Proton (AFP) detector is designed to identify events in which one or two protons emerge intact from the LHC collisions. AFP will consist of a tracking detector, to measure the momentum of the protons, and a time of flight system to reduce the background from multiple proton-proton interactions. Following an extensive qualification period, 3D silicon pixel sensors were selected for the AFP tracker. The sensors were produced at CNM (Barcelona) during 2014. The tracker module assembly and quality control was performed at IFAE during 2015. The assembly of the first AFP arm and the following installation in the LHC tunnel took place in February 2016. This paper reviews the fabrication process of the AFP tracker focusing on the pixel modules.

  11. Power dissipation studies on planar n+-in-n pixel sensors

    Science.gov (United States)

    Klingenberg, R.; Altenheiner, S.; Bryan, D.; Dungs, S.; Gisen, A.; Gößling, C.; Hillringhaus, B.; Kröninger, K.; Ratering, C.; Wittig, T.

    2016-09-01

    Research and development laboratory measurements of non-irradiated and irradiated planar n+-in-n pixel sensor structures are systematically investigated to determine the power dissipation of those sensors. Measurements were taken at different operation temperatures, sensor bias voltages, bulk thicknesses, sensor areas, and irradiation fluences. For planar n+-in-n pixel sensors irradiated to HL-LHC fluences of some 1016neqcm-2 a power dissipation area density of (126±8) mW cm-2 at a temperature of -25 °C and at an operation voltage of 800 V is derived for small sensors with an area of about 0.7cm2 . For large sensors as planned for the ATLAS phase-II upgrade a power dissipation of 100 mW cm-2 is expected.

  12. ATLAS Story

    CERN Multimedia

    Nordberg, Markus

    2012-01-01

    This film produced in July 2012 explains how fundamental research connects to Society and what benefits collaborative way of working can and may generate in the future, using ATLAS Collaboration as a case study. The film is intellectually inspired by the book "Collisions and Collaboration" (OUP) by Max Boisot (ed.), see: collisionsandcollaboration.com. The film is directed by Andrew Millington (OMNI Communications)

  13. The ATLAS Insertable B-Layer Project

    CERN Document Server

    Miucci, A; The ATLAS collaboration

    2014-01-01

    The ATLAS experiment will upgrade its Pixel Detector with the installation of a new pixel layer in 2013-14. The new sub-detector, named Insertable B-layer (IBL), will be installed between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been de- veloped. Furthermore, the physics performance should be improved through the reduction of pixel size while a low material budget should be imposed. A new mechanical support using lightweight staves and a CO2 based cooling system is used. An overview of the IBL project and the status of the production of staves and the qualification of the assembly procedure, the loaded module electrical integrity and the read-out chain will be presented.

  14. Status of the ATLAS Forward Physics (AFP) project

    Science.gov (United States)

    Chytka, Ladislav; Atlas Collaboration

    2013-04-01

    The ATLAS Forward Physics (AFP) project plans to add a set of detectors - silicon 3D pixel tracking detectors and QUARTIC time of flight detectors - in the forward region of the ATLAS experiment at the LHC. The AFP detectors will be placed around 210 m from the interaction point and are meant to detect protons produced at small angles. The detectors are to be housed in the so called Hamburg beam pipe - a movable beam pipe allowing horizontal movement of the detectors. The AFP is currently under approval with possible installation in 2014/15.

  15. Status of the ATLAS Forward Physics (AFP) Project

    CERN Document Server

    Chytka, L; The ATLAS collaboration

    2012-01-01

    The ATLAS Forward Physics (AFP) project plans to add a set of detectors --- silicon 3D pixel tracking detectors and QUARTIC time of flight detectors --- in the forward region of the ATLAS experiment at the LHC. The AFP detectors will be placed around 210 m from the interaction point and are meant to detect protons produced at small angles. The detectors are to be housed in the so called Hamburg beam pipe --- a movable beam pipe allowing horizontal movement of the detectors. The AFP is currently under approval with possible installation in 2014/15.

  16. Prototype ATLAS IBL Modules using the FE-I4A Front-End Readout Chip

    CERN Document Server

    Albert, J; Alimonti, Gianluca; Allport, Phil; Altenheiner, Silke; Ancu, Lucian; Andreazza, Attilio; Arguin, Jean-Francois; Arutinov, David; Backhaus, Malte; Bagolini, Alvise; Ballansat, Jacques; Barbero, Marlon; Barbier, Gérard; Bates, Richard; Battistin, Michele; Baudin, Patrick; Beau, Tristan; Beccherle, Roberto; Beck, Hans Peter; Benoit, Mathieu; Bensinger, Jim; Bomben, Marco; Borri, Marcello; Boscardin, Maurizio; Botelho Direito, Jose Antonio; Bousson, Nicolas; Boyd, George Russell Jr; Breugnon, Patrick; Bruni, Graziano; Bruschi, Marco; Buchholz, Peter; Buttar, Craig; Cadoux, Franck; Calderini, Giovanni; Caminada, Leah; Capeans, Mar; Casse, Gianluigi; Catinaccio, Andrea; Cavalli-Sforza, Matteo; Chauveau, Jacques; Chu, Ming-Lee; Ciapetti, Marco; Cindro, Vladimir; Citterio, Mauro; Clark, Allan; Cobal, Marina; Coelli, Simone; Colijn, Auke-Pieter; Colin, Daly; Collot, Johann; Crespo-Lopez, Olivier; Dalla Betta, Gian-Franco; Darbo, Giovanni; DaVia, Cinzia; David, Pierre-Yves; Debieux, Stéphane; Delebecque, Pierre; Devetak, Erik; DeWilde, Burton; Di Girolamo, Beniamino; Dinu, Nicoleta; Dittus, Fridolin; Diyakov, Denis; Djama, Fares; Dobos, Daniel Adam; Doonan, Kate; Dopke, Jens; Dorholt, Ole; Dube, Sourabh; Dushkin, Andrey; Dzahini, Daniel; Egorov, Kirill; Ehrmann, Oswin; Elldge, David; Elles, Sabine; Elsing, Markus; Eraud, Ludovic; Ereditato, Antonio; Eyring, Andreas; Falchieri, Davide; Falou, Aboud; Fang, Xiaochao; Fausten, Camille; Favre, Yannick; Ferrere, Didier; Fleta, Celeste; Fleury, Julien; Flick, Tobias; Forshaw, Dean; Fougeron, Denis; Fritzsch, Thomas; Gabrielli, Alessandro; Gaglione, Renaud; Gallrapp, Christian; Gan, K; Garcia-Sciveres, Maurice; Gariano, Giuseppe; Gastaldi, Thibaut; Gemme, Claudia; Gensolen, Fabrice; George, Matthias; Ghislain, Patrick; Giacomini, Gabriele; Gibson, Stephen; Giordani, Mario Paolo; Giugni, Danilo; Gjersdal, Håvard; Glitza, Karl Walter; Gnani, Dario; Godlewski, Jan; Gonella, Laura; Gorelov, Igor; Gorišek, Andrej; Gössling, Claus; Grancagnolo, Sergio; Gray, Heather; Gregor, Ingrid-Maria; Grenier, Philippe; Grinstein, Sebastian; Gromov, Vladimir; Grondin, Denis; Grosse-Knetter, Jörn; Hansen, Thor-Erik; Hansson, Per; Harb, Ali; Hartman, Neal; Hasi, Jasmine; Hegner, Franziska; Heim, Timon; Heinemann, Beate; Hemperek, Tomasz; Hessey, Nigel; Hetmánek, Martin; Hoeferkamp, Martin; Hostachy, Jean-Yves; Hügging, Fabian; Husi, Coralie; Iacobucci, Giuseppe; Idarraga, John; Ikegami, Yoichi; Janoška, Zdenko; Jansen, Jens; Jansen, Luc; Jensen, Frank; Jentzsch, Jennifer; Joseph, John; Kagan, Harris; Karagounis, Michael; Kass, Richard; Kenney, Christopher J; Kersten, Susanne; Kind, Peter; Klingenberg, Reiner; Kluit, Ruud; Kocian, Martin; Koffeman, Els; Kok, Angela; Korchak, Oleksandr; Korolkov, Ilya; Kostyukhin, Vadim; Krieger, Nina; Krüger, Hans; Kruth, Andre; Kugel, Andreas; Kuykendall, William; La Rosa, Alessandro; Lai, Chung-Hang; Lantzsch, Kerstin; Laporte, Didier; Lapsien, Tobias; Lounis, abdenour; Lozano, Manuel; Lu, Yunpeng; Lubatti, Henry; Macchiolo, Anna; Mallik, Usha; Mandić, Igor; Marchand, Denis; Marchiori, Giovanni; Massol, Nicolas; Matthias, Wittgen; Mättig, Peter; Mekkaoui, Abderrazak; Menouni, Mohsine; Menu, Johann; Meroni, Chiara; Mesa, Javier; Micelli, Andrea; Michal, Sébastien; Miglioranzi, Silvia; Mikuž, Marko; Mitsui, Shingo; Monti, Mauro; Moore, J; Morettini, Paolo; Muenstermann, Daniel; Murray, Peyton; Nellist, Clara; Nelson, David J; Nessi, Marzio; Neumann, Manuel; Nisius, Richard; Nordberg, Markus; Nuiry, Francois-Xavier; Oppermann, Hermann; Oriunno, Marco; Padilla, Cristobal; Parker, Sherwood; Pellegrini, Giulio; Pelleriti, Gabriel; Pernegger, Heinz; Piacquadio, Nicola Giacinto; Picazio, Attilio; Pohl, David; Polini, Alessandro; Popule, Jiří; Portell Bueso, Xavier; Povoli, Marco; Puldon, David; Pylypchenko, Yuriy; Quadt, Arnulf; Quirion, David; Ragusa, Francesco; Rambure, Thibaut; Richards, Erik; Ristic, Branislav; Røhne, Ole; Rothermund, Mario; Rovani, Alessandro; Rozanov, Alexandre; Rubinskiy, Igor; Rudolph, Matthew Scott; Rummler, André; Ruscino, Ettore; Salek, David; Salzburger, Andreas; Sandaker, Heidi; Schipper, Jan-David; Schneider, Basil; Schorlemmer, Andre; Schroer, Nicolai; Schwemling, Philippe; Seidel, Sally; Seiden, Abraham; Šícho, Petr; Skubic, Patrick; Sloboda, Michal; Smith, D; Sood, Alex; Spencer, Edwin; Strang, Michael; Stugu, Bjarne; Stupak, John; Su, Dong; Takubo, Yosuke; Tassan, Jean; Teng, Ping-Kun; Terada, Susumu; Todorov, Theodore; Tomášek, Michal; Toms, Konstantin; Travaglini, Riccardo; Trischuk, William; Troncon, Clara; Troska, Georg; Tsiskaridze, Shota; Tsurin, Ilya; Tsybychev, Dmitri; Unno, Yoshinobu; Vacavant, Laurent; Verlaat, Bart; Vianello, Elisa; Vigeolas, Eric; von Kleist, Stephan; Vrba, Václav; Vuillermet, Raphaël; Wang, Rui; Watts, Stephen; Weber, Michele; Weber, Marteen; Weigell, Philipp; Weingarten, Jens; Welch, Steven David; Wenig, Siegfried; Wermes, Norbert; Wiese, Andreas; Wittig, Tobias; Yildizkaya, Tamer; Zeitnitz, Christian; Ziolkowski, Michal; Zivkovic, Vladimir; Zoccoli, Antonio; Zorzi, Nicola; Zwalinski, Lukasz

    2012-01-01

    The ATLAS Collaboration will upgrade its semiconductor pixel tracking detector with a new Insertable B-layer (IBL) between the existing pixel detector and the vacuum pipe of the Large Hadron Collider. The extreme operating conditions at this location have necessitated the development of new radiation hard pixel sensor technologies and a new front-end readout chip, called the FE-I4. Planar pixel sensors and 3D pixel sensors have been investigated to equip this new pixel layer, and prototype modules using the FE-I4A have been fabricated and characterized using 120 GeV pions at the CERN SPS and 4 GeV positrons at DESY, before and after module irradiation. Beam test results are presented, including charge collection efficiency, tracking efficiency and charge sharing.

  17. Fabrication of a high-density MCM-D for a pixel detector system using a BCB/Cu technology

    CERN Document Server

    Topper, M; Engelmann, G; Fehlberg, S; Gerlach, P; Wolf, J; Ehrmann, O; Becks, K H; Reichl, H

    1999-01-01

    The MCM-D which is described here is a prototype for a pixel detector system for the planned Large Hadron Collider (LHC) at CERN, Geneva. The project is within the ATLAS experiment. The module consists of a sensor tile with an active area of 16.4 mm*60.4 mm, 16 readout chips, each serving 24*160 pixel unit cells, a module controller chip, an optical transceiver and the local signal interconnection and power distribution buses. The extremely high wiring density which is necessary to interconnect the readout chips was achieved using a thin film copper/photo-BCB process above the pixel array. The bumping of the readout chips was done by PbSn electroplating. All dice are then attached by flip-chip assembly to the sensor diodes and the local buses. The focus of this paper is a detailed description of the technologies for the fabrication of this advanced MCM-D. (10 refs).

  18. Optimization of radiation hardness and charge collection of edgeless silicon pixel sensors for photon science

    CERN Document Server

    Zhang, Jiaguo; Pennicard, David; Sarajlic, Milija; Graafsma, Heinz

    2014-01-01

    Recent progress in active-edge technology of silicon sensors enables the development of large-area tiled silicon pixel detectors with small dead space between modules by utilizing edgeless sensors. Such technology has been proven in successful productions of ATLAS and Medipix-based silicon pixel sensors by a few foundries. However, the drawbacks of edgeless sensors are poor radiation hardness for ionizing radiation and non-uniform charge collection by edge pixels. In this work, the radiation hardness of edgeless sensors with different polarities has been investigated using Synopsys TCAD with X-ray radiation-damage parameters implemented. Results show that if no conventional guard ring is present, none of the current designs are able to achieve a high breakdown voltage (typically < 30 V) after irradiation to a dose of ~10 MGy. In addition, a charge-collection model has been developed and was used to calculate the charges collected by the edge pixels of edgeless sensors when illuminated with X-rays. The mode...

  19. The Measurement of Spectral Characteristics and Composition of Radiation in ATLAS with MEDIPIX2-USB Devices

    CERN Document Server

    Campbell, M.; Greiffenberg, D.; Heijne, E.; Holy, T.; Idárraga, J.; Jakubek, J.; Král, V.; Králík, M.; Lebel, C.; Leroy, C.; Llopart, X.; Lord, G.; Maneuski, D.; Ouellette, O.; Sochor, V.; Prospísil, S.; Suk, M; Tlustos, L.; Vykydal, Z.; Wilhelm, I.

    2008-01-01

    A network of devices to perform real-time measurements of the spectral characteristics and composition of radiation in the ATLAS detector and cavern during its operation is being built. This system of detectors will be a stand alone system fully capable of delivering real-time images of fluxes and spectral composition of different particle species including slow and fast neutrons. The devices are based on MEDIPIX2 pixel silicon detectors that will be operated via active USB cables and USB-Ethernet extenders through an Ethernet network by a PC located in the USA15 ATLAS control room. The installation of 14 devices inside ATLAS (detector and cavern) is in progress.

  20. It's not the pixel count, you fool

    Science.gov (United States)

    Kriss, Michael A.

    2012-01-01

    The first thing a "marketing guy" asks the digital camera engineer is "how many pixels does it have, for we need as many mega pixels as possible since the other guys are killing us with their "umpteen" mega pixel pocket sized digital cameras. And so it goes until the pixels get smaller and smaller in order to inflate the pixel count in the never-ending pixel-wars. These small pixels just are not very good. The truth of the matter is that the most important feature of digital cameras in the last five years is the automatic motion control to stabilize the image on the sensor along with some very sophisticated image processing. All the rest has been hype and some "cool" design. What is the future for digital imaging and what will drive growth of camera sales (not counting the cell phone cameras which totally dominate the market in terms of camera sales) and more importantly after sales profits? Well sit in on the Dark Side of Color and find out what is being done to increase the after sales profits and don't be surprised if has been done long ago in some basement lab of a photographic company and of course, before its time.

  1. LAPAS: A SiGe Front End Prototype for the Upgraded ATLAS LAr

    CERN Document Server

    Rescia, S; Newcomer, F M; Dressnandt, N

    2009-01-01

    We have designed and fabricated a very low noise preamplifier and shaper with a (RC)2 – CR response to replace the existing ATLAS Liquid Argon readout for use at SLHC. IBM’s 8WL 130nm SiGe process was chosen for its radiation tolerance wide voltage range and potential for use in other LHC detector subsystems. The required dynamic range of 15 bits is accomplished by utilization of a single stage, low noise, wide dynamic range preamp connected to a dual range shaper. The low noise of the preamp (~.01nA / √Hz) is achieved by utilizing the process Silicon Germanium bipolar transistors. The relatively high voltage rating of the npn transistors is exploited to allow a gain of 650V/A. With this gain the equivalent input voltage noise requirement on the shaper to about 2.2nV/ √Hz. Each shaper stage is designed as a cascaded differential op amp doublet with a common mode operating point regulated by an internal feedback loop. The shaper outputs are designed to be compatible with the 130nm CMOS ADC being develo...

  2. LISe pixel detector for neutron imaging

    Science.gov (United States)

    Herrera, Elan; Hamm, Daniel; Wiggins, Brenden; Milburn, Rob; Burger, Arnold; Bilheux, Hassina; Santodonato, Louis; Chvala, Ondrej; Stowe, Ashley; Lukosi, Eric

    2016-10-01

    Semiconducting lithium indium diselenide, 6LiInSe2 or LISe, has promising characteristics for neutron detection applications. The 95% isotopic enrichment of 6Li results in a highly efficient thermal neutron-sensitive material. In this study, we report on a proof-of-principle investigation of a semiconducting LISe pixel detector to demonstrate its potential as an efficient neutron imager. The LISe pixel detector had a 4×4 of pixels with a 550 μm pitch on a 5×5×0.56 mm3 LISe substrate. An experimentally verified spatial resolution of 300 μm was observed utilizing a super-sampling technique.

  3. Pixel Hit Reconstruction with the CMS Detector

    CERN Document Server

    Giurgiu, Gavril; Maksimovic, P; Swartz, M

    2008-01-01

    We present a new technique for pixel hit reconstruction with the CMS pixel detector. The technique is based on fitting the pixel cluster projections to templates obtained using a detailed simulation called Pixelav. Pixelav successfully describes the profiles of clusters measured in beam tests of radiation-damaged sensors. Originally developed to optimally estimate the coordinates of hits after the radiation damage, the technique has superior performance before irradiation as well, reducing the resolution tails of reconstructed track parameters and significantly reducing the light quark background of tagged b-quarks. It is the only technique currently available to simulate hits from a radiation-damaged detector.

  4. Pixelated CdZnTe drift detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl

    2005-01-01

    A technique, the so-called Drift Strip Method (DSM), for improving the CdZnTe detector energy response to hard X-rays and gamma-rays was applied as a pixel geometry. First tests have confirmed that this detector type provides excellent energy resolution and imaging performance. We specifically...... report on the performance of 3 mm thick prototype CZT drift pixel detectors fabricated using material from eV-products. We discuss issues associated with detector module performance. Characterization results obtained from several prototype drift pixel detectors are presented. Results of position...

  5. Pixel detectors from fundamentals to applications

    CERN Document Server

    Rossi, Leonardo; Rohe, Tilman; Wermes, Norbert

    2006-01-01

    Pixel detectors are a particularly important class of particle and radiation detection devices. They have an extremely broad spectrum of applications, ranging from high-energy physics to the photo cameras of everyday life. This book is a general purpose introduction into the fundamental principles of pixel detector technology and semiconductor-based hybrid pixel devices. Although these devices were developed for high-energy ionizing particles and radiation beyond visible light, they are finding new applications in many other areas. This book will therefore benefit all scientists and engineers working in any laboratory involved in developing or using particle detection.

  6. Performance of the ATLAS track reconstruction

    CERN Document Server

    Miglioranzi, Silvia; The ATLAS collaboration

    2015-01-01

    Performance of the ATLAS track reconstruction. Run-2 of the LHC will provide new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. In addition, the Insertable B-layer (IBL) is a fourth pixel layer, which has been inserted at the centre of ATLAS during the shutdown of the LHC. We will discuss improvements to track reconstruction developed during the two year shutdown of the LHC. These include novel techniques developed to improve the performance in the dense cores of jets, optimisation for the expected conditions, and a big software campaign which lead to a factor of three decrease in the CPU time needed to process each recorded event. The commissioning of the detector using cosmic data and, if available, collision data will also be discussed.

  7. ATLAS Recordings

    CERN Multimedia

    Steven Goldfarb; Mitch McLachlan; Homer A. Neal

    Web Archives of ATLAS Plenary Sessions, Workshops, Meetings, and Tutorials from 2005 until this past month are available via the University of Michigan portal here. Most recent additions include the Trigger-Aware Analysis Tutorial by Monika Wielers on March 23 and the ROOT Workshop held at CERN on March 26-27.Viewing requires a standard web browser with RealPlayer plug-in (included in most browsers automatically) and works on any major platform. Lectures can be viewed directly over the web or downloaded locally.In addition, you will find access to a variety of general tutorials and events via the portal.Feedback WelcomeOur group is making arrangements now to record plenary sessions, tutorials, and other important ATLAS events for 2007. Your suggestions for potential recording, as well as your feedback on existing archives is always welcome. Please contact us at wlap@umich.edu. Thank you.Enjoy the Lectures!

  8. Development of an ASD IC for the Micro Pixel Chamber

    CERN Document Server

    Orito, R; Kubo, H; Miuchi, K; Nagayoshi, T; Okada, Y; Takada, A; Takeda, A; Tanimori, T; Ueno, M

    2004-01-01

    A new amplifier-shaper-discriminator (ASD) chip was designed and manufactured for the Micro Pixel Chamber ($\\mu$-PIC). The design of this ASD IC is based on the ASD IC (TGC-ASD) for the Thin Gap Chamber in the LHC Atlas Experiment. The decay time constant of the preamplifier is 5-times longer than that of the TGC-ASD, and some other modifications have been made in order to improve the signal-to-noise ratio of the $\\mu$-PIC. The ASD IC uses SONY Analog Master Slice bipolar technology. The IC contains 4 channels in a QFP48 package. The decay time constant of the preamplifier is 80 ns and its gain is approximately 0.8 V/pC. The output from the preamplifier is received by a shaper (main-amplifier) with a gain of 7. A baseline restoration circuit is incorporated in the main-amplifier, and the current used for the baseline restoration is 5-times smaller than that of the TGC-ASD. The threshold voltage for the discriminator section is common to the 4 channels and their digital output level is LVDS-compatible. The ASD...

  9. Adopt a Pixel Photographs: 2013-Present

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The photographs in the Adopt a Pixel collection were provided by volunteers with a digital camera, a Global Positioning System (GPS), and a compass or a smart...

  10. FE-I4 pixel chip characterization with USBpix3 test system

    Energy Technology Data Exchange (ETDEWEB)

    Filimonov, Viacheslav; Gonella, Laura; Hemperek, Tomasz; Huegging, Fabian; Janssen, Jens; Krueger, Hans; Pohl, David-Leon; Wermes, Norbert [University of Bonn, Bonn (Germany)

    2015-07-01

    The USBpix readout system is a small and light weighting test system for the ATLAS pixel readout chips. It is widely used to operate and characterize FE-I4 pixel modules in lab and test beam environments. For multi-chip modules the resources on the Multi-IO board, that is the central control unit of the readout system, are coming to their limits, which makes the simultaneous readout of more than one chip at a time challenging. Therefore an upgrade of the current USBpix system has been developed. The upgraded system is called USBpix3 - the main focus of the talk. Characterization of single chip FE-I4 modules was performed with USBpix3 prototype (digital, analog, threshold and source scans; tuning). PyBAR (Bonn ATLAS Readout in Python scripting language) was used as readout software. PyBAR consists of FEI4 DAQ and Data Analysis Libraries in Python. The presentation describes the USBpix3 system, results of FE-I4 modules characterization and preparation for the multi-chip module and multi-module readout with USBpix3.

  11. FE-I4 pixel chip characterization with USBpix3 test system

    International Nuclear Information System (INIS)

    The USBpix readout system is a small and light weighting test system for the ATLAS pixel readout chips. It is widely used to operate and characterize FE-I4 pixel modules in lab and test beam environments. For multi-chip modules the resources on the Multi-IO board, that is the central control unit of the readout system, are coming to their limits, which makes the simultaneous readout of more than one chip at a time challenging. Therefore an upgrade of the current USBpix system has been developed. The upgraded system is called USBpix3 - the main focus of the talk. Characterization of single chip FE-I4 modules was performed with USBpix3 prototype (digital, analog, threshold and source scans; tuning). PyBAR (Bonn ATLAS Readout in Python scripting language) was used as readout software. PyBAR consists of FEI4 DAQ and Data Analysis Libraries in Python. The presentation describes the USBpix3 system, results of FE-I4 modules characterization and preparation for the multi-chip module and multi-module readout with USBpix3.

  12. Hybrid pixel detector development for medical radiography

    International Nuclear Information System (INIS)

    A 7-year project has been initiated to develop hybrid pixel detectors for medical radiography. Crystalline semiconductor will be bonded to a pixellated readout chip where individual integrated circuits process each event, transferring the position, energy and timing information to the data acquisition controller. Chips will be tiled to produce a large area detector, capable of energy dispersive photon counting at moderate spatial resolution. Preliminary results from studies examining the design features and operation of the device are presented

  13. Design of the small pixel pitch ROIC

    Science.gov (United States)

    Liang, Qinghua; Jiang, Dazhao; Chen, Honglei; Zhai, Yongcheng; Gao, Lei; Ding, Ruijun

    2014-11-01

    Since the technology trend of the third generation IRFPA towards resolution enhancing has steadily progressed,the pixel pitch of IRFPA has been greatly reduced.A 640×512 readout integrated circuit(ROIC) of IRFPA with 15μm pixel pitch is presented in this paper.The 15μm pixel pitch ROIC design will face many challenges.As we all known,the integrating capacitor is a key performance parameter when considering pixel area,charge capacity and dynamic range,so we adopt the effective method of 2 by 2 pixels sharing an integrating capacitor to solve this problem.The input unit cell architecture will contain two paralleled sample and hold parts,which not only allow the FPA to be operated in full frame snapshot mode but also save relatively unit circuit area.Different applications need more matching input unit circuits. Because the dimension of 2×2 pixels is 30μm×30μm, an input stage based on direct injection (DI) which has medium injection ratio and small layout area is proved to be suitable for middle wave (MW) while BDI with three-transistor cascode amplifier for long wave(LW). By adopting the 0.35μm 2P4M mixed signal process, the circuit architecture can make the effective charge capacity of 7.8Me- per pixel with 2.2V output range for MW and 7.3 Me- per pixel with 2.6V output range for LW. According to the simulation results, this circuit works well under 5V power supply and achieves less than 0.1% nonlinearity.

  14. Charge sharing in silicon pixel detectors

    CERN Document Server

    Mathieson, K; Seller, P; Prydderch, M L; O'Shea, V; Bates, R L; Smith, K M; Rahman, M

    2002-01-01

    We used a pixellated hybrid silicon X-ray detector to study the effect of the sharing of generated charge between neighbouring pixels over a range of incident X-ray energies, 13-36 keV. The system is a room temperature, energy resolving detector with a Gaussian FWHM of 265 eV at 5.9 keV. Each pixel is 300 mu m square, 300 mu m deep and is bump bonded to matching read out electronics. The modelling packages MEDICI and MCNP were used to model the complete X-ray interaction and the subsequent charge transport. Using this software a model is developed which reproduces well the experimental results. The simulations are then altered to explore smaller pixel sizes and different X-ray energies. Charge sharing was observed experimentally to be 2% at 13 keV rising to 4.5% at 36 keV, for an energy threshold of 4 keV. The models predict that up to 50% of charge may be lost to the neighbouring pixels, for an X-ray energy of 36 keV, when the pixel size is reduced to 55 mu m.

  15. Steganography based on pixel intensity value decomposition

    Science.gov (United States)

    Abdulla, Alan Anwar; Sellahewa, Harin; Jassim, Sabah A.

    2014-05-01

    This paper focuses on steganography based on pixel intensity value decomposition. A number of existing schemes such as binary, Fibonacci, Prime, Natural, Lucas, and Catalan-Fibonacci (CF) are evaluated in terms of payload capacity and stego quality. A new technique based on a specific representation is proposed to decompose pixel intensity values into 16 (virtual) bit-planes suitable for embedding purposes. The proposed decomposition has a desirable property whereby the sum of all bit-planes does not exceed the maximum pixel intensity value, i.e. 255. Experimental results demonstrate that the proposed technique offers an effective compromise between payload capacity and stego quality of existing embedding techniques based on pixel intensity value decomposition. Its capacity is equal to that of binary and Lucas, while it offers a higher capacity than Fibonacci, Prime, Natural, and CF when the secret bits are embedded in 1st Least Significant Bit (LSB). When the secret bits are embedded in higher bit-planes, i.e., 2nd LSB to 8th Most Significant Bit (MSB), the proposed scheme has more capacity than Natural numbers based embedding. However, from the 6th bit-plane onwards, the proposed scheme offers better stego quality. In general, the proposed decomposition scheme has less effect in terms of quality on pixel value when compared to most existing pixel intensity value decomposition techniques when embedding messages in higher bit-planes.

  16. Small pixel oversampled IR focal plane arrays

    Science.gov (United States)

    Caulfield, John; Curzan, Jon; Lewis, Jay; Dhar, Nibir

    2015-06-01

    We report on a new high definition high charge capacity 2.1 Mpixel MWIR Infrared Focal Plane Array. This high definition (HD) FPA utilizes a small 5 um pitch pixel size which is below the Nyquist limit imposed by the optical systems Point Spread Function (PSF). These smaller sub diffraction limited pixels allow spatial oversampling of the image. We show that oversampling IRFPAs enables improved fidelity in imaging including resolution improvements, advanced pixel correlation processing to reduce false alarm rates, improved detection ranges, and an improved ability to track closely spaced objects. Small pixel HD arrays are viewed as the key component enabling lower size, power and weight of the IR Sensor System. Small pixels enables a reduction in the size of the systems components from the smaller detector and ROIC array, the reduced optics focal length and overall lens size, resulting in an overall compactness in the sensor package, cooling and associated electronics. The highly sensitive MWIR small pixel HD FPA has the capability to detect dimmer signals at longer ranges than previously demonstrated.

  17. Overview of the ATLAS Insertable B-Layer (IBL) Project

    CERN Document Server

    Rohne, O; The ATLAS collaboration

    2012-01-01

    The upgrades for the ATLAS Pixel Detector will be staged in preparation for high luminosity LHC. The first upgrade for the Pixel Detector is the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine, in 2013-14. The new detector, called the Insertable B-layer (IBL), will be installed between the existing Pixel Detector and a new, smaller radius beam-pipe at a radius of 3.3 cm. The IBL has required the development of several new technologies to cope with increased radiation and pixel occupancy and also to improve the physics performance through reduction of the pixel size and a more stringent material budget. The IBL presents several changes to the design of the present hybrid pixel system: two different and promising silicon sensor technologies, planar n-in-n and 3D, will be used for the IBL. A new read-out chip FE-I4 has been designed in 130 nm technology, the material budget is minimized by using new lightweight mechanical support materials and a CO2 based co...

  18. Region based elimination of noise pixels towards optimized classifier models for skin pixel detection

    Directory of Open Access Journals (Sweden)

    Gagandeep Kaur

    2015-03-01

    Full Text Available The extraction of the skin pixels in a human image and rejection of non-skin pixels is called the skin segmentation. Skin pixel detection is the process of extracting the skin pixels in a human image which is typically used as a pre-processing step to extract the face regions from human image. In past, there are several computer vision approaches and techniques have been developed for skin pixel detection. In the process of skin detection, given pixels are been transformed into an appropriate color space such as RGB, HSV etc. And then skin classifier model have been applied to label the pixel into skin or non-skin regions. Here in this research a “Region based elimination of noise pixels and performance analysis of classifier models for skin pixel detection applied on human images” would be performed which involve the process of image representation in color models, elimination of non-skin pixels in the image, and then pre-processing and cleansing of the collected data, feature selection of the human image and then building the model for classifier. In this research and implementation of skin pixels classifier models are proposed with their comparative performance analysis. The definition of the feature vector is simply the selection of skin pixels from the human image or stack of human images. The performance is evaluated by comparing and analysing skin colour segmentation algorithms. During the course of research implementation, efforts are iterative which help in selection of optimized skin classifier based on the machine learning algorithms and their performance analysis.

  19. Performance of the ATLAS vertex detector

    CERN Document Server

    Barberis, D

    1999-01-01

    The ATLAS inner detector consists of three layers of silicon pixels, four double layers of silicon microstrips and a transition radiation tracker (straw tubes). The good performance of the track and vertex reconstruction algorithms is a direct consequence of the small radius (4.3, 10.1 and 13.2 cm), fine pitch (50*300 mu m) and low occupancy (<3*10/sup -4/ at design luminosity) of the pixel detectors. The full (GEANT3) detector simulation is used to evaluate the performance of the detector and of the reconstruction algorithms. Results are presented on track and vertex reconstruction efficiencies and resolutions, and on the separation between b-jets and jets produced by light quarks. (8 refs).

  20. The LHC Luminosity Upgrade and Related ATLAS Detector Plans

    CERN Document Server

    Hartjes, F; The ATLAS collaboration

    2009-01-01

    3rd draft of the proposed talk about Atlas Upgrade for MPGD2009 (Instrumentation conference on gaseous pixel detectors) on Friday June 12, 2009. I concentrated my presentation on the upgrade plans and schedule of the LHC and on detector technologies for the new Inner Tracker, putting less emphasis on other subdetectors. Compared to the 2nd draft I modified and clarified a few items about trigger, muon detection and calorimetry and did a number of cosmetic adaptions.

  1. 3D sensors for the Insertable B-Layer of the ATLAS experiment at the CERN LHC

    CERN Document Server

    Micelli, Andrea; Gemme, Claudia

    The work is centered on the 3D Silicon sensors proposed for the Pixel Detector upgrade of the ATLAS experimen at the ATLAS LHC. After an introduction about the ugrade project, the first laboratory measurement results for the characterization of the sensors performance with the read-out electronics are presented. This, together with the beam tests described in the last part, has represented an important step in the study of the sensor performance

  2. Spatial clustering of pixels of a multispectral image

    Science.gov (United States)

    Conger, James Lynn

    2014-08-19

    A method and system for clustering the pixels of a multispectral image is provided. A clustering system computes a maximum spectral similarity score for each pixel that indicates the similarity between that pixel and the most similar neighboring. To determine the maximum similarity score for a pixel, the clustering system generates a similarity score between that pixel and each of its neighboring pixels and then selects the similarity score that represents the highest similarity as the maximum similarity score. The clustering system may apply a filtering criterion based on the maximum similarity score so that pixels with similarity scores below a minimum threshold are not clustered. The clustering system changes the current pixel values of the pixels in a cluster based on an averaging of the original pixel values of the pixels in the cluster.

  3. Charged track reconstruction and b-tagging performance in ATLAS

    CERN Document Server

    Favareto, A; The ATLAS collaboration

    2012-01-01

    The ATLAS Inner Detector is designed to provide precision tracking informa- tion at LHC luminosities with a hermetic detector covering 5 units in pseudo- rapidity. It features a large silicon tracker subdivided into a pixel and a strip system for precise tracking and primary/secondary vertex reconstruction and to provide excellent b-tagging capabilities. A Transition Radiation Tracker improves the momentum reconstruction and provides electron identification information. The subject of these proceedings is the performance of the ATLAS Inner Detector achieved after its first 2 years of operation. The excellent detector performance and more than a decade of simulation studies provided a good basis for the commissioning of the offline track and vertex reconstruction. Early studies with cosmic events and the ever increasing amount of high quality p-p collision data allowed for rapid progress in understanding of the detector. Today the ATLAS Inner Detector approaches its design values in most relevant performance c...

  4. Firmware development and testing of the ATLAS IBL Back-Of-Crate card

    CERN Document Server

    Wensing, M; The ATLAS collaboration; Mättig, P; Kugel, A; Falchieri, D; Travaglini, R; Gabrielli, A; Heim, T; Potamianos, K; Grosse-Knetter, J; Bindi, M

    2014-01-01

    For the new innermost layer of the ATLAS Pixel-Detector at CERN new off-detector hardware needs to be developed. The Back-Of-Crate card (BOC) is driving the optical interface to the detector and distributing the LHC clock to all detector components. A brief overview of the firmware and test results from production and system test will be presented.

  5. Electroweak Physics with ATLAS

    OpenAIRE

    Akhundov, Arif

    2008-01-01

    The precision measurements of electroweak parameters of the Standard Model with the ATLAS detector at LHC are reviewed. An emphasis is put on the bridge connecting the ATLAS measurements with the SM analysis at LEP/SLC and the Tevatron.

  6. Recent ATLAS Articles on WLAP

    CERN Multimedia

    J. Herr

    As reported in the September 2004 ATLAS eNews, the Web Lecture Archive Project is a system for the archiving and publishing of multimedia presentations, using the Web as medium. We list here newly available WLAP items relating to ATLAS: Atlas Physics Workshop 6-11 June 2005 June 2005 ATLAS Week Plenary Session Click here to browse WLAP for all ATLAS lectures.

  7. Entwurf und Implementation eines Expertensystems für das Detektorkontrollsystem des ATLAS-Pixeldetektors

    CERN Document Server

    Henß, Tobias

    This thesis describes the design and implementation of an Expert System for the Detector Control System of the ATLAS Pixel Detector at the European center for particle physics, CERN. The ATLAS-Experiment is one of four big experiments installed at the Large Hadron Collider and is itself composed of multiple particle detectors. The innermost of these sub-detectors is the ATLAS Pixel detector, whose more than 30000 operating parameters impose high requirements on the hard- and software of the Detector Control System. In order to support the shift personnel during regular detector operation, an Expert System for the Detector Control System, which provides troubleshooting instructions, was developed within the scope of this work. To allow for a precise mapping of the available human experts knowledge to the Expert System, a rule based and easily adaptable system was designed. The use of the DIM protocol furthermore enables the adoption for other detectors or the data acquisition system. Special emphasis was pu...

  8. Radiation Tolerance of CMOS Monolithic Active Pixel Sensors with Self-Biased Pixels

    CERN Document Server

    Deveaux, M; Besson, A; Claus, G; Colledani, C; Dorokhov, M; Dritsa, C; Dulinski, W; Fröhlich, I; Goffe, M; Grandjean, D; Heini, S; Himmi, A; Hu, C; Jaaskelainen, K; Müntz, C; Shabetai, A; Stroth, J; Szelezniak, M; Valin, I; Winter, M

    2009-01-01

    CMOS Monolithic Active Pixel Sensors (MAPS) are proposed as a technology for various vertex detectors in nuclear and particle physics. We discuss the mechanisms of ionizing radiation damage on MAPS hosting the the dead time free, so-called self bias pixel. Moreover, we discuss radiation hardened sensor designs which allow operating detectors after exposing them to irradiation doses above 1 Mrad

  9. Pixel readout electronics development for the ALICE pixel vertex and LHCb RICH detector

    NARCIS (Netherlands)

    Snoeys, W.; Campbell, M.; Cantatore, E.; Cencelli, V.; Dinapoli, R.; Heijne, E.; Jarron, P.; Lamanna, P.; Minervini, D.; O'Shea, V.; Quiquempoix, V.; San Segundo Bello, D.; Koningsveld, van B.; Wyllie, K.

    2001-01-01

    The ALICE1LHCB pixel readout chip emerged from previous experience at CERN. The RD-19 collaboration provided the basis for the installation of a pixel system in the WA97 and NA57 experiments. Operation in these experiments was key in the understanding of the system issues. In parallel the RD-49 coll

  10. EnviroAtlas - Portland, OR - Atlas Area Boundary

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the boundary of the Portland, OR Atlas Area. It represents the outside edge of all the block groups included in the EnviroAtlas Area....

  11. Development of CMOS Pixel Sensors with digital pixel dedicated to future particle physics experiments

    Science.gov (United States)

    Zhao, W.; Wang, T.; Pham, H.; Hu-Guo, C.; Dorokhov, A.; Hu, Y.

    2014-02-01

    Two prototypes of CMOS pixel sensor with in-pixel analog to digital conversion have been developed in a 0.18 μm CIS process. The first design integrates a discriminator into each pixel within an area of 22 × 33 μm2 in order to meet the requirements of the ALICE inner tracking system (ALICE-ITS) upgrade. The second design features 3-bit charge encoding inside a 35 × 35 μm2 pixel which is motivated by the specifications of the outer layers of the ILD vertex detector (ILD-VXD). This work aims to validate the concept of in-pixel digitization which offers higher readout speed, lower power consumption and less dead zone compared with the column-level charge encoding.

  12. Readout architecture of the CMS pixel detector

    CERN Document Server

    Baur, R

    2001-01-01

    In this paper we describe the readout architecture of the CMS pixel chip. In column drain architecture the complex tasks of data buffering and trigger verification are performed in the circuit periphery. This allows to use a rather simple pixel unit cell which requires only a small number of transistors. The column periphery logic is designed for readout and trigger rates expected for full LHC luminosity. At LHC the high particle flux can create single event upsets in the readout chips. At small radii the upsets of logic cells could severely affect the performance of the pixel detector readout. We have therefore performed a measurement of the upset rate at the PSI pion beam and describe the consequences for the design of the readout chip. (5 refs).

  13. Infrared single-pixel imaging utilising microscanning

    CERN Document Server

    Sun, Ming-Jie; Phillips, David B; Gibson, Graham M; Padgett, Miles J

    2015-01-01

    Since the invention of digital cameras there has been a concerted drive towards detector arrays with higher spatial resolution. Microscanning is a technique that provides a final higher resolution image by combining multiple images of a lower resolution. Each of these low resolution images is subject to a sub-pixel sized lateral displacement. In this work we apply the microscanning approach to an infrared single-pixel camera. For the same final resolution and measurement resource, we show that microscanning improves the signal-to-noise ratio (SNR) of reconstructed images by approximately 50%. In addition, this strategy also provides access to a stream of low-resolution 'preview' images throughout each high-resolution acquisition. Our work demonstrates an additional degree of flexibility in the trade-off between SNR and spatial resolution in single-pixel imaging techniques.

  14. Design considerations for pixel readout chips

    CERN Document Server

    Fischer, P

    2003-01-01

    Pixel detectors are becoming a standard tracking component in modern particle physics experiment and find first applications in X-ray diffraction, medical imaging and astronomy. The amplification and the readout of the small signal charges from the pixel sensor require highly integrated ASICs in which several thousand low-noise charge-sensitive amplifiers are densely interspersed with fast data-processing logic. The reduction of crosstalk from the digital to the analog section is therefore crucial. The frequent demand for radiation tolerance requires special chip technologies or the use of deep sub-micron processes with suited design rules. This paper summarizes a few designs aspects particularly important for pixel readout chips.

  15. Likelihood Analysis for Mega Pixel Maps

    Science.gov (United States)

    Kogut, Alan J.

    1999-01-01

    The derivation of cosmological parameters from astrophysical data sets routinely involves operations counts which scale as O(N(exp 3) where N is the number of data points. Currently planned missions, including MAP and Planck, will generate sky maps with N(sub d) = 10(exp 6) or more pixels. Simple "brute force" analysis, applied to such mega-pixel data, would require years of computing even on the fastest computers. We describe an algorithm which allows estimation of the likelihood function in the direct pixel basis. The algorithm uses a conjugate gradient approach to evaluate X2 and a geometric approximation to evaluate the determinant. Monte Carlo simulations provide a correction to the determinant, yielding an unbiased estimate of the likelihood surface in an arbitrary region surrounding the likelihood peak. The algorithm requires O(N(sub d)(exp 3/2) operations and O(Nd) storage for each likelihood evaluation, and allows for significant parallel computation.

  16. Power Studies for the CMS Pixel Tracker

    International Nuclear Information System (INIS)

    The Electronic Systems Engineering Department of the Computing Division at the Fermi National Accelerator Laboratory is carrying out R and D investigations for the upgrade of the power distribution system of the Compact Muon Solenoid (CMS) Pixel Tracker at the Large Hadron Collider (LHC). Among the goals of this effort is that of analyzing the feasibility of alternative powering schemes for the forward tracker, including DC to DC voltage conversion techniques using commercially available and custom switching regulator circuits. Tests of these approaches are performed using the PSI46 pixel readout chip currently in use at the CMS Tracker. Performance measures of the detector electronics will include pixel noise and threshold dispersion results. Issues related to susceptibility to switching noise will be studied and presented. In this paper, we describe the current power distribution network of the CMS Tracker, study the implications of the proposed upgrade with DC-DC converters powering scheme and perform noise susceptibility analysis.

  17. Operational Experience with the CMS Pixel Detector

    CERN Document Server

    Karancsi, Janos

    2016-01-01

    The CMS pixel detector was repaired successfully, calibrated and commissioned for the second run of Large Hadron Collider during the first long shutdown between 2013 and 2015. The replaced pixel modules were calibrated separately and show the expected behavior of an un-irradiated detector. In 2015, the system performed very well with an even improved spatial resolution compared to 2012. During this time, the operational team faced various challenges including the loss of a sector in one half shell which was only partially recovered. In 2016, the detector is expected to withstand instantaneous luminosities beyond the design limits and will need a combined effort of both online and offline teams in order to provide the high quality data that is required to reach the physics goals of CMS. We present the operational experience gained during the second run of the LHC and show the latest performance results of the CMS pixel detector.

  18. Low mass hybrid pixel detectors for the high luminosity LHC upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gonella, Laura

    2013-10-15

    Reducing material in silicon trackers is of major importance for a good overall detector performance, and poses severe challenges to the design of the tracking system. To match the low mass constraints for trackers in High Energy Physics experiments at high luminosity, dedicated technological developments are required. This dissertation presents three technologies to design low mass hybrid pixel detectors for the high luminosity upgrades of the LHC. The work targets specifically the reduction of the material from the detector services and modules, with novel powering schemes, flip chip and interconnection technologies. A serial powering scheme is prototyped, featuring a new regulator concept, a control and protection element, and AC-coupled data transmission. A modified flip chip technology is developed for thin, large area Front-End chips, and a via last Through Silicon Via process is demonstrated on existing pixel modules. These technologies, their developments, and the achievable material reduction are discussed using the upgrades of the ATLAS pixel detector as a case study.

  19. 3D-FBK Pixel sensors: recent beam tests results with irradiated devices

    CERN Document Server

    Micelli, A; Sandaker, H; Stugu, B; Barbero, M; Hugging, F; Karagounis, M; Kostyukhin, V; Kruger, H; Tsung, J W; Wermes, N; Capua, M; Fazio, S; Mastroberardino, A; Susinno, G; Gallrapp, C; Di Girolamo, B; Dobos, D; La Rosa, A; Pernegger, H; Roe, S; Slavicek, T; Pospisil, S; Jakobs, K; Kohler, M; Parzefall, U; Darbo, G; Gariano, G; Gemme, C; Rovani, A; Ruscino, E; Butter, C; Bates, R; Oshea, V; Parker, S; Cavalli-Sforza, M; Grinstein, S; Korokolov, I; Pradilla, C; Einsweiler, K; Garcia-Sciveres, M; Borri, M; Da Via, C; Freestone, J; Kolya, S; Lai, C H; Nellist, C; Pater, J; Thompson, R; Watts, S J; Hoeferkamp, M; Seidel, S; Bolle, E; Gjersdal, H; Sjobaek, K N; Stapnes, S; Rohne, O; Su, D; Young, C; Hansson, P; Grenier, P; Hasi, J; Kenney, C; Kocian, M; Jackson, P; Silverstein, D; Davetak, H; DeWilde, B; Tsybychev, D; Dalla Betta, G F; Gabos, P; Povoli, M; Cobal, M; Giordani, M P; Selmi, L; Cristofoli, A; Esseni, D; Palestri, P; Fleta, C; Lozano, M; Pellegrini, G; Boscardin, M; Bagolini, A; Piemonte, C; Ronchin, S; Zorzi, N; Hansen, T E; Hansen, T; Kok, A; Lietaer, N; Kalliopuska, J; Oja, A

    2011-01-01

    The Pixel detector is the innermost part of the ATLAS experiment tracking device at the Large Hadron Collider (LHC), and plays a key role in the reconstruction of the primary and secondary vertices of short-lived particles. To cope with the high level of radiation produced during the collider operation, it is planned to add to the present three layers of silicon pixel sensors which constitute the Pixel Detector, an additional layer (Insertable B-Layer, or IBL) of sensors. 3D silicon sensors are one of the technologies which are under study for the IBL. 3D silicon technology is an innovative combination of very-large-scale integration (VLSI) and Micro-Electro-Mechanical-Systems (MEMS) where electrodes are fabricated inside the silicon bulk instead of being implanted on the wafer surfaces. 3D sensors, with electrodes fully or partially penetrating the silicon substrate, are currently fabricated at different processing facilities in Europe and USA. This paper reports on the 2010 June beam test results for irradi...

  20. Results with p-type pixel sensors with different geometries for the HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Allport, P.P. [Department of Physics, University of Liverpool, Oxford Road, Liverpool, L69 7ZE (United Kingdom); Bates, R.; Butter, C. [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Casse, G. [Department of Physics, University of Liverpool, Oxford Road, Liverpool, L69 7ZE (United Kingdom); Dervan, P.J., E-mail: Paul.Dervan@cern.ch [Department of Physics, University of Liverpool, Oxford Road, Liverpool, L69 7ZE (United Kingdom); Forshaw, D.; Tsurin, I. [Department of Physics, University of Liverpool, Oxford Road, Liverpool, L69 7ZE (United Kingdom)

    2013-12-11

    Pixel detectors will be extensively used for the four innermost layers of the upgraded ATLAS experiment at the future High Luminosity LHC (HL-LHC) at CERN. The total area of pixel sensors will be over 5 m{sup 2}. The silicon sensors that will instrument the pixel volume will have to face several technology challenges. They will have to withstand doses up to 2×10{sup 16} n{sub eq}cm{sup −2}, to have a reduced inactive area at the edge of the sensors still being able to hold 1000 V bias voltage and to be relatively low cost considering the large area to be covered. N-side readout on p-type bulk is the most promising technology for satisfying the various requirements. Several sensor types have been produced in the UK, conceived for various readout systems, for studying the properties of n-in-p and n-in-n sensors before and after irradiation with test beam and laboratory measurements. The status of these studies is presented here.

  1. Low mass hybrid pixel detectors for the high luminosity LHC upgrade

    International Nuclear Information System (INIS)

    Reducing material in silicon trackers is of major importance for a good overall detector performance, and poses severe challenges to the design of the tracking system. To match the low mass constraints for trackers in High Energy Physics experiments at high luminosity, dedicated technological developments are required. This dissertation presents three technologies to design low mass hybrid pixel detectors for the high luminosity upgrades of the LHC. The work targets specifically the reduction of the material from the detector services and modules, with novel powering schemes, flip chip and interconnection technologies. A serial powering scheme is prototyped, featuring a new regulator concept, a control and protection element, and AC-coupled data transmission. A modified flip chip technology is developed for thin, large area Front-End chips, and a via last Through Silicon Via process is demonstrated on existing pixel modules. These technologies, their developments, and the achievable material reduction are discussed using the upgrades of the ATLAS pixel detector as a case study.

  2. ATLAS Recordings

    CERN Multimedia

    Jeremy Herr; Homer A. Neal; Mitch McLachlan

    The University of Michigan Web Archives for the 2006 ATLAS Week Plenary Sessions, as well as the first of 2007, are now online. In addition, there are a wide variety of Software and Physics Tutorial sessions, recorded over the past couple years, to chose from. All ATLAS-specific archives are accessible here.Viewing requires a standard web browser with RealPlayer plug-in (included in most browsers automatically) and works on any major platform. Lectures can be viewed directly over the web or downloaded locally.In addition, you will find access to a variety of general tutorials and events via the portal. Shaping Collaboration 2006The Michigan group is happy to announce a complete set of recordings from the Shaping Collaboration conference held last December at the CICG in Geneva.The event hosted a mix of Collaborative Tool experts and LHC Users, and featured presentations by the CERN Deputy Director General, Prof. Jos Engelen, the President of Internet2, and chief developers from VRVS/EVO, WLAP, and other tools...

  3. Development of a CMOS SOI pixel detector

    CERN Document Server

    Ishino, Hirokazu; Hazumi, M; Ikegami, Y; Kohriki, T; Tajima, O; Terada, S; Tsuboyama, T; Unno, Y; Ushiroda, Y; Ikeda, H; Hara, K; Ishino, H; Kawasaki, T; Miyake, H; Martin, E; Varner, G; Tajima, H; Ohno, M; Fukuda, K; Komatsubara, H; Ida, J

    2007-01-01

    We have developed a monolithic radiation pixel detector using silicon on insulator (SOI) with a commercial 0.15 m fullydepleted- SOI technology and a Czochralski high resistivity silicon substrate in place of a handle wafer. The SOI TEG (Test Element Group) chips with a size of 2.5 x 2.5mm2 consisting of 20 x 20 um2 pixels have been designed and manufactured. Performance tests with a laser light illumination and a . ray radioactive source indicate successful operation of the detector. We also brie y discuss the back gate effect as well as the simulation study.

  4. The FE-I4 pixel readout system-on-chip resubmission for the insertable B-Layer project

    CERN Document Server

    Zivkovic, V; Garcia-Sciveres, M; Mekkaoui, A; Barbero, M; Darbo, G; Gnani, D; Hemperek, T; Menouni, M; Fougeron, D; Gensolen, F; Jensen, F; Caminada, L; Gromov, V; Kluit, R; Fleury, J; Krüger, H; Backhaus, M; Fang, X; Gonella, L; Rozanove, A; Arutinov, D

    2012-01-01

    The FE-I4 is a new pixel readout integrated circuit designed to meet the requirements of ATLAS experiment upgrades. The first samples of the FE-I4 engineering run (called FE-I4A) delivered promising results in terms of the requested performances. The FE-I4 team envisaged a number of modifications and fine-tuning before the actual exploitation, planned within the Insertable B-Layer (IBL) of ATLAS. As the IBL schedule was pushed significantly forward, a quick and efficient plan had to be devised for the FE-I4 redesign. This article will present the main objectives of the resubmission, together with the major changes that were a driving factor for this redesign. In addition, the top-level verification and test efforts of the FE-I4 will also be addressed.

  5. ATLAS welcomes a new Palestinian student

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    Mahmoud Ibrahim Alstaty, from near Jenin, is starting a PhD studentship at CERN, where he will be working on the new inner layer of the ATLAS pixel detector. He joins a growing number of other Palestinian researchers who are working at CERN.   Mahmoud Ibrahim Alstaty. Mahmoud Alstaty's PhD scholarship is supported by the Sharing Knowledge Foundation. In 2013, Robert Klapisch, president of the foundation and former Director of Research at CERN, signed a framework agreement with CERN to open the Doctoral Student programme to countries from the Middle East and North Africa (MENA). Mahmoud is the second student to benefit from such an opportunity, following Mohamed Gouighri from Morocco. “Mahmoud will work on the ATLAS experiment on the commissioning and performance of the new inner layer of the pixel detector (IBL) and on the search for new physics, including leptons in the final state, under the supervision of Fares Djama and myself”, says Pascal Pralavorio from Cen...

  6. ATLAS Distributed Computing Automation

    CERN Document Server

    Schovancova, J; The ATLAS collaboration; Borrego, C; Campana, S; Di Girolamo, A; Elmsheuser, J; Hejbal, J; Kouba, T; Legger, F; Magradze, E; Medrano Llamas, R; Negri, G; Rinaldi, L; Sciacca, G; Serfon, C; Van Der Ster, D C

    2012-01-01

    The ATLAS Experiment benefits from computing resources distributed worldwide at more than 100 WLCG sites. The ATLAS Grid sites provide over 100k CPU job slots, over 100 PB of storage space on disk or tape. Monitoring of status of such a complex infrastructure is essential. The ATLAS Grid infrastructure is monitored 24/7 by two teams of shifters distributed world-wide, by the ATLAS Distributed Computing experts, and by site administrators. In this paper we summarize automation efforts performed within the ATLAS Distributed Computing team in order to reduce manpower costs and improve the reliability of the system. Different aspects of the automation process are described: from the ATLAS Grid site topology provided by the ATLAS Grid Information System, via automatic site testing by the HammerCloud, to automatic exclusion from production or analysis activities.

  7. The ATLAS Insertable B-Layer (IBL) Project

    CERN Document Server

    Bilbao de Mendizabal, J; The ATLAS collaboration

    2012-01-01

    The upgrades for the ATLAS Pixel Detector will be staged in preparation for high luminosity LHC. The Pixel detector upgrade will start with the construction of a new layer which will be installed during the first shutdown of the LHC machine, in 2013-14. The new sub-detector, called the Insertable B-layer (IBL), will be installed between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the hight radiation and pixel occupancy due to the proximity to the interaction point, the development of several new technologies has been required. The IBL design, which is different to the current pixel design, is using a new read-out chip FE-I4 designed in 130 nm technology, and two different and promising silicon sensor technologies, planar n-in-n and 3D. Furthermore, the physics performance should be improved through the reduction of pixel size while targeting for a low material budget should be imposed, pushing for a new mechanical support using lightweight staves and a CO...

  8. From hybrid to CMOS pixels ... a possibility for LHC's pixel future?

    Science.gov (United States)

    Wermes, N.

    2015-12-01

    Hybrid pixel detectors have been invented for the LHC to make tracking and vertexing possible at all in LHC's radiation intense environment. The LHC pixel detectors have meanwhile very successfully fulfilled their promises and R&D for the planned HL-LHC upgrade is in full swing, targeting even higher ionising doses and non-ionising fluences. In terms of rate and radiation tolerance hybrid pixels are unrivaled. But they have disadvantages as well, most notably material thickness, production complexity, and cost. Meanwhile also active pixel sensors (DEPFET, MAPS) have become real pixel detectors but they would by far not stand the rates and radiation faced from HL-LHC. New MAPS developments, so-called DMAPS (depleted MAPS) which are full CMOS-pixel structures with charge collection in a depleted region have come in the R&D focus for pixels at high rate/radiation levels. This goal can perhaps be realised exploiting HV technologies, high ohmic substrates and/or SOI based technologies. The paper covers the main ideas and some encouraging results from prototyping R&D, not hiding the difficulties.

  9. From hybrid to CMOS pixels ... a possibility for LHC's pixel future?

    International Nuclear Information System (INIS)

    Hybrid pixel detectors have been invented for the LHC to make tracking and vertexing possible at all in LHC's radiation intense environment. The LHC pixel detectors have meanwhile very successfully fulfilled their promises and R and D for the planned HL-LHC upgrade is in full swing, targeting even higher ionising doses and non-ionising fluences. In terms of rate and radiation tolerance hybrid pixels are unrivaled. But they have disadvantages as well, most notably material thickness, production complexity, and cost. Meanwhile also active pixel sensors (DEPFET, MAPS) have become real pixel detectors but they would by far not stand the rates and radiation faced from HL-LHC. New MAPS developments, so-called DMAPS (depleted MAPS) which are full CMOS-pixel structures with charge collection in a depleted region have come in the R and D focus for pixels at high rate/radiation levels. This goal can perhaps be realised exploiting HV technologies, high ohmic substrates and/or SOI based technologies. The paper covers the main ideas and some encouraging results from prototyping R and D, not hiding the difficulties

  10. From Hybrid to CMOS Pixels ... a possibility for LHC's pixel future?

    CERN Document Server

    Wermes, Norbert

    2015-01-01

    Hybrid pixel detectors have been invented for the LHC to make tracking and vertexing possible at all in LHC's radiation intense environment. The LHC pixel detectors have meanwhile very successfully fulfilled their promises and R\\&D for the planned HL-LHC upgrade is in full swing, targeting even higher ionising doses and non-ionising fluences. In terms of rate and radiation tolerance hybrid pixels are unrivaled. But they have disadvantages as well, most notably material thickness, production complexity, and cost. Meanwhile also active pixel sensors (DEPFET, MAPS) have become real pixel detectors but they would by far not stand the rates and radiation faced from HL-LHC. New MAPS developments, so-called DMAPS (depleted MAPS) which are full CMOS-pixel structures with charge collection in a depleted region have come in the R\\&D focus for pixels at high rate/radiation levels. This goal can perhaps be realised exploiting HV technologies, high ohmic substrates and/or SOI based technologies. The paper covers t...

  11. Uncooled infrared detectors toward smaller pixel pitch with newly proposed pixel structure

    Science.gov (United States)

    Tohyama, Shigeru; Sasaki, Tokuhito; Endoh, Tsutomu; Sano, Masahiko; Kato, Koji; Kurashina, Seiji; Miyoshi, Masaru; Yamazaki, Takao; Ueno, Munetaka; Katayama, Haruyoshi; Imai, Tadashi

    2013-12-01

    An uncooled infrared (IR) focal plane array (FPA) with 23.5 μm pixel pitch has been successfully demonstrated and has found wide commercial applications in the areas of thermography, security cameras, and other applications. One of the key issues for uncooled IRFPA technology is to shrink the pixel pitch because the size of the pixel pitch determines the overall size of the FPA, which, in turn, determines the cost of the IR camera products. This paper proposes an innovative pixel structure with a diaphragm and beams placed in different levels to realize an uncooled IRFPA with smaller pixel pitch (≦17 μm). The upper level consists of a diaphragm with VOx bolometer and IR absorber layers, while the lower level consists of the two beams, which are designed to be placed on the adjacent pixels. The test devices of this pixel design with 12, 15, and 17 μm pitch have been fabricated on the Si read-out integrated circuit (ROIC) of quarter video graphics array (QVGA) (320×240) with 23.5 μm pitch. Their performances are nearly equal to those of the IRFPA with 23.5 μm pitch. For example, a noise equivalent temperature difference of 12 μm pixel is 63.1 mK for F/1 optics with the thermal time constant of 14.5 ms. Then, the proposed structure is shown to be effective for the existing IRFPA with 23.5 μm pitch because of the improvements in IR sensitivity. Furthermore, the advanced pixel structure that has the beams composed of two levels are demonstrated to be realizable.

  12. Dense Iterative Contextual Pixel Classification using Kriging

    DEFF Research Database (Denmark)

    Ganz, Melanie; Loog, Marco; Brandt, Sami;

    2009-01-01

    have been proposed to this end, e.g., iterative contextual pixel classification, iterated conditional modes, and other approaches related to Markov random fields. A problem of these methods, however, is their computational complexity, especially when dealing with high-resolution images in which...

  13. CMS has a heart of pixels

    CERN Multimedia

    2003-01-01

    At the core of CMS, particles will come into contact with tiny detector components, known as pixels, which are almost invisible to the naked eye. With these elementary cells measuring a mere 150 microns (or about 1/10 of a millimetre) along each side, a real technological leap has been made.

  14. High efficiency pixellated CdTe detector

    International Nuclear Information System (INIS)

    Position sensitive detectors constructed from compound semiconductors (CdTe, CdZnTe, HgI2) are being developed for a variety of applications where high sensitivity and improved energy resolution are significant advantages over scintillator or gas based systems. We have investigated the possibility of using a CdTe detector array in a SPECT gamma camera that would require a high efficiency at 140 keV. The problem of worsening photopeak efficiencies in thick detectors (due to incomplete charge collection) makes it difficult to maintain a high efficiency which, ironically, is the primary reason for choosing a thicker detector. Recent research has shown that following a simple geometrical design criterion can greatly reduce this deleterious effect. This paper reports on the results from a small prototype pixellated array fabricated using this design. We verify the 'small pixel effect' for a detector thickness and pixel size significantly larger than those used in most other work. A 9-element detector (1 x 1 mm pixels, 4 mm thick) has been fabricated and characterized in terms of energy resolution, peak-to-valley ratio and detection efficiency. Testing of the detector in a fast pulse mode to obtain its high count rate response has also been performed. (orig.)

  15. The ATLAS tracker strip detector for HL-LHC

    CERN Document Server

    Cormier, Kyle James Read; The ATLAS collaboration

    2016-01-01

    As part of the ATLAS upgrades for the High Luminsotiy LHC (HL-LHC) the current ATLAS Inner Detector (ID) will be replaced by a new Inner Tracker (ITk). The ITk will consist of two main components: semi-conductor pixels at the innermost radii, and silicon strips covering larger radii out as far as the ATLAS solenoid magnet including the volume currently occupied by the ATLAS Transition Radiation Tracker (TRT). The primary challenges faced by the ITk are the higher planned read out rate of ATLAS, the high density of charged particles in HL-LHC conditions for which tracks need to be resolved, and the corresponding high radiation doses that the detector and electronics will receive. The ITk strips community is currently working on designing and testing all aspects of the sensors, readout, mechanics, cooling and integration to meet these goals and a Technical Design Report is being prepared. This talk is an overview of the strip detector component of the ITk, highlighting the current status and the road ahead.

  16. Comprehensive cellular-resolution atlas of the adult human brain.

    Science.gov (United States)

    Ding, Song-Lin; Royall, Joshua J; Sunkin, Susan M; Ng, Lydia; Facer, Benjamin A C; Lesnar, Phil; Guillozet-Bongaarts, Angie; McMurray, Bergen; Szafer, Aaron; Dolbeare, Tim A; Stevens, Allison; Tirrell, Lee; Benner, Thomas; Caldejon, Shiella; Dalley, Rachel A; Dee, Nick; Lau, Christopher; Nyhus, Julie; Reding, Melissa; Riley, Zackery L; Sandman, David; Shen, Elaine; van der Kouwe, Andre; Varjabedian, Ani; Write, Michelle; Zollei, Lilla; Dang, Chinh; Knowles, James A; Koch, Christof; Phillips, John W; Sestan, Nenad; Wohnoutka, Paul; Zielke, H Ronald; Hohmann, John G; Jones, Allan R; Bernard, Amy; Hawrylycz, Michael J; Hof, Patrick R; Fischl, Bruce; Lein, Ed S

    2016-11-01

    Detailed anatomical understanding of the human brain is essential for unraveling its functional architecture, yet current reference atlases have major limitations such as lack of whole-brain coverage, relatively low image resolution, and sparse structural annotation. We present the first digital human brain atlas to incorporate neuroimaging, high-resolution histology, and chemoarchitecture across a complete adult female brain, consisting of magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), and 1,356 large-format cellular resolution (1 µm/pixel) Nissl and immunohistochemistry anatomical plates. The atlas is comprehensively annotated for 862 structures, including 117 white matter tracts and several novel cyto- and chemoarchitecturally defined structures, and these annotations were transferred onto the matching MRI dataset. Neocortical delineations were done for sulci, gyri, and modified Brodmann areas to link macroscopic anatomical and microscopic cytoarchitectural parcellations. Correlated neuroimaging and histological structural delineation allowed fine feature identification in MRI data and subsequent structural identification in MRI data from other brains. This interactive online digital atlas is integrated with existing Allen Institute for Brain Science gene expression atlases and is publicly accessible as a resource for the neuroscience community. J. Comp. Neurol. 524:3127-3481, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  17. Adaptive bad pixel correction algorithm for IRFPA based on PCNN

    Science.gov (United States)

    Leng, Hanbing; Zhou, Zuofeng; Cao, Jianzhong; Yi, Bo; Yan, Aqi; Zhang, Jian

    2013-10-01

    Bad pixels and response non-uniformity are the primary obstacles when IRFPA is used in different thermal imaging systems. The bad pixels of IRFPA include fixed bad pixels and random bad pixels. The former is caused by material or manufacture defect and their positions are always fixed, the latter is caused by temperature drift and their positions are always changing. Traditional radiometric calibration-based bad pixel detection and compensation algorithm is only valid to the fixed bad pixels. Scene-based bad pixel correction algorithm is the effective way to eliminate these two kinds of bad pixels. Currently, the most used scene-based bad pixel correction algorithm is based on adaptive median filter (AMF). In this algorithm, bad pixels are regarded as image noise and then be replaced by filtered value. However, missed correction and false correction often happens when AMF is used to handle complex infrared scenes. To solve this problem, a new adaptive bad pixel correction algorithm based on pulse coupled neural networks (PCNN) is proposed. Potential bad pixels are detected by PCNN in the first step, then image sequences are used periodically to confirm the real bad pixels and exclude the false one, finally bad pixels are replaced by the filtered result. With the real infrared images obtained from a camera, the experiment results show the effectiveness of the proposed algorithm.

  18. Design Methodology: ASICs with complex in-pixel processing for Pixel Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fahim, Farah [Fermilab

    2014-10-31

    The development of Application Specific Integrated Circuits (ASIC) for pixel detectors with complex in-pixel processing using Computer Aided Design (CAD) tools that are, themselves, mainly developed for the design of conventional digital circuits requires a specialized approach. Mixed signal pixels often require parasitically aware detailed analog front-ends and extremely compact digital back-ends with more than 1000 transistors in small areas below 100μm x 100μm. These pixels are tiled to create large arrays, which have the same clock distribution and data readout speed constraints as in, for example, micro-processors. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout.

  19. The Level 0 Pixel Trigger System for the ALICE Silicon Pixel Detector: implementation, testing and commissioning

    CERN Document Server

    Aglieri-Rinella, G

    2008-01-01

    The ALICE Silicon Pixel Detector transmits 1200 Fast-OR signals every 100 ns on 120 optical readout channels. They indicate the presence of at least one hit in the pixel matrix of each readout chip. The ALICE Level 0 Pixel Trigger System extracts them, processes them and delivers an input signal to the Central Trigger Processor for the first level trigger decision within a latency of 800 ns. This paper describes tests and measurements made on the system during the qualification and commissioning phases. These included Bit Error Rate tests on the Fast-OR data path, the measurement of the overall process latency and the recording of calibration data with cosmic rays. The first results of the operation of the Pixel Trigger System with the SPD detector in the ALICE experiment are also presented.

  20. Design methodology: edgeless 3D ASICs with complex in-pixel processing for pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fahim Farah, Fahim Farah [Northwestern U. (main); Deptuch, Grzegorz W. [Fermilab; Hoff, James R. [Fermilab; Mohseni, Hooman [Northwestern U. (main)

    2015-08-28

    The design methodology for the development of 3D integrated edgeless pixel detectors with in-pixel processing using Electronic Design Automation (EDA) tools is presented. A large area 3 tier 3D detector with one sensor layer and two ASIC layers containing one analog and one digital tier, is built for x-ray photon time of arrival measurement and imaging. A full custom analog pixel is 65μm x 65μm. It is connected to a sensor pixel of the same size on one side, and on the other side it has approximately 40 connections to the digital pixel. A 32 x 32 edgeless array without any peripheral functional blocks constitutes a sub-chip. The sub-chip is an indivisible unit, which is further arranged in a 6 x 6 array to create the entire 1.248cm x 1.248cm ASIC. Each chip has 720 bump-bond I/O connections, on the back of the digital tier to the ceramic PCB. All the analog tier power and biasing is conveyed through the digital tier from the PCB. The assembly has no peripheral functional blocks, and hence the active area extends to the edge of the detector. This was achieved by using a few flavors of almost identical analog pixels (minimal variation in layout) to allow for peripheral biasing blocks to be placed within pixels. The 1024 pixels within a digital sub-chip array have a variety of full custom, semi-custom and automated timing driven functional blocks placed together. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout. The methodology uses the Cadence design platform, however it is not limited to this tool.

  1. ACS/WFC Pixel Stability - Bringing the Pixels Back to the Science

    Science.gov (United States)

    Borncamp, David; Grogin, Norman A.; Bourque, Matthew; Ogaz, Sara

    2016-06-01

    Electrical current that has been trapped within the lattice structure of a Charged Coupled Device (CCD) can be present through multiple exposures, which will have an adverse effect on its science performance. The traditional way to correct for this extra charge is to take an image with the camera shutter closed periodically throughout the lifetime of the instrument. These images, generally referred to as dark images, allow for the characterization of the extra charge that is trapped within the CCD at the time of observation. This extra current can then be subtracted out of science images to correct for the extra charge that was there at this time. Pixels that have a charge above a certain threshold of current are marked as “hot” and flagged in the data quality array. However, these pixels may not be "bad" in the traditional sense that they cannot be reliably dark-subtracted. If these pixels are shown to be stable over an anneal period, the charge can be properly subtracted and the extra noise from this dark current can be taken into account. We present the results of a pixel history study that analyzes every pixel of ACS/WFC individually and allows pixels that were marked as bad to be brought back into the science image.

  2. Simulation of digital pixel readout chip architectures with the RD53 SystemVerilog-UVM verification environment using Monte Carlo physics data

    International Nuclear Information System (INIS)

    The simulation and verification framework developed by the RD53 collaboration is a powerful tool for global architecture optimization and design verification of next generation hybrid pixel readout chips. In this paper the framework is used for studying digital pixel chip architectures at behavioral level. This is carried out by simulating a dedicated, highly parameterized pixel chip description, which makes it possible to investigate different grouping strategies between pixels and different latency buffering and arbitration schemes. The pixel hit information used as simulation input can be either generated internally in the framework or imported from external Monte Carlo detector simulation data. The latter have been provided by both the CMS and ATLAS experiments, featuring HL-LHC operating conditions and the specifications related to the Phase 2 upgrade. Pixel regions and double columns were simulated using such Monte Carlo data as inputs: the performance of different latency buffering architectures was compared and the compliance of different link speeds with the expected column data rate was verified

  3. Development of a custom on-line ultrasonic vapour analyzer and flow meter for the ATLAS inner detector, with application to Cherenkov and gaseous charged particle detectors

    OpenAIRE

    Alhrooba, M.; Batesb, R.; Degeorged, C.; Deterree, C.; DiGirolamoc, B.; Doubekf, M.; Favrec, G.; Godlewskib, J.; Hallewellg, G.; Hasiba, A.; Katuninh, S.; Langeving, N.; Battistinc, M.; Lombardc, D.; Mathieug, M.

    2015-01-01

    Precision sound velocity measurements can simultaneously determine binary gas composition and flow. We have developed an analyzer with custom microcontroller-based electronics, currently used in the ATLAS Detector Control System, with numerous potential applications. Three instruments monitor C3F8 and CO2 coolant leak rates into the nitrogen envelopes of the ATLAS silicon microstrip and Pixel detectors. Two further instruments will aid operation of the new thermosiphon coolant recirculator: o...

  4. Characterization and performance studies of high-voltage CMOS based pixel sensors

    CERN Document Server

    Smaranda, Dumitru Dan

    2015-01-01

    The high luminosity upgrade of the LHC will push the limits for detectors, specially the silicon trackers which are closest to the interaction point. The ATLAS CMOS Sensor R&D efort is investigating a new technology using high-voltage CMOS processes for producing pixel and strip sensors. In contrast to the currently used technology these devices implement active electronics on the sensor itself, offering a multitude of tuning parameters for achieving the best performance. My summer project revolved around characterising existing samples along with assembling and debugging hardware required for their improvement and functionality. Other tasks involved writing communication protocols using pyBAR to remotely control injection circuitry on a GPAC card, and helping various members of the group with data collection and analysis. Through the summer student programme I have had the opportunity to be part of a vibrant scientic community at the forefront of research, to create bonds with fellow students from univ...

  5. Tests of gases in a mini-TPC with pixel chip readout

    Energy Technology Data Exchange (ETDEWEB)

    Vahsen, S. [University of Hawaii, 2505 Correa Road, Honolulu, HI 96822 (United States); Oliver-Mallory, K.; Lopez-Thibodeaux, M. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Kadyk, J., E-mail: jakadyk@lbl.gov [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Garcia-Sciveres, M. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2014-02-21

    Gases for potential use as targets for directional dark matter detection were tested in a prototype detector using two sequential Gas Electron Multipliers, or GEMs. The sensitive volume consists of a mini-TPC of 12 cm length and 7.5 cm diameter. An FEI3 pixel chip, developed for the ATLAS experiment, was used to produce spatial measurements with high resolution. An Fe55 source produced photoelectrons by X-ray conversions in the sensitive volume, and images of these were recorded by the chip. Spatial resolution plots are shown for the gases, which include the practical electron range of the photoelectrons and the effects of diffusion in the mini-TPC. Avalanche gain and gain resolution measurements were made for the four gases tested, at atmospheric and sub-atmospheric pressures: Ar(70)/CO{sub 2}(30), CF{sub 4}, He(80)/CF{sub 4}(20) and He(80)/isobutane(20)

  6. Tracking in dense environments and its inefficiency measurement using pixel $dE/dx$

    CERN Document Server

    Mansour, Jason Dhia; The ATLAS collaboration

    2016-01-01

    We present a measurement of the charged particle reconstruction inefficiency inside of jet cores, using data collected by the ATLAS experiment in 2015 of $pp$ collisions produced at the LHC, at a center of mass energy of 13 TeV. The determination of this inefficiency is important for jet energy scale and mass calibration, as well as multiple other performance studies and analyses. A data driven method is used, where the fraction of lost particle tracks is determined from energy deposition $dE/dx$ in the pixel detector. The fraction of lost tracks is found to be less than 5%, which is an improvement since the previous study, and agrees well within systematic uncertainties with a Monte Carlo simulation.

  7. Noise in a CMOS digital pixel sensor

    Institute of Scientific and Technical Information of China (English)

    Zhang Chi; Yao Suying; Xu Jiangtao

    2011-01-01

    Based on the study of noise performance in CMOS digital pixel sensor (DPS),a mathematical model of noise is established with the pulse-width-modulation (PWM) principle.Compared with traditional CMOS image sensors,the integration time is different and A/D conversion is implemented in each PWM DPS pixel.Then,the quantitative calculating formula of system noise is derived.It is found that dark current shot noise is the dominant noise source in low light region while photodiode shot noise becomes significantly important in the bright region.In this model,photodiode shot noise does not vary with luminance,but dark current shot noise does.According to increasing photodiode capacitance and the comparator's reference voltage or optimizing the mismatch in the comparator,the total noise can be reduced.These results serve as a guideline for the design of PWM DPS.

  8. The ALICE silicon pixel detector readout electronics

    CERN Document Server

    Krivda, M; Burns, M; Caselle, M; Kluge, A; Manzari, V; Torcato de Matos, C; Morel, M; Riedler, P; Aglieri Rinella, G; Sandor, L; Stefanini, G

    2010-01-01

    The ALICE silicon pixel detector (SPD) constitutes the two innermost layers of the ALICE inner tracking system (ALICE Collaboration, 1999) [1]. The SPD is built with 120 detector modules (half-staves) and contains about 10 million pixels in total. The half-staves are connected to the off-detector electronics, housed in a control room 100 m away, via bidirectional optical links. The stream of data from the front-end electronics is processed in 20 VME readout modules, called routers, based on FPGAs. Three 2-channel link-receiver daughter cards, also based on FPGAs, are plugged in each router. Each link-receiver card receives data via the optical link from two half-staves, applies the zero suppression and passes them to the router to be processed and sent to the ALICE–DAQ system through the detector data link (DDL). The SPD control, configuration and data monitoring are performed using the VME interface embedded in the router.

  9. Radiation Experience with the CMS Pixel Detector

    CERN Document Server

    Veszpremi, Viktor

    2015-01-01

    The CMS pixel detector is the innermost component of the CMS tracker occupying the region around the centre of CMS, where the LHC beams are crossed, between 4.3~cm and 30~cm in radius and 46.5~cm along the beam axis. It operates in a high-occupancy and high-radiation environment created by particle collisions. Studies of radiation damage effects to the sensors were performed throughout the first running period of the LHC. Leakage current, depletion voltage, pixel read-out thresholds, and hit finding efficiencies were monitored as functions of the increasing particle fluence. The methods and results of these measurements will be described together with their implications to detector operation as well as to performance parameters in offline hit reconstruction.

  10. Radiation experience with the CMS pixel detector

    Science.gov (United States)

    Veszpremi, V.

    2015-04-01

    The CMS pixel detector is the innermost component of the CMS tracker occupying the region around the centre of CMS, where the LHC beams are crossed, between 4.3 cm and 30 cm in radius and 46.5 cm along the beam axis. It operates in a high-occupancy and high-radiation environment created by particle collisions. Studies of radiation damage effects to the sensors were performed throughout the first running period of the LHC . Leakage current, depletion voltage, pixel readout thresholds, and hit finding efficiencies were monitored as functions of the increasing particle fluence. The methods and results of these measurements will be described together with their implications to detector operation as well as to performance parameters in offline hit reconstruction.

  11. Monolithic pixel detectors for high energy physics

    CERN Document Server

    Snoeys, W

    2013-01-01

    Monolithic pixel detectors integrating sensor matrix and readout in one piece of silicon have revolutionized imaging for consumer applications, but despite years of research they have not yet been widely adopted for high energy physics. Two major requirements for this application, radiation tolerance and low power consumption, require charge collection by drift for the most extreme radiation levels and an optimization of the collected signal charge over input capacitance ratio ( Q / C ). It is shown that monolithic detectors can achieve Q / C for low analog power consumption and even carryout the promise to practically eliminate analog power consumption, but combining suf fi cient Q / C , collection by drift, and integration of readout circuitry within the pixel remains a challenge. An overview is given of different approaches to address this challenge, with possible advantages and disadvantages.

  12. Efficient segmentation by sparse pixel classification

    DEFF Research Database (Denmark)

    Dam, Erik B; Loog, Marco

    2008-01-01

    Segmentation methods based on pixel classification are powerful but often slow. We introduce two general algorithms, based on sparse classification, for optimizing the computation while still obtaining accurate segmentations. The computational costs of the algorithms are derived, and they are dem......, and they are demonstrated on real 3-D magnetic resonance imaging and 2-D radiograph data. We show that each algorithm is optimal for specific tasks, and that both algorithms allow a speedup of one or more orders of magnitude on typical segmentation tasks.......Segmentation methods based on pixel classification are powerful but often slow. We introduce two general algorithms, based on sparse classification, for optimizing the computation while still obtaining accurate segmentations. The computational costs of the algorithms are derived...

  13. Noise in a CMOS digital pixel sensor

    International Nuclear Information System (INIS)

    Based on the study of noise performance in CMOS digital pixel sensor (DPS), a mathematical model of noise is established with the pulse-width-modulation (PWM) principle. Compared with traditional CMOS image sensors, the integration time is different and A/D conversion is implemented in each PWM DPS pixel. Then, the quantitative calculating formula of system noise is derived. It is found that dark current shot noise is the dominant noise source in low light region while photodiode shot noise becomes significantly important in the bright region. In this model, photodiode shot noise does not vary with luminance, but dark current shot noise does. According to increasing photodiode capacitance and the comparator's reference voltage or optimizing the mismatch in the comparator, the total noise can be reduced. These results serve as a guideline for the design of PWM DPS. (semiconductor integrated circuits)

  14. Bad pixel modified interpolation for astronomical images

    CERN Document Server

    Popowicz, A; Filus, Z

    2013-01-01

    We present a new method of interpolation for the pixel brightness estimation in astronomical images. Our new method is simple and easily implementable. We show the comparison of this method with the widely used linear interpolation and other interpolation algorithms using one thousand astronomical images obtained from the Sloan Digital Sky Survey. The comparison shows that our method improves bad pixels brightness estimation with four times lower mean error than the presently most popular linear interpolation and has a better performance than any other examined method. The presented idea is flexible and can be also applied to presently used and future interpolation methods. The proposed method is especially useful for large sky surveys image reduction but can be also applied to single image correction.

  15. Advanced monolithic pixel sensors using SOI technology

    Science.gov (United States)

    Miyoshi, Toshinobu; Arai, Yasuo; Asano, Mari; Fujita, Yowichi; Hamasaki, Ryutaro; Hara, Kazuhiko; Honda, Shunsuke; Ikegami, Yoichi; Kurachi, Ikuo; Mitsui, Shingo; Nishimura, Ryutaro; Tauchi, Kazuya; Tobita, Naoshi; Tsuboyama, Toru; Yamada, Miho

    2016-07-01

    We are developing advanced pixel sensors using silicon-on-insulator (SOI) technology. A SOI wafer is used; top silicon is used for electric circuit and bottom silicon is used as a sensor. Target applications are high-energy physics, X-ray astronomy, material science, non-destructive inspection, medical application and so on. We have developed two integration-type pixel sensors, FPIXb and INTPIX7. These sensors were processed on single SOI wafers with various substrates in n- or p-type and double SOI wafers. The development status of double SOI sensors and some up-to-date test results of n-type and p-type SOI sensors are shown.

  16. The ATLAS Analysis Model

    CERN Multimedia

    Amir Farbin

    The ATLAS Analysis Model is a continually developing vision of how to reconcile physics analysis requirements with the ATLAS offline software and computing model constraints. In the past year this vision has influenced the evolution of the ATLAS Event Data Model, the Athena software framework, and physics analysis tools. These developments, along with the October Analysis Model Workshop and the planning for CSC analyses have led to a rapid refinement of the ATLAS Analysis Model in the past few months. This article introduces some of the relevant issues and presents the current vision of the future ATLAS Analysis Model. Event Data Model The ATLAS Event Data Model (EDM) consists of several levels of details, each targeted for a specific set of tasks. For example the Event Summary Data (ESD) stores calorimeter cells and tracking system hits thereby permitting many calibration and alignment tasks, but will be only accessible at particular computing sites with potentially large latency. In contrast, the Analysis...

  17. Production chain of CMS pixel modules

    CERN Multimedia

    2006-01-01

    The pictures show the production chain of pixel modules for the CMS detector. Fig.1: overview of the assembly procedure. Fig.2: bump bonding with ReadOut Chip (ROC) connected to the sensor. Fig.3: glueing a raw module onto the baseplate strips. Fig.4: glueing of the High Density Interconnect (HDI) onto a raw module. Fig.5: pull test after heat reflow. Fig.6: wafer sensor processing, Indium evaporation.

  18. Active-Pixel Cosmic-Ray Sensor

    Science.gov (United States)

    Fossum, Eric R.; Cunningham, Thomas J.; Holtzman, Melinda J.

    1994-01-01

    Cosmic-ray sensor comprises planar rectangular array of lateral bipolar npn floating-base transistors each of which defines pixel. Collector contacts of all transistors in each row connected to same X (column) line conductor; emitter contacts of all transistors in each column connected to same Y (row) line conductor; and current in each row and column line sensed by amplifier, output of which fed to signal-processing circuits.

  19. The Belle II DEPFET pixel detector

    Science.gov (United States)

    Moser, Hans-Günther

    2016-09-01

    The Belle II experiment at KEK (Tsukuba, Japan) will explore heavy flavour physics (B, charm and tau) at the starting of 2018 with unprecedented precision. Charged particles are tracked by a two-layer DEPFET pixel device (PXD), a four-layer silicon strip detector (SVD) and the central drift chamber (CDC). The PXD will consist of two layers at radii of 14 mm and 22 mm with 8 and 12 ladders, respectively. The pixel sizes will vary, between 50 μm×(55-60) μm in the first layer and between 50 μm×(70-85) μm in the second layer, to optimize the charge sharing efficiency. These innermost layers have to cope with high background occupancy, high radiation and must have minimal material to reduce multiple scattering. These challenges are met using the DEPFET technology. Each pixel is a FET integrated on a fully depleted silicon bulk. The signal charge collected in the 'internal gate' modulates the FET current resulting in a first stage amplification and therefore very low noise. This allows very thin sensors (75 μm) reducing the overall material budget of the detector (0.21% X0). Four fold multiplexing of the column parallel readout allows read out a full frame of the pixel matrix in only 20 μs while keeping the power consumption low enough for air cooling. Only the active electronics outside the detector acceptance has to be cooled actively with a two phase CO2 system. Furthermore the DEPFET technology offers the unique feature of an electronic shutter which allows the detector to operate efficiently in the continuous injection mode of superKEKB.

  20. Studies Concerning the ATLAS IBL Calibration Architecture

    CERN Document Server

    Kretz, Moritz; Kugel, Andreas

    With the commissioning of the Insertable B-Layer (IBL) in 2013 at the ATLAS experiment 12~million additional pixels will be added to the current Pixel Detector. While the idea of employing pairs of VME based Read-Out Driver (ROD) and Back of Crate (BOC) cards in the read-out chain remains unchanged, modifications regarding the IBL calibration procedure were introduced to overcome current hardware limitations. The analysis of calibration histograms will no longer be performed on the RODs, but on an external computing farm that is connected to the RODs via Ethernet. This thesis contributes to the new IBL calibration procedure and presents a concept for a scalable software and hardware architecture. An embedded system targeted to the ROD FPGAs is realized for sending data from the RODs to the fit farm servers and benchmarks are carried out with a Linux based networking stack, as well as a standalone software stack. Furthermore, the histogram fitting algorithm currently being employed on the Pixel Detector RODs i...

  1. The ATLAS IBL BOC Prototype Evaluation

    CERN Document Server

    Schroer, N; The ATLAS collaboration; Bruni, G; Joseph, J; Krieger, N; Kugel, A; Morettini, P; Neumann, M; Polini, A; Rizzi, M; Travaglini, R; Zannoli, S; Zoccoli, A; Bruschi, M; Dantone, I; Falchieri, D; Dopke, J; Flick, T; Gabrielli, A; Grosse-Knetter, J; Heim, T

    2012-01-01

    In 2013 an additional layer, the Insertable B-Layer (IBL) will be added to the pixel detector of the ATLAS experiment at the LHC at CERN. For this fourth and innermost layer 448 newly developed pixel sensor readout chips (FE-I4) are used which will provide data from about 12 million pixel. For the readout of the IBL new off-detector electronic components are needed as the FE-I4s feature an increased readout bandwidth which can not be handled by the current system. To provide a degree of backward compatibility the new system will keep the structure of VME card pairs: The back of crate card (BOC) establishes the optical interfaces to the detector front end as well as to the read out system (ROS) while the read out driver (ROD) manages data processing and calibration. Both cards, the BOC and the ROD, have been redesigned and feature modern FPGA technology, yielding an integration four times higher than the current system. Regarding the new BOC this is achieved by replacing custom made optical and electrical (e.g...

  2. Commissioning the CMS pixel detector with Cosmic Rays

    CERN Document Server

    Heyburn, Bernadette

    2009-01-01

    commissioning activities in the CMS pixel detector. Results from cosmic ray studies will be presented, in addition to results obtained from the integration of the pixel detector within the CMS detector and various calibration and alignment analyses.

  3. Readout Architecture for Hybrid Pixel Readout Chips

    CERN Document Server

    AUTHOR|(SzGeCERN)694170; Westerlund, Tomi; Wyllie, Ken

    The original contribution of this thesis to knowledge are novel digital readout architectures for hybrid pixel readout chips. The thesis presents asynchronous bus-based architecture, a data-node based column architecture and a network-based pixel matrix architecture for data transportation. It is shown that the data-node architecture achieves readout efficiency 99 % with half the output rate as a bus-based system. The network-based solution avoids ``broken'' columns due to some manufacturing errors, and it distributes internal data traffic more evenly across the pixel matrix than column-based architectures. An improvement of $>$ 10 % to the efficiency is achieved with uniform and non-uniform hit occupancies. Architectural design has been done using transaction level modeling ($TLM$) and sequential high-level design techniques for reducing the design and simulation time. It has been possible to simulate tens of column and full chip architectures using the high-level techniques. A decrease of $>$ 10 in run-time...

  4. Photovoltaic retinal prosthesis with high pixel density

    Science.gov (United States)

    Mathieson, Keith; Loudin, James; Goetz, Georges; Huie, Philip; Wang, Lele; Kamins, Theodore I.; Galambos, Ludwig; Smith, Richard; Harris, James S.; Sher, Alexander; Palanker, Daniel

    2012-06-01

    Retinal degenerative diseases lead to blindness due to loss of the `image capturing' photoreceptors, while neurons in the `image-processing' inner retinal layers are relatively well preserved. Electronic retinal prostheses seek to restore sight by electrically stimulating the surviving neurons. Most implants are powered through inductive coils, requiring complex surgical methods to implant the coil-decoder-cable-array systems that deliver energy to stimulating electrodes via intraocular cables. We present a photovoltaic subretinal prosthesis, in which silicon photodiodes in each pixel receive power and data directly through pulsed near-infrared illumination and electrically stimulate neurons. Stimulation is produced in normal and degenerate rat retinas, with pulse durations of 0.5-4 ms, and threshold peak irradiances of 0.2-10 mW mm-2, two orders of magnitude below the ocular safety limit. Neural responses were elicited by illuminating a single 70 µm bipolar pixel, demonstrating the possibility of a fully integrated photovoltaic retinal prosthesis with high pixel density.

  5. Pixelated diffraction signatures for explosive detection

    Science.gov (United States)

    O'Flynn, Daniel; Reid, Caroline; Christodoulou, Christiana; Wilson, Matt; Veale, Matthew C.; Seller, Paul; Speller, Robert

    2012-06-01

    Energy dispersive X-ray diffraction (EDXRD) is a technique which can be used to improve the detection and characterisation of explosive materials. This study has performed EDXRD measurements of various explosive compounds using a novel, X-ray sensitive, pixelated, energy resolving detector developed at the Rutherford Appleton Laboratory, UK (RAL). EDXRD measurements are normally performed at a fixed scattering angle, but the 80×80 pixel detector makes it possible to collect both spatially resolved and energy resolved data simultaneously. The detector material used is Cadmium Telluride (CdTe), which can be utilised at room temperature and gives excellent spectral resolution. The setup uses characteristics from both energy dispersive and angular dispersive scattering techniques to optimise specificity and speed. The purpose of the study is to develop X-ray pattern "footprints" of explosive materials based on spatial and energy resolved diffraction data, which can then be used for the identification of such materials hidden inside packages or baggage. The RAL detector is the first energy resolving pixelated detector capable of providing an energy resolution of 1.0-1.5% at energies up to 150 keV. The benefit of using this device in a baggage scanner would be the provision of highly specific signatures to a range of explosive materials. We have measured diffraction profiles of five explosives and other compounds used to make explosive materials. High resolution spectra have been obtained. Results are presented to show the specificity of the technique in finding explosives within baggage.

  6. Baryon Acoustic Oscillations reconstruction with pixels

    CERN Document Server

    Obuljen, Andrej; Castorina, Emanuele; Viel, Matteo

    2016-01-01

    Gravitational non-linear evolution induces a shift in the position of the baryon acoustic oscillations (BAO) peak together with a damping and broadening of its shape that bias and degrades the accuracy with which the position of the peak can be determined. BAO reconstruction is a technique developed to undo part of the effect of non-linearities. We present a new reconstruction method that consists in displacing pixels instead of galaxies and whose implementation is easier than the standard reconstruction method. We show that our method is equivalent to the standard reconstruction technique in the limit where the number of pixels becomes very large. This method is particularly useful in surveys where individual galaxies are not resolved, as in 21cm intensity mapping observations. We validate our method by reconstructing mock pixelated maps, that we build from the distribution of matter and halos in real- and redshift-space, from a large set of numerical simulations. We find that our method is able to decrease ...

  7. Characterization of the CMS Pixel Detectors

    CERN Document Server

    Gu, Weihua

    2002-01-01

    In 2005 the Large Hadron Collider (LHC) will start the pp collisions at a high luminosity and at a center of mass energy of 14 TeV. The primary goal of the experimental programme is the search of the Higgs boson(s) and the supersymmetric particles. The programme is also proposed to detect a range of diverse signatures in order to provide guidance for future physics. The pixel detector system makes up the innermost part of the CMS experiment, which is one of the two general purpose detectors at the LHC. The main tasks of the system are vertex detection and flavor tagging. The high luminosity and the high particle multiplicity as well as the small bunch spacing at the LHC impose great challenges on the pixel detectors: radiation hardness of sensors and electronics, fast signal processing and a high granularity are the essential requirements. This thesis concentrates on the study of the suitability of two test stands, which are implemented to characterize the CMS pixel detectors: one is con-cerned with test puls...

  8. The Irish Wind Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R. [Univ. College Dublin, Dept. of Electronic and Electrical Engineering, Dublin (Ireland); Landberg, L. [Risoe National Lab., Meteorology and Wind Energy Dept., Roskilde (Denmark)

    1999-03-01

    The development work on the Irish Wind Atlas is nearing completion. The Irish Wind Atlas is an updated improved version of the Irish section of the European Wind Atlas. A map of the irish wind resource based on a WA{sup s}P analysis of the measured data and station description of 27 measuring stations is presented. The results of previously presented WA{sup s}P/KAMM runs show good agreement with these results. (au)

  9. PIXELS: Using field-based learning to investigate students' concepts of pixels and sense of scale

    Science.gov (United States)

    Pope, A.; Tinigin, L.; Petcovic, H. L.; Ormand, C. J.; LaDue, N.

    2015-12-01

    Empirical work over the past decade supports the notion that a high level of spatial thinking skill is critical to success in the geosciences. Spatial thinking incorporates a host of sub-skills such as mentally rotating an object, imagining the inside of a 3D object based on outside patterns, unfolding a landscape, and disembedding critical patterns from background noise. In this study, we focus on sense of scale, which refers to how an individual quantified space, and is thought to develop through kinesthetic experiences. Remote sensing data are increasingly being used for wide-reaching and high impact research. A sense of scale is critical to many areas of the geosciences, including understanding and interpreting remotely sensed imagery. In this exploratory study, students (N=17) attending the Juneau Icefield Research Program participated in a 3-hour exercise designed to study how a field-based activity might impact their sense of scale and their conceptions of pixels in remotely sensed imagery. Prior to the activity, students had an introductory remote sensing lecture and completed the Sense of Scale inventory. Students walked and/or skied the perimeter of several pixel types, including a 1 m square (representing a WorldView sensor's pixel), a 30 m square (a Landsat pixel) and a 500 m square (a MODIS pixel). The group took reflectance measurements using a field radiometer as they physically traced out the pixel. The exercise was repeated in two different areas, one with homogenous reflectance, and another with heterogeneous reflectance. After the exercise, students again completed the Sense of Scale instrument and a demographic survey. This presentation will share the effects and efficacy of the field-based intervention to teach remote sensing concepts and to investigate potential relationships between students' concepts of pixels and sense of scale.

  10. Recent ATLAS Articles on WLAP

    CERN Multimedia

    Goldfarb, S

    2005-01-01

    As reported in the September 2004 ATLAS eNews, the Web Lecture Archive Project is a system for the archiving and publishing of multimedia presentations, using the Web as medium. We list here newly available WLAP items relating to ATLAS: Atlas Software Week Plenary 6-10 December 2004 North American ATLAS Physics Workshop (Tucson) 20-21 December 2004 (17 talks) Physics Analysis Tools Tutorial (Tucson) 19 December 2004 Full Chain Tutorial 21 September 2004 ATLAS Plenary Sessions, 17-18 February 2005 (17 talks) Coming soon: ATLAS Tutorial on Electroweak Physics, 14 Feb. 2005 Software Workshop, 21-22 February 2005 Click here to browse WLAP for all ATLAS lectures.

  11. ATLAS' inner silicon tracker on track for completion

    CERN Multimedia

    2005-01-01

    Last week, the team working at the SR1 facility on the inner detector of the ATLAS experiment reached a project milestone after the delivery of the last Semi-conductor Tracker (SCT) barrel to CERN. The third barrel before its insertion into the support structure.The insertion of a completed barrel to its support structure is one of the highlights of the assembly and test sequence of the SCT in SR1. The inner detector will eventually sit in the 2 teslas magnetic field of the ATLAS solenoid, tracking charged particles from proton-proton collisions at the centre of ATLAS. The particles will be measured by a pixel detector (consisting of 3 pixel layers), an SCT (4 silicon strip layers) and a transition radiation tracker (TRT) (consisting of more than 52,000 straw tubes - see Bulletin 14/2005). The SCT has a silicon surface area of 61m2 with about 6 million operational channels so that all tracks can be identified and precisely measured. During 2004 a team of physicists, engineers, and technicians from several...

  12. 4T CMOS Active Pixel Sensors under Ionizing Radiation

    NARCIS (Netherlands)

    Tan, J.

    2013-01-01

    This thesis investigates the ionizing radiation effects on 4T pixels and the elementary in-pixel test devices with regard to the electrical performance and the optical performance. In addition to an analysis of the macroscopic pixel parameter degradation, the radiation-induced degradation mechanisms

  13. The ATLAS Insertable B-Layer (IBL) Project.

    CERN Document Server

    La Rosa, A; The ATLAS collaboration

    2013-01-01

    The ATLAS experiment will upgrade its Pixel Detector with the installation of a new pixel layer in 2013-14. The new sub-detector, named Insertable B-layer (IBL), will be installed between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance should be improved through the reduction of pixel size while targeting for a low material budget should be imposed, pushing for a new mechanical support using lightweight staves and a CO2 based cooling system. An overview of the IBL project and the status of the two pre-series staves made before going into production in order to qualify the assembly procedure, the loaded module electrical integrity and the read-out chain will be presented.

  14. Quality control and functionality tests during ATLAS IBL production

    International Nuclear Information System (INIS)

    To improve performance of the ATLAS inner tracker, a fourth Pixel layer, called the Insertable B-layer (IBL), will be installed on a new beam pipe in 2014. This detector uses both conventional planar and 3D pixel sensors bump-bonded to a new readout chip, the FE-I4, in a novel stave design. Therefore, a production QA test bench has been established to test all production staves before integration with the new beam pipe. This setup combines former ATLAS Pixel services and a new readout system, namely the RCE (Reconfigurable Cluster Element) system developed at SLAC. With this setup all production staves will be tested to ensure the installation of only those staves which fulfill the IBL criteria. Quality assurance measurements under cleanroom conditions, including temperature and humidity control, are performed during the various production steps of the IBL, namely connectivity as well as electrical tests and signal probing on assembled subsystems. The capabilities of the stave qualification setup, and recent results from testing prototype staves are presented and discussed.

  15. Fast Sub-Pixel Motion Estimation Algorithm For H.264

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel fast sub-pixel search algorithm is proposed to accelerate sub-pixel search. Based on the features of predicted motion vector (PMV) and texture direction observed, the proposed method effectively filters out impossible points and thus decreases 11 searched points in average during the sub-pixel search stage. A threshold is also adopted to early terminate the sub-pixel search. Simulation results show that the proposed method can achieve up to 4.8 times faster than full sub-pixel motion search scheme (FSPS) with less than 0.025 dB PSNR losses and 2.2% bitlength increases.

  16. Charge collection properties of a depleted monolithic active pixel sensor using a HV-SOI process

    Science.gov (United States)

    Fernandez-Perez, S.; Backhaus, M.; Fernandez-Garcia, M.; Gallrapp, C.; Hemperek, T.; Kishishita, T.; Krueger, H.; Moll, M.; Padilla, C.; Pernegger, H.

    2016-01-01

    New pixel detector concepts, based on commercial high voltage and/or high resistivity CMOS processes, are being investigated as a possible candidate to the inner and outer layers of the ATLAS Inner Tracker in the HL-LHC upgrade. A depleted monolithic active pixel sensor on thick film SOI technology is being extensively investigated for that purpose. This particular technology provides a double well structure, which shields the thin gate oxide transistors from the Buried Oxide (BOX). In addition, the distance between transistors and BOX is one order of magnitude bigger than conventional SOI technologies, making the technology promising against its main limitations, as radiation hardness or back gate effects. Its radiation hardness to Total Ionizing Dose (TID) and the absence of back gate effect up to 700 Mrad has been measured and published [1]. The process allows the use of high voltages (up to 300V) which are used to partially deplete the substrate. The process allows fabrication in higher resistivity, therefore a fully depleted substrate could be achieved after thinning. This article shows the results on charge collection properties of the silicon bulk below the BOX by different techniques, in a laboratory with radioactive sources and by edge Transient Current Technique, for unirradiated and irradiated samples.

  17. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS Inner Detector

    OpenAIRE

    Poley, Luise; Bloch, Ingo; Edwards, Sam; Friedrich, Conrad; Gregor, Ingrid-Maria; Jones, Tim; Lacker, Heiko; Pyatt, Simon; Rehnisch, Laura; Sperlich, Dennis; Wilson, John

    2015-01-01

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy gl...

  18. ISPA (imaging silicon pixel array) experiment

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The ISPA tube is a position-sensitive photon detector. It belongs to the family of hybrid photon detectors (HPD), recently developed by CERN and INFN with leading photodetector firms. HPDs confront in a vacuum envelope a photocathode and a silicon detector. This can be a single diode or a pixelized detector. The electrons generated by the photocathode are efficiently detected by the silicon anode by applying a high-voltage difference between them. ISPA tube can be used in high-energy applications as well as bio-medical and imaging applications.

  19. Multivariate analysis of pixelated diffraction data

    International Nuclear Information System (INIS)

    A novel pixelated ASIC detector using Cadmium Telluride is applied to a combined energy dispersive- and angular dispersive- X-ray diffraction system. This system is designed to obtain multiple diffraction signatures of powdered materials simultaneously. The diffraction data is analyzed using multivariate partial least squares regression utilizing the diffraction spectra at multiple scatter angles, and material concentration in a three-way regression analysis. The calibration models are used to predict unknown samples, and show that utilizing the angular information can help improve concentration prediction in samples of mixtures and has potential in material identification systems.

  20. Characterization of the CMS pixel detectors

    OpenAIRE

    Gu, Weihua

    2002-01-01

    In 2005 the Large Hadron Collider (LHC) will start the pp collisions at a high luminosity and at a center of mass energy of 14 TeV. The primary goal of the experimental programme is the search of the Higgs boson(s) and the supersymmetric particles. The programme is also proposed to detect a range of diverse signatures in order to provide guidance for future physics. The pixel detector system makes up the innermost part of the CMS experiment, which is one of the two general purpose detectors a...