WorldWideScience

Sample records for atlas pixel sensors

  1. ATLAS ITk and new pixel sensors technologies

    CERN Document Server

    Gaudiello, A

    2016-01-01

    During the 2023–2024 shutdown, the Large Hadron Collider (LHC) will be upgraded to reach an instantaneous luminosity up to 7×10$^{34}$ cm$^{−2}$s$^{−1}$. This upgrade of the accelerator is called High-Luminosity LHC (HL-LHC). The ATLAS detector will be changed to meet the challenges of HL-LHC: an average of 200 pile-up events in every bunch crossing, and an integrated luminosity of 3000 fb $^{−1}$ over ten years. The HL-LHC luminosity conditions are too extreme for the current silicon (pixel and strip) detectors and straw tube transition radiation tracker (TRT) of the current ATLAS tracking system. Therefore the ATLAS inner tracker is being completely rebuilt for data-taking and the new system is called Inner Tracker (ITk). During this upgrade the TRT will be removed in favor of an all-new all-silicon tracker composed only by strip and pixel detectors. An overview of new layouts in study will be reported and the new pixel sensor technologies in development will be explained.

  2. New results on diamond pixel sensors using ATLAS frontend electronics

    International Nuclear Information System (INIS)

    Keil, M.; Adam, W.; Berdermann, E.; Bergonzo, P.; Boer, W. de; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Dulinski, W.; Doroshenko, J.; Doucet, M.; Eijk, B. van; Fallou, A.; Fischer, P.; Fizzotti, F.; Kania, D.; Gan, K.K.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Kass, R.; Knoepfle, K.T.; Koeth, T.; Krammer, M.; Logiudice, A.; Mac Lynne, L.; Manfredotti, C.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L.; Riester, J.L.; Roe, S.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Trischuk, W.; Tromson, D.; Vittone, E.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M.

    2003-01-01

    Diamond is a promising sensor material for future collider experiments due to its radiation hardness. Diamond pixel sensors have been bump bonded to an ATLAS pixel readout chip using PbSn solder bumps. Single chip devices have been characterised by lab measurements and in a high-energy pion beam at CERN. Results on charge collection, spatial resolution, efficiency and the charge carrier lifetime are presented

  3. New results on diamond pixel sensors using ATLAS frontend electronics

    CERN Document Server

    Keil, Markus; Berdermann, E; Bergonzo, P; de Boer, Wim; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Dulinski, W

    2003-01-01

    Diamond is a promising sensor material for future collider experiments due to its radiation hardness. Diamond pixel sensors have been bump bonded to an ATLAS pixel readout chip using PbSn solder bumps. Single chip devices have been characterised by lab measurements and in a high-energy pion beam at CERN. Results on charge collection, spatial resolution, efficiency and the charge carrier lifetime are presented.

  4. New results on diamond pixel sensors using ATLAS frontend electronics

    Energy Technology Data Exchange (ETDEWEB)

    Keil, M. E-mail: markus.keil@cern.ch; Adam, W.; Berdermann, E.; Bergonzo, P.; Boer, W. de; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D' Angelo, P.; Dabrowski, W.; Delpierre, P.; Dulinski, W.; Doroshenko, J.; Doucet, M.; Eijk, B. van; Fallou, A.; Fischer, P.; Fizzotti, F.; Kania, D.; Gan, K.K.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Kass, R.; Knoepfle, K.T.; Koeth, T.; Krammer, M.; Logiudice, A.; Mac Lynne, L.; Manfredotti, C.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L.; Riester, J.L.; Roe, S.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Trischuk, W.; Tromson, D.; Vittone, E.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M

    2003-03-21

    Diamond is a promising sensor material for future collider experiments due to its radiation hardness. Diamond pixel sensors have been bump bonded to an ATLAS pixel readout chip using PbSn solder bumps. Single chip devices have been characterised by lab measurements and in a high-energy pion beam at CERN. Results on charge collection, spatial resolution, efficiency and the charge carrier lifetime are presented.

  5. New results on diamond pixel sensors using ATLAS frontend electronics

    Science.gov (United States)

    Keil, M.; Adam, W.; Berdermann, E.; Bergonzo, P.; de Boer, W.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Dulinski, W.; Doroshenko, J.; Doucet, M.; van Eijk, B.; Fallou, A.; Fischer, P.; Fizzotti, F.; Kania, D.; Gan, K. K.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Kass, R.; Knöpfle, K. T.; Koeth, T.; Krammer, M.; Logiudice, A.; mac Lynne, L.; Manfredotti, C.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pan, L. S.; Pernicka, M.; Perera, L.; Riester, J. L.; Roe, S.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Trischuk, W.; Tromson, D.; Vittone, E.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M.

    2003-03-01

    Diamond is a promising sensor material for future collider experiments due to its radiation hardness. Diamond pixel sensors have been bump bonded to an ATLAS pixel readout chip using PbSn solder bumps. Single chip devices have been characterised by lab measurements and in a high-energy pion beam at CERN. Results on charge collection, spatial resolution, efficiency and the charge carrier lifetime are presented.

  6. High-voltage pixel sensors for ATLAS upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Perić, I., E-mail: ivan.peric@ziti.uni-heidelberg.de [Heidelberg University, Institute of Computer Engineering, Mannheim (Germany); Kreidl, C.; Fischer, P. [Heidelberg University, Institute of Computer Engineering, Mannheim (Germany); Bompard, F.; Breugnon, P.; Clemens, J.-C.; Fougeron, D.; Liu, J.; Pangaud, P.; Rozanov, A.; Barbero, M. [CPPM, Marseille (France); Feigl, S.; Capeans, M.; Ferrere, D.; Pernegger, H.; Ristic, B. [CERN, Geneve (Switzerland); Muenstermann, D.; Gonzalez Sevilla, S.; La Rosa, A.; Miucci, A. [University of Geneve (Switzerland); and others

    2014-11-21

    The high-voltage (HV-) CMOS pixel sensors offer several good properties: a fast charge collection by drift, the possibility to implement relatively complex CMOS in-pixel electronics and the compatibility with commercial processes. The sensor element is a deep n-well diode in a p-type substrate. The n-well contains CMOS pixel electronics. The main charge collection mechanism is drift in a shallow, high field region, which leads to a fast charge collection and a high radiation tolerance. We are currently evaluating the use of the high-voltage detectors implemented in 180 nm HV-CMOS technology for the high-luminosity ATLAS upgrade. Our approach is replacing the existing pixel and strip sensors with the CMOS sensors while keeping the presently used readout ASICs. By intelligence we mean the ability of the sensor to recognize a particle hit and generate the address information. In this way we could benefit from the advantages of the HV sensor technology such as lower cost, lower mass, lower operating voltage, smaller pitch, smaller clusters at high incidence angles. Additionally we expect to achieve a radiation hardness necessary for ATLAS upgrade. In order to test the concept, we have designed two HV-CMOS prototypes that can be readout in two ways: using pixel and strip readout chips. In the case of the pixel readout, the connection between HV-CMOS sensor and the readout ASIC can be established capacitively.

  7. Design studies on sensors for the ATLAS Pixel Detector

    CERN Document Server

    Hügging, F G

    2002-01-01

    For the ATLAS Pixel Detector, prototype sensors have been successfully developed. For the sensors design, attention was given to survivability of the harsh LHC radiation environment leading to the need to operate them at several hundreds of volts, while maintaining a good charge collection efficiency, small cell size and minimal multiple scattering. For a cost effective mass production, a bias grid is implemented to test the sensors before assembly under full bias. (6 refs).

  8. Planar slim-edge pixel sensors for the ATLAS upgrades

    International Nuclear Information System (INIS)

    Altenheiner, S; Goessling, C; Jentzsch, J; Klingenberg, R; Lapsien, T; Rummler, A; Troska, G; Wittig, T; Muenstermann, D

    2012-01-01

    The ATLAS detector at CERN is a general-purpose experiment at the Large Hadron Collider (LHC). The ATLAS Pixel Detector is the innermost tracking detector of ATLAS and requires a sufficient level of hermeticity to achieve superb track reconstruction performance. The current planar n-type pixel sensors feature a pixel matrix of n + -implantations which is (on the opposite p-side) surrounded by so-called guard rings to reduce the high voltage stepwise towards the cutting edge and an additional safety margin. Because of the inactive region around the active area, the sensor modules have been shingled on top of each other's edge which limits the thermal performance and adds complexity in the present detector. The first upgrade phase of the ATLAS pixel detector will consist of the insertable b-layer (IBL), an additional b-layer which will be inserted into the present detector in 2013. Several changes in the sensor design with respect to the existing detector had to be applied to comply with the IBL's specifications and are described in detail. A key issue for the ATLAS upgrades is a flat arrangement of the sensors. To maintain the required level of hermeticity in the detector, the inactive sensor edges have to be reduced to minimize the dead space between the adjacent detector modules. Unirradiated and irradiated sensors with the IBL design have been operated in test beams to study the efficiency performance in the sensor edge region and it was found that the inactive edge width could be reduced from 1100 μm to less than 250 μm.

  9. The ATLAS Planar Pixel Sensor R and D project

    International Nuclear Information System (INIS)

    Beimforde, M.

    2011-01-01

    Within the R and D project on Planar Pixel Sensor Technology for the ATLAS inner detector upgrade, the use of planar pixel sensors for highest fluences as well as large area silicon detectors is investigated. The main research goals are optimizing the signal size after irradiations, reducing the inactive sensor edges, adjusting the readout electronics to the radiation induced decrease of the signal sizes, and reducing the production costs. Planar n-in-p sensors have been irradiated with neutrons and protons up to fluences of 2x10 16 n eq /cm 2 and 1x10 16 n eq /cm 2 , respectively, to study the collected charge as a function of the irradiation dose received. Furthermore comparisons of irradiated standard 300μm and thin 140μm sensors will be presented showing an increase of signal sizes after irradiation in thin sensors. Tuning studies of the present ATLAS front end electronics show possibilities to decrease the discriminator threshold of the present FE-I3 read out chips to less than 1500 electrons. In the present pixel detector upgrade scenarios a flat stave design for the innermost layers requires reduced inactive areas at the sensor edges to ensure low geometric inefficiencies. Investigations towards achieving slim edges presented here show possibilities to reduce the width of the inactive area to less than 500μm. Furthermore, a brief overview of present simulation activities within the Planar Pixel R and D project is given.

  10. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Nachman, Benjamin Philip; The ATLAS collaboration

    2017-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of $10^{15}$ 1 MeV $n_\\mathrm{eq}/\\mathrm{cm}^2$ and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This talk presents a digitization model that includes radiation damage effects to the ATLAS Pixel sensors for the first time. After a thorough description of the setup, predictions for basic Pixel cluster properties are presented alongside first validation studies with Run 2 collision data.

  11. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Ducourthial, Audrey; The ATLAS collaboration

    2017-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of $10^{15} n_{eq}/cm^2$ and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside...

  12. Modeling radiation damage to pixel sensors in the ATLAS detector

    CERN Document Server

    Ducourthial, Audrey; The ATLAS collaboration

    2017-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of $10^{15}n_{eq}/cm^2$ and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside ...

  13. Modeling radiation damage to pixel sensors in the ATLAS detector

    Science.gov (United States)

    Ducourthial, A.

    2018-03-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC) . As the closest detector component to the interaction point, these detectors will be subject to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC) [1], the innermost layers will receive a fluence in excess of 1015 neq/cm2 and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is essential in order to make accurate predictions for current and future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects on the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside early studies with LHC Run 2 proton-proton collision data.

  14. Thin and edgeless sensors for ATLAS pixel detector upgrade

    Science.gov (United States)

    Ducourthial, A.; Bomben, M.; Calderini, G.; Marchiori, G.; D'Eramo, L.; Luise, I.; Bagolini, A.; Boscardin, M.; Bosisio, L.; Darbo, G.; Dalla Betta, G.-F.; Giacomini, G.; Meschini, M.; Messineo, A.; Ronchin, S.; Zorzi, N.

    2017-12-01

    To cope with the harsh environment foreseen at the high luminosity conditions of HL-LHC, the ATLAS pixel detector has to be upgraded to be fully efficient with a good granularity, a maximized geometrical acceptance and an high read out rate. LPNHE, FBK and INFN are involved in the development of thin and edgeless planar pixel sensors in which the insensitive area at the border of the sensor is minimized thanks to the active edge technology. In this paper we report on two productions, a first one consisting of 200 μm thick n-on-p sensors with active edge, a second one composed of 100 and 130 μm thick n-on-p sensors. Those sensors have been tested on beam, both at CERN-SPS and at DESY. In terms of hit-efficiency, the first production reaches 99 % before irradiation and the second one reaches 96.3% after a fluence in excess of 1× 1016neq/cm2. The performances of those two productions before and after irradiation will be presented in details.

  15. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Rossini, Lorenzo; The ATLAS collaboration

    2018-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of 10^15 neq/cm^2 and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current and future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time and considers both planar and 3D sensor designs. In addition to thoroughly describing the setup, we compare predictions for b...

  16. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Rossini, Lorenzo; The ATLAS collaboration

    2018-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High- Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of 10^15 neq/cm2 and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time and considers both planar and 3D sensor designs. In addition to thoroughly describing the setup, we compare predictions for basic...

  17. Quality control on planar n-in-n pixel sensors — Recent progress of ATLAS planar pixel sensors

    International Nuclear Information System (INIS)

    Klingenberg, R.

    2013-01-01

    To extend the physics reach of the Large Hadron Collider (LHC), upgrades to the accelerator are planned which will increase the peak luminosity by a factor 5–10. To cope with the increased occupancy and radiation damage, the ATLAS experiment plans to introduce an all-silicon inner tracker with the high luminosity upgrade (HL-LHC). To investigate the suitability of pixel sensors using the proven planar technology for the upgraded tracker, the ATLAS Upgrade Planar Pixel Sensor (PPS) R and D Project was established. Main areas of research are the performance of planar pixel sensors at highest fluences, the exploration of possibilities for cost reduction to enable the instrumentation of large areas, the achievement of slim or active edges to provide low geometric inefficiencies without the need for shingling of modules and the investigation of the operation of highly irradiated sensors at low thresholds to increase the efficiency. The Insertable b-layer (IBL) is the first upgrade project within the ATLAS experiment and will employ a new detector layer consisting of silicon pixel sensors, which were improved and prototyped in the framework of the planar pixel sensor R and D project. A special focus of this paper is the status of the development and testing of planar n-in-n pixel sensors including the quality control of the on-going series production and postprocessing of sensor wafers. A high yield of produced planar sensor wafers and FE-I4 double chip sensors after first steps of post-processing including under bump metallization and dicing is observed. -- Highlights: ► Prototypes of irradiated planar n-in-n sensors have been successfully tested under laboratory conditions. ► A quality assurance programme on the series production of planar sensors for the IBL has started. ► A high yield of double chip sensors during the series production is observed which are compatible to the specifications to this detector component.

  18. Transfer Function and Fluorescence Measurements on New CMOS Pixel Sensor for ATLAS

    CERN Document Server

    Kaemingk, Michael

    2017-01-01

    A new generation of pixel sensors is being designed for the phase II upgrade of the ATLAS Inner Tracker (ITk). These pixel sensors are being tested to ensure that they meet the demands of the ATLAS detector. As a summer student, I was involved in some of the measurements taken for this purpose.

  19. The ATLAS Pixel Detector

    CERN Document Server

    Huegging, Fabian

    2006-06-26

    The contruction of the ATLAS Pixel Detector which is the innermost layer of the ATLAS tracking system is prgressing well. Because the pixel detector will contribute significantly to the ATLAS track and vertex reconstruction. The detector consists of identical sensor-chip-hybrid modules, arranged in three barrels in the centre and three disks on either side for the forward region. The position of the detector near the interaction point requires excellent radiation hardness, mechanical and thermal robustness, good long-term stability for all parts, combined with a low material budget. The final detector layout, new results from production modules and the status of assembly are presented.

  20. Study of planar pixel sensors hardener to radiations for the upgrade of the ATLAS vertex detector

    International Nuclear Information System (INIS)

    Benoit, M.

    2011-05-01

    In this work, we present a study, using TCAD (Technology Computer-Assisted Design) simulation, of the possible methods of designing planar pixel sensors by reducing their inactive area and improving their radiation hardness for use in the Insertable B-Layer (IBL) project and for SLHC upgrade phase for the ATLAS experiment. Different physical models available have been studied to develop a coherent model of radiation damage in silicon that can be used to predict silicon pixel sensor behavior after exposure to radiation. The Multi-Guard Ring Structure, a protection structure used in pixel sensor design was studied to obtain guidelines for the reduction of inactive edges detrimental to detector operation while keeping a good sensor behavior through its lifetime in the ATLAS detector. A campaign of measurement of the sensor process parameters and electrical behavior to validate and calibrate the TCAD simulation models and results are also presented. A model for diode charge collection in highly irradiated environment was developed to explain the high charge collection observed in highly irradiated devices. A simple planar pixel sensor digitization model to be used in test beam and full detector system is detailed. It allows for easy comparison between experimental data and prediction by the various radiation damage models available. The digitizer has been validated using test beam data for unirradiated sensors and can be used to produce the first full scale simulation of the ATLAS detector with the IBL that include sensor effects such as slim edge and thinning of the sensor. (author)

  1. Radiation Damage Modeling for 3D Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Wallangen, Veronica; The ATLAS collaboration

    2017-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of 10^15 neq/cm2 and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This poster presents the details of a new digitization model that includes radiation damage effects to the 3D Pixel sensors for the ATLAS Detector.

  2. Evaluation of testing strategies for the radiation tolerant ATLAS n **+-in-n pixel sensor

    CERN Document Server

    Klaiber Lodewigs, Jonas M

    2003-01-01

    The development of particle tracker systems for high fluence environments in new high-energy physics experiments raises new challenges for the development, manufacturing and reliable testing of radiation tolerant components. The ATLAS pixel detector for use at the LHC, CERN, is designed to cover an active sensor area of 1.8 m**2 with 1.1 multiplied by 10 **8 read-out channels usable for a particle fluence up to 10 **1**5 cm**-**2 (1 MeV neutron equivalent) and an ionization dose up to 500 kGy of mainly charged hadron radiation. To cope with such a harsh environment the ATLAS Pixel Collaboration has developed a radiation hard n **+-in-n silicon pixel cell design with a standard cell size of 50 multiplied by 400 mum**2. Using this design on an oxygenated silicon substrate, sensor production has started in 2001. This contribution describes results gained during the development of testing procedures of the ATLAS pixel sensor and evaluates quality assurance procedures regarding their relevance for detector operati...

  3. Recent achievements of the ATLAS upgrade Planar Pixel Sensors R and D project

    International Nuclear Information System (INIS)

    Casse, G

    2014-01-01

    The ATLAS upgrade Planar Pixel Sensors (PPS) project aims to prove the suitability of silicon detectors processed with planar technology to equip all layers of the pixel vertex detector proposed for the upgrade of the ATLAS experiment for the future High Luminosity LHC at CERN (HL-LHC). The detectors need to be radiation tolerant to the extreme fluences expected to be received during the experimental lifetime, with optimised geometry for full coverage and high granularity and affordable in term of cost, due to the relatively large area of the upgraded ATLAS detector system. Here several solutions for the detector geometry and results with radiation hard technologies (n-in-n, n-in-p) are discussed

  4. Novel silicon n-on-p edgeless planar pixel sensors for the ATLAS upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Bomben, M., E-mail: marco.bomben@cern.ch [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE), Paris (France); Bagolini, A.; Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM) Povo di Trento (Italy); Bosisio, L. [Università di Trieste, Dipartimento di Fisica and INFN, Trieste (Italy); Calderini, G. [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE), Paris (France); Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa (Italy); INFN Sez. di Pisa, Pisa (Italy); Chauveau, J. [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE), Paris (France); Giacomini, G. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM) Povo di Trento (Italy); La Rosa, A. [Section de Physique (DPNC), Université de Genève, Genève (Switzerland); Marchiori, G. [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE), Paris (France); Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM) Povo di Trento (Italy)

    2013-12-01

    In view of the LHC upgrade phases towards HL-LHC, the ATLAS experiment plans to upgrade the inner detector with an all-silicon system. The n-on-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost effectiveness. The edgeless technology would allow for enlarging the area instrumented with pixel detectors. We report on the development of novel n-on-p edgeless planar pixel sensors fabricated at FBK (Trento, Italy), making use of the active edge concept for the reduction of the dead area at the periphery of the device. After discussing the sensor technology and fabrication process, we present device simulations (pre- and post-irradiation) performed for different sensor configurations. First preliminary results obtained with the test-structures of the production are shown.

  5. Novel silicon n-on-p edgeless planar pixel sensors for the ATLAS upgrade

    International Nuclear Information System (INIS)

    Bomben, M.; Bagolini, A.; Boscardin, M.; Bosisio, L.; Calderini, G.; Chauveau, J.; Giacomini, G.; La Rosa, A.; Marchiori, G.; Zorzi, N.

    2013-01-01

    In view of the LHC upgrade phases towards HL-LHC, the ATLAS experiment plans to upgrade the inner detector with an all-silicon system. The n-on-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost effectiveness. The edgeless technology would allow for enlarging the area instrumented with pixel detectors. We report on the development of novel n-on-p edgeless planar pixel sensors fabricated at FBK (Trento, Italy), making use of the active edge concept for the reduction of the dead area at the periphery of the device. After discussing the sensor technology and fabrication process, we present device simulations (pre- and post-irradiation) performed for different sensor configurations. First preliminary results obtained with the test-structures of the production are shown

  6. Slim edge studies, design and quality control of planar ATLAS IBL pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wittig, Tobias

    2013-05-08

    One of the four large experiments at the LHC at CERN is the ATLAS detector, a multi purpose detector. Its pixel detector, composed of three layers, is the innermost part of the tracker. As it is closest to the interaction point, it represents a basic part of the track reconstruction. Besides the requested high resolution one main requirement is the radiation hardness. In the coming years the radiation damage will cause deteriorations of the detector performance. With the planned increase of the luminosity, especially after the upgrade to the High Luminosity LHC, this radiation damage will be even intensified. This circumstance necessitates a new pixel detector featuring improved radiation hard sensors and read-out chips. The present shutdown of the LHC is already utilized to insert an additional b-layer (IBL) into the existing ATLAS pixel detector. The current n-in-n pixel sensor design had to be adapted to the new read-out chip and the module specifications. The new stave geometry requests a reduction of the inactive sensor edge. In a prototype wafer production all modifications have been implemented. The sensor quality control was supervised which led to the decision of the final sensor thickness. In order to evaluate the performance of the sensor chip assemblies with an innovative slim edge design, they have been operated in test beam setups before and after irradiation. Furthermore, the quality control of the planar IBL sensor wafer production was supervised from the stage of wafer delivery to that before the flip chip process to ensure a sufficient amount of functional sensors for the module production.

  7. Electrical characterization of thin edgeless N-on-p planar pixel sensors for ATLAS upgrades

    International Nuclear Information System (INIS)

    Bomben, M; Calderini, G; Chauveau, J; Marchiori, G; Bagolini, A; Boscardin, M; Giacomini, G; Zorzi, N; Bosisio, L; Rosa, A La

    2014-01-01

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. Because of its radiation hardness and cost effectiveness, the n-on-p silicon technology is a promising candidate for a large area pixel detector. The paper reports on the joint development, by LPNHE and FBK of novel n-on-p edgeless planar pixel sensors, making use of the active trench concept for the reduction of the dead area at the periphery of the device. After discussing the sensor technology, and presenting some sensors' simulation results, a complete overview of the electrical characterization of the produced devices will be given

  8. Recent achievements of the ATLAS upgrade Planar Pixel Sensors R and D Project

    International Nuclear Information System (INIS)

    George, M

    2014-01-01

    After the foreseen upgrade of the LHC towards the HL-LHC, coming along with higher beam energies and increased peak luminosities, the experiments have to upgrade their detector systems to cope with the expected higher occupancies and radiation damages. In case of the ATLAS experiment a new Inner Tracker will be installed in this context. The ATLAS Planar Pixel Sensor R and D Project (PPS) is investigating the possibilities to cope with these new requirements, using planar pixel silicon sensors, working in a collaboration of 17 institutions and more than 80 scientists. Since the new Inner Tracker is supposed to have an active area on the order of 8 m 2 on the one side and has to withstand extreme irradiation on the other side, the PPS community is working on several approaches to reduce production costs, while increasing the radiation tolerance of the sensors. Another challenge is to produce sensors in such large quantities. During the production of the Insertable b-Layer (IBL) modules, the PPS community has proven to be able to produce a large scale production of planar silicon sensors with a high yield. For cost reduction reasons, it is desirable to produce larger sensors. There the PPS community is working on so called quad- and hex-modules, which have a size of four, respectively six FE-I4 readout chips. To cope with smaller radii and strict material budget requirements for the new pixel layers, developments towards sensors with small inactive areas are in the focus of research. Different production techniques, which even allow the production of sensors with active edges, have been investigated and the designs were qualified using lab and testbeam measurements. The short distance between the new innermost pixel layers and the interaction point, combined with the increase in luminosity, requires designs which are more radiation tolerant. Since charge collection on the one hand decreases with irradiation and on the other hand is not uniform within the pixel cells

  9. ATLAS ITk Pixel detector

    CERN Document Server

    Gemme, Claudia; The ATLAS collaboration

    2016-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenge to the ATLAS tracker. The current inner detector will be replaced with a whole silicon tracker which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation level are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the HL-LHC ATLA Pixel detector developments as well as the various layout options will be reviewed.

  10. Characterization of Pixel Sensors

    CERN Document Server

    Oliveira, Felipe Ferraz

    2017-01-01

    It was commissioned at CERN ATLAS pixel group a fluorescence setup for characterization of pixel sensors. The idea is to measure the energies of different targets to calibrate your sensor. It was measured four matrices (80, 95, 98 and 106) of the Investigator1 sensor with different deep PW using copper, iron and titanium as target materials. The matrix 80 has a higher gain (0.065 ± 0.002) and matrix 106 has a better energy resolution (0.05 ± 0.04). The noise of the setup is around 3.6 mV .

  11. Study of prototypes of LFoundry active CMOS pixels sensors for the ATLAS detector

    Science.gov (United States)

    Vigani, L.; Bortoletto, D.; Ambroz, L.; Plackett, R.; Hemperek, T.; Rymaszewski, P.; Wang, T.; Krueger, H.; Hirono, T.; Caicedo Sierra, I.; Wermes, N.; Barbero, M.; Bhat, S.; Breugnon, P.; Chen, Z.; Godiot, S.; Pangaud, P.; Rozanov, A.

    2018-02-01

    Current high energy particle physics experiments at the LHC use hybrid silicon detectors, in both pixel and strip configurations, for their inner trackers. These detectors have proven to be very reliable and performant. Nevertheless, there is great interest in depleted CMOS silicon detectors, which could achieve a similar performance at lower cost of production. We present recent developments of this technology in the framework of the ATLAS CMOS demonstrator project. In particular, studies of two active sensors from LFoundry, CCPD_LF and LFCPIX, are shown.

  12. Study of prototypes of LFoundry active CMOS pixels sensors for the ATLAS detector

    CERN Document Server

    Vigani, L.; Ambroz, L.; Plackett, R.; Hemperek, T.; Rymaszewski, P.; Wang, T.; Krueger, H.; Hirono, T.; Caicedo Sierra, I.; Wermes, N.; Barbero, M.; Bhat, S.; Breugnon, P.; Chen, Z.; Godiot, S.; Pangaud, P.; Rozanov, A.

    2018-01-01

    Current high energy particle physics experiments at the LHC use hybrid silicon detectors, in both pixel and strip configurations, for their inner trackers. These detectors have proven to be very reliable and performant. Nevertheless, there is great interest in depleted CMOS silicon detectors, which could achieve a similar performance at lower cost of production. We present recent developments of this technology in the framework of the ATLAS CMOS demonstrator project. In particular, studies of two active sensors from LFoundry, CCPD_LF and LFCPIX, are shown.

  13. Thin n-in-p planar pixel sensors and active edge sensors for the ATLAS upgrade at HL-LHC

    International Nuclear Information System (INIS)

    Terzo, S; Macchiolo, A; Nisius, R; Paschen, B

    2014-01-01

    Silicon pixel modules employing n-in-p planar sensors with an active thickness of 200 μm, produced at CiS, and 100-200 μm thin active/slim edge sensor devices, produced at VTT in Finland have been interconnected to ATLAS FE-I3 and FE-I4 read-out chips. The thin sensors are designed for high energy physics collider experiments to ensure radiation hardness at high fluences. Moreover, the active edge technology of the VTT production maximizes the sensitive region of the assembly, allowing for a reduced overlap of the modules in the pixel layer close to the beam pipe. The CiS production includes also four chip sensors according to the module geometry planned for the outer layers of the upgraded ATLAS pixel detector to be operated at the HL-LHC. The modules have been characterized using radioactive sources in the laboratory and with high precision measurements at beam tests to investigate the hit efficiency and charge collection properties at different bias voltages and particle incidence angles. The performance of the different sensor thicknesses and edge designs are compared before and after irradiation up to a fluence of 1.4 × 10 16 n eq /cm 2

  14. CMOS pixel sensor development for the ATLAS experiment at the High Luminosity-LHC

    Science.gov (United States)

    Rimoldi, M.

    2017-12-01

    The current ATLAS Inner Detector will be replaced with a fully silicon based detector called Inner Tracker (ITk) before the start of the High Luminosity-LHC project (HL-LHC) in 2026. To cope with the harsh environment expected at the HL-LHC, new approaches are being developed for pixel detectors based on CMOS technology. Such detectors can provide charge collection, analog amplification and digital processing in the same silicon wafer. The radiation hardness is improved thanks to multiple nested wells which give the embedded CMOS electronics sufficient shielding. The goal of this programme is to demonstrate that depleted CMOS pixels are suitable for high rate, fast timing and high radiation operation at the LHC . A number of alternative solutions have been explored and characterised. In this document, test results of the sensors fabricated in different CMOS processes are reported.

  15. Development of edgeless n-on-p planar pixel sensors for future ATLAS upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Bomben, Marco, E-mail: marco.bomben@cern.ch [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE) Paris (France); Bagolini, Alvise; Boscardin, Maurizio [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM) Povo di Trento (Italy); Bosisio, Luciano [Università di Trieste, Dipartimento di Fisica and INFN, Trieste (Italy); Calderini, Giovanni [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE) Paris (France); Dipartimento di Fisica E. Fermi, Università di Pisa, and INFN Sez. di Pisa, Pisa (Italy); Chauveau, Jacques [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE) Paris (France); Giacomini, Gabriele [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM) Povo di Trento (Italy); La Rosa, Alessandro [Section de Physique (DPNC), Université de Genève, Genève (Switzerland); Marchiori, Giovanni [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE) Paris (France); Zorzi, Nicola [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM) Povo di Trento (Italy)

    2013-06-01

    The development of n-on-p “edgeless” planar pixel sensors being fabricated at FBK (Trento, Italy), aimed at the upgrade of the ATLAS Inner Detector for the High Luminosity phase of the Large Hadron Collider (HL-LHC), is reported. A characterizing feature of the devices is the reduced dead area at the edge, achieved by adopting the “active edge” technology, based on a deep etched trench, suitably doped to make an ohmic contact to the substrate. The project is presented, along with the active edge process, the sensor design for this first n-on-p production and a selection of simulation results, including the expected charge collection efficiency after radiation fluence of 1×10{sup 15}n{sub eq}/cm{sup 2} comparable to those expected at HL-LHC (about ten years of running, with an integrated luminosity of 3000 fb{sup −1}) for the outer pixel layers. We show that, after irradiation and at a bias voltage of 500 V, more than 50% of the signal should be collected in the edge region; this confirms the validity of the active edge approach. -- Highlights: ► We conceive n-on-p edgeless planar silicon sensors. ► These sensors are aimed at the Phase-II of the ATLAS experiment. ► Simulations show sensors can be operated well in overdepletion. ► Simulations show the sensor capability to collect charge at the periphery. ► Simulations prove the above statements to be true even after irradiation.

  16. Performance of irradiated thin n-in-p planar pixel sensors for the ATLAS Inner Tracker upgrade

    Science.gov (United States)

    Savić, N.; Beyer, J.; Hiti, B.; Kramberger, G.; La Rosa, A.; Macchiolo, A.; Mandić, I.; Nisius, R.; Petek, M.

    2017-12-01

    The ATLAS collaboration will replace its tracking detector with new all silicon pixel and strip systems. This will allow to cope with the higher radiation and occupancy levels expected after the 5-fold increase in the luminosity of the LHC accelerator complex (HL-LHC). In the new tracking detector (ITk) pixel modules with increased granularity will implement to maintain the occupancy with a higher track density. In addition, both sensors and read-out chips composing the hybrid modules will be produced employing more radiation hard technologies with respect to the present pixel detector. Due to their outstanding performance in terms of radiation hardness, thin n-in-p sensors are promising candidates to instrument a section of the new pixel system. Recently produced and developed sensors of new designs will be presented. To test the sensors before interconnection to chips, a punch-through biasing structure was implemented. Its design was optimized to decrease the possible tracking efficiency losses observed. After irradiation, they were caused by the punch-through biasing structure. A sensor compatible with the ATLAS FE-I4 chip with a pixel size of 50×250 μm2, subdivided into smaller pixel implants of 30×30 μm2 size was designed to investigate the performance of the 50×50 μm2 pixel cells foreseen for the HL-LHC. Results on sensor performance of 50×250 and 50×50 μm2 pixel cells in terms of efficiency, charge collection and electric field properties are obtained with beam tests and the Transient Current Technique.

  17. ATLAS Pixel Detector Upgrade

    CERN Document Server

    Flick, T; The ATLAS collaboration

    2009-01-01

    The first upgrade for higher luminosity at LHC for the ATLAS pixel detector is the insertion of a forth layer, the IBL. The talk gives an overview about what the IBL is and how it will be set up, as well as to give a status of the research and develoment work.

  18. Active Pixel Sensors in ams H18/H35 HV-CMOS Technology for the ATLAS HL-LHC Upgrade

    CERN Document Server

    Ristic, Branislav

    2016-09-21

    Deep sub micron HV-CMOS processes offer the opportunity for sensors built by industry standard techniques while being HV tolerant, making them good candidates for drift-based, fast collecting, thus radiation-hard pixel detectors. For the upgrade of the ATLAS Pixel Detector towards the HL-LHC requirements, active pixel sensors in HV-CMOS technology were investigated. These implement amplifier and discriminator stages directly in insulating deep n-wells, which also act as collecting electrodes. The deep n-wells allow for bias voltages up to 150V leading to a depletion depth of several 10um. Prototype sensors in the ams H18 180nm and H35 350nm HV-CMOS processes have been manufactured, acting as a potential drop-in replacement for the current ATLAS Pixel sensors, thus leaving higher level processing such as trigger handling to dedicated read-out chips. Sensors were thoroughly tested in lab measurements as well as in testbeam experiments. Irradiation with X-rays and protons revealed a tolerance to ionizing doses o...

  19. Development of thin sensors and a novel interconnection technology for the upgrade of the ATLAS pixel system

    CERN Document Server

    Beimforde, Michael

    To extend the discovery potential of the experiments at the LHC accelerator a luminosity upgrade towards the super LHC (sLHC) with an up to ten-fold peak luminosity is planned. Within this thesis a new module concept was developed and evaluated for the operation within an ATLAS pixel detector at the sLHC. This module concept utilizes a novel thin sensor production process for thin n-in-p silicon sensors which potentially allow for a higher radiation hardness at a reduced cost. Furthermore, the new 3D-integration technology ICV-SLID is explored which will allow for increasing the active area of the modules and hence, for employing the modules in the innermost layer of the upgraded ATLAS pixel detector.

  20. 3D silicon sensors: Design, large area production and quality assurance for the ATLAS IBL pixel detector upgrade

    Science.gov (United States)

    Da Via, Cinzia; Boscardin, Maurizio; Dalla Betta, Gian-Franco; Darbo, Giovanni; Fleta, Celeste; Gemme, Claudia; Grenier, Philippe; Grinstein, Sebastian; Hansen, Thor-Erik; Hasi, Jasmine; Kenney, Chris; Kok, Angela; Parker, Sherwood; Pellegrini, Giulio; Vianello, Elisa; Zorzi, Nicola

    2012-12-01

    3D silicon sensors, where electrodes penetrate the silicon substrate fully or partially, have successfully been fabricated in different processing facilities in Europe and USA. The key to 3D fabrication is the use of plasma micro-machining to etch narrow deep vertical openings allowing dopants to be diffused in and form electrodes of pin junctions. Similar openings can be used at the sensor's edge to reduce the perimeter's dead volume to as low as ˜4 μm. Since 2009 four industrial partners of the 3D ATLAS R&D Collaboration started a joint effort aimed at one common design and compatible processing strategy for the production of 3D sensors for the LHC Upgrade and in particular for the ATLAS pixel Insertable B-Layer (IBL). In this project, aimed for installation in 2013, a new layer will be inserted as close as 3.4 cm from the proton beams inside the existing pixel layers of the ATLAS experiment. The detector proximity to the interaction point will therefore require new radiation hard technologies for both sensors and front end electronics. The latter, called FE-I4, is processed at IBM and is the biggest front end of this kind ever designed with a surface of ˜4 cm2. The performance of 3D devices from several wafers was evaluated before and after bump-bonding. Key design aspects, device fabrication plans and quality assurance tests during the 3D sensors prototyping phase are discussed in this paper.

  1. Development of thin sensors and a novel interconnection technology for the upgrade of the ATLAS pixel system

    Energy Technology Data Exchange (ETDEWEB)

    Beimforde, Michael

    2010-07-19

    To extend the discovery potential of the experiments at the LHC accelerator a two phase luminosity upgrade towards the super LHC (sLHC) with a maximum instantaneous luminosity of 10{sup 35}/cm{sup 2}s{sup 1} is planned. Retaining the reconstruction efficiency and spatial resolution of the ATLAS tracking detector at the sLHC, new pixel modules have to be developed that have a higher granularity, can be placed closer to the interaction point, and allow for a cost-efficient coverage of a larger pixel detector volume compared to the present one. The reduced distance to the interaction point calls for more compact modules that have to be radiation hard to supply a sufficient charge collection efficiency up to an integrated particle fluence equivalent to that of (1-2).10{sup 16} 1-MeV-neutrons per square centimeter (n{sub eq}/cm{sup 2}). Within this thesis a new module concept was partially realised and evaluated for the operation within an ATLAS pixel detector at the sLHC. This module concept utilizes a novel thin sensor production process for thin n-in-p silicon sensors which potentially allow for a higher radiation hardness at a reduced cost. Furthermore, the new 3D-integration technology ICV-SLID is explored which will allow for increasing the active area of the modules from 71% to about 90% and hence, for employing the modules in the innermost layer of the upgraded ATLAS pixel detector. A semiconductor simulation and measurements of irradiated test sensors are used to optimize the implantation parameters for the inter-pixel isolation of the thin sensors. These reduce the crosstalk between the pixel channels and should allow for operating the sensors during the whole runtime of the experiment without causing junction breakdowns. The characterization of the first production of sensors with active thicknesses of 75 {mu}m and 150 {mu}m proved that thin pixel sensors can be successfully produced with the new process technology. Thin pad sensors with a reduced inactive

  2. Development of thin sensors and a novel interconnection technology for the upgrade of the ATLAS pixel system

    International Nuclear Information System (INIS)

    Beimforde, Michael

    2010-01-01

    To extend the discovery potential of the experiments at the LHC accelerator a two phase luminosity upgrade towards the super LHC (sLHC) with a maximum instantaneous luminosity of 10 35 /cm 2 s 1 is planned. Retaining the reconstruction efficiency and spatial resolution of the ATLAS tracking detector at the sLHC, new pixel modules have to be developed that have a higher granularity, can be placed closer to the interaction point, and allow for a cost-efficient coverage of a larger pixel detector volume compared to the present one. The reduced distance to the interaction point calls for more compact modules that have to be radiation hard to supply a sufficient charge collection efficiency up to an integrated particle fluence equivalent to that of (1-2).10 16 1-MeV-neutrons per square centimeter (n eq /cm 2 ). Within this thesis a new module concept was partially realised and evaluated for the operation within an ATLAS pixel detector at the sLHC. This module concept utilizes a novel thin sensor production process for thin n-in-p silicon sensors which potentially allow for a higher radiation hardness at a reduced cost. Furthermore, the new 3D-integration technology ICV-SLID is explored which will allow for increasing the active area of the modules from 71% to about 90% and hence, for employing the modules in the innermost layer of the upgraded ATLAS pixel detector. A semiconductor simulation and measurements of irradiated test sensors are used to optimize the implantation parameters for the inter-pixel isolation of the thin sensors. These reduce the crosstalk between the pixel channels and should allow for operating the sensors during the whole runtime of the experiment without causing junction breakdowns. The characterization of the first production of sensors with active thicknesses of 75 μm and 150 μm proved that thin pixel sensors can be successfully produced with the new process technology. Thin pad sensors with a reduced inactive edge demonstrate that the active

  3. Development of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Calderini, G. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Dipartimento di Fisica E. Fermi, Universitá di Pisa, Pisa (Italy); Bagolini, A. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); Beccherle, R. [Istituto Nazionale di Fisica Nucleare, Sez. di Pisa (Italy); Bomben, M. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); Bosisio, L. [Università degli studi di Trieste (Italy); INFN-Trieste (Italy); Chauveau, J. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Giacomini, G. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); La Rosa, A. [Section de Physique (DPNC), Universitè de Geneve, Geneve (Switzerland); Marchiori, G. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy)

    2016-09-21

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate to achieve a large area instrumented with pixel sensors, since it is radiation hard and cost effective. The presentation describes the performance of novel n-in-p edgeless planar pixel sensors produced by FBK-CMM, making use of the active trench for the reduction of the dead area at the periphery of the device. After discussing the sensor technology, some feedback from preliminary results of the first beam test will be discussed.

  4. Performance of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    CERN Document Server

    INSPIRE-00052711; Boscardin, Maurizio; Bosisio, Luciano; Calderini, Giovanni; Chauveau, Jacques; Ducourthial, Audrey; Giacomini, Gabriele; Marchiori, Giovanni; Zorzi, Nicola

    2016-01-01

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate to achieve a large area instrumented with pixel sensors, since it is radiation hard and cost effective. The paper reports on the performance of novel n-on-p edgeless planar pixel sensors produced by FBK-CMM, making use of the active trench for the reduction of the dead area at the periphery of the device. After discussing the sensor technology an overview of the first beam test results will be given.

  5. CMOS pixel sensor development for the ATLAS experiment at the High Luminosity-LHC

    CERN Document Server

    Rimoldi, Marco; The ATLAS collaboration

    2017-01-01

    The current ATLAS Inner Detector will be replaced with a fully silicon based detector called Inner Tracker (ITk) before the start of the High Luminosity-LHC project (HL-LHC) in 2026. To cope with the harsh environment expected at the HL-LHC, new approaches are being developed for pixel detector based on CMOS pixel techology. Such detectors provide charge collection, analog and digital amplification in the same silicon bulk. The radiation hardness is obtained with multiple nested wells that have embedded the CMOS electronics with sufficient shielding. The goal of this programme is to demonstrate that depleted CMOS pixels are suitable for high rate, fast timing and high radiation operation at the LHC. A number of alternative solutions have been explored and characterised, and are presented in this document.

  6. Development of edgeless silicon pixel sensors on p-type substrate for the ATLAS high-luminosity upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Calderini, G. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Dipartimento di Fisica E. Fermi, Universitá di Pisa, Pisa (Italy); Bagolini, A. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); Bomben, M. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); Bosisio, L. [Università degli studi di Trieste and INFN-Trieste (Italy); Chauveau, J. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Giacomini, G. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); La Rosa, A. [Section de Physique (DPNC), Universitè de Geneve, Geneve (Switzerland); Marchiori, G. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy)

    2014-11-21

    In view of the LHC upgrade for the high luminosity phase (HL-LHC), the ATLAS experiment is planning to replace the inner detector with an all-silicon system. The n-in-p bulk technology represents a valid solution for the modules of most of the layers, given the significant radiation hardness of this option and the reduced cost. The large area necessary to instrument the outer layers will demand to tile the sensors, a solution for which the inefficient region at the border of each sensor needs to be reduced to the minimum size. This paper reports on a joint R and D project by the ATLAS LPNHE Paris group and FBK Trento on a novel n-in-p edgeless planar pixel design, based on the deep-trench process available at FBK.

  7. 3D silicon sensors: Design, large area production and quality assurance for the ATLAS IBL pixel detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Da Via, Cinzia [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Boscardin, Maurizio [Fondazione Bruno Kessler, FBK-CMM, Via Sommarive 18, I-38123 Trento (Italy); Dalla Betta, Gian-Franco, E-mail: dallabe@disi.unitn.it [DISI, Universita degli Studi di Trento and INFN, Via Sommarive 14, I-38123 Trento (Italy); Darbo, Giovanni [INFN Sezione di Genova, Via Dodecaneso 33, I-14146 Genova (Italy); Fleta, Celeste [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona E-08193 (Spain); Gemme, Claudia [INFN Sezione di Genova, Via Dodecaneso 33, I-14146 Genova (Italy); Grenier, Philippe [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Grinstein, Sebastian [Institut de Fisica d' Altes Energies (IFAE) and ICREA, Universitat Autonoma de Barcelona (UAB), E-08193 Bellaterra, Barcelona (Spain); Hansen, Thor-Erik [SINTEF MiNaLab, Blindern, N-0314 Oslo (Norway); Hasi, Jasmine; Kenney, Chris [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Kok, Angela [SINTEF MiNaLab, Blindern, N-0314 Oslo (Norway); Parker, Sherwood [University of Hawaii, c/o Lawrence Berkeley Laboratory, Berkeley, CA 94720 (United States); Pellegrini, Giulio [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona E-08193 (Spain); Vianello, Elisa; Zorzi, Nicola [Fondazione Bruno Kessler, FBK-CMM, Via Sommarive 18, I-38123 Trento (Italy)

    2012-12-01

    3D silicon sensors, where electrodes penetrate the silicon substrate fully or partially, have successfully been fabricated in different processing facilities in Europe and USA. The key to 3D fabrication is the use of plasma micro-machining to etch narrow deep vertical openings allowing dopants to be diffused in and form electrodes of pin junctions. Similar openings can be used at the sensor's edge to reduce the perimeter's dead volume to as low as {approx}4 {mu}m. Since 2009 four industrial partners of the 3D ATLAS R and D Collaboration started a joint effort aimed at one common design and compatible processing strategy for the production of 3D sensors for the LHC Upgrade and in particular for the ATLAS pixel Insertable B-Layer (IBL). In this project, aimed for installation in 2013, a new layer will be inserted as close as 3.4 cm from the proton beams inside the existing pixel layers of the ATLAS experiment. The detector proximity to the interaction point will therefore require new radiation hard technologies for both sensors and front end electronics. The latter, called FE-I4, is processed at IBM and is the biggest front end of this kind ever designed with a surface of {approx}4 cm{sup 2}. The performance of 3D devices from several wafers was evaluated before and after bump-bonding. Key design aspects, device fabrication plans and quality assurance tests during the 3D sensors prototyping phase are discussed in this paper.

  8. Development of thin sensors and a novel interconnection technology for the upgrade of the ATLAS pixel system

    Energy Technology Data Exchange (ETDEWEB)

    Andricek, L. [Max-Planck-Institut Halbleiterlabor, Otto Hahn Ring 6, 81739 Muenchen (Germany); Beimforde, M., E-mail: mibei@mpp.mpg.de [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Macchiolo, A. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Moser, H.-G. [Max-Planck-Institut Halbleiterlabor, Otto Hahn Ring 6, 81739 Muenchen (Germany); Nisius, R. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Richter, R.H. [Max-Planck-Institut Halbleiterlabor, Otto Hahn Ring 6, 81739 Muenchen (Germany)

    2011-04-21

    A new pixel module concept is presented utilizing thin sensors and a novel vertical integration technique for the ATLAS pixel detector in view of the foreseen LHC luminosity upgrades. A first set of pixel sensors with active thicknesses of 75 and 150{mu}m has been produced from wafers of standard thickness using a thinning process developed at the Max-Planck-Institut Halbleiterlabor (HLL) and the Max-Planck-Institut fuer Physik (MPP). Pre-irradiation characterizations of these sensors show a very good device yield and high break down voltage. First proton irradiations up to a fluence of 10{sup 15} n{sub eq} cm{sup -2} have been carried out and their impact on the electrical properties of thin sensors has been studied. The novel ICV-SLID vertical integration technology will allow for routing signals vertically to the back side of the readout chips. With this, four-side buttable detector devices with an increased active area fraction are made possible. A first production of SLID test structures was performed and showed a high connection efficiency for different pad sizes and a mild sensitivity to disturbances of the surface planarity.

  9. Development of thin sensors and a novel interconnection technology for the upgrade of the ATLAS pixel system

    International Nuclear Information System (INIS)

    Andricek, L.; Beimforde, M.; Macchiolo, A.; Moser, H.-G.; Nisius, R.; Richter, R.H.

    2011-01-01

    A new pixel module concept is presented utilizing thin sensors and a novel vertical integration technique for the ATLAS pixel detector in view of the foreseen LHC luminosity upgrades. A first set of pixel sensors with active thicknesses of 75 and 150μm has been produced from wafers of standard thickness using a thinning process developed at the Max-Planck-Institut Halbleiterlabor (HLL) and the Max-Planck-Institut fuer Physik (MPP). Pre-irradiation characterizations of these sensors show a very good device yield and high break down voltage. First proton irradiations up to a fluence of 10 15 n eq cm -2 have been carried out and their impact on the electrical properties of thin sensors has been studied. The novel ICV-SLID vertical integration technology will allow for routing signals vertically to the back side of the readout chips. With this, four-side buttable detector devices with an increased active area fraction are made possible. A first production of SLID test structures was performed and showed a high connection efficiency for different pad sizes and a mild sensitivity to disturbances of the surface planarity.

  10. Developments of the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Andreazza, Attilio

    2004-01-01

    The ATLAS silicon pixel detector is the innermost tracking device of the ATLAS experiment at the Large Hardon Collider, consisting of more than 1700 modules for a total sensitive area of about 1.7m2 and over 80 million pixel cells. The concept is a hybrid of front-end chips bump bonded to the pixel sensor. The elementary pixel cell has 50μmx400μm size, providing pulse height information via the time over threshold technique. Prototype devices with oxygenated silicon sensor and rad-hard electronics built in the IBM 0.25μm process have been tested and maintain good resolution, efficiency and timing performances even after receiving the design radiation damage of 1015neq/cm2

  11. ATLAS Pixel Detector Operational Experience

    CERN Document Server

    Di Girolamo, B; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.9% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  12. Insertable B-Layer integration in the ATLAS experiment and development of future 3D silicon pixel sensors

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00371528; Røhne, Ole

    This work has two distinct objectives: the development of software for the integration of the Insertable B-Layer (IBL) in the ATLAS offline software framework and the study of the performance of 3D silicon sensors produced by SINTEF for future silicon pixel detectors. The former task consists in the implementation of the IBL byte stream converter. This offline tool performs the decoding of the binary-formatted data coming from the detector into information (e.g. hit position and Time over Threshold) that is stored in a format used in the reconstruction data flow. It also encodes the information extracted from simulations into a simulated IBL byte stream. The tool has been successfully used since the beginning of the LHC Run II data taking. The experimental work on SINTEF 3D sensors was performed in the framework of the development of pixel sensors for the next generation of tracking detectors. Preliminary tests on SINTEF 3D sensors showed that the majority of these devices suffers from high leakage currents, ...

  13. What's A Pixel Particle Sensor Chip?

    CERN Multimedia

    2008-01-01

    ATLAS particle physics experiment aided with collaboration ON Semiconductor was recently honored by the European Council for Nuclear Research (CERN), with an Industrial Award recognizing the company's contribution in supplying complex "Pixel Particle Sensor" chips for use in CERN's ATLAS particle physics experiment.

  14. Initial Measurements on Pixel Detector Modules for the ATLAS Upgrades

    CERN Document Server

    Gallrapp, C; The ATLAS collaboration

    2011-01-01

    Delicate conditions in terms of peak and integrated luminosity in the Large Hadron Collider (LHC) will raise the ATLAS Pixel Detector to its performance limits. Silicon planar, silicon 3D and diamond pixel sensors are three possible sensor technologies which could be implemented in the upcoming Pixel Detector upgrades of the ATLAS experiment. Measurements of the IV-behavior and measurements with radioactive Americium-241 and Strontium-90 are used to characterize the sensor properties and to understand the interaction between the ATLAS FE-I4 front-end chip and the sensor. Comparisons of results from before and after irradiation for silicon planar and 3D pixel sensors, which give a first impression on the charge collection properties of the different sensor technologies, are presented.

  15. Upgrade of ATLAS ITk Pixel Detector

    CERN Document Server

    Huegging, Fabian; The ATLAS collaboration

    2017-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenges to the ATLAS tracker. The current inner detector will be replaced with an entirely-silicon inner tracker (ITk) which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation levels are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors and low mass global and local support structures. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the ITk ATLAS Pixel detector developments as well as different layout options will be reviewed.

  16. The Phase-2 ATLAS ITk Pixel Upgrade

    CERN Document Server

    Macchiolo, Anna; The ATLAS collaboration

    2018-01-01

    The new ATLAS ITk pixel system will be installed during the LHC Phase-II shutdown, to better take advantage of the increased luminosity of the HL-LHC. The detector will consist of 5 layers of stave-like support structures in the most central region and ring-shaped supports in the endcap regions, covering up to |η| < 4. While the outer 3 layers of the Pixel Detector are designed to operate for the full HL-LHC data taking period, the innermost 2 layers of the detector will be replaced around half of the lifetime. The ITk pixel detector will be instrumented with new sensors and readout electronics to provide improved tracking performance and radiation hardness compared to the current detector. Sensors will be read out by new ASICs based on the chip developed by the RD53 Collaboration. The pixel off-detector readout electronics will be implemented in the framework of the general ATLAS trigger and DAQ system with a readout speed of up to 5 Gb/s per data link for the innermost layers. Results of extensive tests...

  17. Construction and Tests of Modules for the ATLAS Pixel Detector

    CERN Document Server

    AUTHOR|(CDS)2068490

    2003-01-01

    The ATLAS Pixel Detector is the innermost layer of the ATLAS tracking system and will contribute significantly to the ATLAS track and vertex reconstruction. The detector consists of identical sensor-chip-hybrid modules, arranged in three barrels in the centre and three disks on either side for the forward region. The position of the pixel detector near the interaction point requires excellent radiation hardness, mechanical and thermal robustness, good long-term stability, all combined with a low material budget. The pre-production phase of such pixel modules has nearly finished, yielding fully functional modules. Results are presented of tests with these modules.

  18. Performance of thin pixel sensors irradiated up to a fluence of 10{sup 16}n{sub eq}cm{sup -2} and development of a new interconnection technology for the upgrade of the ATLAS pixel system

    Energy Technology Data Exchange (ETDEWEB)

    Macchiolo, A., E-mail: Anna.Macchiolo@mpp.mpg.de [Max-Planck-Institut fuer Physik, Foehringer Ring 6, D-80805 Muenchen (Germany); Andricek, L. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, D-80805 Muenchen (Germany); Max-Planck-Institut Halbleiterlabor, Otto Hahn Ring 6, D-81739 Muenchen (Germany); Beimforde, M. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, D-80805 Muenchen (Germany); Moser, H.-G. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, D-80805 Muenchen (Germany); Max-Planck-Institut Halbleiterlabor, Otto Hahn Ring 6, D-81739 Muenchen (Germany); Nisius, R. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, D-80805 Muenchen (Germany); Richter, R.H. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, D-80805 Muenchen (Germany); Max-Planck-Institut Halbleiterlabor, Otto Hahn Ring 6, D-81739 Muenchen (Germany); Weigell, P. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, D-80805 Muenchen (Germany)

    2011-09-11

    A new pixel module concept is presented, where thin sensors and a novel vertical integration technique are combined. This R and D activity is carried out in view of the ATLAS pixel detector upgrades. A first set of n-in-p pixel sensors with active thicknesses of 75 and 150{mu}m has been produced using a thinning technique developed at the Max-Planck-Institut Halbleiterlabor (HLL). Charge Collection Efficiency measurements have been performed, yielding a higher CCE than expected from the present radiation damage models. The interconnection of thin n-in-p pixels to the FE-I3 ATLAS electronics is under way, exploiting the Solid Liquid Interdiffusion (SLID) technique developed by the Fraunhofer Institut EMFT. In addition, preliminary studies aimed at Inter-Chip-Vias (ICV) etching into the FE-I3 electronics are reported. ICVs will be used to route the signals vertically through the read-out chip, to newly created pads on the backside. This should serve as a proof of principle for future four-side tileable pixel assemblies, avoiding the cantilever presently needed in the chip for the wire bonding.

  19. Performance of thin pixel sensors irradiated up to a fluence of 1016neqcm-2 and development of a new interconnection technology for the upgrade of the ATLAS pixel system

    International Nuclear Information System (INIS)

    Macchiolo, A.; Andricek, L.; Beimforde, M.; Moser, H.-G.; Nisius, R.; Richter, R.H.; Weigell, P.

    2011-01-01

    A new pixel module concept is presented, where thin sensors and a novel vertical integration technique are combined. This R and D activity is carried out in view of the ATLAS pixel detector upgrades. A first set of n-in-p pixel sensors with active thicknesses of 75 and 150μm has been produced using a thinning technique developed at the Max-Planck-Institut Halbleiterlabor (HLL). Charge Collection Efficiency measurements have been performed, yielding a higher CCE than expected from the present radiation damage models. The interconnection of thin n-in-p pixels to the FE-I3 ATLAS electronics is under way, exploiting the Solid Liquid Interdiffusion (SLID) technique developed by the Fraunhofer Institut EMFT. In addition, preliminary studies aimed at Inter-Chip-Vias (ICV) etching into the FE-I3 electronics are reported. ICVs will be used to route the signals vertically through the read-out chip, to newly created pads on the backside. This should serve as a proof of principle for future four-side tileable pixel assemblies, avoiding the cantilever presently needed in the chip for the wire bonding.

  20. Initial Measurements On Pixel Detector Modules For The ATLAS Upgrades

    CERN Document Server

    Gallrapp, C; The ATLAS collaboration

    2011-01-01

    Sophisticated conditions in terms of peak and integrated luminosity in the Large Hadron Collider (LHC) will raise the ATLAS Pixel detector to its performance limits. Silicon planar, silicon 3D and diamond pixel sensors are three possible sensor technologies which could be implemented in the upcoming pixel detector upgrades of the ATLAS experiment. Measurements of the IV-behavior and measurements with radioactive Americium-241 and Strontium-90 are used to characterize the sensor properties and to understand the interaction between the ATLAS FE-I4 front-end chip and the sensor. Comparisons of results from before and after irradiation, which give a first impression on the charge collection properties of the different sensor technologies are presented.

  1. ATLAS rewards two pixel detector suppliers

    CERN Multimedia

    2007-01-01

    Peter Jenni, ATLAS spokesperson, presented the ATLAS supplier award to Herbert Reichl, IZM director, and to Simonetta Di Gioia, from the SELEX company.Two of ATLAS’ suppliers were awarded prizes at a ceremony on Wednesday 13 June attended by representatives of the experiment’s management and of CERN. The prizes went to the Fraunhofer Institut für Zuverlässigkeit und Mikrointegration (IZM) in Berlin and the company SELEX Sistemi Integrati in Rome for the manufacture of modules for the ATLAS pixel detector. SELEX supplied 1500 of the modules for the tracker, while IZM produced a further 1300. The modules, each made up of 46080 channels, form the active part of the ATLAS pixel detector. IZM and SELEX received the awards for the excellent quality of their work: the average number of faulty channels per module was less than 2.10-3. They also stayed within budget and on schedule. The difficulty they faced was designing modules based on electronic components and sensor...

  2. Operational Experience with the ATLAS Pixel Detector

    CERN Document Server

    Djama, Fares; The ATLAS collaboration

    2017-01-01

    Run 2 of the LHC collider sets new challenges to track and vertex reconstruction because of its higher energy, pileup and luminosity. The ATLAS tracking performance relies critically on the Pixel Detector. Therefore, in view of Run 2, the ATLAS collaboration has constructed the first 4-layer pixel detector in Particle Physics by installing a new pixel layer, called Insertable B-Layer (IBL). Operational experience and performance of the 4-layer Pixel Detector during Run 2 are presented.

  3. The ATLAS Pixel Detector operation and performance

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2010-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. It consists of 1744 silicon sensors equipped with approximately $80 imes 10^6$~electronic channels, providing typically three measurement points with high resolution for particles emerging from the beam-interaction region. The complete Pixel Detector has been taking part in cosmic-ray data-taking since 2008. Since November 2009 it has been operated with LHC colliding beams at $sqrt{s}=900$~GeV, 2.36~TeV and 7 TeV. The detector operated with an active fraction of 97.2% at a threshold of 3500~$e$, showing a noise occupancy rate better than $10^{-9}$~hit/pixel/BC and a track association efficiency of 99%. The Lorentz angle for electrons in silicon is measured to be $ heta_mathrm{L}=12.11^circ pm 0.09^circ$ and its temperature dependence has been verified. The pulse height information from the time-over-threshold technique allows to improve the point resolution using charge sharing and to perform parti...

  4. Thin n-in-p pixel sensors and the SLID-ICV vertical integration technology for the ATLAS upgrade at the HL-LHC

    CERN Document Server

    Macchiolo, A

    2013-01-01

    The R&D activity presented is focused on the development of new modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The performance after irradiation of n-in-p pixel sensors of different active thicknesses is studied, together with an investigation of a novel interconnection technique offered by the Fraunhofer Institute EMFT in Munich, the Solid-Liquid-InterDiffusion (SLID), which is an alternative to the standard solder bump-bonding. The pixel modules are based on thin n-in-p sensors, with an active thickness of 75 um or 150 um, produced at the MPI Semiconductor Laboratory (MPI HLL) and on 100 um thick sensors with active edges, fabricated at VTT, Finland. Hit efficiencies are derived from beam test data for thin devices irradiated up to a fluence of 4e15 neq/cm^2. For the active edge devices, the charge collection properties of the edge pixels before irradiation is discussed in detail, with respect to the inner ones, using measurements with radioactive sources. Beyond ...

  5. Radiation damage monitoring in the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Seidel, Sally

    2013-01-01

    We describe the implementation of radiation damage monitoring using measurement of leakage current in the ATLAS silicon pixel sensors. The dependence of the leakage current upon the integrated luminosity is presented. The measurement of the radiation damage corresponding to an integrated luminosity 5.6 fb −1 is presented along with a comparison to a model. -- Highlights: ► Radiation damage monitoring via silicon leakage current is implemented in the ATLAS (LHC) pixel detector. ► Leakage currents measured are consistent with the Hamburg/Dortmund model. ► This information can be used to validate the ATLAS simulation model.

  6. Dynamic Efficiency Measurements for Irradiated ATLAS Pixel Single Chip Modules

    CERN Document Server

    Pfaff, Mike; Grosse-Knetter, Jorn

    2011-01-01

    The ATLAS pixel detector is the innermost subdetector of the ATLAS experiment. Due to this, the pixel detector has to be particularly radiation hard. In this diploma thesis effects on the sensor and the electronics which are caused by irradiation are examined. It is shown how the behaviour changes between an unirradiated sample and a irradiated sample, which was treated with the same radiation dose that is expected at the end of the lifetime of ATLAS. For this study a laser system, which is used for dynamic efficiency measurements was constructed. Furthermore, the behaviour of the noise during the detection of a particle was evaluated studied.

  7. Selected results from the static characterization of edgeless n-on-p planar pixel sensors for ATLAS upgrades

    International Nuclear Information System (INIS)

    Giacomini, G; Bagolini, A; Boscardin, M; Zorzi, N; Bomben, M; Calderini, G; Chauveau, J; Marchiori, G; Bosisio, L; Rosa, A La

    2014-01-01

    In view of the LHC upgrade for the High Luminosity Phase (HL-LHC), the ATLAS experiment is planning to replace the Inner Detector with an all-Silicon system. The n-on-p technology represents a valid solution for the modules of most of the layers, given the significant radiation hardness of this option and the reduced cost. There is also the demand to reduce the inactive areas to a minimum. The ATLAS LPNHE Paris group and FBK Trento started a collaboration for the development on a novel n-on-p edgeless planar pixel design, based on the deep-trench process which can cope with all these requirements. This paper reports selected results from the electrical characterization, both before and after irradiation, of test structures from the first production batch

  8. Selected results from the static characterization of edgeless n-on-p planar pixel sensors for ATLAS upgrades

    CERN Document Server

    Giacomini, Gabriele; Bomben, Marco; Boscardin, Maurizio; Bosisio, Luciano; Calderini, Giovanni; Chauveau, Jacques; La Rosa, Alessandro; Marchiori, Giovanni; Zorzi, Nicola

    2014-01-01

    In view of the LHC upgrade for the High Luminosity Phase (HL-LHC), the ATLAS experiment is planning to replace the Inner Detector with an all-Silicon system. The n-on-p technology represents a valid solution for the modules of most of the layers, given the significant radiation hardness of this option and the reduced cost. There is also the demand to reduce the inactive areas to a minimum. The ATLAS LPNHE Paris group and FBK Trento started a collaboration for the development on a novel n-on-p edgeless planar pixel design, based on the deep-trench process which can cope with all these requirements. This paper reports selected results from the electrical characterization, both before and after irradiation, of test structures from the first production batch.

  9. Thin n-in-p pixel sensors and the SLID-ICV vertical integration technology for the ATLAS upgrade at the HL-LHC

    International Nuclear Information System (INIS)

    Macchiolo, A.; Andricek, L.; Ellenburg, M.; Moser, H.G.; Nisius, R.; Richter, R.H.; Terzo, S.; Weigell, P.

    2013-01-01

    This R and D activity is focused on the development of new modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The performance after irradiation of n-in-p pixel sensors of different active thicknesses is studied, together with an investigation of a novel interconnection technique offered by the Fraunhofer Institute EMFT in Munich, the Solid–Liquid-InterDiffusion (SLID), which is an alternative to the standard solder bump-bonding. The pixel modules are based on thin n-in-p sensors, with an active thickness of 75μm or 150μm, produced at the MPI Semiconductor Laboratory (MPI HLL) and on 100μm thick sensors with active edges, fabricated at VTT, Finland. Hit efficiencies are derived from beam test data for thin devices irradiated up to a fluence of 4×10 15 n eq /cm 2 . For the active edge devices, the charge collection properties of the edge pixels before irradiation are discussed in detail, with respect to the inner ones, using measurements with radioactive sources. Beyond the active edge sensors, an additional ingredient needed to design four side buttable modules is the possibility of moving the wire bonding area from the chip surface facing the sensor to the backside, avoiding the implementation of the cantilever extruding beyond the sensor area. The feasibility of this process is under investigation with the FE-I3 SLID modules, where Inter Chip Vias are etched, employing an EMFT technology, with a cross section of 3μm×10μm, at the positions of the original wire bonding pads

  10. Thin n-in-p pixel sensors and the SLID-ICV vertical integration technology for the ATLAS upgrade at the HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Macchiolo, A., E-mail: Anna.Macchiolo@mpp.mpg.de [Max-Planck-Institut für Physik, Föhringer Ring 6, D-80805 München (Germany); Andricek, L. [Max-Planck-Institut für Physik, Föhringer Ring 6, D-80805 München (Germany); Max-Planck-Institut Halbleiterlabor, Otto Hahn Ring 6, D-81739 München (Germany); Ellenburg, M. [Max-Planck-Institut für Physik, Föhringer Ring 6, D-80805 München (Germany); Moser, H.G. [Max-Planck-Institut für Physik, Föhringer Ring 6, D-80805 München (Germany); Max-Planck-Institut Halbleiterlabor, Otto Hahn Ring 6, D-81739 München (Germany); Nisius, R. [Max-Planck-Institut für Physik, Föhringer Ring 6, D-80805 München (Germany); Richter, R.H. [Max-Planck-Institut für Physik, Föhringer Ring 6, D-80805 München (Germany); Max-Planck-Institut Halbleiterlabor, Otto Hahn Ring 6, D-81739 München (Germany); Terzo, S.; Weigell, P. [Max-Planck-Institut für Physik, Föhringer Ring 6, D-80805 München (Germany)

    2013-12-11

    This R and D activity is focused on the development of new modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The performance after irradiation of n-in-p pixel sensors of different active thicknesses is studied, together with an investigation of a novel interconnection technique offered by the Fraunhofer Institute EMFT in Munich, the Solid–Liquid-InterDiffusion (SLID), which is an alternative to the standard solder bump-bonding. The pixel modules are based on thin n-in-p sensors, with an active thickness of 75μm or 150μm, produced at the MPI Semiconductor Laboratory (MPI HLL) and on 100μm thick sensors with active edges, fabricated at VTT, Finland. Hit efficiencies are derived from beam test data for thin devices irradiated up to a fluence of 4×10{sup 15}n{sub eq}/cm{sup 2}. For the active edge devices, the charge collection properties of the edge pixels before irradiation are discussed in detail, with respect to the inner ones, using measurements with radioactive sources. Beyond the active edge sensors, an additional ingredient needed to design four side buttable modules is the possibility of moving the wire bonding area from the chip surface facing the sensor to the backside, avoiding the implementation of the cantilever extruding beyond the sensor area. The feasibility of this process is under investigation with the FE-I3 SLID modules, where Inter Chip Vias are etched, employing an EMFT technology, with a cross section of 3μm×10μm, at the positions of the original wire bonding pads.

  11. Performance of active edge pixel sensors

    Science.gov (United States)

    Bomben, M.; Ducourthial, A.; Bagolini, A.; Boscardin, M.; Bosisio, L.; Calderini, G.; D'Eramo, L.; Giacomini, G.; Marchiori, G.; Zorzi, N.; Rummler, A.; Weingarten, J.

    2017-05-01

    To cope with the High Luminosity LHC harsh conditions, the ATLAS inner tracker has to be upgraded to meet requirements in terms of radiation hardness, pile up and geometrical acceptance. The active edge technology allows to reduce the insensitive area at the border of the sensor thanks to an ion etched trench which avoids the crystal damage produced by the standard mechanical dicing process. Thin planar n-on-p pixel sensors with active edge have been designed and produced by LPNHE and FBK foundry. Two detector module prototypes, consisting of pixel sensors connected to FE-I4B readout chips, have been tested with beams at CERN and DESY. In this paper the performance of these modules are reported. In particular the lateral extension of the detection volume, beyond the pixel region, is investigated and the results show high hit efficiency also at the detector edge, even in presence of guard rings.

  12. Commissioning of the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Golling, Tobias

    2008-01-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of the ATLAS pixel system are presented

  13. A passive CMOS pixel sensor for the high luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Daas, Michael; Gonella, Laura; Hemperek, Tomasz; Huegging, Fabian; Janssen, Jens; Krueger, Hans; Pohl, David-Leon; Wermes, Norbert [Physikalisches Institut der Universitaet Bonn (Germany); Macchiolo, Anna [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2016-07-01

    The high luminosity upgrade for the Large Hadron Collider at CERN requires a new inner tracking detector for the ATLAS experiment. About 200 m{sup 2} of silicon detectors are needed demanding new, low cost hybridization- and sensor technologies. One promising approach is to use commercial CMOS technologies to produce the passive sensor for a hybrid pixel detector design. In this talk a fully functional prototype of a 300 μm thick, backside biased CMOS pixel sensor in 150 nm LFoundry technology is presented. The sensor is bump bonded to the ATLAS FE-I4 with AC and DC coupled pixels. Results like leakage current, noise performance, and charge collection efficiency are presented and compared to the actual ATLAS pixel sensor design.

  14. Pixel electronics for the ATLAS experiment

    International Nuclear Information System (INIS)

    Fischer, P.

    2001-01-01

    The ATLAS experiment at LHC will use 3 barrel layers and 2x5 disks of silicon pixel detectors as the innermost elements of the semiconductor tracker. The basic building blocks are pixel modules with an active area of 16.4 mmx60.8 mm which include an n + on n-type silicon sensor and 16 VLSI front-end (FE) chips. Every FE chip contains a low power, high speed charge sensitive preamplifier, a fast discriminator, and a readout system which operates at the 40 MHz rate of LHC. The addresses of hit pixels (as well as a low resolution pulse height information) are stored on the FE chips until arrival of a level 1 trigger signal. Hits are then transferred to a module controller chip (MCC) which collects the data of all 16 FE chips, builds complete events and sends the data through two optical links to the data acquisition system. The MCC receives clock and data through an additional optical link and provides timing and configuration information for the FE chips. Two additional chips are used to amplify and decode the pin diode signal and to drive the VCSEL laser diodes of the optical links

  15. Operational experience with the ATLAS Pixel Detector

    CERN Document Server

    Ince, T; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost element of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.2% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  16. Operational experience of the ATLAS Pixel detector

    CERN Document Server

    Hirschbuehl, D; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  17. Operational experience of the ATLAS Pixel Detector

    CERN Document Server

    Marcisovsky, M; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  18. Planar pixel sensors in commercial CMOS technologies

    Energy Technology Data Exchange (ETDEWEB)

    Gonella, Laura; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Physikalisches Institut der Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany); Macchiolo, Anna [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany)

    2015-07-01

    For the upgrade of the ATLAS experiment at the high luminosity LHC, an all-silicon tracker is foreseen to cope with the increased rate and radiation levels. Pixel and strip detectors will have to cover an area of up to 200m2. To produce modules in high number at reduced costs, new sensor and bonding technologies have to be investigated. Commercial CMOS technologies on high resistive substrates can provide significant advantages in this direction. They offer cost effective, large volume sensor production. In addition to this, production is done on 8'' wafers allowing wafer-to-wafer bonding to the electronics, an interconnection technology substantially cheaper than the bump bonding process used for hybrid pixel detectors at the LHC. Both active and passive n-in-p pixel sensor prototypes have been submitted in a 150 nm CMOS technology on a 2kΩ cm substrate. The passive sensor design will be used to characterize sensor properties and to investigate wafer-to-wafer bonding technologies. This first prototype is made of a matrix of 36 x 16 pixels of size compatible with the FE-I4 readout chip (i.e. 50 μm x 250 μm). Results from lab characterization of this first submission are shown together with TCAD simulations. Work towards a full size FE-I4 sensor for wafer-to-wafer bonding is discussed.

  19. Radiation Damage Monitoring in the ATLAS Pixel Detector

    CERN Document Server

    Seidel, S

    2013-01-01

    We describe the implementation of radiation damage monitoring using measurement of leakage current in the ATLAS silicon pixel sensors. The dependence of the leakage current upon the integrated luminosity is presented. The measurement of the radiation damage corresponding to integrated luminosity 5.6 fb$^{-1}$ is presented along with a comparison to the theoretical model.

  20. The Phase-2 ATLAS ITk Pixel Upgrade

    CERN Document Server

    Rossi, Leonardo Paolo; The ATLAS collaboration

    2018-01-01

    The upgrade of the ATLAS experiment for the operation at the High Luminosity Large Hadron Collider requires a new and more performant inner tracker, the ITk. The innermost part of this tracker will be built using silicon pixel detectors. This paper describes the ITk pixel project, which, after few years of design and test e ort, is now defined in detail.

  1. Vertex measurement at a hadron collider. The ATLAS pixel detector

    International Nuclear Information System (INIS)

    Grosse-Knetter, J.

    2008-03-01

    The ATLAS Pixel Detector is the innermost layer of the ATLAS tracking system and will contribute significantly to the ATLAS track and vertex reconstruction. The detector consists of identical sensor-chip-hybrid modules, arranged in three barrels in the centre and three disks on either side for the forward region. The position of the Pixel Detector near the interaction point requires excellent radiation hardness, fast read-out, mechanical and thermal robustness, good long-term stability, all combined with a low material budget. The new design concepts used to meet the challenging requirements are discussed with their realisation in the Pixel Detector, followed by a description of a refined and extensive set of measurements to assess the detector performance during and after its construction. (orig.)

  2. Irradiation and beam tests qualification for ATLAS IBL Pixel Modules

    International Nuclear Information System (INIS)

    Rubinskiy, Igor

    2013-01-01

    The upgrade for the ATLAS detector will have different steps towards HL-LHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (foreseen for 2013–2014). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing Pixel Detector and a new (smaller radius) beam-pipe at a radius of 33 mm. The IBL will require the development of several new technologies to cope with the increase in the radiation damage and the pixel occupancy and also to improve the physics performance, which will be achieved by reduction of the pixel size and of the material budget. Two different promising silicon sensor technologies (Planar n-in-n and 3D) are currently under investigation for the Pixel Detector. An overview of the sensor technologies' qualification with particular emphasis on irradiation and beam tests is presented. -- Highlights: ► The ATLAS inner tracker will be extended with a so called Insertable B-Layer (IBL). ► The IBL modules are required to withstand irradiation up to 5×10 15 n eq /cm 2 . ► Two types of silicon pixel detector technologies (Planar and 3D) were tested in beam. ► The irradiated sensor efficiency exceeds 97% both with and without magnetic field. ► The leakage current, power dissipation, module active area ratio requirements are met.

  3. Module and electronics developments for the ATLAS ITK pixel system

    CERN Document Server

    Munoz Sanchez, Francisca Javiela; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is preparing for an extensive modification of its detectors in the course of the planned HL-LHC accelerator upgrade around 2025. The ATLAS upgrade includes the replacement of the entire tracking system by an all-silicon detector (Inner Tracker, ITk). The five innermost layers of ITk will be a pixel detector built of new sensor and readout electronics technologies to improve the tracking performance and cope with the severe HL-LHC environment in terms of occupancy and radiation. The total area of the new pixel system could measure up to 14 m2, depending on the final layout choice, which is expected to take place in 2017. In this paper an overview of the ongoing R\\&D activities on modules and electronics for the ATLAS ITk is given including the main developments and achievements in silicon planar and 3D sensor technologies, readout and power challenges.

  4. Operational Experience with the ATLAS Pixel Detector

    CERN Document Server

    Djama, Fares; The ATLAS collaboration

    2017-01-01

    Run-2 of the LHC is providing new challenges to track and vertex reconstruction imposed by the higher collision energy, pileup and luminosity that are being delivered. The ATLAS tracking performance relies critically on the Pixel Detector, therefore, in view of Run-2 of LHC, the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during run-1 and an additional optical link per module was added to overcome in some layers the readout bandwidth limitation when LHC will exceed the nominal peak luminosity by almost a factor of 3. The key features and challenges met during the IBL project will be presented, as well as its operational experience and Pixel Detector performance in LHC.

  5. The Phase II ATLAS ITk Pixel Upgrade

    CERN Document Server

    Terzo, Stefano; The ATLAS collaboration

    2017-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown (foreseen to take place around 2025) by an all-silicon detector called the "ITk" (Inner Tracker). The innermost portion of ITk will consist of a pixel detector with five layers in the barrel region and and ring-shaped supports in the endcap regions. It will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation. The total surface area of silicon in the new pixel system could measure up to 14 m$^2$ , depending on the final layout choice, which is expected to take place in early 2017. Several layout options are being investigated at the moment, including some with novel inclined support structures in the barrel-endcap overlap region and others with very long innermost barrel layers. Forward coverage could be as high as $|\\eta| < 4$. Supporting structures will be ...

  6. The Phase-2 ATLAS ITk Pixel Upgrade

    CERN Document Server

    Flick, Tobias; The ATLAS collaboration

    2016-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown (foreseen to take place around 2025) by an all-silicon detector called the “ITk” (Inner Tracker). The pixel detector will comprise the five innermost layers, and will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation. The total surface area of silicon in the new pixel system could measure up to 14 m2, depending on the final layout choice, which is expected to take place in early 2017. Four layout options are being investigated at the moment, two with forward coverage to |eta| < 3.2 and two to |eta| < 4. For each coverage option, a layout with long barrel staves and a layout with novel inclined support structures in the barrel-endcap overlap region are considered. All potential layouts include modules mounted on ring-shaped supports in the endcap regions...

  7. Operational Experience with the ATLAS Pixel Detector

    CERN Document Server

    Lantzsch, Kerstin; The ATLAS collaboration

    2016-01-01

    Run 2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). In addition the Pixel detector was refurbished with new service quarter panels to recover about 3% of defective modules lost during run 1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning, operation and performance of the 4-layer Pixel Detector will be presented.

  8. Operational experience of ATLAS SCT and Pixel Detector

    CERN Document Server

    Kocian, Martin; The ATLAS collaboration

    2017-01-01

    The ATLAS Inner Detector based on silicon sensors is consisting of a strip detector (SCT) and a pixel detector. It is the crucial component for vertexing and tracking in the ATLAS experiment. With the excellent performance of the LHC well beyond the original specification the silicon tracking detectors are facing substantial challenges in terms of data acquisition, radiation damage to the sensors, and SEUs in the readout ASICs. The approaches on how the detector systems cope with the demands of high luminosity operation while maintaining excellent performance through hardware upgrades, software and firmware algorithms, and operational settings, are presented.

  9. Measurement of charm and beauty-production in deep inelastic scattering at HERA and test beam studies of ATLAS pixel sensors

    International Nuclear Information System (INIS)

    Libov, Vladyslav

    2013-08-01

    A measurement of charm and beauty production in Deep Inelastic Scattering at HERA is presented. The analysis is based on the data sample collected by the ZEUS detector in the period from 2003 to 2007 corresponding to an integrated luminosity of 354 pb -1 . The kinematic region of the measurement is given by 5 2 2 and 0.02 2 is the photon virtuality and y is the inelasticity. A lifetime technique is used to tag the production of charm and beauty quarks. Secondary vertices due to decays of charm and beauty hadrons are reconstructed, in association with jets. The jet kinematics is defined by E jet T >4.2(5) GeV for charm (beauty) and -1.6 jet jet T and η jet are the transverse energy and pseudorapidity of the jet, respectively. The significance of the decay length and the invariant mass of charged tracks associated with the secondary vertex are used as discriminating variables to distinguish between signal and background. Differential cross sections of jet production in charm and beauty events as a function of Q 2 , y, E jet T and η jet are measured. Results are compared to Next-to-Leading Order (NLO) predictions from Quantum Chromodynamics (QCD) in the fixed flavour number scheme. Good agreement between data and theory is observed. Contributions of the charm and beauty production to the inclusive proton structure function, F cbar c 2 and F b anti b 2 , are determined by extrapolating the double differential cross sections using NLO QCD predictions. Contributions to the test beam program for the Insertable B-Layer upgrade project of the ATLAS pixel detector are discussed. The test beam data analysis software package EUTelescope was extended, which allowed an efficient analysis of ATLAS pixel sensors. The USBPix DAQ system was integrated into the EUDET telescope allowing test beam measurements with the front end chip FE-I4. Planar and 3D ATLAS pixel sensors were studied at the first IBL test beam at the CERN SPS.

  10. Measurement of charm and beauty-production in deep inelastic scattering at HERA and test beam studies of ATLAS pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Libov, Vladyslav

    2013-08-15

    A measurement of charm and beauty production in Deep Inelastic Scattering at HERA is presented. The analysis is based on the data sample collected by the ZEUS detector in the period from 2003 to 2007 corresponding to an integrated luminosity of 354 pb{sup -1}. The kinematic region of the measurement is given by 54.2(5) GeV for charm (beauty) and -1.6<{eta}{sup jet}<2.2 for both charm and beauty, where E{sup jet}{sub T} and {eta}{sup jet} are the transverse energy and pseudorapidity of the jet, respectively. The significance of the decay length and the invariant mass of charged tracks associated with the secondary vertex are used as discriminating variables to distinguish between signal and background. Differential cross sections of jet production in charm and beauty events as a function of Q{sup 2}, y, E{sup jet}{sub T} and {eta}{sup jet} are measured. Results are compared to Next-to-Leading Order (NLO) predictions from Quantum Chromodynamics (QCD) in the fixed flavour number scheme. Good agreement between data and theory is observed. Contributions of the charm and beauty production to the inclusive proton structure function, F{sup cbar} {sup c}{sub 2} and F{sup b} {sup anti} {sup b}{sub 2}, are determined by extrapolating the double differential cross sections using NLO QCD predictions. Contributions to the test beam program for the Insertable B-Layer upgrade project of the ATLAS pixel detector are discussed. The test beam data analysis software package EUTelescope was extended, which allowed an efficient analysis of ATLAS pixel sensors. The USBPix DAQ system was integrated into the EUDET telescope allowing test beam

  11. Online calibrations and performance of the ATLAS Pixel Detector

    CERN Document Server

    Keil, M; The ATLAS collaboration

    2010-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. It consists of 1744 silicon sensors equipped with approximately 80 M electronic channels, providing typically three measurement points with high resolution for particles emerging from the beam-interaction region, thus allowing measuring particle tracks and secondary vertices with very high precision. The readout system of the Pixel Detector is based on a bi-directional optical data transmission system between the detector and the data acquisition system with an individual link for each of the 1744 modules. Signal conversion components are located on both ends, approximately 80 m apart. The talk will give an overview of the calibration and performance of both the detector and its optical readout. The most basic parameter to be tuned and calibrated for the detector electronics is the readout threshold of the individual pixel channels. These need to be carefully tuned to optimise position resolution a...

  12. Online Calibration and Performance of the ATLAS Pixel Detector

    CERN Document Server

    Keil, M

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. It consists of 1744 silicon sensors equipped with approximately 80 million electronic channels, providing typically three measurement points with high resolution for particles emerging from the beam-interaction region, thus allowing measuring particle tracks and secondary vertices with very high precision. The readout system of the Pixel Detector is based on a bi-directional optical data transmission system between the detector and the data acquisition system with an individual link for each of the 1744 modules. Signal conversion components are located on both ends, approximately 80 m apart. This paper describes the tuning and calibration of the optical links and the detector modules, including measurements of threshold, noise, charge measurement, timing performance and the sensor leakage current.

  13. Monitoring the Radiation Damage of the ATLAS Pixel Detector

    CERN Document Server

    Cooke, M; The ATLAS collaboration

    2012-01-01

    The Pixel Detector is the innermost charged particle tracking component employed by the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instantaneous luminosity delivered by the LHC, now routinely in excess of 5x10^{33} cm^{-2} s^{-1}, results in a rapidly increasing accumulated radiation dose to the detector. Methods based on the sensor depletion properties and leakage current are used to monitor the evolution of the radiation damage, and results from the 2011 run are presented.

  14. Monitoring the radiation damage of the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Cooke, M.

    2013-01-01

    The pixel detector is the innermost charged particle tracking component employed by the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instantaneous luminosity delivered by the LHC, now routinely in excess of 5×10 33 cm −2 s −1 , results in a rapidly increasing accumulated radiation dose to the detector. Methods based on the sensor depletion properties and leakage current are used to monitor the evolution of the radiation damage, and results from the 2011 run are presented

  15. The Phase-2 ATLAS ITk Pixel Upgrade

    CERN Document Server

    Benoit, Mathieu; The ATLAS collaboration

    2017-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown (foreseen to take place around 2025) by an all-silicon detector called the “ITk” (Inner Tracker). The innermost portion of the ITk will consist of a pixel detector with stave-like support structures in the most central region and ring-shaped supports in the endcap regions; there may also be novel inclined support structures in the barrel-endcap overlap regions. The new detector could have as much as 14 m2 of sensitive silicon. Support structures will be based on low mass, highly stable and highly thermally conductive carbon-based materials cooled by evaporative carbon dioxide. The ITk will be instrumented with new sensors and readout electronics to provide improved tracking performance compared to the current detector. All the module components must be performant enough and robust enough to cope with the expected high particle multiplicity and severe radiation background of the High-Luminosity LHC. Readout...

  16. Silicon sensor technologies for ATLAS IBL upgrade

    CERN Document Server

    Grenier, P; The ATLAS collaboration

    2011-01-01

    New pixel sensors are currently under development for ATLAS Upgrades. The first upgrade stage will consist in the construction of a new pixel layer that will be installed in the detector during the 2013 LHC shutdown. The new layer (Insertable-B-Layer, IBL) will be inserted between the inner most layer of the current pixel detector and the beam pipe at a radius of 3.2cm. The expected high radiation levels require the use of radiation hard technology for both the front-end chip and the sensor. Two different pixel sensor technologies are envisaged for the IBL. The sensor choice will occur in July 2011. One option is developed by the ATLAS Planar Pixel Sensor (PPS) Collaboration and is based on classical n-in-n planar silicon sensors which have been used for the ATLAS Pixel detector. For the IBL, two changes were required: The thickness was reduced from 250 um to 200 um to improve the radiation hardness. In addition, so-called "slim edges" were designed to reduce the inactive edge of the sensors from 1100 um to o...

  17. Module and electronics developments for the ATLAS ITK pixel system

    CERN Document Server

    Munoz Sanchez, Francisca Javiela; The ATLAS collaboration

    2017-01-01

    ATLAS is preparing for an extensive modification of its detector in the course of the planned HL-LHC accelerator upgrade around 2025 which includes a replacement of the entire tracking system by an all-silicon detector (Inner Tracker, ITk). The five innermost layers of ITk will comprise of a pixel detector built of new sensor and readout electronics technologies to improve the tracking performance and cope with the severe HL-LHC environment in terms of occupancy and radiation. The total area of the new pixel system could measure up to 14 m2, depending on the final layout choice that is expected to take place in 2017. A new on-detector readout chip is designed in the context of the RD53 collaboration in 65 nm CMOS technology. This paper will present the on-going R&D within the ATLAS ITK project towards the new pixel modules and the off-detector electronics. Planar and 3D sensors are being re-designed with cell sizes of 50x50 or 25x100 μm2, compatible with the RD53 chip. A sensor thickness equal or less th...

  18. Monitoring radiation damage in the ATLAS pixel detector

    CERN Document Server

    Schorlemmer, André Lukas; Quadt, Arnulf; Große-Knetter, Jörn; Rembser, Christoph; Di Girolamo, Beniamino

    2014-11-05

    Radiation hardness is one of the most important features of the ATLAS pixel detector in order to ensure a good performance and a long lifetime. Monitoring of radiation damage is crucial in order to assess and predict the expected performance of the detector. Key values for the assessment of radiation damage in silicon, such as the depletion voltage and depletion depth in the sensors, are measured on a regular basis during operations. This thesis summarises the monitoring program that is conducted in order to assess the impact of radiation damage and compares it to model predictions. In addition, the physics performance of the ATLAS detector highly depends on the amount of disabled modules in the ATLAS pixel detector. A worrying amount of module failures was observed during run I. Thus it was decided to recover repairable modules during the long shutdown (LS1) by extracting the pixel detector. The impact of the module repairs and module failures on the detector performance is analysed in this thesis.

  19. Module and Electronics Developments for the ATLAS ITK Pixel System

    CERN Document Server

    Rummler, Andr{e}; The ATLAS collaboration

    2016-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown around 2025 by an all-silicon detector (Inner Tracker, ITk). The pixel detector will be composed by the five innermost layers, instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the severe HL-LHC environment in terms of occupancy and radiation. The total area of the new pixel system could measure up to 14 m^2, depending on the final layout choice that is expected to take place in early 2017. Different designs of planar, 3D, CMOS sensors are being investigated to identify the optimal technology for the different pixel layers. In parallel sensor-chip interconnection options are evaluated in collaboration with industrial partners to identify reliable technologies when employing 100-150 μm thin chips. While the new read-out chip is being developed by the RD53 Collaboration, the pixel off detector read-out electronics will be implemented in the frame...

  20. Module and Electronics Developments for the ATLAS ITK Pixel System

    CERN Document Server

    Nellist, Clara; The ATLAS collaboration

    2016-01-01

    ATLAS is preparing for an extensive modification of its detector in the course of the planned HL-LHC accelerator upgrade around 2025 which includes a replacement of the entire tracking system by an all-silicon detector (Inner Tracker, ITk). The five innermost layers of ITk will comprise of a pixel detector built of new sensor and readout electronics technologies to improve the tracking performance and cope with the severe HL-LHC environment in terms of occupancy and radiation. The total area of the new pixel system could measure up to 14 m$^{2}$, depending on the final layout choice that is expected to take place in early 2017. An intense R\\&D activity is taking place in the field of planar, 3D, CMOS sensors to identify the optimal technology for the different pixel layers. In parallel various sensor-chip interconnection options are explored to identify reliable technologies when employing 100-150~$\\mu$m thin chips. While the new read-out chip is being developed by the RD53 Collaboration, the pixel off de...

  1. Development and characterization of diamond and 3D-silicon pixel detectors with ATLAS-pixel readout electronics

    Energy Technology Data Exchange (ETDEWEB)

    Mathes, Markus

    2008-12-15

    Hybrid pixel detectors are used for particle tracking in the innermost layers of current high energy experiments like ATLAS. After the proposed luminosity upgrade of the LHC, they will have to survive very high radiation fluences of up to 10{sup 16} particles per cm{sup 2} per life time. New sensor concepts and materials are required, which promise to be more radiation tolerant than the currently used planar silicon sensors. Most prominent candidates are so-called 3D-silicon and single crystal or poly-crystalline diamond sensors. Using the ATLAS pixel electronics different detector prototypes with a pixel geometry of 400 x 50 {mu}m{sup 2} have been built. In particular three devices have been studied in detail: a 3D-silicon and a single crystal diamond detector with an active area of about 1 cm{sup 2} and a poly-crystalline diamond detector of the same size as a current ATLAS pixel detector module (2 x 6 cm{sup 2}). To characterize the devices regarding their particle detection efficiency and spatial resolution, the charge collection inside a pixel cell as well as the charge sharing between adjacent pixels was studied using a high energy particle beam. (orig.)

  2. Development and characterization of diamond and 3D-silicon pixel detectors with ATLAS-pixel readout electronics

    International Nuclear Information System (INIS)

    Mathes, Markus

    2008-12-01

    Hybrid pixel detectors are used for particle tracking in the innermost layers of current high energy experiments like ATLAS. After the proposed luminosity upgrade of the LHC, they will have to survive very high radiation fluences of up to 10 16 particles per cm 2 per life time. New sensor concepts and materials are required, which promise to be more radiation tolerant than the currently used planar silicon sensors. Most prominent candidates are so-called 3D-silicon and single crystal or poly-crystalline diamond sensors. Using the ATLAS pixel electronics different detector prototypes with a pixel geometry of 400 x 50 μm 2 have been built. In particular three devices have been studied in detail: a 3D-silicon and a single crystal diamond detector with an active area of about 1 cm 2 and a poly-crystalline diamond detector of the same size as a current ATLAS pixel detector module (2 x 6 cm 2 ). To characterize the devices regarding their particle detection efficiency and spatial resolution, the charge collection inside a pixel cell as well as the charge sharing between adjacent pixels was studied using a high energy particle beam. (orig.)

  3. ATLAS Pixel IBL: Stave Quality Assurance

    CERN Document Server

    The ATLAS collaboration

    2014-01-01

    For Run 2 of the LHC a fourth innermost Pixel Detector layer on a smaller radius beam pipe has been installed in the ATLAS Detector to add redundancy against radiation damage of the current Pixel Detector and to ensure a high quality tracking and b-tagging performance of the Inner Detector over the coming years until the High Luminosity Upgrade. State of the art components have been produced and assembled onto support structures known as staves over the last two years. In total, 20 staves have been built and qualified in a designated Quality Assurance setup at CERN of which 14 have been integrated onto the beam pipe. Results from the testing are presented.

  4. Survey of the ATLAS Pixel Detector Components

    International Nuclear Information System (INIS)

    Andreazza, A.; Kostyukhim, V.; Madaras, R.

    2008-01-01

    This document provides a description of the survey performed on different components of the ATLAS Pixel Detector at different stages of its assembly. During the production of the ATLAS pixel detector great care was put in the geometrical survey of the location of the sensitive area of modules. This had a double purpose: (1) to provide a check of the quality of the assembly procedure and assure tolerances in the geometrical assembly were met; and (2) to provide an initial point for the alignment (the so called 'as-built detector'), better than the ideal geometry. Since direct access to the sensitive area becomes more and more difficult with the progress of the assembly, the survey needed to be performed at different stages: after module loading on the local supports (sectors and staves) and after assembly of the local supports in disks or halfshells. Different techniques were used, including both optical 2D and 3D surveys and mechanical survey. This document summarizes the survey procedures, the analysis done on the collected data and how survey data are stored in case they will need to be accessed in the future

  5. Module and electronics developments for the ATLAS ITK pixel system

    CERN Document Server

    Nellist, Clara; The ATLAS collaboration

    2016-01-01

    Summary ATLAS is preparing for an extensive modification of its detector in the course of the planned HL‐ LHC accelerator upgrade around 2025 which includes a replacement of the entire tracking system by an all‐silicon detector (Inner Tracker, ITk). A revised trigger and data taking system is foreseen with triggers expected at lowest level at an average rate of 1 MHz. The five innermost layers of ITk will comprise of a pixel detector built of new sensor and readout electronics technologies to improve the tracking performance and cope with the severe HL‐LHC environment in terms of occupancy and radiation. The total area of the new pixel system could measure up to 14 m2, depending on the final layout choice that is expected to take place in early 2017. A new on‐detector readout chip is designed in the context of the RD53 collaboration in 65 nm CMOS technology. This paper will present the on‐going R&D within the ATLAS ITK project towards the new pixel modules and the off‐detector electronics. Pla...

  6. Neural network based cluster creation in the ATLAS silicon Pixel Detector

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2013-01-01

    The read-out from individual pixels on planar semi-conductor sensors are grouped into clusters to reconstruct the location where a charged particle passed through the sensor. The resolution given by individual pixel sizes is significantly improved by using the information from the charge sharing between pixels. Such analog cluster creation techniques have been used by the ATLAS experiment for many years to obtain an excellent performance. However, in dense environments, such as those inside high-energy jets, clusters have an increased probability of merging the charge deposited by multiple particles. Recently, a neural network based algorithm which estimates both the cluster position and whether a cluster should be split has been developed for the ATLAS Pixel Detector. The algorithm significantly reduces ambiguities in the assignment of pixel detector measurement to tracks within jets and improves the position accuracy with respect to standard interpolation techniques by taking into account the 2-dimensional ...

  7. Neural network based cluster creation in the ATLAS silicon pixel detector

    CERN Document Server

    Selbach, K E; The ATLAS collaboration

    2012-01-01

    The read-out from individual pixels on planar semi-conductor sensors are grouped into clusters to reconstruct the location where a charged particle passed through the sensor. The resolution given by individual pixel sizes is significantly improved by using the information from the charge sharing between pixels. Such analog cluster creation techniques have been used by the ATLAS experiment for many years to obtain an excellent performance. However, in dense environments, such as those inside high-energy jets, clusters have an increased probability of merging the charge deposited by multiple particles. Recently, a neural network based algorithm which estimates both the cluster position and whether a cluster should be split has been developed for the ATLAS pixel detector. The algorithm significantly reduces ambiguities in the assignment of pixel detector measurement to tracks within jets and improves the position accuracy with respect to standard interpolation techniques by taking into account the 2-dimensional ...

  8. Status and future of the ATLAS Pixel Detector at the LHC

    International Nuclear Information System (INIS)

    Rozanov, Alexandre

    2013-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. The detector provides hermetic coverage with three cylindrical layers and three layers of disks in each forward end-cap. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-on-n silicon substrates. Intensive calibration, tuning, timing optimization and monitoring resulted in the successful five years of operation with good detector performance. The record breaking instantaneous luminosities of 7.7×10 33 cm −2 s −1 recently surpassed at the LHC generated a rapidly increasing particle fluence in the ATLAS Pixel Detector. As the radiation dose accumulated, the first effects of radiation damage became observable in the silicon sensors as an increase in the silicon leakage current and the change of the voltage required to fully deplete the sensor. A fourth pixel layer at a radius of 3.3 cm will be added during the long shutdown (2013–2014) together with the replacement of pixel services. A letter of intent was submitted for a completely new Pixel Detector after 2023, capable to take data with extremely high leveled luminosities of 5×10 34 cm −2 s −1 at the high luminosity LHC. -- Highlights: •The ATLAS Pixel Detector provides hermetic coverage with three layers with 80 million pixels. •Calibration, tuning, timing optimization and monitoring resulted in the successful five years of operation with good detector performance. •First effects of radiation damage became observable in the silicon sensors. •A fourth pixel layer at a radius of 3.3 cm will be added during the long shutdown (2013–2014). •Replacement of pixel services in 2013–2014. •A letter of intent was submitted for new Pixel Detector after 2023 for high luminosity LHC

  9. ATLAS Pixel Detector Design For HL-LHC

    CERN Document Server

    Smart, Ben; The ATLAS collaboration

    2016-01-01

    The ATLAS Inner Detector will be replaced for the High-Luminosity LHC (HL-LHC) running in 2026. The new Inner Detector will be called the Inner Tracker (ITk). The ITk will cover an extended eta-range: at least to |eta|<3.2, and likely up to |eta|<4.0. The ITk will be an all-Silicon based detector, consisting of a Silicon strip detector outside of a radius of 362mm, and a Silicon pixel detector inside of this radius. Several novel designs are being considered for the ITk pixel detector, to cope with high-eta charged particle tracks. These designs are grouped into 'extended' and 'inclined' design-types. Extended designs have long pixel staves with sensors parallel to the beamline. High-eta particles will therefore hit these sensors at shallow angles, leaving elongated charge clusters. The length of such a charge cluster can be used to estimate the angle of the passing particle. This information can then be used in track reconstruction to improve tracking efficiency and reduce fake rates. Inclined designs ...

  10. Development and Characterization of Diamond and 3D-Silicon Pixel Detectors with ATLAS-Pixel Readout Electronics

    CERN Document Server

    Mathes, Markus

    2008-01-01

    Hybrid pixel detectors are used for particle tracking in the innermost layers of current high energy experiments like ATLAS. After the proposed luminosity upgrade of the LHC, they will have to survive very high radiation fluences of up to 10^16 particles per cm^2 per life time. New sensor concepts and materials are required, which promise to be more radiation tolerant than the currently used planar silicon sensors. Most prominent candidates are so-called 3D-silicon and single crystal or poly-crystalline diamond sensors. Using the ATLAS pixel electronics different detector prototypes with a pixel geometry of 400 × 50 um^2 have been built. In particular three devices have been studied in detail: a 3D-silicon and a single crystal diamond detector with an active area of about 1 cm^2 and a poly-crystalline diamond detector of the same size as a current ATLAS pixel detector module (2 × 6 cm^2). To characterize the devices regarding their particle detection efficiency and spatial resolution, the charge collection ...

  11. Advanced pixel architectures for scientific image sensors

    CERN Document Server

    Coath, R; Godbeer, A; Wilson, M; Turchetta, R

    2009-01-01

    We present recent developments from two projects targeting advanced pixel architectures for scientific applications. Results are reported from FORTIS, a sensor demonstrating variants on a 4T pixel architecture. The variants include differences in pixel and diode size, the in-pixel source follower transistor size and the capacitance of the readout node to optimise for low noise and sensitivity to small amounts of charge. Results are also reported from TPAC, a complex pixel architecture with ~160 transistors per pixel. Both sensors were manufactured in the 0.18μm INMAPS process, which includes a special deep p-well layer and fabrication on a high resistivity epitaxial layer for improved charge collection efficiency.

  12. CMOS pixel development for the ATLAS experiment at HL-LHC

    CERN Document Server

    Rimoldi, Marco; The ATLAS collaboration

    2017-01-01

    To cope with the rate and radiation environment expected at the HL-LHC new approaches are being developed on CMOS pixel detectors, providing charge collection in a depleted layer. They are based on: HV enabling technologies that allow to use high depletion voltages, high resistivity wafers for large depletion depths; radiation hard processed with multiple nested wells to allow CMOS electronics embedded with sufficient shielding into the sensor substrate and backside processing and thinning for material minimization and backside voltage application. Since 2014, members of more than 20 groups in the ATLAS experiment are actively pursuing CMOS pixel R$\\&$D in an ATLAS Demonstrator program pursuing sensor design and characterizations. The goal of this program is to demonstrate that depleted CMOS pixels are suited for high rate, fast timing and high radiation operation at LHC. For this a number of technologies have been explored and characterized. In this presentation the challenges for the usage of CMOS pixel...

  13. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Keil, M; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  14. Operational experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Hirschbuehl, D; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.7% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  15. Operational experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Lapoire, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  16. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Lapoire, C; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as B-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures and detector performance. The detector performance is excellent: 96.2% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification.

  17. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Keil, M

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper results from the successful operation of the Pixel Detector at the LHC will be presented, including calibration procedures, timing optimization and detector performance. The detector performance is excellent: approximately 97% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  18. Operational experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Ince, T; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.8% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  19. Operational experience with the ATLAS Pixel detector at the LHC

    CERN Document Server

    Deluca, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5\\% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, ...

  20. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Lange, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump- bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, a...

  1. Operational experience with the ATLAS Pixel detector at the LHC

    CERN Document Server

    Deluca, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  2. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Keil, M; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC and its status after three years of operation will be presented, including calibration procedures, timing optimization and detector performance. The detector performance is excellent: ~96 % of the pixels are operational, noise occupancy and hit efficiency e...

  3. Performance of silicon pixel detectors at small track incidence angles for the ATLAS Inner Tracker upgrade

    International Nuclear Information System (INIS)

    Viel, Simon; Banerjee, Swagato; Brandt, Gerhard; Carney, Rebecca; Garcia-Sciveres, Maurice; Hard, Andrew Straiton; Kaplan, Laser Seymour; Kashif, Lashkar; Pranko, Aliaksandr; Rieger, Julia; Wolf, Julian; Wu, Sau Lan; Yang, Hongtao

    2016-01-01

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of the ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of the ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN. - Highlights: • Extended inner pixel barrel layers are proposed for the ATLAS ITk upgrade. • Test beam results at small track incidence angles validate this ATLAS ITk design. • Long pixel clusters are reconstructed with high efficiency at low threshold values. • Excellent angular resolution is achieved using pixel cluster length information.

  4. Performance of silicon pixel detectors at small track incidence angles for the ATLAS Inner Tracker upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Viel, Simon, E-mail: sviel@lbl.gov [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Banerjee, Swagato [Department of Physics, University of Wisconsin, Madison, WI, United States of America (United States); Brandt, Gerhard; Carney, Rebecca; Garcia-Sciveres, Maurice [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Hard, Andrew Straiton; Kaplan, Laser Seymour; Kashif, Lashkar [Department of Physics, University of Wisconsin, Madison, WI, United States of America (United States); Pranko, Aliaksandr [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Rieger, Julia [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); II Physikalisches Institut, Georg-August-Universität, Göttingen (Germany); Wolf, Julian [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Wu, Sau Lan; Yang, Hongtao [Department of Physics, University of Wisconsin, Madison, WI, United States of America (United States)

    2016-09-21

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of the ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of the ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN. - Highlights: • Extended inner pixel barrel layers are proposed for the ATLAS ITk upgrade. • Test beam results at small track incidence angles validate this ATLAS ITk design. • Long pixel clusters are reconstructed with high efficiency at low threshold values. • Excellent angular resolution is achieved using pixel cluster length information.

  5. The upgraded Pixel Detector of the ATLAS Experiment for Run 2 at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Backhaus, M., E-mail: malte.backhaus@cern.ch

    2016-09-21

    During Run 1 of the Large Hadron Collider (LHC), the ATLAS Pixel Detector has shown excellent performance. The ATLAS collaboration took advantage of the first long shutdown of the LHC during 2013 and 2014 and extracted the ATLAS Pixel Detector from the experiment, brought it to surface and maintained the services. This included the installation of new service quarter panels, the repair of cables, and the installation of the new Diamond Beam Monitor (DBM). Additionally, a completely new innermost pixel detector layer, the Insertable B-Layer (IBL), was constructed and installed in May 2014 between a new smaller beam pipe and the existing Pixel Detector. With a radius of 3.3 cm the IBL is located extremely close to the interaction point. Therefore, a new readout chip and two new sensor technologies (planar and 3D) are used in the IBL. In order to achieve best possible physics performance the material budget was improved with respect to the existing Pixel Detector. This is realized using lightweight staves for mechanical support and a CO{sub 2} based cooling system. This paper describes the improvements achieved during the maintenance of the existing Pixel Detector as well as the performance of the IBL during the construction and commissioning phase. Additionally, first results obtained during the LHC Run 2 demonstrating the distinguished tracking performance of the new Four Layer ATLAS Pixel Detector are presented.

  6. The Phase-2 ATLAS ITk Pixel Upgrade

    CERN Document Server

    Rossi, Leonardo Paolo; The ATLAS collaboration

    2018-01-01

    The entire tracking system of the ATLAS experiment will be replaced in 2025 during the LHC Phase-II shutdown by an all-silicon detector called the “ITk” (Inner Tracker). The innermost part of ITk will be a pixel detector containing about 12.5m2 of sensitive silicon. The silicon modules are arranged on 5 layers of stave-like support structures in the most central region and ring-shaped supports in the endcap regions covering out to |η| < 4; a mid-eta region (~1 < |η| < ~2) will be occupied by novel inclined support structures which keep the angle of incidence of high-momentum tracks more closely normal to the sensitive silicon. All supports will be based on low mass, highly stable and highly thermally-conductive carbon-based materials cooled by evaporative carbon dioxide flowing in thin-walled titanium pipes. An extensive prototyping programme, including thermal, mechanical and electrical studies, is being carried out on all the types of support structures. The HL-LHC is expected to deliver up t...

  7. Modeling Radiation Damage Effects in 3D Pixel Digitization for the ATLAS Detector

    CERN Document Server

    Giugliarelli, Gilberto; The ATLAS collaboration

    2017-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of 10^15 neq/cm2 and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This poster presents the details of a new digitization model that includes radiation damage effects to the 3D Pixel sensors for the ATLAS Detector.

  8. Modeling Radiation Damage Effects in 3D Pixel Digitization for the ATLAS Detector

    CERN Document Server

    Wallangen, Veronica; The ATLAS collaboration

    2017-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of 10$^{15}$ n$_\\mathrm{eq}$/cm$^2$ and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This work presents the details of a new digitization model that includes radiation damage effects to the 3D Pixel sensors for the ATLAS detector.

  9. SLHC upgrade plans for the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Sicho, Petr

    2009-01-01

    The ATLAS pixel detector is an 80 million channels silicon tracking system designed to detect charged tracks and secondary vertices with very high precision. An upgrade of the ATLAS pixel detector is presently being considered, enabling to cope with higher luminosity at Super Large Hadron Collider (SLHC). The increased luminosity leads to extremely high radiation doses in the innermost region of the ATLAS tracker. Options considered for a new detector are discussed, as well as some important R and D activities, such as investigations towards novel detector geometries and novel processes.

  10. Thin n-in-p planar pixel modules for the ATLAS upgrade at HL-LHC

    International Nuclear Information System (INIS)

    Savic, N.; Bergbreiter, L.; Breuer, J.; La Rosa, A.; Macchiolo, A.; Nisius, R.; Terzo, S.

    2017-01-01

    The ATLAS experiment will undergo a major upgrade of the tracker system in view of the high luminosity phase of the LHC (HL-LHC) foreseen to start around 2025. Thin planar pixel modules are promising candidates to instrument the new pixel system, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. New designs of the pixel cells, with an optimized biasing structure, have been implemented in n-in-p planar pixel productions with sensor thicknesses of 270 μm. Using beam tests, the gain in hit efficiency is investigated as a function of the received irradiation fluence. The outlook for future thin planar pixel sensor productions will be discussed, with a focus on thin sensors with a thickness of 100 and 150 μm and a novel design with the optimized biasing structure and small pixel cells (50×50 and 25×100 μm"2). These dimensions are foreseen for the new ATLAS read-out chip in 65 nm CMOS technology and the fine segmentation will represent a challenge for the tracking in the forward region of the pixel system at HL-LHC. To predict the performance of 50×50 μm"2 pixels at high η, FE-I4 compatible planar pixel sensors have been studied before and after irradiation in beam tests at high incidence angle with respect to the short pixel direction. Results on cluster shapes, charge collection- and hit efficiency will be shown.

  11. Thin n-in-p planar pixel modules for the ATLAS upgrade at HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Savic, N., E-mail: natascha.savic@mpp.mpg.de; Bergbreiter, L.; Breuer, J.; La Rosa, A.; Macchiolo, A.; Nisius, R.; Terzo, S.

    2017-02-11

    The ATLAS experiment will undergo a major upgrade of the tracker system in view of the high luminosity phase of the LHC (HL-LHC) foreseen to start around 2025. Thin planar pixel modules are promising candidates to instrument the new pixel system, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. New designs of the pixel cells, with an optimized biasing structure, have been implemented in n-in-p planar pixel productions with sensor thicknesses of 270 μm. Using beam tests, the gain in hit efficiency is investigated as a function of the received irradiation fluence. The outlook for future thin planar pixel sensor productions will be discussed, with a focus on thin sensors with a thickness of 100 and 150 μm and a novel design with the optimized biasing structure and small pixel cells (50×50 and 25×100 μm{sup 2}). These dimensions are foreseen for the new ATLAS read-out chip in 65 nm CMOS technology and the fine segmentation will represent a challenge for the tracking in the forward region of the pixel system at HL-LHC. To predict the performance of 50×50 μm{sup 2} pixels at high η, FE-I4 compatible planar pixel sensors have been studied before and after irradiation in beam tests at high incidence angle with respect to the short pixel direction. Results on cluster shapes, charge collection- and hit efficiency will be shown.

  12. CMOS pixel development for the ATLAS experiment at HL-LHC

    CERN Document Server

    Risti{c}, Branislav; The ATLAS collaboration

    2017-01-01

    To cope with the rate and radiation environment expected at the HL-LHC new approaches are being developed on CMOS pixel detectors, providing charge collection in a depleted layer. They are based on: HV enabling technologies that allow to use high depletion voltages (HV-MAPS), high resistivity wafers for large depletion depths (HR-MAPS); radiation hard processed with multiple nested wells to allow CMOS electronics embedded with sufficient shielding into the sensor substrate and backside processing and thinning for material minimization and backside voltage application. Since 2014, members of more than 20 groups in the ATLAS experiment are actively pursuing CMOS pixel R&D in an ATLAS Demonstrator program pursuing sensor design and characterizations. The goal of this program is to demonstrate that depleted CMOS pixels, with monolithic or hybrid designs, are suited for high rate, fast timing and high radiation operation at LHC. For this a number of technologies have been explored and characterized. In this pr...

  13. A MCM-D-type module for the ATLAS pixel detector

    CERN Document Server

    Becks, K H; Ehrmann, O; Gerlach, P; Gregor, I M; Pieters, P; Topper, M; Truzzi, C; Wolf, J

    1999-01-01

    For the ATLAS experiment at the planned Large Hadron Collider LHC at CERN hybrid pixel detectors are being built as innermost layers of the inner tracking detector system. Modules are the basic building blocks of the ATLAS pixel $9 detector. A module consists of a sensor tile with an active area of 16.4 mm*60.4 mm, 16 read out IC's, each serving 24*160 pixel unit cells, a module controller chip, an optical transceiver and the local signal interconnection and $9 power distribution busses. The dies are attached by flip-chip assembly to the sensor diodes and the local busses. In the following a module based on MCM-D technology will be discussed and prototype results will be presented.

  14. CMOS Pixel Development for the ATLAS Experiment at HL-LHC

    CERN Document Server

    Gaudiello, Andrea; The ATLAS collaboration

    2017-01-01

    To cope with the rate and radiation environment expected at the HL-LHC new approaches are being developed on CMOS pixel detectors, providing charge collection in a depleted layer. They are based on: HV enabling technologies that allow to use high depletion voltages (HV-MAPS), high resistivity wafers for large depletion depths (HR-MAPS); radiation hard processed with multiple nested wells to allow CMOS electronics embedded with sufficient shielding into the sensor substrate and backside processing and thinning for material minimization and backside voltage application. Since 2014, members of more than 20 groups in the ATLAS experiment are actively pursuing CMOS pixel R&D in an ATLAS Demonstrator program pursuing sensor design and characterizations. The goal of this program is to demonstrate that depleted CMOS pixels, with monolithic or hybrid designs, are suited for high rate, fast timing and high radiation operation at LHC. For this a number of technologies have been explored and characterized. In this pr...

  15. The Phase II ATLAS Pixel Upgrade: The Inner Tracker (ITk)

    CERN Document Server

    Flick, Tobias; The ATLAS collaboration

    2016-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown (foreseen to take place around 2025) by an all-silicon detector called the ITk (Inner Tracker). The pixel detector will comprise the five innermost layers, and will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation. The total surface area of silicon in the new pixel system could measure up to 14 m^2, depending on the final layout choice, which is expected to take place in early 2017. Four layout options are being investigated at the moment, two with forward coverage to eta < 3.2 and two to eta < 4. For each coverage option, a layout with long barrel staves and a layout with novel inclined support structures in the barrel-endcap overlap region are considered. All potential layouts include modules mounted on ring-shaped supports in the endcap regions. Support...

  16. The Phase-II ATLAS ITk Pixel Upgrade

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00349918; The ATLAS collaboration

    2017-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase~2 shutdown (foreseen to take place around 2025) by an all-silicon detector called the ``ITk'' (Inner Tracker). The innermost portion of ITk will consist of a pixel detector with five layers in the barrel region and ring-shaped supports in the end-cap regions. It will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation levels. The new pixel system could include up to 14 $\\mathrm{m^2}$ of silicon, depending on the final layout, which is expected to be decided in 2017. Several layout options are being investigated at the moment, including some with novel inclined support structures in the barrel end-cap overlap region and others with very long innermost barrel layers. Forward coverage could be as high as |eta| $<4$. Supporting structures will be based on low mass, highly stabl...

  17. ATLAS pixel IBL modules construction experience and developments for future upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gaudiello, A.

    2015-10-01

    The first upgrade of the ATLAS Pixel Detector is the Insertable B-Layer (IBL), installed in May 2014 in the core of ATLAS. Two different silicon sensor technologies, planar n-in-n and 3D, are used. Sensors are connected with the new generation 130 nm IBM CMOS FE-I4 read-out chip via solder bump-bonds. Production quality control tests were set up to verify and rate the performance of the modules before integration into staves. An overview of module design and construction, the quality control results and production yield will be discussed, as well as future developments foreseen for future detector upgrades.

  18. Development of n-in-p pixel modules for the ATLAS upgrade at HL-LHC

    Science.gov (United States)

    Macchiolo, A.; Nisius, R.; Savic, N.; Terzo, S.

    2016-09-01

    Thin planar pixel modules are promising candidates to instrument the inner layers of the new ATLAS pixel detector for HL-LHC, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. 100-200 μm thick sensors, interconnected to FE-I4 read-out chips, have been characterized with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements are reported for devices before and after irradiation up to a fluence of 14 ×1015 neq /cm2 . The charge collection and tracking efficiency of the different sensor thicknesses are compared. The outlook for future planar pixel sensor production is discussed, with a focus on sensor design with the pixel pitches (50×50 and 25×100 μm2) foreseen for the RD53 Collaboration read-out chip in 65 nm CMOS technology. An optimization of the biasing structures in the pixel cells is required to avoid the hit efficiency loss presently observed in the punch-through region after irradiation. For this purpose the performance of different layouts have been compared in FE-I4 compatible sensors at various fluence levels by using beam test data. Highly segmented sensors will represent a challenge for the tracking in the forward region of the pixel system at HL-LHC. In order to reproduce the performance of 50×50 μm2 pixels at high pseudo-rapidity values, FE-I4 compatible planar pixel sensors have been studied before and after irradiation in beam tests at high incidence angle (80°) with respect to the short pixel direction. Results on cluster shapes, charge collection and hit efficiency will be shown.

  19. Optical data links for the ATLAS SCT and Pixel Detector

    International Nuclear Information System (INIS)

    Gregor, I.M.; Weidberg, A.R.; Lee, S.C.; Chu, M.L.; Teng, P.K.

    2001-01-01

    ATLAS (The ATLAS Technical Proposal, CERN/LHCC 94-33) is one of the large electronic particle detectors at LHC (The LHC Conceptual Design, Report- The Yellow Book, CERN/AC/95-05(LHC)) which will become operational in 2005. It is planned to use radiation tolerant optical links for the data transfer from the SemiConductor Tracker (SCT) (ATLAS Inner Detector Technical Proposal, CERN/LHCC 97-16 and CERN/LHCC 97-17). and Pixel Detector (ATLAS Pixel Detector Technical Proposal, CERN/LHCC 98-13) systems to the acquisition electronics over a distance up to 140m. The overall architecture and the performance of these optical data links are described. One of the three candidate designs for an on-detector Opto-Package is presented

  20. JPL CMOS Active Pixel Sensor Technology

    Science.gov (United States)

    Fossum, E. R.

    1995-01-01

    This paper will present the JPL-developed complementary metal- oxide-semiconductor (CMOS) active pixel sensor (APS) technology. The CMOS APS has achieved performance comparable to charge coupled devices, yet features ultra low power operation, random access readout, on-chip timing and control, and on-chip analog to digital conversion. Previously published open literature will be reviewed.

  1. MCC: the Module Controller Chip for the ATLAS Pixel Detector

    International Nuclear Information System (INIS)

    Beccherle, R.; Darbo, G.; Gagliardi, G.; Gemme, C.; Morettini, P.; Musico, P.; Osculati, B.; Oppizzi, P.; Pratolongo, F.; Ruscino, E.; Schiavi, C.; Vernocchi, F.; Blanquart, L.; Einsweiler, K.; Meddeler, G.; Richardson, J.; Comes, G.; Fischer, P.; Calvet, D.; Boyd, R.; Sicho, P.

    2002-01-01

    In this article we describe the architecture of the Module Controller Chip for the ATLAS Pixel Detector. The project started in 1997 with the definition of the system specifications. A first fully-working rad-soft prototype was designed in 1998, while a radiation hard version was submitted in 2000. The 1998 version was used to build pixel detector modules. Results from those modules and from the simulated performance in ATLAS are reported. In the article we also describe the hardware/software tools developed to test the MCC performance at the LHC event rate

  2. Operational Experience and Performance with the ATLAS Pixel detector

    CERN Document Server

    Martin, Christopher Blake; The ATLAS collaboration

    2018-01-01

    The tracking performance of the ATLAS detector relies critically on its 4-layer Pixel Detector, that has undergone significant hardware and software upgrades to meet the challenges imposed by the higher collision energy, pileup and luminosity that are being delivered by the Large Hadron Collider, with record breaking instantaneous luminosities of $1.3\\times10^{34}\\text{cm}^{{-2}}\\text{s}^{{-1}}$ recently surpassed. The key status and performance metrics of the ATLAS Pixel Detector are summarized, and the operational experience and requirements to ensure optimum data quality and data taking efficiency are described, with special emphasis to radiation damage experience.

  3. Operational Experience and Performance with the ATLAS Pixel detector

    CERN Document Server

    Martin, Christopher Blake; The ATLAS collaboration

    2018-01-01

    The tracking performance of the ATLAS detector relies critically on its 4-layer Pixel Detector, that has undergone significant hardware and software upgrades to meet the challenges imposed by the higher collision energy, pileup and luminosity that are being delivered by the Large Hadron Collider, with record breaking instantaneous luminosities of 1.3 x 10^34 cm-2 s-1 recently surpassed. The key status and performance metrics of the ATLAS Pixel Detector are summarised, and the operational experience and requirements to ensure optimum data quality and data taking efficiency are described, with special emphasis to radiation damage experience.

  4. Study of run time errors of the ATLAS Pixel Detector in the 2012 data taking period

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00339072

    2013-05-16

    The high resolution silicon Pixel detector is critical in event vertex reconstruction and in particle track reconstruction in the ATLAS detector. During the pixel data taking operation, some modules (Silicon Pixel sensor +Front End Chip+ Module Control Chip (MCC)) go to an auto-disable state, where the Modules don’t send the data for storage. Modules become operational again after reconfiguration. The source of the problem is not fully understood. One possible source of the problem is traced to the occurrence of single event upset (SEU) in the MCC. Such a module goes to either a Timeout or Busy state. This report is the study of different types and rates of errors occurring in the Pixel data taking operation. Also, the study includes the error rate dependency on Pixel detector geometry.

  5. Monolithic pixel development in TowerJazz 180 nm CMOS for the outer pixel layers in the ATLAS experiment

    Science.gov (United States)

    Berdalovic, I.; Bates, R.; Buttar, C.; Cardella, R.; Egidos Plaja, N.; Hemperek, T.; Hiti, B.; van Hoorne, J. W.; Kugathasan, T.; Mandic, I.; Maneuski, D.; Marin Tobon, C. A.; Moustakas, K.; Musa, L.; Pernegger, H.; Riedler, P.; Riegel, C.; Schaefer, D.; Schioppa, E. J.; Sharma, A.; Snoeys, W.; Solans Sanchez, C.; Wang, T.; Wermes, N.

    2018-01-01

    The upgrade of the ATLAS tracking detector (ITk) for the High-Luminosity Large Hadron Collider at CERN requires the development of novel radiation hard silicon sensor technologies. Latest developments in CMOS sensor processing offer the possibility of combining high-resistivity substrates with on-chip high-voltage biasing to achieve a large depleted active sensor volume. We have characterised depleted monolithic active pixel sensors (DMAPS), which were produced in a novel modified imaging process implemented in the TowerJazz 180 nm CMOS process in the framework of the monolithic sensor development for the ALICE experiment. Sensors fabricated in this modified process feature full depletion of the sensitive layer, a sensor capacitance of only a few fF and radiation tolerance up to 1015 neq/cm2. This paper summarises the measurements of charge collection properties in beam tests and in the laboratory using radioactive sources and edge TCT. The results of these measurements show significantly improved radiation hardness obtained for sensors manufactured using the modified process. This has opened the way to the design of two large scale demonstrators for the ATLAS ITk. To achieve a design compatible with the requirements of the outer pixel layers of the tracker, a charge sensitive front-end taking 500 nA from a 1.8 V supply is combined with a fast digital readout architecture. The low-power front-end with a 25 ns time resolution exploits the low sensor capacitance to reduce noise and analogue power, while the implemented readout architectures minimise power by reducing the digital activity.

  6. Monolithic pixel development in 180 nm CMOS for the outer pixel layers in the ATLAS experiment

    CERN Document Server

    Kugathasan, Thanushan; Buttar, Craig; Berdalovic, Ivan; Blochet, Bastien; Cardella, Roberto Calogero; Dalla, Marco; Egidos Plaja, Nuria; Hemperek, Tomasz; Van Hoorne, Jacobus Willem; Maneuski, Dima; Marin Tobon, Cesar Augusto; Moustakas, Konstantinos; Mugnier, Herve; Musa, Luciano; Pernegger, Heinz; Riedler, Petra; Riegel, Christian; Rousset, Jerome; Sbarra, Carla; Schaefer, Douglas Michael; Schioppa, Enrico Junior; Sharma, Abhishek; Snoeys, Walter; Solans Sanchez, Carlos; Wang, Tianyang; Wermes, Norbert

    2017-01-01

    The ATLAS experiment at CERN plans to upgrade its Inner Tracking System for the High-Luminosity LHC in 2026. After the ALPIDE monolithic sensor for the ALICE ITS was successfully implemented in a 180 nm CMOS Imaging Sensor technology, the process was modified to combine full sensor depletion with a low sensor capacitance (≈ 2.5fF), for increased radiation tolerance and low analog power consumption. Efficiency and charge collection time were measured with comparisons before and after irradiation. This paper summarises the measurements and the ATLAS-specific development towards full-reticle size CMOS sensors and modules in this modified technology.

  7. Results from the Commissioning of the ATLAS Pixel Detector

    CERN Document Server

    Ibragimov, I

    2008-01-01

    The ATLAS pixel detector is the innermost tracking detector of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN. It has a total active area of 1.7 m2 of silicon read out by approximately 80 million electronic channels, which will detect particle tracks and decay vertices with a very high precision. After more than 10 years of development and construction it is the first time ever the whole detector has been operated together. The paper will illustrate the detector performance and give first results from the combined ATLAS cosmics runs.

  8. Studio di un algoritmo lineare di ricostruzione analogica della posizione per il rivelatore a pixel di ATLAS

    CERN Document Server

    Arelli-Maffioli, A; Troncon, C; Lari, T

    2007-01-01

    A detailed study of spatial resolution of Atlas pixel sensors prototypes was performed. Charge interpolation was used and allowed for a significant improvement with respect to digital resolution. A simplified algorithm for charge interpolation was developed. Its application to both unirradiated and irradiated sensors is presented and discussed.

  9. Modeling Radiation Damage Effects in 3D Pixel Digitization for the ATLAS Detector

    CERN Document Server

    Giugliarelli, Gilberto; The ATLAS collaboration

    2018-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS experiment. They constitute the part of ATLAS closest to the interaction point and for this reason they will be exposed – over their lifetime – to a significant amount of radiation: prior to the HL-LHC, the innermost layers will receive a fluence of 10^15 neq/cm2 and their HL–LHC upgrades will have to cope with an order of magnitude higher fluence integrated over their lifetimes. This poster presents the details of a new digitization model that includes radiation damage effects to the 3D Pixel sensors for the ATLAS Detector.

  10. Development of radiation hard CMOS active pixel sensors for HL-LHC

    International Nuclear Information System (INIS)

    Pernegger, Heinz

    2016-01-01

    New pixel detectors, based on commercial high voltage and/or high resistivity full CMOS processes, hold promise as next-generation active pixel sensors for inner and intermediate layers of the upgraded ATLAS tracker. The use of commercial CMOS processes allow cost-effective detector construction and simpler hybridisation techniques. The paper gives an overview of the results obtained on AMS-produced CMOS sensors coupled to the ATLAS Pixel FE-I4 readout chips. The SOI (silicon-on-insulator) produced sensors by XFAB hold great promise as radiation hard SOI-CMOS sensors due to their combination of partially depleted SOI transistors reducing back-gate effects. The test results include pre-/post-irradiation comparison, measurements of charge collection regions as well as test beam results.

  11. Active Pixel Sensors: Are CCD's Dinosaurs?

    Science.gov (United States)

    Fossum, Eric R.

    1993-01-01

    Charge-coupled devices (CCD's) are presently the technology of choice for most imaging applications. In the 23 years since their invention in 1970, they have evolved to a sophisticated level of performance. However, as with all technologies, we can be certain that they will be supplanted someday. In this paper, the Active Pixel Sensor (APS) technology is explored as a possible successor to the CCD. An active pixel is defined as a detector array technology that has at least one active transistor within the pixel unit cell. The APS eliminates the need for nearly perfect charge transfer -- the Achilles' heel of CCDs. This perfect charge transfer makes CCD's radiation 'soft,' difficult to use under low light conditions, difficult to manufacture in large array sizes, difficult to integrate with on-chip electronics, difficult to use at low temperatures, difficult to use at high frame rates, and difficult to manufacture in non-silicon materials that extend wavelength response.

  12. FE-I4 Chip Development for Upgraded ATLAS Pixel Detector at LHC

    CERN Document Server

    Barbero, M; The ATLAS collaboration

    2010-01-01

    A new ATLAS pixel chip FE-I4 has been developed for use in upgraded LHC luminosity environments, including the near-term Insertable B-Layer upgrade. FE-I4 is designed in a 130 nm CMOS technology, presenting advantages in terms of radiation tolerance and digital logic density compared to the 0.25 μm CMOS technology used for the current ATLAS pixel IC, FE-I3. FE-I4 architecture is based on an array of 80×336 pixels, each 50×250 μm2, consisting of analog and digital sections. The analog pixel section is designed for low power consumption and compatibility to several sensor candidates. It is based on a two-stage architecture with a pre-amp AC-coupled to a second stage of amplification. It features leakage current compensation circuitry, local 4-bit pre-amp feedback tuning and a discriminator locally adjusted through 5 configuration bits. The digital architecture is based on a 4-pixel unit called Pixel Digital Region (PDR) allowing for local storage of hits in 5-deep data buffers at pixel level for the duratio...

  13. Operational Experience and Performance with the ATLAS Pixel detector

    CERN Document Server

    Yang, Hongtao; The ATLAS collaboration

    2018-01-01

    In this presentation, I will discuss the operation of ATLAS Pixel Detector during Run 2 proton-proton data-taking at √s=13 TeV in 2017. The topics to be covered include 1) the bandwidth issue and how it is mitigated through readout upgrade and threshold adjustment; 2) the auto-corrective actions; 3) monitoring of radiation effects.

  14. Fabrication of ATLAS pixel detector prototypes at IRST

    International Nuclear Information System (INIS)

    Boscardin, M.; Betta, G.-F. Dalla; Gregori, P.; Zen, M.; Zorzi, N.

    2001-01-01

    We report on the development of a fabrication technology for n-on-n silicon pixel detectors oriented to the ATLAS experiment at LHC. The main processing issues and some selected results from the electrical characterization of detector prototypes and related test structures are presented and discussed

  15. Operational Experience with the ATLAS Pixel Detector at LHC

    CERN Document Server

    Keil, M

    2013-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus crucial for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via front-end chips bump-bonded to 1744 n-on-n silicon substrates. In this paper results from the successful operation of the Pixel Detector at the LHC will be presented, including calibration procedures, detector performance and measurements of radiation damage. The detector performance is excellent: more than 95% of the pixels are operational, noise occupancy and hit efficiency exceed the des...

  16. Results from the commissioning of the ATLAS Pixel Detector

    CERN Document Server

    Masetti, L

    2008-01-01

    The Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. It is an 80 million channel silicon tracking system designed to detect charged tracks and secondary vertices with very high precision. After connection of cooling and services and verification of their operation, the ATLAS Pixel Detector is now in the final stage of its commissioning phase. Calibration of optical connections, verification of the analog performance and special DAQ runs for noise studies have been performed and the first tracks in combined operation with the other subdetectors of the ATLAS Inner Detector were observed. The results from calibration tests on the whole detector and from cosmic muon data are presented.

  17. Results from the Commissioning of the ATLAS Pixel Detector

    CERN Document Server

    Strandberg, S

    2009-01-01

    The ATLAS pixel detector is a high resolution, silicon based, tracking detector with its innermost layer located only 5 cm away from the ATLAS interaction point. It is designed to provide good hit resolution and low noise, both important qualities for pattern recognition and for finding secondary vertices originating from decays of long-lived particles. The pixel detector has 80 million readout channels and is built up of three barrel layers and six disks, three on each side of the barrel. The detector was installed in the center of ATLAS in June 2007 and is currently being calibrated and commissioned. Details from the installation, commissioning and calibration are presented together with the current status.

  18. Studies on irradiated pixel detectors for the ATLAS IBL and HL-LHC upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gallrapp, Christian

    2015-07-01

    The constant demand for higher luminosity in high energy physics is the reason for the continuous effort to adapt the accelerators and the experiments. The upgrade program for the experiments and the accelerators at CERN already includes several expansion stages of the Large Hadron Collider (LHC) which will increase the luminosity and the energy of the accelerator. Simultaneously the LHC experiments prepare the individual sub-detectors for the increasing demands in the coming years. Especially the tracking detectors have to cope with fluence levels unprecedented for high energy physics experiments. Correspondingly to the fluence increases the impact of the radiation damage which reduces the life time of the detectors by decreasing the detector performance and efficiency. To cope with this effect new and more radiation hard detector concepts become necessary to extend the life time. This work concentrates on the impact of radiation damage on the pixel sensor technologies to be used in the next upgrade of the ATLAS Pixel Detector as well as for applications in the ATLAS Experiment at HL-LHC conditions. The sensors considered in this work include various designs based on silicon and diamond as sensor material. The investigated designs include a planar silicon pixel design currently used in the ATLAS Experiment as well as a 3D pixel design which uses electrodes penetrating the entire sensor material. The diamond designs implement electrodes similar to the design used by the planar technology with diamond sensors made out of single- and poly-crystalline material. To investigate the sensor properties characterization tests are performed before and after irradiation with protons or neutrons. The measurements are used to determine the interaction between the read-out electronics and the sensors to ensure the signal transfer after irradiation. Further tests focus on the sensor performance itself which includes the analysis of the leakage current behavior and the charge

  19. Studies on irradiated pixel detectors for the ATLAS IBL and HL-LHC upgrade

    International Nuclear Information System (INIS)

    Gallrapp, Christian

    2015-01-01

    The constant demand for higher luminosity in high energy physics is the reason for the continuous effort to adapt the accelerators and the experiments. The upgrade program for the experiments and the accelerators at CERN already includes several expansion stages of the Large Hadron Collider (LHC) which will increase the luminosity and the energy of the accelerator. Simultaneously the LHC experiments prepare the individual sub-detectors for the increasing demands in the coming years. Especially the tracking detectors have to cope with fluence levels unprecedented for high energy physics experiments. Correspondingly to the fluence increases the impact of the radiation damage which reduces the life time of the detectors by decreasing the detector performance and efficiency. To cope with this effect new and more radiation hard detector concepts become necessary to extend the life time. This work concentrates on the impact of radiation damage on the pixel sensor technologies to be used in the next upgrade of the ATLAS Pixel Detector as well as for applications in the ATLAS Experiment at HL-LHC conditions. The sensors considered in this work include various designs based on silicon and diamond as sensor material. The investigated designs include a planar silicon pixel design currently used in the ATLAS Experiment as well as a 3D pixel design which uses electrodes penetrating the entire sensor material. The diamond designs implement electrodes similar to the design used by the planar technology with diamond sensors made out of single- and poly-crystalline material. To investigate the sensor properties characterization tests are performed before and after irradiation with protons or neutrons. The measurements are used to determine the interaction between the read-out electronics and the sensors to ensure the signal transfer after irradiation. Further tests focus on the sensor performance itself which includes the analysis of the leakage current behavior and the charge

  20. ATLAS Pixel Group - Photo Gallery from Irradiation

    CERN Multimedia

    2001-01-01

    Photos 1,2,3,4,5,6,7 - Photos taken before irradiation of Pixel Test Analog Chip and Pmbars (April 2000) Photos 8,9,10,11 - Irradiation of VDC chips (May 2000) Photos 12, 13 - Irradiation of Passive Components (June 2000) Photos 14,15, 16 - Irradiation of Marebo Chip (November 1999)

  1. Radiation Damage Observations in the ATLAS Pixel Detector Using the High Voltage Delivery System

    CERN Document Server

    Toms, K

    2011-01-01

    We describe the implementation of radiation damage monitoring using leakage current measurement of the silicon pixel sensors provided by the circuits of the ATLAS Pixel Detector high voltage delivery (HVPP4) system. The dependence of the leakage current upon the integrated luminosity for several temperature scenarios is presented. Based on the analysis we have determined the sensitivity specifications for a Current Measurement System. The status of the system and the first measurement of the radiation damage corresponding to 2--4 fb$^{-1}$ of integrated luminosity are presented, as well as the comparison with the theoretical model.

  2. Experience on 3D silicon sensors for ATLAS IBL

    International Nuclear Information System (INIS)

    Darbo, G.

    2015-01-01

    3D silicon sensors, where plasma micro-machining is used to etch deep narrow apertures in the silicon substrate to form electrodes of PIN junctions, represent possible solutions for inner pixel layers of the tracking detectors in high energy physics experiments. This type of sensors has been developed for the Insertable B-Layer (IBL), an additional pixel layer that has been installed in ATLAS during the present shutdown of the LHC collider at CERN. It is presented here the experience in designing, testing and qualifying sensors and detector modules that have been used to equip part of the IBL. Based on the gained experience with 3D silicon sensors for the ATLAS IBL, we discuss possible new developments for the upgrade of ATLAS and CMS at the high-luminosity LHC (HL-LHC)

  3. Development of thin pixel sensors and a novel interconnection technology for the SLHC

    International Nuclear Information System (INIS)

    Macchiolo, A.; Andricek, L.; Beimforde, M.; Dubbert, J.; Ghodbane, N.; Kortner, O.; Kroha, H.; Moser, H.G.; Nisius, R.; Richter, R.H.

    2008-01-01

    We present an R and D activity aiming to develop a new detector concept in the framework of the ATLAS pixel detector upgrade in view of the Super-LHC. The new devices combine 75-150 μm thick pixels sensors with a vertical integration technology. A new production of thin pixel sensors on n- and p-type material is under way at the MPI Semiconductor Laboratory. These devices will be connected to the ATLAS read-out electronics with the new Solid-Liquid InterDiffusion technique as an alternative to the bump-bonding process. We also plan for the signals to be extracted from the back of the electronics wafer through Inter-Chip-Vias. The compatibility of the Solid-Liquid InterDiffusion process with the silicon sensor functionality has already been demonstrated by measurements on two wafers hosting diodes with an active thickness of 50 μm

  4. Sensor development for the CMS pixel detector

    CERN Document Server

    Bölla, G; Horisberger, R P; Kaufmann, R; Rohe, T; Roy, A

    2002-01-01

    The CMS experiment which is currently under construction at the Large Hadron Collider (LHC) at CERN (Geneva, Switzerland) will contain a pixel detector which provides in its final configuration three space points per track close to the interaction point of the colliding beams. Because of the harsh radiation environment of the LHC, the technical realization of the pixel detector is extremely challenging. The readout chip as the most damageable part of the system is believed to survive a particle fluence of 6x10 sup 1 sup 4 n sub e sub q /cm sup 2 (All fluences are normalized to 1 MeV neutrons and therefore all components of the hybrid pixel detector have to perform well up to at least this fluence. As this requires a partially depleted operation of the silicon sensors after irradiation-induced type inversion of the substrate, an ''n in n'' concept has been chosen. In order to perform IV-tests on wafer level and to hold accidentally unconnected pixels close to ground potential, a resistive path between the pixe...

  5. Sensor Development for the CMS Pixel Detector

    CERN Document Server

    Rohe, T; Chiochia, V; Cremaldi, L M; Cucciarelli, S; Dorkhov, A; Konecki, M; Prokofiev, K; Regenfus, C; Sanders, D A; Son, S; Speer, T; Swartz, M

    2003-01-01

    This paper reports on a current R&D activity for the sensor part of the CMS pixel detector. Devices featuring several design and technology options have been irradiated up to a proton fluence of 1E15 (1MeV Neutron)/cm**2 at the CERN PS. Afterwards they have been bump bonded to unirradiated readout chips. The chip allows a non zero suppressed full analogue readout and therefore a good characterization of the sensors in terms of noise and charge collection properties. The samples have been tested using high energy pions in the H2 beam line of the CERN SPS in June and September 2003. The results of this test beam are presented and the differences between the sensor options are discussed.

  6. Radiation effects on active pixel sensors (APS)

    International Nuclear Information System (INIS)

    Cohen, M.; David, J.P.

    1999-01-01

    Active pixel sensor (APS) is a new generation of image sensors which presents several advantages relatively to charge coupled devices (CCDs) particularly for space applications (APS requires only 1 voltage to operate which reduces considerably current consumption). Irradiation was performed using 60 Co gamma radiation at room temperature and at a dose rate of 150 Gy(Si)/h. 2 types of APS have been tested: photodiode-APS and photoMOS-APS. The results show that photoMOS-APS is more sensitive to radiation effects than photodiode-APS. Important parameters of image sensors like dark currents increase sharply with dose levels. Nevertheless photodiode-APS sensitivity is one hundred time lower than photoMOS-APS sensitivity

  7. Development of n-in-p pixel modules for the ATLAS Upgrade at HL-LHC

    CERN Document Server

    Macchiolo, Anna; Savic, Natascha; Terzo, Stefano

    2016-09-21

    Thin planar pixel modules are promising candidates to instrument the inner layers of the new ATLAS pixel detector for HL-LHC, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. 100-200 $\\mu$m thick sensors, interconnected to FE-I4 read-out chips, have been characterized with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements are reported for devices before and after irradiation up to a fluence of $14\\times10^{15}$ n$_{eq}$/cm$^2$. The charge collection and tracking efficiency of the different sensor thicknesses are compared. The outlook for future planar pixel sensor production is discussed, with a focus on sensor design with the pixel pitches (50x50 and 25x100 $\\mu$m$^2$) foreseen for the RD53 Collaboration read-out chip in 65 nm CMOS technology. An optimization of the biasing structures in the pixel cells is required to avoid the hit efficiency loss presently observed in the punch-through region...

  8. Robustness of the ATLAS pixel clustering neural network algorithm

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00407780; The ATLAS collaboration

    2016-01-01

    Proton-proton collisions at the energy frontier puts strong constraints on track reconstruction algorithms. In the ATLAS track reconstruction algorithm, an artificial neural network is utilised to identify and split clusters of neighbouring read-out elements in the ATLAS pixel detector created by multiple charged particles. The robustness of the neural network algorithm is presented, probing its sensitivity to uncertainties in the detector conditions. The robustness is studied by evaluating the stability of the algorithm's performance under a range of variations in the inputs to the neural networks. Within reasonable variation magnitudes, the neural networks prove to be robust to most variation types.

  9. Optical Links for the ATLAS Pixel Detector

    CERN Document Server

    Gregor, Ingrid-Maria

    In der vorliegenden Dissertation wird eine strahlentolerante optische Datenstrecke mit hoher Datenrate für den Einsatz in dem Hochenergiephysikexperiment Atlas am Lhc Beschleuniger entwickelt. Da die Lhc-Experimente extremen Strahlenbelastungen ausgesetzt sind, müssen die Komponenten spezielle Ansprüche hinsichtlich der Strahlentoleranz erfüllen. Die Qualifikation der einzelnen Bauteile wurde im Rahmen dieser Arbeit durchgeführt. Die zu erwartenden Fluenzen im Atlas Inner Detector für Silizium und Gallium Arsenid (GaAs) wurden berechnet. Siliziumbauteile werden einer Fluenz von bis zu 1.1.1015neq /cm2 in 1 MeV äquivalenten Neutronen ausgesetzt sein, wohingegen GaAs Bauteile bis zu 7.8.1015neq /cm2 ausgesetzt sein werden. Die Strahlentoleranz der einzelnen benötigten Komponenten wie z.B. der Laserdioden sowie der jeweiligen Treiberchips wurde untersucht. Sowohl die Photo- als auch die Laserdioden haben sich als strahlentolerant für die Fluenzen an dem vorgesehenen Radius erwiesen. Aus de...

  10. The hardware of the ATLAS Pixel Detector Control System

    International Nuclear Information System (INIS)

    Henss, T; Andreani, A; Boek, J; Boyd, G; Citterio, M; Einsweiler, K; Kersten, S; Kind, P; Lantzsch, K; Latorre, S; Maettig, P; Meroni, C; Sabatini, F; Schultes, J

    2007-01-01

    The innermost part of the ATLAS (A Toroidal LHC ApparatuS) experiment, which is currently under construction at the LHC (Large Hadron Collider), will be a silicon pixel detector comprised of 1744 individual detector modules. To operate these modules, the readout electronics, and other detector components, a complex power supply and control system is necessary. The specific powering and control requirements, as well as the custom made components of our power supply and control systems, are described. These include remotely programmable regulator stations, the power supply system for the optical transceivers, several monitoring units, and the Interlock System. In total, this comprises the Pixel Detector Control System (DCS)

  11. Hybrid active pixel sensors in infrared astronomy

    International Nuclear Information System (INIS)

    Finger, Gert; Dorn, Reinhold J.; Meyer, Manfred; Mehrgan, Leander; Stegmeier, Joerg; Moorwood, Alan

    2005-01-01

    Infrared astronomy is currently benefiting from three main technologies providing high-performance hybrid active pixel sensors. In the near infrared from 1 to 5 μm two technologies, both aiming for buttable 2Kx2K mosaics, are competing, namely InSb and HgCdTe grown by LPE or MBE on Al 2 O 3 , Si or CdZnTe substrates. Blocked impurity band Si:As arrays cover the mid infrared spectral range from 8 to 28 μm. Adaptive optics combined with multiple integral field units feeding high-resolution spectrographs drive the requirements for the array format of infrared sensors used at ground-based infrared observatories. The pixel performance is now approaching fundamental limits. In view of this development, a detection limit for the photon flux of the ideal detector will be derived, depending only on the temperature and the impedance of the detector. It will be shown that this limit is approximated by state of the art infrared arrays for long on-chip integrations. Different detector materials are compared and strategies to populate large focal planes are discussed. The need for the development of small-format low noise sensors for adaptive optics and interferometry will be pointed out

  12. Development of 3D-DDTC pixel detectors for the ATLAS upgrade

    International Nuclear Information System (INIS)

    Dalla Betta, Gian-Franco; Boscardin, Maurizio; Darbo, Giovanni; Gemme, Claudia; La Rosa, Alessandro; Pernegger, Heinz; Piemonte, Claudio; Povoli, Marco; Ronchin, Sabina; Zoboli, Andrea; Zorzi, Nicola

    2011-01-01

    We report on the development of n-on-p, 3D Double-Side Double Type Column (3D-DDTC) pixel detectors fabricated at FBK-irst (Trento, Italy) and oriented to the ATLAS upgrade. The considered fabrication technology is simpler than that required for full 3D detectors with active edge, but the detector efficiency and radiation hardness critically depend on the columnar electrode overlap and should be carefully evaluated. The first assemblies of these sensors (featuring 2, 3, or 4 columns per pixel) with the ATLAS FEI3 read-out chip have been tested in laboratory. Selected results from the electrical and functional characterization with radioactive sources are discussed here.

  13. Development of 3D-DDTC pixel detectors for the ATLAS upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Betta, Gian-Franco, E-mail: dallabe@disi.unitn.it [INFN, Sezione di Padova (Gruppo Collegato di Trento), and DISI, Universita di Trento, Via Sommarive 14, 38123 Povo di Trento (Italy); Boscardin, Maurizio [Fondazione Bruno Kessler (FBK-irst), Via Sommarive 18, 38123 Povo di Trento (Italy); Darbo, Giovanni; Gemme, Claudia [INFN, Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); La Rosa, Alessandro; Pernegger, Heinz [CERN-PH, CH-1211 Geneve 23 (Switzerland); Piemonte, Claudio [Fondazione Bruno Kessler (FBK-irst), Via Sommarive 18, 38123 Povo di Trento (Italy); Povoli, Marco [INFN, Sezione di Padova (Gruppo Collegato di Trento), and DISI, Universita di Trento, Via Sommarive 14, 38123 Povo di Trento (Italy); Ronchin, Sabina [Fondazione Bruno Kessler (FBK-irst), Via Sommarive 18, 38123 Povo di Trento (Italy); Zoboli, Andrea [INFN, Sezione di Padova (Gruppo Collegato di Trento), and DISI, Universita di Trento, Via Sommarive 14, 38123 Povo di Trento (Italy); Zorzi, Nicola [Fondazione Bruno Kessler (FBK-irst), Via Sommarive 18, 38123 Povo di Trento (Italy)

    2011-04-21

    We report on the development of n-on-p, 3D Double-Side Double Type Column (3D-DDTC) pixel detectors fabricated at FBK-irst (Trento, Italy) and oriented to the ATLAS upgrade. The considered fabrication technology is simpler than that required for full 3D detectors with active edge, but the detector efficiency and radiation hardness critically depend on the columnar electrode overlap and should be carefully evaluated. The first assemblies of these sensors (featuring 2, 3, or 4 columns per pixel) with the ATLAS FEI3 read-out chip have been tested in laboratory. Selected results from the electrical and functional characterization with radioactive sources are discussed here.

  14. New Technique for Luminosity Measurement Using 3D Pixel Modules in the ATLAS IBL Detector

    CERN Document Server

    Liu, Peilian; The ATLAS collaboration

    2017-01-01

    The Insertable b-Layer ( IBL ) is the innermost layer of the ATLAS tracking system. It consists of planar pixel modules in the central region and 3D modules at two extremities. We use the cluster length distributions in 3D sensor modules of the IBL to determine the number of primary charged particles per event and suppress backgrounds. This Pixel Cluster Counting ( PCC ) algorithm provides a bunch-by-bunch luminosity measurement. An accurate luminosity measurement is a key component for precision measurements at the Large Hadron Collider and one of the largest uncertainties on the luminosity determination in ATLAS arises from the long-term stability of the measurement technique. The comparison of the PCC algorithm with other existing algorithms provides key insights in assessing and reducing such uncertainty.

  15. Development of 3D-DDTC pixel detectors for the ATLAS upgrade

    CERN Document Server

    Betta, G -F Dalla; Darbo, G; Gemme, C; La Rosa, A; Pernegger, H; Piemonte, C; Povoli, M; Ronchin, S; Zoboli, A; Zorzi, N

    2011-01-01

    We report on the development of n-on-p, 3D Double-Side Double Type Column (3D-DDTC) pixel detectors fabricated at FBK-irst (Trento, Italy) and oriented to the ATLAS upgrade. The considered fabrication technology is simpler than that required for full 3D detectors with active edge, but the detector efficiency and radiation hardness critically depend on the columnar electrode overlap and should be carefully evaluated. The first assemblies of these sensors (featuring 2, 3, or 4 columns per pixel) with the ATLAS FEI3 read-out chip have been tested in laboratory. Selected results from the electrical and functional characterization with radioactive sources are here discussed.

  16. CMOS Active Pixel Sensor Technology and Reliability Characterization Methodology

    Science.gov (United States)

    Chen, Yuan; Guertin, Steven M.; Pain, Bedabrata; Kayaii, Sammy

    2006-01-01

    This paper describes the technology, design features and reliability characterization methodology of a CMOS Active Pixel Sensor. Both overall chip reliability and pixel reliability are projected for the imagers.

  17. Characterization of proton irradiated 3D-DDTC pixel sensor prototypes fabricated at FBK

    Energy Technology Data Exchange (ETDEWEB)

    La Rosa, A., E-mail: alessandro.larosa@cern.ch [CERN, Geneva 23, CH-1211 (Switzerland); Boscardin, M. [Fondazione Bruno Kessler, FBK-CMM, Via Sommarive 18, I-38123 Trento (Italy); Cobal, M. [Universita degli Studi di Udine and INFN Trieste, Gruppo Collegato di Udine, Via delle Scienze 208, I-33100 Udine (Italy); Dalla Betta, G.-F. [DISI, Universita degli Studi di Trento and INFN Padova, Gruppo Collegato d Trento, Via Sommarive 14, I-38123 Trento (Italy); Da Via, C. [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Darbo, G. [INFN Sezione di Genova, Via Dodecaneso 33, I-14146 Genova (Italy); Gallrapp, C. [CERN, Geneva 23, CH-1211 (Switzerland); Gemme, C. [INFN Sezione di Genova, Via Dodecaneso 33, I-14146 Genova (Italy); Huegging, F.; Janssen, J. [Physikalisches Institut, Universitaet Bonn, Nussallee 12, D-53115 Bonn (Germany); Micelli, A. [Universita degli Studi di Udine and INFN Trieste, Gruppo Collegato di Udine, Via delle Scienze 208, I-33100 Udine (Italy); Pernegger, H. [CERN, Geneva 23, CH-1211 (Switzerland); Povoli, M. [DISI, Universita degli Studi di Trento and INFN Padova, Gruppo Collegato d Trento, Via Sommarive 14, I-38123 Trento (Italy); Wermes, N. [Physikalisches Institut, Universitaet Bonn, Nussallee 12, D-53115 Bonn (Germany); Zorzi, N. [Fondazione Bruno Kessler, FBK-CMM, Via Sommarive 18, I-38123 Trento (Italy)

    2012-07-21

    In this paper we discuss results relevant to 3D Double-Side Double Type Column (3D-DDTC) pixel sensors fabricated at FBK (Trento, Italy) and oriented to the ATLAS upgrade. Some assemblies of these sensors featuring different columnar electrode configurations (2, 3, or 4 columns per pixel) and coupled to the ATLAS FEI3 read-out chip were irradiated up to large proton fluences and tested in laboratory with radioactive sources. In spite of the non-optimized columnar electrode overlap, sensors exhibit reasonably good charge collection properties up to an irradiation fluence of 2 Multiplication-Sign 10{sup 15}n{sub eq}cm{sup -2}, while requiring bias voltages in the order of 100 V. Sensor operation is further investigated by means of TCAD simulations which can effectively explain the basic mechanisms responsible for charge loss after irradiation.

  18. Characterization of proton irradiated 3D-DDTC pixel sensor prototypes fabricated at FBK

    CERN Document Server

    La Rosa, A; Cobal, M; Betta, G -F Dalla; Da Via, C; Darbo, G; Gallrapp, C; Gemme, C; Huegging, F; Janssen, J; Micelli, A; Pernegger, H; Povoli, M; Wermes, N; Zorzi, N

    2012-01-01

    In this paper we discuss results relevant to 3D Double-Side Double Type Column (3D-DDTC) pixel sensors fabricated at FBK (Trento, Italy) and oriented to the ATLAS upgrade. Some assemblies of these sensors featuring different columnar electrode configurations (2, 3, or 4 columns per pixel) and coupled to the ATLAS FEI3 read-out chip were irradiated up to large proton fluences and tested in laboratory with radioactive sources. In spite of the non optimized columnar electrode overlap, sensors exhibit reasonably good charge collection properties up to an irradiation fluence of 2 x 10**15 neq/cm2, while requiring bias voltages in the order of 100 V. Sensor operation is further investigated by means of TCAD simulations which can effectively explain the basic mechanisms responsible for charge loss after irradiation.

  19. Calibration Analysis Software for the ATLAS Pixel Detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00372086; The ATLAS collaboration

    2016-01-01

    The calibration of the ATLAS Pixel detector at LHC fulfils two main purposes: to tune the front-end configuration parameters for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel detector scans and analyses is called Calibration Console. The introduction of a new layer, equipped with new Front End-I4 Chips, required an update the Console architecture. It now handles scans and scans analyses applied together to chips with different characteristics. An overview of the newly developed Calibration Analysis Software will be presented, together with some preliminary result.

  20. A measurement of Lorentz Angle of radiation-hard Pixel Sensors

    CERN Document Server

    Aleppo, M

    2001-01-01

    Silicon pixel detectors developed to meet LHC requirements were tested in a beam at CERN in the framework of the ATLAS collaboration. The experimental behaviour of irradiated and not-irradiated sensors in a magnetic field is discussed. The measurement of the Lorentz angle for these sensors at different operating conditions is presented. A simple model of the charge drift in silicon before and after irradiation is presented. The good agreement between the model predictions and the experimental results is shown.

  1. Hot pixel generation in active pixel sensors: dosimetric and micro-dosimetric response

    Science.gov (United States)

    Scheick, Leif; Novak, Frank

    2003-01-01

    The dosimetric response of an active pixel sensor is analyzed. heavy ions are seen to damage the pixel in much the same way as gamma radiation. The probability of a hot pixel is seen to exhibit behavior that is not typical with other microdose effects.

  2. First tests of a novel radiation hard CMOS sensor process for Depleted Monolithic Active Pixel Sensors

    Science.gov (United States)

    Pernegger, H.; Bates, R.; Buttar, C.; Dalla, M.; van Hoorne, J. W.; Kugathasan, T.; Maneuski, D.; Musa, L.; Riedler, P.; Riegel, C.; Sbarra, C.; Schaefer, D.; Schioppa, E. J.; Snoeys, W.

    2017-06-01

    The upgrade of the ATLAS [1] tracking detector for the High-Luminosity Large Hadron Collider (LHC) at CERN requires novel radiation hard silicon sensor technologies. Significant effort has been put into the development of monolithic CMOS sensors but it has been a challenge to combine a low capacitance of the sensing node with full depletion of the sensitive layer. Low capacitance brings low analog power. Depletion of the sensitive layer causes the signal charge to be collected by drift sufficiently fast to separate hits from consecutive bunch crossings (25 ns at the LHC) and to avoid losing the charge by trapping. This paper focuses on the characterization of charge collection properties and detection efficiency of prototype sensors originally designed in the framework of the ALICE Inner Tracking System (ITS) upgrade [2]. The prototypes are fabricated both in the standard TowerJazz 180nm CMOS imager process [3] and in an innovative modification of this process developed in collaboration with the foundry, aimed to fully deplete the sensitive epitaxial layer and enhance the tolerance to non-ionizing energy loss. Sensors fabricated in standard and modified process variants were characterized using radioactive sources, focused X-ray beam and test beams before and after irradiation. Contrary to sensors manufactured in the standard process, sensors from the modified process remain fully functional even after a dose of 1015neq/cm2, which is the the expected NIEL radiation fluence for the outer pixel layers in the future ATLAS Inner Tracker (ITk) [4].

  3. Optimization of thin n-in-p planar pixel modules for the ATLAS upgrade at HL-LHC

    International Nuclear Information System (INIS)

    Macchiolo, A.; Beyer, J.; Rosa, A. La; Nisius, R.; Savic, N.

    2017-01-01

    The ATLAS experiment will undergo around the year 2025 a replacement of the tracker system in view of the high luminosity phase of the LHC (HL-LHC) with a new 5-layer pixel system. Thin planar pixel sensors are promising candidates to instrument the innermost region of the new pixel system, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. The sensors of 50-150 μm thickness, interconnected to FE-I4 read-out chips, have been characterized with radioactive sources and beam tests. In particular active edge sensors have been investigated. The performance of two different versions of edge designs are compared: the first with a bias ring, and the second one where only a floating guard ring has been implemented. The hit efficiency at the edge has also been studied after irradiation at a fluence of 10 15  n eq /cm 2 . Highly segmented sensors will represent a challenge for the tracking in the forward region of the pixel system at HL-LHC. In order to reproduce the performance of 50x50 μm 2 pixels at high pseudo-rapidity values, FE-I4 compatible planar pixel sensors have been studied before and after irradiation in beam tests at high incidence angles with respect to the short pixel direction. Results on the hit efficiency in this configuration are discussed for different sensor thicknesses.

  4. Investigation of thin n-in-p planar pixel modules for the ATLAS upgrade

    CERN Document Server

    Savic, Natascha

    2016-01-01

    In view of the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), planned to start around 2023-2025, the ATLAS experiment will undergo a replacement of the Inner Detector. A higher luminosity will imply higher irradiation levels and hence will demand more ra- diation hardness especially in the inner layers of the pixel system. The n-in-p silicon technology is a promising candidate to instrument this region, also thanks to its cost-effectiveness because it only requires a single sided processing in contrast to the n-in-n pixel technology presently employed in the LHC experiments. In addition, thin sensors were found to ensure radiation hardness at high fluences. An overview is given of recent results obtained with not irradiated and irradiated n-in-p planar pixel modules. The focus will be on n-in-p planar pixel sensors with an active thickness of 100 and 150 {\\mu}m recently produced at ADVACAM. To maximize the active area of the sensors, slim and active edges are implemented. The performance of th...

  5. Investigation of thin n-in-p planar pixel modules for the ATLAS upgrade

    International Nuclear Information System (INIS)

    Savic, N.; Beyer, J.; Rosa, A. La; Macchiolo, A.; Nisius, R.

    2016-01-01

    In view of the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), planned to start around 2023–2025, the ATLAS experiment will undergo a replacement of the Inner Detector. A higher luminosity will imply higher irradiation levels and hence will demand more radiation hardness especially in the inner layers of the pixel system. The n-in-p silicon technology is a promising candidate to instrument this region, also thanks to its cost-effectiveness because it only requires a single sided processing in contrast to the n-in-n pixel technology presently employed in the LHC experiments. In addition, thin sensors were found to ensure radiation hardness at high fluences. An overview is given of recent results obtained with not irradiated and irradiated n-in-p planar pixel modules. The focus will be on n-in-p planar pixel sensors with an active thickness of 100 and 150 μm recently produced at ADVACAM. To maximize the active area of the sensors, slim and active edges are implemented. The performance of these modules is investigated at beam tests and the results on edge efficiency will be shown.

  6. Characterization of active CMOS sensors for capacitively coupled pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, Toko; Gonella, Laura; Janssen, Jens; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Institute of Physics, University of Bonn (Germany); Peric, Ivan [Institut fuer Prozessdatenverarbeitung und Elektronik, Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2015-07-01

    Active CMOS pixel sensor is one of the most attractive candidates for detectors of upcoming particle physics experiments. In contrast to conventional sensors of hybrid detectors, signal processing circuit can be integrated in the active CMOS sensor. The characterization and optimization of the pixel circuit are indispensable to obtain a good performance from the sensors. The prototype chips of the active CMOS sensor were fabricated in the AMS 180nm and L-Foundry 150 nm CMOS processes, respectively a high voltage and high resistivity technology. Both chips have a charge sensitive amplifier and a comparator in each pixel. The chips are designed to be glued to the FEI4 pixel readout chip. The signals from 3 pixels of the prototype chips are capacitively coupled to the FEI4 input pads. We have performed lab tests and test beams to characterize the prototypes. In this presentation, the measurement results of the active CMOS prototype sensors are shown.

  7. Development of a Micro Pixel Chamber for the ATLAS Upgrade

    CERN Document Server

    Ochi, Atsuhiko; Komai, Hidetoshi; Edo, Yuki; Yamaguchi, Takahiro

    2012-01-01

    The Micro Pixel Chamber (μ-PIC) is being developed a sacandidate for the muon system of the ATLAS detector for upgrading in LHC experiments. The μ-PIC is a micro-pattern gaseous detector that doesn’t have floating structure such as wires, mesh, or foil. This detector can be made by printed-circuit-board (PCB) technology, which is commercially available and suited for mass production. Operation tests have been performed under high flux neutrons under similar conditions to the ATLAS cavern. Spark rates are measured using several gas mixtures under 7 MeV neutron irradiation, and good properties were observed using neon, ethane, and CF4 mixture of gases.Using resistive materials as electrodes, we are also developing a new μ-PIC, which is not expected to damage the electrodes in the case of discharge sparks.

  8. Robustness of the ATLAS pixel clustering neural network algorithm

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00407780; The ATLAS collaboration

    2016-01-01

    Proton-proton collisions at the energy frontier puts strong constraints on track reconstruction algorithms. The algorithms depend heavily on accurate estimation of the position of particles as they traverse the inner detector elements. An artificial neural network algorithm is utilised to identify and split clusters of neighbouring read-out elements in the ATLAS pixel detector created by multiple charged particles. The method recovers otherwise lost tracks in dense environments where particles are separated by distances comparable to the size of the detector read-out elements. Such environments are highly relevant for LHC run 2, e.g. in searches for heavy resonances. Within the scope of run 2 track reconstruction performance and upgrades, the robustness of the neural network algorithm will be presented. The robustness has been studied by evaluating the stability of the algorithm’s performance under a range of variations in the pixel detector conditions.

  9. ATLAS Phase-II upgrade pixel data transmission development

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00111400; The ATLAS collaboration

    2017-01-01

    The current tracking system of the ATLAS experiment will be replaced by an all-silicon detector (ITk) in the course of the planned HL-LHC accelerator upgrade around 2025. The readout of the ITk pixel system will be most challenging in terms of data rate and readout speed. Simulation of the on-detector electronics indicates that the planned trigger rate of 1 MHz will require readout speeds up to 5.12 Gb/s per data link. The high-radiation environment precludes optical data transmission, so the first part of the data transmission has to be implemented electrically, over a 6-m distance between the pixel modules and the optical transceivers. Several high-speed electrical data transmission solutions involving small-gauge wire cables or flexible circuits have been prototyped and characterized. A combination of carefully-selected physical layers and aggressive signal conditioning are required to achieve the proposed specifications.

  10. Testbeam results of irradiated ams H18 HV-CMOS pixel sensor prototypes

    Science.gov (United States)

    Benoit, M.; Braccini, S.; Casse, G.; Chen, H.; Chen, K.; Di Bello, F. A.; Ferrere, D.; Golling, T.; Gonzalez-Sevilla, S.; Iacobucci, G.; Kiehn, M.; Lanni, F.; Liu, H.; Meng, L.; Merlassino, C.; Miucci, A.; Muenstermann, D.; Nessi, M.; Okawa, H.; Perić, I.; Rimoldi, M.; Ristić, B.; Barrero Pinto, M. Vicente; Vossebeld, J.; Weber, M.; Weston, T.; Wu, W.; Xu, L.; Zaffaroni, E.

    2018-02-01

    HV-CMOS pixel sensors are a promising option for the tracker upgrade of the ATLAS experiment at the LHC, as well as for other future tracking applications in which large areas are to be instrumented with radiation-tolerant silicon pixel sensors. We present results of testbeam characterisations of the 4th generation of Capacitively Coupled Pixel Detectors (CCPDv4) produced with the ams H18 HV-CMOS process that have been irradiated with different particles (reactor neutrons and 18 MeV protons) to fluences between 1× 1014 and 5× 1015 1-MeV- neq. The sensors were glued to ATLAS FE-I4 pixel readout chips and measured at the CERN SPS H8 beamline using the FE-I4 beam telescope. Results for all fluences are very encouraging with all hit efficiencies being better than 97% for bias voltages of 85 V. The sample irradiated to a fluence of 1× 1015 neq—a relevant value for a large volume of the upgraded tracker—exhibited 99.7% average hit efficiency. The results give strong evidence for the radiation tolerance of HV-CMOS sensors and their suitability as sensors for the experimental HL-LHC upgrades and future large-area silicon-based tracking detectors in high-radiation environments.

  11. CMOS Active-Pixel Image Sensor With Simple Floating Gates

    Science.gov (United States)

    Fossum, Eric R.; Nakamura, Junichi; Kemeny, Sabrina E.

    1996-01-01

    Experimental complementary metal-oxide/semiconductor (CMOS) active-pixel image sensor integrated circuit features simple floating-gate structure, with metal-oxide/semiconductor field-effect transistor (MOSFET) as active circuit element in each pixel. Provides flexibility of readout modes, no kTC noise, and relatively simple structure suitable for high-density arrays. Features desirable for "smart sensor" applications.

  12. CMOS Active Pixel Sensor Star Tracker with Regional Electronic Shutter

    Science.gov (United States)

    Yadid-Pecht, Orly; Pain, Bedabrata; Staller, Craig; Clark, Christopher; Fossum, Eric

    1996-01-01

    The guidance system in a spacecraft determines spacecraft attitude by matching an observed star field to a star catalog....An APS(active pixel sensor)-based system can reduce mass and power consumption and radiation effects compared to a CCD(charge-coupled device)-based system...This paper reports an APS (active pixel sensor) with locally variable times, achieved through individual pixel reset (IPR).

  13. Test su fascio di prototipi del rivelatore a pixel per l'esperimento ATLAS

    CERN Document Server

    Matera, Andrea; Andreazza, A

    2005-01-01

    Silicon pixel detectors, developed to meet LHC requirements, were tested within the ATLAS collaboration in the H8 beam at CERN. Different sensor designs were studied using various versions of front end electronics developed during the R&D process. In this thesis a detailed experimental study of the overall performance of both irradiated and unirradiated detectors is presented, with special enphasis on efficiency, charge collection and spatial resolution. For the first time their dependence on timewalk is carefully investigated. Possible solutions to avoid spatial resolution deterioration due to timewalk are presented and discussed.

  14. Mapping Electrical Crosstalk in Pixelated Sensor Arrays

    Science.gov (United States)

    Seshadri, Suresh (Inventor); Cole, David (Inventor); Smith, Roger M. (Inventor); Hancock, Bruce R. (Inventor)

    2017-01-01

    The effects of inter pixel capacitance in a pixilated array may be measured by first resetting all pixels in the array to a first voltage, where a first image is read out, followed by resetting only a subset of pixels in the array to a second voltage, where a second image is read out, where the difference in the first and second images provide information about the inter pixel capacitance. Other embodiments are described and claimed.

  15. Pixel-Cluster Counting Luminosity Measurement in ATLAS

    CERN Document Server

    McCormack, William Patrick; The ATLAS collaboration

    2016-01-01

    A precision measurement of the delivered luminosity is a key component of the ATLAS physics program at the Large Hadron Collider (LHC). A fundamental ingredient of the strategy to control the systematic uncertainties affecting the absolute luminosity has been to compare the measurements of several luminometers, most of which use more than one counting technique. The level of consistency across the various methods provides valuable cross-checks as well as an estimate of the detector-related systematic uncertainties. This poster describes the development of a luminosity algorithm based on pixel-cluster counting in the recently installed ATLAS inner b-layer (IBL), using data recorded during the 2015 pp run at the LHC. The noise and background contamination of the luminosity-associated cluster count is minimized by a multi-component fit to the measured cluster-size distribution in the forward pixel modules of the IBL. The linearity, long-term stability and statistical precision of the cluster-counting method are ...

  16. Pixel-Cluster Counting Luminosity Measurement In ATLAS

    CERN Document Server

    AUTHOR|(SzGeCERN)782710; The ATLAS collaboration

    2017-01-01

    A precision measurement of the delivered luminosity is a key component of the ATLAS physics program at the Large Hadron Collider (LHC). A fundamental ingredient of the strategy to control the systematic uncertainties affecting the absolute luminosity has been to compare the measure- ments of several luminometers, most of which use more than one counting technique. The level of consistency across the various methods provides valuable cross-checks as well as an estimate of the detector-related systematic uncertainties. This poster describes the development of a luminosity algorithm based on pixel-cluster counting in the recently installed ATLAS inner b-layer (IBL), using data recorded during the 2015 pp run at the LHC. The noise and background contamination of the luminosity-associated cluster count is minimized by a multi-component fit to the measured cluster-size distribution in the forward pixel modules of the IBL. The linearity, long-term stability and statistical precision of the cluster- counting method a...

  17. Development of a serial powering scheme and a versatile characterization system for the ATLAS pixel detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Filimonov, Viacheslav

    2017-08-15

    In order to increase the probability of new discoveries the LHC will be upgraded to the HL-LHC. The upgrade of the ATLAS detector is an essential part of this program. The entire ATLAS tracking system will be replaced by an all-silicon detector called Inner Tracker (ITk) which should be able to withstand the increased luminosity of 5 x 10{sup 34} cm{sup -2}s{sup -1}. The work presented in this thesis is focused on the ATLAS ITk pixel detector upgrade. Advanced silicon pixel detectors will be an essential part of the ITk pixel detector where they will be used for tracking and vertexing. Characterization of the pixel detectors is one of the required tasks for a successful ATLAS tracker upgrade. Therefore, the work presented in this thesis includes the development of a versatile and modular test system for advanced silicon pixel detectors for the HL-LHC. The performance of the system is verified. Single and quad FE-I4 modules functionalities are characterized with the developed system. The reduction of the material budget of the ATLAS ITk pixel detector is essential for a successful operation at high luminosity. Therefore, a low mass, efficient power distribution scheme to power detector modules (serial powering scheme) is investigated as well in the framework of this thesis. A serially powered pixel detector prototype is built with all the components that are needed for current distribution, data transmission, sensor biasing, bypassing and redundancy in order to prove the feasibility of implementing the serial powering scheme in the ITk. Detailed investigations of the electrical performance of the detector prototype equipped with FE-I4 quad modules are made with the help of the developed readout system.

  18. Development of a serial powering scheme and a versatile characterization system for the ATLAS pixel detector upgrade

    International Nuclear Information System (INIS)

    Filimonov, Viacheslav

    2017-08-01

    In order to increase the probability of new discoveries the LHC will be upgraded to the HL-LHC. The upgrade of the ATLAS detector is an essential part of this program. The entire ATLAS tracking system will be replaced by an all-silicon detector called Inner Tracker (ITk) which should be able to withstand the increased luminosity of 5 x 10 34 cm -2 s -1 . The work presented in this thesis is focused on the ATLAS ITk pixel detector upgrade. Advanced silicon pixel detectors will be an essential part of the ITk pixel detector where they will be used for tracking and vertexing. Characterization of the pixel detectors is one of the required tasks for a successful ATLAS tracker upgrade. Therefore, the work presented in this thesis includes the development of a versatile and modular test system for advanced silicon pixel detectors for the HL-LHC. The performance of the system is verified. Single and quad FE-I4 modules functionalities are characterized with the developed system. The reduction of the material budget of the ATLAS ITk pixel detector is essential for a successful operation at high luminosity. Therefore, a low mass, efficient power distribution scheme to power detector modules (serial powering scheme) is investigated as well in the framework of this thesis. A serially powered pixel detector prototype is built with all the components that are needed for current distribution, data transmission, sensor biasing, bypassing and redundancy in order to prove the feasibility of implementing the serial powering scheme in the ITk. Detailed investigations of the electrical performance of the detector prototype equipped with FE-I4 quad modules are made with the help of the developed readout system.

  19. Development of active edge pixel sensors and four-side buttable modules using vertical integration technologies

    CERN Document Server

    INSPIRE-00219560; Moser, H.-G.; Nisius, R.; Richter, R.H.; Terzo, S.; Weigell, P.

    2014-01-01

    We present an R&D activity focused on the development of novel modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The modules consist of n-in-p pixel sensors, 100 or 200 $\\mu$m thick, produced at VTT (Finland) with an active edge technology, which considerably reduces the dead area at the periphery of the device. The sensors are interconnected with solder bump-bonding to the ATLAS FE-I3 and FE-I4 read-out chips, and characterized with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements will be discussed for devices before and after irradiation up to a fluence of $5\\times 10^{15}$ \

  20. Active pixel sensor with intra-pixel charge transfer

    Science.gov (United States)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    2004-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  1. Spectroscopic measurements with the ATLAS FE-I4 pixel readout chip

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, David-Leon; Janssen, Jens; Hemperek, Tomasz; Huegging, Fabian; Wermes, Norbert [Physikalisches Institut der Univeristaet Bonn (Germany)

    2015-07-01

    The ATLAS FE-I4 pixel readout chip is a large (2 x 2 cm{sup 2}) state of the art ASIC used in high energy physics experiments as well as for research and development purposes. While the FE-I4 is optimized for high hit rates it provides very limited charge resolution. Therefore two methods were developed to obtain high resolution single pixel charge spectra with the ATLAS FE-I4. The first method relies on the ability to change the detection threshold in small steps while counting hits from a particle source and has a resolution limited by electronic noise only. The other method uses a FPGA based time-to-digital-converter to digitize the analog charge signal with high precision. The feasibility, performance and challenges of these methods are discussed. First results of sensor characterizations from radioactive sources and test beams with the ATLAS FE-I4 in view of the charge collection efficiency after irradiation are presented.

  2. High bandwidth pixel detector modules for the ATLAS Insertable B-Layer

    International Nuclear Information System (INIS)

    Backhaus, Malte

    2014-01-01

    The investigation of the nature of the recently discovered electro-weak symmetry breaking mechanism of the standard model of particle physics as well as the search for physics beyond the standard model with the LHC require to collect even more data. To achieve this goal, the luminosity of the LHC will be increased in two steps. The increased luminosity results in serious challenges for the inner tracking systems of the experiments at the LHC. The ATLAS pixel detector will also be upgraded in a two stage program. During the shutdown in 2013 and 2014 a fourth hybrid pixel detector layer, the socalled Insertable B-Layer (IBL) is inserted inside the existing pixel detector. This thesis focuses on the characterization, performance measurement, and production quality assurance of the central sensitive elements of the IBL, the modules. This includes a full characterization of the readout chip (FE-I4) and of the assembled modules. A completely new inner tracking system is mandatory in ATLAS after the second luminosity increase in the shutdown of 2022 and 2023. The final chapter of this thesis introduces a new module concept that uses an industrial high voltage CMOS technology as sensor layer, which is capacitively coupled to the FE-I4 readout chip.

  3. SLID-ICV Vertical Integration Technology for the ATLAS Pixel Upgrades

    CERN Document Server

    INSPIRE-00219560; Moser, H.G.; Nisius, R.; Richter, R.H.; Weigell, P.

    We present the results of the characterization of pixel modules composed of 75 μm thick n-in-p sensors and ATLAS FE-I3 chips, interconnected with the SLID (Solid Liquid Inter-Diffusion) technology. This technique, developed at Fraunhofer-EMFT, is explored as an alternative to the bump-bonding process. These modules have been designed to demonstrate the feasibility of a very compact detector to be employed in the future ATLAS pixel upgrades, making use of vertical integration technologies. This module concept also envisages Inter-Chip-Vias (ICV) to extract the signals from the backside of the chips, thereby achieving a higher fraction of active area with respect to the present pixel module design. In the case of the demonstrator module, ICVs are etched over the original wire bonding pads of the FE-I3 chip. In the modules with ICVs the FE-I3 chips will be thinned down to 50 um. The status of the ICV preparation is presented.

  4. Development of active edge pixel sensors and four-side buttable modules using vertical integration technologies

    Energy Technology Data Exchange (ETDEWEB)

    Macchiolo, A., E-mail: Anna.Macchiolo@mpp.mpg.de [Max-Planck-Institut for Physics, Föhringer Ring 6, D-80805 Munich (Germany); Andricek, L. [Semiconductor Laboratory of the Max-Planck-Society, Otto Hahn Ring 6, D-81739 Munich (Germany); Moser, H.-G.; Nisius, R. [Max-Planck-Institut for Physics, Föhringer Ring 6, D-80805 Munich (Germany); Richter, R.H. [Semiconductor Laboratory of the Max-Planck-Society, Otto Hahn Ring 6, D-81739 Munich (Germany); Terzo, S.; Weigell, P. [Max-Planck-Institut for Physics, Föhringer Ring 6, D-80805 Munich (Germany)

    2014-11-21

    We present an R and D activity focused on the development of novel modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The modules consist of n-in-p pixel sensors, 100 or 200 μm thick, produced at VTT (Finland) with an active edge technology, which considerably reduces the dead area at the periphery of the device. The sensors are interconnected with solder bump-bonding to the ATLAS FE-I3 and FE-I4 read-out chips, and characterised with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements will be discussed for devices before and after irradiation up to a fluence of 5×10{sub 15}n{sub eq}/cm{sup 2}. We will also report on the R and D activity to obtain Inter Chip Vias (ICVs) on the ATLAS read-out chip in collaboration with the Fraunhofer Institute EMFT. This step is meant to prove the feasibility of the signal transport to the newly created readout pads on the backside of the chips allowing for four side buttable devices without the presently used cantilever for wire bonding. The read-out chips with ICVs will be interconnected to thin pixel sensors, 75 μm and 150 μm thick, with the Solid Liquid Interdiffusion (SLID) technology, which is an alternative to the standard solder bump-bonding.

  5. 3D silicon pixel detectors for the ATLAS Forward Physics experiment

    International Nuclear Information System (INIS)

    Lange, J.; Cavallaro, E.; Grinstein, S.; Paz, I. López

    2015-01-01

    The ATLAS Forward Physics (AFP) project plans to install 3D silicon pixel detectors about 210 m away from the interaction point and very close to the beamline (2–3 mm). This implies the need of slim edges of about 100–200 μm width for the sensor side facing the beam to minimise the dead area. Another challenge is an expected non-uniform irradiation of the pixel sensors. It is studied if these requirements can be met using slightly-modified FE-I4 3D pixel sensors from the ATLAS Insertable B-Layer production. AFP-compatible slim edges are obtained with a simple diamond-saw cut. Electrical characterisations and beam tests are carried out and no detrimental impact on the leakage current and hit efficiency is observed. For devices without a 3D guard ring a remaining insensitive edge of less than 15 μm width is found. Moreover, 3D detectors are non-uniformly irradiated up to fluences of several 10 15 n eq /cm 2 with either a focussed 23 GeV proton beam or a 23 MeV proton beam through holes in Al masks. The efficiency in the irradiated region is found to be similar to the one in the non-irradiated region and exceeds 97% in case of favourable chip-parameter settings. Only in a narrow transition area at the edge of the hole in the Al mask, a significantly lower efficiency is seen. A follow-up study of this effect using arrays of small pad diodes for position-resolved dosimetry via the leakage current is carried out

  6. Development of radiation hardened pixel sensors for charged particle detection

    CERN Document Server

    Koziel, Michal

    2014-01-01

    CMOS Pixel Sensors are being developed since a few years to equip vertex detectors for future high-energy physics experiments with the crucial advantages of a low material budget and low production costs. The features simultaneously required are a short readout time, high granularity and high tolerance to radiation. This thesis mainly focuses on the radiation tolerance studies. To achieve the targeted readout time (tens of microseconds), the sensor pixel readout was organized in parallel columns restricting in addition the readout to pixels that had collected the signal charge. The pixels became then more complex, and consequently more sensitive to radiation. Different in-pixel architectures were studied and it was concluded that the tolerance to ionizing radiation was limited to 300 krad with the 0.35- m fabrication process currently used, while the targeted value was several Mrad. Improving this situation calls for implementation of the sensors in processes with a smaller feature size which naturally imp...

  7. Étude des détecteurs planaires pixels durcis aux radiations pour la mise à jour du détecteur de vertex d'ATLAS

    CERN Document Server

    Benoit, Mathieu

    In this work, is presented a study, using TCAD simulation, of the possible methods of designing of a planar pixel sensors by reducing their inactive area and improving their radiation hardness for use in the Insertable B-Layer (IBL) project and for SLHC upgrade phase for the ATLAS experiment. Different physical models available have been studied to develop a coherent model of radiation damage in silicon that can be used to predict silicon pixel sensor behavior after exposure to radiation. The Multi-Guard Ring Structure,a protection structure used in pixel sensor design was studied to obtain guidelines for the reduction of inactive edges detrimental to detector operation while keeping a good sensor behavior through its lifetime in the ATLAS detector. A campaign of measurement of the sensor's process parameters and electrical behavior to validate and calibrate the TCAD simulation models and results are also presented. A model for diode charge collection in highly irradiated environment was developed to explain ...

  8. First tests of a novel radiation hard CMOS sensor process for Depleted Monolithic Active Pixel Sensors

    International Nuclear Information System (INIS)

    Pernegger, H.; Hoorne, J.W. van; Kugathasan, T.; Musa, L.; Riedler, P.; Riegel, C.; Schaefer, D.; Schioppa, E.J.; Snoeys, W.; Bates, R.; Buttar, C.; Maneuski, D.; Dalla, M.; Sbarra, C.

    2017-01-01

    The upgrade of the ATLAS [1] tracking detector for the High-Luminosity Large Hadron Collider (LHC) at CERN requires novel radiation hard silicon sensor technologies. Significant effort has been put into the development of monolithic CMOS sensors but it has been a challenge to combine a low capacitance of the sensing node with full depletion of the sensitive layer. Low capacitance brings low analog power. Depletion of the sensitive layer causes the signal charge to be collected by drift sufficiently fast to separate hits from consecutive bunch crossings (25 ns at the LHC) and to avoid losing the charge by trapping. This paper focuses on the characterization of charge collection properties and detection efficiency of prototype sensors originally designed in the framework of the ALICE Inner Tracking System (ITS) upgrade [2]. The prototypes are fabricated both in the standard TowerJazz 180nm CMOS imager process [3] and in an innovative modification of this process developed in collaboration with the foundry, aimed to fully deplete the sensitive epitaxial layer and enhance the tolerance to non-ionizing energy loss. Sensors fabricated in standard and modified process variants were characterized using radioactive sources, focused X-ray beam and test beams before and after irradiation. Contrary to sensors manufactured in the standard process, sensors from the modified process remain fully functional even after a dose of 10"1"5 n _e_q/cm"2, which is the the expected NIEL radiation fluence for the outer pixel layers in the future ATLAS Inner Tracker (ITk) [4].

  9. Planar sensors for the upgrade of the CMS pixel detector

    International Nuclear Information System (INIS)

    Rohe, T.; Bean, A.; Radicci, V.; Sibille, J.

    2011-01-01

    A replacement of the present CMS pixel detector with a better performing light weight four-layer system is foreseen in 2016. In the lifetime of this new system the LHC will reach and exceed its nominal luminosity of 10 34 cm -2 s -1 . Therefore the radiation hardness of all parts of the pixel system has to be reviewed. For the construction of the much larger four-layer pixel system, the replacement of the present double sided sensors by much cheaper single sided ones is considered. However, the construction of pixel modules with such sensors is challenging due to the small geometrical distance of the sensor high voltage and the ground of the readout electronics. This small distance limits the sensor bias to about 500 V in the tested samples.

  10. Radiation hardness and timing studies of a monolithic TowerJazz pixel design for the new ATLAS Inner Tracker

    OpenAIRE

    Riegel, C; Backhaus, M; Hoorne, J W Van; Kugathasan, T; Musa, L; Pernegger, H; Riedler, P; Schaefer, D; Snoeys, W; Wagner, W

    2017-01-01

    A part of the upcoming HL-LHC upgrade of the ATLAS Detector is the construction of a new Inner Tracker. This upgrade opens new possibilities, but also presents challenges in terms of occupancy and radiation tolerance. For the pixel detector inside the inner tracker, hybrid modules containing passive silicon sensors and connected readout chips are presently used, but require expensive assembly techniques like fine-pitch bump bonding. Silicon devices fabricated in standard commercial CMOS techn...

  11. Implementation and performance of the ATLAS pixel clustering neural networks

    CERN Document Server

    Gagnon, Louis-Guillaume; The ATLAS collaboration

    2018-01-01

    The high particle densities produced by the Large Hadron Collider (LHC) mean that in the ATLAS pixel detector the clusters of deposited charge start to merge. A neural network-based approach is used to estimate the number of particles contributing to each cluster, and to accurately estimate the hit positions even in the presence of multiple particles. This talk thoroughly describes the algorithm and its implementation as well as present a set of benchmark performance measurements. The problem is most acute in the core of high-momentum jets where the average separation between particles becomes comparable to the detector granularity. This is further complicated by the high number of interactions per bunch crossing. Both these issues will become worse as the Run 3 and HL-LHC programme require analysis of higher and higher pT jets, while the interaction multiplicity rises. Future prospects in the context of LHC Run 3 and the upcoming ATLAS inner detector upgrade are also discussed.

  12. ATLAS SemiConductor Tracker and Pixel Detector: Status and Performance

    CERN Document Server

    Reeves, K; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) and the Pixel Detector are the key precision tracking devices in the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is a silicon strip detector and is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals from the strips are processed in the front-end ASICS ABCD3TA, working in the binary readout mode. The Pixel Detector consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In the talk the current status of the SCT and Pixel Detector will be reviewed. We will report on the operation of the detectors including an overview of the issues we encountered and the observation of significant increases in leakage currents (as expected) from bulk ...

  13. Edge pixel response studies of edgeless silicon sensor technology for pixellated imaging detectors

    Science.gov (United States)

    Maneuski, D.; Bates, R.; Blue, A.; Buttar, C.; Doonan, K.; Eklund, L.; Gimenez, E. N.; Hynds, D.; Kachkanov, S.; Kalliopuska, J.; McMullen, T.; O'Shea, V.; Tartoni, N.; Plackett, R.; Vahanen, S.; Wraight, K.

    2015-03-01

    Silicon sensor technologies with reduced dead area at the sensor's perimeter are under development at a number of institutes. Several fabrication methods for sensors which are sensitive close to the physical edge of the device are under investigation utilising techniques such as active-edges, passivated edges and current-terminating rings. Such technologies offer the goal of a seamlessly tiled detection surface with minimum dead space between the individual modules. In order to quantify the performance of different geometries and different bulk and implant types, characterisation of several sensors fabricated using active-edge technology were performed at the B16 beam line of the Diamond Light Source. The sensors were fabricated by VTT and bump-bonded to Timepix ROICs. They were 100 and 200 μ m thick sensors, with the last pixel-to-edge distance of either 50 or 100 μ m. The sensors were fabricated as either n-on-n or n-on-p type devices. Using 15 keV monochromatic X-rays with a beam spot of 2.5 μ m, the performance at the outer edge and corners pixels of the sensors was evaluated at three bias voltages. The results indicate a significant change in the charge collection properties between the edge and 5th (up to 275 μ m) from edge pixel for the 200 μ m thick n-on-n sensor. The edge pixel performance of the 100 μ m thick n-on-p sensors is affected only for the last two pixels (up to 110 μ m) subject to biasing conditions. Imaging characteristics of all sensor types investigated are stable over time and the non-uniformities can be minimised by flat-field corrections. The results from the synchrotron tests combined with lab measurements are presented along with an explanation of the observed effects.

  14. Small pitch pixel sensors for the CMS Phase II upgrade

    CERN Document Server

    AUTHOR|(CDS)2069790

    2016-01-01

    The CMS collaboration has undertaken two sensor R\\&D programs on thin n-in-p planar and 3D silicon sensor technologies. To cope with the increase in instantaneous luminosity, the pixel area has to be reduced to approximately 2500 $\\mu$m$^{2}$ to keep the occupancy at the percent level. Suggested pixel cell geometries to match this requirement are {50$\\times$50 }$\\mu$...

  15. Realisation of serial powering of ATLAS pixel modules

    CERN Document Server

    Stockmanns, Tobias; Fischer, P; Hügging, Fabian Georg; Peric, Ivan; Runólfsson, Ogmundur; Wermes, Norbert

    2004-01-01

    Modern hybrid pixel detectors as they will be used for the next generation of high energy collider experiments like LHC avail deep sub micron technology for the readout electronics. To operate chips in this technology low supply voltages of 2.0 V to 2.5 V and high currents to achieve the desired performance are needed. Due to the long and low mass supply cables this high current leads to a significant voltage drop so that voltage fluctuations at the chip result, when the supply current changes. Therefore the parallel connection of the readout electronics with the power supplies imposes severe constraints on a detector with respect to voltage fluctuations and cable mass. To bypass this problem a new concept of serially connecting modules in a supply chain was developed. The basic idea of the concept, the potential risk and ways to minimize these risks are presented. In addition, studies of the implementation of this technology as an alternative for a possible upgrade of the ATLAS pixel detector are shown. In p...

  16. First MCM-D modules for the b-physics layer of the ATLAS Pixel Detector

    CERN Document Server

    Basken, O; Ehrmann, O; Gerlach, P; Grah, C; Gregor, I M; Linder, C; Meuser, S; Richardson, J; Topper, M; Wolf, J

    2000-01-01

    The innermost layer (b-physics layer) of the ATLAS Pixel Detector will consist of modules based on MCM-D technology. Such a module consists of a sensor tile with an active area of 16.4 mm*60.4 mm, 16 read out ICs, each serving 24* 160 pixel unit cells, a module controller chip (MCC), an optical transceiver and the local signal interconnection and power distribution busses. We show a prototype of such a module with additional test pads on both sides. The outer dimensions of the final module will be 21.4 mm*67.8 mm. The extremely high wiring density, which is necessary to interconnect the read-out chips, was achieved using a thin film copper/photo-BCB process on the pixel array. The bumping of the read out chips was done using electroplating PbSn. All dice are then attached by flip-chip assembly to the sensor diodes and the local busses. The focus of this paper is the description of the first results of such MCM-D-type modules. (11 refs).

  17. Preliminary Results of 3D-DDTC Pixel Detectors for the ATLAS Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    La Rosa, Alessandro; /CERN; Boscardin, M.; /Fond. Bruno Kessler, Povo; Dalla Betta, G.-F.; /Trento U. /INFN, Trento; Darbo, G.; Gemme, C.; /INFN, Genoa; Pernegger, H.; /CERN; Piemonte, C.; /Fond. Bruno Kessler, Povo; Povoli, M.; /Trento U. /INFN, Trento; Ronchin, S.; /Fond. Bruno Kessler, Povo; Zoboli, A.; /Trento U. /INFN, Trento; Zorzi, N.; /Fond. Bruno Kessler, Povo; Bolle, E.; /Oslo U.; Borri, M.; /INFN, Turin /Turin U.; Da Via, C.; /Manchester U.; Dong, S.; /SLAC; Fazio, S.; /Calabria U.; Grenier, P.; /SLAC; Grinstein, S.; /Barcelona, IFAE; Gjersdal, H.; /Oslo U.; Hansson, P.; /SLAC; Huegging, F.; /Bonn U. /SLAC /INFN, Turin /Turin U. /Oslo U. /Bergen U. /Oslo U. /Prague, Tech. U. /Bonn U. /SUNY, Stony Brook /Bonn U. /SLAC

    2012-04-04

    3D Silicon sensors fabricated at FBK-irst with the Double-side Double Type Column (DDTC) approach and columnar electrodes only partially etched through p-type substrates were tested in laboratory and in a 1.35 Tesla magnetic field with a 180 GeV pion beam at CERN SPS. The substrate thickness of the sensors is about 200 {mu}m, and different column depths are available, with overlaps between junction columns (etched from the front side) and ohmic columns (etched from the back side) in the range from 110 {mu}m to 150 {mu}m. The devices under test were bump bonded to the ATLAS Pixel readout chip (FEI3) at SELEX SI (Rome, Italy). We report leakage current and noise measurements, results of functional tests with Am{sup 241} {gamma}-ray sources, charge collection tests with Sr90 {beta}-source and an overview of preliminary results from the CERN beam test.

  18. Training and validation of the ATLAS pixel clustering neural networks

    CERN Document Server

    The ATLAS collaboration

    2018-01-01

    The high centre-of-mass energy of the LHC gives rise to dense environments, such as the core of high-pT jets, in which the charge clusters left by ionising particles in the silicon sensors of the pixel detector can merge, compromising the tracking and vertexing efficiency. To recover optimal performance, a neural network-based approach is used to separate clusters originating from single and multiple particles and to estimate all hit positions within clusters. This note presents the training strategy employed and a set of benchmark performance measurements on a Monte Carlo sample of high-pT dijet events.

  19. Iterative local Chi2 alignment algorithm for the ATLAS Pixel detector

    CERN Document Server

    Göttfert, Tobias

    The existing local chi2 alignment approach for the ATLAS SCT detector was extended to the alignment of the ATLAS Pixel detector. This approach is linear, aligns modules separately, and uses distance of closest approach residuals and iterations. The derivation and underlying concepts of the approach are presented. To show the feasibility of the approach for Pixel modules, a simplified, stand-alone track simulation, together with the alignment algorithm, was developed with the ROOT analysis software package. The Pixel alignment software was integrated into Athena, the ATLAS software framework. First results and the achievable accuracy for this approach with a simulated dataset are presented.

  20. Digital Architecture of the New ATLAS Pixel Chip FE-I4

    CERN Document Server

    "Barbero, M; The ATLAS collaboration

    2009-01-01

    With the high hit rate foreseen for the innermost layers at an upgraded LHC, the current ATLAS Front-End pixel chip FE-I3 would start being inefficient. The main source of inefficiency comes from the copying mechanism of the pixel hits from the pixel array to the end of column buffers. A new ATLAS pixel chip FE-I4 is being developed in a 130 nm technology for use both in the framework of the Insertable B-Layer (IBL) project and for the outer layers of Super-LHC. FE-I4 is 80×336 pixels wide and features a reduced pixel size of 50×250 μm2. In the current design, a new digital architecture is introduced in which hit memories are distributed across the entire chip and the pixels organized in regions. Additional features include neighbor hit checking which allows a timewalk-less hit recording.

  1. Design and realisation of integrated circuits for the readout of pixel sensors in high-energy physics and biomedical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Peric, I.

    2004-08-01

    Radiation tolerant pixel-readout chip for the ATLAS pixel detector has been designed, implemented in a deep-submicron CMOS technology and successfully tested. The chip contains readout-channels with complex analog and digital circuits. Chip for steering of the DEPFET active-pixel matrix has been implemented in a high-voltage CMOS technology. The chip contains channels which generate fast sequences of high-voltage signals. Detector containing this chip has been successfully tested. Pixel-readout test chip for an X-ray imaging pixel sensor has been designed, implemented in a CMOS technology and tested. Pixel-readout channels are able to simultaneously count the signals generated by passage of individual photons and to sum the total charge generated during exposure time. (orig.)

  2. Performance and operation experience of the Atlas Semiconductor Tracker and Pixel Detector at the LHC.

    CERN Document Server

    Stanecka, E; The ATLAS collaboration

    2013-01-01

    After more than 3 years of successful operation at the LHC, we report on the operation and performance of the ATLAS Pixel Detector and Semi-Conductor Tracker (SCT) functioning in a high luminosity, high radiation environment.

  3. Radiation hardness and timing studies of a monolithic TowerJazz pixel design for the new ATLAS Inner Tracker

    Science.gov (United States)

    Riegel, C.; Backhaus, M.; Van Hoorne, J. W.; Kugathasan, T.; Musa, L.; Pernegger, H.; Riedler, P.; Schaefer, D.; Snoeys, W.; Wagner, W.

    2017-01-01

    A part of the upcoming HL-LHC upgrade of the ATLAS Detector is the construction of a new Inner Tracker. This upgrade opens new possibilities, but also presents challenges in terms of occupancy and radiation tolerance. For the pixel detector inside the inner tracker, hybrid modules containing passive silicon sensors and connected readout chips are presently used, but require expensive assembly techniques like fine-pitch bump bonding. Silicon devices fabricated in standard commercial CMOS technologies, which include part or all of the readout chain, are also investigated offering a reduced cost as they are cheaper per unit area than traditional silicon detectors. If they contain the full readout chain, as for a fully monolithic approach, there is no need for the expensive flip-chip assembly, resulting in a further cost reduction and material savings. In the outer pixel layers of the ATLAS Inner Tracker, the pixel sensors must withstand non-ionising energy losses of up to 1015 n/cm2 and offer a timing resolution of 25 ns or less. This paper presents test results obtained on a monolithic test chip, the TowerJazz 180nm Investigator, towards these specifications. The presented program of radiation hardness and timing studies has been launched to investigate this technology's potential for the new ATLAS Inner Tracker.

  4. Radiation hardness and timing studies of a monolithic TowerJazz pixel design for the new ATLAS Inner Tracker

    International Nuclear Information System (INIS)

    Riegel, C.; Backhaus, M.; Hoorne, J.W. Van; Kugathasan, T.; Musa, L.; Pernegger, H.; Riedler, P.; Schaefer, D.; Snoeys, W.; Wagner, W.

    2017-01-01

    A part of the upcoming HL-LHC upgrade of the ATLAS Detector is the construction of a new Inner Tracker. This upgrade opens new possibilities, but also presents challenges in terms of occupancy and radiation tolerance. For the pixel detector inside the inner tracker, hybrid modules containing passive silicon sensors and connected readout chips are presently used, but require expensive assembly techniques like fine-pitch bump bonding. Silicon devices fabricated in standard commercial CMOS technologies, which include part or all of the readout chain, are also investigated offering a reduced cost as they are cheaper per unit area than traditional silicon detectors. If they contain the full readout chain, as for a fully monolithic approach, there is no need for the expensive flip-chip assembly, resulting in a further cost reduction and material savings. In the outer pixel layers of the ATLAS Inner Tracker, the pixel sensors must withstand non-ionising energy losses of up to 10 15 n/cm 2 and offer a timing resolution of 25 ns or less. This paper presents test results obtained on a monolithic test chip, the TowerJazz 180nm Investigator, towards these specifications. The presented program of radiation hardness and timing studies has been launched to investigate this technology's potential for the new ATLAS Inner Tracker.

  5. Bio-Inspired Asynchronous Pixel Event Tricolor Vision Sensor.

    Science.gov (United States)

    Lenero-Bardallo, Juan Antonio; Bryn, D H; Hafliger, Philipp

    2014-06-01

    This article investigates the potential of the first ever prototype of a vision sensor that combines tricolor stacked photo diodes with the bio-inspired asynchronous pixel event communication protocol known as Address Event Representation (AER). The stacked photo diodes are implemented in a 22 × 22 pixel array in a standard STM 90 nm CMOS process. Dynamic range is larger than 60 dB and pixels fill factor is 28%. The pixels employ either simple pulse frequency modulation (PFM) or a Time-to-First-Spike (TFS) mode. A heuristic linear combination of the chip's inherent pseudo colors serves to approximate RGB color representation. Furthermore, the sensor outputs can be processed to represent the radiation in the near infrared (NIR) band without employing external filters, and to color-encode direction of motion due to an asymmetry in the update rates of the different diode layers.

  6. Characterization and Performance of Silicon n-in-p Pixel Detectors for the ATLAS Upgrades

    CERN Document Server

    Weigell, Philipp; Gallrapp, Christian; La Rosa, Alessandro; Macchiolo, Anna; Nisius, Richard; Pernegger, Heinz; Richter, Rainer

    2011-01-01

    The existing ATLAS Tracker will be at its functional limit for particle fluences of 10^15 neq/cm^2 (LHC). Thus for the upgrades at smaller radii like in the case of the planned Insertable B-Layer (IBL) and for increased LHC luminosities (super LHC) the development of new structures and materials which can cope with the resulting particle fluences is needed. N-in-p silicon devices are a promising candidate for tracking detectors to achieve these goals, since they are radiation hard, cost efficient and are not type inverted after irradiation. A n-in-p pixel production based on a MPP/HLL design and performed by CiS (Erfurt, Germany) on 300 \\mu m thick Float-Zone material is characterised and the electrical properties of sensors and single chip modules (SCM) are presented, including noise, charge collection efficiencies, and measurements with MIPs as well as an 241Am source. The SCMs are built with sensors connected to the current the ATLAS read-out chip FE-I3. The characterisation has been performed with the ATL...

  7. Active pixel sensor array with electronic shuttering

    Science.gov (United States)

    Fossum, Eric R. (Inventor)

    2002-01-01

    An active pixel cell includes electronic shuttering capability. The cell can be shuttered to prevent additional charge accumulation. One mode transfers the current charge to a storage node that is blocked against accumulation of optical radiation. The charge is sampled from a floating node. Since the charge is stored, the node can be sampled at the beginning and the end of every cycle. Another aspect allows charge to spill out of the well whenever the charge amount gets higher than some amount, thereby providing anti blooming.

  8. E-Beam Effects on CMOS Active Pixel Sensors

    International Nuclear Information System (INIS)

    Kang, Dong Ook; Jo, Gyu Seong; Kim, Hyeon Daek; Kim, Hyunk Taek; Kim, Jong Yeol; Kim, Chan Kyu

    2011-01-01

    Three different CMOS active pixel structures manufactured in a deep submicron process have been evaluated with electron beam. The devices were exposed to 1 MeV electron beam up to 5kGy. Dark current increased after E-beam irradiation differently at each pixel structure. Dark current change is dependent on CMOS pixel structures. CMOS image sensors are now good candidates in demanding applications such as medical image sensor, particle detection and space remote sensing. In these situations, CISs are exposed to high doses of radiation. In fact radiation is known to generate trapped charge in CMOS oxides. It can lead to threshold voltage shifts and current leakages in MOSFETs and dark current increase in photodiodes. We studied ionizing effects in three types of CMOS APSs fabricated by 0.25 CMOS process. The devices were irradiated by a Co 60 source up to 50kGy. All irradiation took place at room temperature. The dark current in the three different pixels exhibits increase with electron beam exposure. From the above figure, the change of dark current is dependent on the pixel structure. Double junction structure has shown relatively small increase of dark current after electron beam irradiation. The dark current in the three different pixels exhibits increase with electron beam exposure. The contribution of the total ionizing dose to the dark current increase is small here, since the devices were left unbiased during the electron beam irradiation. Radiation hardness in dependent on the pixel structures. Pixel2 is relatively vulnerable to radiation exposure. Pixel3 has radiation hardened structure

  9. Characterization of active CMOS pixel sensors on high resistive substrate

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, Toko; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Rymaszewski, Piotr; Wermes, Norbert [Physikalisches Institut, Universitaet Bonn, Bonn (Germany)

    2016-07-01

    Active CMOS pixel sensors are very attractive as radiation imaging pixel detector because they do not need cost-intensive fine pitch bump bonding. High radiation tolerance and time resolution are required to apply those sensors to upcoming particle physics experiments. To achieve these requirements, the active CMOS pixel sensors were developed on high resistive substrates. Signal charges are collected faster by drift in high resistive substrates than in standard low resistive substrates yielding also a higher radiation tolerance. A prototype of the active CMOS pixel sensor has been fabricated in the LFoundry 150 nm CMOS process on 2 kΩcm substrate. This prototype chip was thinned down to 300 μm and the backside has been processed and can contacted by an aluminum contact. The breakdown voltage is around -115 V, and the depletion width has been measured to be as large as 180 μm at a bias voltage of -110 V. Gain and noise of the readout circuitry agree with the designed values. Performance tests in the lab and test beam have been done before and after irradiation with X-rays and neutrons. In this presentation, the measurement results of the active CMOS prototype sensors are shown.

  10. Fully depleted CMOS pixel sensor development and potential applications

    Energy Technology Data Exchange (ETDEWEB)

    Baudot, J.; Kachel, M. [Universite de Strasbourg, IPHC, 23 rue du Loess 67037 Strasbourg (France); CNRS, UMR7178, 67037 Strasbourg (France)

    2015-07-01

    CMOS pixel sensors are often opposed to hybrid pixel sensors due to their very different sensitive layer. In standard CMOS imaging processes, a thin (about 20 μm) low resistivity epitaxial layer acts as the sensitive volume and charge collection is mostly driven by thermal agitation. In contrast, the so-called hybrid pixel technology exploits a thick (typically 300 μm) silicon sensor with high resistivity allowing for the depletion of this volume, hence charges drift toward collecting electrodes. But this difference is fading away with the recent availability of some CMOS imaging processes based on a relatively thick (about 50 μm) high resistivity epitaxial layer which allows for full depletion. This evolution extents the range of applications for CMOS pixel sensors where their known assets, high sensitivity and granularity combined with embedded signal treatment, could potentially foster breakthrough in detection performances for specific scientific instruments. One such domain is the Xray detection for soft energies, typically below 10 keV, where the thin sensitive layer was previously severely impeding CMOS sensor usage. Another application becoming realistic for CMOS sensors, is the detection in environment with a high fluence of non-ionizing radiation, such as hadron colliders. However, when considering highly demanding applications, it is still to be proven that micro-circuits required to uniformly deplete the sensor at the pixel level, do not mitigate the sensitivity and efficiency required. Prototype sensors in two different technologies with resistivity higher than 1 kΩ, sensitive layer between 40 and 50 μm and featuring pixel pitch in the range 25 to 50 μm, have been designed and fabricated. Various biasing architectures were adopted to reach full depletion with only a few volts. Laboratory investigations with three types of sources (X-rays, β-rays and infrared light) demonstrated the validity of the approach with respect to depletion, keeping a

  11. 3D-FBK Pixel sensors: recent beam tests results with irradiated devices

    CERN Document Server

    Micelli, A; Sandaker, H; Stugu, B; Barbero, M; Hugging, F; Karagounis, M; Kostyukhin, V; Kruger, H; Tsung, J W; Wermes, N; Capua, M; Fazio, S; Mastroberardino, A; Susinno, G; Gallrapp, C; Di Girolamo, B; Dobos, D; La Rosa, A; Pernegger, H; Roe, S; Slavicek, T; Pospisil, S; Jakobs, K; Kohler, M; Parzefall, U; Darbo, G; Gariano, G; Gemme, C; Rovani, A; Ruscino, E; Butter, C; Bates, R; Oshea, V; Parker, S; Cavalli-Sforza, M; Grinstein, S; Korokolov, I; Pradilla, C; Einsweiler, K; Garcia-Sciveres, M; Borri, M; Da Via, C; Freestone, J; Kolya, S; Lai, C H; Nellist, C; Pater, J; Thompson, R; Watts, S J; Hoeferkamp, M; Seidel, S; Bolle, E; Gjersdal, H; Sjobaek, K N; Stapnes, S; Rohne, O; Su, D; Young, C; Hansson, P; Grenier, P; Hasi, J; Kenney, C; Kocian, M; Jackson, P; Silverstein, D; Davetak, H; DeWilde, B; Tsybychev, D; Dalla Betta, G F; Gabos, P; Povoli, M; Cobal, M; Giordani, M P; Selmi, L; Cristofoli, A; Esseni, D; Palestri, P; Fleta, C; Lozano, M; Pellegrini, G; Boscardin, M; Bagolini, A; Piemonte, C; Ronchin, S; Zorzi, N; Hansen, T E; Hansen, T; Kok, A; Lietaer, N; Kalliopuska, J; Oja, A

    2011-01-01

    The Pixel detector is the innermost part of the ATLAS experiment tracking device at the Large Hadron Collider (LHC), and plays a key role in the reconstruction of the primary and secondary vertices of short-lived particles. To cope with the high level of radiation produced during the collider operation, it is planned to add to the present three layers of silicon pixel sensors which constitute the Pixel Detector, an additional layer (Insertable B-Layer, or IBL) of sensors. 3D silicon sensors are one of the technologies which are under study for the IBL. 3D silicon technology is an innovative combination of very-large-scale integration (VLSI) and Micro-Electro-Mechanical-Systems (MEMS) where electrodes are fabricated inside the silicon bulk instead of being implanted on the wafer surfaces. 3D sensors, with electrodes fully or partially penetrating the silicon substrate, are currently fabricated at different processing facilities in Europe and USA. This paper reports on the 2010 June beam test results for irradi...

  12. Status of the ATLAS Pixel Detector and its performance after three years of operation

    CERN Document Server

    Favareto, A; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is very important for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. The detector performance is excellent: ~96 % of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, and a good alignment allows high quality track resolution

  13. Status of the ATLAS Pixel Detector and its performance after three years of operation

    CERN Document Server

    Favareto, A; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is very important for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. The detector performance is excellent: ~96% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, and a good alignment allows high quality track resolution.

  14. Monolithic active pixel sensors (MAPS) in a VLSI CMOS technology

    CERN Document Server

    Turchetta, R; Manolopoulos, S; Tyndel, M; Allport, P P; Bates, R; O'Shea, V; Hall, G; Raymond, M

    2003-01-01

    Monolithic Active Pixel Sensors (MAPS) designed in a standard VLSI CMOS technology have recently been proposed as a compact pixel detector for the detection of high-energy charged particle in vertex/tracking applications. MAPS, also named CMOS sensors, are already extensively used in visible light applications. With respect to other competing imaging technologies, CMOS sensors have several potential advantages in terms of low cost, low power, lower noise at higher speed, random access of pixels which allows windowing of region of interest, ability to integrate several functions on the same chip. This brings altogether to the concept of 'camera-on-a-chip'. In this paper, we review the use of CMOS sensors for particle physics and we analyse their performances in term of the efficiency (fill factor), signal generation, noise, readout speed and sensor area. In most of high-energy physics applications, data reduction is needed in the sensor at an early stage of the data processing before transfer of the data to ta...

  15. Depleted fully monolithic CMOS pixel detectors using a column based readout architecture for the ATLAS Inner Tracker upgrade

    Science.gov (United States)

    Wang, T.; Barbero, M.; Berdalovic, I.; Bespin, C.; Bhat, S.; Breugnon, P.; Caicedo, I.; Cardella, R.; Chen, Z.; Degerli, Y.; Egidos, N.; Godiot, S.; Guilloux, F.; Hemperek, T.; Hirono, T.; Krüger, H.; Kugathasan, T.; Hügging, F.; Marin Tobon, C. A.; Moustakas, K.; Pangaud, P.; Schwemling, P.; Pernegger, H.; Pohl, D.-L.; Rozanov, A.; Rymaszewski, P.; Snoeys, W.; Wermes, N.

    2018-03-01

    Depleted monolithic active pixel sensors (DMAPS), which exploit high voltage and/or high resistivity add-ons of modern CMOS technologies to achieve substantial depletion in the sensing volume, have proven to have high radiation tolerance towards the requirements of ATLAS in the high-luminosity LHC era. DMAPS integrating fast readout architectures are currently being developed as promising candidates for the outer pixel layers of the future ATLAS Inner Tracker, which will be installed during the phase II upgrade of ATLAS around year 2025. In this work, two DMAPS prototype designs, named LF-Monopix and TJ-Monopix, are presented. LF-Monopix was fabricated in the LFoundry 150 nm CMOS technology, and TJ-Monopix has been designed in the TowerJazz 180 nm CMOS technology. Both chips employ the same readout architecture, i.e. the column drain architecture, whereas different sensor implementation concepts are pursued. The paper makes a joint description of the two prototypes, so that their technical differences and challenges can be addressed in direct comparison. First measurement results for LF-Monopix will also be shown, demonstrating for the first time a fully functional fast readout DMAPS prototype implemented in the LFoundry technology.

  16. Production and characterization of SLID interconnected n-in-p pixel modules with 75 micron thin silicon sensors

    CERN Document Server

    Andricek, L; Macchiolo, A; Moser, H.G; Nisius, R; Richter, R.H; Terzo, S; Weigell, P

    2014-01-01

    The performance of pixel modules built from 75 micrometer thin silicon sensors and ATLAS read-out chips employing the Solid Liquid InterDiffusion (SLID) interconnection technology is presented. This technology, developed by the Fraunhofer EMFT, is a possible alternative to the standard bump-bonding. It allows for stacking of different interconnected chip and sensor layers without destroying the already formed bonds. In combination with Inter-Chip-Vias (ICVs) this paves the way for vertical integration. Both technologies are combined in a pixel module concept which is the basis for the modules discussed in this paper. Mechanical and electrical parameters of pixel modules employing both SLID interconnections and sensors of 75 micrometer thickness are covered. The mechanical features discussed include the interconnection efficiency, alignment precision and mechanical strength. The electrical properties comprise the leakage currents, tuning characteristics, charge collection, cluster sizes and hit efficiencies. T...

  17. Production and Characterisation of SLID Interconnected n-in-p Pixel Modules with 75 Micrometer Thin Silicon Sensors

    CERN Document Server

    Andricek, L; Macchiolo, A.; Moser, H.-G.; Nisius, R.; Richter, R.H.; Terzo, S.; Weigell, P.

    2014-01-01

    The performance of pixel modules built from 75 micrometer thin silicon sensors and ATLAS read-out chips employing the Solid Liquid InterDiffusion (SLID) interconnection technology is presented. This technology, developed by the Fraunhofer EMFT, is a possible alternative to the standard bump-bonding. It allows for stacking of different interconnected chip and sensor layers without destroying the already formed bonds. In combination with Inter-Chip-Vias (ICVs) this paves the way for vertical integration. Both technologies are combined in a pixel module concept which is the basis for the modules discussed in this paper. Mechanical and electrical parameters of pixel modules employing both SLID interconnections and sensors of 75 micrometer thickness are covered. The mechanical features discussed include the interconnection efficiency, alignment precision and mechanical strength. The electrical properties comprise the leakage currents, tunability, charge collection, cluster sizes and hit efficiencies. Targeting at ...

  18. Simulation of the depletion voltage evolution of the ATLAS Pixel Detector

    CERN Document Server

    Beyer, Julien-christopher; The ATLAS collaboration

    2017-01-01

    The ATLAS Pixel detector has been operating since 2010 and consists of hybrid pixel modules where the sensitive elements are planar n-in-n sensors. In order to investigate and predict the evolution of the depletion voltage and of the leakage current in the different layers, a fully analytical implementation of the Hamburg model was derived. The parameters of the model, describing the dependence of the depletion voltage (U_depl) on fluence, temperature and time were tuned with a fit to the available measurements of Udepl in the last years of operation. A particular emphasis is put on the B-Layer, where the highest fluence has been accumulated up to now. A precise input of temperature and radiation dose is generated from the on-module temperature monitoring and the luminosity data. The analysis is then also extended to the Insertable B-Layer (IBL), installed at the end of Run-1, where we expect the fastest evolution of the radiation damage with luminosity, due to its closer position to the interaction point. Di...

  19. Studio di Rivelatori a Pixel di nuova generazione per il Sistema di Tracciamento di ATLAS.

    CERN Document Server

    Gaudiello, Andrea; Schiavi, Carlo

    In 2013 the LHC will undergo a long shutdown (Phase 0) in preparation for a an energy and luminosity upgrade. During this period the ATLAS Pixel Detector (that is the tracking detector closest to the beamline) will be upgraded. The new detector, called Insertable B-Layer (IBL), will be installed between the existing pixel detector and a new beam-pipe of smaller radius in order to ensure and maintain excellent performance of tracking, vertexing and jet flavor tagging. To satisfy the new requirements a new electronic front- end (FE-I4) and 2 sensor technologies have been developed: Planar and 3D. Genova is one of two sites dedicated to the assembly of the modules of IBL. The work is then carried out in two parallel directions: on one hand the production and its optimization; on the other the comparison and testing of these new technologies. Chapter 1 gives an overview of the theoretical framework needed to understand the importance and the goals of the experiments operating at the Large Hadron Collider (LHC), w...

  20. Application-specific architectures of CMOS monolithic active pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Szelezniak, Michal [Institute de Recherches Subatomiques, 23 rue du Loess, Strasbourg 67037 Cedex 02 (France)]. E-mail: michal.szelezniak@ires.in2p3.fr; Besson, Auguste [Institute de Recherches Subatomiques, 23 rue du Loess, Strasbourg 67037 Cedex 02 (France); Claus, Gilles; Colledani, Claude; [Institute de Recherches Subatomiques, 23 rue du Loess, Strasbourg 67037 Cedex 02 (France); Degerli, Yavuz [CEA Saclay, DAPNIA, Gif-sur-Yvette Cedex (France); Deptuch, Grzegorz [Institute de Recherches Subatomiques, 23 rue du Loess, Strasbourg 67037 Cedex 02 (France); Deveaux, Michael [Institute de Recherches Subatomiques, 23 rue du Loess, Strasbourg 67037 Cedex 02 (France); GSI, Planckstrasse 1, Darmstadt 64291 (Germany); Dorokhov, Andrei [Institute de Recherches Subatomiques, 23 rue du Loess, Strasbourg 67037 Cedex 02 (France); Dulinski, Wojciech [Institute de Recherches Subatomiques, 23 rue du Loess, Strasbourg 67037 Cedex 02 (France); Fourches, Nicolas [CEA Saclay, DAPNIA, Gif-sur-Yvette Cedex (France); Goffe, Mathieu [Institute de Recherches Subatomiques, 23 rue du Loess, Strasbourg 67037 Cedex 02 (France); Grandjean, Damien; Guilloux, Fabrice [Institute de Recherches Subatomiques, 23 rue du Loess, Strasbourg 67037 Cedex 02 (France); Heini, Sebastien [Institute de Recherches Subatomiques, 23 rue du Loess, Strasbourg 67037 Cedex 02 (France)]|[GSI, Planckstrasse 1, Darmstadt 64291 (Germany); Himmi, Abdelkader [Institute de Recherches Subatomiques, 23 rue du Loess, Strasbourg 67037 Cedex 02 (France); Hu, Christine [Institute de Recherches Subatomiques, 23 rue du Loess, Strasbourg 67037 Cedex 02 (France); Jaaskelainen, Kimmo; Li, Yan; Lutz, Pierre; Orsini, Fabienne [CEA Saclay, DAPNIA, Gif-sur-Yvette Cedex (France); Pellicioli, Michel; Shabetai, Alexandre; Valin, Isabelle; Winter, Marc [Institute de Recherches Subatomiques, 23 rue du Loess, Strasbourg 67037 Cedex 02 (France)

    2006-11-30

    Several development directions intended to adapt and optimize monolithic active pixel sensors for specific applications are presented in this work. The first example, compatible with the STAR microvertex upgrade, is based on a simple two-transistor pixel circuitry. It is suited for a long integration time, room-temperature operation and minimum power dissipation. In another approach for this application, a specific readout method is proposed, allowing optimization of the integration time independently of the full frame-readout time. The circuit consists of an in-pixel front-end voltage amplifier, with a gain on the order of five, followed by two analog memory cells. The extended version of this scheme, based on the implementation of more memory cells per pixel, is the solution considered for the outer layers of a microvertex detector at the international linear collider. For the two innermost layers, a circuit allowing fast frame scans together with on-line, on-chip data sparsification is proposed. The first results of this prototype demonstrate that the fixed pattern dispersion is reduced below a noise level of 15 e{sup -}, allowing the use of a single comparator or a low-resolution ADC per pixel column. A common element for most of the mentioned readout schemes is a low-noise, low power consumption, layout efficient in-pixel amplifier. A review of possible solutions for this element together with some experimental results is presented.

  1. Characterisation of individual pixel efficiency in the PILATUS II sensor

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, A., E-mail: aschub@physics.unimelb.edu.a [School of Physics, University of Melbourne, Parkville, 3010 (Australia); CRCBID Cooperative Research Centre for Biomedical Imaging, Bundoora, Victoria 3083 (Australia); Centre for PET, Austin Hospital, Heidelberg, Victoria 3084 (Australia); O' Keefe, G.J. [Centre for PET, Austin Hospital, Heidelberg, Victoria 3084 (Australia); School of Physics, University of Melbourne, Parkville, 3010 (Australia); Sobott, B.A. [School of Physics, University of Melbourne, Parkville, 3010 (Australia); CRCBID Cooperative Research Centre for Biomedical Imaging, Bundoora, Victoria 3083 (Australia); Kirby, N.M. [Australian Synchrotron, Clayton, Victoria 3168 (Australia); Rassool, R.P. [School of Physics, University of Melbourne, Parkville, 3010 (Australia); CRCBID Cooperative Research Centre for Biomedical Imaging, Bundoora, Victoria 3083 (Australia)

    2010-11-15

    Synchrotron applications such as protein crystallography and small-angle X-ray scattering (SAXS) demand precise knowledge of detector pixel efficiency for data corrections. Current techniques used to determine detector efficiency are only applicable for the specific set-up for which the calibration is performed. Here the effect of comparator thresholding on pixel efficiency for PILATUS is presented for standard amplifier and shaper gain settings, allowing users to make necessary corrections to their intensity data for various threshold settings without requiring repeated empirical calibrations. A three-dimensional TCAD simulation of the sensor is also presented and is used to confirm the experimental result.

  2. Characterisation of novel thin n-in-p planar pixel modules for the ATLAS Inner Tracker upgrade

    Science.gov (United States)

    Beyer, J.-C.; La Rosa, A.; Macchiolo, A.; Nisius, R.; Savic, N.; Taibah, R.

    2018-01-01

    In view of the high luminosity phase of the LHC (HL-LHC) to start operation around 2026, a major upgrade of the tracker system for the ATLAS experiment is in preparation. The expected neutron equivalent fluence of up to 2.4×1016 1 MeV neq./cm2 at the innermost layer of the pixel detector poses the most severe challenge. Thanks to their low material budget and high charge collection efficiency after irradiation, modules made of thin planar pixel sensors are promising candidates to instrument these layers. To optimise the sensor layout for the decreased pixel cell size of 50×50 μm2, TCAD device simulations are being performed to investigate the charge collection efficiency before and after irradiation. In addition, sensors of 100-150 μm thickness, interconnected to FE-I4 read-out chips featuring the previous generation pixel cell size of 50×250 μm2, are characterised with testbeams at the CERN-SPS and DESY facilities. The performance of sensors with various designs, irradiated up to a fluence of 1×1016 neq./cm2, is compared in terms of charge collection and hit efficiency. A replacement of the two innermost pixel layers is foreseen during the lifetime of HL-LHC . The replacement will require several months of intervention, during which the remaining detector modules cannot be cooled. They are kept at room temperature, thus inducing an annealing. The performance of irradiated modules will be investigated with testbeam campaigns and the method of accelerated annealing at higher temperatures.

  3. Performance of n-in-p pixel detectors irradiated at fluences up to $5x10^{15} n_{eq}/cm^{2}$ for the future ATLAS upgrades

    CERN Document Server

    INSPIRE-00219560; La Rosa, A.; Nisius, R.; Pernegger, H.; Richter, R.H.; Weigell, P.

    We present the results of the characterization of novel n-in-p planar pixel detectors, designed for the future upgrades of the ATLAS pixel system. N-in-p silicon devices are a promising candidate to replace the n-in-n sensors thanks to their radiation hardness and cost effectiveness, that allow for enlarging the area instrumented with pixel detectors. The n-in-p modules presented here are composed of pixel sensors produced by CiS connected by bump-bonding to the ATLAS readout chip FE-I3. The characterization of these devices has been performed with the ATLAS pixel read-out systems, TurboDAQ and USBPIX, before and after irradiation with 25 MeV protons and neutrons up to a fluence of 5x10**15 neq /cm2. The charge collection measurements carried out with radioactive sources have proven the feasibility of employing this kind of detectors up to these particle fluences. The collected charge has been measured to be for any fluence in excess of twice the value of the FE-I3 threshold, tuned to 3200 e. The first result...

  4. CMOS monolithic active pixel sensors for high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Snoeys, W., E-mail: walter.snoeys@cern.ch

    2014-11-21

    Monolithic pixel detectors integrating sensor matrix and readout in one piece of silicon are only now starting to make their way into high energy physics. Two major requirements are radiation tolerance and low power consumption. For the most extreme radiation levels, signal charge has to be collected by drift from a depletion layer onto a designated collection electrode without losing the signal charge elsewhere in the in-pixel circuit. Low power consumption requires an optimization of Q/C, the ratio of the collected signal charge over the input capacitance [1]. Some solutions to combine sufficient Q/C and collection by drift require exotic fabrication steps. More conventional solutions up to now require a simple in-pixel readout circuit. Both high voltage CMOS technologies and Monolithic Active Pixel Sensors (MAPS) technologies with high resistivity epitaxial layers offer high voltage diodes. The choice between the two is not fundamental but more a question of how much depletion can be reached and also of availability and cost. This paper tries to give an overview.

  5. A module concept for the upgrades of the ATLAS pixel system using the novel SLID-ICV vertical integration technology

    Energy Technology Data Exchange (ETDEWEB)

    Beimforde, M; Andricek, L; Macchiolo, A; Moser, H-G; Nisius, R; Richter, R H; Weigell, P, E-mail: Michael.Beimforde@mpp.mpg.de [Max-Planck-Institut fuer Physik, Foehringer Ring 6, D-80805, Muenchen (Germany)

    2010-12-15

    The presented R and D activity is focused on the development of a new pixel module concept for the foreseen upgrades of the ATLAS detector towards the Super LHC employing thin n-in-p silicon sensors together with a novel vertical integration technology. A first set of pixel sensors with active thicknesses of 75 {mu}m and 150 {mu}m has been produced using a thinning technique developed at the Max-Planck-Institut fuer Physik (MPP) and the MPI Semiconductor Laboratory (HLL). Charge Collection Efficiency (CCE) measurements of these sensors irradiated with 26 MeV protons up to a particle fluence of 10{sup 16}n{sub eq}cm{sup -2} have been performed, yielding higher values than expected from the present radiation damage models. The novel integration technology, developed by the Fraunhofer Institut EMFT, consists of the Solid-Liquid InterDiffusion (SLID) interconnection, being an alternative to the standard solder bump-bonding, and Inter-Chip Vias (ICVs) for routing signals vertically through electronics. This allows for extracting the digitized signals from the back side of the readout chips, avoiding wire-bonding cantilevers at the edge of the devices and thus increases the active area fraction. First interconnections have been performed with wafers containing daisy chains to investigate the efficiency of SLID at wafer-to-wafer and chip-to-wafer level. In a second interconnection process the present ATLAS FE-I3 readout chips were connected to dummy sensor wafers at chip-to-wafer level. Preparations of ICV within the ATLAS readout chips for back side contacting and the future steps towards a full demonstrator module will be presented.

  6. A module concept for the upgrades of the ATLAS pixel system using the novel SLID-ICV vertical integration technology

    International Nuclear Information System (INIS)

    Beimforde, M; Andricek, L; Macchiolo, A; Moser, H-G; Nisius, R; Richter, R H; Weigell, P

    2010-01-01

    The presented R and D activity is focused on the development of a new pixel module concept for the foreseen upgrades of the ATLAS detector towards the Super LHC employing thin n-in-p silicon sensors together with a novel vertical integration technology. A first set of pixel sensors with active thicknesses of 75 μm and 150 μm has been produced using a thinning technique developed at the Max-Planck-Institut fuer Physik (MPP) and the MPI Semiconductor Laboratory (HLL). Charge Collection Efficiency (CCE) measurements of these sensors irradiated with 26 MeV protons up to a particle fluence of 10 16 n eq cm -2 have been performed, yielding higher values than expected from the present radiation damage models. The novel integration technology, developed by the Fraunhofer Institut EMFT, consists of the Solid-Liquid InterDiffusion (SLID) interconnection, being an alternative to the standard solder bump-bonding, and Inter-Chip Vias (ICVs) for routing signals vertically through electronics. This allows for extracting the digitized signals from the back side of the readout chips, avoiding wire-bonding cantilevers at the edge of the devices and thus increases the active area fraction. First interconnections have been performed with wafers containing daisy chains to investigate the efficiency of SLID at wafer-to-wafer and chip-to-wafer level. In a second interconnection process the present ATLAS FE-I3 readout chips were connected to dummy sensor wafers at chip-to-wafer level. Preparations of ICV within the ATLAS readout chips for back side contacting and the future steps towards a full demonstrator module will be presented.

  7. The upgraded Pixel Detector of the ATLAS Experiment for Run-II at the Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00407702

    2016-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of the LHC. Taking advantage of the detector development period 2013 – 2014, the detector was extracted from the experiment and brought to surface to equip it with new service panels and to repair modules furthermore this helped with the installation of the Insertable B-Layer (IBL), fourth layer of pixel, installed in between the existing Pixel Detector and a new beam-pipe at a radius of 3.3 cm. To cope with the high radiation and increased pixel occupancy due to the proximity to the interaction point, two different silicon sensor technologies (planar and 3D) have been used. A new readout chip has been designed with CMOS 130nm technology with larger area, smaller pixel size and faster readout capability. Dedicated design features in combination with a new composite material were considered and used in order to reduce the material budget of the support structure while keeping the optimal thermo-mechanical perfor...

  8. Silicon sensors for the upgrades of the CMS pixel detector

    International Nuclear Information System (INIS)

    Centis Vignali, Matteo

    2015-12-01

    The Compact Muon Solenoid (CMS) is a general purpose detector at the Large Hadron Collider (LHC). The LHC luminosity is constantly increased through upgrades of the accelerator and its injection chain. Two major upgrades will take place in the next years. The first upgrade involves the LHC injector chain and allows the collider to achieve a luminosity of about 2.10 34 cm -2 s -1 . A further upgrade of the LHC foreseen for 2025 will boost its luminosity to 5.10 34 cm -2 s -1 . As a consequence of the increased luminosity, the detectors need to be upgraded. In particular, the CMS pixel detector will undergo two upgrades in the next years. The first upgrade (phase I) consists in the substitution of the current pixel detector in winter 2016/2017. The upgraded pixel detector will implement new readout electronics that allow efficient data taking up to a luminosity of 2.10 34 cm -2 s -1 , twice as much as the LHC design luminosity. The modules that will constitute the upgraded detector are being produced at different institutes. Hamburg (University and DESY) is responsible for the production of 350 pixel modules. The second upgrade (phase II) of the pixel detector is foreseen for 2025. The innermost pixel layer of the upgraded detector will accumulate a radiation damage corresponding to an equivalent fluence of Φ eq =2.10 16 cm -2 and a dose of ∼10 MGy after an integrated luminosity of 3000 fb -1 . Several groups are investigating sensor designs and configurations able to withstand such high doses and fluences. This work is divided into two parts related to important aspects of the upgrades of the CMS pixel detector. For the phase I upgrade, a setup has been developed to provide an absolute energy calibration of the pixel modules that will constitute the detector. The calibration is obtained using monochromatic X-rays. The same setup is used to test the buffering capabilities of the modules' readout chip. The maximum rate experienced by the modules produced in

  9. Characterisation of pixel sensor prototypes for the ALICE ITS upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Reidt, Felix [CERN (Switzerland); Physikalisches Institut, Universitaet Heidelberg (Germany); Collaboration: ALICE-Collaboration

    2014-07-01

    ALICE is preparing a major upgrade of its experimental apparatus to be installed in the second long LHC shutdown (LS2) in the years 2018-2019. A key element of the upgrade is the replacement of the Inner Tracking System (ITS) deploying Monolithic Active Pixel Sensors (MAPS). The upgraded ITS will have a reduced material budget while increasing the pixel density and readout rate capabilities. The novel design leads to higher pointing and momentum resolution as well as a p{sub T} acceptance extended to lower values. The corresponding sensor prototypes were qualified in laboratory measurements and beam tests with respect to their radiation tolerance and detection efficiency. This talk summarises recent results on the characterisation of prototypes belonging to the ALPIDE family.

  10. Study of plasma charging-induced white pixel defect increase in CMOS active pixel sensor

    International Nuclear Information System (INIS)

    Tokashiki, Ken; Bai, KeunHee; Baek, KyeHyun; Kim, Yongjin; Min, Gyungjin; Kang, Changjin; Cho, Hanku; Moon, Jootae

    2007-01-01

    Plasma process-induced 'white pixel defect' (WPD) of CMOS active pixel sensor (APS) is studied for Si3N4 spacer etch back process by using a magnetically enhanced reactive ion etching (MERIE) system. WPD preferably takes place at the wafer edge region when the magnetized plasma is applied to Si3N4 etch. Plasma charging analysis reveals that the plasma charge-up characteristic is well matching the edge-intensive WPD generation, rather than the UV radiation. Plasma charging on APS transfer gate might lead to a gate leakage, which could play a role in generation of signal noise or WPD. In this article the WPD generation mechanism will be discussed from plasma charging point of view

  11. Evaluation of a single-pixel one-transistor active pixel sensor for fingerprint imaging

    Science.gov (United States)

    Xu, Man; Ou, Hai; Chen, Jun; Wang, Kai

    2015-08-01

    Since it first appeared in iPhone 5S in 2013, fingerprint identification (ID) has rapidly gained popularity among consumers. Current fingerprint-enabled smartphones unanimously consists of a discrete sensor to perform fingerprint ID. This architecture not only incurs higher material and manufacturing cost, but also provides only static identification and limited authentication. Hence as the demand for a thinner, lighter, and more secure handset grows, we propose a novel pixel architecture that is a photosensitive device embedded in a display pixel and detects the reflected light from the finger touch for high resolution, high fidelity and dynamic biometrics. To this purpose, an amorphous silicon (a-Si:H) dual-gate photo TFT working in both fingerprint-imaging mode and display-driving mode will be developed.

  12. A beam monitor using silicon pixel sensors for hadron therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen, E-mail: zwang@mails.ccnu.edu.cn; Zou, Shuguang; Fan, Yan; Liu, Jun; Sun, Xiangming, E-mail: sphy2007@126.com; Wang, Dong; Kang, Huili; Sun, Daming; Yang, Ping; Pei, Hua; Huang, Guangming; Xu, Nu; Gao, Chaosong; Xiao, Le

    2017-03-21

    We report the design and test results of a beam monitor developed for online monitoring in hadron therapy. The beam monitor uses eight silicon pixel sensors, Topmetal-II{sup -}, as the anode array. Topmetal-II{sup -} is a charge sensor designed in a CMOS 0.35 µm technology. Each Topmetal-II{sup -} sensor has 72×72 pixels and the pixel size is 83×83 µm{sup 2}. In our design, the beam passes through the beam monitor without hitting the electrodes, making the beam monitor especially suitable for monitoring heavy ion beams. This design also reduces radiation damage to the beam monitor itself. The beam monitor is tested with a carbon ion beam at the Heavy Ion Research Facility in Lanzhou (HIRFL). Results indicate that the beam monitor can measure position, incidence angle and intensity of the beam with a position resolution better than 20 µm, angular resolution about 0.5° and intensity statistical accuracy better than 2%.

  13. Test beam results of a depleted monolithic active pixel sensor (DMAPS) prototype

    Energy Technology Data Exchange (ETDEWEB)

    Obermann, Theresa; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Bonn Univ. (Germany); Schwenker, Benjamin [Goettingen Univ. (Germany); Collaboration: ATLAS Pixel-Collaboration

    2016-07-01

    New monolithic detector concepts are currently being explored for future particle physics experiments, in particular for the upgrade of the ATLAS detector. Common to monolithic pixel detectors is the integration of the front-end circuitry and the sensor on the same silicon substrate. The DMAPS concept makes use of high resistive silicon as substrate. It enables the application of a high bias voltage to create a drift field for the charge collection in the sensor part as well as the full usage of CMOS logic in the same piece of silicon. DMAPS prototypes from several foundries are available since three years and have been extensively characterized in the lab. In this talk, results of test beam campaigns, with neutron irradiated prototypes implemented in the ESPROS process, are presented.

  14. Characterization and Beam Tests Results of Non-Uniformly Irradiated 3D Pixel Sensors for HEP Experiments

    International Nuclear Information System (INIS)

    Lopez, I.; Grinstein, S.; Micelli, A.; Tsiskaridze, S.

    2013-06-01

    3D Pixel detectors, with cylindrical electrodes that penetrate the silicon substrate, offer advantages over standard planar sensors in terms of radiation hardness, since the charge collection distance can be reduced independently of the bulk thickness. In the framework of the ATLAS Forward Physics (AFP) program, work has been carried out to study the suitability of 3D pixel devices for forward proton tracking. The AFP tracker unit will consist of an array of five pixel sensors placed at 2-3 mm from the Large Hadron Collider (LHC) proton beam. The proximity to the beam is essential for the AFP physics program as it directly increases the sensitivity of the experiment. Thus, there are two critical requirements for the AFP pixel detector. First, the dead region of the sensor has to be minimized. Second, the device has to be able to cope with a very inhomogeneous radiation distribution. Recent results of the characterization and beam test studies of in-homogeneously irradiated 3D pixel sensors produced at CNM-Barcelona will be presented. (authors)

  15. Device Simulation of Monolithic Active Pixel Sensors: Radiation Damage Effects

    International Nuclear Information System (INIS)

    Fourches, N.T.

    2009-01-01

    Vertexing for the future International Linear Collider represents a challenging goal because of the high spatial resolution required with low material budget and high ionizing radiation tolerance. CMOS Monolithic Active Pixel Sensors (MAPS) represent a good potential solution for this purpose. Up to now many MAPS sensors have been developed. They are based on various architectures and manufactured in different processes. However, up so far, the sensor diode has not been the subject of extensive modelization and simulation. Published simulation studies of sensor-signal formation have been less numerous than measurements on real sensors. This is a cause for concern because such sensor is physically based on the partially depleted diode, in the vicinity of which the electric field collects the minority carriers generated by an incident MIP (minimum ionizing particle). Although the microscopic mechanisms are well known and modelled, the global physical mechanisms for signal formation are not very rigorously established. This is partly due to the presence of a predominant diffusion component in the charge transport. We present here simulations mainly based on the S-PISCES code, in which physical mechanisms affecting transport are taken into account. Diffusion, influence of residual carrier concentration due to the doping level in the sensitive volume, and more importantly charge trapping due to deep levels in the active (detecting) layer are studied together with geometric aspects. The effect of neutron irradiation is studied to assess the effects of deep traps. A comparison with available experimental data, obtained on processed MAPS before or after neutron irradiation will be introduced. Simulated reconstruction of the Minimum Ionizing Particle (MIP) point of impact in two dimensions is also investigated. For further steps, guidelines for process choices of next Monolithic Active Pixel Sensors are introduced. (authors)

  16. MCC:the Module Controller Chip for the ATLAS Pixel Detector

    Czech Academy of Sciences Publication Activity Database

    Beccherle, R.; Darbo, G.; Gagliardi, G.; Šícho, Petr

    2002-01-01

    Roč. 492, 1-2 (2002), s. 117-133 ISSN 0168-9002 R&D Projects: GA MPO RP-4210/69 Institutional research plan: CEZ:AV0Z1010920 Keywords : ASIC * radiation hardness * silicon pixel detectors * ATLAS * LHC Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.167, year: 2002

  17. CMOS VLSI Active-Pixel Sensor for Tracking

    Science.gov (United States)

    Pain, Bedabrata; Sun, Chao; Yang, Guang; Heynssens, Julie

    2004-01-01

    An architecture for a proposed active-pixel sensor (APS) and a design to implement the architecture in a complementary metal oxide semiconductor (CMOS) very-large-scale integrated (VLSI) circuit provide for some advanced features that are expected to be especially desirable for tracking pointlike features of stars. The architecture would also make this APS suitable for robotic- vision and general pointing and tracking applications. CMOS imagers in general are well suited for pointing and tracking because they can be configured for random access to selected pixels and to provide readout from windows of interest within their fields of view. However, until now, the architectures of CMOS imagers have not supported multiwindow operation or low-noise data collection. Moreover, smearing and motion artifacts in collected images have made prior CMOS imagers unsuitable for tracking applications. The proposed CMOS imager (see figure) would include an array of 1,024 by 1,024 pixels containing high-performance photodiode-based APS circuitry. The pixel pitch would be 9 m. The operations of the pixel circuits would be sequenced and otherwise controlled by an on-chip timing and control block, which would enable the collection of image data, during a single frame period, from either the full frame (that is, all 1,024 1,024 pixels) or from within as many as 8 different arbitrarily placed windows as large as 8 by 8 pixels each. A typical prior CMOS APS operates in a row-at-a-time ( grolling-shutter h) readout mode, which gives rise to exposure skew. In contrast, the proposed APS would operate in a sample-first/readlater mode, suppressing rolling-shutter effects. In this mode, the analog readout signals from the pixels corresponding to the windows of the interest (which windows, in the star-tracking application, would presumably contain guide stars) would be sampled rapidly by routing them through a programmable diagonal switch array to an on-chip parallel analog memory array. The

  18. Studies for the detector control system of the ATLAS pixel at the HL-LHC

    International Nuclear Information System (INIS)

    Püllen, L; Becker, K; Boek, J; Kersten, S; Kind, P; Mättig, P; Zeitnitz, C

    2012-01-01

    In the context of the LHC upgrade to the HL-LHC the inner detector of the ATLAS experiment will be replaced completely. As part of this redesign there will also be a new pixel detector. This new pixel detector requires a control system which meets the strict space requirements for electronics in the ATLAS experiment. To accomplish this goal we propose a DCS (Detector Control System) network with the smallest form factor currently available. This network consists of a DCS chip located in close proximity to the interaction point and a DCS controller located in the outer regions of the ATLAS detector. These two types of chips form a star shaped network with several DCS chips being controlled by one DCS controller. Both chips are manufactured in deep sub-micron technology. We present prototypes with emphasis on studies concerning single event upsets.

  19. A novel CMOS sensor with in-pixel auto-zeroed discrimination for charged particle tracking

    International Nuclear Information System (INIS)

    Degerli, Y; Guilloux, F; Orsini, F

    2014-01-01

    With the aim of developing fast and granular Monolithic Active Pixels Sensors (MAPS) as new charged particle tracking detectors for high energy physics experiments, a new rolling shutter binary pixel architecture concept (RSBPix) with in-pixel correlated double sampling, amplification and discrimination is presented. The discriminator features auto-zeroing in order to compensate process-related transistor mismatches. In order to validate the pixel, a first monolithic CMOS sensor prototype, including a pixel array of 96 × 64 pixels, has been designed and fabricated in the Tower-Jazz 0.18 μm CMOS Image Sensor (CIS) process. Results of laboratory tests are presented

  20. Application of a new interconnection technology for the ATLAS pixel upgrade at SLHC

    CERN Document Server

    Macchiolo, A; Beimforde, M; Moser, H G; Nisius, R; Richter, R H

    2009-01-01

    We present an R&D activity aiming towards a new detector concept in the framework of the ATLAS pixel detector upgrade exploiting a vertical integration technology developed at the Fraunhofer Institute IZMMunich. The Solid-Liquid InterDiffusion (SLID) technique is investigated as an alternative to the bump-bonding process. We also investigate the extraction of the signals from the back of the read-out chip through Inter-Chip-Vias to achieve a higher fraction of active area with respect to the present ATLAS pixel module. We will present the layout and the first results obtained with a production of test-structures designed to investigate the SLID interconnection efficiency as a function of different parameters, i.e. the pixel size and pitch, as well as the planarity of the underlying layers.

  1. Bonding techniques for hybrid active pixel sensors (HAPS)

    Energy Technology Data Exchange (ETDEWEB)

    Bigas, M. [Centre Nacional de Microelectronica, CNM-IMB (CSIC), Campus Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)]. E-mail: Marc.Bigas@cnm.es; Cabruja, E. [Centre Nacional de Microelectronica, CNM-IMB (CSIC), Campus Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)]. E-mail: Enric.Cabruja@cnm.es; Lozano, M. [Centre Nacional de Microelectronica, CNM-IMB (CSIC), Campus Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)

    2007-05-01

    A hybrid active pixel sensor (HAPS) consists of an array of sensing elements which is connected to an electronic read-out unit. The most used way to connect these two different devices is bump bonding. This interconnection technique is very suitable for these systems because it allows a very fine pitch and a high number of I/Os. However, there are other interconnection techniques available such as direct bonding. This paper, as a continuation of a review [M. Lozano, E. Cabruja, A. Collado, J. Santander, M. Ullan, Nucl. Instr. and Meth. A 473 (1-2) (2001) 95-101] published in 2001, presents an update of the different advanced bonding techniques available for manufacturing a hybrid active pixel detector.

  2. A Single-Transistor Active Pixel CMOS Image Sensor Architecture

    International Nuclear Information System (INIS)

    Zhang Guo-An; He Jin; Zhang Dong-Wei; Su Yan-Mei; Wang Cheng; Chen Qin; Liang Hai-Lang; Ye Yun

    2012-01-01

    A single-transistor CMOS active pixel image sensor (1 T CMOS APS) architecture is proposed. By switching the photosensing pinned diode, resetting and selecting can be achieved by diode pull-up and capacitive coupling pull-down of the source follower. Thus, the reset and selected transistors can be removed. In addition, the reset and selected signal lines can be shared to reduce the metal signal line, leading to a very high fill factor. The pixel design and operation principles are discussed in detail. The functionality of the proposed 1T CMOS APS architecture has been experimentally verified using a fabricated chip in a standard 0.35 μm CMOS AMIS technology

  3. Prototyping of larger structures for the Phase-II upgrade of the pixel detector of the ATLAS experiment

    CERN Document Server

    Alvarez Feito, Diego; The ATLAS collaboration

    2017-01-01

    For the high luminosity era of the Large Hadron Collider (HL-LHC) it is forseen to replace the current inner tracker of the ATLAS experiment with a new detector to cope with the occuring increase in occupancy, bandwidth and radiation damage. It will consist of an inner pixel and outer strip detector aiming to provide tracking coverage up to |η|<4. The layout of the pixel detector is foreseen to consist of five layers of pixel silicon sensor modules in the central region and several ring-shaped layers in the forward region. It results in up to 14 m² of silicon depending on the selected layout. Beside the challenge of radiation hardness and high-rate capable silicon sensors and readout electronics many system aspects have to be considered for a fully functional detector. Both stable and low mass mechanical structures and services are important. Within the collaboration a large effort is started to prototype larger detector structures for both the central and forward region of the detector. The aspect of sy...

  4. On drift fields in CMOS monolithic active pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Deveaux, Michael [Goethe-Universitaet, Frankfurt (Germany); Collaboration: CBM-MVD-Collaboration

    2016-07-01

    CMOS Monolithic Active Pixel Sensors (MAPS) combine an excellent spatial resolution of few μm with a very low material budget of 0.05% X{sub 0}. To extend their radiation tolerance to the level needed for future experiments like e.g. CBM, it is regularly considered to deplete their active volume. We discuss the limits of this strategy accounting for the specific features of the sensing elements of MAPS. Moreover, we introduce an alternative approach to generate the drift fields needed to provoke a faster charge collection by means of doping gradients.

  5. SEU tolerant memory design for the ATLAS pixel readout chip

    International Nuclear Information System (INIS)

    Menouni, M; Barbero, M; Breugnon, P; Fougeron, D; Gensolen, F; Arutinov, D; Backhaus, M; Gonella, L; Hemperek, T; Karagounis, M; Beccherle, R; Darbo, G; Caminada, L; Dube, S; Fleury, J; Garcia-Sciveres, M; Gnani, D; Jensen, F; Gromov, V; Kluit, R

    2013-01-01

    The FE-I4 chip for the B-layer upgrade is designed in a 130 nm CMOS process. For this design, configuration memories are based on the DICE latches where layout considerations are followed to improve the tolerance to SEU. Tests have shown that DICE latches for which layout approaches are adopted are 30 times more tolerant to SEU than the standard DICE latches. To prepare for the new pixel readout chip planned for the future upgrades, a prototype chip containing 512 pixels has been designed in a 65 nm CMOS process and a new approach is adopted for SEU tolerant latches. Results in terms of SEU and TID tolerance are presented.

  6. The Pixels find their way to the heart of ATLAS

    CERN Multimedia

    Kevin Einsweiler

    Since the last e-news article on the Pixel Detector in December 2006, there has been much progress. At that time, we were just about to receive the Beryllium beampipe, and to integrate the innermost layer of the Pixel Detector around it. This innermost layer is referred to as the B-layer because of the powerful role it plays in finding the secondary vertices that are the key signature for the presence of b-quarks, and with somewhat greater difficulty, c-quarks and tau leptons. The integration of the central 7m long beampipe into the Pixel Detector was completed in December, and the B-layer was successfully integrated around it. In January this year, we had largely completed the central 1.5m long detector, including the three barrel layers and the three disk layers on each end of the barrel. Although this region contains all of the 80 million readout channels, it cannot be integrated into the Inner Detector without additional services and infrastructure. Therefore, the next step was to add the Service Panels...

  7. Development of a Depleted Monolithic CMOS Sensor in a 150 nm CMOS Technology for the ATLAS Inner Tracker Upgrade

    CERN Document Server

    Wang, T.

    2017-01-01

    The recent R&D focus on CMOS sensors with charge collection in a depleted zone has opened new perspectives for CMOS sensors as fast and radiation hard pixel devices. These sensors, labelled as depleted CMOS sensors (DMAPS), have already shown promising performance as feasible candidates for the ATLAS Inner Tracker (ITk) upgrade, possibly replacing the current passive sensors. A further step to exploit the potential of DMAPS is to investigate the suitability of equipping the outer layers of the ATLAS ITk upgrade with fully monolithic CMOS sensors. This paper presents the development of a depleted monolithic CMOS pixel sensor designed in the LFoundry 150 nm CMOS technology, with the focus on design details and simulation results.

  8. Effets de rayonnement sur les detecteurs au silicium a pixels du detecteur ATLAS

    CERN Document Server

    Lebel, Celine

    2007-01-01

    Two detection systems are using pixel silicon detectors in the ATLAS detector: the Pixel, which is the subdetector closest to the interaction point, and the MPX network. The activation of the materials present in the Pixel produced by radiation has been measured in two experiments which we performed at CERF (CERN) and NPI-ASCR (Czech Republic). These experimental studies of activation are com- pared with GEANT4 simulations. The results of these comparisons show that the simulation can predict the activities with a precision of an order of magnitude. They also show that GEANT4 fails to produce certain radioisotopes seen in the experimental activation studies. The contribution to background and the resid- ual doses due to the desintegration of the radioisotopes produced by fast neutrons (category in which falls the expected average neutron energy of 1 MeV in ATLAS) are extrapolated to ATLAS conditions. It is found that this background in the AT- LAS Pixel subdetector will be negligible and that the doses are we...

  9. Electronic dosimetry and neutron metrology by CMOS active pixel sensor

    International Nuclear Information System (INIS)

    Vanstalle, M.

    2011-01-01

    This work aims at demonstrating the possibility to use active pixel sensors as operational neutron dosemeters. To do so, the sensor that has been used has to be γ-transparent and to be able to detect neutrons on a wide energy range with a high detection efficiency. The response of the device, made of the CMOS sensor MIMOSA-5 and a converter in front of the sensor (polyethylene for fast neutron detection and 10 B for thermal neutron detection), has been compared with Monte Carlo simulations carried out with MCNPX and GEANT4. These codes have been before-hand validated to check they can be used properly for our application. Experiments to characterize the sensor have been performed at IPHC and at IRSN/LMDN (Cadarache). The results of the sensor irradiation to photon sources and mixed field ( 241 AmBe source) show the γ-transparency of the sensor by applying an appropriate threshold on the deposited energy (around 100 keV). The associated detection efficiency is satisfactory with a value of 10 -3 , in good agreement with MCNPX and GEANT4. Other features of the device have been tested with the same source, like the angular response. The last part of this work deals with the detection of thermal neutrons (eV-neutrons). Assays have been done in Cadarache (IRSN) with a 252 Cf source moderated with heavy water (with and without cadmium shell). Results asserted a very high detection efficiency (up to 6*10 -3 for a pure 10 B converter) in good agreement with GEANT4. (author)

  10. A module concept for the upgrades of the ATLAS pixel system using the novel SLID-ICV vertical integration technology

    CERN Document Server

    Beimforde, M; Macchiolo, A; Moser, H G; Nisius, R; Richter, R H; Weigell, P; 10.1088/1748-0221/5/12/C12025

    2010-01-01

    The presented R&D activity is focused on the development of a new pixel module concept for the foreseen upgrades of the ATLAS detector towards the Super LHC employing thin n-in-p silicon sensors together with a novel vertical integration technology. A first set of pixel sensors with active thicknesses of 75 μm and 150 μm has been produced using a thinning technique developed at the Max-Planck-Institut für Physik (MPP) and the MPI Semiconductor Laboratory (HLL). Charge Collection Efficiency (CCE) measurements of these sensors irradiated with 26 MeV protons up to a particle fluence of 1016neqcm−2 have been performed, yielding higher values than expected from the present radiation damage models. The novel integration technology, developed by the Fraunhofer Institut EMFT, consists of the Solid-Liquid InterDiffusion (SLID) interconnection, being an alternative to the standard solder bump-bonding, and Inter-Chip Vias (ICVs) for routing signals vertically through electronics. This allows for extracting the ...

  11. High-voltage pixel detectors in commercial CMOS technologies for ATLAS, CLIC and Mu3e experiments

    CERN Document Server

    Peric,I et al.

    2013-01-01

    High-voltage particle detectors in commercial CMOS technologies are a detector family that allows implementation of low-cost, thin and radiation-tolerant detectors with a high time resolution. In the R/D phase of the development, a radiation tolerance of 1015 neq=cm2 , nearly 100% detection efficiency and a spatial resolution of about 3 μm were demonstrated. Since 2011 the HV detectors have first applications: the technology is presently the main option for the pixel detector of the planned Mu3e experiment at PSI (Switzerland). Several prototype sensors have been designed in a standard 180 nm HV CMOS process and successfully tested. Thanks to its high radiation tolerance, the HV detectors are also seen at CERN as a promising alternative to the standard options for ATLAS upgrade and CLIC. In order to test the concept, within ATLAS upgrade R/D, we are currently exploring an active pixel detector demonstrator HV2FEI4; also implemented in the 180 nm HV process.

  12. High-voltage pixel detectors in commercial CMOS technologies for ATLAS, CLIC and Mu3e experiments

    CERN Document Server

    Peric, Ivan; Backhaus, Malte; Barbero, Marlon; Benoit, Mathieu; Berger, Niklaus; Bompard, Frederic; Breugnon, Patrick; Clemens, Jean-Claude; Dannheim, Dominik; Dierlamm, Alexander; Feigl, Simon; Fischer, Peter; Fougeron, Denis; Garcia-Sciveres, Maurice; Heim, Timon; Hügging, Fabian; Kiehn, Moritz; Kreidl, Christian; Krüger, Hans; La Rosa, Alessandro; Liu, Jian; Lütticke, Florian; Mariñas, Carlos; Meng, Lingxin; Miucci, Antonio; Münstermann, Daniel; Nguyen, Hong Hanh; Obermann, Theresa; Pangaud, Patrick; Perrevoort, Ann-Kathrin; Rozanov, Alexandre; Schöning, André; Schwenker, Benjamin; Wiedner, Dirk

    2013-01-01

    High-voltage particle detectors in commercial CMOS technologies are a detector family that allows implementation of low-cost, thin and radiation-tolerant detectors with a high time resolution. In the R/D phase of the development, a radiation tolerance of 10 15 n eq = cm 2 , nearly 100% detection ef fi ciency and a spatial resolution of about 3 μ m were demonstrated. Since 2011 the HV detectors have fi rst applications: the technology is presently the main option for the pixel detector of the planned Mu3e experiment at PSI (Switzerland). Several prototype sensors have been designed in a standard 180 nm HV CMOS process and successfully tested. Thanks to its high radiation tolerance, the HV detectors are also seen at CERN as a promising alternative to the standard options for ATLAS upgrade and CLIC. In order to test the concept, within ATLAS upgrade R/D, we are currently exploring an active pixel detector demonstrator HV2FEI4; also implemented in the 180 nm HV process

  13. Active pixel sensor array as a detector for electron microscopy.

    Science.gov (United States)

    Milazzo, Anna-Clare; Leblanc, Philippe; Duttweiler, Fred; Jin, Liang; Bouwer, James C; Peltier, Steve; Ellisman, Mark; Bieser, Fred; Matis, Howard S; Wieman, Howard; Denes, Peter; Kleinfelder, Stuart; Xuong, Nguyen-Huu

    2005-09-01

    A new high-resolution recording device for transmission electron microscopy (TEM) is urgently needed. Neither film nor CCD cameras are systems that allow for efficient 3-D high-resolution particle reconstruction. We tested an active pixel sensor (APS) array as a replacement device at 200, 300, and 400 keV using a JEOL JEM-2000 FX II and a JEM-4000 EX electron microscope. For this experiment, we used an APS prototype with an area of 64 x 64 pixels of 20 microm x 20 microm pixel pitch. Single-electron events were measured by using very low beam intensity. The histogram of the incident electron energy deposited in the sensor shows a Landau distribution at low energies, as well as unexpected events at higher absorbed energies. After careful study, we concluded that backscattering in the silicon substrate and re-entering the sensitive epitaxial layer a second time with much lower speed caused the unexpected events. Exhaustive simulation experiments confirmed the existence of these back-scattered electrons. For the APS to be usable, the back-scattered electron events must be eliminated, perhaps by thinning the substrate to less than 30 microm. By using experimental data taken with an APS chip with a standard silicon substrate (300 microm) and adjusting the results to take into account the effect of a thinned silicon substrate (30 microm), we found an estimate of the signal-to-noise ratio for a back-thinned detector in the energy range of 200-400 keV was about 10:1 and an estimate for the spatial resolution was about 10 microm.

  14. Operational Experience of the ATLAS SemiConductor Tracker and Pixel Detector

    CERN Document Server

    Robinson, Dave; The ATLAS collaboration

    2016-01-01

    The tracking performance of the ATLAS detector relies critically on the silicon and gaseous tracking subsystems that form the ATLAS Inner Detector. Those subsystems have undergone significant hardware and software upgrades to meet the challenges imposed by the higher collision energy, pileup and luminosity that are being delivered by the LHC during Run2. The key status and performance metrics of the Pixel Detector and the Semi Conductor Tracker are summarised, and the operational experience and requirements to ensure optimum data quality and data taking efficiency are described.

  15. From vertex detectors to inner trackers with CMOS pixel sensors

    CERN Document Server

    Besson, A.

    2017-01-01

    The use of CMOS Pixel Sensors (CPS) for high resolution and low material vertex detectors has been validated with the 2014 and 2015 physics runs of the STAR-PXL detector at RHIC/BNL. This opens the door to the use of CPS for inner tracking devices, with 10-100 times larger sensitive area, which require therefore a sensor design privileging power saving, response uniformity and robustness. The 350 nm CMOS technology used for the STAR-PXL sensors was considered as too poorly suited to upcoming applications like the upgraded ALICE Inner Tracking System (ITS), which requires sensors with one order of magnitude improvement on readout speed and improved radiation tolerance. This triggered the exploration of a deeper sub-micron CMOS technology, Tower-Jazz 180 nm, for the design of a CPS well adapted for the new ALICE-ITS running conditions. This paper reports the R&D results for the conception of a CPS well adapted for the ALICE-ITS.

  16. Operational Experience and Performance with the ATLAS Pixel Detector at the Large Hadron Collider

    CERN Document Server

    Grummer, Aidan; The ATLAS collaboration

    2018-01-01

    The tracking performance of the ATLAS detector relies critically on its 4-layer Pixel Detector, that has undergone significant hardware and software upgrades to meet the challenges imposed by the higher collision energy, pileup and luminosity that are being delivered by the Large Hadron Collider, with record breaking instantaneous luminosities of 2 x 10^34 cm-2 s-1 recently surpassed. The key status and performance metrics of the ATLAS Pixel Detector are summarised, and the operational experience and requirements to ensure optimum data quality and data taking efficiency will be described, with special emphasis to radiation damage experience. In particular, radiation damage effects will be showed and signs of degradation which are visible but which are not impacting yet the tracking performance (but will): dE/dX, occupancy reduction with integrated luminosity, under-depletion effects with IBL in 2016, effects of annealing that is not insignificant for the inner-most layers. Therefore the offline software strat...

  17. Dead-time free pixel readout architecture for ATLAS front-end IC

    CERN Document Server

    Einsweiler, Kevin F; Kleinfelder, S A; Luo, L; Marchesini, R; Milgrome, O; Pengg, F X

    1999-01-01

    A low power sparse scan readout architecture has been developed for the ATLAS pixel front-end IC. The architecture supports a dual discriminator and extracts the time over threshold (TOT) information along with a 2-D spatial address $9 of the hits associating them with a unique 7-bit beam crossing number. The IC implements level-1 trigger filtering along with event building (grouping together all hits in a beam crossing) in the end of column (EOC) buffer. The $9 events are transmitted over a 40 MHz serial data link with the protocol supporting buffer overflow handling by appending error flags to events. This mixed-mode full custom IC is implemented in 0.8 mu HP process to meet the $9 requirements for the pixel readout in the ATLAS inner detector. The circuits have been tested and the IC provides dead-time-less ambiguity free readout at 40 MHz data rate.

  18. Operational Experience with and Performance of the ATLAS Pixel Detector at the Large Hadron Collider

    CERN Document Server

    Grummer, Aidan; The ATLAS collaboration

    2018-01-01

    The operational experience and requirements to ensure optimum data quality and data taking efficiency with the 4-layer ATLAS Pixel Detector are discussed. The detector has undergone significant hardware and software upgrades to meet the challenges imposed by the fact that the Large Hadron Collider is exceeding expectations for instantaneous luminosity by more than a factor of two (more than $2 \\times 10^{34}$ cm$^{-2}$ s$^{-1}$). Emphasizing radiation damage effects, the key status and performance metrics are described.

  19. Design and development of the IBL-BOC firmware for the ATLAS Pixel IBL optical datalink system

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00356268

    The Insertable $b$-Layer (IBL) is the first upgrade of the ATLAS Pixel detector at the LHC. It will be installed in the Pixel detector in 2013. The IBL will use a new sensor and readout technology, therefore the readout components of the current Pixel detector are redesigned for the readout of the IBL. In this diploma thesis the design and development of the firmware for the new IBL Back-of-Crate card (IBL-BOC) are described. The IBL-BOC is located on the off-detector side of the readout and performs the optical-electrical conversion and vice versa for the optical connection to and from the detector. To process the data transmitted to and received from the detector, the IBL-BOC uses multiple Field Programmable Gate Arrays (FPGA). The transmitted signal is a 40~Mb/s BiPhase Mark (BPM) encoded data stream, providing the timing, trigger and control to the detector. The received signal is a 160~Mb/s 8b10b encoded data stream, containing data from the detector. The IBL-BOC encodes and decodes these data streams. T...

  20. Status of the ATLAS Pixel Detector at the LHC and its performance after three years of operation

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC and its status after three years of operation will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: ~96 % of the pixels are operational, noise occupancy and hit ...

  1. Performance of Radiation Hard Pixel Sensors for the CMS Experiment

    CERN Document Server

    Dorokhov, Andrei

    2005-01-01

    Position sensitive detectors in particle physics experiments are used for the detection of the particles trajectory produced in high energy collisions. To study physics phenomena at high energies the high particle interaction rate is unavoidable, as the number of interesting events falls with the energy and the total number of events is dominated by the soft processes. The position resolution of vertex detectors has to be of few microns in order to distinguish between particle tracks produced in b-quark or tau-decays, because of the short flight path before the decay. The high spatial position resolution and the ability to detect a large number of superimposed track are the key features for tracking detectors. Modern silicon microstrip and pixel detectors with high resolution are currently most suitable devices for the tracking systems of high energy physics experiments. In this work the performance of the sensors designed for the CMS pixel detector are studied and the position resolution is estimated. In the...

  2. Study of FPGA and GPU based pixel calibration for ATLAS IBL

    CERN Document Server

    Dopke, J; The ATLAS collaboration; Flick, T; Gabrielli, A; Grosse-Knetter, J; Krieger, N; Kugel, A; Polini, A; Schroer, N

    2010-01-01

    The insertable B-layer (IBL) is a new stage of the ATLAS pixel detector to be installed around 2014. 12 million pixel are attached to new FE-I4 readout ASICs, each controlling 26680 pixel. Compared to the existing FE-I3 based detector the new system features higher readout speed of 160Mbit/s per ASIC and simplified control. For calibration defined charges are applied to all pixels and the resulting time-over-threshold values are evaluated. In the present system multiple sets of two custom VME cards which employ a combination of FPGA and DSP technology are used for I/O interfacing, formatting and processing. The execution time of 51s to perform a threshold scan on a FE-I3 module of 46080 pixel is composed of 8s control, 29s transfer, 7.5s histogramming and 7s analysis. Extrapolating to FE-I4 the times per module of 53760 pixels are 12ms, 5.8s, 9.4s and 8.3s, a total of 23.5s. We present a proposal for a novel approach to the dominant tasks for FE-I4: histogramming and ananlysis. An FPGA-based histogramming uni...

  3. The Upgraded Pixel Detector of the ATLAS Experiment for Run-2 at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00084948; The ATLAS collaboration

    2016-01-01

    Run-2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with high radiation and expected occupancy, is the first large scale application of 3D detectors and CMOS 130 nm technology. In addition the Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during run-1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning and performance of the 4-layer Pixel Detector, in particular the IBL, will be presented using collision data.

  4. The Upgraded Pixel Detector of the ATLAS Experiment for Run-2

    CERN Document Server

    Ferrere, Didier; The ATLAS collaboration

    2016-01-01

    Run-2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with high radiation and expected occupancy, is the first large scale application of 3D detectors and CMOS 130nm technology. In addition the Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during run-1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning and performance of the 4-layer Pixel Detector, in particular the IBL, will be presented, using collision data.

  5. The upgraded Pixel Detector of the ATLAS experiment for Run-2 at the Large Hadron Collider

    CERN Document Server

    Giordani, MarioPaolo; The ATLAS collaboration

    2016-01-01

    Run-2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with high radiation and expected occupancy, is the first large scale application of 3D detectors and CMOS 130nm technology. In addition the Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during run-1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning and performance of the 4-layer Pixel Detector, in particular the IBL, will be presented, using collision data.

  6. Upgrade of the BOC for the ATLAS Pixel Insertable B-Layer

    CERN Document Server

    Dopke, J; Heima, T; Kugel, A; Mattig, P; Schroer, N; Zeitnitz, C

    2009-01-01

    The phase 1 upgrade of the ATLAS [1] pixel detector will be done by inserting a fourth pixel layer together with a new beampipe into the recent three layer detector. This new detector, the Insertable B-Layer (IBL) should be integrated into the recent pixel system with as few changes in services as possible, but deliver some advantages over the recent system. One of those advantages will be a new data transmission link from the detector modules to the off-detector electronics, requiring a re-design of the electro-optical converters on the off-detector side. First ideas of how to implement those, together with some ideas to reduce cost by increasing the systems throughput are discussed.

  7. Digital column readout architecture for the ATLAS pixel 025 mum front end IC

    CERN Document Server

    Mandelli, E; Blanquart, L; Comes, G; Denes, P; Einsweiler, Kevin F; Fischer, P; Marchesini, R; Meddeler, G; Peric, I

    2002-01-01

    A fast low noise, limited power, radiation-hard front-end chip was developed for reading out the Atlas Pixel Silicon Detector. As in the past prototypes, every chip is used to digitize and read out charge and time information from hits on each one of its 2880 inputs. The basic column readout architecture idea was adopted and modified to allow a safe transition to quarter micron technology. Each pixel cell, organized in a 160 multiplied by 18 matrix, can be independently enabled and configured in order to optimize the analog signal response and to prevent defective pixels from saturating the readout. The digital readout organizes hit data coming from each column, with respect to time, and output them on a low-level serial interface. A considerable effort was made to design state machines free of undefined states, where single-point defects and charge deposited by heavy ions in the silicon could have led to unpredicted forbidden states. 7 Refs.

  8. Robustness of the Artificial Neural Networks Used for Clustering in the ATLAS Pixel Detector

    CERN Document Server

    The ATLAS collaboration

    2015-01-01

    A study of the robustness of the ATLAS pixel neural network clustering algorithm is presented. The sensitivity to variations to its input is evaluated. These variations are motivated by potential discrepancies between data and simulation due to uncertainties in the modelling of pixel clusters in simulation, as well as uncertainties from the detector calibration. Within reasonable variation magnitudes, the neural networks prove to be robust to most variations. The neural network used to identify pixel clusters created by multiple charged particles, is most sensitive to variations affecting the total amount of charge collected in the cluster. Modifying the read-out threshold has the biggest effect on the clustering's ability to estimate the position of the particle's intersection with the detector.

  9. The Layer 1 / Layer 2 readout upgrade for the ATLAS Pixel Detector

    CERN Document Server

    Mullier, Geoffrey; The ATLAS collaboration

    2016-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of the Large Hadron Collider (LHC). The increase of instantaneous luminosity foreseen during the LHC Run 2, will lead to an increased detector occupancy that is expected to saturate the readout links of the outermost layers of the pixel detector: Layers 1 and 2. To ensure a smooth data taking under such conditions, the read out system of the recently installed fourth innermost pixel layer, the Insertable B-Layer, was modified to accomodate the needs of the older detector. The Layer 2 upgrade installation took place during the 2015 winter shutdown, with the Layer 1 installation scheduled for 2016. A report of the successful installation, together with the design of novel dedicated optical to electrical converters and the software and firmware updates will be presented.

  10. Design of readout drivers for ATLAS pixel detectors using field programmable gate arrays

    CERN Document Server

    Sivasubramaniyan, Sriram

    Microstrip detectors are an integral patt of high energy physics research . Special protocols are used to transmit the data from these detectors . To readout the data from such detectors specialized instrumentation have to be designed . To achieve this task, creative and innovative high speed algorithms were designed simulated and implemented in Field Programmable gate arrays, using CAD/CAE tools. The simulation results indicated that these algorithms would be able to perform all the required tasks quickly and efficiently. This thesis describes the design of data acquisition system called the Readout Drivers (ROD) . It focuses on the ROD data path for ATLAS Pixel detectors. The data path will be an integrated part of Readout Drivers setup to decode the data from the silicon micro strip detectors and pixel detectors. This research also includes the design of Readout Driver controller. This Module is used to control the operation of the ROD. This module is responsible for the operation of the Pixel decoders bas...

  11. Radiationhard components for the control system of a future ATLAS pixel detector

    International Nuclear Information System (INIS)

    Becker, K; Boek, J; Kersten, S; Kind, P; Maettig, P; Puellen, L; Zeitnitz, C

    2011-01-01

    The upgrade of the ATLAS experiment for the High Luminosity LHC (HL-LHC) will include a new pixel detector. A completely new detector control system (DCS) for this pixel detector will be required in order to cope with the substantial increase in radiation at the HL-LHC. The DCS has to have a very high reliability and all components installed within the detector volume have to be radiationhard. This will ensure a safe operation of the pixel detector and the experiment. A further design constraint is the minimization of the used material and cables in order to limit the impact on the tracking performance to a minimum. To meet these requirements we propose a DCS network which consists of a DCS chip and a DCS controller. In the following we present the development of the first prototypes for the DCS chip and the DCS controller with a special focus on the communication interface, radiation hardness and robustness against single event upsets.

  12. Optical readout in a multi-module system test for the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Flick, Tobias; Becks, Karl-Heinz; Gerlach, Peter; Kersten, Susanne; Maettig, Peter; Nderitu Kirichu, Simon; Reeves, Kendall; Richter, Jennifer; Schultes, Joachim

    2006-01-01

    The innermost part of the ATLAS experiment at the LHC, CERN, will be a pixel detector, which is presently under construction. The command messages and the readout data of the detector are transmitted over an optical data path. The readout chain consists of many components which are produced at several locations around the world, and must work together in the pixel detector. To verify that these parts are working together as expected a system test has been built up. It consists of detector modules, optoboards, optical fibres, Back of Crate cards, Readout Drivers, and control computers. In this paper, the system test setup and the operation of the readout chain are described. Also, some results of tests using the final pixel detector readout chain are given

  13. Design optimization of pixel sensors using device simulations for the phase-II CMS tracker upgrade

    Science.gov (United States)

    Jain, G.; Bhardwaj, A.; Dalal, R.; Eber, R.; Eichorn, T.; Fernandez, M.; Lalwani, K.; Messineo, A.; Palomo, F. R.; Peltola, T.; Printz, M.; Ranjan, K.; Villa, I.; Hidalgo, S.; CMS Collaboration

    2016-07-01

    In order to address the problems caused by the harsh radiation environment during the high luminosity phase of the LHC (HL-LHC), all silicon tracking detectors (pixels and strips) in the CMS experiment will undergo an upgrade. And so to develop radiation hard pixel sensors, simulations have been performed using the 2D TCAD device simulator, SILVACO, to obtain design parameters. The effect of various design parameters like pixel size, pixel depth, implant width, metal overhang, p-stop concentration, p-stop depth and bulk doping density on the leakage current and critical electric field are studied for both non-irradiated as well as irradiated pixel sensors. These 2D simulation results of planar pixels are useful for providing insight into the behaviour of non-irradiated and irradiated silicon pixel sensors and further work on 3D simulation is underway.

  14. Design optimization of pixel sensors using device simulations for the phase-II CMS tracker upgrade

    International Nuclear Information System (INIS)

    Jain, G.; Bhardwaj, A.; Dalal, R.; Eber, R.; Eichorn, T.; Fernandez, M.; Lalwani, K.; Messineo, A.; Palomo, F.R.; Peltola, T.; Printz, M.; Ranjan, K.; Villa, I.; Hidalgo, S.

    2016-01-01

    In order to address the problems caused by the harsh radiation environment during the high luminosity phase of the LHC (HL-LHC), all silicon tracking detectors (pixels and strips) in the CMS experiment will undergo an upgrade. And so to develop radiation hard pixel sensors, simulations have been performed using the 2D TCAD device simulator, SILVACO, to obtain design parameters. The effect of various design parameters like pixel size, pixel depth, implant width, metal overhang, p-stop concentration, p-stop depth and bulk doping density on the leakage current and critical electric field are studied for both non-irradiated as well as irradiated pixel sensors. These 2D simulation results of planar pixels are useful for providing insight into the behaviour of non-irradiated and irradiated silicon pixel sensors and further work on 3D simulation is underway.

  15. Design optimization of pixel sensors using device simulations for the phase-II CMS tracker upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Jain, G., E-mail: geetikajain.hep@gmail.com [CDRST, Department of Physics & Astrophysics, University of Delhi, Delhi (India); Bhardwaj, A.; Dalal, R. [CDRST, Department of Physics & Astrophysics, University of Delhi, Delhi (India); Eber, R. [Institute fur Experimentelle Kernphysik (Germany); Eichorn, T. [Deutsches Elektronen Synchrotron (Germany); Fernandez, M. [Instituto de Fisica de Cantabria (Spain); Lalwani, K. [CDRST, Department of Physics & Astrophysics, University of Delhi, Delhi (India); Messineo, A. [Universita di Pisa & INFN sez. di Pisa (Italy); Palomo, F.R. [Escuela Superior de Ingenieros, Universidad de Sevilla (Spain); Peltola, T. [Helsinki Institute of Physics (Finland); Printz, M. [Institute fur Experimentelle Kernphysik (Germany); Ranjan, K. [CDRST, Department of Physics & Astrophysics, University of Delhi, Delhi (India); Villa, I. [Instituto de Fisica de Cantabria (Spain); Hidalgo, S. [Instituto de Microelectronica de Barcelona, Centro Nacional de Microelectronica (Spain)

    2016-07-11

    In order to address the problems caused by the harsh radiation environment during the high luminosity phase of the LHC (HL-LHC), all silicon tracking detectors (pixels and strips) in the CMS experiment will undergo an upgrade. And so to develop radiation hard pixel sensors, simulations have been performed using the 2D TCAD device simulator, SILVACO, to obtain design parameters. The effect of various design parameters like pixel size, pixel depth, implant width, metal overhang, p-stop concentration, p-stop depth and bulk doping density on the leakage current and critical electric field are studied for both non-irradiated as well as irradiated pixel sensors. These 2D simulation results of planar pixels are useful for providing insight into the behaviour of non-irradiated and irradiated silicon pixel sensors and further work on 3D simulation is underway.

  16. Improvement to the signaling interface for CMOS pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zhan, E-mail: sz1134@163.com [Dalian University of Technology, No.2 Linggong Road, 116024 Dalian (China); Tang, Zhenan, E-mail: tangza@dlut.edu.cn [Dalian University of Technology, No.2 Linggong Road, 116024 Dalian (China); Feng, Chong [Dalian University of Technology, No.2 Linggong Road, 116024 Dalian (China); Dalian Minzu University, No.18 Liaohe West Road, 116600 Dalian (China); Cai, Hong [Dalian University of Technology, No.2 Linggong Road, 116024 Dalian (China)

    2016-10-01

    The development of the readout speed of CMOS pixel sensors (CPS) is motivated by the demanding requirements of future high energy physics (HEP) experiments. As the interface between CPS and the data acquisition (DAQ) system, which inputs clock from the DAQ system and outputs data from CPS, the signaling interface should also be improved in terms of data rates. Meanwhile, the power consumption of the signaling interface should be maintained as low as possible. Consequently, a reduced swing differential signaling (RSDS) driver was adopted instead of a low-voltage differential signaling (LVDS) driver to transmit data from CPS to the DAQ system. In order to increase the capability of data rates, a serial source termination technique was employed. A LVDS/RSDS receiver was employed for transmitting clock from the DAQ system to CPS. A new method of generating hysteresis and a special current comparator were used to achieve a higher speed with lower power consumption. The signaling interface was designed and submitted for fabrication in a 0.18 µm CMOS image sensor (CIS) process. Measurement results indicate that the RSDS driver and the LVDS receiver can operate correctly at a data rate of 2 Gb/s with a power consumption of 19.1 mW.

  17. Test-beam activities and results for the ATLAS ITk pixel detector

    Science.gov (United States)

    Bisanz, T.

    2017-12-01

    The Phase-II upgrade of the LHC aims at an increase of the instantaneous luminosity up to about 5×1034 cm-2 s-1. To cope with the resulting challenges the current Inner Detector will be replaced by an all-silicon Inner Tracker (ITk) system. The Pixel Detector will have to deal with occupancies of about 300 hits/FE/s as well as a fluence of around 2×1016 neq cm-2. Various sensor layouts are under development, aiming at providing a high performance, cost effective pixel instrumentation to cover an active area of about 10 m2. These range from thin planar silicon, 3D silicon, to active CMOS sensors. After extensive characterization of the sensors in the lab, their charge collection properties and hit efficiency are measured in common testbeam campaigns, which provide valuable feedback for improvements of the layout. Testbeam measurements of the final prototypes will be used for the decision of which sensor types will be installed in ITk. The setups used in the ITk Pixel testbeam campaigns will be presented, including the common track reconstruction and analysis software. Results from the latest measurements will be shown, highlighting some of the developments and challenges for the ITk Pixel sensors.

  18. IV and CV curves for irradiated prototype BTeV silicon pixel sensors

    International Nuclear Information System (INIS)

    Coluccia, Maria R.

    2002-01-01

    The authors present IV and CV curves for irradiated prototype n + /n/p + silicon pixel sensors, intended for use in the BTeV experiment at Fermilab. They tested pixel sensors from various vendors and with two pixel isolation layouts: p-stop and p-spray. Results are based on exposure with 200 MeV protons up to 6 x 10 14 protons/cm 2

  19. Investigation of the impact of mechanical stress on the properties of silicon sensor modules for the ATLAS Phase II upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Stegler, Martin; Polay, Luise; Spehrlich, Dennis; Bloch, Ingo [DESY, Zeuthen (Germany)

    2016-07-01

    The new ATLAS tracker for phase II will be composed of silicon pixel and strip sensor modules. Such a module consists of silicon sensors, boards and readout chips. In a currently ongoing study new adhesives to connect the modular components thermally and mechanically are examined. It was shown that the silicon sensor is exposed to mechanical stress when part of a module. Mechanical stress can cause damage to a sensor and can change the tensors of electrical properties. The study of the effects of mechanical stress on characteristics of the silicon sensor modules are the focus in this presentation. The thermal induced tensile stress near to the surface of a silicon sensor build in a module was simulated. A four point bending setup was used to measure the maximum tensile stress of silicon and to verify the piezoresistive effect on ATLAS07 sensors. The results of the electrical measurements and simulations of stressed silicon sensor modules are shown in the presentation.

  20. 4T CMOS Active Pixel Sensors under Ionizing Radiation

    NARCIS (Netherlands)

    Tan, J.

    2013-01-01

    This thesis investigates the ionizing radiation effects on 4T pixels and the elementary in-pixel test devices with regard to the electrical performance and the optical performance. In addition to an analysis of the macroscopic pixel parameter degradation, the radiation-induced degradation mechanisms

  1. X-ray imaging characterization of active edge silicon pixel sensors

    International Nuclear Information System (INIS)

    Ponchut, C; Ruat, M; Kalliopuska, J

    2014-01-01

    The aim of this work was the experimental characterization of edge effects in active-edge silicon pixel sensors, in the frame of X-ray pixel detectors developments for synchrotron experiments. We produced a set of active edge pixel sensors with 300 to 500 μm thickness, edge widths ranging from 100 μm to 150 μm, and n or p pixel contact types. The sensors with 256 × 256 pixels and 55 × 55 μm 2 pixel pitch were then bump-bonded to Timepix readout chips for X-ray imaging measurements. The reduced edge widths makes the edge pixels more sensitive to the electrical field distribution at the sensor boundaries. We characterized this effect by mapping the spatial response of the sensor edges with a finely focused X-ray synchrotron beam. One of the samples showed a distortion-free response on all four edges, whereas others showed variable degrees of distortions extending at maximum to 300 micron from the sensor edge. An application of active edge pixel sensors to coherent diffraction imaging with synchrotron beams is described

  2. Production and characterisation of SLID interconnected n-in-p pixel modules with 75 μm thin silicon sensors

    Energy Technology Data Exchange (ETDEWEB)

    Andricek, L. [Halbleiterlabor der Max-Planck-Gesellschaft, Otto Hahn Ring 6, D-81739 München (Germany); Beimforde, M.; Macchiolo, A.; Moser, H.-G. [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 München (Germany); Nisius, R., E-mail: Richard.Nisius@mpp.mpg.de [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 München (Germany); Richter, R.H. [Halbleiterlabor der Max-Planck-Gesellschaft, Otto Hahn Ring 6, D-81739 München (Germany); Terzo, S.; Weigell, P. [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 München (Germany)

    2014-09-11

    The performance of pixel modules built from 75 μm thin silicon sensors and ATLAS read-out chips employing the Solid Liquid InterDiffusion (SLID) interconnection technology is presented. This technology, developed by the Fraunhofer EMFT, is a possible alternative to the standard bump-bonding. It allows for stacking of different interconnected chip and sensor layers without destroying the already formed bonds. In combination with Inter-Chip-Vias (ICVs) this paves the way for vertical integration. Both technologies are combined in a pixel module concept which is the basis for the modules discussed in this paper. Mechanical and electrical parameters of pixel modules employing both SLID interconnections and sensors of 75 μm thickness are covered. The mechanical features discussed include the interconnection efficiency, alignment precision and mechanical strength. The electrical properties comprise the leakage currents, tuning characteristics, charge collection, cluster sizes and hit efficiencies. Targeting at a usage at the high luminosity upgrade of the LHC accelerator called HL-LHC, the results were obtained before and after irradiation up to fluences of 10{sup 16}n{sub eq}/cm{sup 2}.

  3. A 128 x 128 CMOS Active Pixel Image Sensor for Highly Integrated Imaging Systems

    Science.gov (United States)

    Mendis, Sunetra K.; Kemeny, Sabrina E.; Fossum, Eric R.

    1993-01-01

    A new CMOS-based image sensor that is intrinsically compatible with on-chip CMOS circuitry is reported. The new CMOS active pixel image sensor achieves low noise, high sensitivity, X-Y addressability, and has simple timing requirements. The image sensor was fabricated using a 2 micrometer p-well CMOS process, and consists of a 128 x 128 array of 40 micrometer x 40 micrometer pixels. The CMOS image sensor technology enables highly integrated smart image sensors, and makes the design, incorporation and fabrication of such sensors widely accessible to the integrated circuit community.

  4. A neural network clustering algorithm for the ATLAS silicon pixel detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Almond, John; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boddy, Christopher Richard; Boehler, Michael; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gandrajula, Reddy Pratap; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Guan, Liang; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le, Bao Tran; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonhardt, Kathrin; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marques, Carlos; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moraes, Arthur; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sauvage, Gilles; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Christopher; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    2014-09-15

    A novel technique to identify and split clusters created by multiple charged particles in the ATLAS pixel detector using a set of artificial neural networks is presented. Such merged clusters are a common feature of tracks originating from highly energetic objects, such as jets. Neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. This technique replaces the former clustering approach based on a connected component analysis and charge interpolation. The performance of the neural network splitting technique is quantified using data from proton-proton collisions at the LHC collected by the ATLAS detector in 2011 and from Monte Carlo simulations. This technique reduces the number of clusters shared between tracks in highly energetic jets by up to a factor of three. It also provides more precise position and error estimates of the clusters in both the transverse and longitudinal impact parameter resolution.

  5. The phase-II ATLAS pixel tracker upgrade: layout and mechanics.

    CERN Document Server

    Sharma, Abhishek; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment will upgrade its tracking detector during the Phase-II LHC shutdown, to better take advantage of the increased luminosity of the HL-LHC. The upgraded tracker will consist of silicon-strip modules surrounding a pixel detector, and will likely cover an extended eta range, perhaps as far as |eta|<4.0. A number of layout and supporting-structure options are being considered for the pixel detector, with the final choice expected to be made in early 2017. The proposed supporting structures are based on lightweight, highly-thermally-conductive carbon-based materials and are cooled by evaporative carbon dioxide. The various layouts will be described and a description of the supporting structures will be presented, along with results from testing of prototypes.

  6. Firmware development and testing of the ATLAS Pixel Detector / IBL ROD card

    International Nuclear Information System (INIS)

    Gabrielli, A.; Balbi, G.; Falchieri, D.; Lama, L.; Travaglini, R.; Backhaus, M.; Bindi, M.; Chen, S.P.; Hauck, S.; Hsu, S.C.; Flick, T.; Wensing, M.; Kretz, M.; Kugel, A.

    2015-01-01

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shut down. In particular, the Pixel detector has inserted an additional inner layer called the Insertable B-Layer (IBL). The Readout-Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL's off-detector DAQ system. The strategy for IBL ROD firmware development was three-fold: keeping as much of the Pixel ROD datapath firmware logic as possible, employing a complete new scheme of steering and calibration firmware, and designing the overall system to prepare for a future unified code version integrating IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBL DAQ test bench using a realistic front-end chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBL ROD data path implementation, test on the test bench and ROD prototypes, will be reported. Recent Pixel collaboration efforts focus on finalizing hardware and firmware tests for the IBL. The plan is to approach a complete IBL DAQ hardware-software installation by the end of 2014

  7. Photodiode area effect on performance of X-ray CMOS active pixel sensors

    Science.gov (United States)

    Kim, M. S.; Kim, Y.; Kim, G.; Lim, K. T.; Cho, G.; Kim, D.

    2018-02-01

    Compared to conventional TFT-based X-ray imaging devices, CMOS-based X-ray imaging sensors are considered next generation because they can be manufactured in very small pixel pitches and can acquire high-speed images. In addition, CMOS-based sensors have the advantage of integration of various functional circuits within the sensor. The image quality can also be improved by the high fill-factor in large pixels. If the size of the subject is small, the size of the pixel must be reduced as a consequence. In addition, the fill factor must be reduced to aggregate various functional circuits within the pixel. In this study, 3T-APS (active pixel sensor) with photodiodes of four different sizes were fabricated and evaluated. It is well known that a larger photodiode leads to improved overall performance. Nonetheless, if the size of the photodiode is > 1000 μm2, the degree to which the sensor performance increases as the photodiode size increases, is reduced. As a result, considering the fill factor, pixel-pitch > 32 μm is not necessary to achieve high-efficiency image quality. In addition, poor image quality is to be expected unless special sensor-design techniques are included for sensors with a pixel pitch of 25 μm or less.

  8. Characterization of pixel sensor designed in 180 nm SOI CMOS technology

    Science.gov (United States)

    Benka, T.; Havranek, M.; Hejtmanek, M.; Jakovenko, J.; Janoska, Z.; Marcisovska, M.; Marcisovsky, M.; Neue, G.; Tomasek, L.; Vrba, V.

    2018-01-01

    A new type of X-ray imaging Monolithic Active Pixel Sensor (MAPS), X-CHIP-02, was developed using a 180 nm deep submicron Silicon On Insulator (SOI) CMOS commercial technology. Two pixel matrices were integrated into the prototype chip, which differ by the pixel pitch of 50 μm and 100 μm. The X-CHIP-02 contains several test structures, which are useful for characterization of individual blocks. The sensitive part of the pixel integrated in the handle wafer is one of the key structures designed for testing. The purpose of this structure is to determine the capacitance of the sensitive part (diode in the MAPS pixel). The measured capacitance is 2.9 fF for 50 μm pixel pitch and 4.8 fF for 100 μm pixel pitch at -100 V (default operational voltage). This structure was used to measure the IV characteristics of the sensitive diode. In this work, we report on a circuit designed for precise determination of sensor capacitance and IV characteristics of both pixel types with respect to X-ray irradiation. The motivation for measurement of the sensor capacitance was its importance for the design of front-end amplifier circuits. The design of pixel elements, as well as circuit simulation and laboratory measurement techniques are described. The experimental results are of great importance for further development of MAPS sensors in this technology.

  9. First Results from Cherwell, a Monolithic Active Pixel Sensor for Particle Physics

    CERN Document Server

    Nooney, Tamsin; Borri, Marcello; Crooks, Jamie; Headspith, Jon; Inguglia, Gianluca; Kolya, Scott; Lazarus, Ian; Lemmon, Roy; Mylroie-Smith, James; Turchetta, Renato; Velthuis, Jaap; Wilson, Fergus

    2014-01-01

    Cherwell is a CMOS Monolithic Active Pixel Sensor (MAPS) developed for digital calorimetry and charged particle tracking applications. Here, we outline the initial tests carried out to charac- terise the performance of Cherwell, give details of the test beam carried out at CERN and include the first results from this analysis. Three variations of the chip were tested; Type A, a high re- sistivity, low noise sensor, Type B, a standard resisivity, low noise sensor and Type C, a standard resistivity, standard noise sensor. The sensors yield an average RMS noise value per pixel of 9.6 e

  10. Test beam evaluation of newly developed n-in-p planar pixel sensors for use in a high radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, K., E-mail: kimihiko@hep.phys.titech.ac.jp [Institute of Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8551 (Japan); Yamaguchi, D.; Motohashi, K. [Institute of Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8551 (Japan); Nakamura, K.; Unno, Y. [Institute of Particle and Nuclear Study, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Jinnouchi, O. [Institute of Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8551 (Japan); Altenheiner, S. [Experimentelle Physik IV, Technische Universität Dortmund, 44221 Dortmund (Germany); Blue, A. [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, Scotland (United Kingdom); Bomben, M. [CNRS/IN2P3 (France); Laboratoire de physique nucléaire et de hautes energies (LPNHE), Univ. Paris-UMPC, 4 Place Jussieu, 75005 Paris (France); Univ. Paris Diderot (France); Butter, A. [LAL, University Paris-Sud (France); CNRS/IN2P3 (France); Université Paris-Saclay, Orsay (France); Cervelli, A. [Universität Bern, Laboratory for High Energy Physics, Sidlerstrasse 55, CH-3012 Bern (Switzerland); Crawley, S. [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, Scotland (United Kingdom); Ducourthial, A. [CNRS/IN2P3 (France); Laboratoire de physique nucléaire et de hautes energies (LPNHE), Univ. Paris-UMPC, 4 Place Jussieu, 75005 Paris (France); Univ. Paris Diderot (France); Gisen, A. [Experimentelle Physik IV, Technische Universität Dortmund, 44221 Dortmund (Germany); Hagihara, M. [Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8751 (Japan); and others

    2016-09-21

    Radiation-tolerant n-in-p planar pixel sensors have been under development in cooperation with Hamamatsu Photonics K.K. (HPK). This is geared towards applications in high-radiation environments, such as for the future Inner Tracker (ITk) placed in the innermost part of the ATLAS detector in the high luminosity LHC (HL-LHC) experiment. Prototypes of those sensors have been produced, irradiated, and evaluated over the last few years. In the previous studies, it was reported that significant drops in the detection efficiency were observed after irradiation, especially under bias structures. The bias structures are made up of poly-Si or Al bias rails and poly-Si bias resistors. The structure is implemented on the sensors to allow quality checks to be performed before the bump-bonding process, and to ensure that charge generated in floating pixels due to non-contacting or missing bump-bonds is dumped in a controlled way in order to avoid noise. To minimize the efficiency drop, several new pixel structures have been designed with bias rails and bias resistors relocated. Several test beams have been carried out to evaluate the drops in the detection efficiency of the new sensor structures after irradiation. Newly developed sensor modules were irradiated with proton-beams at the Cyclotron and Radio-Isotope Center (CYRIC) in Tohoku University to see the effect of sensor-bulk damage and surface charge-up. An irradiation with γ-rays was also carried out at Takasaki Advanced Radiation Research Center, with the goal of decoupling the effect of surface charge-up from that of bulk damage. Those irradiated sensors have been evaluated with particle beams at DESY and CERN. Comparison between different sensor structures confirmed significant improvements in minimizing efficiency loss under the bias structures after irradiation. The results from γ-irradiation also enabled cross-checking the results of a semiconductor technology simulation program (TCAD). - Highlights: • The

  11. Test-beam activities and results for the ATLAS ITk pixel detector

    CERN Document Server

    Bisanz, Tobias; The ATLAS collaboration

    2017-01-01

    The Phase-II upgrade of the LHC will result in an increase of the instantaneous luminosity up to about 5×1034 cm−2s−1. To cope with the challenges the current Inner Detector will be replaced by an all-silicon Inner Tracker (ITk) system. The Pixel Detector will have to deal with occupancies of about 300~hits/FE/s as well as a fluence of 2×1016neqcm−2. Various sensor layouts are under development, aiming at providing a high performance, cost effective pixel instrumentation to cover an active area of about 10~m2. These range from thin planar silicon, over 3D silicon, to active CMOS sensors. After extensive characterization of the sensors in the lab, their charge collection properties and hit efficiency are measured in common testbeam campaigns, which provide valuable feedback for improvements of the layout. Testbeam measurements of the final prototypes will be used for the decision of which sensor types will be installed in ITk. The setups used in the ITk Pixel testbeam campaigns will be presented, inclu...

  12. Tracking and b-tagging with pixel vertex detector in ATLAS experiment at LHC

    International Nuclear Information System (INIS)

    Vacavant, L.

    1997-06-01

    The capability of the ATLAS detector to tag b-jets is studied, using the impact parameter of charged tracks. High b-tagging performance is needed at LHC, especially during the first years of running, in order to see evidence of the Higgs boson if its mass lies between 80 and 120 GeV/c 2 . A pattern-recognition algorithm has been developed for this purpose, using a detailed simulation of the ATLAS inner detector. Track-finding starts from the pixel detector layers. A 'hyper-plane' concept allows the use of a simple tracking algorithm though the complex geometry. High track-finding efficiency and reconstruction quality ensure the discrimination of b-jets from other kinds of jets. After full simulation and reconstruction of H → bb-bar, H → gg, H → uu-bar, H → ss-bar and H → cc-bar events (m H = 100 GeV/c 2 ), the mean rejections achieved against non-b-jets for a 50% b-jet tagging efficiency are as follows: R g =39±5 R u = 60 ± 9 R s = 38 ± 5 R c = 9 ± 1 The analysis of data from the first radiation-hard pixel detector prototypes justifies the potential of these detectors for track-finding and high-precision impact parameter measurement at LHC. (author)

  13. CMOS Active-Pixel Image Sensor With Intensity-Driven Readout

    Science.gov (United States)

    Langenbacher, Harry T.; Fossum, Eric R.; Kemeny, Sabrina

    1996-01-01

    Proposed complementary metal oxide/semiconductor (CMOS) integrated-circuit image sensor automatically provides readouts from pixels in order of decreasing illumination intensity. Sensor operated in integration mode. Particularly useful in number of image-sensing tasks, including diffractive laser range-finding, three-dimensional imaging, event-driven readout of sparse sensor arrays, and star tracking.

  14. Active pixel sensor pixel having a photodetector whose output is coupled to an output transistor gate

    Science.gov (United States)

    Fossum, Eric R. (Inventor); Nakamura, Junichi (Inventor); Kemeny, Sabrina E. (Inventor)

    2005-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node. There is also a readout circuit, part of which can be disposed at the bottom of each column of cells and be common to all the cells in the column. A Simple Floating Gate (SFG) pixel structure could also be employed in the imager to provide a non-destructive readout and smaller pixel sizes.

  15. Radiation hard pixel sensors using high-resistive wafers in a 150 nm CMOS processing line

    Science.gov (United States)

    Pohl, D.-L.; Hemperek, T.; Caicedo, I.; Gonella, L.; Hügging, F.; Janssen, J.; Krüger, H.; Macchiolo, A.; Owtscharenko, N.; Vigani, L.; Wermes, N.

    2017-06-01

    Pixel sensors using 8'' CMOS processing technology have been designed and characterized offering the benefits of industrial sensor fabrication, including large wafers, high throughput and yield, as well as low cost. The pixel sensors are produced using a 150 nm CMOS technology offered by LFoundry in Avezzano. The technology provides multiple metal and polysilicon layers, as well as metal-insulator-metal capacitors that can be employed for AC-coupling and redistribution layers. Several prototypes were fabricated and are characterized with minimum ionizing particles before and after irradiation to fluences up to 1.1 × 1015 neq cm-2. The CMOS-fabricated sensors perform equally well as standard pixel sensors in terms of noise and hit detection efficiency. AC-coupled sensors even reach 100% hit efficiency in a 3.2 GeV electron beam before irradiation.

  16. The effect of split pixel HDR image sensor technology on MTF measurements

    Science.gov (United States)

    Deegan, Brian M.

    2014-03-01

    Split-pixel HDR sensor technology is particularly advantageous in automotive applications, because the images are captured simultaneously rather than sequentially, thereby reducing motion blur. However, split pixel technology introduces artifacts in MTF measurement. To achieve a HDR image, raw images are captured from both large and small sub-pixels, and combined to make the HDR output. In some cases, a large sub-pixel is used for long exposure captures, and a small sub-pixel for short exposures, to extend the dynamic range. The relative size of the photosensitive area of the pixel (fill factor) plays a very significant role in the output MTF measurement. Given an identical scene, the MTF will be significantly different, depending on whether you use the large or small sub-pixels i.e. a smaller fill factor (e.g. in the short exposure sub-pixel) will result in higher MTF scores, but significantly greater aliasing. Simulations of split-pixel sensors revealed that, when raw images from both sub-pixels are combined, there is a significant difference in rising edge (i.e. black-to-white transition) and falling edge (white-to-black) reproduction. Experimental results showed a difference of ~50% in measured MTF50 between the falling and rising edges of a slanted edge test chart.

  17. Status and perspectives of pixel sensors based on 3D vertical integration

    Energy Technology Data Exchange (ETDEWEB)

    Re, Valerio [Università di Bergamo, Dipartimento di Ingegneria, Viale Marconi, 5, 24044 Dalmine (Italy); INFN, Sezione di Pavia, Via Bassi, 6, 27100 Pavia (Italy)

    2014-11-21

    This paper reviews the most recent developments of 3D integration in the field of silicon pixel sensors and readout integrated circuits. This technology may address the needs of future high energy physics and photon science experiments by increasing the electronic functional density in small pixel readout cells and by stacking various device layers based on different technologies, each optimized for a different function. Current efforts are aimed at improving the performance of both hybrid pixel detectors and of CMOS sensors. The status of these activities is discussed here, taking into account experimental results on 3D devices developed in the frame of the 3D-IC consortium. The paper also provides an overview of the ideas that are being currently devised for novel 3D vertically integrated pixel sensors. - Highlights: • 3D integration is a promising technology for pixel sensors in high energy physics. • Experimental results on two-layer 3D CMOS pixel sensors are presented. • The outcome of the first run from the 3D-IC consortium is discussed. • The AIDA network is studying via-last 3D integration of heterogeneous layers. • New ideas based on 3D vertically integrated pixels are being developed for HEP.

  18. Status and perspectives of pixel sensors based on 3D vertical integration

    International Nuclear Information System (INIS)

    Re, Valerio

    2014-01-01

    This paper reviews the most recent developments of 3D integration in the field of silicon pixel sensors and readout integrated circuits. This technology may address the needs of future high energy physics and photon science experiments by increasing the electronic functional density in small pixel readout cells and by stacking various device layers based on different technologies, each optimized for a different function. Current efforts are aimed at improving the performance of both hybrid pixel detectors and of CMOS sensors. The status of these activities is discussed here, taking into account experimental results on 3D devices developed in the frame of the 3D-IC consortium. The paper also provides an overview of the ideas that are being currently devised for novel 3D vertically integrated pixel sensors. - Highlights: • 3D integration is a promising technology for pixel sensors in high energy physics. • Experimental results on two-layer 3D CMOS pixel sensors are presented. • The outcome of the first run from the 3D-IC consortium is discussed. • The AIDA network is studying via-last 3D integration of heterogeneous layers. • New ideas based on 3D vertically integrated pixels are being developed for HEP

  19. Firmware development and testing of the ATLAS Pixel Detector / IBL ROD card

    CERN Document Server

    Gabrielli, Alessandro; The ATLAS collaboration; Balbi, Gabriele; Bindi, Marcello; Chen, Shaw-pin; Falchieri, Davide; Flick, Tobias; Hauck, Scott Alan; Hsu, Shih-Chieh; Kretz, Moritz; Kugel, Andreas; Lama, Luca; Travaglini, Riccardo; Wensing, Marius; ATLAS Pixel Collaboration

    2015-01-01

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shut down. In particular, the Pixel detector has inserted an additional inner layer called Insertable B-Layer (IBL). The Readout-Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL’s off-detector DAQ system. The strategy for IBL ROD firmware development was three-fold: keeping as much of the Pixel ROD datapath firmware logic as possible, employing a complete new scheme of steering and calibration firmware and designing the overall system to prepare for a future unified code version integrating IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBL DAQ testbench using realistic frontend chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBL ROD data pat...

  20. Firmware development and testing of the ATLAS Pixel Detector / IBL ROD card

    CERN Document Server

    Balbi, G; The ATLAS collaboration; Gabrielli, A; Lama, L; Travaglini, R; Backhaus, M; Bindi, M; Chen, S-P; Flick, T; Kretz, M; Kugel, A; Wensing, M

    2014-01-01

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shut down. In particular, the Pixel detector has inserted an additional inner layer called Insertable B-Layer (IBL). The Readout-Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL’s off-detector DAQ system. The strategy for IBLROD firmware development was three-fold: keeping as much of the PixelROD datapath firmware logic as possible, employing a complete new scheme of steering and calibration firmware and designing the overall system to prepare for a future unified code version integrating IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBLDAQ testbench using realistic frontend chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBLROD data path im...

  1. System test and noise performance studies at the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Weingarten, J.

    2007-09-01

    The central component of the ATLAS Inner Tracker is the pixel detector. It consists of three barrel layers and three disk-layers in the end-caps in both forward directions. The innermost barrel layer is mounted at a distance of about 5 cm from the interaction region. With its very high granularity, truly two-dimensional hit information, and fast readout it is well suited to cope with the high densities of charged tracks, expected this close to the interaction region. The huge number of readout channels necessitates a very complex services infrastructure for powering, readout and safety. After a description of the pixel detector and its services infrastructure, key results from the system test at CERN are presented. Furthermore the noise performance of the pixel detector, crucial for high tracking and vertexing efficiencies, is studied. Measurements of the single-channel random noise are presented together with studies of common mode noise and measurements of the noise occupancy using a random trigger generator. (orig.)

  2. submitter Development of the readout for the IBL upgrade project of the ATLAS Pixel Detector

    CERN Document Server

    Krieger, Nina

    The LHC luminosity is upgraded in several phases until 2022. The resulting higher occupancy degrades the detector performance of the current Pixel Detector. To provide a good performance during the LHC luminosity upgrade, a fourth pixel layer is inserted into the existing ATLAS Pixel Detector. A new FE-I4 readout chip and a new data acquisition chain are required to cope with the higher track rate and the resulting increased bandwidth. Among others, this includes a new readout board: the IBL ROD. One component of this board is the DSP which creates commands for the FE-I4 chip and has to be upgraded as well. In this thesis, the first tests of the IBL ROD prototype are presented. A correct communication of the DSP to its external memory is verified. Moreover, the implementations for an IBL DSP code are described and tested. This includes the first configuration of the FE-I4 with an IBL ROD. In addition, a working communication with the Histogrammer SDRAM and the Input FIFO on the IBL ROD are demonstrated.

  3. System test and noise performance studies at the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Weingarten, J.

    2007-09-15

    The central component of the ATLAS Inner Tracker is the pixel detector. It consists of three barrel layers and three disk-layers in the end-caps in both forward directions. The innermost barrel layer is mounted at a distance of about 5 cm from the interaction region. With its very high granularity, truly two-dimensional hit information, and fast readout it is well suited to cope with the high densities of charged tracks, expected this close to the interaction region. The huge number of readout channels necessitates a very complex services infrastructure for powering, readout and safety. After a description of the pixel detector and its services infrastructure, key results from the system test at CERN are presented. Furthermore the noise performance of the pixel detector, crucial for high tracking and vertexing efficiencies, is studied. Measurements of the single-channel random noise are presented together with studies of common mode noise and measurements of the noise occupancy using a random trigger generator. (orig.)

  4. First experiences with the ATLAS pixel detector control system at the combined test beam 2004

    International Nuclear Information System (INIS)

    Imhaeuser, Martin; Becks, Karl-Heinz; Henss, Tobias; Kersten, Susanne; Maettig, Peter; Schultes, Joachim

    2006-01-01

    Detector control systems (DCS) include the readout, control and supervision of hardware devices as well as the monitoring of external systems like cooling system and the processing of control data. The implementation of such a system in the final experiment also has to provide the communication with the trigger and data acquisition system (TDAQ). In addition, conditions data which describe the status of the pixel detector modules and their environment must be logged and stored in a common LHC wide database system. At the combined test beam all ATLAS subdetectors were operated together for the first time over a longer period. To ensure the functionality of the pixel detector, a control system was set up. We describe the architecture chosen for the pixel DCS, the interfaces to hardware devices, the interfaces to the users and the performance of our system. The embedding of the DCS in the common infrastructure of the combined test beam and also its communication with surrounding systems will be discussed in some detail

  5. Active pixel sensors: The sensor of choice for future space applications

    OpenAIRE

    Leijtens, J.; Theuwissen, A.; Rao, P.R.; Wang, X.; Xie, N.

    2007-01-01

    It is generally known that active pixel sensors (APS) have a number of advantages over CCD detectors if it comes to cost for mass production, power consumption and ease of integration. Nevertheless, most space applications still use CCD detectors because they tend to give better performance and have a successful heritage. To this respect a change may be at hand with the advent of deep sub-micron processed APS imagers (< 0.25-micron feature size). Measurements performed on test structures at t...

  6. 1T Pixel Using Floating-Body MOSFET for CMOS Image Sensors.

    Science.gov (United States)

    Lu, Guo-Neng; Tournier, Arnaud; Roy, François; Deschamps, Benoît

    2009-01-01

    We present a single-transistor pixel for CMOS image sensors (CIS). It is a floating-body MOSFET structure, which is used as photo-sensing device and source-follower transistor, and can be controlled to store and evacuate charges. Our investigation into this 1T pixel structure includes modeling to obtain analytical description of conversion gain. Model validation has been done by comparing theoretical predictions and experimental results. On the other hand, the 1T pixel structure has been implemented in different configurations, including rectangular-gate and ring-gate designs, and variations of oxidation parameters for the fabrication process. The pixel characteristics are presented and discussed.

  7. Beam test results for the RAPS03 non-epitaxial CMOS active pixel sensor

    International Nuclear Information System (INIS)

    Biagetti, Daniele; Marras, Alessandro; Meroli, Stefano; Passeri, Daniele; Placidi, Pisana; Servoli, Leonello; Tucceri, Paola

    2011-01-01

    Recently our group has been investigating the possibility of using a standard CMOS technology - featuring no epitaxial layer - to fabricate a sensor for charged particle detection. In this work we present the results obtained exposing sensors with 256x256 pixels (10x10μm pixel size, two different pixel layouts) to 180 GeV protons and positrons at the SuperProtoSynchrotron facility (CERN). We have investigated the different response of the two architectural options in terms of S/N, cluster width, intrinsic spatial resolution, efficiency. The results show a good Landau response, S/N about 22 with an average cluster size of 4.5 pixels, and an intrinsic spatial resolution of 1.5μm (order of 1/7th of the pixel size).

  8. Development of the Continuous Acquisition Pixel (CAP) sensor for high luminosity lepton colliders

    International Nuclear Information System (INIS)

    Varner, G.; Aihara, H.; Barbero, M.; Bozek, A.; Browder, T.; Hazumi, M.; Kennedy, J.; Martin, E.; Mueller, J.; Olsen, S.; Palka, H.; Rosen, M.; Ruckman, L.; Stanic, S.; Trabelsi, K.; Tsuboyama, T.; Uchida, K.; Yang, Q.; Yarema, R.

    2006-01-01

    A future higher luminosity B-factory detector and concept study detectors for the proposed International Linear Collider require precision vertex reconstruction while coping with high track densities and radiation exposures. Compared with current silicon strip and hybrid pixels, a significant reduction in the overall detector material thickness is needed to achieve the desired vertex resolution. Considerable progress in the development of thin CMOS-based Monolithic Active Pixel Sensors (MAPS) in recent years makes them a viable technology option and feasibility studies are being actively pursued. The most serious concerns are their radiation hardness and their readout speed. To address these, several prototypes denoted as the Continuous Acquisition Pixel (CAP) sensors have been developed and tested. The latest of the CAP sensor prototypes is CAP3, designed in the TSMC 0.25μm process with a 5-deep Correlated Double Sample (CDS) pair pipeline in each pixel. A setup with several CAP3 sensors is under evaluation to assess the performance of a full-scale pixel readout system running at realistic readout speed. Given the similarity in the occupancy numbers and hit throughput requirements, per unit area, between a Belle vertex detector upgradation and the requirements for a future ILC pixel detector, this effort can be considered a small-scale functioning prototype for such a future system. The results and plans for the next stages of R and D towards a full Belle Pixel Vertex Detector (PVD) are presented

  9. Planar pixel sensors for the ATLAS upgrade: beam tests results

    Czech Academy of Sciences Publication Activity Database

    Weingarten, J.; Altenheiner, S.; Beimforde, M.; Benoit, M.; Bomben, M.; Calderini, G.; Gallrapp, C.; George, M.; Gibson, S.; Grinstein, S.; Janoška, Zdenko; Jentzsch, J.; Jinnouchi, O.; Kishida, T.; La Rosa, A.; Libov, V.; Macchiolo, A.; Marchiori, G.; Muenstermann, D.; Nagai, R.; Piacquadio, G.; Ristic, B.; Rubinskiy, I.; Rummler, A.; Takubo, Y.; Troska, G.; Tsiskaridtze, S.; Tsurin, I.; Unno, Y.; Weigell, P.; Wittig, T.

    2012-01-01

    Roč. 7, Oct (2012), "P10028-1"-"P10028-26" ISSN 1748-0221 Institutional support: RVO:68378271 Keywords : particle tracking detectors * solid state detectors * radiation-hard detectors Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.869, year: 2011

  10. Radiation effects on active pixel sensors (APS); Effets de l'irradiation sur les capteurs a pixels actifs (APS)

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, M.; David, J.P. [ONERA-CERT/, 31 - Toulouse (France)

    1999-07-01

    Active pixel sensor (APS) is a new generation of image sensors which presents several advantages relatively to charge coupled devices (CCDs) particularly for space applications (APS requires only 1 voltage to operate which reduces considerably current consumption). Irradiation was performed using {sup 60}Co gamma radiation at room temperature and at a dose rate of 150 Gy(Si)/h. 2 types of APS have been tested: photodiode-APS and photoMOS-APS. The results show that photoMOS-APS is more sensitive to radiation effects than photodiode-APS. Important parameters of image sensors like dark currents increase sharply with dose levels. Nevertheless photodiode-APS sensitivity is one hundred time lower than photoMOS-APS sensitivity.

  11. Radiation effects on active pixel sensors (APS); Effets de l'irradiation sur les capteurs a pixels actifs (APS)

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, M; David, J P [ONERA-CERT/, 31 - Toulouse (France)

    1999-07-01

    Active pixel sensor (APS) is a new generation of image sensors which presents several advantages relatively to charge coupled devices (CCDs) particularly for space applications (APS requires only 1 voltage to operate which reduces considerably current consumption). Irradiation was performed using {sup 60}Co gamma radiation at room temperature and at a dose rate of 150 Gy(Si)/h. 2 types of APS have been tested: photodiode-APS and photoMOS-APS. The results show that photoMOS-APS is more sensitive to radiation effects than photodiode-APS. Important parameters of image sensors like dark currents increase sharply with dose levels. Nevertheless photodiode-APS sensitivity is one hundred time lower than photoMOS-APS sensitivity.

  12. Test-beam activities and results for the ATLAS ITk pixel detector

    CERN Document Server

    Bisanz, Tobias; The ATLAS collaboration

    2017-01-01

    The Phase-II upgrade of the LHC will result in an increase of the instantaneous luminosity up to about $5\\times10^{34}~\\text{cm}^{-2}\\text{s}^{-1}$. To cope with the resulting challenges the current Inner Detector will be replaced by an all-silicon Inner Tracker (ITk) system. The Pixel Detector will have to deal with occupancies of about 300~hits/FE/s as well as a fluence of $2\\times10^{16}~\\text{n}_\\text{eq}\\text{cm}^{-2}$. Various sensor layouts are under development, aiming at providing a high performance, cost effective pixel instrumentation to cover an active area of about $10~\\text{m}^2$. These range from thin planar silicon, over 3D silicon, to active CMOS sensors.\\par After extensive characterization of the sensors in the lab, their charge collection properties and hit efficiency are measured in common testbeam campaigns, which provide valuable feedback for improvements of the layout. Testbeam measurements of the final prototypes will be used for the decision of which sensor types will be installed in...

  13. Status and perspectives of pixel sensors based on 3D vertical integration

    CERN Document Server

    Re, V

    2014-01-01

    This paper reviews the most recent developments of 3D integration in the field of silicon pixel sensors and readout integrated circuits. This technology may address the needs of future high energy physics and photon science experiments by increasing the electronic functional density in small pixel readout cells and by stacking various device layers based on different technologies, each optimized for a different function. Current efforts are aimed at improving the performance of both hybrid pixel detectors and of CMOS sensors. The status of these activities is discussed here, taking into account experimental results on 3D devices developed in the frame of the 3D-IC consortium. The paper also provides an overview of the ideas that are being currently devised for novel 3D vertically integrated pixel sensors.

  14. Development of a versatile readout and test system and characterization of a capacitively coupled active pixel sensor

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, Jens; Gonella, Laura; Hemperek, Tomasz; Hirono, Toko; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Institute of Physics, University of Bonn, Bonn (Germany); Peric, Ivan [Karlsruher Institut fuer Technologie, Karlsruhe (Germany); Collaboration: ATLAS-Collaboration

    2015-07-01

    With the availability of high voltage and high resistivity CMOS processes, active pixel sensors are becoming increasingly interesting for radiation detection in high energy physics experiments. Although the pixel signal-to-noise ratio and the sensor radiation tolerance were improved, active pixel sensors cannot yet compete with state-of-the-art hybrid pixel detector in a high radiation environment. Hence, active pixel sensors are possible candidates for the outer tracking detector in HEP experiments where production cost plays a role. The investigation of numerous prototyping steps and different technologies is still ongoing and requires a versatile test and readout system, which will be presented in this talk. A capacitively coupled active pixel sensor fabricated in AMS 180 nm high voltage CMOS process is investigated. The sensor is designed to be glued to existing front-end pixel readout chips. Results from the characterization are presented in this talk.

  15. Alignment of the Pixel and SCT Modules for the 2004 ATLAS Combined Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    ATLAS Collaboration; Ahmad, A.; Andreazza, A.; Atkinson, T.; Baines, J.; Barr, A.J.; Beccherle, R.; Bell, P.J.; Bernabeu, J.; Broklova, Z.; Bruckman de Renstrom, P.A.; Cauz, D.; Chevalier, L.; Chouridou, S.; Citterio, M.; Clark, A.; Cobal, M.; Cornelissen, T.; Correard, S.; Costa, M.J.; Costanzo, D.; Cuneo, S.; Dameri, M.; Darbo, G.; de Vivie, J.B.; Di Girolamo, B.; Dobos, D.; Drasal, Z.; Drohan, J.; Einsweiler, K.; Elsing, M.; Emelyanov, D.; Escobar, C.; Facius, K.; Ferrari, P.; Fergusson, D.; Ferrere, D.; Flick,, T.; Froidevaux, D.; Gagliardi, G.; Gallas, M.; Gallop, B.J.; Gan, K.K.; Garcia, C.; Gavrilenko, I.L.; Gemme, C.; Gerlach, P.; Golling, T.; Gonzalez-Sevilla, S.; Goodrick, M.J.; Gorfine, G.; Gottfert, T.; Grosse-Knetter, J.; Hansen, P.H.; Hara, K.; Hartel, R.; Harvey, A.; Hawkings, R.J.; Heinemann, F.E.W.; Henss, T.; Hill, J.C.; Huegging, F.; Jansen, E.; Joseph, J.; Unel, M. Karagoz; Kataoka, M.; Kersten, S.; Khomich, A.; Klingenberg, R.; Kodys, P.; Koffas, T.; Konstantinidis, N.; Kostyukhin, V.; Lacasta, C.; Lari, T.; Latorre, S.; Lester, C.G.; Liebig, W.; Lipniacka, A.; Lourerio, K.F.; Mangin-Brinet, M.; Marti i Garcia, S.; Mathes, M.; Meroni, C.; Mikulec, B.; Mindur, B.; Moed, S.; Moorhead, G.; Morettini, P.; Moyse, E.W.J.; Nakamura, K.; Nechaeva, P.; Nikolaev, K.; Parodi, F.; Parzhitskiy, S.; Pater, J.; Petti, R.; Phillips, P.W.; Pinto, B.; Poppleton, A.; Reeves, K.; Reisinger, I.; Reznicek, P.; Risso, P.; Robinson, D.; Roe, S.; Rozanov, A.; Salzburger, A.; Sandaker, H.; Santi, L.; Schiavi, C.; Schieck, J.; Schultes, J.; Sfyrla, A.; Shaw, C.; Tegenfeldt, F.; Timmermans, C.J.W.P.; Toczek, B.; Troncon, C.; Tyndel, M.; Vernocchi, F.; Virzi, J.; Anh, T. Vu; Warren, M.; Weber, J.; Weber, M.; Weidberg, A.R.; Weingarten, J.; Wellsf, P.S.; Zhelezkow, A.

    2008-06-02

    A small set of final prototypes of the ATLAS Inner Detector silicon tracking system(Pixel Detector and SemiConductor Tracker), were used to take data during the 2004 Combined Test Beam. Data were collected from runs with beams of different flavour (electrons, pions, muons and photons) with a momentum range of 2 to 180 GeV/c. Four independent methods were used to align the silicon modules. The corrections obtained were validated using the known momenta of the beam particles and were shown to yield consistent results among the different alignment approaches. From the residual distributions, it is concluded that the precision attained in the alignmentof the silicon modules is of the order of 5 mm in their most precise coordinate.

  16. Ongoing studies for the control system of a serially powered ATLAS pixel detector at the HL-LHC

    International Nuclear Information System (INIS)

    Kersten, S.; Püllen, L.; Zeitnitz, C.

    2016-01-01

    In terms of the phase-2 upgrade of the ATLAS detector, the entire inner tracker (ITk) of ATLAS will be replaced. This includes the pixel detector and the corresponding detector control system (DCS). The current baseline is a serial powering scheme of the detector modules. Therefore a new detector control system is being developed with emphasis on the supervision of serially powered modules. Previous chips had been designed to test the radiation hardness of the technology and the implementation of the modified I2C as well as the implementation of the logic of the CAN protocol. This included tests with triple redundant registers. The described chip is focusing on the implementation in a serial powering scheme. It was designed for laboratory tests, aiming for the proof of principle. The concept of the DCS for ATLAS pixel after the phase-2 upgrade is presented as well as the status of development including tests with the prototype ASIC

  17. Two ATLAS suppliers honoured

    CERN Multimedia

    2007-01-01

    The ATLAS experiment has recognised the outstanding contribution of two firms to the pixel detector. Recipients of the supplier award with Peter Jenni, ATLAS spokesperson, and Maximilian Metzger, CERN Secretary-General.At a ceremony held at CERN on 28 November, the ATLAS collaboration presented awards to two of its suppliers that had produced sensor wafers for the pixel detector. The CiS Institut für Mikrosensorik of Erfurt in Germany has supplied 655 sensor wafers containing a total of 1652 sensor tiles and the firm ON Semiconductor has supplied 515 sensor wafers (1177 sensor tiles) from its foundry at Roznov in the Czech Republic. Both firms have successfully met the very demanding requirements. ATLAS’s huge pixel detector is very complicated, requiring expertise in highly specialised integrated microelectronics and precision mechanics. Pixel detector project leader Kevin Einsweiler admits that when the project was first propo...

  18. CMOS Pixel Development for the ATLAS Experiment at HL-LHC

    CERN Document Server

    Ristic, Branislav; The ATLAS collaboration

    2017-01-01

    To cope with the rate and radiation environment expected at the HL-LHC new approaches are being developed on CMOS pixel detectors, providing charge collection in a depleted layer. They are based on technologies that allow to use high depletion voltages (HV-MAPS) and high resistivity wafers (HR-MAPS) for large depletion depths; radiation hard processed with multiple nested wells to allow CMOS electronics to be embedded safely into the sensor substrate. We are investigating depleted CMOS pixels with monolithic or hybrid designs concerning their suitability for high rate, fast timing and high radiation operation at LHC. This paper will discuss recent results on the main candidate technologies and the current development towards a monolithic solution.

  19. Low Power Camera-on-a-Chip Using CMOS Active Pixel Sensor Technology

    Science.gov (United States)

    Fossum, E. R.

    1995-01-01

    A second generation image sensor technology has been developed at the NASA Jet Propulsion Laboratory as a result of the continuing need to miniaturize space science imaging instruments. Implemented using standard CMOS, the active pixel sensor (APS) technology permits the integration of the detector array with on-chip timing, control and signal chain electronics, including analog-to-digital conversion.

  20. Front end optimization for the monolithic active pixel sensor of the ALICE Inner Tracking System upgrade

    International Nuclear Information System (INIS)

    Kim, D.; Rinella, G. Aglieri; Cavicchioli, C.; Hillemanns, H.; Hristozkov, S.; Junique, A.; Keil, M.; Kofarago, M.; Kugathasan, T.; Mager, M.; Chanlek, N.; Collu, A.; Degerli, Y.; Flouzat, C.; Guilloux, F.; Dorokhov, A.; Gajanana, D.; Gao, C.; Kwon, Y.; Lattuca, A.

    2016-01-01

    ALICE plans to replace its Inner Tracking System during the second long shut down of the LHC in 2019 with a new 10 m 2 tracker constructed entirely with monolithic active pixel sensors. The TowerJazz 180 nm CMOS imaging Sensor process has been selected to produce the sensor as it offers a deep pwell allowing full CMOS in-pixel circuitry and different starting materials. First full-scale prototypes have been fabricated and tested. Radiation tolerance has also been verified. In this paper the development of the charge sensitive front end and in particular its optimization for uniformity of charge threshold and time response will be presented

  1. Front end optimization for the monolithic active pixel sensor of the ALICE Inner Tracking System upgrade

    Science.gov (United States)

    Kim, D.; Aglieri Rinella, G.; Cavicchioli, C.; Chanlek, N.; Collu, A.; Degerli, Y.; Dorokhov, A.; Flouzat, C.; Gajanana, D.; Gao, C.; Guilloux, F.; Hillemanns, H.; Hristozkov, S.; Junique, A.; Keil, M.; Kofarago, M.; Kugathasan, T.; Kwon, Y.; Lattuca, A.; Mager, M.; Sielewicz, K. M.; Marin Tobon, C. A.; Marras, D.; Martinengo, P.; Mazza, G.; Mugnier, H.; Musa, L.; Pham, T. H.; Puggioni, C.; Reidt, F.; Riedler, P.; Rousset, J.; Siddhanta, S.; Snoeys, W.; Song, M.; Usai, G.; Van Hoorne, J. W.; Yang, P.

    2016-02-01

    ALICE plans to replace its Inner Tracking System during the second long shut down of the LHC in 2019 with a new 10 m2 tracker constructed entirely with monolithic active pixel sensors. The TowerJazz 180 nm CMOS imaging Sensor process has been selected to produce the sensor as it offers a deep pwell allowing full CMOS in-pixel circuitry and different starting materials. First full-scale prototypes have been fabricated and tested. Radiation tolerance has also been verified. In this paper the development of the charge sensitive front end and in particular its optimization for uniformity of charge threshold and time response will be presented.

  2. Front end optimization for the monolithic active pixel sensor of the ALICE Inner Tracking System upgrade

    OpenAIRE

    Kim, D; Rinella, G Aglieri; Cavicchioli, C; Chanlek, N; Collu, A; Degerli, Y; Dorokhov, A; Flouzat, C; Gajanana, D; Gao, C; Guilloux, F; Hillemanns, H; Hristozkov, S; Junique, A; Keil, M

    2016-01-01

    ALICE plans to replace its Inner Tracking System during the second long shut down of the LHC in 2019 with a new 10 m(2) tracker constructed entirely with monolithic active pixel sensors. The TowerJazz 180 nm CMOS imaging Sensor process has been selected to produce the sensor as it offers a deep pwell allowing full CMOS in-pixel circuitry and different starting materials. First full-scale prototypes have been fabricated and tested. Radiation tolerance has also been verified. In this paper the ...

  3. Analog front-end cell designed in a commercial 025 mu m process for the ATLAS pixel detector at LHC

    CERN Document Server

    Blanquart, L; Comes, G; Denes, P; Einsweiler, Kevin F; Fischer, P; Mandelli, E; Meddeler, G; Peric, I; Richardson, J

    2002-01-01

    A new analog pixel front-end cell has been developed for the ATLAS detector at the future Large Hadron Collider (LHC) at the European Laboratory for Particle Physics (CERN). This analog cell has been submitted in two commercial 0.25 mu m CMOS processes (in an analog test chip format), using special layout techniques for radiation hardness purposes. It is composed of two cascaded amplifiers followed by a fast discriminator featuring a detection threshold within the range of 1000 to 10000 electrons. The first preamplifier has the principal role of providing a large bandwidth, low input impedance, and fast rise time in order to enhance the time-walk and crosstalk performance, whereas the second fully differential amplifier is aimed at delivering a sufficiently high-voltage gain for optimum comparison. A new do feedback concept renders the cell tolerant of sensor leakage current up to 300 nA and provides monitoring of this current. Two 5-bit digital-to-analog converters tolerant to single- event upset have been i...

  4. Three Generations of FPGA DAQ Development for the ATLAS Pixel Detector

    CERN Document Server

    AUTHOR|(CDS)2091916; Hsu, Shih-Chieh; Hauck, Scott Alan

    The Large Hadron Collider (LHC) at the European Center for Nuclear Research (CERN) tracks a schedule of long physics runs, followed by periods of inactivity known as Long Shutdowns (LS). During these LS phases both the LHC, and the experiments around its ring, undergo maintenance and upgrades. For the LHC these upgrades improve their ability to create data for physicists; the more data the LHC can create the more opportunities there are for rare events to appear that physicists will be interested in. The experiments upgrade so they can record the data and ensure the event won’t be missed. Currently the LHC is in Run 2 having completed the first LS of three. This thesis focuses on the development of Field-Programmable Gate Array (FPGA)-based readout systems that span across three major tasks of the ATLAS Pixel data acquisition (DAQ) system. The evolution of Pixel DAQ’s Readout Driver (ROD) card is presented. Starting from improvements made to the new Insertable B-Layer (IBL) ROD design, which was part of t...

  5. High accuracy injection circuit for the calibration of a large pixel sensor matrix

    International Nuclear Information System (INIS)

    Quartieri, E.; Comotti, D.; Manghisoni, M.

    2013-01-01

    Semiconductor pixel detectors, for particle tracking and vertexing in high energy physics experiments as well as for X-ray imaging, in particular for synchrotron light sources and XFELs, require a large area sensor matrix. This work will discuss the design and the characterization of a high-linearity, low dispersion injection circuit to be used for pixel-level calibration of detector readout electronics in a large pixel sensor matrix. The circuit provides a useful tool for the characterization of the readout electronics of the pixel cell unit for both monolithic active pixel sensors and hybrid pixel detectors. In the latter case, the circuit allows for precise analogue test of the readout channel already at the chip level, when no sensor is connected. Moreover, it provides a simple means for calibration of readout electronics once the detector has been connected to the chip. Two injection techniques can be provided by the circuit: one for a charge sensitive amplification and the other for a transresistance readout channel. The aim of the paper is to describe the architecture and the design guidelines of the calibration circuit, which has been implemented in a 130 nm CMOS technology. Moreover, experimental results of the proposed injection circuit will be presented in terms of linearity and dispersion

  6. Active pixel sensor having intra-pixel charge transfer with analog-to-digital converter

    Science.gov (United States)

    Fossum, Eric R. (Inventor); Mendis, Sunetra K. (Inventor); Pain, Bedabrata (Inventor); Nixon, Robert H. (Inventor); Zhou, Zhimin (Inventor)

    2003-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node and an analog-to-digital converter formed in the substrate connected to the output of the readout circuit.

  7. A CMOS Image Sensor With In-Pixel Buried-Channel Source Follower and Optimized Row Selector

    NARCIS (Netherlands)

    Chen, Y.; Wang, X.; Mierop, A.J.; Theuwissen, A.J.P.

    2009-01-01

    This paper presents a CMOS imager sensor with pinned-photodiode 4T active pixels which use in-pixel buried-channel source followers (SFs) and optimized row selectors. The test sensor has been fabricated in a 0.18-mum CMOS process. The sensor characterization was carried out successfully, and the

  8. Silicon Sensors for the Upgrades of the CMS Pixel Detector

    CERN Document Server

    Centis Vignali, Matteo; Schleper, Peter

    2015-01-01

    The Compact Muon Solenoid (CMS) is a general purpose detector at the Large Hadron Collider (LHC). The LHC luminosity is constantly increased through upgrades of the accel- erator and its injection chain. Two major upgrades will take place in the next years. The rst upgrade involves the LHC injector chain and allows the collider to achieve a luminosity of about 2 10 34 cm-2 s-1 A further upgrade of the LHC foreseen for 2025 will boost its luminosity to 5 10 34 cm-2 s1. As a consequence of the increased luminosity, the detectors need to be upgraded. In particular, the CMS pixel detector will undergo two upgrades in the next years. The rst upgrade (phase I) consists in the substitution of the current pixel detector in winter 2016/2017. The upgraded pixel detector will implement new readout elec- tronics that allow ecient data taking up to a luminosity of 2 10 34 cm-2s-1,twice as much as the LHC design luminosity. The modules that will constitute the upgraded detector are being produced at dierent institutes. Ham...

  9. Investigation of properties of novel silicon pixel assemblies employing thin n-in-p sensors and 3D-integration

    International Nuclear Information System (INIS)

    Weigell, Philipp

    2013-01-01

    Until the end of the 2020 decade the LHC programme will be defining the high energy frontier of particle physics. During this time, three upgrade steps of the accelerator are currently planned to further increase the luminosity and energy reach. In the course of these upgrades the specifications of several parts of the current LHC detectors will be exceeded. Especially, the innermost tracking detectors are challenged by the increasing track densities and the radiation damage. This thesis focuses on the implications for the ATLAS experiment. Here, around 2021/2, after having collected an integrated luminosity of around 300 fb -1 , the silicon and gas detector components of the inner tracker will reach the end of their lifetime and will need to be replaced to ensure sufficient performance for continued running - especially if the luminosity is raised to about 5 x 10 35 cm -2 s -1 as currently planned. An all silicon inner detector is foreseen to be installed. This upgrade demands cost effective pixel assemblies with a minimal material budget, a larger active area fraction as compared to the current detectors, and a higher granularity. Furthermore, the assemblies must be able to withstand received fluences up to 2 . 10 16 n eq /cm 2 . A new pixel assembly concept answering the challenges posed by the high instantaneous luminosities is investigated in this thesis. It employs five novel technologies, namely n-in-p pixel sensors, thin pixel sensors, slim edges with or without implanted sensor sides, and 3D-integration incorporating a new interconnection technology, named Solid Liquid InterDiffusion (SLID) as well as Inter-Chip-Vias (ICVs). n-in-p sensors are cost-effective, since they only need patterned processing on one side. Their performance before and after irradiation is investigated and compared to results obtained with currently used n-in-n sensors. Reducing the thickness of the sensors lowers the amount of multiple scattering within the tracking system and leads

  10. Investigation of properties of novel silicon pixel assemblies employing thin n-in-p sensors and 3D-integration

    Energy Technology Data Exchange (ETDEWEB)

    Weigell, Philipp

    2013-01-15

    Until the end of the 2020 decade the LHC programme will be defining the high energy frontier of particle physics. During this time, three upgrade steps of the accelerator are currently planned to further increase the luminosity and energy reach. In the course of these upgrades the specifications of several parts of the current LHC detectors will be exceeded. Especially, the innermost tracking detectors are challenged by the increasing track densities and the radiation damage. This thesis focuses on the implications for the ATLAS experiment. Here, around 2021/2, after having collected an integrated luminosity of around 300 fb{sup -1}, the silicon and gas detector components of the inner tracker will reach the end of their lifetime and will need to be replaced to ensure sufficient performance for continued running - especially if the luminosity is raised to about 5 x 10{sup 35} cm{sup -2}s{sup -1} as currently planned. An all silicon inner detector is foreseen to be installed. This upgrade demands cost effective pixel assemblies with a minimal material budget, a larger active area fraction as compared to the current detectors, and a higher granularity. Furthermore, the assemblies must be able to withstand received fluences up to 2 . 10{sup 16} n{sub eq}/cm{sup 2}. A new pixel assembly concept answering the challenges posed by the high instantaneous luminosities is investigated in this thesis. It employs five novel technologies, namely n-in-p pixel sensors, thin pixel sensors, slim edges with or without implanted sensor sides, and 3D-integration incorporating a new interconnection technology, named Solid Liquid InterDiffusion (SLID) as well as Inter-Chip-Vias (ICVs). n-in-p sensors are cost-effective, since they only need patterned processing on one side. Their performance before and after irradiation is investigated and compared to results obtained with currently used n-in-n sensors. Reducing the thickness of the sensors lowers the amount of multiple scattering

  11. First tests of CHERWELL, a Monolithic Active Pixel Sensor: A CMOS Image Sensor (CIS) using 180 nm technology

    Energy Technology Data Exchange (ETDEWEB)

    Mylroie-Smith, James, E-mail: j.mylroie-smith@qmul.ac.uk [Queen Mary, University of London (United Kingdom); Kolya, Scott; Velthuis, Jaap [University of Bristol (United Kingdom); Bevan, Adrian; Inguglia, Gianluca [Queen Mary, University of London (United Kingdom); Headspith, Jon; Lazarus, Ian; Lemon, Roy [Daresbury Laboratory, STFC (United Kingdom); Crooks, Jamie; Turchetta, Renato; Wilson, Fergus [Rutherford Appleton Laboratory, STFC (United Kingdom)

    2013-12-11

    The Cherwell is a 4T CMOS sensor in 180 nm technology developed for the detection of charged particles. Here, the different test structures on the sensor will be described and first results from tests on the reference pixel variant are shown. The sensors were shown to have a noise of 12 e{sup −} and a signal to noise up to 150 in {sup 55}Fe.

  12. Commissioning of the Atlas pixel detector and search of the Higgs boson in the tt-H, H → bb- channel with the Atlas experiment at the LHC

    International Nuclear Information System (INIS)

    Aad, G.

    2009-09-01

    The global fit of Higgs boson quantum contributions to the electroweak experimental observables, computed within the Standard Model, favors a light Higgs boson with a mass of m H = 90 -27 +36 GeV, on the edge of the 95% Confidence Level region excluded by LEP. Finding a light Higgs boson at LHC is experimentally difficult and several channels with various signatures will be sought for. The associated production of the Higgs boson with a pair of top quarks, with the subsequent decay of the Higgs boson into b-quark pairs (dominant for m H <135 GeV), is one of the channels considered. This channel opens the possibility of measuring the top and b-quark Yukawa couplings. The potential of the ATLAS detector to observe this channel is described. Several ingredients are crucial: the reconstruction of the top-anti-top system with a high-purity, excellent b-tagging capabilities and good knowledge of the tt-bar+jets background. The pixel detector is the most important ATLAS sub-detectors for tagging b -jets. The ATLAS detector was commissioned with cosmic muon rays in autumn 2008. The pixel detector dead channels, calibration constants and slow control informations are described for this period. A detailed study about pixel noise determination and suppression is presented. Finally, the pixel detection efficiency is measured using cosmic muon rays. (author)

  13. Mesure des champs de radiation dans le detecteur ATLAS et sa caverne avec les detecteurs au silicium a pixels ATLAS-MPX

    Science.gov (United States)

    Bouchami, Jihene

    The LHC proton-proton collisions create a hard radiation environment in the ATLAS detector. In order to quantify the effects of this environment on the detector performance and human safety, several Monte Carlo simulations have been performed. However, direct measurement is indispensable to monitor radiation levels in ATLAS and also to verify the simulation predictions. For this purpose, sixteen ATLAS-MPX devices have been installed at various positions in the ATLAS experimental and technical areas. They are composed of a pixelated silicon detector called MPX whose active surface is partially covered with converter layers for the detection of thermal, slow and fast neutrons. The ATLAS-MPX devices perform real-time measurement of radiation fields by recording the detected particle tracks as raster images. The analysis of the acquired images allows the identification of the detected particle types by the shapes of their tracks. For this aim, a pattern recognition software called MAFalda has been conceived. Since the tracks of strongly ionizing particles are influenced by charge sharing between adjacent pixels, a semi-empirical model describing this effect has been developed. Using this model, the energy of strongly ionizing particles can be estimated from the size of their tracks. The converter layers covering each ATLAS-MPX device form six different regions. The efficiency of each region to detect thermal, slow and fast neutrons has been determined by calibration measurements with known sources. The study of the ATLAS-MPX devices response to the radiation produced by proton-proton collisions at a center of mass energy of 7 TeV has demonstrated that the number of recorded tracks is proportional to the LHC luminosity. This result allows the ATLAS-MPX devices to be employed as luminosity monitors. To perform an absolute luminosity measurement and calibration with these devices, the van der Meer method based on the LHC beam parameters has been proposed. Since the ATLAS

  14. ALPIDE, the Monolithic Active Pixel Sensor for the ALICE ITS upgrade

    Science.gov (United States)

    Mager, M.; ALICE Collaboration

    2016-07-01

    A new 10 m2 inner tracking system based on seven concentric layers of Monolithic Active Pixel Sensors will be installed in the ALICE experiment during the second long shutdown of LHC in 2019-2020. The monolithic pixel sensors will be fabricated in the 180 nm CMOS Imaging Sensor process of TowerJazz. The ALPIDE design takes full advantage of a particular process feature, the deep p-well, which allows for full CMOS circuitry within the pixel matrix, while at the same time retaining the full charge collection efficiency. Together with the small feature size and the availability of six metal layers, this allowed a continuously active low-power front-end to be placed into each pixel and an in-matrix sparsification circuit to be used that sends only the addresses of hit pixels to the periphery. This approach led to a power consumption of less than 40 mWcm-2, a spatial resolution of around 5 μm, a peaking time of around 2 μs, while being radiation hard to some 1013 1 MeVneq /cm2, fulfilling or exceeding the ALICE requirements. Over the last years of R & D, several prototype circuits have been used to verify radiation hardness, and to optimize pixel geometry and in-pixel front-end circuitry. The positive results led to a submission of full-scale (3 cm×1.5 cm) sensor prototypes in 2014. They are being characterized in a comprehensive campaign that also involves several irradiation and beam tests. A summary of the results obtained and prospects towards the final sensor to instrument the ALICE Inner Tracking System are given.

  15. Design and characterization of novel monolithic pixel sensors for the ALICE ITS upgrade

    Science.gov (United States)

    Cavicchioli, C.; Chalmet, P. L.; Giubilato, P.; Hillemanns, H.; Junique, A.; Kugathasan, T.; Mager, M.; Marin Tobon, C. A.; Martinengo, P.; Mattiazzo, S.; Mugnier, H.; Musa, L.; Pantano, D.; Rousset, J.; Reidt, F.; Riedler, P.; Snoeys, W.; Van Hoorne, J. W.; Yang, P.

    2014-11-01

    Within the R&D activities for the upgrade of the ALICE Inner Tracking System (ITS), Monolithic Active Pixel Sensors (MAPS) are being developed and studied, due to their lower material budget ( 0.3 %X0 in total for each inner layer) and higher granularity ( 20 μm × 20 μm pixels) with respect to the present pixel detector. This paper presents the design and characterization results of the Explorer0 chip, manufactured in the TowerJazz 180 nm CMOS Imaging Sensor process, based on a wafer with high-resistivity (ρ > 1 kΩ cm) and 18 μm thick epitaxial layer. The chip is organized in two sub-matrices with different pixel pitches (20 μm and 30 μm), each of them containing several pixel designs. The collection electrode size and shape, as well as the distance between the electrode and the surrounding electronics, are varied; the chip also offers the possibility to decouple the charge integration time from the readout time, and to change the sensor bias. The charge collection properties of the different pixel variants implemented in Explorer0 have been studied using a 55Fe X-ray source and 1-5 GeV/c electrons and positrons. The sensor capacitance has been estimated, and the effect of the sensor bias has also been examined in detail. A second version of the Explorer0 chip (called Explorer1) has been submitted for production in March 2013, together with a novel circuit with in-pixel discrimination and a sparsified readout. Results from these submissions are also presented.

  16. Design and characterization of novel monolithic pixel sensors for the ALICE ITS upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Cavicchioli, C., E-mail: costanza.cavicchioli@cern.ch [CERN European Organization for Nuclear Research, CH-1211 Genève 23 (Switzerland); Chalmet, P.L. [MIND, Archamps Technopole, Saint-Julien-en-Genevois, Cedex 74166 (France); Giubilato, P. [Università and INFN, Padova (Italy); Hillemanns, H.; Junique, A.; Kugathasan, T.; Mager, M. [CERN European Organization for Nuclear Research, CH-1211 Genève 23 (Switzerland); Marin Tobon, C.A. [Valencia Polytechnic University, Valencia (Spain); Martinengo, P. [CERN European Organization for Nuclear Research, CH-1211 Genève 23 (Switzerland); Mattiazzo, S. [Università and INFN, Padova (Italy); Mugnier, H. [MIND, Archamps Technopole, Saint-Julien-en-Genevois, Cedex 74166 (France); Musa, L. [CERN European Organization for Nuclear Research, CH-1211 Genève 23 (Switzerland); Pantano, D. [Università and INFN, Padova (Italy); Rousset, J. [MIND, Archamps Technopole, Saint-Julien-en-Genevois, Cedex 74166 (France); Reidt, F. [CERN European Organization for Nuclear Research, CH-1211 Genève 23 (Switzerland); Physikalisches Institut, Ruprecht-Karls-Universitaet Heidelberg, Heidelberg (Germany); Riedler, P.; Snoeys, W. [CERN European Organization for Nuclear Research, CH-1211 Genève 23 (Switzerland); Van Hoorne, J.W. [CERN European Organization for Nuclear Research, CH-1211 Genève 23 (Switzerland); Technische Universitaet Wien, Vienna (Austria); Yang, P. [Central China Normal University CCNU, Wuhan (China)

    2014-11-21

    Within the R and D activities for the upgrade of the ALICE Inner Tracking System (ITS), Monolithic Active Pixel Sensors (MAPS) are being developed and studied, due to their lower material budget (∼0.3%X{sub 0} in total for each inner layer) and higher granularity (∼20μm×20μm pixels) with respect to the present pixel detector. This paper presents the design and characterization results of the Explorer0 chip, manufactured in the TowerJazz 180 nm CMOS Imaging Sensor process, based on a wafer with high-resistivity (ρ>1kΩcm) and 18 μm thick epitaxial layer. The chip is organized in two sub-matrices with different pixel pitches (20 μm and 30 μm), each of them containing several pixel designs. The collection electrode size and shape, as well as the distance between the electrode and the surrounding electronics, are varied; the chip also offers the possibility to decouple the charge integration time from the readout time, and to change the sensor bias. The charge collection properties of the different pixel variants implemented in Explorer0 have been studied using a {sup 55}Fe X-ray source and 1–5 GeV/c electrons and positrons. The sensor capacitance has been estimated, and the effect of the sensor bias has also been examined in detail. A second version of the Explorer0 chip (called Explorer1) has been submitted for production in March 2013, together with a novel circuit with in-pixel discrimination and a sparsified readout. Results from these submissions are also presented.

  17. Design and characterization of novel monolithic pixel sensors for the ALICE ITS upgrade

    International Nuclear Information System (INIS)

    Cavicchioli, C.; Chalmet, P.L.; Giubilato, P.; Hillemanns, H.; Junique, A.; Kugathasan, T.; Mager, M.; Marin Tobon, C.A.; Martinengo, P.; Mattiazzo, S.; Mugnier, H.; Musa, L.; Pantano, D.; Rousset, J.; Reidt, F.; Riedler, P.; Snoeys, W.; Van Hoorne, J.W.; Yang, P.

    2014-01-01

    Within the R and D activities for the upgrade of the ALICE Inner Tracking System (ITS), Monolithic Active Pixel Sensors (MAPS) are being developed and studied, due to their lower material budget (∼0.3%X 0 in total for each inner layer) and higher granularity (∼20μm×20μm pixels) with respect to the present pixel detector. This paper presents the design and characterization results of the Explorer0 chip, manufactured in the TowerJazz 180 nm CMOS Imaging Sensor process, based on a wafer with high-resistivity (ρ>1kΩcm) and 18 μm thick epitaxial layer. The chip is organized in two sub-matrices with different pixel pitches (20 μm and 30 μm), each of them containing several pixel designs. The collection electrode size and shape, as well as the distance between the electrode and the surrounding electronics, are varied; the chip also offers the possibility to decouple the charge integration time from the readout time, and to change the sensor bias. The charge collection properties of the different pixel variants implemented in Explorer0 have been studied using a 55 Fe X-ray source and 1–5 GeV/c electrons and positrons. The sensor capacitance has been estimated, and the effect of the sensor bias has also been examined in detail. A second version of the Explorer0 chip (called Explorer1) has been submitted for production in March 2013, together with a novel circuit with in-pixel discrimination and a sparsified readout. Results from these submissions are also presented

  18. Imaging properties of small-pixel spectroscopic x-ray detectors based on cadmium telluride sensors

    International Nuclear Information System (INIS)

    Koenig, Thomas; Schulze, Julia; Zuber, Marcus; Rink, Kristian; Oelfke, Uwe; Butzer, Jochen; Hamann, Elias; Cecilia, Angelica; Zwerger, Andreas; Fauler, Alex; Fiederle, Michael

    2012-01-01

    Spectroscopic x-ray imaging by means of photon counting detectors has received growing interest during the past years. Critical to the image quality of such devices is their pixel pitch and the sensor material employed. This paper describes the imaging properties of Medipix2 MXR multi-chip assemblies bump bonded to 1 mm thick CdTe sensors. Two systems were investigated with pixel pitches of 110 and 165 μm, which are in the order of the mean free path lengths of the characteristic x-rays produced in their sensors. Peak widths were found to be almost constant across the energy range of 10 to 60 keV, with values of 2.3 and 2.2 keV (FWHM) for the two pixel pitches. The average number of pixels responding to a single incoming photon are about 1.85 and 1.45 at 60 keV, amounting to detective quantum efficiencies of 0.77 and 0.84 at a spatial frequency of zero. Energy selective CT acquisitions are presented, and the two pixel pitches' abilities to discriminate between iodine and gadolinium contrast agents are examined. It is shown that the choice of the pixel pitch translates into a minimum contrast agent concentration for which material discrimination is still possible. We finally investigate saturation effects at high x-ray fluxes and conclude with the finding that higher maximum count rates come at the cost of a reduced energy resolution. (paper)

  19. Probing and irradiation tests of ALICE pixel chip wafers and sensors

    CERN Document Server

    Cinausero, M; Antinori, F; Chochula, P; Dinapoli, R; Dima, R; Fabris, D; Galet, G; Lunardon, M; Manea, C; Marchini, S; Martini, S; Moretto, S; Pepato, Adriano; Prete, G; Riedler, P; Scarlassara, F; Segato, G F; Soramel, F; Stefanini, G; Turrisi, R; Vannucci, L; Viesti, G

    2004-01-01

    In the framework of the ALICE Silicon Pixel Detector (SPD) project a system dedicated to the tests of the ALICE1LHCb chip wafers has been assembled and is now in use for the selection of pixel chips to be bump-bonded to sensor ladders. In parallel, radiation hardness tests of the SPD silicon sensors have been carried out using the 27 MeV proton beam delivered by the XTU TANDEM accelerator at the SIRAD facility in LNL. In this paper we describe the wafer probing and irradiation set-ups and we report the obtained results. (6 refs).

  20. Development of a pixel sensor with fine space-time resolution based on SOI technology for the ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Shun, E-mail: s-ono@champ.hep.sci.osaka-u.ac.jp [Osaka University, 1-1 Machikaneyama, Toyonaka (Japan); Togawa, Manabu; Tsuji, Ryoji; Mori, Teppei [Osaka University, 1-1 Machikaneyama, Toyonaka (Japan); Yamada, Miho; Arai, Yasuo; Tsuboyama, Toru; Hanagaki, Kazunori [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Org. (KEK), 1-1 Oho, Tsukuba (Japan)

    2017-02-11

    We have been developing a new monolithic pixel sensor with silicon-on-insulator (SOI) technology for the International Linear Collider (ILC) vertex detector system. The SOI monolithic pixel detector is realized using standard CMOS circuits fabricated on a fully depleted sensor layer. The new SOI sensor SOFIST can store both the position and timing information of charged particles in each 20×20 μm{sup 2} pixel. The position resolution is further improved by the position weighted with the charges spread to multiple pixels. The pixel also records the hit timing with an embedded time-stamp circuit. The sensor chip has column-parallel analog-to-digital conversion (ADC) circuits and zero-suppression logic for high-speed data readout. We are designing and evaluating some prototype sensor chips for optimizing and minimizing the pixel circuit.

  1. Autonomous star tracker based on active pixel sensors (APS)

    Science.gov (United States)

    Schmidt, U.

    2017-11-01

    Star trackers are opto-electronic sensors used onboard of satellites for the autonomous inertial attitude determination. During the last years, star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The Jena-Optronik GmbH is active in the field of opto-electronic sensors like star trackers since the early 80-ties. Today, with the product family ASTRO5, ASTRO10 and ASTRO15, all marked segments like earth observation, scientific applications and geo-telecom are supplied to European and Overseas customers. A new generation of star trackers can be designed based on the APS detector technical features. The measurement performance of the current CCD based star trackers can be maintained, the star tracker functionality, reliability and robustness can be increased while the unit costs are saved.

  2. Measurement of the two track separation capability of hybrid pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, F.J., E-mail: Francisca.MunozSanchez@manchester.ac.uk [University of Manchester (United Kingdom); Battaglia, M. [University of California, Santa Cruz, United States of America (United States); CERN, The European Organization for Nuclear Research (Switzerland); Da Vià, C. [University of Manchester (United Kingdom); La Rosa, A. [University of California, Santa Cruz, United States of America (United States); Dann, N. [University of Manchester (United Kingdom)

    2017-02-11

    Large Hadron Collider experiments face new challenges in Run-2 conditions due to the increased beam energy, the interest for searches of new physics signals with higher jet pT and the consequent longer decay length of heavy hadrons. In this new scenario, the capability of the innermost pixel sensors to distinguish tracks in very dense environment becomes crucial for efficient tracking and flavour tagging performance. In this work, we discuss the measurement in a test beam of the two track separation capability of hybrid pixel sensors using the interaction particles out of the collision of high energy pions on a thin copper target. With this method we are able to evaluate the effect of merged hits in the sensors under test due to tracks closer than the sensor spatial granularity in terms of collected charge, multiplicity and reconstruction efficiency. - Highlights: • Measurement of the two-track separation capability of hybrid pixel sensors. • Emulating track dense environment with a cooper target in a test beam. • Cooper target in between telescope arms to create vertices. • Validation of simulation and reconstruction algorithm for future vertex detectors. • New qualification method for pixel modules in track dense environments.

  3. CMOS Pixel Sensors for High Precision Beam Telescopes and Vertex Detectors

    International Nuclear Information System (INIS)

    Masi, R. de; Baudot, J.; Fontaine, J.-Ch.

    2009-01-01

    CMOS sensors of the MIMOSA (standing for Minimum Ionising particle MOS Active pixel sensor) series are developed at IPHC since a decade and have ended up with full scale devices used in beam telescopes and in demonstrators of future vertex detectors. The sensors deliver analogue, unfiltered, signals and are therefore limited to read-out frequencies of ∼ 1 kframe/s. Since a few years, a fast architecture is being developed in collaboration with IRFU, which aims to speed up the read-out by 1-2 orders of magnitude. The first full scale sensor based on this architecture was fabricated recently and is being tested. Made of 660,000 pixels (18 μm pitch) covering an active area of ∼ 2 cm 2 , it delivers zero-suppressed binary signals, which allow running at ∼ 10 kframes/s. It will equip the beam telescope of the E.U. project EUDET and serve as a forerunner of the sensor equipping the 2 layers of the PIXEL detector of the STAR experiment at RHIC. The contribution to the conference will overview the main features and test results of this pioneering sensor. It will next describe its evolution towards read-out frequencies approaching 100 kframes/s, as required for the vertex detectors of the CBM experiment at FAIR and at the ILC. Finally, the issue of radiation tolerance will be addressed, in the context of a newly available CMOS process using a depleted substrate. A prototype sensor was fabricated in a such CMOS process. The talk will summarise beam test results showing, for the first time, that fluences of 10 14 n eq /cm 2 may be tolerable for CMOS sensors. Overall, the talk provides an overview of the status and plans of CMOS pixel sensors at the frontier of their achievements and outreach. (author)

  4. Development of N+ in P pixel sensors for a high-luminosity large hadron collider

    Science.gov (United States)

    Kamada, Shintaro; Yamamura, Kazuhisa; Unno, Yoshinobu; Ikegami, Yoichi

    2014-11-01

    Hamamatsu Photonics K. K. is developing an N+ in a p planar pixel sensor with high radiation tolerance for the high-luminosity large hadron collider (HL-LHC). The N+ in the p planar pixel sensor is a candidate for the HL-LHC and offers the advantages of high radiation tolerance at a reasonable price compared with the N+ in an n planar sensor, the three-dimensional sensor, and the diamond sensor. However, the N+ in the p planar pixel sensor still presents some problems that need to be solved, such as its slim edge and the danger of sparks between the sensor and readout integrated circuit. We are now attempting to solve these problems with wafer-level processes, which is important for mass production. To date, we have obtained a 250-μm edge with an applied bias voltage of 1000 V. To protect against high-voltage sparks from the edge, we suggest some possible designs for the N+ edge.

  5. Development of N+ in P pixel sensors for a high-luminosity large hadron collider

    International Nuclear Information System (INIS)

    Kamada, Shintaro; Yamamura, Kazuhisa; Unno, Yoshinobu; Ikegami, Yoichi

    2014-01-01

    Hamamatsu Photonics K. K. is developing an N+ in a p planar pixel sensor with high radiation tolerance for the high-luminosity large hadron collider (HL-LHC). The N+ in the p planar pixel sensor is a candidate for the HL-LHC and offers the advantages of high radiation tolerance at a reasonable price compared with the N+ in an n planar sensor, the three-dimensional sensor, and the diamond sensor. However, the N+ in the p planar pixel sensor still presents some problems that need to be solved, such as its slim edge and the danger of sparks between the sensor and readout integrated circuit. We are now attempting to solve these problems with wafer-level processes, which is important for mass production. To date, we have obtained a 250-μm edge with an applied bias voltage of 1000 V. To protect against high-voltage sparks from the edge, we suggest some possible designs for the N+ edge. - Highlights: • We achieved a tolerance of 1000 V with a 250-μm edge by Al2O3 side wall passivation. • Above is a wafer process and suitable for mass production. • For edge-spark protection, we suggest N+ edge with an isolation

  6. The silicon microstrip sensors of the ATLAS semiconductor tracker

    International Nuclear Information System (INIS)

    ATLAS SCT Collaboration; Spieler, Helmuth G.

    2007-01-01

    This paper describes the AC-coupled, single-sided, p-in-n silicon microstrip sensors used in the Semiconductor Tracker (SCT) of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The sensor requirements, specifications and designs are discussed, together with the qualification and quality assurance procedures adopted for their production. The measured sensor performance is presented, both initially and after irradiation to the fluence anticipated after 10 years of LHC operation. The sensors are now successfully assembled within the detecting modules of the SCT, and the SCT tracker is completed and integrated within the ATLAS Inner Detector. Hamamatsu Photonics Ltd. supplied 92.2percent of the 15,392 installed sensors, with the remainder supplied by CiS

  7. The silicon microstrip sensors of the ATLAS semiconductor tracker

    Energy Technology Data Exchange (ETDEWEB)

    ATLAS SCT Collaboration; Spieler, Helmuth G.

    2007-04-13

    This paper describes the AC-coupled, single-sided, p-in-n silicon microstrip sensors used in the Semiconductor Tracker (SCT) of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The sensor requirements, specifications and designs are discussed, together with the qualification and quality assurance procedures adopted for their production. The measured sensor performance is presented, both initially and after irradiation to the fluence anticipated after 10 years of LHC operation. The sensors are now successfully assembled within the detecting modules of the SCT, and the SCT tracker is completed and integrated within the ATLAS Inner Detector. Hamamatsu Photonics Ltd. supplied 92.2percent of the 15,392 installed sensors, with the remainder supplied by CiS.

  8. Performance of new radiation tolerant thin n-in-p Silicon pixel sensors for the CMS experiment at High Luminosity LHC

    CERN Document Server

    Dalla Betta, G.F; Darbo, G; Dinardo, Mauro; Giacomini, G; Menasce, Dario; Meschini, Marco; Messineo, Alberto; Moroni, Luigi; Rivera, Ryan Allen; Ronchin, S; Uplegger, Lorenzo; Viliani, Lorenzo; Zoi, Irene; Zuolo, Davide

    2017-01-01

    The High Luminosity upgrade of the CERN-LHC (HL-LHC) demands for a new high-radiation tolerant solid-state pixel sensor capable of surviving fluencies up to a few 10$^{16}$ particles/cm$^2$ at $\\sim$3 cm from the interaction point. To this extent the INFN ATLAS-CMS joint research activity in collaboration with Fondazione Bruno Kessler-FBK, is aiming at the development of thin n-in-p type pixel sensors for the HL-LHC. The R and D covers both planar and single-sided 3D columnar pixel devices made with the Si-Si Direct Wafer Bonding technique, which allows for the production of sensors with 100~$\\mu {\\rm m}$ and 130~$\\mu {\\rm m}$ active thickness for planars, and 130~$\\mu {\\rm m}$ for 3D sensors, the thinnest ones ever produced so far. First prototypes of hybrid modules bump-bonded to the present CMS readout chip have been tested in beam tests. Preliminary results on their performance before and after irradiation are presented.

  9. Atlas pixel opto-board production and analysis and optolink simulation studies

    International Nuclear Information System (INIS)

    Nderitu, Simon Kirichu

    2007-01-01

    At CERN, a Large collider will collide protons at high energies. There are four experiments being built to study the particle properties from the collision. The ATLAS experiment is the largest. It has many sub detectors among which is the Pixel detector which is the innermost part. The Pixel detector has eighty million channels that have to be read out. An optical link is utilized for the read out. It has optical to electronic interfaces both on the detector and off the detector at the counting room. The component on the detector in called the opto-board. This work discusses the production testing of the opto-boards to be installed on the detector. A total of 300 opto-boards including spares have been produced. The production was done in three laboratories among which is the laboratory at the University of Wuppertal which had the responsibility of Post production testing of all the one third of the total opto-boards. The results are discussed in this work. The analysis of the results from the total production process has been done in the scope of this work as well. In addition to the production, a study by simulation of the communication links optical signal has been done. This has enabled an assessment of the sufficiency of the optical signal against the transmission attenuation and irradiation degradation. A System Test set up has been put up at Wuppertal to enhance general studies for better understanding of the Pixel read out system. Among other studies is the study of the timing parameters behavior of the System which has been done in this work and enhanced by a simulation. These parameters are namely the mark to space ratio and the fine delay and their relatedness during the optolink tuning. A bit error rate test based on the System has also been done which enabled assessment of the transmission quality utilizing the tools inbuilt in the System Test. These results have been presented in this work. (orig.)

  10. Design and characterization of novel monolithic pixel sensors for the ALICE ITS upgrade

    CERN Document Server

    Cavicchioli, C; Giubilato, P; Hillemanns, H; Junique, A; Kugathasan, T; Mager, M; Marin Tobon, C A; Martinengo, P; Mattiazzo, S; Mugnier, H; Musa, L; Pantano, D; Rousset, J; Reidt, F; Riedler, P; Snoeys, W; Van Hoorne, J W; Yang, P

    2014-01-01

    Within the R&D activities for the upgrade of the ALICE Inner Tracking System (ITS), Monolithic Active Pixel Sensors (MAPS) are being developed and studied, due to their lower material budget (~0.3%X0~0.3%X0 in total for each inner layer) and higher granularity (View the MathML source~20μm×20μm pixels) with respect to the present pixel detector. This paper presents the design and characterization results of the Explorer0 chip, manufactured in the TowerJazz 180 nm CMOS Imaging Sensor process, based on a wafer with high-resistivity View the MathML source(ρ>1kΩcm) and 18 μm thick epitaxial layer. The chip is organized in two sub-matrices with different pixel pitches (20 μm and 30 μm), each of them containing several pixel designs. The collection electrode size and shape, as well as the distance between the electrode and the surrounding electronics, are varied; the chip also offers the possibility to decouple the charge integration time from the readout time, and to change the sensor bias. The charge c...

  11. Prototypes for components of a control system for the ATLAS pixel detector at the HL-LHC

    International Nuclear Information System (INIS)

    Püllen, Lukas; Boek, Jennifer; Kersten, Susanne; Kind, Peter; Mättig, Peter; Zeitnitz, Christian

    2013-01-01

    In the years around 2020 an upgrade of the LHC to the HL-LHC is scheduled, which will increase the accelerator's instantaneous luminosity by a factor of 5 and the integrated luminosity by a factor of 10. In the context of this upgrade, the inner detector (including the pixel detector) of the ATLAS experiment will be replaced. This new pixel detector requires a specific control system which complies with strict requirements in terms of radiation hardness, material budget and space for the electronics in the ATLAS experiment. The University of Wuppertal is developing a concept for a DCS (Detector Control System) network consisting of two kinds of ASICs. The first ASIC is the DCS chip which is located on the pixel detector, very close to the interaction point. The second ASIC is the DCS Controller which is controlling 4×4 DCS chips from the outer regions of ATLAS via differential data lines. Both ASICs are manufactured in 130 nm deep sub-micron technology. We present results from reliability measurements under irradiation from new prototypes of components for the DCS network.

  12. Prototypes for components of a control system for the ATLAS pixel detector at the HL-LHC

    International Nuclear Information System (INIS)

    Boek, J; Kersten, S; Kind, P; Mättig, P; Püllen, L; Zeitnitz, C

    2013-01-01

    In the years around 2020 an upgrade of the LHC to the HL-LHC is scheduled, which will increase the accelerators luminosity by a factor of 10. In the context of this upgrade, the inner detector of the ATLAS experiment will be replaced entirely including the pixel detector. This new pixel detector requires a specific control system which complies with the strict requirements in terms of radiation hardness, material budget and space for the electronics in the ATLAS experiment. The University of Wuppertal is developing a concept for a DCS (Detector Control System) network consisting of two kinds of ASICs. The first ASIC is the DCS Chip which is located on the pixel detector, very close to the interaction point. The second ASIC is the DCS Controller which is controlling 4x4 DCS Chips from the outer regions of ATLAS via differential data lines. Both ASICs are manufactured in 130 nm deep sub micron technology. We present results from measurements from new prototypes of components for the DCS network.

  13. 1T Pixel Using Floating-Body MOSFET for CMOS Image Sensors

    Directory of Open Access Journals (Sweden)

    Guo-Neng Lu

    2009-01-01

    Full Text Available We present a single-transistor pixel for CMOS image sensors (CIS. It is a floating-body MOSFET structure, which is used as photo-sensing device and source-follower transistor, and can be controlled to store and evacuate charges. Our investigation into this 1T pixel structure includes modeling to obtain analytical description of conversion gain. Model validation has been done by comparing theoretical predictions and experimental results. On the other hand, the 1T pixel structure has been implemented in different configurations, including rectangular-gate and ring-gate designs, and variations of oxidation parameters for the fabrication process. The pixel characteristics are presented and discussed.

  14. A 45 nm Stacked CMOS Image Sensor Process Technology for Submicron Pixel.

    Science.gov (United States)

    Takahashi, Seiji; Huang, Yi-Min; Sze, Jhy-Jyi; Wu, Tung-Ting; Guo, Fu-Sheng; Hsu, Wei-Cheng; Tseng, Tung-Hsiung; Liao, King; Kuo, Chin-Chia; Chen, Tzu-Hsiang; Chiang, Wei-Chieh; Chuang, Chun-Hao; Chou, Keng-Yu; Chung, Chi-Hsien; Chou, Kuo-Yu; Tseng, Chien-Hsien; Wang, Chuan-Joung; Yaung, Dun-Nien

    2017-12-05

    A submicron pixel's light and dark performance were studied by experiment and simulation. An advanced node technology incorporated with a stacked CMOS image sensor (CIS) is promising in that it may enhance performance. In this work, we demonstrated a low dark current of 3.2 e - /s at 60 °C, an ultra-low read noise of 0.90 e - ·rms, a high full well capacity (FWC) of 4100 e - , and blooming of 0.5% in 0.9 μm pixels with a pixel supply voltage of 2.8 V. In addition, the simulation study result of 0.8 μm pixels is discussed.

  15. Radiation tests of photodiodes for the ATLAS SCT and PIXEL opto- links

    CERN Document Server

    Hou, L S; Lee, S C; Su, D S; Teng, P K

    2005-01-01

    In previous research, epitaxial Si PIN photodiodes produced by Centronic which will be used in the ATLAS semiconductor tracker have been irradiated with 1 MeV neutrons and 24 GeV protons with fluences up to an equivalent of $10^{15}$ 1 MeV neutrons (1,2) . In this work 30 MeV proton beams were used to irradiate Centronic and Truelight epitaxial Si PIN diodes with accumulated fluences of up to 2.1 multiplied by $10^{14}$-30 MeV p $cm^{-2}$, an equivalent of 5.7 multiplied by $10^{14} cm^{-2}$ 1 MeV neutrons, to reach the pixel radiation environment. The responsivity was measured with different levels of fluence in order to study the responsivity behaviour of two different types of photodiodes. The responsivity behaviour of these two photodiodes was similar: a linear degradation at large fluences, greater than $10^{14}$ 30 MeV p $cm^{-2}$, but with different slopes. The response of the Centronic PIN diode showed a degradation to 73% after a proton fluence of $10^{13}$ p $cm^{-2}$ of 30 MeV and a linear degradat...

  16. Detailed studies of full-size ATLAS12 sensors

    Science.gov (United States)

    Hommels, L. B. A.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Arratia, M.; Klein, C. T.; Ullan, M.; Fleta, C.; Fernandez-Tejero, J.; Bloch, I.; Gregor, I. M.; Lohwasser, K.; Poley, L.; Tackmann, K.; Trofimov, A.; Yildirim, E.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Mori, R.; Parzefall, U.; Clark, A.; Ferrere, D.; Gonzalez Sevilla, S.; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O`Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Stastny, J.; Mikestikova, M.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Sato, K.; Sato, K.; Hagihara, M.; Iwabuchi, S.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Marti i Garcia, S.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.

    2016-09-01

    The "ATLAS ITk Strip Sensor Collaboration" R&D group has developed a second iteration of single-sided n+-in-p type micro-strip sensors for use in the tracker upgrade of the ATLAS experiment at the High-Luminosity (HL) LHC. The full size sensors measure approximately 97 × 97mm2 and are designed for tolerance against the 1.1 ×1015neq /cm2 fluence expected at the HL-LHC. Each sensor has 4 columns of 1280 individual 23.9 mm long channels, arranged at 74.5 μm pitch. Four batches comprising 120 sensors produced by Hamamatsu Photonics were evaluated for their mechanical, and electrical bulk and strip characteristics. Optical microscopy measurements were performed to obtain the sensor surface profile. Leakage current and bulk capacitance properties were measured for each individual sensor. For sample strips across the sensor batches, the inter-strip capacitance and resistance as well as properties of the punch-through protection structure were measured. A multi-channel probecard was used to measure leakage current, coupling capacitance and bias resistance for each individual channel of 100 sensors in three batches. The compiled results for 120 unirradiated sensors are presented in this paper, including summary results for almost 500,000 strips probed. Results on the reverse bias voltage dependence of various parameters and frequency dependence of tested capacitances are included for validation of the experimental methods used. Comparing results with specified values, almost all sensors fall well within specification.

  17. Photon small-field measurements with a CMOS active pixel sensor.

    Science.gov (United States)

    Spang, F Jiménez; Rosenberg, I; Hedin, E; Royle, G

    2015-06-07

    In this work the dosimetric performance of CMOS active pixel sensors for the measurement of small photon beams is presented. The detector used consisted of an array of 520  × 520 pixels on a 25 µm pitch. Dosimetric parameters measured with this sensor were compared with data collected with an ionization chamber, a film detector and GEANT4 Monte Carlo simulations. The sensor performance for beam profiles measurements was evaluated for field sizes of 0.5  × 0.5 cm(2). The high spatial resolution achieved with this sensor allowed the accurate measurement of profiles, beam penumbrae and field size under lateral electronic disequilibrium. Field size and penumbrae agreed within 5.4% and 2.2% respectively with film measurements. Agreements with ionization chambers better than 1.0% were obtained when measuring tissue-phantom ratios. Output factor measurements were in good agreement with ionization chamber and Monte Carlo simulation. The data obtained from this imaging sensor can be easily analyzed to extract dosimetric information. The results presented in this work are promising for the development and implementation of CMOS active pixel sensors for dosimetry applications.

  18. High-speed imaging using CMOS image sensor with quasi pixel-wise exposure

    Science.gov (United States)

    Sonoda, T.; Nagahara, H.; Endo, K.; Sugiyama, Y.; Taniguchi, R.

    2017-02-01

    Several recent studies in compressive video sensing have realized scene capture beyond the fundamental trade-off limit between spatial resolution and temporal resolution using random space-time sampling. However, most of these studies showed results for higher frame rate video that were produced by simulation experiments or using an optically simulated random sampling camera, because there are currently no commercially available image sensors with random exposure or sampling capabilities. We fabricated a prototype complementary metal oxide semiconductor (CMOS) image sensor with quasi pixel-wise exposure timing that can realize nonuniform space-time sampling. The prototype sensor can reset exposures independently by columns and fix these amount of exposure by rows for each 8x8 pixel block. This CMOS sensor is not fully controllable via the pixels, and has line-dependent controls, but it offers flexibility when compared with regular CMOS or charge-coupled device sensors with global or rolling shutters. We propose a method to realize pseudo-random sampling for high-speed video acquisition that uses the flexibility of the CMOS sensor. We reconstruct the high-speed video sequence from the images produced by pseudo-random sampling using an over-complete dictionary.

  19. [High-Performance Active Pixel X-Ray Sensors for X-Ray Astronomy

    Science.gov (United States)

    Bautz, Mark; Suntharalingam, Vyshnavi

    2005-01-01

    The subject grants support development of High-Performance Active Pixel Sensors for X-ray Astronomy at the Massachusetts Institute of Technology (MIT) Center for Space Research and at MIT's Lincoln Laboratory. This memo reports our progress in the second year of the project, from April, 2004 through the present.

  20. CMOS Active Pixel Sensors for Low Power, Highly Miniaturized Imaging Systems

    Science.gov (United States)

    Fossum, Eric R.

    1996-01-01

    The complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology has been developed over the past three years by NASA at the Jet Propulsion Laboratory, and has reached a level of performance comparable to CCDs with greatly increased functionality but at a very reduced power level.

  1. Studies on irradiated pixel detectors for the ATLAS IBL and HL-LHC upgrade

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00371978; Gößling, Claus; Pernegger, Heinz

    The constant demand for higher luminosity in high energy physics is the reason for the continuous effort to adapt the accelerators and the experiments. The upgrade program for the experiments and the accelerators at CERN already includes several expansion stages of the Large Hadron Collider (LHC) which will increase the luminosity and the energy of the accelerator. Simultaneously the LHC experiments prepare the individual sub-detectors for the increasing demands in the coming years. Especially the tracking detectors have to cope with fluence levels unprecedented for high energy physics experiments. Correspondingly to the fluence increases the impact of the radiation damage which reduces the life time of the detectors by decreasing the detector performance and efficiency. To cope with this effect new and more radiation hard detector concepts become necessary to extend the life time. This work concentrates on the impact of radiation damage on the pixel sensor technologies to be used in the next upgrade of the ...

  2. Submission of the First Full Scale Prototype Chip for Upgraded ATLAS Pixel Detector at LHC, FE-I4A

    CERN Document Server

    Barbero, M; The ATLAS collaboration; Beccherle, R; Darbo, G; Dube, S; Elledge, D; Fleury, J; Fougeron, D; Garcia-Sciveres, M; Gensolen, F; Gnani, D; Gromov, V; Jensen, F; Hemperek, T; Karagounis, M; Kluit, R; Kruth, A; Mekkaoui, A; Menouni, M; Schipper, JD; Wermes, N; Zivkovic, V

    2010-01-01

    A new ATLAS pixel chip FE-I4 is being developed for use in upgraded LHC luminosity environments, including the near-term Insertable B-Layer (IBL) upgrade. FE-I4 is designed in a 130nm CMOS technology, presenting advantages in terms of radiation tolerance and digital logic density compared to the 250nm CMOS technology used for the current ATLAS pixel IC, FE-I3. The FE-I4 architecture is based on an array of 80x336 pixels, each 50x250um^2, consisting of analog and digital sections. In the summer 2010, a first full scale prototype FE-I4A was submitted for an engineering run. This IC features the full scale pixel array as well as the complex periphery of the future full-size FE-I4. The FE-I4A contains also various extra test features which should prove very useful for the chip characterization, but deviate from the needs for standard operation of the final FE-I4 for IBL. In this paper, focus will be brought to the various features implemented in the FE-I4A submission, while also underlining the main differences b...

  3. Measurements and TCAD simulation of novel ATLAS planar pixel detector structures for the HL-LHC upgrade

    International Nuclear Information System (INIS)

    Nellist, C.; Dinu, N.; Gkougkousis, E.; Lounis, A.

    2015-01-01

    The LHC accelerator complex will be upgraded between 2020–2022, to the High-Luminosity-LHC, to considerably increase statistics for the various physics analyses. To operate under these challenging new conditions, and maintain excellent performance in track reconstruction and vertex location, the ATLAS pixel detector must be substantially upgraded and a full replacement is expected. Processing techniques for novel pixel designs are optimised through characterisation of test structures in a clean room and also through simulations with Technology Computer Aided Design (TCAD). A method to study non-perpendicular tracks through a pixel device is discussed. Comparison of TCAD simulations with Secondary Ion Mass Spectrometry (SIMS) measurements to investigate the doping profile of structures and validate the simulation process is also presented

  4. Measurements and TCAD simulation of novel ATLAS planar pixel detector structures for the HL-LHC upgrade

    CERN Document Server

    INSPIRE-00304438; Gkougkousis, E.; Lounis, A.

    2015-01-01

    The LHC accelerator complex will be upgraded between 2020-2022, to the High-Luminosity-LHC, to considerably increase statistics for the various physics analyses. To operate under these challenging new conditions, and maintain excellent performance in track reconstruction and vertex location, the ATLAS pixel detector must be substantially upgraded and a full replacement is expected. Processing techniques for novel pixel designs are optimised through characterisation of test structures in a clean room and also through simulations with Technology Computer Aided Design (TCAD). A method to study non-perpendicular tracks through a pixel device is discussed. Comparison of TCAD simulations with Secondary Ion Mass Spectrometry (SIMS) measurements to investigate the doping profile of structures and validate the simulation process is also presented.

  5. Active pixel sensors: the sensor of choice for future space applications?

    Science.gov (United States)

    Leijtens, Johan; Theuwissen, Albert; Rao, Padmakumar R.; Wang, Xinyang; Xie, Ning

    2007-10-01

    It is generally known that active pixel sensors (APS) have a number of advantages over CCD detectors if it comes to cost for mass production, power consumption and ease of integration. Nevertheless, most space applications still use CCD detectors because they tend to give better performance and have a successful heritage. To this respect a change may be at hand with the advent of deep sub-micron processed APS imagers (< 0.25-micron feature size). Measurements performed on test structures at the University of Delft have shown that the imagers are very radiation tolerant even if made in a standard process without the use of special design rules. Furthermore it was shown that the 1/f noise associated with deep sub-micron imagers is reduced as compared to previous generations APS imagers due to the improved quality of the gate oxides. Considering that end of life performance will have to be guaranteed, limited budget for adding shielding metal will be available for most applications and lower power operations is always seen as a positive characteristic in space applications, deep sub-micron APS imagers seem to have a number of advantages over CCD's that will probably cause them to replace CCD's in those applications where radiation tolerance and low power operation are important

  6. R&D for the local support structure and cooling channel for the ATLAS PIXEL Detector Insertable B-Layer (IBL)

    CERN Document Server

    Coelli, S; The ATLAS collaboration

    2010-01-01

    ABSTRACT: The scope of the present R&D is to develop an innovative support, with an integrated cooling and based on carbon composites, for the electronic sensors of the Silicon Pixel Tracker, to be installed into the ATLAS Experiment on the Large Hadron Collider at CERN. The inner layer of the detector is installed immediately outside the Beryllium beam pipe at a distance of 50 mm from the Interaction Point, where the high energy protons collide: the intense radiation field induce a radiation damage on the sensors so that a cooling system is necessary to remove the electrical power dissipated as heat, maintaining the sensor temperature sufficiently low. The task of the support system is to hold the detector modules in positions with high accuracy, minimizing the deformation induced by the cooling; this must be done with the lower possible mass because there are tight requirements in terms of material budget. An evaporative boiling system to remove the power dissipated by the sensors is incorporated in the...

  7. Characterization of Thin Pixel Sensor Modules Interconnected with SLID Technology Irradiated to a Fluence of 2$\\cdot 10^{15}$\\,n$_{\\mathrm{eq}}$/cm$^2$

    CERN Document Server

    INSPIRE-00237859; Beimforde, M.; Macchiolo, A.; Moser, H.G.; Nisius, R.; Richter, R.H.

    2011-01-01

    A new module concept for future ATLAS pixel detector upgrades is presented, where thin n-in-p silicon sensors are connected to the front-end chip exploiting the novel Solid Liquid Interdiffusion technique (SLID) and the signals are read out via Inter Chip Vias (ICV) etched through the front-end. This should serve as a proof of principle for future four-side buttable pixel assemblies for the ATLAS upgrades, without the cantilever presently needed in the chip for the wire bonding. The SLID interconnection, developed by the Fraunhofer EMFT, is a possible alternative to the standard bump-bonding. It is characterized by a very thin eutectic Cu-Sn alloy and allows for stacking of different layers of chips on top of the first one, without destroying the pre-existing bonds. This paves the way for vertical integration technologies. Results of the characterization of the first pixel modules interconnected through SLID as well as of one sample irradiated to $2\\cdot10^{15}$\\,\

  8. Characterization of Thin Pixel Sensor Modules Interconnected with SLID Technology Irradiated to a Fluence of 2⋅10 15 $n_{eq}$ /cm 2

    CERN Document Server

    Weigell, P; Beimforde, M; Macchiolo, A; Moser, H G; Nisius, R; Richter, R H

    2011-01-01

    A new module concept for future ATLAS pixel detector upgrades is presented, where thin n-in-p silicon sensors are connected to the front-end chip exploiting the novel Solid Liquid Interdiffusion technique (SLID) and the signals are read out via Inter Chip Vias (ICV) etched through the front-end. This should serve as a proof of principle for future four-side buttable pixel assemblies for the ATLAS upgrades, without the cantilever presently needed in the chip for the wire bonding. The SLID interconnection, developed by the Fraunhofer EMFT, is a possible alternative to the standard bump-bonding. It is characterized by a very thin eutectic Cu-Sn alloy and allows for stacking of different layers of chips on top of the first one, without destroying the pre-existing bonds. This paves the way for vertical integration technologies. Results of the characterization of the first pixel modules interconnected through SLID as well as of one sample irradiated to 2⋅10 15 \\,\

  9. CMOS pixel sensors on high resistive substrate for high-rate, high-radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, Toko, E-mail: thirono@uni-bonn.de [Physikalisches Institute der Universität Bonn, Bonn (Germany); Barbero, Marlon; Breugnon, Patrick; Godiot, Stephanie [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Gonella, Laura; Hemperek, Tomasz; Hügging, Fabian; Krüger, Hans [Physikalisches Institute der Universität Bonn, Bonn (Germany); Liu, Jian; Pangaud, Patrick [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Peric, Ivan [IPE, Karlsruher Institut für Technologie, Karlsruhe (Germany); Pohl, David-Leon [Physikalisches Institute der Universität Bonn, Bonn (Germany); Rozanov, Alexandre [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Rymaszewski, Piotr [Physikalisches Institute der Universität Bonn, Bonn (Germany); Wang, Anqing [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Wermes, Norbert [Physikalisches Institute der Universität Bonn, Bonn (Germany)

    2016-09-21

    A depleted CMOS active pixel sensor (DMAPS) has been developed on a substrate with high resistivity in a high voltage process. High radiation tolerance and high time resolution can be expected because of the charge collection by drift. A prototype of DMAPS was fabricated in a 150 nm process by LFoundry. Two variants of the pixel layout were tested, and the measured depletion depths of the variants are 166 μm and 80 μm. We report the results obtained with the prototype fabricated in this technology.

  10. A Parallel FPGA Implementation for Real-Time 2D Pixel Clustering for the ATLAS Fast TracKer Processor

    CERN Document Server

    Sotiropoulou, C-L; The ATLAS collaboration; Annovi, A; Beretta, M; Kordas, K; Nikolaidis, S; Petridou, C; Volpi, G

    2014-01-01

    The parallel 2D pixel clustering FPGA implementation used for the input system of the ATLAS Fast TracKer (FTK) processor is presented. The input system for the FTK processor will receive data from the Pixel and micro-strip detectors from inner ATLAS read out drivers (RODs) at full rate, for total of 760Gbs, as sent by the RODs after level-1 triggers. Clustering serves two purposes, the first is to reduce the high rate of the received data before further processing, the second is to determine the cluster centroid to obtain the best spatial measurement. For the pixel detectors the clustering is implemented by using a 2D-clustering algorithm that takes advantage of a moving window technique to minimize the logic required for cluster identification. The cluster detection window size can be adjusted for optimizing the cluster identification process. Additionally, the implementation can be parallelized by instantiating multiple cores to identify different clusters independently thus exploiting more FPGA resources. ...

  11. A Parallel FPGA Implementation for Real-Time 2D Pixel Clustering for the ATLAS Fast TracKer Processor

    CERN Document Server

    Sotiropoulou, C-L; The ATLAS collaboration; Annovi, A; Beretta, M; Kordas, K; Nikolaidis, S; Petridou, C; Volpi, G

    2014-01-01

    The parallel 2D pixel clustering FPGA implementation used for the input system of the ATLAS Fast TracKer (FTK) processor is presented. The input system for the FTK processor will receive data from the Pixel and micro-strip detectors from inner ATLAS read out drivers (RODs) at full rate, for total of 760Gbs, as sent by the RODs after level1 triggers. Clustering serves two purposes, the first is to reduce the high rate of the received data before further processing, the second is to determine the cluster centroid to obtain the best spatial measurement. For the pixel detectors the clustering is implemented by using a 2D-clustering algorithm that takes advantage of a moving window technique to minimize the logic required for cluster identification. The cluster detection window size can be adjusted for optimizing the cluster identification process. Additionally, the implementation can be parallelized by instantiating multiple cores to identify different clusters independently thus exploiting more FPGA resources. T...

  12. Subpixel mapping and test beam studies with a HV2FEI4v2 CMOS-Sensor-Hybrid Module for the ATLAS inner detector upgrade

    Science.gov (United States)

    Bisanz, T.; Große-Knetter, J.; Quadt, A.; Rieger, J.; Weingarten, J.

    2017-08-01

    The upgrade to the High Luminosity Large Hadron Collider will increase the instantaneous luminosity by more than a factor of 5, thus creating significant challenges to the tracking systems of all experiments. Recent advancement of active pixel detectors designed in CMOS processes provide attractive alternatives to the well-established hybrid design using passive sensors since they allow for smaller pixel sizes and cost effective production. This article presents studies of a high-voltage CMOS active pixel sensor designed for the ATLAS tracker upgrade. The sensor is glued to the read-out chip of the Insertable B-Layer, forming a capacitively coupled pixel detector. The pixel pitch of the device under test is 33× 125 μm2, while the pixels of the read-out chip have a pitch of 50× 250 μm2. Three pixels of the CMOS device are connected to one read-out pixel, the information of which of these subpixels is hit is encoded in the amplitude of the output signal (subpixel encoding). Test beam measurements are presented that demonstrate the usability of this subpixel encoding scheme.

  13. Heavy Ion Transient Characterization of a Photobit Hardened-by-Design Active Pixel Sensor Array

    Science.gov (United States)

    Marshall, Paul W.; Byers, Wheaton B.; Conger, Christopher; Eid, El-Sayed; Gee, George; Jones, Michael R.; Marshall, Cheryl J.; Reed, Robert; Pickel, Jim; Kniffin, Scott

    2002-01-01

    This paper presents heavy ion data on the single event transient (SET) response of a Photobit active pixel sensor (APS) four quadrant test chip with different radiation tolerant designs in a standard 0.35 micron CMOS process. The physical design techniques of enclosed geometry and P-channel guard rings are used to design the four N-type active photodiode pixels as described in a previous paper. Argon transient measurements on the 256 x 256 chip array as a function of incident angle show a significant variation in the amount of charge collected as well as the charge spreading dependent on the pixel type. The results are correlated with processing and design information provided by Photobit. In addition, there is a large degree of statistical variability between individual ion strikes. No latch-up is observed up to an LET of 106 MeV/mg/sq cm.

  14. A pixel design for X-ray imaging with CdTe sensors

    Energy Technology Data Exchange (ETDEWEB)

    Lambropoulos, C.P.; Zervakis, E.G. [Technological Educational Institute of Halkis, Psahna - Evia (Greece); Loukas, D. [Institute of Nuclear Physics, NCSR Demokritos, Agia Paraskevi - Attiki (Greece)

    2008-07-01

    A readout architecture appropriate for X-ray Imaging using charge integration has been designed. Each pixel consists of a capacitive transimpedance amplifier, a sample and hold circuit a comparator and an 8 bit DRAM. Pixel level A/D conversion and local storage of the digitized signal is performed. The target sensors are 100{mu}m x 100 {mu}m CdTe pixel detectors and integration time of 1ms or less can be achieved. Special measures have been taken to minimize the gain fixed pattern noise and the reset noise, while purely digital correlation double sampling can be performed. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. A pixel design for X-ray imaging with CdTe sensors

    International Nuclear Information System (INIS)

    Lambropoulos, C.P.; Zervakis, E.G.; Loukas, D.

    2008-01-01

    A readout architecture appropriate for X-ray Imaging using charge integration has been designed. Each pixel consists of a capacitive transimpedance amplifier, a sample and hold circuit a comparator and an 8 bit DRAM. Pixel level A/D conversion and local storage of the digitized signal is performed. The target sensors are 100μm x 100 μm CdTe pixel detectors and integration time of 1ms or less can be achieved. Special measures have been taken to minimize the gain fixed pattern noise and the reset noise, while purely digital correlation double sampling can be performed. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Performance of a Fast Binary Readout CMOS Active Pixel Sensor Chip Designed for Charged Particle Detection

    Science.gov (United States)

    Deerli, Yavuz; Besanon, Marc; Besson, Auguste; Claus, Gilles; Deptuch, Grzegorz; Dulinski, Wojciech; Fourches, Nicolas; Goffe, Mathieu; Himmi, Abdelkader; Li, Yan; Lutz, Pierre; Orsini, Fabienne; Szelezniak, Michal

    2006-12-01

    We report on the performance of the MIMOSA8 (HiMAPS1) chip. The chip is a 128times32 pixels array where 24 columns have discriminated binary outputs and eight columns analog test outputs. Offset correction techniques are used extensively in this chip to overcome process related mismatches. The array is divided in four blocks of pixels with different conversion factors and is controlled by a serially programmable sequencer. MIMOSA8 is a representative of the CMOS sensors development option considered as a promising candidate for the Vertex Detector of the future International Linear Collider (ILC). The readout technique, implemented on the chip, combines high spatial resolution capabilities with high processing readout speed. Data acquisition, providing control of the chip and signal buffering and linked to a VME system, was made on the eight analog outputs. Analog data, without and with a 55Fe X-ray source, were acquired and processed using off-line analysis software. From the reconstruction of pixel clusters, built around a central pixel, we deduce that the charge spread is limited to the closest 25 pixels and almost all the available charge is collected. The position of the total charge collection peak (and subsequently the charge-to-voltage conversion factor) stays unaffected when the clock frequency is increased even up to 150 MHz (13.6 mus readout time per frame). The discriminators, placed in the readout chain, have proved to be fully functional. Beam tests have been made with high energy electrons at DESY (Germany) to study detection efficiency. The results prove that MIMOSA8 is the first and fastest successful monolithic active pixel sensor with on-chip signal discrimination for detection of MIPs

  17. High-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor array

    Science.gov (United States)

    Guss, Paul; Rabin, Michael; Croce, Mark; Hoteling, Nathan; Schwellenbach, David; Kruschwitz, Craig; Mocko, Veronika; Mukhopadhyay, Sanjoy

    2017-09-01

    We demonstrate very high-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor (TES) array. The readout circuit consists of superconducting microwave resonators coupled to radio frequency superconducting-quantum-interference devices (RF-SQUIDs) and transduces changes in input current to changes in phase of a microwave signal. We used a flux-ramp modulation to linearize the response and avoid low-frequency noise. The result is a very high-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor array. We performed and validated a small-scale demonstration and test of all the components of our concept system, which encompassed microcalorimetry, microwave multiplexing, RF-SQUIDs, and software-defined radio (SDR). We shall display data we acquired in the first simultaneous combination of all key innovations in a 4-pixel demonstration, including microcalorimetry, microwave multiplexing, RF-SQUIDs, and SDR. We present the energy spectrum of a gadolinium-153 (153Gd) source we measured using our 4-pixel TES array and the RF-SQUID multiplexer. For each pixel, one can observe the two 97.4 and 103.2 keV photopeaks. We measured the 153Gd photon source with an achieved energy resolution of 70 eV, full width half maximum (FWHM) at 100 keV, and an equivalent readout system noise of 90 pA/pHz at the TES. This demonstration establishes a path for the readout of cryogenic x-ray and gamma ray sensor arrays with more elements and spectral resolving powers. We believe this project has improved capabilities and substantively advanced the science useful for missions such as nuclear forensics, emergency response, and treaty verification through the explored TES developments.

  18. Development of a 750x750 pixels CMOS imager sensor for tracking applications

    Science.gov (United States)

    Larnaudie, Franck; Guardiola, Nicolas; Saint-Pé, Olivier; Vignon, Bruno; Tulet, Michel; Davancens, Robert; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Estribeau, Magali

    2017-11-01

    Solid-state optical sensors are now commonly used in space applications (navigation cameras, astronomy imagers, tracking sensors...). Although the charge-coupled devices are still widely used, the CMOS image sensor (CIS), which performances are continuously improving, is a strong challenger for Guidance, Navigation and Control (GNC) systems. This paper describes a 750x750 pixels CMOS image sensor that has been specially designed and developed for star tracker and tracking sensor applications. Such detector, that is featuring smart architecture enabling very simple and powerful operations, is built using the AMIS 0.5μm CMOS technology. It contains 750x750 rectangular pixels with 20μm pitch. The geometry of the pixel sensitive zone is optimized for applications based on centroiding measurements. The main feature of this device is the on-chip control and timing function that makes the device operation easier by drastically reducing the number of clocks to be applied. This powerful function allows the user to operate the sensor with high flexibility: measurement of dark level from masked lines, direct access to the windows of interest… A temperature probe is also integrated within the CMOS chip allowing a very precise measurement through the video stream. A complete electro-optical characterization of the sensor has been performed. The major parameters have been evaluated: dark current and its uniformity, read-out noise, conversion gain, Fixed Pattern Noise, Photo Response Non Uniformity, quantum efficiency, Modulation Transfer Function, intra-pixel scanning. The characterization tests are detailed in the paper. Co60 and protons irradiation tests have been also carried out on the image sensor and the results are presented. The specific features of the 750x750 image sensor such as low power CMOS design (3.3V, power consumption<100mW), natural windowing (that allows efficient and robust tracking algorithms), simple proximity electronics (because of the on

  19. LePIX: First results from a novel monolithic pixel sensor

    International Nuclear Information System (INIS)

    Mattiazzo, S.; Battaglia, M.; Bisello, D.; Caselle, M.; Chalmet, P.; Demaria, N.; Giubilato, P.; Ikemoto, Y.; Kloukinas, K.; Mansuy, C.; Marchioro, A.; Mugnier, H.; Pantano, D.; Potenza, A.; Rivetti, A.; Rousset, J.; Silvestrin, L.; Snoeys, W.; Wyss, J.

    2013-01-01

    We present a monolithic pixel sensor developed in the framework of the LePIX project aimed at tracking/triggering tasks where high granularity, low power consumption, material budget, radiation hardness and production costs are a concern. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This maintains the advantages usually offered by Monolithic Active Pixel Sensors (MAPS), like a low input capacitance, having a single piece detector and using a standard CMOS production line, but offers charge collection by drift from a depleted region and therefore an excellent signal to noise ratio and a radiation tolerance superior to conventional undepleted MAPS. Measurement results obtained with the first prototypes from laser, radioactive source and beam test experiments are described. The excellent signal-to-noise performance is demonstrated by the capability of the device to separate the peaks in the spectrum of a 55 Fe source. We will also highlight the interaction between pixel cell design and architecture which points toward a very precise direction in the development of such depleted monolithic pixel devices for high energy physics

  20. Geant4-based simulations of charge collection in CMOS Active Pixel Sensors

    International Nuclear Information System (INIS)

    Esposito, M.; Allinson, N.M.; Price, T.; Anaxagoras, T.

    2017-01-01

    Geant4 is an object-oriented toolkit for the simulation of the interaction of particles and radiation with matter. It provides a snapshot of the state of a simulated particle in time, as it travels through a specified geometry. One important area of application is the modelling of radiation detector systems. Here, we extend the abilities of such modelling to include charge transport and sharing in pixelated CMOS Active Pixel Sensors (APSs); though similar effects occur in other pixel detectors. The CMOS APSs discussed were developed in the framework of the PRaVDA consortium to assist the design of custom sensors to be used in an energy-range detector for proton Computed Tomography (pCT). The development of ad-hoc classes, providing a charge transport model for a CMOS APS and its integration into the standard Geant4 toolkit, is described. The proposed charge transport model includes, charge generation, diffusion, collection, and sharing across adjacent pixels, as well as the full electronic chain for a CMOS APS. The proposed model is validated against experimental data acquired with protons in an energy range relevant for pCT.

  1. Two-dimensional pixel image lag simulation and optimization in a 4-T CMOS image sensor

    Energy Technology Data Exchange (ETDEWEB)

    Yu Junting; Li Binqiao; Yu Pingping; Xu Jiangtao [School of Electronics Information Engineering, Tianjin University, Tianjin 300072 (China); Mou Cun, E-mail: xujiangtao@tju.edu.c [Logistics Management Office, Hebei University of Technology, Tianjin 300130 (China)

    2010-09-15

    Pixel image lag in a 4-T CMOS image sensor is analyzed and simulated in a two-dimensional model. Strategies of reducing image lag are discussed from transfer gate channel threshold voltage doping adjustment, PPD N-type doping dose/implant tilt adjustment and transfer gate operation voltage adjustment for signal electron transfer. With the computer analysis tool ISE-TCAD, simulation results show that minimum image lag can be obtained at a pinned photodiode n-type doping dose of 7.0 x 10{sup 12} cm{sup -2}, an implant tilt of -2{sup 0}, a transfer gate channel doping dose of 3.0 x 10{sup 12} cm{sup -2} and an operation voltage of 3.4 V. The conclusions of this theoretical analysis can be a guideline for pixel design to improve the performance of 4-T CMOS image sensors. (semiconductor devices)

  2. Development of CMOS pixel sensors for tracking and vertexing in high energy physics experiments

    CERN Document Server

    Senyukov, Serhiy; Besson, Auguste; Claus, Giles; Cousin, Loic; Dulinski, Wojciech; Goffe, Mathieu; Hippolyte, Boris; Maria, Robert; Molnar, Levente; Sanchez Castro, Xitzel; Winter, Marc

    2014-01-01

    CMOS pixel sensors (CPS) represent a novel technological approach to building charged particle detectors. CMOS processes allow to integrate a sensing volume and readout electronics in a single silicon die allowing to build sensors with a small pixel pitch ($\\sim 20 \\mu m$) and low material budget ($\\sim 0.2-0.3\\% X_0$) per layer. These characteristics make CPS an attractive option for vertexing and tracking systems of high energy physics experiments. Moreover, thanks to the mass production industrial CMOS processes used for the manufacturing of CPS the fabrication construction cost can be significantly reduced in comparison to more standard semiconductor technologies. However, the attainable performance level of the CPS in terms of radiation hardness and readout speed is mostly determined by the fabrication parameters of the CMOS processes available on the market rather than by the CPS intrinsic potential. The permanent evolution of commercial CMOS processes towards smaller feature sizes and high resistivity ...

  3. Experimental single-chip color HDTV image acquisition system with 8M-pixel CMOS image sensor

    Science.gov (United States)

    Shimamoto, Hiroshi; Yamashita, Takayuki; Funatsu, Ryohei; Mitani, Kohji; Nojiri, Yuji

    2006-02-01

    We have developed an experimental single-chip color HDTV image acquisition system using 8M-pixel CMOS image sensor. The sensor has 3840 × 2160 effective pixels and is progressively scanned at 60 frames per second. We describe the color filter array and interpolation method to improve image quality with a high-pixel-count single-chip sensor. We also describe an experimental image acquisition system we used to measured spatial frequency characteristics in the horizontal direction. The results indicate good prospects for achieving a high quality single chip HDTV camera that reduces pseudo signals and maintains high spatial frequency characteristics within the frequency band for HDTV.

  4. Giga-pixel lensfree holographic microscopy and tomography using color image sensors.

    Directory of Open Access Journals (Sweden)

    Serhan O Isikman

    Full Text Available We report Giga-pixel lensfree holographic microscopy and tomography using color sensor-arrays such as CMOS imagers that exhibit Bayer color filter patterns. Without physically removing these color filters coated on the sensor chip, we synthesize pixel super-resolved lensfree holograms, which are then reconstructed to achieve ~350 nm lateral resolution, corresponding to a numerical aperture of ~0.8, across a field-of-view of ~20.5 mm(2. This constitutes a digital image with ~0.7 Billion effective pixels in both amplitude and phase channels (i.e., ~1.4 Giga-pixels total. Furthermore, by changing the illumination angle (e.g., ± 50° and scanning a partially-coherent light source across two orthogonal axes, super-resolved images of the same specimen from different viewing angles are created, which are then digitally combined to synthesize tomographic images of the object. Using this dual-axis lensfree tomographic imager running on a color sensor-chip, we achieve a 3D spatial resolution of ~0.35 µm × 0.35 µm × ~2 µm, in x, y and z, respectively, creating an effective voxel size of ~0.03 µm(3 across a sample volume of ~5 mm(3, which is equivalent to >150 Billion voxels. We demonstrate the proof-of-concept of this lensfree optical tomographic microscopy platform on a color CMOS image sensor by creating tomograms of micro-particles as well as a wild-type C. elegans nematode.

  5. Development of the ATLAS FE-I4 pixel readout IC for b-layer Upgrade and Super-LHC

    CERN Document Server

    Karagounis, M

    2008-01-01

    Motivated by the upcoming upgrade of the ATLAS hybrid pixel detector, a new Front-End (FE) IC is being developed in a 130nm technology to face the tightened requirements of the upgraded pixel system. The main design goals are the reduction of material and a decrease in power consumption combined with the capability to handle the higher hit rates that will result from the upgraded machine. New technology features like the higher integration density for digital circuits, better radiation tolerance and Triple-Well transistors are used for optimization and the implementation of new concepts. A description of the ongoing design work is given, focusing more on the analog part and peripheral design blocks.

  6. Chip development in 65 nm CMOS technology for the high luminosity upgrade of the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Germic, Leonard; Hemperek, Tomasz; Kishishita, Tetsuichi; Krueger, Hans; Rymaszewski, Piotr; Wermes, Norbert [University of Bonn, Bonn (Germany)

    2016-07-01

    The LHC High Luminosity upgrade will result in a significant change of environment in which particle detectors are going to operate, especially for devices very close to the interaction point like pixel detector electronics. Challenges arising from the increased hit rate will have to be solved by designing faster and more complex readout electronics that will also have to withstand unprecedented radiation doses. Developing such integrated circuit requires a significant R and D effort and resources, therefore a joint development project between several institutes (including ours) was started. This collaboration, named RD53, aims to develop a pixel readout chip suitable for ATLAS' and CMS' upgrades using a 65nm CMOS technology. During this presentation motivations and benefits of using this very deep-submicron technology are discussed. Most of the talk is allocated to presenting some of the circuits designed by our group (focusing on developments connected to RD53 collaboration), along with their performance measurement results.

  7. Design of a radiation hard silicon pixel sensor for X-ray science

    Energy Technology Data Exchange (ETDEWEB)

    Schwandt, Joern

    2014-06-15

    At DESY Hamburg the European X-ray Free-Electron Laser (EuXFEL) is presently under construction. The EuXFEL has unique properties with respect to X-ray energy, instantaneous intensity, pulse length, coherence and number of pulses/sec. These properties of the EuXFEL pose very demanding requirements for imaging detectors. One of the detector systems which is currently under development to meet these challenges is the Adaptive Gain Integrating Pixel Detector, AGIPD. It is a hybrid pixel-detector system with 1024 x 1024 p{sup +} pixels of dimensions 200 μm x 200 μm, made of 16 p{sup +}nn{sup +}- silicon sensors, each with 10.52 cm x 2.56 cm sensitive area and 500 μm thickness. The particular requirements for the AGIPD are a separation between noise and single photons down to energies of 5 keV, more than 10{sup 4} photons per pixel for a pulse duration of less than 100 fs, negligible pile-up at the EuXFEL repetition rate of 4.5 MHz, operation for X-ray doses up to 1 GGy, good efficiency for X-rays with energies between 5 and 20 keV, and minimal inactive regions at the edges. The main challenge in the sensor design is the required radiation tolerance and high operational voltage, which is required to reduce the so-called plasma effect. This requires a specially optimized sensor. The X-ray radiation damage results in a build-up of oxide charges and interface traps which lead to a reduction of the breakdown voltage, increased leakage current, increased interpixel capacitances and charge losses. Extensive TCAD simulations have been performed to understand the impact of X-ray radiation damage on the detector performance and optimize the sensor design. To take radiation damage into account in the simulation, radiation damage parameters have been determined on MOS capacitors and gate-controlled diodes as function of dose. The optimized sensor design was fabricated by SINTEF. Irradiation tests on test structures and sensors show that the sensor design is radiation hard and

  8. Development of CMOS Pixel Sensors fully adapted to the ILD Vertex Detector Requirements

    CERN Document Server

    Winter, Marc; Besson, Auguste; Claus, Gilles; Dorokhov, Andrei; Goffe, Mathieu; Hu-Guo, Christine; Morel, Frederic; Valin, Isabelle; Voutsinas, Georgios; Zhang, Liang

    2012-01-01

    CMOS Pixel Sensors are making steady progress towards the specifications of the ILD vertex detector. Recent developments are summarised, which show that these devices are close to comply with all major requirements, in particular the read-out speed needed to cope with the beam related background. This achievement is grounded on the double- sided ladder concept, which allows combining signals generated by a single particle in two different sensors, one devoted to spatial resolution and the other to time stamp, both assembled on the same mechanical support. The status of the development is overviewed as well as the plans to finalise it using an advanced CMOS process.

  9. Monolithic active pixel sensor development for the upgrade of the ALICE inner tracking system

    Science.gov (United States)

    Aglieri, G.; Cavicchioli, C.; Chalmet, P. L.; Chanlek, N.; Collu, A.; Giubilato, P.; Hillemanns, H.; Junique, A.; Keil, M.; Kim, D.; Kim, J.; Kugathasan, T.; Lattuca, A.; Mager, M.; Marin Tobon, C. A.; Marras, D.; Martinengo, P.; Mattiazzo, S.; Mazza, G.; Mugnier, H.; Musa, L.; Pantano, D.; Puggioni, C.; Rousset, J.; Reidt, F.; Riedler, P.; Siddhanta, S.; Snoeys, W.; Usai, G.; van Hoorne, J. W.; Yang, P.; Yi, J.

    2013-12-01

    ALICE plans an upgrade of its Inner Tracking System for 2018. The development of a monolithic active pixel sensor for this upgrade is described. The TowerJazz 180 nm CMOS imaging sensor process has been chosen as it is possible to use full CMOS in the pixel due to the offering of a deep pwell and also to use different starting materials. The ALPIDE development is an alternative to approaches based on a rolling shutter architecture, and aims to reduce power consumption and integration time by an order of magnitude below the ALICE specifications, which would be quite beneficial in terms of material budget and background. The approach is based on an in-pixel binary front-end combined with a hit-driven architecture. Several prototypes have already been designed, submitted for fabrication and some of them tested with X-ray sources and particles in a beam. Analog power consumption has been limited by optimizing the Q/C of the sensor using Explorer chips. Promising but preliminary first results have also been obtained with a prototype ALPIDE. Radiation tolerance up to the ALICE requirements has also been verified.

  10. Monolithic active pixel sensor development for the upgrade of the ALICE inner tracking system

    International Nuclear Information System (INIS)

    Aglieri, G; Cavicchioli, C; Hillemanns, H; Junique, A; Keil, M; Kugathasan, T; Mager, M; Tobon, C A Marin; Martinengo, P; Chalmet, P L; Mugnier, H; Chanlek, N; Collu, A; Marras, D; Giubilato, P; Mattiazzo, S; Kim, D; Kim, J; Lattuca, A; Mazza, G

    2013-01-01

    ALICE plans an upgrade of its Inner Tracking System for 2018. The development of a monolithic active pixel sensor for this upgrade is described. The TowerJazz 180 nm CMOS imaging sensor process has been chosen as it is possible to use full CMOS in the pixel due to the offering of a deep pwell and also to use different starting materials. The ALPIDE development is an alternative to approaches based on a rolling shutter architecture, and aims to reduce power consumption and integration time by an order of magnitude below the ALICE specifications, which would be quite beneficial in terms of material budget and background. The approach is based on an in-pixel binary front-end combined with a hit-driven architecture. Several prototypes have already been designed, submitted for fabrication and some of them tested with X-ray sources and particles in a beam. Analog power consumption has been limited by optimizing the Q/C of the sensor using Explorer chips. Promising but preliminary first results have also been obtained with a prototype ALPIDE. Radiation tolerance up to the ALICE requirements has also been verified

  11. Performance of capacitively coupled active pixel sensors in 180 nm HV-CMOS technology after irradiation to HL-LHC fluences

    International Nuclear Information System (INIS)

    Feigl, S

    2014-01-01

    In this ATLAS upgrade R and D project, we explore the concept of using a deep-submicron HV-CMOS process to produce a drop-in replacement for traditional radiation-hard silicon sensors. Such active sensors contain simple circuits, e.g. amplifiers and discriminators, but still require a traditional (pixel or strip) readout chip. This approach yields most advantages of MAPS (improved resolution, reduced cost and material budget, etc.), without the complication of full integration on a single chip. After outlining the basic design of the HV2FEI4 test ASIC, results after irradiation with X-rays to 862 Mrad and neutrons up to 10 16 (1 MeV n eq )/cm 2 will be presented. Finally, a brief outlook on further development plans is given

  12. ATLAS-TPX: a two-layer pixel detector setup for neutron detection and radiation field characterization

    International Nuclear Information System (INIS)

    Bergmann, B.; Caicedo, I.; Pospisil, S.; Vykydal, Z.; Leroy, C.

    2016-01-01

    A two-layer pixel detector setup (ATLAS-TPX), designed for thermal and fast neutron detection and radiation field characterization is presented. It consists of two segmented silicon detectors (256 × 256 pixels, pixel pitch 55 μm, thicknesses 300 μm and 500 μm) facing each other. To enhance the neutron detection efficiency a set of converter layers is inserted in between these detectors. The pixelation and the two-layer design allow a discrimination of neutrons against γs by pattern recognition and against charged particles by using the coincidence and anticoincidence information. The neutron conversion and detection efficiencies are measured in a thermal neutron field and fast neutron fields with energies up to 600 MeV. A Geant4 simulation model is presented, which is validated against the measured detector responses. The reliability of the coincidence and anticoincidence technique is demonstrated and possible applications of the detector setup are briefly outlined.

  13. A parallel FPGA implementation for real-time 2D pixel clustering for the ATLAS Fast Tracker Processor

    International Nuclear Information System (INIS)

    Sotiropoulou, C L; Gkaitatzis, S; Kordas, K; Nikolaidis, S; Petridou, C; Annovi, A; Beretta, M; Volpi, G

    2014-01-01

    The parallel 2D pixel clustering FPGA implementation used for the input system of the ATLAS Fast TracKer (FTK) processor is presented. The input system for the FTK processor will receive data from the Pixel and micro-strip detectors from inner ATLAS read out drivers (RODs) at full rate, for total of 760Gbs, as sent by the RODs after level-1 triggers. Clustering serves two purposes, the first is to reduce the high rate of the received data before further processing, the second is to determine the cluster centroid to obtain the best spatial measurement. For the pixel detectors the clustering is implemented by using a 2D-clustering algorithm that takes advantage of a moving window technique to minimize the logic required for cluster identification. The cluster detection window size can be adjusted for optimizing the cluster identification process. Additionally, the implementation can be parallelized by instantiating multiple cores to identify different clusters independently thus exploiting more FPGA resources. This flexibility makes the implementation suitable for a variety of demanding image processing applications. The implementation is robust against bit errors in the input data stream and drops all data that cannot be identified. In the unlikely event of missing control words, the implementation will ensure stable data processing by inserting the missing control words in the data stream. The 2D pixel clustering implementation is developed and tested in both single flow and parallel versions. The first parallel version with 16 parallel cluster identification engines is presented. The input data from the RODs are received through S-Links and the processing units that follow the clustering implementation also require a single data stream, therefore data parallelizing (demultiplexing) and serializing (multiplexing) modules are introduced in order to accommodate the parallelized version and restore the data stream afterwards. The results of the first hardware tests of

  14. New generation of monolithic active pixel sensors for charged particle detection

    International Nuclear Information System (INIS)

    Deptuch, G.

    2002-09-01

    Vertex detectors are of great importance in particle physics experiments, as the knowledge of the event flavour is becoming an issue for the physics programme at Future Linear Colliders. Monolithic Active Pixel Sensors (MAPS) based on a novel detector structure have been proposed. Their fabrication is compatible with a standard CMOS process. The sensor is inseparable from the readout electronics, since both of them are integrated on the same, low-resistivity silicon wafer. The basic pixel configuration comprises only three MOS transistors and a diode collecting the charge through thermal diffusion. The charge is generated in the thin non-depleted epitaxial layer underneath the readout electronics. This approach provides, at low cost, a high resolution and thin device with the whole area sensitive to radiation. Device simulations using the ISE-TCAD package have been carried out to study the charge collection mechanism. In order to demonstrate the viability of the technique, four prototype chips have been fabricated using different submicrometer CMOS processes. The pixel gain has been calibrated using a 55 Fe source and the Poisson sequence method. The prototypes have been exposed to high-energy particle beams at CERN. The tests proved excellent detection performances expressed in a single-track spatial resolution of 1.5 μm and detection efficiency close to 100%, resulting from a SNR ratio of more than 30. Irradiation tests showed immunity of MAPS to a level of a few times 10 12 n/cm 2 and a few hundred kRad of ionising radiation. The ideas for future work, including on-pixel signal amplification, double sampling operation and current mode pixel design are present as well. (author)

  15. Research and Development of Monolithic Active Pixel Sensors for the Detection of the Elementary Particles

    International Nuclear Information System (INIS)

    Li, Y.

    2007-09-01

    In order to develop high spatial resolution and readout speed vertex detectors for the future International Linear Collider (ILC), fast CMOS Monolithic Active Pixel Sensors (MAPS) are studied on this work. Two prototypes of MAPS, MIMOSA 8 and MIMOSA 16, based on the same micro-electronic architecture were developed in CMOS processes with different thickness of epitaxial layer. The size of pixel matrix is 32 x 128: 8 columns of the pixel array are readout directly with analog outputs and the other 24 columns are connected to the column level auto-zero discriminators. The Correlated Double Sampling (CDS) structures are successfully implemented inside pixel and discriminator. The photo diode type pixels with different diode sizes are used in these prototypes. With a 55 Fe X-ray radioactive source, the important parameters, such as Temporal Noise, Fixed Pattern Noise (FPN), Signal-to-Noise Ratio (SNR), Charge-to-Voltage conversion Factor (CVF) and Charge Collection Efficiency (CCE), are studied as function of readout speed and diode size. For MIMOSA 8, the effect of fast neutrons irradiation is also. Two beam tests campaigns were made: at DESY with a 5 GeV electrons beam and at CERN with a 180 GeV pions beam. Detection Efficiency and Spatial Resolution are studied in function of the discriminator threshold. For these two parameters, the influences of diode size and SNR of the central pixel of a cluster are also discussed. In order to improve the spatial resolution of the digital outputs, a very compact (25 μm x 1 mm) and low consumption (300 μW) column level ADC is designed in AMS 0.35 μm OPTO process. Based on successive approximation architecture, the auto-offset cancellation structure is integrated. A new column level auto-zero discriminator using static latch is also designed. (author)

  16. Development of Fast and High Precision CMOS Pixel Sensors for an ILC Vertex Detector

    CERN Document Server

    Hu-Guo, Christine

    2010-01-01

    The development of CMOS pixel sensors with column parallel read-out and integrated zero-suppression has resulted in a full size, nearly 1 Megapixel, prototype with ~100 \\mu s read-out time. Its performances are quite close to the ILD vertex detector specifications, showing that the sensor architecture can presumably be evolved to meet these specifications exactly. Starting from the existing architecture and achieved performances, the paper will expose the details of how the sensor will be evolved in the coming 2-3 years in perspective of the ILD Detector Baseline Document, to be delivered in 2012. Two different devices are foreseen for this objective, one being optimized for the inner layers and their fast read-out requirement, while the other exploits the dimmed background in the outer layers to reduce the power consumption. The sensor evolution relies on a high resistivity epitaxial layer, on the use of an advanced CMOS process and on the combination of column-level ADCs with a pixel array. The paper will p...

  17. Spectral response characterization of CdTe sensors of different pixel size with the IBEX ASIC

    Science.gov (United States)

    Zambon, P.; Radicci, V.; Trueb, P.; Disch, C.; Rissi, M.; Sakhelashvili, T.; Schneebeli, M.; Broennimann, C.

    2018-06-01

    We characterized the spectral response of CdTe sensors with different pixel sizes - namely 75, 150 and 300 μm - bonded to the latest generation IBEX single photon counting ASIC developed at DECTRIS, to detect monochromatic X-ray energy in the range 10-60 keV. We present a comparison of pulse height spectra recorded for several energies, showing the dependence on the pixel size of the non-trivial atomic fluorescence and charge sharing effects that affect the detector response. The extracted energy resolution, in terms of full width at half maximum or FWHM, ranges from 1.5 to 4 keV according to the pixel size and chip configuration. We devoted a careful analysis to the Quantum Efficiency and to the Spectral Efficiency - a newly-introduced measure that quantifies the impact of fluorescence and escape phenomena on the spectrum integrity in high- Z material based detectors. We then investigated the influence of the photon flux on the aforementioned quantities up to 180 ṡ 106 cts/s/mm2 and 50 ṡ 106 cts/s/mm2 for the 150 μm and 300 μm pixel case, respectively. Finally, we complemented the experimental data with analytical and with Monte Carlo simulations - taking into account the stochastic nature of atomic fluorescence - with an excellent agreement.

  18. Characterization of irradiated thin silicon sensors for the CMS phase II pixel upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Centis Vignali, Matteo; Garutti, Erika; Junkes, Alexandra; Steinbrueck, Georg [Institut fuer Experimentalphysik, Universitaet Hamburg (Germany); Eckstein, Doris; Eichhorn, Thomas [Deutsches Elektronen Synchrotron (DESY) (Germany)

    2016-07-01

    The high-luminosity upgrade of the Large Hadron Collider, foreseen for 2025, necessitates the replacement of the tracker of the CMS experiment. The innermost layer of the new pixel detector will be exposed to severe radiation corresponding to a 1 MeV neutron equivalent fluence up to Φ{sub eq} = 2 . 10{sup 16} cm{sup -2} and an ionizing dose of ∼ 10 MGy after an integrated luminosity of 3000 fb{sup -1}. Silicon crystals grown with different methods and sensor designs are under investigation in order to optimize the sensors for such high fluences. Thin planar silicon sensors are good candidates to achieve this goal, since the degradation of the signal produced by traversing particles is less severe than for thicker devices. Epitaxial pad diodes and strip sensors irradiated up to fluences of Φ{sub eq} = 1.3 . 10{sup 16} cm{sup -2} have been characterized in laboratory measurements and beam tests at the DESY II facility. The active thickness of the strip sensors and pad diodes is 100 μm. In addition, strip sensors produced using other growth techniques with a thickness of 200 μm have been studied. In this talk, the results obtained for p-bulk sensors are shown.

  19. Analysis of 3D stacked fully functional CMOS Active Pixel Sensor detectors

    International Nuclear Information System (INIS)

    Passeri, D; Servoli, L; Meroli, S

    2009-01-01

    The IC technology trend is to move from 3D flexible configurations (package on package, stacked dies) to real 3D ICs. This is mainly due to i) the increased electrical performances and ii) the cost of 3D integration which may be cheaper than to keep shrinking 2D circuits. Perspective advantages for particle tracking and vertex detectors applications in High Energy Physics can be envisaged: in this work, we will focus on the capabilities of the state-of-the-art vertical scale integration technologies, allowing for the fabrication of very compact, fully functional, multiple layers CMOS Active Pixel Sensor (APS) detectors. The main idea is to exploit the features of the 3D technologies for the fabrication of a ''stack'' of very thin and precisely aligned CMOS APS layers, leading to a single, integrated, multi-layers pixel sensor. The adoption of multiple-layers single detectors can dramatically reduce the mass of conventional, separated detectors (thus reducing multiple scattering issues), at the same time allowing for very precise measurements of particle trajectory and momentum. As a proof of concept, an extensive device and circuit simulation activity has been carried out, aiming at evaluate the suitability of such a kind of CMOS active pixel layers for particle tracking purposes.

  20. The ALPIDE pixel sensor chip for the upgrade of the ALICE Inner Tracking System

    CERN Document Server

    Aglieri Rinella, Gianluca

    2017-01-01

    The ALPIDE chip is a CMOS Monolithic Active Pixel Sensor being developed for the Upgrade of the ITS of the ALICE experiment at the CERN Large Hadron Collider. The ALPIDE chip is implemented with a 180 nm CMOS Imaging Process and fabricated on substrates with a high-resistivity epitaxial layer. It measures 15 mm×30 mm and contains a matrix of 512×1024 pixels with in-pixel amplification, shaping, discrimination and multi-event buffering. The readout of the sensitive matrix is hit driven. There is no signaling activity over the matrix if there are no hits to read out and power consumption is proportional to the occupancy. The sensor meets the experimental requirements of detection efficiency above 99%, fake-hit probability below 10−5 and a spatial resolution of 5 μm. The capability to read out Pb–Pb interactions at 100 kHz is provided. The power density of the ALPIDE chip is projected to be less than 35 mW/cm2 for the application in the Inner Barrel Layers and below 20 mW/cm2 for the Outer Barrel Layers, ...

  1. IR sensitivity enhancement of CMOS Image Sensor with diffractive light trapping pixels.

    Science.gov (United States)

    Yokogawa, Sozo; Oshiyama, Itaru; Ikeda, Harumi; Ebiko, Yoshiki; Hirano, Tomoyuki; Saito, Suguru; Oinoue, Takashi; Hagimoto, Yoshiya; Iwamoto, Hayato

    2017-06-19

    We report on the IR sensitivity enhancement of back-illuminated CMOS Image Sensor (BI-CIS) with 2-dimensional diffractive inverted pyramid array structure (IPA) on crystalline silicon (c-Si) and deep trench isolation (DTI). FDTD simulations of semi-infinite thick c-Si having 2D IPAs on its surface whose pitches over 400 nm shows more than 30% improvement of light absorption at λ = 850 nm and the maximum enhancement of 43% with the 540 nm pitch at the wavelength is confirmed. A prototype BI-CIS sample with pixel size of 1.2 μm square containing 400 nm pitch IPAs shows 80% sensitivity enhancement at λ = 850 nm compared to the reference sample with flat surface. This is due to diffraction with the IPA and total reflection at the pixel boundary. The NIR images taken by the demo camera equip with a C-mount lens show 75% sensitivity enhancement in the λ = 700-1200 nm wavelength range with negligible spatial resolution degradation. Light trapping CIS pixel technology promises to improve NIR sensitivity and appears to be applicable to many different image sensor applications including security camera, personal authentication, and range finding Time-of-Flight camera with IR illuminations.

  2. Performance of a novel wafer scale CMOS active pixel sensor for bio-medical imaging

    International Nuclear Information System (INIS)

    Esposito, M; Evans, P M; Wells, K; Anaxagoras, T; Konstantinidis, A C; Zheng, Y; Speller, R D; Allinson, N M

    2014-01-01

    Recently CMOS active pixels sensors (APSs) have become a valuable alternative to amorphous silicon and selenium flat panel imagers (FPIs) in bio-medical imaging applications. CMOS APSs can now be scaled up to the standard 20 cm diameter wafer size by means of a reticle stitching block process. However, despite wafer scale CMOS APS being monolithic, sources of non-uniformity of response and regional variations can persist representing a significant challenge for wafer scale sensor response. Non-uniformity of stitched sensors can arise from a number of factors related to the manufacturing process, including variation of amplification, variation between readout components, wafer defects and process variations across the wafer due to manufacturing processes. This paper reports on an investigation into the spatial non-uniformity and regional variations of a wafer scale stitched CMOS APS. For the first time a per-pixel analysis of the electro-optical performance of a wafer CMOS APS is presented, to address inhomogeneity issues arising from the stitching techniques used to manufacture wafer scale sensors. A complete model of the signal generation in the pixel array has been provided and proved capable of accounting for noise and gain variations across the pixel array. This novel analysis leads to readout noise and conversion gain being evaluated at pixel level, stitching block level and in regions of interest, resulting in a coefficient of variation ⩽1.9%. The uniformity of the image quality performance has been further investigated in a typical x-ray application, i.e. mammography, showing a uniformity in terms of CNR among the highest when compared with mammography detectors commonly used in clinical practice. Finally, in order to compare the detection capability of this novel APS with the technology currently used (i.e. FPIs), theoretical evaluation of the detection quantum efficiency (DQE) at zero-frequency has been performed, resulting in a higher DQE for this

  3. Performance of a novel wafer scale CMOS active pixel sensor for bio-medical imaging.

    Science.gov (United States)

    Esposito, M; Anaxagoras, T; Konstantinidis, A C; Zheng, Y; Speller, R D; Evans, P M; Allinson, N M; Wells, K

    2014-07-07

    Recently CMOS active pixels sensors (APSs) have become a valuable alternative to amorphous silicon and selenium flat panel imagers (FPIs) in bio-medical imaging applications. CMOS APSs can now be scaled up to the standard 20 cm diameter wafer size by means of a reticle stitching block process. However, despite wafer scale CMOS APS being monolithic, sources of non-uniformity of response and regional variations can persist representing a significant challenge for wafer scale sensor response. Non-uniformity of stitched sensors can arise from a number of factors related to the manufacturing process, including variation of amplification, variation between readout components, wafer defects and process variations across the wafer due to manufacturing processes. This paper reports on an investigation into the spatial non-uniformity and regional variations of a wafer scale stitched CMOS APS. For the first time a per-pixel analysis of the electro-optical performance of a wafer CMOS APS is presented, to address inhomogeneity issues arising from the stitching techniques used to manufacture wafer scale sensors. A complete model of the signal generation in the pixel array has been provided and proved capable of accounting for noise and gain variations across the pixel array. This novel analysis leads to readout noise and conversion gain being evaluated at pixel level, stitching block level and in regions of interest, resulting in a coefficient of variation ⩽1.9%. The uniformity of the image quality performance has been further investigated in a typical x-ray application, i.e. mammography, showing a uniformity in terms of CNR among the highest when compared with mammography detectors commonly used in clinical practice. Finally, in order to compare the detection capability of this novel APS with the technology currently used (i.e. FPIs), theoretical evaluation of the detection quantum efficiency (DQE) at zero-frequency has been performed, resulting in a higher DQE for this

  4. Position dependence of charge collection in prototype sensors for the CMS pixel detector

    CERN Document Server

    Rohe, Tilman; Chiochia, Vincenzo; Cremaldi, Lucien M; Cucciarelli, Susanna; Dorokhov, Andrei; Konecki, Marcin; Prokofiev, Kirill; Regenfus, Christian; Sanders, David A; Son Seung Hee; Speer, Thomas; Swartz, Morris

    2004-01-01

    This paper reports on the sensor R&D activity for the CMS pixel detector. Devices featuring several design and technology options have been irradiated up to a proton fluence1 of 1 multiplied by 10**1**5 n //e//q/cm**2 at the CERN PS. Afterward, they were bump bonded to unirradiated readout chips and tested using high energy pions in the H2 beam line of the CERN SPS. The readout chip allows a nonzero suppressed full analogue readout and therefore a good characterization of the sensors in terms of noise and charge collection properties. The position dependence of signal is presented and the differences between the two sensor options are discussed. 20 Refs.

  5. A monolithic active pixel sensor for particle detection in 0.25 μm CMOS technology

    International Nuclear Information System (INIS)

    Velthuis, J.J.; Allport, P.P.; Casse, G.; Evans, A.; Turchetta, R.; Villani, G.

    2006-01-01

    We are developing CMOS monolithic active pixel sensors (MAPS) for High Energy Physics applications. We have successfully produced 3 test structures. They feature several different pixel types including: standard 3MOS, 4MOS allowing Correlated Double Sampling (CDS), charge amplifier pixels and a flexible APS (FAPS). The FAPS has a 10 deep pipeline on each pixel. This is specifically designed with the beam structure of the TESLA proposal for the Linear Collider in mind. Results of a laser test on our first device and source test results on two more recent test structures will be presented

  6. A Sensitive Dynamic and Active Pixel Vision Sensor for Color or Neural Imaging Applications.

    Science.gov (United States)

    Moeys, Diederik Paul; Corradi, Federico; Li, Chenghan; Bamford, Simeon A; Longinotti, Luca; Voigt, Fabian F; Berry, Stewart; Taverni, Gemma; Helmchen, Fritjof; Delbruck, Tobi

    2018-02-01

    Applications requiring detection of small visual contrast require high sensitivity. Event cameras can provide higher dynamic range (DR) and reduce data rate and latency, but most existing event cameras have limited sensitivity. This paper presents the results of a 180-nm Towerjazz CIS process vision sensor called SDAVIS192. It outputs temporal contrast dynamic vision sensor (DVS) events and conventional active pixel sensor frames. The SDAVIS192 improves on previous DAVIS sensors with higher sensitivity for temporal contrast. The temporal contrast thresholds can be set down to 1% for negative changes in logarithmic intensity (OFF events) and down to 3.5% for positive changes (ON events). The achievement is possible through the adoption of an in-pixel preamplification stage. This preamplifier reduces the effective intrascene DR of the sensor (70 dB for OFF and 50 dB for ON), but an automated operating region control allows up to at least 110-dB DR for OFF events. A second contribution of this paper is the development of characterization methodology for measuring DVS event detection thresholds by incorporating a measure of signal-to-noise ratio (SNR). At average SNR of 30 dB, the DVS temporal contrast threshold fixed pattern noise is measured to be 0.3%-0.8% temporal contrast. Results comparing monochrome and RGBW color filter array DVS events are presented. The higher sensitivity of SDAVIS192 make this sensor potentially useful for calcium imaging, as shown in a recording from cultured neurons expressing calcium sensitive green fluorescent protein GCaMP6f.

  7. A novel simulation method to evaluate the collection performance of a monolithic active pixel sensor

    International Nuclear Information System (INIS)

    Fu Min; Tang Zhen'an

    2011-01-01

    A novel simulation method is presented in this paper to evaluate the collection performance of monolithic active pixel sensor (MAPS) devices for minimum ionizing particle tracking. A simplified 3D matrix pixel structure is built using the computer aided design software Sentaurus. The virtual device is then divided into hundreds of parts and an independent customized X photon model is involved in each part to simulate the conditions under 55 Fe radiation. After data processing and analysis, charge collection efficiency, collection time and diffusion conditions can be estimated in detail. In order to verify the reliability of the method, comparisons are made between the simulations and experiments. Although there are some defects, it can be concluded that the proposed idea is a feasible method for the evaluation of the MAPS collection performance. (authors)

  8. A novel source–drain follower for monolithic active pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Gao, C., E-mail: chaosong.gao@mails.ccnu.edu.cn [Central China Normal University, Wuhan (China); Aglieri, G.; Hillemanns, H. [CERN, Geneva (Switzerland); Huang, G., E-mail: gmhuang@phy.ccnu.edu.cn [Central China Normal University, Wuhan (China); Junique, A.; Keil, M. [CERN, Geneva (Switzerland); Kim, D. [Dongguk University, Seoul (Korea, Republic of); Yonsei University, Seoul (Korea, Republic of); Kofarago, M.; Kugathasan, T.; Mager, M.; Marin Tobon, C.A.; Martinengo, P. [CERN, Geneva (Switzerland); Mugnier, H. [Mind, Archamps (France); Musa, L. [CERN, Geneva (Switzerland); Lee, S. [Dongguk University, Seoul (Korea, Republic of); Yonsei University, Seoul (Korea, Republic of); Reidt, F. [CERN, Geneva (Switzerland); Ruprecht-Karls-Universitat Heidelberg, Heidelberg (Germany); Riedler, P. [CERN, Geneva (Switzerland); Rousset, J. [Mind, Archamps (France); Sielewicz, K.M. [CERN, Geneva (Switzerland); Warsaw University of Technology, Warsaw (Poland); Snoeys, W. [CERN, Geneva (Switzerland); and others

    2016-09-21

    Monolithic active pixel sensors (MAPS) receive interest in tracking applications in high energy physics as they integrate sensor and readout electronics in one silicon die with potential for lower material budget and cost, and better performance. Source followers (SFs) are widely used for MAPS readout: they increase charge conversion gain 1/C{sub eff} or decrease the effective sensing node capacitance C{sub eff} because the follower action compensates part of the input capacitance. Charge conversion gain is critical for analog power consumption and therefore for material budget in tracking applications, and also has direct system impact. This paper presents a novel source–drain follower (SDF), where both source and drain follow the gate potential improving charge conversion gain. For the inner tracking system (ITS) upgrade of the ALICE experiment at CERN, low material budget is a primary requirement. The SDF circuit was studied as part of the effort to optimize the effective capacitance of the sensing node. The collection electrode, input transistor and routing metal all contribute to C{sub eff}. Reverse sensor bias reduces the collection electrode capacitance. The novel SDF circuit eliminates the contribution of the input transistor to C{sub eff}, reduces the routing contribution if additional shielding is introduced, provides a way to estimate the capacitance of the sensor itself, and has a voltage gain closer to unity than the standard SF. The SDF circuit has a somewhat larger area with a somewhat smaller bandwidth, but this is acceptable in most cases. A test chip, manufactured in a 180 nm CMOS image sensor process, implements small prototype pixel matrices in different flavors to compare the standard SF to the novel SF and to the novel SF with additional shielding. The effective sensing node capacitance was measured using a {sup 55}Fe source. Increasing reverse substrate bias from −1 V to −6 V reduces C{sub eff} by 38% and the equivalent noise charge

  9. A novel source–drain follower for monolithic active pixel sensors

    International Nuclear Information System (INIS)

    Gao, C.; Aglieri, G.; Hillemanns, H.; Huang, G.; Junique, A.; Keil, M.; Kim, D.; Kofarago, M.; Kugathasan, T.; Mager, M.; Marin Tobon, C.A.; Martinengo, P.; Mugnier, H.; Musa, L.; Lee, S.; Reidt, F.; Riedler, P.; Rousset, J.; Sielewicz, K.M.; Snoeys, W.

    2016-01-01

    Monolithic active pixel sensors (MAPS) receive interest in tracking applications in high energy physics as they integrate sensor and readout electronics in one silicon die with potential for lower material budget and cost, and better performance. Source followers (SFs) are widely used for MAPS readout: they increase charge conversion gain 1/C_e_f_f or decrease the effective sensing node capacitance C_e_f_f because the follower action compensates part of the input capacitance. Charge conversion gain is critical for analog power consumption and therefore for material budget in tracking applications, and also has direct system impact. This paper presents a novel source–drain follower (SDF), where both source and drain follow the gate potential improving charge conversion gain. For the inner tracking system (ITS) upgrade of the ALICE experiment at CERN, low material budget is a primary requirement. The SDF circuit was studied as part of the effort to optimize the effective capacitance of the sensing node. The collection electrode, input transistor and routing metal all contribute to C_e_f_f. Reverse sensor bias reduces the collection electrode capacitance. The novel SDF circuit eliminates the contribution of the input transistor to C_e_f_f, reduces the routing contribution if additional shielding is introduced, provides a way to estimate the capacitance of the sensor itself, and has a voltage gain closer to unity than the standard SF. The SDF circuit has a somewhat larger area with a somewhat smaller bandwidth, but this is acceptable in most cases. A test chip, manufactured in a 180 nm CMOS image sensor process, implements small prototype pixel matrices in different flavors to compare the standard SF to the novel SF and to the novel SF with additional shielding. The effective sensing node capacitance was measured using a "5"5Fe source. Increasing reverse substrate bias from −1 V to −6 V reduces C_e_f_f by 38% and the equivalent noise charge (ENC) by 22% for the

  10. The ALPIDE pixel sensor chip for the upgrade of the ALICE Inner Tracking System

    Energy Technology Data Exchange (ETDEWEB)

    Aglieri Rinella, Gianluca, E-mail: gianluca.aglieri.rinella@cern.ch

    2017-02-11

    The ALPIDE chip is a CMOS Monolithic Active Pixel Sensor being developed for the Upgrade of the ITS of the ALICE experiment at the CERN Large Hadron Collider. The ALPIDE chip is implemented with a 180 nm CMOS Imaging Process and fabricated on substrates with a high-resistivity epitaxial layer. It measures 15 mm×30 mm and contains a matrix of 512×1024 pixels with in-pixel amplification, shaping, discrimination and multi-event buffering. The readout of the sensitive matrix is hit driven. There is no signaling activity over the matrix if there are no hits to read out and power consumption is proportional to the occupancy. The sensor meets the experimental requirements of detection efficiency above 99%, fake-hit probability below 10{sup −5} and a spatial resolution of 5 μm. The capability to read out Pb–Pb interactions at 100 kHz is provided. The power density of the ALPIDE chip is projected to be less than 35 mW/cm{sup 2} for the application in the Inner Barrel Layers and below 20 mW/cm{sup 2} for the Outer Barrel Layers, where the occupancy is lower. This contribution describes the architecture and the main features of the final ALPIDE chip, planned for submission at the beginning of 2016. Early results from the experimental qualification of full scale prototype predecessors are also reported. - Highlights: • The ALPIDE chip, an innovative CMOS pixel particle detector is described. • It achieves excellent detection performance figures and very low power consumption. • The characterization of prototypes confirms the achievement of the specifications.

  11. Development of a thinned back-illuminated CMOS active pixel sensor for extreme ultraviolet spectroscopy and imaging in space science

    International Nuclear Information System (INIS)

    Waltham, N.R.; Prydderch, M.; Mapson-Menard, H.; Pool, P.; Harris, A.

    2007-01-01

    We describe our programme to develop a large-format, science-grade, monolithic CMOS active pixel sensor for future space science missions, and in particular an extreme ultraviolet (EUV) spectrograph for solar physics studies on ESA's Solar Orbiter. Our route to EUV sensitivity relies on adapting the back-thinning and rear-illumination techniques first developed for CCD sensors. Our first large-format sensor consists of 4kx3k 5 μm pixels fabricated on a 0.25 μm CMOS imager process. Wafer samples of these sensors have been thinned by e2v technologies with the aim of obtaining good sensitivity at EUV wavelengths. We present results from both front- and back-illuminated versions of this sensor. We also present our plans to develop a new sensor of 2kx2k 10 μm pixels, which will be fabricated on a 0.35 μm CMOS process. In progress towards this goal, we have designed a test-structure consisting of six arrays of 512x512 10 μm pixels. Each of the arrays has been given a different pixel design to allow verification of our models, and our progress towards optimizing a design for minimal system readout noise and maximum dynamic range. These sensors will also be back-thinned for characterization at EUV wavelengths

  12. FDTD-based optical simulations methodology for CMOS image sensors pixels architecture and process optimization

    Science.gov (United States)

    Hirigoyen, Flavien; Crocherie, Axel; Vaillant, Jérôme M.; Cazaux, Yvon

    2008-02-01

    This paper presents a new FDTD-based optical simulation model dedicated to describe the optical performances of CMOS image sensors taking into account diffraction effects. Following market trend and industrialization constraints, CMOS image sensors must be easily embedded into even smaller packages, which are now equipped with auto-focus and short-term coming zoom system. Due to miniaturization, the ray-tracing models used to evaluate pixels optical performances are not accurate anymore to describe the light propagation inside the sensor, because of diffraction effects. Thus we adopt a more fundamental description to take into account these diffraction effects: we chose to use Maxwell-Boltzmann based modeling to compute the propagation of light, and to use a software with an FDTD-based (Finite Difference Time Domain) engine to solve this propagation. We present in this article the complete methodology of this modeling: on one hand incoherent plane waves are propagated to approximate a product-use diffuse-like source, on the other hand we use periodic conditions to limit the size of the simulated model and both memory and computation time. After having presented the correlation of the model with measurements we will illustrate its use in the case of the optimization of a 1.75μm pixel.

  13. A high speed, low power consumption LVDS interface for CMOS pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zhan, E-mail: sz1134@163.com [Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian (China); Tang, Zhenan, E-mail: tangza@dlut.edu.cn [Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian (China); Tian, Yong [Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian (China); Pham, Hung; Valin, Isabelle; Jaaskelainen, Kimmo [IPHC, 23 rue du Loess 67037 Strasbourg (France); CNRS, UMR7178, 67037 Strasbourg (France)

    2015-01-01

    The use of CMOS Pixel Sensors (CPSs) offers a promising approach to the design of vertex detectors in High Energy Physics (HEP) experiments. As the CPS equipping the upgraded Solenoidal Tracker at RHIC (STAR) pixel detector, ULTIMATE perfectly illustrates the potential of CPSs for HEP applications. However, further development of CPSs with respect to readout speed is required to fulfill the readout time requirement of the next generation HEP detectors, such as the upgrade of A Large Ion Collider Experiment (ALICE) Inner Tracking System (ITS), the International Linear Collider (ILC), and the Compressed Baryonic Matter (CBM) vertex detectors. One actual limitation of CPSs is related to the speed of the Low-Voltage Differential Signaling (LVDS) circuitry implementing the interface between the sensor and the Data Acquisition (DAQ) system. To improve the transmission rate while keeping the power consumption at a low level, a source termination technique and a special current comparator were adopted for the LVDS driver and receiver, respectively. Moreover, hardening techniques are used. The circuitry was designed and submitted for fabrication in a 0.18-µm CMOS Image Sensor (CIS) process at the end of 2011. The test results indicated that the LVDS driver and receiver can operate properly at the data rate of 1.2 Gb/s with power consumption of 19.6 mW.

  14. Time-of-flight camera via a single-pixel correlation image sensor

    Science.gov (United States)

    Mao, Tianyi; Chen, Qian; He, Weiji; Dai, Huidong; Ye, Ling; Gu, Guohua

    2018-04-01

    A time-of-flight imager based on single-pixel correlation image sensors is proposed for noise-free depth map acquisition in presence of ambient light. Digital micro-mirror device and time-modulated IR-laser provide spatial and temporal illumination on the unknown object. Compressed sensing and ‘four bucket principle’ method are combined to reconstruct the depth map from a sequence of measurements at a low sampling rate. Second-order correlation transform is also introduced to reduce the noise from the detector itself and direct ambient light. Computer simulations are presented to validate the computational models and improvement of reconstructions.

  15. arXiv Charge collection properties in an irradiated pixel sensor built in a thick-film HV-SOI process

    CERN Document Server

    INSPIRE-00541780; Cindro, V.; Gorišek, A.; Hemperek, T.; Kishishita, T.; Kramberger, G.; Krüger, H.; Mandić, I.; Mikuž, M.; Wermes, N.; Zavrtanik, M.

    2017-10-25

    Investigation of HV-CMOS sensors for use as a tracking detector in the ATLAS experiment at the upgraded LHC (HL-LHC) has recently been an active field of research. A potential candidate for a pixel detector built in Silicon-On-Insulator (SOI) technology has already been characterized in terms of radiation hardness to TID (Total Ionizing Dose) and charge collection after a moderate neutron irradiation. In this article we present results of an extensive irradiation hardness study with neutrons up to a fluence of 1x10e16 neq/cm2. Charge collection in a passive pixelated structure was measured by Edge Transient Current Technique (E-TCT). The evolution of the effective space charge concentration was found to be compliant with the acceptor removal model, with the minimum of the space charge concentration being reached after 5x10e14 neq/cm2. An investigation of the in-pixel uniformity of the detector response revealed parasitic charge collection by the epitaxial silicon layer characteristic for the SOI design. The r...

  16. Characterisation of the ATLAS ITK strips front-end chip and development of EUDAQ 2.0 for the EUDET-style pixel telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Peschke, Richard

    2017-03-15

    As part of the ATLAS phase-II upgrade a new, all-silicon tracker will be built. The new tracker will consist of silicon pixel sensors and silicon microstrip sensors. For the readout of the microstrip sensor a new readout chip was designed; the so called ATLAS Binary Converter 130 (ABC130) which is based on a 130 nm CMOS technology. The chip consists of an analog Front End built up of 256 channels, each with a preamplifier and a discriminator for converting the analog sensor readout into a binary response. The preamplifier of the ABC130 was designed to have a gain of 90-95 (mV)/(fC). First laboratory measurements with the built-in control circuits have shown a gain of <75 (mV)/(fC). In the course of this thesis a test beam campaign was undertaken to measure the gain in an unbiased system under realistic conditions. The obtained gain varied from ∼90 (mV)/(fC) to ∼100 (mV)/(fC). With this, the values obtained by the test beam campaign are within the specifications. In order to perform the test beam campaign with optimal efficiency, a complete overhaul of the data acquisition framework used for the EUDET type test beam telescopes was necessary. The new version is called EUDAQ 2.0. It is designed to accommodate devices with different integration times such as LHC-type devices with an integration time of only 25 ns, and devices with long integration times such as the MIMOSA26 with an integration time of 114.5 μs. To accomplish this a new synchronization algorithm has been developed. It gives the user full flexibility on the means of synchronizing their own data stream with the system. Beyond this, EUDAQ 2.0 also allows user specific encoding and decoding of data packets. This enables the user to minimize the data overhead and to shift more computation time to the offline stage. To reduce the network overhead EUDAQ 2.0 allows the user to store data locally. The merging is then postponed to the offline stage.

  17. Characterisation of the ATLAS ITK strips front-end chip and development of EUDAQ 2.0 for the EUDET-style pixel telescopes

    International Nuclear Information System (INIS)

    Peschke, Richard

    2017-03-01

    As part of the ATLAS phase-II upgrade a new, all-silicon tracker will be built. The new tracker will consist of silicon pixel sensors and silicon microstrip sensors. For the readout of the microstrip sensor a new readout chip was designed; the so called ATLAS Binary Converter 130 (ABC130) which is based on a 130 nm CMOS technology. The chip consists of an analog Front End built up of 256 channels, each with a preamplifier and a discriminator for converting the analog sensor readout into a binary response. The preamplifier of the ABC130 was designed to have a gain of 90-95 (mV)/(fC). First laboratory measurements with the built-in control circuits have shown a gain of <75 (mV)/(fC). In the course of this thesis a test beam campaign was undertaken to measure the gain in an unbiased system under realistic conditions. The obtained gain varied from ∼90 (mV)/(fC) to ∼100 (mV)/(fC). With this, the values obtained by the test beam campaign are within the specifications. In order to perform the test beam campaign with optimal efficiency, a complete overhaul of the data acquisition framework used for the EUDET type test beam telescopes was necessary. The new version is called EUDAQ 2.0. It is designed to accommodate devices with different integration times such as LHC-type devices with an integration time of only 25 ns, and devices with long integration times such as the MIMOSA26 with an integration time of 114.5 μs. To accomplish this a new synchronization algorithm has been developed. It gives the user full flexibility on the means of synchronizing their own data stream with the system. Beyond this, EUDAQ 2.0 also allows user specific encoding and decoding of data packets. This enables the user to minimize the data overhead and to shift more computation time to the offline stage. To reduce the network overhead EUDAQ 2.0 allows the user to store data locally. The merging is then postponed to the offline stage.

  18. First bulk and surface results for the ATLAS ITk Strip stereo annulus sensors

    CERN Document Server

    Hunter, Robert Francis Holub; The ATLAS collaboration; Affolder, Tony; Bohm, Jan; Botte, James Michael; Ciungu, Bianca; Dette, Karola; Dolezal, Zdenek; Escobar, Carlos; Fadeyev, Vitaliy

    2018-01-01

    A novel microstrip sensor geometry, the stereo annulus, has been developed for use in the end-cap of the ATLAS experiment's strip tracker upgrade at the HL-LHC. Its first implementation is in the ATLAS12EC sensors a large-area, radiation-hard, single-sided, ac-coupled, \

  19. Pitch dependence of the tolerance of CMOS monolithic active pixel sensors to non-ionizing radiation

    International Nuclear Information System (INIS)

    Doering, D.; Deveaux, M.; Domachowski, M.; Fröhlich, I.; Koziel, M.; Müntz, C.; Scharrer, P.; Stroth, J.

    2013-01-01

    CMOS monolithic active pixel sensors (MAPS) have demonstrated excellent performance as tracking detectors for charged particles. They provide an outstanding spatial resolution (a few μm), a detection efficiency of ≳99.9%, very low material budget (0.05%X 0 ) and good radiation tolerance (≳1Mrad, ≳10 13 n eq /cm 2 ) (Deveaux et al. [1]). This makes them an interesting technology for various applications in heavy ion and particle physics. Their tolerance to bulk damage was recently improved by using high-resistivity (∼1kΩcm) epitaxial layers as sensitive volume (Deveaux et al. [1], Dorokhov et al. [2]). The radiation tolerance of conventional MAPS is known to depend on the pixel pitch. This is as a higher pitch extends the distance, which signal electrons have to travel by thermal diffusion before being collected. Increased diffusion paths turn into a higher probability of loosing signal charge due to recombination. Provided that a similar effect exists in MAPS with high-resistivity epitaxial layer, it could be used to extend their radiation tolerance further. We addressed this question with MIMOSA-18AHR prototypes, which were provided by the IPHC Strasbourg and irradiated with reactor neutrons. We report about the results of this study and provide evidences that MAPS with 10μm pixel pitch tolerate doses of ≳3×10 14 n eq /cm 2

  20. CMOS Active Pixel Sensors as energy-range detectors for proton Computed Tomography

    International Nuclear Information System (INIS)

    Esposito, M.; Waltham, C.; Allinson, N.M.; Anaxagoras, T.; Evans, P.M.; Poludniowski, G.; Green, S.; Parker, D.J.; Price, T.; Manolopoulos, S.; Nieto-Camero, J.

    2015-01-01

    Since the first proof of concept in the early 70s, a number of technologies has been proposed to perform proton CT (pCT), as a means of mapping tissue stopping power for accurate treatment planning in proton therapy. Previous prototypes of energy-range detectors for pCT have been mainly based on the use of scintillator-based calorimeters, to measure proton residual energy after passing through the patient. However, such an approach is limited by the need for only a single proton passing through the energy-range detector in a read-out cycle. A novel approach to this problem could be the use of pixelated detectors, where the independent read-out of each pixel allows to measure simultaneously the residual energy of a number of protons in the same read-out cycle, facilitating a faster and more efficient pCT scan. This paper investigates the suitability of CMOS Active Pixel Sensors (APSs) to track individual protons as they go through a number of CMOS layers, forming an energy-range telescope. Measurements performed at the iThemba Laboratories will be presented and analysed in terms of correlation, to confirm capability of proton tracking for CMOS APSs

  1. CMOS Active Pixel Sensors as energy-range detectors for proton Computed Tomography.

    Science.gov (United States)

    Esposito, M; Anaxagoras, T; Evans, P M; Green, S; Manolopoulos, S; Nieto-Camero, J; Parker, D J; Poludniowski, G; Price, T; Waltham, C; Allinson, N M

    2015-06-03

    Since the first proof of concept in the early 70s, a number of technologies has been proposed to perform proton CT (pCT), as a means of mapping tissue stopping power for accurate treatment planning in proton therapy. Previous prototypes of energy-range detectors for pCT have been mainly based on the use of scintillator-based calorimeters, to measure proton residual energy after passing through the patient. However, such an approach is limited by the need for only a single proton passing through the energy-range detector in a read-out cycle. A novel approach to this problem could be the use of pixelated detectors, where the independent read-out of each pixel allows to measure simultaneously the residual energy of a number of protons in the same read-out cycle, facilitating a faster and more efficient pCT scan. This paper investigates the suitability of CMOS Active Pixel Sensors (APSs) to track individual protons as they go through a number of CMOS layers, forming an energy-range telescope. Measurements performed at the iThemba Laboratories will be presented and analysed in terms of correlation, to confirm capability of proton tracking for CMOS APSs.

  2. Coded aperture detector: an image sensor with sub 20-nm pixel resolution.

    Science.gov (United States)

    Miyakawa, Ryan; Mayer, Rafael; Wojdyla, Antoine; Vannier, Nicolas; Lesser, Ian; Aron-Dine, Shifrah; Naulleau, Patrick

    2014-08-11

    We describe the coded aperture detector, a novel image sensor based on uniformly redundant arrays (URAs) with customizable pixel size, resolution, and operating photon energy regime. In this sensor, a coded aperture is scanned laterally at the image plane of an optical system, and the transmitted intensity is measured by a photodiode. The image intensity is then digitally reconstructed using a simple convolution. We present results from a proof-of-principle optical prototype, demonstrating high-fidelity image sensing comparable to a CCD. A 20-nm half-pitch URA fabricated by the Center for X-ray Optics (CXRO) nano-fabrication laboratory is presented that is suitable for high-resolution image sensing at EUV and soft X-ray wavelengths.

  3. Characterisation of irradiated thin silicon sensors for the CMS phase II pixel upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Bergauer, T.; Brondolin, E. [Institut fuer Hochenergiephysik, Vienna (Austria); and others

    2017-08-15

    The high luminosity upgrade of the Large Hadron Collider, foreseen for 2026, necessitates the replacement of the CMS experiment's silicon tracker. The innermost layer of the new pixel detector will be exposed to severe radiation, corresponding to a 1 MeV neutron equivalent fluence of up to Φ{sub eq} = 2 x 10{sup 16} cm{sup -2}, and an ionising dose of ∼5 MGy after an integrated luminosity of 3000 fb{sup -1}. Thin, planar silicon sensors are good candidates for this application, since the degradation of the signal produced by traversing particles is less severe than for thicker devices. In this paper, the results obtained from the characterisation of 100 and 200 μm thick p-bulk pad diodes and strip sensors irradiated up to fluences of Φ{sub eq} = 1.3 x 10{sup 16} cm{sup -2} are shown. (orig.)

  4. Simulation of Heavily Irradiated Silicon Pixel Sensors and Comparison with Test Beam Measurements

    CERN Document Server

    Chiochia, Vincenzo; Bortoletto, Daniela; Cremaldi, Lucien; Cucciarelli, Susanna; Dorokhov, Andrei; Hoermann, Christoph; Kim, Dongwook; Konecki, Marcin; Kotlinski, Danek; Prokofiev, Kirill; Regenfus, Christian; Rohe, Tilman; Sanders, David A.; Son, Seunghee; Speer, Thomas; Chiochia, Vincenzo; Swartz, Morris; Bortoletto, Daniela; Cremaldi, Lucien; Cucciarelli, Susanna; Dorokhov, Andrei; Hoermann, Christoph; Kim, Dongwook; Konecki, Marcin; Kotlinski, Danek; Prokofiev, Kirill; Regenfus, Christian; Rohe, Tilman; Sanders, David A.; Son, Seunghee; Speer, Thomas

    2004-01-01

    Charge collection measurements performed on heavily irradiated p-spray DOFZ pixel sensors with a grazing angle hadron beam provide a sensitive determination of the electric field within the detectors. The data are compared with a complete charge transport simulation of the sensor which includes signal trapping and charge induction effects. A linearly varying electric field based upon the standard picture of a constant type-inverted effective doping density is inconsistent with the data. A two-trap double junction model implemented in the ISE TCAD software can be tuned to produce a doubly-peaked electric field which describes the data reasonably well. The modeled field differs somewhat from previous determinations based upon the transient current technique. The model can also account for the level of charge trapping observed in the data.

  5. Intelligent error correction method applied on an active pixel sensor based star tracker

    Science.gov (United States)

    Schmidt, Uwe

    2005-10-01

    Star trackers are opto-electronic sensors used on-board of satellites for the autonomous inertial attitude determination. During the last years star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The active pixel sensor (APS) technology, introduced in the early 90-ties, allows now the beneficial replacement of CCD detectors by APS detectors with respect to performance, reliability, power, mass and cost. The company's heritage in star tracker design started in the early 80-ties with the launch of the worldwide first fully autonomous star tracker system ASTRO1 to the Russian MIR space station. Jena-Optronik recently developed an active pixel sensor based autonomous star tracker "ASTRO APS" as successor of the CCD based star tracker product series ASTRO1, ASTRO5, ASTRO10 and ASTRO15. Key features of the APS detector technology are, a true xy-address random access, the multiple windowing read out and the on-chip signal processing including the analogue to digital conversion. These features can be used for robust star tracking at high slew rates and under worse conditions like stray light and solar flare induced single event upsets. A special algorithm have been developed to manage the typical APS detector error contributors like fixed pattern noise (FPN), dark signal non-uniformity (DSNU) and white spots. The algorithm works fully autonomous and adapts to e.g. increasing DSNU and up-coming white spots automatically without ground maintenance or re-calibration. In contrast to conventional correction methods the described algorithm does not need calibration data memory like full image sized calibration data sets. The application of the presented algorithm managing the typical APS detector error contributors is a key element for the design of star trackers for long term satellite applications like

  6. ALPIDE: the Monolithic Active Pixel Sensor for the ALICE ITS upgrade

    International Nuclear Information System (INIS)

    Šuljić, M.

    2016-01-01

    The upgrade of the ALICE vertex detector, the Inner Tracking System (ITS), is scheduled to be installed during the next long shutdown period (2019-2020) of the CERN Large Hadron Collider (LHC) . The current ITS will be replaced by seven concentric layers of Monolithic Active Pixel Sensors (MAPS) with total active surface of ∼10 m 2 , thus making ALICE the first LHC experiment implementing MAPS detector technology on a large scale. The ALPIDE chip, based on TowerJazz 180 nm CMOS Imaging Process, is being developed for this purpose. A particular process feature, the deep p-well, is exploited so the full CMOS logic can be implemented over the active sensor area without impinging on the deposited charge collection. ALPIDE is implemented on silicon wafers with a high resistivity epitaxial layer. A single chip measures 15 mm by 30 mm and contains half a million pixels distributed in 512 rows and 1024 columns. In-pixel circuitry features amplification, shaping, discrimination and multi-event buffering. The readout is hit driven i.e. only addresses of hit pixels are sent to the periphery. The upgrade of the ITS presents two different sets of requirements for sensors of the inner and of the outer layers due to the significantly different track density, radiation level and active detector surface. The ALPIDE chip fulfils the stringent requirements in both cases. The detection efficiency is higher than 99%, fake-hit probability is orders of magnitude lower than the required 10 −6 and spatial resolution within the required 5 μm. This performance is to be maintained even after a total ionising does (TID) of 2.7 Mrad and a non-ionising energy loss (NIEL) fluence of 1.7 × 10 13 1 MeV n eq /cm 2 , which is above what is expected during the detector lifetime. Readout rate of 100 kHz is provided and the power density of ALPIDE is less than 40 mW/cm 2 . This contribution will provide a summary of the ALPIDE features and main test results.

  7. ALPIDE: the Monolithic Active Pixel Sensor for the ALICE ITS upgrade

    Science.gov (United States)

    Šuljić, M.

    2016-11-01

    The upgrade of the ALICE vertex detector, the Inner Tracking System (ITS), is scheduled to be installed during the next long shutdown period (2019-2020) of the CERN Large Hadron Collider (LHC) . The current ITS will be replaced by seven concentric layers of Monolithic Active Pixel Sensors (MAPS) with total active surface of ~10 m2, thus making ALICE the first LHC experiment implementing MAPS detector technology on a large scale. The ALPIDE chip, based on TowerJazz 180 nm CMOS Imaging Process, is being developed for this purpose. A particular process feature, the deep p-well, is exploited so the full CMOS logic can be implemented over the active sensor area without impinging on the deposited charge collection. ALPIDE is implemented on silicon wafers with a high resistivity epitaxial layer. A single chip measures 15 mm by 30 mm and contains half a million pixels distributed in 512 rows and 1024 columns. In-pixel circuitry features amplification, shaping, discrimination and multi-event buffering. The readout is hit driven i.e. only addresses of hit pixels are sent to the periphery. The upgrade of the ITS presents two different sets of requirements for sensors of the inner and of the outer layers due to the significantly different track density, radiation level and active detector surface. The ALPIDE chip fulfils the stringent requirements in both cases. The detection efficiency is higher than 99%, fake-hit probability is orders of magnitude lower than the required 10-6 and spatial resolution within the required 5 μm. This performance is to be maintained even after a total ionising does (TID) of 2.7 Mrad and a non-ionising energy loss (NIEL) fluence of 1.7 × 1013 1 MeV neq/cm2, which is above what is expected during the detector lifetime. Readout rate of 100 kHz is provided and the power density of ALPIDE is less than 40 mW/cm2. This contribution will provide a summary of the ALPIDE features and main test results.

  8. Ultra-light and stable composite structure to support and cool the ATLAS pixel detector barrel electronics modules

    International Nuclear Information System (INIS)

    Olcese, M.; Caso, C.; Castiglioni, G.; Cereseto, R.; Cuneo, S.; Dameri, M.; Gemme, C.; Glitza, K.-W.; Lenzen, G.; Mora, F.; Netchaeva, P.; Ockenfels, W.; Piano, E.; Pizzorno, C.; Puppo, R.; Rebora, A.; Rossi, L.; Thadome, J.; Vernocchi, F.; Vigeolas, E.; Vinci, A.

    2004-01-01

    The design of an ultra light structure, the so-called 'stave', to support and cool the sensitive elements of the Barrel Pixel detector, the innermost part of the ATLAS detector to be installed on the new Large Hadron Collider at CERN (Geneva), is presented. Very high-dimensional stability, minimization of the material and ability of operating 10 years in a high radiation environment are the key design requirements. The proposed solution consists of a combination of different carbon-based materials (impregnated carbon-carbon, ultra high modulus carbon fibre composites) coupled to a thin aluminum tube to form a very light support with an integrated cooling channel. Our design has proven to successfully fulfil the requirements. The extensive prototyping and testing program to fully qualify the design and release the production are discussed

  9. A neural network clustering algorithm for the ATLAS silicon pixel detector

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abbott, B.; Abdallah, J.; Böhm, Jan; Chudoba, Jiří; Havránek, Miroslav; Hejbal, Jiří; Jakoubek, Tomáš; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Lysák, Roman; Marčišovský, Michal; Mikeštíková, Marcela; Myška, M.; Němeček, Stanislav; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Vrba, Václav

    2014-01-01

    Roč. 9, Sep (2014), s. 1-38 ISSN 1748-0221 R&D Projects: GA MŠk(CZ) LG13009 Institutional support: RVO:68378271 Keywords : Monte Carlo * resolution * impact parameter * cluster * ATLAS * tracks * charged particle * CERN LHC Coll * longitudinal * transverse * splitting Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.399, year: 2014

  10. Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis.

    Science.gov (United States)

    Zhao, C; Vassiljev, N; Konstantinidis, A C; Speller, R D; Kanicki, J

    2017-03-07

    High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g.  ±30°) improves the low spatial frequency (below 5 mm -1 ) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.

  11. A monolithic pixel sensor (TRAPPISTe-2) for particle physics instrumentation in OKI 0.2μm SOI technology

    Science.gov (United States)

    Soung Yee, L.; Alvarez, P.; Martin, E.; Cortina, E.; Ferrer, C.

    2012-12-01

    A monolithic active pixel sensor for charged particle tracking has been developed within the frame of a research and development project called TRAPPISTe (Tracking Particles for Physics Instrumentation in SOI Technology). TRAPPISTe aims to study the feasibility of developing a monolithic pixel sensor with SOI technology. TRAPPISTe-2 is the second prototype in this series and was fabricated with an OKI 0.20μm fully depleted (FD-SOI) CMOS process. This device contains test transistors and amplifiers, as well as two pixel matrices with integrated 3-transistor and amplifier readout electronics. The results presented are based on the first electrical measurements performed on the test structures and laser measurements on the pixel matrices.

  12. Conceptual design of 3D integrated pixel sensors for the innermost layer of the ILC vertex detector

    International Nuclear Information System (INIS)

    Fu, Y; Hu-Guo, C; Dorokhov, A; Zhao, W; Hu, Y; Torheim, O

    2011-01-01

    The paper presents a design of CMOS Pixel Sensor (CPS) using the vertical integration technology (3DIT), expected to alleviate the most essential limitations of 2D-CPS. Our objective is to develop an intelligent architecture in order to meet the requirements of the innermost layer of the International Linear Collider (ILC) vertex detectors, which are particularly demanding in spatial resolution of less than 3 μm and associated frame readout time of 10 μs. The sensor, with a pixel pitch of 23 μm, will be composed of 3-tiers Integrated Circuits (IC) with different functionalities: detection with in pixel analogue processing, pixel-level 3-bit Analogue to Digital Conversion (ADC) and fast parallel sparse readout.

  13. Development of a Detector Control System for the ATLAS Pixel detector in the HL-LHC

    International Nuclear Information System (INIS)

    Lehmann, N.; Kersten, S.; Zeitnitz, C.; Karagounis, M.

    2016-01-01

    The upgrade of the LHC to the HL-LHC requires a new ITk detector. The innermost part of this new tracker is a pixel detector. The University of Wuppertal is developing a new DCS to monitor and control this new pixel detector. The current concept envisions three parallel paths of the DCS. The first path, called security path, is hardwired and provides an interlock system to guarantee the safety of the detector and human beings. The second path is a control path. This path is used to supervise the entire detector. The control path has its own communication lines independent from the regular data readout for reliable operation. The third path is for diagnostics and provides information on demand. It is merged with the regular data readout and provides the highest granularity and most detailed information. To reduce the material budget, a serial power scheme is the baseline for the pixel modules. A new ASIC used in the control path is in development at Wuppertal for this serial power chain. A prototype exists already and a proof of principle was demonstrated. Development and research is ongoing to guarantee the correct operation of the new ASIC in the harsh environment of the HL-LHC. The concept for the new DCS will be presented in this paper. A focus will be made on the development of the DCS chip, used for monitoring and control of pixel modules in a serial power chain.

  14. Qualification measurements of the voltage supply system as well as conceptionation of a state machine for the detector control of the ATLAS pixel detector; Qualifizierungsmessungen des Spannungsversorgungssystems sowie Konzeptionierung einer Zustandsmaschine fuer die Detektorkontrolle des ATLAS-Pixeldetektors

    Energy Technology Data Exchange (ETDEWEB)

    Schultes, Joachim

    2007-02-15

    The supply system and the control system of the ATLAS pixel detector represent important building blocks of the pixel detector. Corresponding studies of the supply system, which were performed within a comprehensive test system, the so-called system test, with nearly all final components and the effects on the pixel detector are object of this thesis. A further point of this thesis is the coordination and further development of the detector-control-system software under regardment of the different partial systems. A main topic represents thereby the conceptionation of the required state machine as interface for the users and the connection to the data acquisition system.

  15. Fluorocarbon evaporative cooling developments for the ATLAS pixel and semiconductor tracking detectors

    CERN Document Server

    Anderssen, E; Berry, S; Bonneau, P; Bosteels, Michel; Bouvier, P; Cragg, D; English, R; Godlewski, J; Górski, B; Grohmann, S; Hallewell, G D; Hayler, T; Ilie, S; Jones, T; Kadlec, J; Lindsay, S; Miller, W; Niinikoski, T O; Olcese, M; Olszowska, J; Payne, B; Pilling, A; Perrin, E; Sandaker, H; Seytre, J F; Thadome, J; Vacek, V

    1999-01-01

    Heat transfer coefficients 2-5.103 Wm-2K-1 have been measured in a 3.6 mm I.D. heated tube dissipating 100 Watts - close to the full equivalent power (~110 W) of a barrel SCT detector "stave" - over a range of power dissipations and mass flows in the above fluids. Aspects of full-scale evaporative cooling circulator design for the ATLAS experiment are discussed, together with plans for future development.

  16. The ATLAS Pixel detector and its use in a Search for Metastable Heavy Charged Particles

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00399154

    The discovery of the Higgs boson, the missing piece in the Standard Model puzzle, at the electroweak scale in 2012 by the ATLAS and CMS experiments, closed an important season of particle physics and a search lasted 50 years. Even though the discovery of the Higgs boson is a great achievement, the Standard Model is incomplete, since it does not include the gravitational field and can not explain some experimental measurements such as the dark matter observed in galaxy studies and the matter and anti-matter asymmetry observed in the universe. The experiments at LHC have the exciting goal to give answers to the SM open questions and make available the hint or the evidence that may allow to proceed beyond it. An introduction on the Standard Model and the LHC is provided in Chapter 1 where the ATLAS detector is also described. ATLAS is the largest of the detectors placed along the LHC ring and is able to detect products from pp and heavy ion collisions. The detector has a cylindrical geometry around the interac...

  17. Development of ultra-light pixelated systems based on CMOS sensors for future high precision vertex detectors

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Marc [Institut Pluridisciplinaire Hubert Curien - IPHC, 23 rue du loess - BP28, 67037 Strasbourg cedex 2 (France)

    2010-07-01

    CMOS pixel sensors have demonstrated attractive performances in terms of spatial resolution and material budget. The recent emergence of high resistivity substrates in mass production CMOS processes has originated particularly high signal-to-noise ratios and improved the non-ionising radiation tolerance to fluences close to 10{sup 14} Neq/cm{sup 2}. These achievements, obtained with MIMOSA sensors developed at IPHC (Strasbourg) and IRFU (Saclay) will be overviewed and put in perspective of the numerous applications of the sensors. These include collider experiments at RHIC, LHC, ILC and CLIC. The development of ultra-light ladders composed of these sensors and featuring 0.1% to 0.3% of radiation length, will be summarised. The contribution to the conference will also address the evolution of these pixelated systems, including on-going R on multi-tier sensors exploiting vertical integration technologies. (author)

  18. Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology.

    Science.gov (United States)

    Sasagawa, Kiyotaka; Shishido, Sanshiro; Ando, Keisuke; Matsuoka, Hitoshi; Noda, Toshihiko; Tokuda, Takashi; Kakiuchi, Kiyomi; Ohta, Jun

    2013-05-06

    In this study, we demonstrate a polarization sensitive pixel for a complementary metal-oxide-semiconductor (CMOS) image sensor based on 65-nm standard CMOS technology. Using such a deep-submicron CMOS technology, it is possible to design fine metal patterns smaller than the wavelengths of visible light by using a metal wire layer. We designed and fabricated a metal wire grid polarizer on a 20 × 20 μm(2) pixel for image sensor. An extinction ratio of 19.7 dB was observed at a wavelength 750 nm.

  19. Pixel sensor evaluation and online event selection for the Mu3e experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bruch, Dorothea vom

    2017-10-27

    Despite having survived numerous experimental tests, the standard model of particle physics is not a complete description of nature. The Mu3e experiment tests theories beyond the standard model by searching for the lepton flavour violating decay μ→e{sup +}e{sup -}e{sup +}, aiming at a branching ratio sensitivity of 2.10{sup -15} in a first phase of the experiment. A high precision magnetic spectrometer combined with scintillation detectors will measure the momenta, vertices and timing of the decay products of 1.10{sup 8} μ/s stopped on a target. In this work, a prototype of the high voltage monolithic active pixel sensor envisaged for the spectrometer was characterised. With an efficiency >99% and a time resolution of 14 ns, it meets the requirements imposed on the final sensor. Furthermore, an online signal selection process was developed and implemented on a graphics processing unit (GPU), keeping 98% of signal decays, while reducing the data rate of 80 Gbit/s by a factor of 140; resulting in a rate that can be stored to disk. With the computing performance achieved on the GPU, the selection process can run on the hardware planned for the experiment. Both the online selection and the silicon sensor are key aspects for the success of Mu3e.

  20. Towards real-time VMAT verification using a prototype, high-speed CMOS active pixel sensor.

    Science.gov (United States)

    Zin, Hafiz M; Harris, Emma J; Osmond, John P F; Allinson, Nigel M; Evans, Philip M

    2013-05-21

    This work investigates the feasibility of using a prototype complementary metal oxide semiconductor active pixel sensor (CMOS APS) for real-time verification of volumetric modulated arc therapy (VMAT) treatment. The prototype CMOS APS used region of interest read out on the chip to allow fast imaging of up to 403.6 frames per second (f/s). The sensor was made larger (5.4 cm × 5.4 cm) using recent advances in photolithographic technique but retains fast imaging speed with the sensor's regional read out. There is a paradigm shift in radiotherapy treatment verification with the advent of advanced treatment techniques such as VMAT. This work has demonstrated that the APS can track multi leaf collimator (MLC) leaves moving at 18 mm s(-1) with an automatic edge tracking algorithm at accuracy better than 1.0 mm even at the fastest imaging speed. Evaluation of the measured fluence distribution for an example VMAT delivery sampled at 50.4 f/s was shown to agree well with the planned fluence distribution, with an average gamma pass rate of 96% at 3%/3 mm. The MLC leaves motion and linac pulse rate variation delivered throughout the VMAT treatment can also be measured. The results demonstrate the potential of CMOS APS technology as a real-time radiotherapy dosimeter for delivery of complex treatments such as VMAT.

  1. An Introduction to ATLAS Pixel Detector DAQ and Calibration Software Based on a Year's Work at CERN for the Upgrade from 8 to 13 TeV

    CERN Document Server

    AUTHOR|(CDS)2094561

    An overview is presented of the ATLAS pixel detector Data Acquisition (DAQ) system obtained by the author during a year-long opportunity to work on calibration software for the 2015-16 Layer‑2 upgrade. It is hoped the document will function more generally as an easy entry point for future work on ATLAS pixel detector calibration systems. To begin with, the overall place of ATLAS pixel DAQ within the CERN Large Hadron Collider (LHC), the purpose of the Layer-2 upgrade and the fundamentals of pixel calibration are outlined. This is followed by a brief look at the high level structure and key features of the calibration software. The paper concludes by discussing some difficulties encountered in the upgrade project and how these led to unforeseen alternative enhancements, such as development of calibration “simulation” software allowing the soundness of the ongoing upgrade work to be verified while not all of the actual readout hardware was available for the most comprehensive testing.

  2. Development of CMOS pixel sensors for the upgrade of the ALICE Inner Tracking System

    International Nuclear Information System (INIS)

    Molnar, L.

    2014-01-01

    The ALICE Collaboration is preparing a major upgrade of the current detector, planned for installation during the second long LHC shutdown in the years 2018-19, in order to enhance its low-momentum vertexing and tracking capability, and exploit the planned increase of the LHC luminosity with Pb beams. One of the cornerstones of the ALICE upgrade strategy is to replace the current Inner Tracking System in its entirety with a new, high resolution, low-material ITS detector. The new ITS will consist of seven concentric layers equipped with Monolithic Active Pixel Sensors (MAPS) implemented using the 0.18 μm CMOS technology of TowerJazz. In this contribution, the main key features of the ITS upgrade will be illustrated with emphasis on the functionality of the pixel chip. The ongoing developments on the readout architectures, which have been implemented in several fabricated prototypes, will be discussed. The operational features of these prototypes as well as the results of the characterisation tests before and after irradiation will also be presented

  3. Development of CMOS pixel sensors for the upgrade of the ALICE Inner Tracking System

    Science.gov (United States)

    Molnar, L.

    2014-12-01

    The ALICE Collaboration is preparing a major upgrade of the current detector, planned for installation during the second long LHC shutdown in the years 2018-19, in order to enhance its low-momentum vertexing and tracking capability, and exploit the planned increase of the LHC luminosity with Pb beams. One of the cornerstones of the ALICE upgrade strategy is to replace the current Inner Tracking System in its entirety with a new, high resolution, low-material ITS detector. The new ITS will consist of seven concentric layers equipped with Monolithic Active Pixel Sensors (MAPS) implemented using the 0.18 μm CMOS technology of TowerJazz. In this contribution, the main key features of the ITS upgrade will be illustrated with emphasis on the functionality of the pixel chip. The ongoing developments on the readout architectures, which have been implemented in several fabricated prototypes, will be discussed. The operational features of these prototypes as well as the results of the characterisation tests before and after irradiation will also be presented.

  4. Silicon-on-insulator (SOI) active pixel sensors with the photosite implemented in the substrate

    Science.gov (United States)

    Zheng, Xinyu (Inventor); Pain, Bedabrata (Inventor)

    2005-01-01

    Active pixel sensors for a high quality imager are fabricated using a silicon-on-insulator (SOI) process by integrating the photodetectors on the SOI substrate and forming pixel readout transistors on the SOI thin-film. The technique can include forming silicon islands on a buried insulator layer disposed on a silicon substrate and selectively etching away the buried insulator layer over a region of the substrate to define a photodetector area. Dopants of a first conductivity type are implanted to form a signal node in the photodetector area and to form simultaneously drain/source regions for a first transistor in at least a first one of the silicon islands. Dopants of a second conductivity type are implanted to form drain/source regions for a second transistor in at least a second one of the silicon islands. Isolation rings around the photodetector also can be formed when dopants of the second conductivity type are implanted. Interconnections among the transistors and the photodetector are provided to allow signals sensed by the photodetector to be read out via the transistors formed on the silicon islands.

  5. 14C autoradiography with a novel wafer scale CMOS Active Pixel Sensor

    International Nuclear Information System (INIS)

    Esposito, M; Wells, K; Anaxagoras, T; Allinson, N M; Larner, J

    2013-01-01

    14 C autoradiography is a well established technique for structural and metabolic analysis of cells and tissues. The most common detection medium for this application is film emulsion, which offers unbeatable spatial resolution due to its fine granularity but at the same time has some limiting drawbacks such as poor linearity and rapid saturation. In recent years several digital detectors have been developed, following the technological transition from analog to digital-based detection systems in the medical and biological field. Even so such digital systems have been greatly limited by the size of their active area (a few square centimeters), which have made them unsuitable for routine use in many biological applications where sample areas are typically ∼ 10–100 cm 2 . The Multidimensional Integrated Intelligent Imaging (MI3-Plus) consortium has recently developed a new large area CMOS Active Pixel Sensor (12.8 cm × 13.1 cm). This detector, based on the use of two different pixel resolutions, is capable of providing simultaneously low noise and high dynamic range on a wafer scale. In this paper we will demonstrate the suitability of this detector for routine beta autoradiography in a comparative approach with widely used film emulsion.

  6. A radiation-hardened two transistor memory cell for monolithic active pixel sensors in STAR experiment

    International Nuclear Information System (INIS)

    Wei, X; Dorokhov, A; Hu, Y; Gao, D

    2011-01-01

    Radiation tolerance of Monolithic Active Pixel Sensors (MAPS) is dramatically decreased when intellectual property (IP) memories are integrated for fast readout application. This paper presents a new solution to improve radiation hardness and avoid latch-up for memory cell design. The tradeoffs among radiation tolerance, area and speed are significantly considered and analyzed. The cell designed in 0.35 μm process satisfies the radiation tolerance requirements of STAR experiment. The cell size is 4.55 x 5.45 μm 2 . This cell is smaller than the IP memory cell based on the same process and is only 26% of a radiation tolerant 6T SRAM cell used in previous contribution. The write access time of the cell is less than 2 ns, while the read access time is 80 ns.

  7. Observation, modeling, and temperature dependence of doubly peaked electric fields in irradiated silicon pixel sensors

    CERN Document Server

    Swartz, M.; Allkofer, Y.; Bortoletto, D.; Cremaldi, L.; Cucciarelli, S.; Dorokhov, A.; Hoermann, C.; Kim, D.; Konecki, M.; Kotlinski, D.; Prokofiev, Kirill; Regenfus, Christian; Rohe, T.; Sanders, D.A.; Son, S.; Speer, T.

    2006-01-01

    We show that doubly peaked electric fields are necessary to describe grazing-angle charge collection measurements of irradiated silicon pixel sensors. A model of irradiated silicon based upon two defect levels with opposite charge states and the trapping of charge carriers can be tuned to produce a good description of the measured charge collection profiles in the fluence range from 0.5x10^{14} Neq/cm^2 to 5.9x10^{14} Neq/cm^2. The model correctly predicts the variation in the profiles as the temperature is changed from -10C to -25C. The measured charge collection profiles are inconsistent with the linearly-varying electric fields predicted by the usual description based upon a uniform effective doping density. This observation calls into question the practice of using effective doping densities to characterize irradiated silicon.

  8. Test Beam Results of Geometry Optimized Hybrid Pixel Detectors

    CERN Document Server

    Becks, K H; Grah, C; Mättig, P; Rohe, T

    2006-01-01

    The Multi-Chip-Module-Deposited (MCM-D) technique has been used to build hybrid pixel detector assemblies. This paper summarises the results of an analysis of data obtained in a test beam campaign at CERN. Here, single chip hybrids made of ATLAS pixel prototype read-out electronics and special sensor tiles were used. They were prepared by the Fraunhofer Institut fuer Zuverlaessigkeit und Mikrointegration, IZM, Berlin, Germany. The sensors feature an optimized sensor geometry called equal sized bricked. This design enhances the spatial resolution for double hits in the long direction of the sensor cells.

  9. Power and area efficient 4-bit column-level ADC in a CMOS pixel sensor for the ILD vertex detector

    International Nuclear Information System (INIS)

    Zhang, L; Morel, F; Hu-Guo, Ch; Hu, Y

    2013-01-01

    A 48 × 64 pixels prototype CMOS pixel sensor (CPS) integrated with 4-bit column-level, self triggered ADCs for the outer layers of the ILD vertex detector (VTX) was developed and fabricated in a 0.35 μm CMOS process with a pixel pitch of 35 μm. The pixel concept combines in-pixel amplification with a correlated double sampling (CDS) operation. The ADCs accommodating the pixel read out in a rolling shutter mode complete the conversion by performing a multi-bit/step approximation. The design was optimised for power saving at sampling frequency. The prototype sensor is currently at the stage of being started testing and evaluation. So what is described is based on post simulation results rather than test data. This 4-bit ADC dissipates, at a 3-V supply and 6.25-MS/s sampling rate, 486 μW in its inactive mode, which is by far the most frequent. This value rises to 714 μW in case of the active mode. Its footprint amounts to 35 × 545 μm 2 .

  10. The Read-Out Driver (ROD) card for the ATLAS experiment: commissioning for the IBL detector and upgrade studies for the Pixel Layers 1 and 2

    CERN Document Server

    Travaglini, R; The ATLAS collaboration; Bindi, M; Falchieri, D; Gabrielli, A; Lama, L; Chen, S P; Hsu, S C; Hauck, S; Kugel, A; Flick, T; Wensing, M

    2013-01-01

    The upgrade of the ATLAS experiment at LHC foresees the insertion of an innermost silicon layer, called Insertable B-layer (IBL). IBL read-out system will be equipped with new electronics. The Readout-Driver card (ROD) is a VME board devoted to data processing, configuration and control. A pre-production batch has been delivered in order to perform tests with instrumented slices of the overall acquisition chain, aiming to finalize strategies for system commissioning. In this contribution both setups and results will be described, as well as preliminary studies on changes in order to adopt the ROD for the ATLAS Pixel Layers 1 and 2.

  11. A proposal for the GridPixel Tracker for the ATLAS sLHC upgrade.

    CERN Document Server

    The ATLAS collaboration

    2009-01-01

    A proposal for GridPix Tracker for the ATLAS sLHC upgrade. F. Hartjes, M.Fransen, W. Koppert, K.Konovalov, S.Morozov, A.Romaniouk, M. Rogers, H. van der Graaf. A concept of the GridPix detector as a tracker for the ATLAS Inner Detector proposed for SLHC upgrade is presented. The detector can combine precise vector tracking function and particle identification features using a transition radiation and dE/dX measurements. Test beam and MC studies of the tracking and the particle identification properties have been performed with the dedicated GridPix prototype. Data was taken with the different gas mixtures. Special accuracy achieved in the test beam is ~30 m. For one layer of the GridPix detector a vector angular accuracy of about 10 mrad was obtained. It was shown that for one layer of the real detector at very realistic conditions one should expect angular accuracy better than 5 mrad. For particle identification studies detector was filled with a Xe/CO2(70/30) mixture. A block of a transition radiation ra...

  12. Serial powering optimization for CMS and ATLAS pixel detectors within RD53 collaboration for HL-LHC: system level simulations and testing

    CERN Document Server

    Orfanelli, Stella; Hamer, Matthias; Hinterkeuser, F; Karagounis, M; Pradas Luengo, Alvaro; Marconi, Sara; Ruini, Daniele

    2017-01-01

    Serial powering is the baseline choice for low mass power distribution for the CMS and ATLAS HL-LHC pixel detectors. Two 2.0 A Shunt-LDO regulators are integrated in a prototype pixel chip implemented in 65-nm CMOS technology and used to provide constant supply voltages to its power domains from a constant input current. Performance results from testing prototype Shunt-LDO regulators are shown, including their behaviour after x-ray irradiation. The system level simulation studies, which had been performed with a detailed regulator design in a serially powered topology, have been validated.

  13. Design and Optimization of Multi-Pixel Transition-Edge Sensors for X-Ray Astronomy Applications

    Science.gov (United States)

    Smith, Stephen J.; Adams, Joseph S.; Bandler, Simon R.; Chervenak, James A.; Datesman, Aaron Michael; Eckart, Megan E.; Ewin, Audrey J.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; hide

    2017-01-01

    Multi-pixel transition-edge sensors (TESs), commonly referred to as 'hydras', are a type of position sensitive micro-calorimeter that enables very large format arrays to be designed without commensurate increase in the number of readout channels and associated wiring. In the hydra design, a single TES is coupled to discrete absorbers via varied thermal links. The links act as low pass thermal filters that are tuned to give a different characteristic pulse shape for x-ray photons absorbed in each of the hydra sub pixels. In this contribution we report on the experimental results from hydras consisting of up to 20 pixels per TES. We discuss the design trade-offs between energy resolution, position discrimination and number of pixels and investigate future design optimizations specifically targeted at meeting the readout technology considered for Lynx.

  14. The FoCal prototype—an extremely fine-grained electromagnetic calorimeter using CMOS pixel sensors

    Science.gov (United States)

    de Haas, A. P.; Nooren, G.; Peitzmann, T.; Reicher, M.; Rocco, E.; Röhrich, D.; Ullaland, K.; van den Brink, A.; van Leeuwen, M.; Wang, H.; Yang, S.; Zhang, C.

    2018-01-01

    A prototype of a Si-W EM calorimeter was built with Monolithic Active Pixel Sensors as the active elements. With a pixel size of 30 μm it allows digital calorimetry, i.e. the particle's energy is determined by counting pixels, not by measuring the energy deposited. Although of modest size, with a width of only four Moliere radii, it has 39 million pixels. In this article the construction and tuning of the prototype is described. Results from beam tests are compared with predictions of GEANT-based Monte Carlo simulations. The shape of showers caused by electrons is shown in unprecedented detail. Results for energy and position resolution are also given.

  15. Low noise signal-to-noise ratio enhancing readout circuit for current-mediated active pixel sensors

    International Nuclear Information System (INIS)

    Ottaviani, Tony; Karim, Karim S.; Nathan, Arokia; Rowlands, John A.

    2006-01-01

    Diagnostic digital fluoroscopic applications continuously expose patients to low doses of x-ray radiation, posing a challenge to both the digital imaging pixel and readout electronics when amplifying small signal x-ray inputs. Traditional switch-based amorphous silicon imaging solutions, for instance, have produced poor signal-to-noise ratios (SNRs) at low exposure levels owing to noise sources from the pixel readout circuitry. Current-mediated amorphous silicon pixels are an improvement over conventional pixel amplifiers with an enhanced SNR across the same low-exposure range, but whose output also becomes nonlinear with increasing dosage. A low-noise SNR enhancing readout circuit has been developed that enhances the charge gain of the current-mediated active pixel sensor (C-APS). The solution takes advantage of the current-mediated approach, primarily integrating the signal input at the desired frequency necessary for large-area imaging, while adding minimal noise to the signal readout. Experimental data indicates that the readout circuit can detect pixel outputs over a large bandwidth suitable for real-time digital diagnostic x-ray fluoroscopy. Results from hardware testing indicate that the minimum achievable C-APS output current that can be discerned at the digital fluoroscopic output from the enhanced SNR readout circuit is 0.341 nA. The results serve to highlight the applicability of amorphous silicon current-mediated pixel amplifiers for large-area flat panel x-ray imagers

  16. 50 μm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis.

    Science.gov (United States)

    Zhao, C; Konstantinidis, A C; Zheng, Y; Anaxagoras, T; Speller, R D; Kanicki, J

    2015-12-07

    Wafer-scale CMOS active pixel sensors (APSs) have been developed recently for x-ray imaging applications. The small pixel pitch and low noise are very promising properties for medical imaging applications such as digital breast tomosynthesis (DBT). In this work, we evaluated experimentally and through modeling the imaging properties of a 50 μm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). A modified cascaded system model was developed for CMOS APS x-ray detectors by taking into account the device nonlinear signal and noise properties. The imaging properties such as modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) were extracted from both measurements and the nonlinear cascaded system analysis. The results show that the DynAMITe x-ray detector achieves a high spatial resolution of 10 mm(-1) and a DQE of around 0.5 at spatial frequencies  CMOS APS x-ray detector, image aquisition geometry and image reconstruction techniques should be considered.

  17. 3D monolithically stacked CMOS active pixel sensor detectors for particle tracking applications

    International Nuclear Information System (INIS)

    Passeri, D; Placidi, P; Servoli, L; Meroli, S; Magalotti, D; Marras, A

    2012-01-01

    In this work we propose an innovative approach to particle tracking based on CMOS Active Pixel Sensors layers, monolithically integrated in an all-in-one chip featuring multiple, stacked, fully functional detector layers capable to provide momentum measurement (particle impact point and direction) within a single detector. This will results in a very low material detector, thus dramatically reducing multiple scattering issues. To this purpose, we rely on the capabilities of the CMOS vertical scale integration (3D IC) technology. A first chip prototype has been fabricated within a multi-project run using a 130 nm CMOS Chartered/Tezzaron technology, featuring two layers bonded face-to-face. Tests have been carried out on full 3D structures, providing the functionalities of both tiers. To this purpose, laser scans have been carried out using highly focussed spot size obtaining coincidence responses of the two layers. Tests have been made as well with X-ray sources in order to calibrate the response of the sensor. Encouraging results have been found, fostering the suitability of both the adopted 3D-IC vertical scale fabrication technology and the proposed approach for particle tracking applications.

  18. Test-beam measurements and simulation studies of thin pixel sensors for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00574329; Dannheim, Dominik

    The multi-$TeV$ $e^{+}e^{-}$ Compact Linear Collider (CLIC) is one of the options for a future high-energy collider for the post-LHC era. It would allow for searches of new physics and simultaneously offer the possibility for precision measurements of standard model processes. The physics goals and experimental conditions at CLIC set high precision requirements on the vertex detector made of pixel detectors: a high pointing resolution of 3 $\\mu m$, very low mass of 0.2% $X_{0}$ per layer, 10 ns time stamping capability and low power dissipation of 50 mW/$cm^{2}$ compatible with air-flow cooling. In this thesis, hybrid assemblies with thin active-edge planar sensors are characterised through calibrations, laboratory and test-beam measurements. Prototypes containing 50 $\\mu m$ to 150 $\\mu m$ thin planar silicon sensors bump-bonded to Timepix3 readout ASICs with 55 $\\mu m$ pitch are characterised in test beams at the CERN SPS in view of their detection efficiency and single-point resolution. A digitiser for AllP...

  19. Characterization study of an intensified complementary metal-oxide-semiconductor active pixel sensor

    Science.gov (United States)

    Griffiths, J. A.; Chen, D.; Turchetta, R.; Royle, G. J.

    2011-03-01

    An intensified CMOS active pixel sensor (APS) has been constructed for operation in low-light-level applications: a high-gain, fast-light decay image intensifier has been coupled via a fiber optic stud to a prototype "VANILLA" APS, developed by the UK based MI3 consortium. The sensor is capable of high frame rates and sparse readout. This paper presents a study of the performance parameters of the intensified VANILLA APS system over a range of image intensifier gain levels when uniformly illuminated with 520 nm green light. Mean-variance analysis shows the APS saturating around 3050 Digital Units (DU), with the maximum variance increasing with increasing image intensifier gain. The system's quantum efficiency varies in an exponential manner from 260 at an intensifier gain of 7.45 × 103 to 1.6 at a gain of 3.93 × 101. The usable dynamic range of the system is 60 dB for intensifier gains below 1.8 × 103, dropping to around 40 dB at high gains. The conclusion is that the system shows suitability for the desired application.

  20. Opto-box: Optical modules and mini-crate for ATLAS pixel and IBL detectors

    Directory of Open Access Journals (Sweden)

    Bertsche David

    2016-01-01

    Full Text Available The opto-box is a custom mini-crate for housing optical modules which process and transfer optoelectronic data. Many novel solutions were developed for the custom design and manufacturing. The system tightly integrates electrical, mechanical, and thermal functionality into a small package of size 35×10x8 cm3. Special attention was given to ensure proper shielding, grounding, cooling, high reliability, and environmental tolerance. The custom modules, which incorporate Application Specific Integrated Circuits, were developed through a cycle of rigorous testing and redesign. In total, fourteen opto-boxes have been installed and loaded with modules on the ATLAS detector. They are currently in operation as part of the LHC run 2 data read-out chain. This conference proceeding is in support of the poster presented at the International Conference on New Frontiers in Physics (ICNFP 2015 [1].

  1. Proof of principle study of the use of a CMOS active pixel sensor for proton radiography.

    Science.gov (United States)

    Seco, Joao; Depauw, Nicolas

    2011-02-01

    Proof of principle study of the use of a CMOS active pixel sensor (APS) in producing proton radiographic images using the proton beam at the Massachusetts General Hospital (MGH). A CMOS APS, previously tested for use in s-ray radiation therapy applications, was used for proton beam radiographic imaging at the MGH. Two different setups were used as a proof of principle that CMOS can be used as proton imaging device: (i) a pen with two metal screws to assess spatial resolution of the CMOS and (ii) a phantom with lung tissue, bone tissue, and water to assess tissue contrast of the CMOS. The sensor was then traversed by a double scattered monoenergetic proton beam at 117 MeV, and the energy deposition inside the detector was recorded to assess its energy response. Conventional x-ray images with similar setup at voltages of 70 kVp and proton images using commercial Gafchromic EBT 2 and Kodak X-Omat V films were also taken for comparison purposes. Images were successfully acquired and compared to x-ray kVp and proton EBT2/X-Omat film images. The spatial resolution of the CMOS detector image is subjectively comparable to the EBT2 and Kodak X-Omat V film images obtained at the same object-detector distance. X-rays have apparent higher spatial resolution than the CMOS. However, further studies with different commercial films using proton beam irradiation demonstrate that the distance of the detector to the object is important to the amount of proton scatter contributing to the proton image. Proton images obtained with films at different distances from the source indicate that proton scatter significantly affects the CMOS image quality. Proton radiographic images were successfully acquired at MGH using a CMOS active pixel sensor detector. The CMOS demonstrated spatial resolution subjectively comparable to films at the same object-detector distance. Further work will be done in order to establish the spatial and energy resolution of the CMOS detector for protons. The

  2. Performance of laser distance sensors for Atlas Micromegas production

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Ralph; Biebel, Otmar; Bortfeldt, Jonathan; Flierl, Bernhard; Hertenberger, Ralf; Loesel, Philipp; Pree, Elias [LMU Muenchen (Germany); Zibell, Andre [JMU Wuerzburg (Germany)

    2015-07-01

    During the second long LHC shutdown, 2018/19, the precision tracking detectors of the ATLAS muon spectrometer in the inner end caps will be replaced using Micromegas, a planar gas-detector technology. Modules of 2 m{sup 2} area are built in quadruplets from five precisely planar sandwich panels that define the anodes and the cathodes of the four active detector planes. Single plane spatial resolutions below 100 μ m are achievable when the deviation from planarity of the strip-anodes does not exceed 80 μ m RMS over the whole active area and the parallelism of the readout strips is within 30 μ m. In order to measure the dimensional accuracy of each panel, laser distance sensors to be combined with a coordinate measurement system have been investigated. One of them turned out to be capable to measure the planarity of the panels. It has a resolution of 0.3 μ m and a beam spot diameter of ∼50 μ m, which is well below 100 μ m the size of the smallest structures. For monitoring purposes during the construction process a less accurate but cheaper sensor turned out to be sufficient. We report on the performance of the sensors and their applicability to our tasks.

  3. Development of a detector control system for the serially powered ATLAS pixel detector at the HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Puellen, Lukas

    2015-02-10

    In the years around 2020 the LHC will be upgraded to the HL-LHC. In terms of this upgrade, the ATLAS detector will also be upgraded. This also includes the pixel detector, the innermost of the sub-detectors in ATLAS. Thereby the powering concept of the pixel detector will be changed to reduce the material budget of the detector. From individual powering of each detector module, the concept changes to serial powering, where all modules of a powering group are connected in series. This change makes the development of a new detector control system (DCS) mandatory. Therefore, a new concept for the ATLAS pixel DCS is being developed at the University of Wuppertal. This concept is split into three paths: a safety path, a control path, and a diagnostics path. The safety path is a hard wired interlock system. The concept of this system will not differ significantly, compared to the interlock system of the current detector. The diagnostics path is embedded into the optical data read-out of the detector and will be used for detector tuning with high precision and granularity. The control path supervises the detector and provides a user interface to the hardware components. A concept for this path, including a prototype and proof-of-principle studies, has been developed in terms of this thesis. The control path consists of the DCS network, a read-out and controlling topology created by two types of ASICs: the DCS controller and the DCS chip. These ASICs measure and control all values, necessary for a safe detector operation in situ. This reduces the number of required cables and hence the material budget of the system. For the communication between these ASICs, two very fault tolerant bus protocols have been chosen: CAN bus carries data from the DCS computers, outside of the detector, to the DCS controllers at the edge of the pixel detector. For the communication between the DCS controller and the DCS chip, which is located close to each detector module, an enhanced I2C

  4. Development of a detector control system for the serially powered ATLAS pixel detector at the HL-LHC

    International Nuclear Information System (INIS)

    Puellen, Lukas

    2015-01-01

    In the years around 2020 the LHC will be upgraded to the HL-LHC. In terms of this upgrade, the ATLAS detector will also be upgraded. This also includes the pixel detector, the innermost of the sub-detectors in ATLAS. Thereby the powering concept of the pixel detector will be changed to reduce the material budget of the detector. From individual powering of each detector module, the concept changes to serial powering, where all modules of a powering group are connected in series. This change makes the development of a new detector control system (DCS) mandatory. Therefore, a new concept for the ATLAS pixel DCS is being developed at the University of Wuppertal. This concept is split into three paths: a safety path, a control path, and a diagnostics path. The safety path is a hard wired interlock system. The concept of this system will not differ significantly, compared to the interlock system of the current detector. The diagnostics path is embedded into the optical data read-out of the detector and will be used for detector tuning with high precision and granularity. The control path supervises the detector and provides a user interface to the hardware components. A concept for this path, including a prototype and proof-of-principle studies, has been developed in terms of this thesis. The control path consists of the DCS network, a read-out and controlling topology created by two types of ASICs: the DCS controller and the DCS chip. These ASICs measure and control all values, necessary for a safe detector operation in situ. This reduces the number of required cables and hence the material budget of the system. For the communication between these ASICs, two very fault tolerant bus protocols have been chosen: CAN bus carries data from the DCS computers, outside of the detector, to the DCS controllers at the edge of the pixel detector. For the communication between the DCS controller and the DCS chip, which is located close to each detector module, an enhanced I2C

  5. Measurement of delta-rays in ATLAS silicon sensors

    CERN Document Server

    The ATLAS collaboration

    2013-01-01