WorldWideScience

Sample records for atlas pixel detector

  1. The ATLAS pixel detector

    OpenAIRE

    Cristinziani, M.

    2007-01-01

    After a ten years planning and construction phase, the ATLAS pixel detector is nearing its completion and is scheduled to be integrated into the ATLAS detector to take data with the first LHC collisions in 2007. An overview of the construction is presented with particular emphasis on some of the major and most recent problems encountered and solved.

  2. ATLAS Pixel Detector Operational Experience

    CERN Document Server

    Di Girolamo, B; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.9% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  3. Operational experience of the ATLAS Pixel Detector

    CERN Document Server

    Marcisovsky, M; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  4. Operational experience of the ATLAS Pixel detector

    CERN Document Server

    Hirschbuehl, D; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  5. Operational experience with the ATLAS Pixel Detector

    CERN Document Server

    Ince, T; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost element of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.2% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  6. Commissioning of the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    ATLAS Collaboration; Golling, Tobias

    2008-09-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of the ATLAS pixel system are presented.

  7. Commissioning of the ATLAS Pixel Detector

    OpenAIRE

    Golling, Tobias; ATLAS Collaboration

    2008-01-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and su...

  8. Operational Experience with the ATLAS Pixel Detector

    CERN Document Server

    Lantzsch, Kerstin; The ATLAS collaboration

    2016-01-01

    Run 2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). In addition the Pixel detector was refurbished with new service quarter panels to recover about 3% of defective modules lost during run 1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning, operation and performance of the 4-layer Pixel Detector will be presented.

  9. Physics performance of the ATLAS Pixel Detector

    CERN Document Server

    Tsuno, Soshi; The ATLAS collaboration

    2016-01-01

    One noticeable upgrade from Run-1 to Run-2 with ATLAS detector in proton-proton collisions at LHC is the introduction of the new pixel detector, IBL, located on the beam pipe as the extra innermost pixel layer. The tracking and vertex reconstruction are significantly improved and good performance is expected in high level object such a $b$-quark jet tagging, in turn, it leads the better physics results. This note summarizes what is the impact on the IBL detector to the physics results especially focusing on the analyses using the $b$-quark jets throughout 2016 summer physics program.

  10. ATLAS Inner Detector (Pixel Detector and Silicon Tracker)

    CERN Multimedia

    ATLAS Outreach

    2006-01-01

    To raise awareness of the basic functions of the Pixel Detector and Silicon Tracker in the ATLAS detector on the LHC at CERN. This colorful 3D animation is an excerpt from the film "ATLAS-Episode II, The Particles Strike Back." Shot with a bug's eye view of the inside of the detector. The viewer is taken on a tour of the inner workings of the detector, seeing critical pieces of the detector and hearing short explanations of how each works.

  11. Upgrades of the ATLAS Pixel Detector

    CERN Document Server

    Hügging, F; The ATLAS collaboration

    2013-01-01

    The upgrade for the ATLAS detector will undergo different phases towards HL-LHC. The first upgrade for the Pixel Detector (Phase 1) consists in the construction of a new pixel layer, which will be installed during the 1st long shutdown of the LHC machine (LS1) in 2013/14. The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of about 3.2 cm. The IBL requires the development of several new technologies to cope with the increase of radiation and pixel occupancy as well as to improve the physics performance of the existing pixel detector. The pixel size is reduced and the material budget is minimized by using new lightweight mechanical support materials and a CO2 based cooling system. For Phase 2 upgrade of LHC a complete new 4-layer pixel system is planned as part of a new all silicon Inner Detector. The increase in luminosity to about $5\\cdot 10^{34}$cm$^{-2}$s$^{-1}$ together with a total expected lifetime of ab...

  12. Optical Link of the Atlas Pixel Detector

    OpenAIRE

    Gan, K. K.

    2007-01-01

    The on-detector optical link of the ATLAS pixel detector contains radiation-hard receiver chips to decode bi-phase marked signals received on PIN arrays and data transmitter chips to drive VCSEL arrays. The components are mounted on hybrid boards (opto-boards). We present results from the irradiation studies with 24 GeV protons up to 32 Mrad (1.2 x 10^15 p/cm^2) and the experience from the production.

  13. ATLAS rewards two pixel detector suppliers

    CERN Multimedia

    2007-01-01

    Peter Jenni, ATLAS spokesperson, presented the ATLAS supplier award to Herbert Reichl, IZM director, and to Simonetta Di Gioia, from the SELEX company.Two of ATLAS’ suppliers were awarded prizes at a ceremony on Wednesday 13 June attended by representatives of the experiment’s management and of CERN. The prizes went to the Fraunhofer Institut für Zuverlässigkeit und Mikrointegration (IZM) in Berlin and the company SELEX Sistemi Integrati in Rome for the manufacture of modules for the ATLAS pixel detector. SELEX supplied 1500 of the modules for the tracker, while IZM produced a further 1300. The modules, each made up of 46080 channels, form the active part of the ATLAS pixel detector. IZM and SELEX received the awards for the excellent quality of their work: the average number of faulty channels per module was less than 2.10-3. They also stayed within budget and on schedule. The difficulty they faced was designing modules based on electronic components and sensor...

  14. optical links for the atlas pixel detector

    CERN Document Server

    Stucci, Stefania Antonia; The ATLAS collaboration

    2015-01-01

    Optical links are necessary to satisfy the high speed readout over long distances for advanced silicon detector systems. We report on the optical readout used in the newly installed central pixel layer (IBL) in the ATLAS experiment. The off detector readout employs commercial optical to analog converters, which were extensively tested for this application. Performance measurements during installation and commissioning will be shown. With the increasing instantaneous luminosity in the next years, the next layers outwards of IBL of the ATLAS Pixel detector (Layer 1 and Layer 2) will reach their bandwidth limits. A plan to increase the bandwidth by upgrading the off detector readout chain is put in place. The plan also involves new optical readout components, in particular the optical receivers, for which commercial units cannot be used and a new design has been made. The latter allows for a wider operational range in term of data frequency and light input power to match the on-detector sending units on the pres...

  15. Optical links for the ATLAS Pixel detector

    CERN Document Server

    Stucci, Stefania Antonia; The ATLAS collaboration

    2015-01-01

    Optical links are necessary to satisfy the high speed readout over long distances for advanced silicon detector systems. We report on the optical readout used in the newly installed central pixel layer (IBL) in the ATLAS experiment. The off detector readout employs commercial optical to analog converters, which were extensively tested for this application. Performance measurements during installation and commissioning will be shown. With the increasing instantaneous luminosity in the next years, the next layers outwards of IBL of the ATLAS Pixel detector (Layer 1 and Layer 2) will reach their bandwidth limits. A plan to increase the bandwidth by upgrading the off detector readout chain is put in place. The plan also involves new optical readout components, in particular the optical receivers, for which commercial units cannot be used and a new design has been made. The latter allows for a wider operational range in term of data frequency and light input power to match the on-detector sending units on the pres...

  16. Operational experience with the ATLAS Pixel Detector at the LHC

    Science.gov (United States)

    Lapoire, C.; Atlas Collaboration

    2013-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as B-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures and detector performance. The detector performance is excellent: 96.2% of the pixels are operational, noise occupancy is sufficiently low and hit efficiency exceed the design specification.

  17. Operational experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Hirschbuehl, D; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.7% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  18. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Keil, M; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  19. Operational experience with the ATLAS Pixel detector at the LHC

    CERN Document Server

    Deluca, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5\\% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, ...

  20. Operational experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Ince, T; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.8% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  1. Operational experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Lapoire, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  2. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Lapoire, C; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as B-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures and detector performance. The detector performance is excellent: 96.2% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification.

  3. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Lange, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump- bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, a...

  4. Operational experience with the ATLAS Pixel detector at the LHC

    CERN Document Server

    Deluca, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  5. DAQ Hardware and software development for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    In 2014, the Pixel Detector of the ATLAS experiment was extended by about 12 million pixels with the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented by employing newly designed read-out hardware, which supports the full detector bandwidth even for calibration. The hardware is supported by an embedded software stack running on the read-out boards. The same boards will be used to upgrade the read-out bandwidth for the two outermost layers of the ATLAS Pixel Barrel (54 million pixels). We present the IBL read-out hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  6. DAQ hardware and software development for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    In 2014, the Pixel Detector of the ATLAS experiment has been extended by about 12 million pixels thanks to the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented along with newly designed read-out hardware to support high bandwidth for data readout and calibration. The hardware is supported by an embedded software stack running on the read-out boards. The same boards will be used to upgrade the read-out bandwidth for the two outermost layers of the ATLAS Pixel Barrel (54 million pixels). We present the IBL read-out hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  7. DAQ hardware and software development for the ATLAS Pixel Detector

    Science.gov (United States)

    Stramaglia, Maria Elena

    2016-07-01

    In 2014, the Pixel Detector of the ATLAS experiment has been extended by about 12 million pixels thanks to the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented along with newly designed readout hardware to support high bandwidth for data readout and calibration. The hardware is supported by an embedded software stack running on the readout boards. The same boards will be used to upgrade the readout bandwidth for the two outermost barrel layers of the ATLAS Pixel Detector. We present the IBL readout hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel Detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  8. Online calibrations and performance of the ATLAS Pixel Detector

    CERN Document Server

    Keil, M; The ATLAS collaboration

    2010-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. It consists of 1744 silicon sensors equipped with approximately 80 M electronic channels, providing typically three measurement points with high resolution for particles emerging from the beam-interaction region, thus allowing measuring particle tracks and secondary vertices with very high precision. The readout system of the Pixel Detector is based on a bi-directional optical data transmission system between the detector and the data acquisition system with an individual link for each of the 1744 modules. Signal conversion components are located on both ends, approximately 80 m apart. The talk will give an overview of the calibration and performance of both the detector and its optical readout. The most basic parameter to be tuned and calibrated for the detector electronics is the readout threshold of the individual pixel channels. These need to be carefully tuned to optimise position resolution a...

  9. Neural network based cluster creation in the ATLAS Pixel Detector

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2012-01-01

    The read-out from individual pixels on planar semi-conductor sensors are grouped into clusters to reconstruct the location where a charged particle passed through the sensor. The resolution given by individual pixel sizes is significantly improved by using the information from the charge sharing be- tween pixels. Such analog cluster creation techniques have been used by the ATLAS experiment for many years to obtain an excellent performance. How- ever, in dense environments, such as those inside high-energy jets, clusters have an increased probability of merging the charge deposited by multiple particles. Recently, a neural network based algorithm which estimates both the cluster position and whether a cluster should be split has been developed for the ATLAS Pixel Detector. The algorithm significantly reduces ambigui- ties in the assignment of pixel detector measurement to tracks and improves the position accuracy with respect to standard techniques by taking into account the 2-dimensional charge distribution.

  10. Operational Experience with the ATLAS Pixel Detector at LHC

    CERN Document Server

    Keil, M

    2013-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus crucial for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via front-end chips bump-bonded to 1744 n-on-n silicon substrates. In this paper results from the successful operation of the Pixel Detector at the LHC will be presented, including calibration procedures, detector performance and measurements of radiation damage. The detector performance is excellent: more than 95% of the pixels are operational, noise occupancy and hit efficiency exceed the des...

  11. Online Calibration and Performance of the ATLAS Pixel Detector

    CERN Document Server

    Keil, M

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. It consists of 1744 silicon sensors equipped with approximately 80 million electronic channels, providing typically three measurement points with high resolution for particles emerging from the beam-interaction region, thus allowing measuring particle tracks and secondary vertices with very high precision. The readout system of the Pixel Detector is based on a bi-directional optical data transmission system between the detector and the data acquisition system with an individual link for each of the 1744 modules. Signal conversion components are located on both ends, approximately 80 m apart. This paper describes the tuning and calibration of the optical links and the detector modules, including measurements of threshold, noise, charge measurement, timing performance and the sensor leakage current.

  12. A Novel Optical Package for ATLAS Pixel Detector

    CERN Document Server

    Gan, K K

    2001-01-01

    An optical package of novel design has been developed for the ATLAS pixel detector. The package contains two VCSELs and one PIN diode to transmit and receive optical signals. The design is based on a simple connector-type concept and is made of radiation-hard material. Several packages have been fabricated and show promising results.

  13. Overview of the ATLAS Insertable B-Layer Pixel Detector

    CERN Document Server

    Pernegger, H; The ATLAS collaboration

    2011-01-01

    ATLAS currently develops a new pixel detector for the first upgrade of its tracking system: The ATLAS Insertable B-Layer Pixel detector (IBL). The new layer will be inserted between the inner most layer of the current pixel detector and a new beam pipe. The sensors are placed at a radius of 3.4cm. The expected high radiation levels and high hit occupancy require new developments for front-end chip and the sensor which can stand radiation levels beyond 5E15 neq/cm2. ATLAS has developed the new FEI4 and new silicon sensors to be used as pixel modules. Furthermore a new lightweight support and cooling structure was developed, which minimizes the overall radiation and allows detector cooling with CO2 at -40C coolant temperature. Currently the overall integration and installation procedure is being developed and test ready for installation in ATLAS in 2013. The presentation summarizes the current state of development of IBL modules, first preliminary test results of the new chip with new sensors, the construction ...

  14. Optical Links for the ATLAS Pixel Detector

    CERN Document Server

    Gregor, Ingrid-Maria

    In der vorliegenden Dissertation wird eine strahlentolerante optische Datenstrecke mit hoher Datenrate für den Einsatz in dem Hochenergiephysikexperiment Atlas am Lhc Beschleuniger entwickelt. Da die Lhc-Experimente extremen Strahlenbelastungen ausgesetzt sind, müssen die Komponenten spezielle Ansprüche hinsichtlich der Strahlentoleranz erfüllen. Die Qualifikation der einzelnen Bauteile wurde im Rahmen dieser Arbeit durchgeführt. Die zu erwartenden Fluenzen im Atlas Inner Detector für Silizium und Gallium Arsenid (GaAs) wurden berechnet. Siliziumbauteile werden einer Fluenz von bis zu 1.1.1015neq /cm2 in 1 MeV äquivalenten Neutronen ausgesetzt sein, wohingegen GaAs Bauteile bis zu 7.8.1015neq /cm2 ausgesetzt sein werden. Die Strahlentoleranz der einzelnen benötigten Komponenten wie z.B. der Laserdioden sowie der jeweiligen Treiberchips wurde untersucht. Sowohl die Photo- als auch die Laserdioden haben sich als strahlentolerant für die Fluenzen an dem vorgesehenen Radius erwiesen. Aus de...

  15. Pixel detector modules performance for ATLAS IBL and future pixel detectors

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00355104; Pernegger, Heinz

    2015-11-06

    The ATLAS Detector is one of the four big particle physics experiments at CERN’s LHC. Its innermost tracking system consisted of the 3-Layer silicon Pixel Detector (~80M readout channels) in the first run (2010-2012). Over the past two years it was refurbished and equipped with new services as well as a new beam monitor. The major upgrade, however, was the Insertable B-Layer (IBL). It adds ~12M readout channels for improved vertexing, tracking robustness and b-tagging performance for the upcoming runs, before the high luminosity upgrade of the LHC will take place. This thesis covers two main aspects of Pixel detector performance studies: The main work was the planning, commissioning and operation of a test bench that meets the requirements of current pixel detector components. Each newly built ATLAS IBL stave was thoroughly tested, following a specifically developed procedure, and initially calibrated in that setup. A variety of production accompanying measurements as well as preliminary results after integ...

  16. Monitoring Radiation Damage in the ATLAS Pixel Detector

    CERN Document Server

    Schorlemmer, André Lukas; Große-Knetter, Jörn; Rembser, Christoph; Di Girolamo, Beniamino

    2014-11-05

    Radiation hardness is one of the most important features of the ATLAS pixel detector in order to ensure a good performance and a long lifetime. Monitoring of radiation damage is crucial in order to assess and predict the expected performance of the detector. Key values for the assessment of radiation damage in silicon, such as the depletion voltage and depletion depth in the sensors, are measured on a regular basis during operations. This thesis summarises the monitoring program that is conducted in order to assess the impact of radiation damage and compares it to model predictions. In addition, the physics performance of the ATLAS detector highly depends on the amount of disabled modules in the ATLAS pixel detector. A worrying amount of module failures was observed during run I. Thus it was decided to recover repairable modules during the long shutdown (LS1) by extracting the pixel detector. The impact of the module repairs and module failures on the detector performance is analysed in this thesis.

  17. Calibration Analysis Software for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    The calibration of the ATLAS Pixel detector at LHC fulfils two main purposes: to tune the front-end configuration parameters for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel detector scans and analyses is called Calibration Console. The introduction of a new layer, equipped with new Front End-I4 Chips, required an update the Console architecture. It now handles scans and scans analyses applied together to chips with different characteristics. An overview of the newly developed Calibration Analysis Software will be presented, together with some preliminary result.

  18. Calibration analysis software for the ATLAS Pixel Detector

    Science.gov (United States)

    Stramaglia, Maria Elena

    2016-07-01

    The calibration of the ATLAS Pixel Detector at LHC fulfils two main purposes: to tune the front-end configuration parameters for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel Detector scans and analyses is called calibration console. The introduction of a new layer, equipped with new FE-I4 chips, required an update of the console architecture. It now handles scans and scan analyses applied together to chips with different characteristics. An overview of the newly developed calibration analysis software will be presented, together with some preliminary results.

  19. Validation studies of the ATLAS pixel detector control system

    Energy Technology Data Exchange (ETDEWEB)

    Schultes, Joachim [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany)]. E-mail: schultes@physik.uni-wuppertal.de; Becks, Karl-Heinz [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Flick, Tobias [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Henss, Tobias [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Imhaeuser, Martin [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Kersten, Susanne [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Kind, Peter [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Lantzsch, Kerstin [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Maettig, Peter [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Reeves, Kendall [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Weingarten, Jens [University of Bonn, Nussallee 12, 53115 Bonn (Germany)

    2006-09-01

    The ATLAS pixel detector consists of 1744 identical silicon pixel modules arranged in three barrel layers providing coverage for the central region, and three disk layers on either side of the primary interaction point providing coverage of the forward regions. Once deployed into the experiment, the detector will employ optical data transfer, with the requisite powering being provided by a complex system of commercial and custom-made power supplies. However, during normal performance and production tests in the laboratory, only single modules are operated and electrical readout is used. In addition, standard laboratory power supplies are used. In contrast to these normal tests, the data discussed here were obtained from a multi-module assembly which was powered and read out using production items: the optical data path, the final design power supply system using close to final services, and the Detector Control System (DCS)

  20. ATLAS Pixel Detector Design For HL-LHC

    CERN Document Server

    Smart, Ben; The ATLAS collaboration

    2016-01-01

    The ATLAS Inner Detector will be replaced for the High-Luminosity LHC (HL-LHC) running in 2026. The new Inner Detector will be called the Inner Tracker (ITk). The ITk will cover an extended eta-range: at least to |eta|<3.2, and likely up to |eta|<4.0. The ITk will be an all-Silicon based detector, consisting of a Silicon strip detector outside of a radius of 362mm, and a Silicon pixel detector inside of this radius. Several novel designs are being considered for the ITk pixel detector, to cope with high-eta charged particle tracks. These designs are grouped into 'extended' and 'inclined' design-types. Extended designs have long pixel staves with sensors parallel to the beamline. High-eta particles will therefore hit these sensors at shallow angles, leaving elongated charge clusters. The length of such a charge cluster can be used to estimate the angle of the passing particle. This information can then be used in track reconstruction to improve tracking efficiency and reduce fake rates. Inclined designs ...

  1. Planar pixel detector module development for the HL-LHC ATLAS pixel system

    Energy Technology Data Exchange (ETDEWEB)

    Bates, Richard L., E-mail: richard.bates@glasgow.ac.uk [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Buttar, C.; Stewart, A.; Blue, A.; Doonan, K.; Ashby, J. [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Casse, G.; Dervan, P.; Forshaw, D.; Tsurin, I. [The University of Liverpool, Liverpool (United Kingdom); Brown, S.; Pater, J. [The Univiersty of Manchester, Manchester (United Kingdom)

    2013-12-11

    The ATLAS pixel detector for the HL-LHC requires the development of large area pixel modules that can withstand doses up to 10{sup 16} 1 MeV n{sub eq} cm{sup −2}. The area of the pixel detector system will be over 5 m{sup 2} and as such low cost, large area modules are required. The development of a quad module based on 4 FE-I4 readout integrated chips (ROIC) will be discussed. The FE-I4 ROIC is a large area chip and the yield of the flip-chip process to form an assembly is discussed for single chip assemblies. The readout of the quad module for laboratory tests will be reported.

  2. Planar pixel detector module development for the HL-LHC ATLAS pixel system

    Science.gov (United States)

    Bates, Richard L.; Buttar, C.; Stewart, A.; Blue, A.; Doonan, K.; Ashby, J.; Casse, G.; Dervan, P.; Forshaw, D.; Tsurin, I.; Brown, S.; Pater, J.

    2013-12-01

    The ATLAS pixel detector for the HL-LHC requires the development of large area pixel modules that can withstand doses up to 1016 1 MeV neq cm-2. The area of the pixel detector system will be over 5 m2 and as such low cost, large area modules are required. The development of a quad module based on 4 FE-I4 readout integrated chips (ROIC) will be discussed. The FE-I4 ROIC is a large area chip and the yield of the flip-chip process to form an assembly is discussed for single chip assemblies. The readout of the quad module for laboratory tests will be reported.

  3. Planar pixel detector module development for the HL-LHC ATLAS pixel system

    International Nuclear Information System (INIS)

    The ATLAS pixel detector for the HL-LHC requires the development of large area pixel modules that can withstand doses up to 1016 1 MeV neq cm−2. The area of the pixel detector system will be over 5 m2 and as such low cost, large area modules are required. The development of a quad module based on 4 FE-I4 readout integrated chips (ROIC) will be discussed. The FE-I4 ROIC is a large area chip and the yield of the flip-chip process to form an assembly is discussed for single chip assemblies. The readout of the quad module for laboratory tests will be reported

  4. Simulation of gas mixture drift properties for GasPixel detector for modernization of ATLAS

    International Nuclear Information System (INIS)

    Results of simulation of gas mixture drift properties for GasPixel detector are presented. The properties of gaseous mixtures for the GasPixel detector have been studied in view of its use in high luminosity tracking applications for the ATLAS Inner Detector in a future super-LHC collider

  5. ATLAS pixel detector timing optimisation with the back of crate card of the optical pixel readout system

    Energy Technology Data Exchange (ETDEWEB)

    Flick, T; Gerlach, P; Reeves, K; Maettig, P [Department of Physics, Bergische Universitaet Wuppertal (Germany)

    2007-04-15

    As with all detector systems at the Large Hadron Collider (LHC), the assignment of data to the correct bunch crossing, where bunch crossings will be separated in time by 25 ns, is one of the challenges for the ATLAS pixel detector. This document explains how the detector system will accomplish this by describing the general strategy, its implementation, the optimisation of the parameters, and the results obtained during a combined testbeam of all ATLAS subdetectors.

  6. The upgraded Pixel Detector of the ATLAS Experiment for Run 2 at the Large Hadron Collider

    Science.gov (United States)

    Backhaus, M.

    2016-09-01

    During Run 1 of the Large Hadron Collider (LHC), the ATLAS Pixel Detector has shown excellent performance. The ATLAS collaboration took advantage of the first long shutdown of the LHC during 2013 and 2014 and extracted the ATLAS Pixel Detector from the experiment, brought it to surface and maintained the services. This included the installation of new service quarter panels, the repair of cables, and the installation of the new Diamond Beam Monitor (DBM). Additionally, a completely new innermost pixel detector layer, the Insertable B-Layer (IBL), was constructed and installed in May 2014 between a new smaller beam pipe and the existing Pixel Detector. With a radius of 3.3 cm the IBL is located extremely close to the interaction point. Therefore, a new readout chip and two new sensor technologies (planar and 3D) are used in the IBL. In order to achieve best possible physics performance the material budget was improved with respect to the existing Pixel Detector. This is realized using lightweight staves for mechanical support and a CO2 based cooling system. This paper describes the improvements achieved during the maintenance of the existing Pixel Detector as well as the performance of the IBL during the construction and commissioning phase. Additionally, first results obtained during the LHC Run 2 demonstrating the distinguished tracking performance of the new Four Layer ATLAS Pixel Detector are presented.

  7. Status and future of the ATLAS Pixel Detector at the LHC

    International Nuclear Information System (INIS)

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. The detector provides hermetic coverage with three cylindrical layers and three layers of disks in each forward end-cap. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-on-n silicon substrates. Intensive calibration, tuning, timing optimization and monitoring resulted in the successful five years of operation with good detector performance. The record breaking instantaneous luminosities of 7.7×1033cm−2s−1 recently surpassed at the LHC generated a rapidly increasing particle fluence in the ATLAS Pixel Detector. As the radiation dose accumulated, the first effects of radiation damage became observable in the silicon sensors as an increase in the silicon leakage current and the change of the voltage required to fully deplete the sensor. A fourth pixel layer at a radius of 3.3 cm will be added during the long shutdown (2013–2014) together with the replacement of pixel services. A letter of intent was submitted for a completely new Pixel Detector after 2023, capable to take data with extremely high leveled luminosities of 5×1034cm−2s−1 at the high luminosity LHC. -- Highlights: •The ATLAS Pixel Detector provides hermetic coverage with three layers with 80 million pixels. •Calibration, tuning, timing optimization and monitoring resulted in the successful five years of operation with good detector performance. •First effects of radiation damage became observable in the silicon sensors. •A fourth pixel layer at a radius of 3.3 cm will be added during the long shutdown (2013–2014). •Replacement of pixel services in 2013–2014. •A letter of intent was submitted for new Pixel Detector after 2023 for high luminosity LHC

  8. Development and characterization of diamond and 3D-silicon pixel detectors with ATLAS-pixel readout electronics

    Energy Technology Data Exchange (ETDEWEB)

    Mathes, Markus

    2008-12-15

    Hybrid pixel detectors are used for particle tracking in the innermost layers of current high energy experiments like ATLAS. After the proposed luminosity upgrade of the LHC, they will have to survive very high radiation fluences of up to 10{sup 16} particles per cm{sup 2} per life time. New sensor concepts and materials are required, which promise to be more radiation tolerant than the currently used planar silicon sensors. Most prominent candidates are so-called 3D-silicon and single crystal or poly-crystalline diamond sensors. Using the ATLAS pixel electronics different detector prototypes with a pixel geometry of 400 x 50 {mu}m{sup 2} have been built. In particular three devices have been studied in detail: a 3D-silicon and a single crystal diamond detector with an active area of about 1 cm{sup 2} and a poly-crystalline diamond detector of the same size as a current ATLAS pixel detector module (2 x 6 cm{sup 2}). To characterize the devices regarding their particle detection efficiency and spatial resolution, the charge collection inside a pixel cell as well as the charge sharing between adjacent pixels was studied using a high energy particle beam. (orig.)

  9. Calibration Analysis Software for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    The calibration of the Pixel detector fulfills two main purposes: to tune front-end registers for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel detector scans and analyses is called Calibration Console. The introduction of a new layer, equipped with new Front End-I4 Chips, required an update the Console architecture. It now handles scans and scans analyses applied toghether to chips with dierent characteristics. An overview of the newly developed Calibration Analysis Software will be presented, together with some preliminary result.

  10. Optical Readout in a Multi-Module System Test for the ATLAS Pixel Detector

    CERN Document Server

    Flick, T; Gerlach, P; Kersten, S; Mättig, P; Kirichu, S N; Reeves, K; Richter, J; Schultes, J; Flick, Tobias; Becks, Karl-Heinz; Gerlach, Peter; Kersten, Susanne; Maettig, Peter; Kirichu, Simon Nderitu; Reeves, Kendall; Richter, Jennifer; Schultes, Joachim

    2006-01-01

    The innermost part of the ATLAS experiment at the LHC, CERN, will be a pixel detector. The command messages and the readout data of the detector are transmitted over an optical data path. The readout chain consists of many components which are produced at several locations around the world, and must work together in the pixel detector. To verify that these parts are working together as expected a system test has been built up. In this paper the system test setup and the operation of the readout chain is described. Also, some results of tests using the final pixel detector readout chain are given.

  11. Studies for the detector control system of the ATLAS pixel at the HL-LHC

    International Nuclear Information System (INIS)

    In the context of the LHC upgrade to the HL-LHC the inner detector of the ATLAS experiment will be replaced completely. As part of this redesign there will also be a new pixel detector. This new pixel detector requires a control system which meets the strict space requirements for electronics in the ATLAS experiment. To accomplish this goal we propose a DCS (Detector Control System) network with the smallest form factor currently available. This network consists of a DCS chip located in close proximity to the interaction point and a DCS controller located in the outer regions of the ATLAS detector. These two types of chips form a star shaped network with several DCS chips being controlled by one DCS controller. Both chips are manufactured in deep sub-micron technology. We present prototypes with emphasis on studies concerning single event upsets.

  12. Commissioning of the upgraded ATLAS Pixel Detector for Run2 at LHC

    CERN Document Server

    Dobos, Daniel; The ATLAS collaboration

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL), a fourth layer of pixel detectors, installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. An overview of the refurbishing of the Pixel Detector and of the IBL project as well as early performance tests using cosmic rays and beam data will be presented.

  13. Commissioning of the upgraded ATLAS Pixel Detector for Run2 at LHC

    Science.gov (United States)

    Dobos, Daniel

    2016-07-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to the surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer, a fourth layer of pixel detectors, installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. An overview of the refurbishing of the Pixel Detector and of the IBL project as well as early performance tests using cosmic rays and beam data will be presented.

  14. Development and Characterization of Diamond and 3D-Silicon Pixel Detectors with ATLAS-Pixel Readout Electronics

    CERN Document Server

    Mathes, Markus

    2008-01-01

    Abstract: Hybrid pixel detectors are used for particle tracking in the innermost layers of current high energy experiments like ATLAS. After the proposed luminosity upgrade of the LHC, they will have to survive very high radiation fluences of up to 10^16 particles per cm^2 per life time. New sensor concepts and materials are required, which promise to be more radiation tolerant than the currently used planar silicon sensors. Most prominent candidates are so-called 3D-silicon and single crystal or poly-crystalline diamond sensors. Using the ATLAS pixel electronics different detector prototypes with a pixel geometry of 400 × 50 um^2 have been built. In particular three devices have been studied in detail: a 3D-silicon and a single crystal diamond detector with an active area of about 1 cm^2 and a poly-crystalline diamond detector of the same size as a current ATLAS pixel detector module (2 × 6 cm^2). To characterize the devices regarding their particle detection efficiency and spatial resolution, the charge c...

  15. Commissioning and Operation of the ATLAS Pixel Detector at the CERN LHC Collider

    CERN Document Server

    Djama, F; The ATLAS collaboration

    2010-01-01

    Physics program at the CERN LHC collider started in autumn 2009. Since then, LHC daily delivers collisions between its two proton beams. This talk was devoted to the commissioning and early operation of the ATLAS Pixel Detector. The Pixel Detector is working nicely and all the required performances like efficiency, resolution and low noise were met. The fraction of working modules is as high as 97.4 %. The Pixel Detector fully participates in the reconstruction of charged particles trajectories, and is a key element in finding primary and secondary verticies and in tagging of short-lived particles.

  16. Results on 0.7% X0 thick pixel modules for the ATLAS detector

    CERN Document Server

    Netchaeva, P; Darbo, G; Einsweiler, Kevin F; Gagliardi, G; Gemme, C; Gilchriese, M G D; Oppizzi, P; Richardson, J; Rossi, L; Ruscino, E; Vernocchi, F; Znizka, G

    2001-01-01

    Modules are the basic building blocks of the ATLAS pixel detector system, they are made of a silicon sensor tile containing ~46000 pixel cells of 50 mu m*400 mu m, 16 front-end chips connected to the sensor through bump bonding, a kapton flex circuit and the module controller chip. The pixel detector is the first to encounter particles emerging from LHC interactions, minimization of radiation length of pixel modules is therefore very important. We report here on the construction techniques and on the operation of the first ATLAS pixel modules of 0.7% radiation length thickness. We have operated these modules with threshold of 3700*10+or-300*10, mean noise value of 225*10 and 0.3% dead channels. (3 refs).

  17. Neural network based cluster creation in the ATLAS silicon Pixel Detector

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2013-01-01

    The read-out from individual pixels on planar semi-conductor sensors are grouped into clusters to reconstruct the location where a charged particle passed through the sensor. The resolution given by individual pixel sizes is significantly improved by using the information from the charge sharing between pixels. Such analog cluster creation techniques have been used by the ATLAS experiment for many years to obtain an excellent performance. However, in dense environments, such as those inside high-energy jets, clusters have an increased probability of merging the charge deposited by multiple particles. Recently, a neural network based algorithm which estimates both the cluster position and whether a cluster should be split has been developed for the ATLAS Pixel Detector. The algorithm significantly reduces ambiguities in the assignment of pixel detector measurement to tracks within jets and improves the position accuracy with respect to standard interpolation techniques by taking into account the 2-dimensional ...

  18. Neural network based cluster creation in the ATLAS silicon Pixel Detector

    CERN Document Server

    Perez Cavalcanti, T; The ATLAS collaboration

    2012-01-01

    The hit signals read out from pixels on planar semi-conductor sensors are grouped into clusters, to reconstruct the location where a charged particle passed through. The resolution of the individual pixel sizes can be improved significantly using the information from the cluster of adjacent pixels. Such analog cluster creation techniques have been used by the ATLAS experiment for many years giving an excellent performance. However, in dense environments, such as those inside high-energy jets, is likely that the charge deposited by two or more close-by tracks merges into one single cluster. A new pattern recognition algorithm based on neural network methods has been developed for the ATLAS Pixel Detector. This can identify the shared clusters, split them if necessary, and estimate the positions of all particles traversing the cluster. The algorithm significantly reduces ambiguities in the assignment of pixel detector measurements to tracks within jets, and improves the positional accuracy with respect to stand...

  19. Operational Performance and Status of the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Jentzsch, J; The ATLAS collaboration

    2014-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experi- ment at the Large Hadron Collider at CERN. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individu- ally read out via chips bump-bonded to 1744 n+-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC and its status after three years of operation will be presented, including moni- toring, calibration procedures, timing optimization and detector performance. The record breaking instantaneous luminosities of 7.7 · 1033 cm−2s−1 recently surpassed at the Large Hadron Collider generate a rapidly increasing particle fluence in the ATLAS Pixel Detector. As the radiation dose accumulates, the first effects of radiation damage are now observable in the silicon sensors. A regular monitoring program has been conducted and reveals an increase in the silico...

  20. The upgraded Pixel Detector of the ATLAS Experiment for Run2 at the Large Hadron Collider

    CERN Document Server

    Backhaus, Malte; The ATLAS collaboration

    2015-01-01

    During Run-1 of the Large Hadron Collider (LHC), the ATLAS Pixel Detector has shown excellent performance. The ATLAS collaboration took advantage of the first long shutdown of the LHC during 2013 and 2014 and extracted the ATLAS Pixel Detector from the experiment, brought it to surface and maintained the services. This includes the installation of new service quarter panels, the repair of cables, and the installation of the new Diamond Beam Monitor (DBM). Additionally a completely new innermost pixel detector layer, the Insertable B-Layer (IBL), was constructed and installed in May 2014 between a new smaller beam pipe and the existing Pixel Detector. With a radius of 3.3 cm the IBL is located extremely close to the interaction point. Therefore a new readout chip and two new sensor technologies (planar and 3D) are used in IBL. In order to achieve best possible physics performance the material budget was improved with respect to the existing Pixel Detector. This is realized using lightweight staves for mechanic...

  1. Performance of silicon pixel detectors at small track incidence angles for the ATLAS Inner Tracker upgrade

    Science.gov (United States)

    Viel, Simon; Banerjee, Swagato; Brandt, Gerhard; Carney, Rebecca; Garcia-Sciveres, Maurice; Hard, Andrew Straiton; Kaplan, Laser Seymour; Kashif, Lashkar; Pranko, Aliaksandr; Rieger, Julia; Wolf, Julian; Wu, Sau Lan; Yang, Hongtao

    2016-09-01

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of the ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of the ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN.

  2. Operational Experience of the ATLAS SemiConductor Tracker and Pixel Detector

    CERN Document Server

    Robinson, Dave; The ATLAS collaboration

    2016-01-01

    The tracking performance of the ATLAS detector relies critically on the silicon and gaseous tracking subsystems that form the ATLAS Inner Detector. Those subsystems have undergone significant hardware and software upgrades to meet the challenges imposed by the higher collision energy, pileup and luminosity that are being delivered by the LHC during Run2. The key status and performance metrics of the Pixel Detector and the Semi Conductor Tracker are summarised, and the operational experience and requirements to ensure optimum data quality and data taking efficiency are described.

  3. Status of the ATLAS Pixel Detector at the LHC and its performance after three years of operation

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC and its status after three years of operation will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: ~96 % of the pixels are operational, noise occupancy and hit ...

  4. Studies for the detector control system of the ATLAS pixel at the HL-LHC

    CERN Document Server

    Püllen, L; Boek, J; Kersten, S; Kind, P; Mättig, P; Zeitnitz, C

    2012-01-01

    experiment will be replaced completely. As part of this redesign there will also be a new pixel detector. This new pixel detector requires a control system which meets the strict space requirements for electronics in the ATLAS experiment. To accomplish this goal we propose a DCS (Detector Control System) network with the smallest form factor currently available. This network consists of a DCS chip located in close proximity to the interaction point and a DCS controller located in the outer regions of the ATLAS detector. These two types of chips form a star shaped network with several DCS chips being controlled by one DCS controller. Both chips are manufactured in deep sub-micron technology. We present prototypes with emphasis on studies concerning single event upsets.

  5. Radiation-Hard Opto-Link for the Atlas Pixel Detector

    OpenAIRE

    Gan, K. K.

    2004-01-01

    The on-detector optical link of the ATLAS pixel detector contains radiation-hard receiver chips to decode bi-phase marked signals received on PIN arrays and data transmitter chips to drive VCSEL arrays. The components are mounted on hybrid boards (opto-boards). We present results from the opto-boards and from irradiation studies with 24 GeV protons up to 33 Mrad (1.2 x 10^15 p/cm^2).

  6. The Upgraded Pixel Detector of the ATLAS Experiment for Run-2

    CERN Document Server

    Ferrere, Didier; The ATLAS collaboration

    2016-01-01

    Run-2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with high radiation and expected occupancy, is the first large scale application of 3D detectors and CMOS 130nm technology. In addition the Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during run-1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning and performance of the 4-layer Pixel Detector, in particular the IBL, will be presented, using collision data.

  7. The upgraded Pixel Detector of the ATLAS experiment for Run-2 at the Large Hadron Collider

    CERN Document Server

    Giordani, MarioPaolo; The ATLAS collaboration

    2016-01-01

    Run-2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with high radiation and expected occupancy, is the first large scale application of 3D detectors and CMOS 130nm technology. In addition the Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during run-1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning and performance of the 4-layer Pixel Detector, in particular the IBL, will be presented, using collision data.

  8. Study of planar pixel sensors hardener to radiations for the upgrade of the ATLAS vertex detector

    International Nuclear Information System (INIS)

    In this work, we present a study, using TCAD (Technology Computer-Assisted Design) simulation, of the possible methods of designing planar pixel sensors by reducing their inactive area and improving their radiation hardness for use in the Insertable B-Layer (IBL) project and for SLHC upgrade phase for the ATLAS experiment. Different physical models available have been studied to develop a coherent model of radiation damage in silicon that can be used to predict silicon pixel sensor behavior after exposure to radiation. The Multi-Guard Ring Structure, a protection structure used in pixel sensor design was studied to obtain guidelines for the reduction of inactive edges detrimental to detector operation while keeping a good sensor behavior through its lifetime in the ATLAS detector. A campaign of measurement of the sensor process parameters and electrical behavior to validate and calibrate the TCAD simulation models and results are also presented. A model for diode charge collection in highly irradiated environment was developed to explain the high charge collection observed in highly irradiated devices. A simple planar pixel sensor digitization model to be used in test beam and full detector system is detailed. It allows for easy comparison between experimental data and prediction by the various radiation damage models available. The digitizer has been validated using test beam data for unirradiated sensors and can be used to produce the first full scale simulation of the ATLAS detector with the IBL that include sensor effects such as slim edge and thinning of the sensor. (author)

  9. Pixel detectors

    CERN Document Server

    Passmore, M S

    2001-01-01

    positions on the detector. The loss of secondary electrons follows the profile of the detector and increases with higher energy ions. studies of the spatial resolution predict a value of 5.3 lp/mm. The image noise in photon counting systems is investigated theoretically and experimentally and is shown to be given by Poisson statistics. The rate capability of the LAD1 was measured to be 250 kHz per pixel. Theoretical and experimental studies of the difference in contrast for ideal charge integrating and photon counting imaging systems were carried out. It is shown that the contrast differs and that for the conventional definition (contrast = (background - signal)/background) the photon counting device will, in some cases, always give a better contrast than the integrating system. Simulations in MEDICI are combined with analytical calculations to investigate charge collection efficiencies (CCE) in semiconductor detectors. Different pixel sizes and biasing conditions are considered. The results show charge shari...

  10. The Layer 1 / Layer 2 readout upgrade for the ATLAS Pixel Detector

    CERN Document Server

    Mullier, Geoffrey; The ATLAS collaboration

    2016-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of the Large Hadron Collider (LHC). The increase of instantaneous luminosity foreseen during the LHC Run 2, will lead to an increased detector occupancy that is expected to saturate the readout links of the outermost layers of the pixel detector: Layers 1 and 2. To ensure a smooth data taking under such conditions, the read out system of the recently installed fourth innermost pixel layer, the Insertable B-Layer, was modified to accomodate the needs of the older detector. The Layer 2 upgrade installation took place during the 2015 winter shutdown, with the Layer 1 installation scheduled for 2016. A report of the successful installation, together with the design of novel dedicated optical to electrical converters and the software and firmware updates will be presented.

  11. A Leakage Current-based Measurement of the Radiation Damage in the ATLAS Pixel Detector

    CERN Document Server

    Gorelov, Igor; The ATLAS collaboration

    2015-01-01

    A measurement has been made of the radiation damage incurred by the ATLAS Pixel Detector barrel silicon modules from the beginning of operations through the end of 2012. This translates to hadronic fluence received over the full period of operation at energies up to and including 8 TeV. The measurement is based on a per-module measurement of the silicon sensor leakage current. The results are presented as a function of integrated luminosity and compared to predictions by the Hamburg Model. This information can be used to predict limits on the lifetime of the Pixel Detector due to current, for various operating scenarios.

  12. The Pixel Detector of the ATLAS Experiment for the Run 2 at the Large Hadron Collider

    CERN Document Server

    Mandelli, B; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run 1 of LHC. Taking advantage of the long shutdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). The IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO$_2$ based cooling system have been adopted. The IBL construction and installation in the ATLAS Experiment has been completed very successfu...

  13. The Pixel Detector of the ATLAS experiment for the Run2 at the Large Hadron Collider

    CERN Document Server

    Takubo, Y; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long shutdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair the modules and to ease installation of the Insertable B-Layer (IBL). The IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using light weight staves and CO$_{2}$ based cooling system have been adopted. An overview of the refurbishing of the Pixel Detector and the IBL pr...

  14. The Pixel Detector of the ATLAS Experiment for LHC Run-2

    CERN Document Server

    Pernegger, H; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detector and of the IBL project as ...

  15. The ATLAS Pixel Detector for Run II at the Large Hadron Collider

    CERN Document Server

    Marx, Marilyn; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detector and of the IBL project as ...

  16. The upgraded Pixel Detector of the ATLAS Experiment for Run2 at the Large Hadron Collider

    CERN Document Server

    Backhaus, Malte; The ATLAS collaboration

    2015-01-01

    Run-2 of the LHC will provide new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, two different silicon sensor technologies (planar and 3D) have been developed as well as a new read-out chip within CMOS 130nm technology and with larger area, smaller pixel size and faster readout capability. The new detector is the first large scale application of of 3D detectors and CMOS 130nm technology. An overview of the lessons learned during the IBL project will be presented, focusing on the challenges and highlighting the issues met during the productio...

  17. Commissioning of the upgraded ATLAS Pixel Detector for Run2 at LHC

    CERN Document Server

    ATLAS Pixel Collaboration; The ATLAS collaboration

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detector and of the IBL project as ...

  18. The Pixel Detector of the ATLAS experiment for the Run2 at the Large Hadron Collider

    CERN Document Server

    Takubo, Yosuke

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detect or and of the IBL project as...

  19. The upgraded Pixel Detector of the ATLAS experiment for Run-2 at the Large Hadron Collider

    International Nuclear Information System (INIS)

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of the Large Hadron Collider (LHC) . Taking advantage of Long Shutdown 1 (LS1) during 2014/2015, the Pixel Detector was brought to surface to equip it with new service panels and to repair modules. The Insertable B-Layer (IBL), a fourth layer of pixel sensors, was installed in-between the existing Pixel Detector and a new beam-pipe at a radius of 3.3 cm. To cope with the high radiation and increased pixel occupancy due to the proximity to the interaction point, two different silicon sensor technologies (planar and 3D) were used and a new readout chip has been designed with CMOS 130 nm technology with larger area, smaller pixel size and faster readout capability. Dedicated design features in combination with a new composite material were considered and used in order to reduce the material budget of the support structure while keeping the optimal thermo-mechanical performance. An overview of the lessons learned during the IBL project is presented, focusing on the challenges and highlighting the issues met during the production, integration, installation and commissioning phases of the detector. Early performance tests using cosmic and beam data are also presented

  20. The Pixel Detector of the ATLAS Experiment for LHC Run-2

    CERN Document Server

    Pernegger, Heinz; The ATLAS collaboration

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long shutdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and hit occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detector and of the IBL project as we...

  1. A neural network clustering algorithm for the ATLAS silicon pixel detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Almond, John; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel

    2014-01-01

    A novel technique to identify and split clusters created by multiple charged particles in the ATLAS pixel detector using a set of artificial neural networks is presented. Such merged clusters are a common feature of tracks originating from highly energetic objects, such as jets. Neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. This technique replaces the former clustering approach based on a connected component analysis and charge interpolation. The performance of the neural network splitting technique is quantified using data from proton-proton collisions at the LHC collected by the ATLAS detector in 2011 and from Monte Carlo simulations. This technique reduces the number of clusters shared between tracks in highly energetic jets by up to a factor of three. It also provides more precise position and error estimates of the clusters in both the transverse and longitudinal impact parameter resolution.

  2. Studies on irradiated pixel detectors for the ATLAS IBL and HL-LHC upgrade

    International Nuclear Information System (INIS)

    The constant demand for higher luminosity in high energy physics is the reason for the continuous effort to adapt the accelerators and the experiments. The upgrade program for the experiments and the accelerators at CERN already includes several expansion stages of the Large Hadron Collider (LHC) which will increase the luminosity and the energy of the accelerator. Simultaneously the LHC experiments prepare the individual sub-detectors for the increasing demands in the coming years. Especially the tracking detectors have to cope with fluence levels unprecedented for high energy physics experiments. Correspondingly to the fluence increases the impact of the radiation damage which reduces the life time of the detectors by decreasing the detector performance and efficiency. To cope with this effect new and more radiation hard detector concepts become necessary to extend the life time. This work concentrates on the impact of radiation damage on the pixel sensor technologies to be used in the next upgrade of the ATLAS Pixel Detector as well as for applications in the ATLAS Experiment at HL-LHC conditions. The sensors considered in this work include various designs based on silicon and diamond as sensor material. The investigated designs include a planar silicon pixel design currently used in the ATLAS Experiment as well as a 3D pixel design which uses electrodes penetrating the entire sensor material. The diamond designs implement electrodes similar to the design used by the planar technology with diamond sensors made out of single- and poly-crystalline material. To investigate the sensor properties characterization tests are performed before and after irradiation with protons or neutrons. The measurements are used to determine the interaction between the read-out electronics and the sensors to ensure the signal transfer after irradiation. Further tests focus on the sensor performance itself which includes the analysis of the leakage current behavior and the charge

  3. The Pixel Detector of the ATLAS experiment for the Run2 at the Large Hadron Collider

    CERN Document Server

    Mandelli, B; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long shutdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and will be installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. IBL construction is now completed. An overview of the IBL project as well as the ...

  4. The Pixel Detector of the ATLAS experiment for the Run2 at the Large Hadron Collider

    CERN Document Server

    Oide, H; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and will be installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. IBL construction is now completed. An overview of the IBL project as well as the ...

  5. The upgraded Pixel Detector of the ATLAS Experiment for Run2 at the Large Hadron Collider

    CERN Document Server

    Mullier, Geoffrey Andre; The ATLAS collaboration

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL), a fourth layer of pixel detectors, installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and increased pixel occupancy due to the proximity to the interaction point, two different silicon sensor technologies (planar and 3D) have been developed. A new readout chip has been developed within CMOS 130nm technology with larger area, smaller pixel size and faster readout capability. Dedicated design features in combination with a new composite material were considered and used in order to reduce the material budget of the support structure while keeping the optimal thermo-mechanical performan...

  6. The Pixel Detector of the ATLAS experiment for the Run 2 at the Large Hadron Collider

    CERN Document Server

    Oide, H; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run 1 of LHC. Taking advantage of the long shutdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). The IBL is the fourth layer of the Run 2 Pixel Detector, and it was installed in May 2014 between the existing Pixel Detector and the new smaller-radius beam pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. IBL construction is now completed. An overview of the IBL project...

  7. Prototypes for components of a control system for the ATLAS pixel detector at the HL-LHC

    CERN Document Server

    Boek, J; Kind, P; Mättig, P; Püllen, L; Zeitnitz, C

    2013-01-01

    inner detector of the ATLAS experiment will be replaced entirely including the pixel detector. This new pixel detector requires a specific control system which complies with the strict requirements in terms of radiation hardness, material budget and space for the electronics in the ATLAS experiment. The University ofWuppertal is developing a concept for a DCS (Detector Control System) network consisting of two kinds of ASICs. The first ASIC is the DCS Chip which is located on the pixel detector, very close to the interaction point. The second ASIC is the DCS Controller which is controlling 4x4 DCS Chips from the outer regions of ATLAS via differential data lines. Both ASICs are manufactured in 130 nm deep sub micron technology. We present results from measurements from new prototypes of components for the DCS network.

  8. High bandwidth pixel detector modules for the ATLAS Insertable B-Layer

    Energy Technology Data Exchange (ETDEWEB)

    Backhaus, Malte

    2014-01-15

    The investigation of the nature of the recently discovered electro-weak symmetry breaking mechanism of the standard model of particle physics as well as the search for physics beyond the standard model with the LHC require to collect even more data. To achieve this goal, the luminosity of the LHC will be increased in two steps. The increased luminosity results in serious challenges for the inner tracking systems of the experiments at the LHC. The ATLAS pixel detector will also be upgraded in a two stage program. During the shutdown in 2013 and 2014 a fourth hybrid pixel detector layer, the socalled Insertable B-Layer (IBL) is inserted inside the existing pixel detector. This thesis focuses on the characterization, performance measurement, and production quality assurance of the central sensitive elements of the IBL, the modules. This includes a full characterization of the readout chip (FE-I4) and of the assembled modules. A completely new inner tracking system is mandatory in ATLAS after the second luminosity increase in the shutdown of 2022 and 2023. The final chapter of this thesis introduces a new module concept that uses an industrial high voltage CMOS technology as sensor layer, which is capacitively coupled to the FE-I4 readout chip.

  9. High bandwidth pixel detector modules for the ATLAS Insertable B-Layer

    CERN Document Server

    Backhaus, Malte

    2014-02-19

    The investigation of the nature of the recently discovered electro-weak symmetry breaking mechanism of the standard model of particle physics as well as the search for physics beyond the standard model with the LHC require to collect even more data. To achieve this goal, the luminosity of the LHC will be increased in two steps. The increased luminosity results in serious challenges for the inner tracking systems of the experiments at the LHC. The ATLAS pixel detector will also be upgraded in a two stage program. During the shutdown in 2013 and 2014 a fourth hybrid pixel detector layer, the so-called Insertable B-Layer (IBL) is inserted inside the existing pixel detector. This thesis focuses on the characterization, performance measurement, and production quality assurance of the central sensitive elements of the IBL, the modules. This includes a full characterization of the readout chip (FE-I4) and of the assembled modules. A completely new inner tracking system is mandatory in ATLAS after the second luminosi...

  10. High bandwidth pixel detector modules for the ATLAS Insertable B-Layer

    International Nuclear Information System (INIS)

    The investigation of the nature of the recently discovered electro-weak symmetry breaking mechanism of the standard model of particle physics as well as the search for physics beyond the standard model with the LHC require to collect even more data. To achieve this goal, the luminosity of the LHC will be increased in two steps. The increased luminosity results in serious challenges for the inner tracking systems of the experiments at the LHC. The ATLAS pixel detector will also be upgraded in a two stage program. During the shutdown in 2013 and 2014 a fourth hybrid pixel detector layer, the socalled Insertable B-Layer (IBL) is inserted inside the existing pixel detector. This thesis focuses on the characterization, performance measurement, and production quality assurance of the central sensitive elements of the IBL, the modules. This includes a full characterization of the readout chip (FE-I4) and of the assembled modules. A completely new inner tracking system is mandatory in ATLAS after the second luminosity increase in the shutdown of 2022 and 2023. The final chapter of this thesis introduces a new module concept that uses an industrial high voltage CMOS technology as sensor layer, which is capacitively coupled to the FE-I4 readout chip.

  11. The Pixel Detector of the ATLAS Experiment for the Run-2 at the Large Hadron Collider

    CERN Document Server

    Guescini, F; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radial distance of 3.3 cm from the beam axis. The realization of the IBL required the development of several new technologies and solutions in order to overcome the challenges introduced by the extreme environment and working conditions, such as the high radiation levels, the high pixel occupancy and the need of an exceptionally low material budget. Two silicon sensor technologies have been adopted for the IBL modules: planar n-in-n and 3D. Both of these are connected via bump bonding to the new generation 130 nm IBM CMOS FE-I4 ...

  12. Status of the ATLAS Pixel Detector at the LHC and its performance after three years of operation

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experi- ment at the Large Hadron Collider at CERN, providing high-resolution mea- surements of charged particle tracks in the high radiation environment close to the collision region. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. After three years of operation the detector performance is excellent: 96% of the pixels are opera- tional, at 3500 e threshold noise occupancy and efficiency exceed the design specification. The effect of radiation on the silicon sensor is measured and compared with model of radiation damage.

  13. 3D silicon pixel detectors for the ATLAS Forward Physics experiment

    CERN Document Server

    Lange, Jörn; Grinstein, Sebastian; Paz, Ivan Lopez

    2015-01-01

    The ATLAS Forward Physics (AFP) project plans to install 3D silicon pixel detectors about 210 m away from the interaction point and very close to the beamline (2-3 mm). This implies the need of slim edges of about 100-200 $\\mu$m width for the sensor side facing the beam to minimise the dead area. Another challenge is an expected non-uniform irradiation of the pixel sensors. It is studied if these requirements can be met using slightly-modified FE-I4 3D pixel sensors from the ATLAS Insertable B-Layer production. AFP-compatible slim edges are obtained with a simple diamond-saw cut. Electrical characterisations and beam tests are carried out and no detrimental impact on the leakage current and hit efficiency is observed. For devices without a 3D guard ring a remaining insensitive edge of less than 15 $\\mu$m width is found. Moreover, 3D detectors are non-uniformly irradiated up to fluences of several 10$^{15}$ n$_{eq}$/cm$^2$ with either a focussed 23 GeV proton beam or a 23 MeV proton beam through holes in Al ma...

  14. Firmware development and testing of the ATLAS Pixel Detector / IBL ROD card

    Science.gov (United States)

    Gabrielli, A.; Backhaus, M.; Balbi, G.; Bindi, M.; Chen, S. P.; Falchieri, D.; Flick, T.; Hauck, S.; Hsu, S. C.; Kretz, M.; Kugel, A.; Lama, L.; Travaglini, R.; Wensing, M.

    2015-03-01

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shut down. In particular, the Pixel detector has inserted an additional inner layer called the Insertable B-Layer (IBL). The Readout-Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL's off-detector DAQ system. The strategy for IBL ROD firmware development was three-fold: keeping as much of the Pixel ROD datapath firmware logic as possible, employing a complete new scheme of steering and calibration firmware, and designing the overall system to prepare for a future unified code version integrating IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBL DAQ test bench using a realistic front-end chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBL ROD data path implementation, test on the test bench and ROD prototypes, will be reported. Recent Pixel collaboration efforts focus on finalizing hardware and firmware tests for the IBL. The plan is to approach a complete IBL DAQ hardware-software installation by the end of 2014.

  15. System test and noise performance studies at the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Weingarten, J.

    2007-09-15

    The central component of the ATLAS Inner Tracker is the pixel detector. It consists of three barrel layers and three disk-layers in the end-caps in both forward directions. The innermost barrel layer is mounted at a distance of about 5 cm from the interaction region. With its very high granularity, truly two-dimensional hit information, and fast readout it is well suited to cope with the high densities of charged tracks, expected this close to the interaction region. The huge number of readout channels necessitates a very complex services infrastructure for powering, readout and safety. After a description of the pixel detector and its services infrastructure, key results from the system test at CERN are presented. Furthermore the noise performance of the pixel detector, crucial for high tracking and vertexing efficiencies, is studied. Measurements of the single-channel random noise are presented together with studies of common mode noise and measurements of the noise occupancy using a random trigger generator. (orig.)

  16. System test and noise performance studies at the ATLAS pixel detector

    International Nuclear Information System (INIS)

    The central component of the ATLAS Inner Tracker is the pixel detector. It consists of three barrel layers and three disk-layers in the end-caps in both forward directions. The innermost barrel layer is mounted at a distance of about 5 cm from the interaction region. With its very high granularity, truly two-dimensional hit information, and fast readout it is well suited to cope with the high densities of charged tracks, expected this close to the interaction region. The huge number of readout channels necessitates a very complex services infrastructure for powering, readout and safety. After a description of the pixel detector and its services infrastructure, key results from the system test at CERN are presented. Furthermore the noise performance of the pixel detector, crucial for high tracking and vertexing efficiencies, is studied. Measurements of the single-channel random noise are presented together with studies of common mode noise and measurements of the noise occupancy using a random trigger generator. (orig.)

  17. ATLAS Pixel Detector ROD card from IBL towards Layers 2 and 1

    Science.gov (United States)

    Balbi, G.; Falchieri, D.; Gabrielli, A.; Lama, L.; Giangiacomi, N.; Travaglini, R.

    2016-01-01

    The incoming and future upgrades of LHC will require better performance by the data acquisition system, especially in terms of throughput due to the higher luminosity that is expected. For this reason, during the first shutdown of the LHC collider in 2013/14, the ATLAS Pixel Detector has been equipped with a fourth layer— the Insertable B-Layer or IBL—located at a radius smaller than the present three layers. To read out the new layer of pixels, with a smaller pixel size with respect to the other outer layers, a front end ASIC (FE-I4) was designed as well as a new off-detector read-out chain. The latter, accordingly to the structure of the other layers of pixels, is composed mainly of two 9U-VME read-out off-detector cards called the Back-Of-Crate (BOC) and Read-Out Driver (ROD). The ROD is used for data and event formatting and for configuration and control of the overall read-out electronics. After some prototyping samples were completed, a pre-production batch of 5 ROD cards was delivered with the final layout. Another production of 15 ROD cards was done in Fall 2013, and commissioning was completed in 2014. Altogether 14 cards are necessary for the 14 staves of the IBL detector, one additional card is required by the Diamond Beam Monitor (DBM), and additional spare ROD cards were produced for a total initial batch of 20 boards. This paper describes some integration tests that were performed and our plan to install the new DAQ chain for the layer 2, which is the outermost, and layer 1, which is external to the B-layer. This latter is the only layer that will not be upgraded to a higher readout speed. Rather, it will be switched off in the near future as it has too many damaged sensors that were not possible to rework. To do that, slices of the IBL read-out chain have been instrumented, and ROD performance is verified on a test bench mimicking a small-sized final setup. Thus, this contribution reports also how the adoption of the IBL ROD for ATLAS Pixel

  18. Radiation-hard ASICs for optical data transmission in the ATLAS pixel detector

    CERN Document Server

    Kass, R; Gan, K K; Johnson, M; Kagan, H; Rush, C J; Rahimi, A; Smith, S; Ter-Antonian, R; Zoeller, M M; Ciliox, A; Holder, M; Nderitu, S; Ziolkowski, M

    2003-01-01

    We have developed two radiation-hard ASICs for optical data transmission in the ATLAS pixel detector at the LHC at CERN: a driver chip for a Vertical Cavity Surface Emitting Laser (VCSEL) diode for 80 Mbit/s data transmission from the detector, and a Bi-Phase Mark decoder chip to recover the control data and 40 MHz clock received optically by a PIN diode. We have successfully implemented both ASICs in 0.25 um CMOS technology using enclosed layout transistors and guard rings for increased radiation hardness. We present results from prototype circuits and from irradiation studies with 24 GeV protons up to 57 Mrad (1.9 x 10e15 p/cm2).

  19. Radiation-hard ASICs for optical data transmission in the ATLAS pixel detector

    CERN Document Server

    Gan, K K; Johnson, M; Kagan, H; Kass, R; Rush, C; Smith, S; Ter-Antonian, R; Zoeller, M M; Ciliox, A; Holder, M; Ziolkowski, M

    2005-01-01

    We have developed two radiation-hard ASICs for optical data transmission in the ATLAS pixel detector at the LHC at CERN: a driver chip for a Vertical Cavity Surface Emitting Laser (VCSEL) diode for 80 Mbit/s data transmission from the detector, and a Bi-Phase Mark decoder chip to recover the control data and 40 MHz clock received optically by a PIN diode. We have successfully implemented both ASICs in 0.25 mm CMOS technology using enclosed layout transistors and guard rings for increased radiation hardness. We present results from circuits of final design and from irradiation studies with 24 GeV protons up to 62 Mrad (2.3 x 10^15 p/cm^2).

  20. Radiation-Hard ASICs for Optical Data Transmission in the ATLAS Pixel Detector

    CERN Document Server

    Gan, K K; Johnson, M; Kagan, H; Kass, R; Rush, C; Smith, S; Ter-Antonian, R; Zöller, M; Ciliox, A; Holderb, M; Ziolkowski, M

    2006-01-01

    We have developed two radiation-hard ASICs for optical data transmission in the ATLAS pixel detector at the LHC at CERN: a driver chip for a Vertical Cavity Surface Emitting Laser (VCSEL) diode for 80 Mbit/s data transmission from the detector, and a Bi-Phase Mark decoder chip to recover the control data and 40 MHz clock received optically by a PIN diode. We have successfully implemented both ASICs in 0.25 mm CMOS technology using enclosed layout transistors and guard rings for increased radiation hardness. We present results from circuits of final design and from irradiation studies with 24 GeV protons up to 80 Mrad (2.6 x 10^15 p/cm^2).

  1. Firmware development and testing of the ATLAS Pixel Detector / IBL ROD card

    CERN Document Server

    Gabrielli, Alessandro; The ATLAS collaboration; Balbi, Gabriele; Bindi, Marcello; Chen, Shaw-pin; Falchieri, Davide; Flick, Tobias; Hauck, Scott Alan; Hsu, Shih-Chieh; Kretz, Moritz; Kugel, Andreas; Lama, Luca; Travaglini, Riccardo; Wensing, Marius; ATLAS Pixel Collaboration

    2015-01-01

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shut down. In particular, the Pixel detector has inserted an additional inner layer called Insertable B-Layer (IBL). The Readout-Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL’s off-detector DAQ system. The strategy for IBL ROD firmware development was three-fold: keeping as much of the Pixel ROD datapath firmware logic as possible, employing a complete new scheme of steering and calibration firmware and designing the overall system to prepare for a future unified code version integrating IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBL DAQ testbench using realistic frontend chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBL ROD data pat...

  2. Firmware development and testing of the ATLAS Pixel Detector / IBL ROD card

    CERN Document Server

    Balbi, G; The ATLAS collaboration; Gabrielli, A; Lama, L; Travaglini, R; Backhaus, M; Bindi, M; Chen, S-P; Flick, T; Kretz, M; Kugel, A; Wensing, M

    2014-01-01

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shut down. In particular, the Pixel detector has inserted an additional inner layer called Insertable B-Layer (IBL). The Readout-Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL’s off-detector DAQ system. The strategy for IBLROD firmware development was three-fold: keeping as much of the PixelROD datapath firmware logic as possible, employing a complete new scheme of steering and calibration firmware and designing the overall system to prepare for a future unified code version integrating IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBLDAQ testbench using realistic frontend chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBLROD data path im...

  3. Radiation-hard ASICs for optical data transmission in the ATLAS pixel detector

    CERN Document Server

    Ziolkowski, M; Buchholz, P; Ciliox, A; Gan, K K; Holder, M; Johnson, M; Kagan, H; Kass, R; Nderitu, S; Rahimi, A; Rush, C J; Smith, S; Ter-Antonian, R; Zoeller, M M

    2004-01-01

    We have developed two radiation-hard ASICs for optical data transmission in the ATLAS pixel detector at the CERN Large Hadron Collider (LHC). The first circuit is a driver chip for a Vertical Cavity Surface Emitting Laser (VCSEL) diode to be used for 80 Mbit/s data transmission from the detector. The second circuit is a Bi-Phase Mark, decoder chip to recover the control data and 40 MHz clock received optically by a PIN diode on the detector side. During ten years of operation at the LHC, the ATLAS optical link circuitry will be exposed to a maximum total fluence of 10/sup 15/ 1-MeV-equivalent neutrons per cm/sup 2/. We have successfully implemented both ASICs in a commercial 0.25 mu m CMOS technology using standard layout techniques to enhance the radiation tolerance. Both chips are four- channel devices compatible with common cathode PIN and VCSEL arrays. We present results from final prototype circuits and from irradiation studies of both circuits with 24 GeV protons up to a total dose of 57 Mrad. (3 refs).

  4. 3D silicon pixel detectors for the ATLAS Forward Physics experiment

    International Nuclear Information System (INIS)

    The ATLAS Forward Physics (AFP) project plans to install 3D silicon pixel detectors about 210 m away from the interaction point and very close to the beamline (2–3 mm). This implies the need of slim edges of about 100–200 μm width for the sensor side facing the beam to minimise the dead area. Another challenge is an expected non-uniform irradiation of the pixel sensors. It is studied if these requirements can be met using slightly-modified FE-I4 3D pixel sensors from the ATLAS Insertable B-Layer production. AFP-compatible slim edges are obtained with a simple diamond-saw cut. Electrical characterisations and beam tests are carried out and no detrimental impact on the leakage current and hit efficiency is observed. For devices without a 3D guard ring a remaining insensitive edge of less than 15 μm width is found. Moreover, 3D detectors are non-uniformly irradiated up to fluences of several 1015 neq/cm2 with either a focussed 23 GeV proton beam or a 23 MeV proton beam through holes in Al masks. The efficiency in the irradiated region is found to be similar to the one in the non-irradiated region and exceeds 97% in case of favourable chip-parameter settings. Only in a narrow transition area at the edge of the hole in the Al mask, a significantly lower efficiency is seen. A follow-up study of this effect using arrays of small pad diodes for position-resolved dosimetry via the leakage current is carried out

  5. Qualification measurements of the voltage supply system as well as conceptionation of a state machine for the detector control of the ATLAS pixel detector

    International Nuclear Information System (INIS)

    The supply system and the control system of the ATLAS pixel detector represent important building blocks of the pixel detector. Corresponding studies of the supply system, which were performed within a comprehensive test system, the so-called system test, with nearly all final components and the effects on the pixel detector are object of this thesis. A further point of this thesis is the coordination and further development of the detector-control-system software under regardment of the different partial systems. A main topic represents thereby the conceptionation of the required state machine as interface for the users and the connection to the data acquisition system

  6. Beam Test Studies of 3D Pixel Sensors Irradiated Non-Uniformly for the ATLAS Forward Physics Detector

    CERN Document Server

    Grinstein, S; Boscardin, M; Christophersen, M; Da Via, C; Betta, G -F Dalla; Darbo, G; Fadeyev, V; Fleta, C; Gemme, C; Grenier, P; Jimenez, A; Lopez, I; Micelli, A; Nelist, C; Parker, S; Pellegrini, G; Phlips, B; Pohl, D L; Sadrozinski, H F -W; Sicho, P; Tsiskaridze, S

    2013-01-01

    Pixel detectors with cylindrical electrodes that penetrate the silicon substrate (so called 3D detectors) offer advantages over standard planar sensors in terms of radiation hardness, since the electrode distance is decoupled from the bulk thickness. In recent years significant progress has been made in the development of 3D sensors, which culminated in the sensor production for the ATLAS Insertable B-Layer (IBL) upgrade carried out at CNM (Barcelona, Spain) and FBK (Trento, Italy). Based on this success, the ATLAS Forward Physics (AFP) experiment has selected the 3D pixel sensor technology for the tracking detector. The AFP project presents a new challenge due to the need for a reduced dead area with respect to IBL, and the in-homogeneous nature of the radiation dose distribution in the sensor. Electrical characterization of the first AFP prototypes and beam test studies of 3D pixel devices irradiated non-uniformly are presented in this paper.

  7. Beam test studies of 3D pixel sensors irradiated non-uniformly for the ATLAS forward physics detector

    Energy Technology Data Exchange (ETDEWEB)

    Grinstein, S., E-mail: sgrinstein@ifae.es [ICREA and Institut de Física d' Altes Energies (IFAE), Barcelona (Spain); Baselga, M. [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona (Spain); Boscardin, M. [Fondazione Bruno Kessler, FBK-CMM, Trento (Italy); Christophersen, M. [U.S. Naval Research Laboratory, Washington (United States); Da Via, C. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Dalla Betta, G.-F. [Universita degli Studi di Trento and INFN, Trento (Italy); Darbo, G. [INFN Sezione di Genova, Genova (Italy); Fadeyev, V. [Santa Cruz Institute for Particle Physics, University of California, Santa Cruz (United States); Fleta, C. [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona (Spain); Gemme, C. [Universita degli Studi di Trento and INFN, Trento (Italy); Grenier, P. [SLAC National Accelerator Laboratory, Menlo Park (United States); Jimenez, A.; Lopez, I.; Micelli, A. [ICREA and Institut de Física d' Altes Energies (IFAE), Barcelona (Spain); Nelist, C. [INFN Sezione di Genova, Genova (Italy); Parker, S. [University of Hawaii, c/o Lawrence Berkeley Laboratory, Berkeley (United States); Pellegrini, G. [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona (Spain); Phlips, B. [U.S. Naval Research Laboratory, Washington (United States); Pohl, D.-L. [University of Bonn, Bonn (Germany); Sadrozinski, H.F.-W. [Santa Cruz Institute for Particle Physics, University of California, Santa Cruz (United States); and others

    2013-12-01

    Pixel detectors with cylindrical electrodes that penetrate the silicon substrate (so called 3D detectors) offer advantages over standard planar sensors in terms of radiation hardness, since the electrode distance is decoupled from the bulk thickness. In recent years significant progress has been made in the development of 3D sensors, which culminated in the sensor production for the ATLAS Insertable B-Layer (IBL) upgrade carried out at CNM (Barcelona, Spain) and FBK (Trento, Italy). Based on this success, the ATLAS Forward Physics (AFP) experiment has selected the 3D pixel sensor technology for the tracking detector. The AFP project presents a new challenge due to the need for a reduced dead area with respect to IBL, and the in-homogeneous nature of the radiation dose distribution in the sensor. Electrical characterization of the first AFP prototypes and beam test studies of 3D pixel devices irradiated non-uniformly are presented in this paper.

  8. Total Ionising Dose effects in the FE-I4 front-end chip of the ATLAS Pixel IBL detector

    CERN Document Server

    Dette, Karola; The ATLAS collaboration

    2016-01-01

    The ATLAS Pixel Insertable B-Layer (IBL) detector was installed into the ATLAS experiment in 2014 and has been in operation since 2015. During the first year of data taking, an increase of the LV current, produced by the FE-I4 chip, was observed. This increase was traced back to radiation damage in the chip. The dependence of the current from the Total Ionizing Dose (TID) and temperature has been tested with X-ray irradiations. This report presents the measurement results and gives a parameterisation of the leakage current and detector operation guidelines.

  9. Development of a detector control system for the serially powered ATLAS pixel detector at the HL-LHC

    International Nuclear Information System (INIS)

    In the years around 2020 the LHC will be upgraded to the HL-LHC. In terms of this upgrade, the ATLAS detector will also be upgraded. This also includes the pixel detector, the innermost of the sub-detectors in ATLAS. Thereby the powering concept of the pixel detector will be changed to reduce the material budget of the detector. From individual powering of each detector module, the concept changes to serial powering, where all modules of a powering group are connected in series. This change makes the development of a new detector control system (DCS) mandatory. Therefore, a new concept for the ATLAS pixel DCS is being developed at the University of Wuppertal. This concept is split into three paths: a safety path, a control path, and a diagnostics path. The safety path is a hard wired interlock system. The concept of this system will not differ significantly, compared to the interlock system of the current detector. The diagnostics path is embedded into the optical data read-out of the detector and will be used for detector tuning with high precision and granularity. The control path supervises the detector and provides a user interface to the hardware components. A concept for this path, including a prototype and proof-of-principle studies, has been developed in terms of this thesis. The control path consists of the DCS network, a read-out and controlling topology created by two types of ASICs: the DCS controller and the DCS chip. These ASICs measure and control all values, necessary for a safe detector operation in situ. This reduces the number of required cables and hence the material budget of the system. For the communication between these ASICs, two very fault tolerant bus protocols have been chosen: CAN bus carries data from the DCS computers, outside of the detector, to the DCS controllers at the edge of the pixel detector. For the communication between the DCS controller and the DCS chip, which is located close to each detector module, an enhanced I2C

  10. Development of a detector control system for the serially powered ATLAS pixel detector at the HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Puellen, Lukas

    2015-02-10

    In the years around 2020 the LHC will be upgraded to the HL-LHC. In terms of this upgrade, the ATLAS detector will also be upgraded. This also includes the pixel detector, the innermost of the sub-detectors in ATLAS. Thereby the powering concept of the pixel detector will be changed to reduce the material budget of the detector. From individual powering of each detector module, the concept changes to serial powering, where all modules of a powering group are connected in series. This change makes the development of a new detector control system (DCS) mandatory. Therefore, a new concept for the ATLAS pixel DCS is being developed at the University of Wuppertal. This concept is split into three paths: a safety path, a control path, and a diagnostics path. The safety path is a hard wired interlock system. The concept of this system will not differ significantly, compared to the interlock system of the current detector. The diagnostics path is embedded into the optical data read-out of the detector and will be used for detector tuning with high precision and granularity. The control path supervises the detector and provides a user interface to the hardware components. A concept for this path, including a prototype and proof-of-principle studies, has been developed in terms of this thesis. The control path consists of the DCS network, a read-out and controlling topology created by two types of ASICs: the DCS controller and the DCS chip. These ASICs measure and control all values, necessary for a safe detector operation in situ. This reduces the number of required cables and hence the material budget of the system. For the communication between these ASICs, two very fault tolerant bus protocols have been chosen: CAN bus carries data from the DCS computers, outside of the detector, to the DCS controllers at the edge of the pixel detector. For the communication between the DCS controller and the DCS chip, which is located close to each detector module, an enhanced I2C

  11. Prototypes for components of a control system for the ATLAS pixel detector at the HL-LHC

    International Nuclear Information System (INIS)

    In the years around 2020 an upgrade of the LHC to the HL-LHC is scheduled, which will increase the accelerator's instantaneous luminosity by a factor of 5 and the integrated luminosity by a factor of 10. In the context of this upgrade, the inner detector (including the pixel detector) of the ATLAS experiment will be replaced. This new pixel detector requires a specific control system which complies with strict requirements in terms of radiation hardness, material budget and space for the electronics in the ATLAS experiment. The University of Wuppertal is developing a concept for a DCS (Detector Control System) network consisting of two kinds of ASICs. The first ASIC is the DCS chip which is located on the pixel detector, very close to the interaction point. The second ASIC is the DCS Controller which is controlling 4×4 DCS chips from the outer regions of ATLAS via differential data lines. Both ASICs are manufactured in 130 nm deep sub-micron technology. We present results from reliability measurements under irradiation from new prototypes of components for the DCS network.

  12. High-voltage pixel detectors in commercial CMOS technologies for ATLAS, CLIC and Mu3e experiments

    CERN Document Server

    Peric,I et al.

    2013-01-01

    High-voltage particle detectors in commercial CMOS technologies are a detector family that allows implementation of low-cost, thin and radiation-tolerant detectors with a high time resolution. In the R/D phase of the development, a radiation tolerance of 1015 neq=cm2 , nearly 100% detection efficiency and a spatial resolution of about 3 μm were demonstrated. Since 2011 the HV detectors have first applications: the technology is presently the main option for the pixel detector of the planned Mu3e experiment at PSI (Switzerland). Several prototype sensors have been designed in a standard 180 nm HV CMOS process and successfully tested. Thanks to its high radiation tolerance, the HV detectors are also seen at CERN as a promising alternative to the standard options for ATLAS upgrade and CLIC. In order to test the concept, within ATLAS upgrade R/D, we are currently exploring an active pixel detector demonstrator HV2FEI4; also implemented in the 180 nm HV process.

  13. High-voltage pixel detectors in commercial CMOS technologies for ATLAS, CLIC and Mu3e experiments

    CERN Document Server

    Peric, Ivan; Backhaus, Malte; Barbero, Marlon; Benoit, Mathieu; Berger, Niklaus; Bompard, Frederic; Breugnon, Patrick; Clemens, Jean-Claude; Dannheim, Dominik; Dierlamm, Alexander; Feigl, Simon; Fischer, Peter; Fougeron, Denis; Garcia-Sciveres, Maurice; Heim, Timon; Hügging, Fabian; Kiehn, Moritz; Kreidl, Christian; Krüger, Hans; La Rosa, Alessandro; Liu, Jian; Lütticke, Florian; Mariñas, Carlos; Meng, Lingxin; Miucci, Antonio; Münstermann, Daniel; Nguyen, Hong Hanh; Obermann, Theresa; Pangaud, Patrick; Perrevoort, Ann-Kathrin; Rozanov, Alexandre; Schöning, André; Schwenker, Benjamin; Wiedner, Dirk

    2013-01-01

    High-voltage particle detectors in commercial CMOS technologies are a detector family that allows implementation of low-cost, thin and radiation-tolerant detectors with a high time resolution. In the R/D phase of the development, a radiation tolerance of 10 15 n eq = cm 2 , nearly 100% detection ef fi ciency and a spatial resolution of about 3 μ m were demonstrated. Since 2011 the HV detectors have fi rst applications: the technology is presently the main option for the pixel detector of the planned Mu3e experiment at PSI (Switzerland). Several prototype sensors have been designed in a standard 180 nm HV CMOS process and successfully tested. Thanks to its high radiation tolerance, the HV detectors are also seen at CERN as a promising alternative to the standard options for ATLAS upgrade and CLIC. In order to test the concept, within ATLAS upgrade R/D, we are currently exploring an active pixel detector demonstrator HV2FEI4; also implemented in the 180 nm HV process

  14. Experience with 3D integration technologies in the framework of the ATLAS pixel detector upgrade for the HL-LHC

    CERN Document Server

    Aruntinov, D; Gonella, L; Hemperek, T; Hügging, F; Krüger, H; Wermes, N; Breugnon, P; Chantepie, B; Clemens, J.C; Fei, R; Fougeron, D; Godiot, S; Pangaud, P; Rozanov, A; Garcia-Sciveres, M; Mekkaoui, A

    2013-01-01

    3D technologies are investigated for the upgrade of the ATLAS pixel detector at the HL-LHC. R&D focuses on both, IC design in 3D, as well as on post-processing 3D technologies such as Through Silicon Via (TSV). The first one uses a so-called via first technology, featuring the insertion of small aspect ratio TSV at the pixel level. As discussed in the paper, this technology can still present technical challenges for the industrial partners. The second one consists of etching the TSV via last. This technology is investigated to enable 4-side abuttable module concepts, using today's pixel detector technology. Both approaches are presented in this paper and results from first available prototypes are discussed.

  15. The upgraded Pixel Detector of the ATLAS Experiment for Run-II at the Large Hadron Collider

    CERN Document Server

    Mullier, Geoffrey; The ATLAS collaboration

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of the LHC. Taking advantage of the detector development period 2013 – 2014, the detector was extracted from the experiment and brought to surface to equip it with new service panels and to repair modules furthermore this helped with the installation of the Insertable B-Layer (IBL), fourth layer of pixel, installed in between the existing Pixel Detector and a new beam-pipe at a radius of 3.3 cm. To cope with the high radiation and increased pixel occupancy due to the proximity to the interaction point, two different silicon sensor technologies (planar and 3D) have been used. A new readout chip has been designed with CMOS 130nm technology with larger area, smaller pixel size and faster readout capability. Dedicated design features in combination with a new composite material were considered and used in order to reduce the material budget of the support structure while keeping the optimal thermo-mechanical perfor...

  16. Design and implementation of an expert system for the detector control systems of the ATLAS pixel detector

    International Nuclear Information System (INIS)

    In the framework of this thesis an expert system ''Pixel-Advisor'' for the control system of the pixel detector was designed and implemented. This supports the operational personnel in the diagnosis and removal of possible problems, which are in connection with the detector control system and unburdens the few available DCS experts

  17. Radiationhard components for the control system of a future ATLAS pixel detector

    CERN Document Server

    Becker, K; Kersten, S; Kind, P; Mättig, P; Püllen, L; Zeitnitz, C

    2015-01-01

    will include a new pixel detector. A completely new detector control system (DCS) for this pixel detector will be required in order to cope with the substantial increase in radiation at the HL-LHC. The DCS has to have a very high reliability and all components installed within the detector volume have to be radiationhard. This will ensure a safe operation of the pixel detector and the experiment. A further design constraint is the minimization of the used material and cables in order to limit the impact on the tracking performance to a minimum. To meet these requirements we propose a DCS network which consists of a DCS chip and a DCS controller. In the following we present the development of the first prototypes for the DCS chip and the DCS controller with a special focus on the communication interface, radiation hardness and robustness against single event upsets.

  18. Module concepts with ultra thin FE chips and Through Silicon Vias for the upgrades of the ATLAS pixel detector

    International Nuclear Information System (INIS)

    The development of trackers for High Energy Physics experiments at high luminosity poses strict requirements on the material budget to allow good vertexing and b-tagging performance. State-of-the-art silicon technologies offer a variety of processes that can be used to achieve light modules design. Together with IZM Berlin we investigated the thinning of FE (Front-End) chips down to 90 μm, and developed a dedicated flip chip process to assure a reliable mechanical and electrical connection between thin FE chips and sensor. The selected flip chip method is currently used for the production of modules for the IBL (Insertable B-Layer) project, the first ATLAS pixel detector upgrade. Results from the characterization of IBL modules with 100 and 150 μm thin FE chip are shown. For future upgrades of the ATLAS pixel detector we propose more advanced module concepts with Through Silicon Vias (TSVs). IZM offers two via last TSV processes, Straight Side Wall TSVs and Tapered Side Wall TSVs. Both processes were successfully demonstrated with ATLAS pixel readout electronics (FE-I2/3). Results from prototype modules with planar sensor and 90 μm thin FE-I2 with Tapered TSV and back side redistribution layer are shown.

  19. The upgraded Pixel detector and the commissioning of the Inner Detector tracking of the ATLAS experiment for Run-2 at the Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00019188; The ATLAS collaboration

    2016-01-01

    Run-2 of the Large Hadron Collider (LHC) will provide new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). The IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with the high radiation and expected occupancy, is the first large scale application of 3D detectors and CMOS 130~nm technology. In addition, the Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during Run-1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. Complementing detector improvements, many improvements to Inner Detector track and vertex reconstr...

  20. Qualification measurements of the voltage supply system as well as conceptionation of a state machine for the detector control of the ATLAS pixel detector; Qualifizierungsmessungen des Spannungsversorgungssystems sowie Konzeptionierung einer Zustandsmaschine fuer die Detektorkontrolle des ATLAS-Pixeldetektors

    Energy Technology Data Exchange (ETDEWEB)

    Schultes, Joachim

    2007-02-15

    The supply system and the control system of the ATLAS pixel detector represent important building blocks of the pixel detector. Corresponding studies of the supply system, which were performed within a comprehensive test system, the so-called system test, with nearly all final components and the effects on the pixel detector are object of this thesis. A further point of this thesis is the coordination and further development of the detector-control-system software under regardment of the different partial systems. A main topic represents thereby the conceptionation of the required state machine as interface for the users and the connection to the data acquisition system.

  1. The ATLAS Silicon Pixel Sensors

    CERN Document Server

    Alam, M S; Einsweiler, K F; Emes, J; Gilchriese, M G D; Joshi, A; Kleinfelder, S A; Marchesini, R; McCormack, F; Milgrome, O; Palaio, N; Pengg, F; Richardson, J; Zizka, G; Ackers, M; Andreazza, A; Comes, G; Fischer, P; Keil, M; Klasen, V; Kühl, T; Meuser, S; Ockenfels, W; Raith, B; Treis, J; Wermes, N; Gössling, C; Hügging, F G; Wüstenfeld, J; Wunstorf, R; Barberis, D; Beccherle, R; Darbo, G; Gagliardi, G; Gemme, C; Morettini, P; Musico, P; Osculati, B; Parodi, F; Rossi, L; Blanquart, L; Breugnon, P; Calvet, D; Clemens, J-C; Delpierre, P A; Hallewell, G D; Laugier, D; Mouthuy, T; Rozanov, A; Valin, I; Aleppo, M; Caccia, M; Ragusa, F; Troncon, C; Lutz, Gerhard; Richter, R H; Rohe, T; Brandl, A; Gorfine, G; Hoeferkamp, M; Seidel, SC; Boyd, GR; Skubic, P L; Sícho, P; Tomasek, L; Vrba, V; Holder, M; Ziolkowski, M; D'Auria, S; del Papa, C; Charles, E; Fasching, D; Becks, K H; Lenzen, G; Linder, C

    2001-01-01

    Prototype sensors for the ATLAS silicon pixel detector have been developed. The design of the sensors is guided by the need to operate them in the severe LHC radiation environment at up to several hundred volts while maintaining a good signal-to-noise ratio, small cell size, and minimal multiple scattering. The ability to be operated under full bias for electrical characterization prior to the attachment of the readout integrated circuit electronics is also desired.

  2. Diamond Pixel Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D' Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Gobbi, B.; Grim, G.P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; Lynne, L.M.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L. E-mail: perera@physics.rutgers.edu; Pirollo, S.; Plano, R.; Procario, M.; Riester, J.L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M

    2001-06-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles.

  3. Diamond pixel detectors

    CERN Document Server

    Adam, W; Bergonzo, P; Bertuccio, G; Bognai, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Deneuville, A; Doroshenko, J; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foster, J; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Gobbi, B; Grim, G P; Hallewell, G D; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Kass, R; Koeth, T W; Krammer, Manfred; Lander, R; Lo Giudice, A; Lü, R; MacLynne, L; Manfredotti, C; Meier, D; Mishina, M; Moroni, L; Oh, A; Pan, L S; Pernicka, Manfred; Perera, L P; Pirollo, S; Plano, R; Procario, M; Riester, J L; Roe, S; Rott, C; Rousseau, L; Rudge, A; Russ, J; Sala, S; Sampietro, M; Schnetzer, S; Sciortino, S; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R; Trischuk, W; Tromson, D; Vittone, E; Wedenig, R; Weilhammer, Peter; White, C; Zeuner, W; Zöller, M

    2001-01-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles. (3 refs).

  4. Diamond Pixel Detectors

    International Nuclear Information System (INIS)

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles

  5. CMS pixel detector Overview

    CERN Document Server

    Cremaldi, L M

    2003-01-01

    An overview of the compact muon solenoid pixel detector effort is presented. Pixel detectors are being built for use at the large hadron collider beginning in the year 2007. It is reported that a good progress is made in 2002 on the critical issues of readout chip and token bit manager design, bump bonding and sensor testing. (Edited abstract) 8 Refs.

  6. Measurements and TCAD simulation of novel ATLAS planar pixel detector structures for the HL-LHC upgrade

    International Nuclear Information System (INIS)

    The LHC accelerator complex will be upgraded between 2020–2022, to the High-Luminosity-LHC, to considerably increase statistics for the various physics analyses. To operate under these challenging new conditions, and maintain excellent performance in track reconstruction and vertex location, the ATLAS pixel detector must be substantially upgraded and a full replacement is expected. Processing techniques for novel pixel designs are optimised through characterisation of test structures in a clean room and also through simulations with Technology Computer Aided Design (TCAD). A method to study non-perpendicular tracks through a pixel device is discussed. Comparison of TCAD simulations with Secondary Ion Mass Spectrometry (SIMS) measurements to investigate the doping profile of structures and validate the simulation process is also presented

  7. ATLAS Pixel Opto-Electronics

    OpenAIRE

    Arms, K.E; Buchholz, P.; Gan, K. K.; Holder, M; Jackson, P.; Johnson, M.; Kagan, H.; Kass, R; Rahimi, A. M.; Roggenbuck, A.; Rush, C; Schade, P.; Smith, S.; Ter-Antonian, R.; Ziolkowski, M.

    2005-01-01

    We have developed two radiation-hard ASICs for optical data transmission in the ATLAS pixel detector at the LHC at CERN: a driver chip for a Vertical Cavity Surface Emitting Laser (VCSEL) diode for 80 Mbit/s data transmission from the detector, and a Bi-Phase Mark decoder chip to recover the control data and 40 MHz clock received optically by a PIN diode. We have successfully implemented both ASICs in 0.25 micron CMOS technology using enclosed layout transistors and guard rings for increased ...

  8. Study of the Radiation Hardness Performance of PiN diodes for the ATLAS Pixel Detector at the SLHC upgrade

    CERN Document Server

    Abi, B

    2009-01-01

    We study the radiation tolerance of the silicon and GaAs PiN diodes that will be the part of the readout system of the upgraded ATLAS pixel detector. The components were irradiated by 200 MeV protons up to total accumulated dose 1.2×1015 p/cm2 and by 24 GeV protons up to 2.6×1015 p/cm2. Based on obtained results, we conclude that radiation hardness does not depend on the sensitive area or cut off frequency of PiN diodes. We identify two diodes that can be used for the SLHC upgrade.

  9. The pixelated detector

    CERN Multimedia

    Sutton, C

    1990-01-01

    "Collecting data as patterns of light or subatomic particles is vitally important in all the sciences. The new generation of solid-state detectors called pixel devices could transform experimental research at all levels" (4 pages).

  10. SOI monolithic pixel detector

    Science.gov (United States)

    Miyoshi, T.; Ahmed, M. I.; Arai, Y.; Fujita, Y.; Ikemoto, Y.; Takeda, A.; Tauchi, K.

    2014-05-01

    We are developing monolithic pixel detector using fully-depleted (FD) silicon-on-insulator (SOI) pixel process technology. The SOI substrate is high resistivity silicon with p-n junctions and another layer is a low resistivity silicon for SOI-CMOS circuitry. Tungsten vias are used for the connection between two silicons. Since flip-chip bump bonding process is not used, high sensor gain in a small pixel area can be obtained. In 2010 and 2011, high-resolution integration-type SOI pixel sensors, DIPIX and INTPIX5, have been developed. The characterizations by evaluating pixel-to-pixel crosstalk, quantum efficiency (QE), dark noise, and energy resolution were done. A phase-contrast imaging was demonstrated using the INTPIX5 pixel sensor for an X-ray application. The current issues and future prospect are also discussed.

  11. Studies on irradiated pixel detectors for the ATLAS IBL and HL-LHC upgrade

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00371978; Gößling, Claus; Pernegger, Heinz

    The constant demand for higher luminosity in high energy physics is the reason for the continuous effort to adapt the accelerators and the experiments. The upgrade program for the experiments and the accelerators at CERN already includes several expansion stages of the Large Hadron Collider (LHC) which will increase the luminosity and the energy of the accelerator. Simultaneously the LHC experiments prepare the individual sub-detectors for the increasing demands in the coming years. Especially the tracking detectors have to cope with fluence levels unprecedented for high energy physics experiments. Correspondingly to the fluence increases the impact of the radiation damage which reduces the life time of the detectors by decreasing the detector performance and efficiency. To cope with this effect new and more radiation hard detector concepts become necessary to extend the life time. This work concentrates on the impact of radiation damage on the pixel sensor technologies to be used in the next upgrade of the ...

  12. The Pixel Detector of the ATLAS experiment for the Run2 at the Large Hadron Collider -- Plot Approval (Pixel, IBL) : This is a submission of plot approval request for Pixel+IBL, facing on a talk at ICHEP 2014 conference

    CERN Document Server

    Mandelli, B; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and will be installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. IBL construction is now completed. An overview of the IBL project as well as the ...

  13. High speed data transmission on small gauge cables for the ATLAS Phase-II Pixel detector upgrade

    International Nuclear Information System (INIS)

    The High Luminosity LHC will present a number of challenges for the upgraded ATLAS detector. In particular, data transmission requirements for the upgrade of the ATLAS Pixel detector will be difficult to meet. The expected trigger rate and occupancy imply multi-gigabit per second transmission rates will be required but radiation levels at the smallest radius preclude completely optical solutions. Electrical transmission up to distances of 7m will be necessary to move optical components to an area with lower radiation levels. Here, we explore the use of small gauge electrical cables as a high-bandwidth, radiation hard solution with a sufficiently small radiation length. In particular, we present a characterization of various twisted wire pair (TWP) configurations of various material structures, including measurements of their bandwidth, crosstalk, and radiation hardness. We find that a custom ''hybrid'' cable consisting of 1m of a multi-stranded TWP with Poly-Ether-Ether-Ketone (PEEK) insulation and a thin Al shield followed by 6m of a thin twin-axial cable presents a low-mass solution that fulfills bandwidth requirements and is expected to be sufficiently radiation hard. Additionally, we discuss preliminary results of using measured S-parameters to produce a SPICE model for a 1m sample of the custom TWP to be used for the development of new pixel readout chips

  14. High speed data transmission on small gauge cables for the ATLAS Phase-II Pixel detector upgrade

    Science.gov (United States)

    Shahinian, J.; Volk, J.; Fadeyev, V.; Grillo, A. A.; Meimban, B.; Nielsen, J.; Wilder, M.

    2016-03-01

    The High Luminosity LHC will present a number of challenges for the upgraded ATLAS detector. In particular, data transmission requirements for the upgrade of the ATLAS Pixel detector will be difficult to meet. The expected trigger rate and occupancy imply multi-gigabit per second transmission rates will be required but radiation levels at the smallest radius preclude completely optical solutions. Electrical transmission up to distances of 7m will be necessary to move optical components to an area with lower radiation levels. Here, we explore the use of small gauge electrical cables as a high-bandwidth, radiation hard solution with a sufficiently small radiation length. In particular, we present a characterization of various twisted wire pair (TWP) configurations of various material structures, including measurements of their bandwidth, crosstalk, and radiation hardness. We find that a custom ``hybrid'' cable consisting of 1m of a multi-stranded TWP with Poly-Ether-Ether-Ketone (PEEK) insulation and a thin Al shield followed by 6m of a thin twin-axial cable presents a low-mass solution that fulfills bandwidth requirements and is expected to be sufficiently radiation hard. Additionally, we discuss preliminary results of using measured S-parameters to produce a SPICE model for a 1m sample of the custom TWP to be used for the development of new pixel readout chips.

  15. Development of pixel detectors for the IBL and HL-LHC ATLAS experiment upgrade

    CERN Document Server

    Baselga Bacardit, Marta

    2016-03-18

    This thesis presents the development of advanced silicon technology detectors fabricated at CNM-Barcelona for High Energy Physics (HEP) experiments. The pixel size of the tracking silicon detectors for the upgrade of the HL-LHC will have to decrease in size in order to enhance the resolution in position for the measurements and they need to have lower occupancy for the electronics. The future experiments at CERN will cope with fuences up to 2 x 10^^16 neq/cm2, and the smaller 3D silicon detectors will have less trapping of the electron-holes generated in the bulk leading to a better performance under high radiation environment. This thesis studies silicon detectors fabricated at CNM-Barcelona applied to HEP experiments with two different kinds of novel technologies: 3D and Low Gain Avalanche Detectors (LGAD). The 3D detectors make it possible to reduce the size of the depleted region inside the detector and to work at lower voltages, whereas the LGAD detectors have an intrinsic gain which increases the collec...

  16. Pixel detector readout chip

    CERN Multimedia

    1991-01-01

    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  17. Ultra-light and stable composite structure to support and cool the ATLAS pixel detector barrel electronics modules

    CERN Document Server

    Olcese, M; Castiglioni, G; Cereseto, R; Cuneo, S; Dameri, M; Gemme, C; Glitza, K W; Lenzen, G; Mora, F; Netchaeva, P; Ockenfels, W; Piano, E; Pizzorno, C; Puppo, R; Rebora, A; Rossi, L; Thadome, J; Vernocchi, F; Vigeolas, E; Vinci, A

    2004-01-01

    The design of an ultra light structure, the so-called "stave", to support and cool the sensitive elements of the Barrel Pixel detector, the innermost part of the ATLAS detector to be installed on the new Large Hadron Collider at CERN (Geneva), is presented. Very high- dimensional stability, minimization of the material and ability of operating 10 years in a high radiation environment are the key design requirements. The proposed solution consists of a combination of different carbon-based materials (impregnated carbon-carbon, ultra high modulus carbon fibre composites) coupled to a thin aluminum tube to form a very light support with an integrated cooling channel. Our design has proven to successfully fulfil the requirements. The extensive prototyping and testing program to fully qualify the design and release the production are discussed.

  18. Three Generations of FPGA DAQ Development for the ATLAS Pixel Detector

    CERN Document Server

    AUTHOR|(CDS)2091916; Hsu, Shih-Chieh; Hauck, Scott Alan

    The Large Hadron Collider (LHC) at the European Center for Nuclear Research (CERN) tracks a schedule of long physics runs, followed by periods of inactivity known as Long Shutdowns (LS). During these LS phases both the LHC, and the experiments around its ring, undergo maintenance and upgrades. For the LHC these upgrades improve their ability to create data for physicists; the more data the LHC can create the more opportunities there are for rare events to appear that physicists will be interested in. The experiments upgrade so they can record the data and ensure the event won’t be missed. Currently the LHC is in Run 2 having completed the first LS of three. This thesis focuses on the development of Field-Programmable Gate Array (FPGA)-based readout systems that span across three major tasks of the ATLAS Pixel data acquisition (DAQ) system. The evolution of Pixel DAQ’s Readout Driver (ROD) card is presented. Starting from improvements made to the new Insertable B-Layer (IBL) ROD design, which was part of t...

  19. ALICE Silicon Pixel Detector

    CERN Multimedia

    Manzari, V

    2013-01-01

    The Silicon Pixel Detector (SPD) forms the innermost two layers of the 6-layer barrel Inner Tracking System (ITS). The SPD plays a key role in the determination of the position of the primary collision and in the reconstruction of the secondary vertices from particle decays.

  20. Pixel detector insertion

    CERN Multimedia

    CMS

    2015-01-01

    Insertion of the Pixel Tracker, the 66-million-channel device used to pinpoint the vertex of each colliding proton pair, located at the heart of the detector. The geometry of CMS is a cylinder lying on its side (22 meters long and 15 meters high in dia

  1. Performance of the Insertable B-Layer for the ATLAS Pixel Detector during Quality Assurance and a Novel Pixel Detector Readout Concept based on PCIe

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00356268; Pernegger, Heinz

    2016-07-27

    During the first long shutdown of the LHC the Pixel detector has been upgraded with a new 4th innermost layer, the Insertable B-Layer (IBL). The IBL will increase the tracking performance and help with higher than nominal luminosity the LHC will produce. The IBL is made up of 14 staves and in total 20 staves have been produced for the IBL. This thesis presents the results of the final quality tests performed on these staves in an detector-like environment, in order to select the 14 best of the 20 staves for integration onto the detector. The test setup as well as the testing procedure is introduced and typical results of each testing stage are shown and discussed. The overall performance of all staves is presented in regards to: tuning performance, radioactive source measurements, and number of failing pixels. Other measurement, which did not directly impact the selection of staves, but will be important for the operation of the detector or production of a future detector, are included. Based on the experienc...

  2. ATLAS Pixel Opto-Electronics

    CERN Document Server

    Arms, K E; Gan, K K; Holder, M; Jackson, P; Johnson, M; Kagan, H; Kass, R; Rahimi, A M; Roggenbuck, A; Rush, C; Schade, P; Smith, S; Ter-Antonian, R; Ziolkowski, M; Zoeller, M M

    2005-01-01

    We have developed two radiation-hard ASICs for optical data transmission in the ATLAS pixel detector at the LHC at CERN: a driver chip for a Vertical Cavity Surface Emitting Laser (VCSEL) diode for 80 Mbit/s data transmission from the detector, and a Bi-Phase Mark decoder chip to recover the control data and 40 MHz clock received optically by a PIN diode. We have successfully implemented both ASICs in 0.25 micron CMOS technology using enclosed layout transistors and guard rings for increased radiation hardness. We present results of the performance of these chips, including irradiation with 24 GeV protons up to 61 Mrad (2.3 x 10e15 p/cm^2).

  3. Development of a Standardised Readout System for Active Pixel Sensors in HV/HR-CMOS Technologies for ATLAS Inner Detector Upgrades

    International Nuclear Information System (INIS)

    The LHC Phase-II Upgrade results in new challenges for tracking detectors for example in terms of cost effectiveness, resolution and radiation hardness. Active Pixel Sensors in HV/HR-CMOS technologies show promising results coping with these challenges. In order to demonstrate the feasibility of hybrid modules with active CMOS sensors and readout chips for the future ATLAS Inner Tracker, ATLAS R and D activities have started. After introducing the basic concepts and the demonstrator program, the development of an ATLAS compatible readout system will be presented as well as tuning procedures and measurements with demonstrator modules to test the readout system

  4. Modelling semiconductor pixel detectors

    CERN Document Server

    Mathieson, K

    2001-01-01

    expected after 200 ps in most cases. The effect of reducing the charge carrier lifetime and examining the charge collection efficiency has been utilised to explore how these detectors would respond in a harsh radiation environment. It is predicted that over critical carrier lifetimes (10 ps to 0.1 ns) an improvement of 40 % over conventional detectors can be expected. This also has positive implications for fabricating detectors, in this geometry, from materials which might otherwise be considered substandard. An analysis of charge transport in CdZnTe pixel detectors has been performed. The analysis starts with simulation studies into the formation of contacts and their influence on the internal electric field of planar detectors. The models include a number of well known defect states and these are balanced to give an agreement with a typical experimental I-V curve. The charge transport study extends to the development of a method for studying the effect of charge sharing in highly pixellated detectors. The ...

  5. Gallium arsenide pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bates, R.; DaVia, C.; O`Shea, V.; Raine, C.; Smith, K. [Glasgow Univ. (United Kingdom). Dept. of Physics and Astronomy; Campbell, M.; Cantatore, E.; Heijne, E.M.; Middelkamp, P.; Ropotar, I.; Scharfetter, L.; Snoeys, W. [CERN, ECP Div., CH-1211 Geneva 23 (Switzerland); D`Auria, S.; Papa, C. del [Department of Physics, University of Udine and INFN Trieste, Via delle Scienze 208, I-33100 Udine (Italy); RD8 Collaboration

    1998-06-01

    GaAs detectors can be fabricated with bidimensional single-sided electrode segmentation. They have been successfully bonded using flip-chip technology to the Omega-3 silicon read-out chip. We present here the design features of the GaAs pixel detectors and results from a test performed at the CERN SpS with a 120 GeV {pi}{sup -} beam. The detection efficiency was 99.2% with a nominal threshold of 5000 e{sup -}. (orig.) 10 refs.

  6. Electrical characteristics of silicon pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gorelov, I.; Gorfine, G.; Hoeferkamp, M.; Mata-Bruni, V.; Santistevan, G.; Seidel, S.C. E-mail: seidel@dot.phys.unm.edu; Ciocio, A.; Einsweiler, K.; Emes, J.; Gilchriese, M.; Joshi, A.; Kleinfelder, S.; Marchesini, R.; McCormack, F.; Milgrome, O.; Palaio, N.; Pengg, F.; Richardson, J.; Zizka, G.; Ackers, M.; Comes, G.; Fischer, P.; Keil, M.; Martinez, G.; Peric, I.; Runolfsson, O.; Stockmanns, T.; Treis, J.; Wermes, N.; Goessling, C.; Huegging, F.; Klaiber-Lodewigs, J.; Krasel, O.; Wuestenfeld, J.; Wunstorf, R.; Barberis, D.; Beccherle, R.; Caso, C.; Cervetto, M.; Darbo, G.; Gagliardi, G.; Gemme, C.; Morettini, P.; Netchaeva, P.; Osculati, B.; Rossi, L.; Charles, E.; Fasching, D.; Blanquart, L.; Breugnon, P.; Calvet, D.; Clemens, J.-C.; Delpierre, P.; Hallewell, G.; Laugier, D.; Mouthuy, T.; Rozanov, A.; Valin, I.; Andreazza, A.; Caccia, M.; Citterio, M.; Lari, T.; Meroni, C.; Ragusa, F.; Troncon, C.; Vegni, G.; Lutz, G.; Richter, R.H.; Rohe, T.; Boyd, G.R.; Skubic, P.L.; Sicho, P.; Tomasek, L.; Vrba, V.; Holder, M.; Ziolkowski, M.; Cauz, D.; Cobal-Grassmann, M.; D' Auria, S.; De Lotto, B.; Del Papa, C.; Grassmann, H.; Santi, L.; Becks, K.H.; Lenzen, G.; Linder, C

    2002-08-21

    Prototype sensors for the ATLAS silicon pixel detector have been electrically characterized. The current and voltage characteristics, charge-collection efficiencies, and resolutions have been examined. Devices were fabricated on oxygenated and standard detector-grade silicon wafers. Results from prototypes which examine p-stop and standard and moderated p-spray isolation are presented for a variety of geometrical options. Some of the comparisons relate unirradiated sensors with those that have received fluences relevant to LHC operation.

  7. Analog front-end cell designed in a commercial 025 mu m process for the ATLAS pixel detector at LHC

    CERN Document Server

    Blanquart, L; Comes, G; Denes, P; Einsweiler, Kevin F; Fischer, P; Mandelli, E; Meddeler, G; Peric, I; Richardson, J

    2002-01-01

    A new analog pixel front-end cell has been developed for the ATLAS detector at the future Large Hadron Collider (LHC) at the European Laboratory for Particle Physics (CERN). This analog cell has been submitted in two commercial 0.25 mu m CMOS processes (in an analog test chip format), using special layout techniques for radiation hardness purposes. It is composed of two cascaded amplifiers followed by a fast discriminator featuring a detection threshold within the range of 1000 to 10000 electrons. The first preamplifier has the principal role of providing a large bandwidth, low input impedance, and fast rise time in order to enhance the time-walk and crosstalk performance, whereas the second fully differential amplifier is aimed at delivering a sufficiently high-voltage gain for optimum comparison. A new do feedback concept renders the cell tolerant of sensor leakage current up to 300 nA and provides monitoring of this current. Two 5-bit digital-to-analog converters tolerant to single- event upset have been i...

  8. ATLAS Inner Detector developments

    CERN Document Server

    Barberis, D

    2000-01-01

    The ATLAS Inner Detector consists of three layers of silicon pixels, four double layers of silicon microstrips and a Transition Radiation Tracker (straw tubes). The good performance of the track and vertex reconstruction algorithms is a direct consequence of the small radius (4.3, 10.1 and 13.2 cm), fine pitch ($50 \\times 300~\\mu$m) and low occupancy ($<3 \\times 10^{-4}$ at design luminosity) of the pixel detectors, and of the good tracking capabilities of the SCT and the TRT. The full detector simulation is used to evaluate the performance of the detector and of the reconstruction algorithms. Results are presented on track and vertex reconstruction efficiencies and resolutions, and on the separation between $b$-jets and jets produced by light quarks.

  9. Chip development in 65 nm CMOS technology for the high luminosity upgrade of the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Germic, Leonard; Hemperek, Tomasz; Kishishita, Testsuichi; Krueger, Hans; Rymaszewski, Piotr; Wermes, Norbert [University of Bonn, Bonn (Germany); Havranek, Miroslav [University of Bonn, Bonn (Germany); Institute of Physics of the Academy of Sciences, Prague (Czech Republic)

    2015-07-01

    The LHC High Luminosity upgrade will result in a significant change of environment in which particle detectors are going to operate, especially for devices very close to the interaction point like pixel detector electronics. Challenges coming from the higher hit rate will have to be solved by designing faster and more complex circuits, while at the same time keeping in mind very high radiation hardness requirements. Therefore matching the specification set by the high luminosity upgrade requires a large R and D effort. Our group is participating in such a joint development * namely the RD53 collaboration * which goal is to design a new pixel chip using an advanced 65 nm CMOS technology. During this presentation motivations and benefits of using this very deep-submicron technology will be shown together with a comparison with older technologies (130 nm, 250 nm). Most of the talk is allocated to presenting some of the circuits designed by our group, along with their performance measurement results.

  10. Commissioning of the read-out driver (ROD) card for the ATLAS IBL detector and upgrade studies for the pixel Layers 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Balbi, G.; Bindi, M. [Istituto Nazionale di Fisica Nucleare (INFN), Bologna (Italy); Falchieri, D. [Istituto Nazionale di Fisica Nucleare (INFN), Bologna (Italy); Department of Physics and Astronomy, University of Bologna (Italy); Gabrielli, A., E-mail: alessandro.gabrielli@bo.infn.it [Istituto Nazionale di Fisica Nucleare (INFN), Bologna (Italy); Department of Physics and Astronomy, University of Bologna (Italy); Travaglini, R. [Istituto Nazionale di Fisica Nucleare (INFN), Bologna (Italy); Chen, S.-P.; Hsu, S.-C.; Hauck, S. [University of Washington, Seattle (United States); Kugel, A. [ZITI – Institute for Computer Engineering, University of Heidelberg at Mannheim (Germany)

    2014-11-21

    The higher luminosity that is expected for the LHC after future upgrades will require better performance by the data acquisition system, especially in terms of throughput. In particular, during the first shutdown of the LHC collider in 2013/14, the ATLAS Pixel Detector will be equipped with a fourth layer – the Insertable B-Layer or IBL – located at a radius smaller than the present three layers. Consequently, a new front end ASIC (FE-I4) was designed as well as a new off-detector chain. The latter is composed mainly of two 9U-VME cards called the Back-Of-Crate (BOC) and Read-Out Driver (ROD). The ROD is used for data and event formatting and for configuration and control of the overall read-out electronics. After some prototyping samples were completed, a pre-production batch of 5 ROD cards was delivered with the final layout. Actual production of another 15 ROD cards is ongoing in Fall 2013, and commissioning is scheduled in 2014. Altogether 14 cards are necessary for the 14 staves of the IBL detector, one additional card is required by the Diamond Beam Monitor (DBM), and additional spare ROD cards will be produced for a total of 20 boards. This paper describes some integration tests that were performed and our plan to test the production of the ROD cards. Slices of the IBL read-out chain have been instrumented, and ROD performance is verified on a test bench mimicking a small-sized final setup. This contribution will report also one view on the possible adoption of the IBL ROD for ATLAS Pixel Detector Layer 2 (firstly) and, possibly, in the future, for Layer 1.

  11. The ALICE pixel detector

    CERN Document Server

    Mercado Perez, J

    2002-01-01

    The present document is a brief summary of the performed activities during the 2001 Summer Student Programme at CERN under the Scientific Summer at Foreign Laboratories Program organized by the Particles and Fields Division of the Mexican Physical Society (Sociedad Mexicana de Fisica). In this case, the activities were related with the ALICE Pixel Group of the EP-AIT Division, under the supervision of Jeroen van Hunen, research fellow in this group. First, I give an introduction and overview to the ALICE experiment; followed by a description of wafer probing. A brief summary of the test beam that we had from July 13th to July 25th is given as well. (3 refs).

  12. Development of high performance CFRP shell structures for the pixel detector in the ATLAS experiment at CERN

    CERN Document Server

    Himmel, N; Pfaff, Thomas; Schmitt, Uwe

    2003-01-01

    The "Large Hadron Collider (LHC)" which will be the world's largest and most powerful accelerator and particle collider for particle research experiments is planned to start operation at CERN in 2007. The reported work includes the development of three interleaved cylindrical CFRP shell support structures for a high-resolution detector device within an experimental test equipment named ATLAS, which will be installed into LHC. As the shell structures will be positioned only a few centimetres apart from the point of particle collision, an ultra-light weight component design with extremely tight geometrical tolerances, applying composite materials with extreme stiffness and high radiation hardness is stipulated. The article describes the development of these structures including the design of all components and the manufacturing technology to be used. Furthermore, it reports on geometry testing efforts on a prototype structure to prove the design concept and to derive optimisation potential.

  13. Design and implementation of an expert system for the detector control systems of the ATLAS pixel detector; Entwurf und Implementation eines Expertensystems fuer das Detektorkontrollsystem des ATLAS-Pixeldetektors

    Energy Technology Data Exchange (ETDEWEB)

    Henss, Tobias

    2008-12-15

    In the framework of this thesis an expert system ''Pixel-Advisor'' for the control system of the pixel detector was designed and implemented. This supports the operational personnel in the diagnosis and removal of possible problems, which are in connection with the detector control system and unburdens the few available DCS experts.

  14. Pixel electronics for the ATLAS experiment

    CERN Document Server

    Fischer, P

    2001-01-01

    The ATLAS experiment at LHC will use 3 barrel layers and 2*5 disks of silicon pixel detectors as the innermost elements of the semiconductor tracker. The basic building blocks are pixel modules with an active area of 16.4 mm*60.8 mm which include an n/sup +/ on n-type silicon sensor and 16 VLSI front-end (FE) chips. Every FE chip contains a low power, high speed charge sensitive preamplifier, a fast discriminator, and a readout system which operates at the 40 MHz rate of LHC. The addresses of hit pixels (as well as a low resolution pulse height information) are stored on the FE chips until arrival of a level 1 trigger signal. Hits are then transferred to a module controller chip (MCC) which collects the data of all 16 FE chips, builds complete events and sends the data through two optical links to the data acquisition system. The MCC receives clock and data through an additional optical link and provides timing and configuration information for the FE chips. Two additional chips are used to amplify and decode...

  15. The Phase-2 ATLAS ITk Pixel Upgrade

    CERN Document Server

    Flick, Tobias; The ATLAS collaboration

    2016-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown (foreseen to take place around 2025) by an all-silicon detector called the “ITk” (Inner Tracker). The pixel detector will comprise the five innermost layers, and will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation. The total surface area of silicon in the new pixel system could measure up to 14 m2, depending on the final layout choice, which is expected to take place in early 2017. Four layout options are being investigated at the moment, two with forward coverage to |eta| < 3.2 and two to |eta| < 4. For each coverage option, a layout with long barrel staves and a layout with novel inclined support structures in the barrel-endcap overlap region are considered. All potential layouts include modules mounted on ring-shaped supports in the endcap regions...

  16. The ATLAS pixel stave emulator for serial powering

    International Nuclear Information System (INIS)

    A serial powering scheme is being developed for the upgrade of the ATLAS pixel detector in view of sLHC. It offers in fact significant advantages over the presently used parallel powering scheme, namely reduced material budget in active area and power losses on cables, smaller number of power supplies, and no need for external, distant regulation of voltages. The development of this powering scheme requires not only the design of custom-developed voltage regulators, the basic elements of serial powering, but also the early study of system aspects connected to it, for instance the safety of the powering chain and AC-coupled data transmission. To this aim a test system emulating an ATLAS pixel stave is being developed. It will provide a realistic environment to test both concepts and sub-components. Due to its flexibility, it will offer the possibility to study not only serial powering concepts, but more generally system aspects related to the ATLAS pixel detector. In particular alternative powering schemes, data coding schemes, physical layer data transmission, and Detector Control System concepts will also be evaluated with this test system. The description and development of the ATLAS pixel stave emulator are presented and first results are discussed

  17. R&D for the local support structure and cooling channel for the ATLAS PIXEL Detector Insertable B-Layer (IBL)

    CERN Document Server

    Coelli, S; The ATLAS collaboration

    2010-01-01

    ABSTRACT: The scope of the present R&D is to develop an innovative support, with an integrated cooling and based on carbon composites, for the electronic sensors of the Silicon Pixel Tracker, to be installed into the ATLAS Experiment on the Large Hadron Collider at CERN. The inner layer of the detector is installed immediately outside the Beryllium beam pipe at a distance of 50 mm from the Interaction Point, where the high energy protons collide: the intense radiation field induce a radiation damage on the sensors so that a cooling system is necessary to remove the electrical power dissipated as heat, maintaining the sensor temperature sufficiently low. The task of the support system is to hold the detector modules in positions with high accuracy, minimizing the deformation induced by the cooling; this must be done with the lower possible mass because there are tight requirements in terms of material budget. An evaporative boiling system to remove the power dissipated by the sensors is incorporated in the...

  18. Robustness of the ATLAS pixel clustering neural network algorithm

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00407780; The ATLAS collaboration

    2016-01-01

    Proton-proton collisions at the energy frontier puts strong constraints on track reconstruction algorithms. In the ATLAS track reconstruction algorithm, an artificial neural network is utilised to identify and split clusters of neighbouring read-out elements in the ATLAS pixel detector created by multiple charged particles. The robustness of the neural network algorithm is presented, probing its sensitivity to uncertainties in the detector conditions. The robustness is studied by evaluating the stability of the algorithm's performance under a range of variations in the inputs to the neural networks. Within reasonable variation magnitudes, the neural networks prove to be robust to most variation types.

  19. Diamond and silicon pixel detectors in high radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Tsung, Jieh-Wen

    2012-10-15

    Diamond pixel detector is a promising candidate for tracking of collider experiments because of the good radiation tolerance of diamond. The diamond pixel detector must withstand the radiation damage from 10{sup 16} particles per cm{sup 2}, which is the expected total fluence in High Luminosity Large Hadron Collider. The performance of diamond and silicon pixel detectors are evaluated in this research in terms of the signal-to-noise ratio (SNR). Single-crystal diamond pixel detectors with the most recent readout chip ATLAS FE-I4 are produced and characterized. Based on the results of the measurement, the SNR of diamond pixel detector is evaluated as a function of radiation fluence, and compared to that of planar-silicon ones. The deterioration of signal due to radiation damage is formulated using the mean free path of charge carriers in the sensor. The noise from the pixel readout circuit is simulated and calculated with leakage current and input capacitance to the amplifier as important parameters. The measured SNR shows good agreement with the calculated and simulated results, proving that the performance of diamond pixel detectors can exceed the silicon ones if the particle fluence is more than 10{sup 15} particles per cm{sup 2}.

  20. ATLAS Inner Detector Alignment

    CERN Document Server

    Bocci, A

    2008-01-01

    The ATLAS experiment is a multi-purpose particle detector that will study high-energy particle collisions produced by the Large Hadron Collider at CERN. In order to achieve its physics goals, the ATLAS tracking requires that the positions of the silicon detector elements have to be known to a precision better than 10 μm. Several track-based alignment algorithms have been developed for the Inner Detector. An extensive validation has been performed with simulated events and real data coming from the ATLAS. Results from such validation are reported in this paper.

  1. Pixelated CdZnTe drift detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl

    2005-01-01

    A technique, the so-called Drift Strip Method (DSM), for improving the CdZnTe detector energy response to hard X-rays and gamma-rays was applied as a pixel geometry. First tests have confirmed that this detector type provides excellent energy resolution and imaging performance. We specifically...... report on the performance of 3 mm thick prototype CZT drift pixel detectors fabricated using material from eV-products. We discuss issues associated with detector module performance. Characterization results obtained from several prototype drift pixel detectors are presented. Results of position...

  2. ATLAS Fact Sheet : To raise awareness of the ATLAS detector and collaboration on the LHC

    CERN Multimedia

    ATLAS Outreach

    2010-01-01

    Facts on the Detector, Calorimeters, Muon System, Inner Detector, Pixel Detector, Semiconductor Tracker, Transition Radiation Tracker,, Surface hall, Cavern, Detector, Magnet system, Solenoid, Toroid, Event rates, Physics processes, Supersymmetric particles, Comparing LHC with Cosmic rays, Heavy ion collisions, Trigger and Data Acquisition TDAQ, Computing, the LHC and the ATLAS collaboration. This fact sheet also contains images of ATLAS and the collaboration as well as a short list of videos on ATLAS available for viewing.

  3. CVD diamond pixel detectors for LHC experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wedenig, R.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A.M.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.; Blanquart, L.; Breugnion, P.; Charles, E.; Ciocio, A.; Clemens, J.C.; Dao, K.; Einsweiler, K.; Fasching, D.; Fischer, P.; Joshi, A.; Keil, M.; Klasen, V.; Kleinfelder, S.; Laugier, D.; Meuser, S.; Milgrome, O.; Mouthuy, T.; Richardson, J.; Sinervo, P.; Treis, J.; Wermes, N

    1999-08-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described.

  4. CVD diamond pixel detectors for LHC experiments

    International Nuclear Information System (INIS)

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described

  5. CVD diamond pixel detectors for LHC experiments

    CERN Document Server

    Wedenig, R; Bauer, C; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Pretzl, Klaus P; Procario, M; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Runólfsson, O; Russ, J; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R J; Trawick, M L; Trischuk, W; Vittone, E; Wagner, A; Walsh, A M; Weilhammer, Peter; White, C; Zeuner, W; Ziock, H J; Zöller, M

    1999-01-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described. (9 refs).

  6. The Read-Out Driver (ROD) card for the ATLAS experiment: commissioning for the IBL detector and upgrade studies for the Pixel Layers 1 and 2

    CERN Document Server

    Travaglini, R; The ATLAS collaboration; Bindi, M; Falchieri, D; Gabrielli, A; Lama, L; Chen, S P; Hsu, S C; Hauck, S; Kugel, A; Flick, T; Wensing, M

    2013-01-01

    The upgrade of the ATLAS experiment at LHC foresees the insertion of an innermost silicon layer, called Insertable B-layer (IBL). IBL read-out system will be equipped with new electronics. The Readout-Driver card (ROD) is a VME board devoted to data processing, configuration and control. A pre-production batch has been delivered in order to perform tests with instrumented slices of the overall acquisition chain, aiming to finalize strategies for system commissioning. In this contribution both setups and results will be described, as well as preliminary studies on changes in order to adopt the ROD for the ATLAS Pixel Layers 1 and 2.

  7. TFA pixel sensor technology for vertex detectors

    OpenAIRE

    Jarron, P.; Moraes, D.; Despeisse, M.; Dissertori, G.; Dunand, S.; Kaplon. J.; Miazza, C.; Shah, Arvind; Viertel, G M.; Wyrsch, Nicolas

    2008-01-01

    Pixel microvertex detectors at the SLHC and a future linear collider face very challenging issues: extreme radiation hardness, cooling design, interconnections density and fabrication cost. As an alternative approach we present a novel pixel detector based on the deposition of a Hydrogenated Amorphous Silicon (a-Si:H) film on top of a readout ASIC. The Thin-Film on ASIC (TFA) technology is inspired by an emerging microelectronic technology envisaged for visible light Active Pixel Sensor (APS)...

  8. Development of SOI pixel detector in Cracow

    OpenAIRE

    Bugiel, Szymon; Dasgupta, Roma; Glab, Sebastian; Idzik, Marek; Moron, Jakub; Kapusta, Piotr Julian; Kucewicz, Wojciech; Turala, Michal

    2015-01-01

    This paper presents the design of a new monolithic Silicon-On-Insulator pixel sensor in $200~nm$ SOI CMOS technology. The main application of the proposed pixel detector is the spectroscopy, but it can also be used for the minimum ionizing particle (MIP) tracking in particle physics experiments. For this reason few different versions of pixel cells are developed: a source-follower based pixel for tracking, a low noise pixel with preamplifier for spectroscopy, and a self-triggering pixel for t...

  9. Robustness of the ATLAS pixel clustering neural network algorithm

    CERN Document Server

    Sidebo, Per Edvin; The ATLAS collaboration

    2016-01-01

    Proton-proton collisions at the energy frontier puts strong constraints on track reconstruction algorithms. The algorithms depend heavily on accurate estimation of the position of particles as they traverse the inner detector elements. An artificial neural network algorithm is utilised to identify and split clusters of neighbouring read-out elements in the ATLAS pixel detector created by multiple charged particles. The method recovers otherwise lost tracks in dense environments where particles are separated by distances comparable to the size of the detector read-out elements. Such environments are highly relevant for LHC run 2, e.g. in searches for heavy resonances. Within the scope of run 2 track reconstruction performance and upgrades, the robustness of the neural network algorithm will be presented. The robustness has been studied by evaluating the stability of the algorithm’s performance under a range of variations in the pixel detector conditions.

  10. Module and electronics developments for the ATLAS ITK pixel system

    CERN Document Server

    Nellist, Clara; The ATLAS collaboration

    2016-01-01

    Summary ATLAS is preparing for an extensive modification of its detector in the course of the planned HL‐ LHC accelerator upgrade around 2025 which includes a replacement of the entire tracking system by an all‐silicon detector (Inner Tracker, ITk). A revised trigger and data taking system is foreseen with triggers expected at lowest level at an average rate of 1 MHz. The five innermost layers of ITk will comprise of a pixel detector built of new sensor and readout electronics technologies to improve the tracking performance and cope with the severe HL‐LHC environment in terms of occupancy and radiation. The total area of the new pixel system could measure up to 14 m2, depending on the final layout choice that is expected to take place in early 2017. A new on‐detector readout chip is designed in the context of the RD53 collaboration in 65 nm CMOS technology. This paper will present the on‐going R&D within the ATLAS ITK project towards the new pixel modules and the off‐detector electronics. Pla...

  11. High-voltage pixel sensors for ATLAS upgrade

    Science.gov (United States)

    Perić, I.; Kreidl, C.; Fischer, P.; Bompard, F.; Breugnon, P.; Clemens, J.-C.; Fougeron, D.; Liu, J.; Pangaud, P.; Rozanov, A.; Barbero, M.; Feigl, S.; Capeans, M.; Ferrere, D.; Pernegger, H.; Ristic, B.; Muenstermann, D.; Gonzalez Sevilla, S.; La Rosa, A.; Miucci, A.; Nessi, M.; Iacobucci, G.; Backhaus, M.; Hügging, Fabian; Krüger, H.; Hemperek, T.; Obermann, T.; Wermes, N.; Garcia-Sciveres, M.; Quadt, A.; Weingarten, J.; George, M.; Grosse-Knetter, J.; Rieger, J.; Bates, R.; Blue, A.; Buttar, C.; Hynds, D.

    2014-11-01

    The high-voltage (HV-) CMOS pixel sensors offer several good properties: a fast charge collection by drift, the possibility to implement relatively complex CMOS in-pixel electronics and the compatibility with commercial processes. The sensor element is a deep n-well diode in a p-type substrate. The n-well contains CMOS pixel electronics. The main charge collection mechanism is drift in a shallow, high field region, which leads to a fast charge collection and a high radiation tolerance. We are currently evaluating the use of the high-voltage detectors implemented in 180 nm HV-CMOS technology for the high-luminosity ATLAS upgrade. Our approach is replacing the existing pixel and strip sensors with the CMOS sensors while keeping the presently used readout ASICs. By intelligence we mean the ability of the sensor to recognize a particle hit and generate the address information. In this way we could benefit from the advantages of the HV sensor technology such as lower cost, lower mass, lower operating voltage, smaller pitch, smaller clusters at high incidence angles. Additionally we expect to achieve a radiation hardness necessary for ATLAS upgrade. In order to test the concept, we have designed two HV-CMOS prototypes that can be readout in two ways: using pixel and strip readout chips. In the case of the pixel readout, the connection between HV-CMOS sensor and the readout ASIC can be established capacitively.

  12. Development of a Micro Pixel Chamber for the ATLAS Upgrade

    CERN Document Server

    Ochi, Atsuhiko; Komai, Hidetoshi; Edo, Yuki; Yamaguchi, Takahiro

    2012-01-01

    The Micro Pixel Chamber (μ-PIC) is being developed a sacandidate for the muon system of the ATLAS detector for upgrading in LHC experiments. The μ-PIC is a micro-pattern gaseous detector that doesn’t have floating structure such as wires, mesh, or foil. This detector can be made by printed-circuit-board (PCB) technology, which is commercially available and suited for mass production. Operation tests have been performed under high flux neutrons under similar conditions to the ATLAS cavern. Spark rates are measured using several gas mixtures under 7 MeV neutron irradiation, and good properties were observed using neon, ethane, and CF4 mixture of gases.Using resistive materials as electrodes, we are also developing a new μ-PIC, which is not expected to damage the electrodes in the case of discharge sparks.

  13. Multi-chip module development for the ATLAS pixel detector. Analysis of the front-end chip electronics in radiation hard 0.25-{mu}m technology as well as development and realization of a serial power concept; Multi-Chip-Modul-Entwicklung fuer den ATLAS-Pixeldetektor. Analyse der Front-End-Chip-Elektronik in strahlenharter0,25-{mu}m-Technologie sowie Entwicklung und Realisierung eines Serial-Powering-Konzeptes

    Energy Technology Data Exchange (ETDEWEB)

    Stockmanns, T.

    2004-08-01

    The innermost layer of the ATLAS tracking system is a silicon pixel detector. The use of radiation tolerant components is mandatory due to the harsh radiation environment. The smallest independent component of the pixel detector is a hybride pixel module consisting of a large oxygen enriched silicon sensor and 16 specifically developed ASICs. To achieve the necessary radiation tolerance the ASICs are produced in a 0.25 {mu}m technology in combination with special design techniques. The measurements of the readout electronics during all stages of production of a full module are presented and the performance of the modules is compared with the strict requirements of the ATLAS pixel detector. Furthermore a new powering scheme for pixel detectors is presented, aiming at reducing the total power consumption, the material for the electrical services and the amount of power cables. The advantages and disadvantages of this concept are discussed on the example of the ATLAS pixel detector with pixel modules modified accounting to the new powering scheme. The performance of six of those modules operating at the same time in a small system test is compared to that of normal ATLAS pixel modules. (orig.)

  14. ATLAS Phase-II-Upgrade Pixel Data Transmission Development

    CERN Document Server

    Wensing, Marius; The ATLAS collaboration

    2016-01-01

    The ATLAS tracking system will be replaced by an all-silicon detector (ITk) in the course of the planned HL-LHC accelerator upgrade around 2025. The readout of the ITk pixel system will be most challenging in terms of data rate and readout speed. Simulation of the on-detector electronics based on the currently foreseen trigger rate of 1 MHz indicate that a readout speed of up to 5 Gbps per data link is necessary. Due to radiation levels, the first part of transmission has to be implemented electrically. System simulation and test results of cable candidates will be presented.

  15. The alignment of the ATLAS Inner Detector in Run 2

    CERN Document Server

    Ripellino, Giulia; The ATLAS collaboration

    2016-01-01

    The ATLAS reconstruction of charged particle trajectories relies on the Inner Detector tracking system. The accuracy of the reconstruction is limited by the finite resolution of the detector elements and the imperfect knowledge about their positions. A precise alignment of the detector is therefore essential. Here, the strategy and the status of the Inner Detector alignment in ATLAS during the LHC Run 2 are presented and the alignment challenges related to the distortion of the new innermost Pixel layer, the IBL, are discussed.

  16. ATLAS Forward Detectors and Physics

    CERN Document Server

    Soni, N

    2010-01-01

    In this communication I describe the ATLAS forward physics program and the detectors, LUCID, ZDC and ALFA that have been designed to meet this experimental challenge. In addition to their primary role in the determination of ATLAS luminosity these detectors - in conjunction with the main ATLAS detector - will be used to study soft QCD and diffractive physics in the initial low luminosity phase of ATLAS running. Finally, I will briefly describe the ATLAS Forward Proton (AFP) project that currently represents the future of the ATLAS forward physics program.

  17. Development of SOI pixel detector in Cracow

    CERN Document Server

    Bugiel, Szymon; Glab, Sebastian; Idzik, Marek; Moron, Jakub; Kapusta, Piotr Julian; Kucewicz, Wojciech; Turala, Michal

    2015-01-01

    This paper presents the design of a new monolithic Silicon-On-Insulator pixel sensor in $200~nm$ SOI CMOS technology. The main application of the proposed pixel detector is the spectroscopy, but it can also be used for the minimum ionizing particle (MIP) tracking in particle physics experiments. For this reason few different versions of pixel cells are developed: a source-follower based pixel for tracking, a low noise pixel with preamplifier for spectroscopy, and a self-triggering pixel for time and amplitude measurements. In addition the design of a Successive Approximation Register Analog-to-Digital Converter (SAR ADC) is also presented. A 10-bit SAR ADC is developed for spectroscopic measurements and a lower resolution 6-bit SAR ADC is integrated in the pixel matrix as a column ADC, for tracking applications.

  18. Hybrid pixel detector development for medical radiography

    International Nuclear Information System (INIS)

    A 7-year project has been initiated to develop hybrid pixel detectors for medical radiography. Crystalline semiconductor will be bonded to a pixellated readout chip where individual integrated circuits process each event, transferring the position, energy and timing information to the data acquisition controller. Chips will be tiled to produce a large area detector, capable of energy dispersive photon counting at moderate spatial resolution. Preliminary results from studies examining the design features and operation of the device are presented

  19. Development of a counting pixel detector for 'Digitales Roentgen'

    International Nuclear Information System (INIS)

    The development of a single photon counting X-ray imaging detector for medical applications using hybrid pixel detectors is reported. The electronics development from the first prototype derived from detector development for particle physics experiments (ATLAS) to the imaging chip MPEC (multi picture element counters) for medical applications is described. This chip consists of 32 x 32 pixels of 200 μm x 200 μm size, each containing the complete read out electronics, i.e. an amplifier, two discriminators with adjustable thresholds and two 18-bit linear feedback shift-counters allowing energy windowing for contrast increase. Results on electronics performance are shown as well as measurements with several semiconductor materials (Si, GaAs, CdTe). Important aspects like detection efficiency, sensor homogeneity, linearity and spatial resolution are discussed. (orig.)

  20. LISe pixel detector for neutron imaging

    Science.gov (United States)

    Herrera, Elan; Hamm, Daniel; Wiggins, Brenden; Milburn, Rob; Burger, Arnold; Bilheux, Hassina; Santodonato, Louis; Chvala, Ondrej; Stowe, Ashley; Lukosi, Eric

    2016-10-01

    Semiconducting lithium indium diselenide, 6LiInSe2 or LISe, has promising characteristics for neutron detection applications. The 95% isotopic enrichment of 6Li results in a highly efficient thermal neutron-sensitive material. In this study, we report on a proof-of-principle investigation of a semiconducting LISe pixel detector to demonstrate its potential as an efficient neutron imager. The LISe pixel detector had a 4×4 of pixels with a 550 μm pitch on a 5×5×0.56 mm3 LISe substrate. An experimentally verified spatial resolution of 300 μm was observed utilizing a super-sampling technique.

  1. Pixel Hit Reconstruction with the CMS Detector

    CERN Document Server

    Giurgiu, Gavril; Maksimovic, P; Swartz, M

    2008-01-01

    We present a new technique for pixel hit reconstruction with the CMS pixel detector. The technique is based on fitting the pixel cluster projections to templates obtained using a detailed simulation called Pixelav. Pixelav successfully describes the profiles of clusters measured in beam tests of radiation-damaged sensors. Originally developed to optimally estimate the coordinates of hits after the radiation damage, the technique has superior performance before irradiation as well, reducing the resolution tails of reconstructed track parameters and significantly reducing the light quark background of tagged b-quarks. It is the only technique currently available to simulate hits from a radiation-damaged detector.

  2. Pixel detectors from fundamentals to applications

    CERN Document Server

    Rossi, Leonardo; Rohe, Tilman; Wermes, Norbert

    2006-01-01

    Pixel detectors are a particularly important class of particle and radiation detection devices. They have an extremely broad spectrum of applications, ranging from high-energy physics to the photo cameras of everyday life. This book is a general purpose introduction into the fundamental principles of pixel detector technology and semiconductor-based hybrid pixel devices. Although these devices were developed for high-energy ionizing particles and radiation beyond visible light, they are finding new applications in many other areas. This book will therefore benefit all scientists and engineers working in any laboratory involved in developing or using particle detection.

  3. 3D electronics for hybrid pixel detectors – TWEPP-09

    CERN Document Server

    Godiot, S; Chantepie, B; Clémens, J C; Fei, R; Fleury, J; Fougeron, D; Garcia-Sciveres, M; Hemperek, T; Karagounis, M; Krueger, H; Mekkaoui, A; Pangaud, P; Rozanov, A; Wermes, N

    2009-01-01

    Future hybrid pixel detectors are asking for smaller pixels in order to improve spatial resolution and to deal with an increasing counting rate. Facing these requirements is foreseen to be done by microelectronics technology shrinking. However, this straightforward approach presents some disadvantages in term of performances and cost. New 3D technologies offer an alternative way with the advantage of technology mixing. For the upgrade of ATLAS pixel detector, a 3D conception of the read-out chip appeared as an interesting solution. Splitting the pixel functionalities into two separate levels will reduce pixel size and open the opportunity to take benefit of technology's mixing. Based on a previous prototype of the read-out chip FE-I4 (IBM 130nm), this paper presents the design of a hybrid pixel read-out chip using threedimensional Tezzaron-Chartered technology. In order to disentangle effects due to Chartered 130nm technology from effects involved by 3D architecture, a first translation of FEI4 prototype had ...

  4. ATLAS Pixel-Optoboard Production and Simulation Studies

    CERN Document Server

    Nderitu, Simon

    At CERN, a Large collider will collide protons at high energies. There are four experiments being built to study the particle properties from the collision. The ATLAS experiment is the largest. It has many sub detectors among which is the Pixel detector which is the innermost part. The Pixel detector has eighty million channels that have to be read out. An optical link is utilized for the read out. It has optical to electronic interfaces both on the detector and off the detector at the counting room. The component on the detector in called the opto-board. This work discusses the production testing of the opto-boards to be installed on the detector. A total of 300 opto-boards including spares have been produced. The production was done in three laboratories among which is the laboratory at the University of Wuppertal which had the responsibility of Post production testing of all the one third of the total opto-boards. The results are discussed in this work. The analysis of the results from the total productio...

  5. Operational Experience with the CMS Pixel Detector

    CERN Document Server

    Karancsi, Janos

    2016-01-01

    The CMS pixel detector was repaired successfully, calibrated and commissioned for the second run of Large Hadron Collider during the first long shutdown between 2013 and 2015. The replaced pixel modules were calibrated separately and show the expected behavior of an un-irradiated detector. In 2015, the system performed very well with an even improved spatial resolution compared to 2012. During this time, the operational team faced various challenges including the loss of a sector in one half shell which was only partially recovered. In 2016, the detector is expected to withstand instantaneous luminosities beyond the design limits and will need a combined effort of both online and offline teams in order to provide the high quality data that is required to reach the physics goals of CMS. We present the operational experience gained during the second run of the LHC and show the latest performance results of the CMS pixel detector.

  6. Module and Electronics Developments for the ATLAS ITK Pixel System

    CERN Document Server

    Rummler, Andr{e}; The ATLAS collaboration

    2016-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown around 2025 by an all-silicon detector (Inner Tracker, ITk). The pixel detector will be composed by the five innermost layers, instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the severe HL-LHC environment in terms of occupancy and radiation. The total area of the new pixel system could measure up to 14 m^2, depending on the final layout choice that is expected to take place in early 2017. Different designs of planar, 3D, CMOS sensors are being investigated to identify the optimal technology for the different pixel layers. In parallel sensor-chip interconnection options are evaluated in collaboration with industrial partners to identify reliable technologies when employing 100-150 μm thin chips. While the new read-out chip is being developed by the RD53 Collaboration, the pixel off detector read-out electronics will be implemented in the frame...

  7. High efficiency pixellated CdTe detector

    International Nuclear Information System (INIS)

    Position sensitive detectors constructed from compound semiconductors (CdTe, CdZnTe, HgI2) are being developed for a variety of applications where high sensitivity and improved energy resolution are significant advantages over scintillator or gas based systems. We have investigated the possibility of using a CdTe detector array in a SPECT gamma camera that would require a high efficiency at 140 keV. The problem of worsening photopeak efficiencies in thick detectors (due to incomplete charge collection) makes it difficult to maintain a high efficiency which, ironically, is the primary reason for choosing a thicker detector. Recent research has shown that following a simple geometrical design criterion can greatly reduce this deleterious effect. This paper reports on the results from a small prototype pixellated array fabricated using this design. We verify the 'small pixel effect' for a detector thickness and pixel size significantly larger than those used in most other work. A 9-element detector (1 x 1 mm pixels, 4 mm thick) has been fabricated and characterized in terms of energy resolution, peak-to-valley ratio and detection efficiency. Testing of the detector in a fast pulse mode to obtain its high count rate response has also been performed. (orig.)

  8. Overview of the BTeV Pixel Detector

    International Nuclear Information System (INIS)

    BTeV is a new Fermilab beauty and charm experiment designed to operate in the CZero region of the Tevatron collider. Critical to the success of BTeV is its pixel detector. The unique features of this pixel detector include its proximity to the beam, its operation with a beam crossing time of 132 ns, and the need for the detector information to be read out quickly enough to be used for the lowest level trigger. This talk presents an overview of the pixel detector design, giving the motivations for the technical choices made. The status of the current RandD on detector components is also reviewed. Additional Pixel 2002 talks on the BTeV pixel detector are given by Dave Christian[1], Mayling Wong[2], and Sergio Zimmermann[3]. Table 1 gives a selection of pixel detector parameters for the ALICE, ATLAS, BTeV, and CMS experiments. Comparing the progression of this table, which I have been updating for the last several years, has shown a convergence of specifications. Nevertheless, significant differences endure. The BTeV data-driven readout, horizontal and vertical position resolution better than 9 (micro)m with the ± 300 mr forward acceptance, and positioning in vacuum and as close as 6 mm from the circulating beams remain unique. These features are driven by the physics goals of the BTeV experiment. Table 2 demonstrates that the vertex trigger performance made possible by these features is requisite for a very large fraction of the B meson decay physics which is so central to the motivation for BTeV. For most of the physics quantities of interest listed in the table, the vertex trigger is essential. The performance of the BTeV pixel detector may be summarized by looking at particular physics examples; e.g., the Bs meson decay Bs → Ds- K+. For that decay, studies using GEANT3 simulations provide quantitative measures of performance. For example, the separation between the Bs decay point and the primary proton-antiproton interaction can be measured with an rms

  9. Simulations of planar pixel sensors for the ATLAS high luminosity upgrade

    OpenAIRE

    Calderini, G.; Benoit, M; Dinu, N.; Lounis, A.; Marchiori, G.

    2011-01-01

    A physics-based device simulation was used to study the charge carrier distribution and the electric field configuration inside simplified two-dimensional models for pixel layouts based on the ATLAS pixel sensor. In order to study the behavior of such detectors under different levels of irradiation, a three-level defect model was implemented into the simulation. Using these models, the number of guard rings, the dead edge width and the detector thickness were modified to investigate their inf...

  10. Track parameter resolution study of a pixel only detector for LHC geometry and future high rate experiments

    Energy Technology Data Exchange (ETDEWEB)

    Blago, Michele Piero; Schoening, Andre [Physikalisches Institut, Heidelberg Univ. (Germany)

    2015-07-01

    Recent progress in pixel detector technology in general and in the HV-MAPS technology in particular make it feasible to construct an all-silicon pixel detector for large scale particle experiments like ATLAS or CMS. Previous studies have indicated that six to nine layers of pixel sensors, in comparison to the 14 detector layers planned for Inner Tracker ATLAS upgrade, are sufficient to reliably reconstruct particle trajectories. The performance of an all-pixel detector and the minimum number of required pixel layers is studied based on a full GEANT simulation for high luminosity conditions at the upgraded LHC. Furthermore, the ability of an all-pixel detector to form trigger decisions using a special triplet pixel layer design is studied. Such a design could be used to reconstruct all tracks originating from the proton-proton interaction at the first hardware level at 40 MHz collision frequency.

  11. Commissioning the CMS pixel detector with Cosmic Rays

    CERN Document Server

    Heyburn, Bernadette

    2009-01-01

    commissioning activities in the CMS pixel detector. Results from cosmic ray studies will be presented, in addition to results obtained from the integration of the pixel detector within the CMS detector and various calibration and alignment analyses.

  12. Proceedings of PIXEL98 -- International pixel detector workshop

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.F.; Kwan, S. [eds.

    1998-08-01

    Experiments around the globe face new challenges of more precision in the face of higher interaction rates, greater track densities, and higher radiation doses, as they look for rarer and rarer processes, leading many to incorporate pixelated solid-state detectors into their plans. The highest-readout rate devices require new technologies for implementation. This workshop reviewed recent, significant progress in meeting these technical challenges. Participants presented many new results; many of them from the weeks--even days--just before the workshop. Brand new at this workshop were results on cryogenic operation of radiation-damaged silicon detectors (dubbed the Lazarus effect). Other new work included a diamond sensor with 280-micron collection distance; new results on breakdown in p-type silicon detectors; testing of the latest versions of read-out chip and interconnection designs; and the radiation hardness of deep-submicron processes.

  13. Development of a CMOS SOI pixel detector

    CERN Document Server

    Ishino, Hirokazu; Hazumi, M; Ikegami, Y; Kohriki, T; Tajima, O; Terada, S; Tsuboyama, T; Unno, Y; Ushiroda, Y; Ikeda, H; Hara, K; Ishino, H; Kawasaki, T; Miyake, H; Martin, E; Varner, G; Tajima, H; Ohno, M; Fukuda, K; Komatsubara, H; Ida, J

    2007-01-01

    We have developed a monolithic radiation pixel detector using silicon on insulator (SOI) with a commercial 0.15 m fullydepleted- SOI technology and a Czochralski high resistivity silicon substrate in place of a handle wafer. The SOI TEG (Test Element Group) chips with a size of 2.5 x 2.5mm2 consisting of 20 x 20 um2 pixels have been designed and manufactured. Performance tests with a laser light illumination and a . ray radioactive source indicate successful operation of the detector. We also brie y discuss the back gate effect as well as the simulation study.

  14. The ALICE silicon pixel detector readout electronics

    CERN Document Server

    Krivda, M; Burns, M; Caselle, M; Kluge, A; Manzari, V; Torcato de Matos, C; Morel, M; Riedler, P; Aglieri Rinella, G; Sandor, L; Stefanini, G

    2010-01-01

    The ALICE silicon pixel detector (SPD) constitutes the two innermost layers of the ALICE inner tracking system (ALICE Collaboration, 1999) [1]. The SPD is built with 120 detector modules (half-staves) and contains about 10 million pixels in total. The half-staves are connected to the off-detector electronics, housed in a control room 100 m away, via bidirectional optical links. The stream of data from the front-end electronics is processed in 20 VME readout modules, called routers, based on FPGAs. Three 2-channel link-receiver daughter cards, also based on FPGAs, are plugged in each router. Each link-receiver card receives data via the optical link from two half-staves, applies the zero suppression and passes them to the router to be processed and sent to the ALICE–DAQ system through the detector data link (DDL). The SPD control, configuration and data monitoring are performed using the VME interface embedded in the router.

  15. Charge sharing in silicon pixel detectors

    CERN Document Server

    Mathieson, K; Seller, P; Prydderch, M L; O'Shea, V; Bates, R L; Smith, K M; Rahman, M

    2002-01-01

    We used a pixellated hybrid silicon X-ray detector to study the effect of the sharing of generated charge between neighbouring pixels over a range of incident X-ray energies, 13-36 keV. The system is a room temperature, energy resolving detector with a Gaussian FWHM of 265 eV at 5.9 keV. Each pixel is 300 mu m square, 300 mu m deep and is bump bonded to matching read out electronics. The modelling packages MEDICI and MCNP were used to model the complete X-ray interaction and the subsequent charge transport. Using this software a model is developed which reproduces well the experimental results. The simulations are then altered to explore smaller pixel sizes and different X-ray energies. Charge sharing was observed experimentally to be 2% at 13 keV rising to 4.5% at 36 keV, for an energy threshold of 4 keV. The models predict that up to 50% of charge may be lost to the neighbouring pixels, for an X-ray energy of 36 keV, when the pixel size is reduced to 55 mu m.

  16. Testbeam Measurements with Pixel Sensors for the ATLAS Insertable b-Layer Project

    CERN Document Server

    George, Matthias; Quadt, Arnulf

    During the current long machine shutdown of the Large Hadron Collider (LHC) at CERN (Geneva), the innermost part of the ATLAS experiment, the pixel detector, is upgraded. The existing ATLAS pixel system is equipped with silicon sensors, organized in three barrel layers and three end cap disks on either side. To cope with the higher instantaneous luminosity in the future and for compensation of radiation damages due to past and near future running time of the experiment, a new fourth pixel detector layer is inserted into the existing system. This additional pixel layer is called “Insertable b-Layer” (IBL). The IBL is a detector system, based on silicon pixel sensors. Due to the smaller radius, compared to all other detectors of the ATLAS experiment, it has to be more radiation tolerant, than e.g. the current pixel layers. Furthermore, a reduced pixel size is necessary to cope with the expected higher particle flux. During the planning phase for the IBL upgrade, three different sensor technologies were comp...

  17. TFA pixel sensor technology for vertex detectors

    International Nuclear Information System (INIS)

    Pixel microvertex detectors at the SLHC and a future linear collider face very challenging issues: extreme radiation hardness, cooling design, interconnections density and fabrication cost. As an alternative approach we present a novel pixel detector based on the deposition of a Hydrogenated Amorphous Silicon (a-Si:H) film on top of a readout ASIC. The Thin-Film on ASIC (TFA) technology is inspired by an emerging microelectronic technology envisaged for visible light Active Pixel Sensor (APS) devices. We present results obtained with a-Si:H sensor films deposited on a glass substrate and on ASIC, including the radiation hardness of this material up to a fluence of 3.5x1015 p/cm2

  18. ATLAS Detector Interface Group

    CERN Document Server

    Mapelli, L

    Originally organised as a sub-system in the DAQ/EF-1 Prototype Project, the Detector Interface Group (DIG) was an information exchange channel between the Detector systems and the Data Acquisition to provide critical detector information for prototype design and detector integration. After the reorganisation of the Trigger/DAQ Project and of Technical Coordination, the necessity to provide an adequate context for integration of detectors with the Trigger and DAQ lead to organisation of the DIG as one of the activities of Technical Coordination. Such an organisation emphasises the ATLAS wide coordination of the Trigger and DAQ exploitation aspects, which go beyond the domain of the Trigger/DAQ project itself. As part of Technical Coordination, the DIG provides the natural environment for the common work of Trigger/DAQ and detector experts. A DIG forum for a wide discussion of all the detector and Trigger/DAQ integration issues. A more restricted DIG group for the practical organisation and implementation o...

  19. Performance of the ATLAS vertex detector

    CERN Document Server

    Barberis, D

    1999-01-01

    The ATLAS inner detector consists of three layers of silicon pixels, four double layers of silicon microstrips and a transition radiation tracker (straw tubes). The good performance of the track and vertex reconstruction algorithms is a direct consequence of the small radius (4.3, 10.1 and 13.2 cm), fine pitch (50*300 mu m) and low occupancy (<3*10/sup -4/ at design luminosity) of the pixel detectors. The full (GEANT3) detector simulation is used to evaluate the performance of the detector and of the reconstruction algorithms. Results are presented on track and vertex reconstruction efficiencies and resolutions, and on the separation between b-jets and jets produced by light quarks. (8 refs).

  20. SOIKID, SOI pixel detector combined with superconducting detector KID

    CERN Document Server

    Ishino, Hirokazu; Kida, Yosuke; Yamada, Yousuke

    2015-01-01

    We present the development status of the SOIKID, a detector combining the SOI pixel detector and the superconducting detector KID (Kinetic Inductance Detector). The aim of the SOIKID is to measure X-ray photon energy with the resolution better than that of the semiconductor detector. The silicon substrate is used as the X-ray photon absorber. The recoiled electron creates athermal phonons as well as the ionizing electron-hole pairs. The KID formed at one side of the substrate surface detects the phonons to measure the total energy deposited, while the SOI pixel detector formed on the other side of the substrate detects the ionized carries to measure the position. Combining the position and energy measurements, it is in principle possible to have the extremely high energy resolution.

  1. Test Beam Results of 3D Silicon Pixel Sensors for the ATLAS upgrade

    CERN Document Server

    Grenier, P; Barbero, M; Bates, R; Bolle, E; Borri, M; Boscardin, M; Buttar, C; Capua, M; Cavalli-Sforza, M; Cobal, M; Cristofoli, A; Dalla Betta, G F; Darbo, G; Da Via, C; Devetak, E; DeWilde, B; Di Girolamo, B; Dobos, D; Einsweiler, K; Esseni, D; Fazio, S; Fleta, C; Freestone, J; Gallrapp, C; Garcia-Sciveres, M; Gariano, G; Gemme, C; Giordani, M P; Gjersdal, H; Grinstein, S; Hansen, T; Hansen, T E; Hansson, P; Hasi, J; Helle, K; Hoeferkamp, M; Hugging, F; Jackson, P; Jakobs, K; Kalliopuska, J; Karagounis, M; Kenney, C; Köhler, M; Kocian, M; Kok, A; Kolya, S; Korokolov, I; Kostyukhin, V; Krüger, H; La Rosa, A; Lai, C H; Lietaer, N; Lozano, M; Mastroberardino, A; Micelli, A; Nellist, C; Oja, A; Oshea, V; Padilla, C; Palestri, P; Parker, S; Parzefall, U; Pater, J; Pellegrini, G; Pernegger, H; Piemonte, C; Pospisil, S; Povoli, M; Roe, S; Rohne, O; Ronchin, S; Rovani, A; Ruscino, E; Sandaker, H; Seidel, S; Selmi, L; Silverstein, D; Sjøbaek, K; Slavicek, T; Stapnes, S; Stugu, B; Stupak, J; Su, D; Susinno, G; Thompson, R; Tsung, J W; Tsybychev, D; Watts, S J; Wermes, N; Young, C; Zorzi, N

    2011-01-01

    Results on beam tests of 3D silicon pixel sensors aimed at the ATLAS Insertable-B-Layer and High Luminosity LHC (HL-LHC)) upgrades are presented. Measurements include charge collection, tracking efficiency and charge sharing between pixel cells, as a function of track incident angle, and were performed with and without a 1.6 T magnetic field oriented as the ATLAS Inner Detector solenoid field. Sensors were bump bonded to the front-end chip currently used in the ATLAS pixel detector. Full 3D sensors, with electrodes penetrating through the entire wafer thickness and active edge, and double-sided 3D sensors with partially overlapping bias and read-out electrodes were tested and showed comparable performance.

  2. ATLAS Detector Upgrade Prospects

    CERN Document Server

    Dobre, Monica; The ATLAS collaboration

    2016-01-01

    After the successful operation at the center-of-mass energies of 7 and 8 TeV in 2010 - 2012, the LHC is ramped up and successfully took data at the center-of-mass energies of 13 TeV in 2015. Meanwhile, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, delivering of the order of five times the LHC nominal instantaneous luminosity along with luminosity leveling. The ultimate goal is to extend the dataset from about few hundred fb−1 expected for LHC running to 3000 fb−1 by around 2035 for ATLAS and CMS. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for a new all-silicon tracker, significant upgrades of the calorimeter and muon systems, as well as improved triggers and data acquisition. ATLAS is also examining potential benefits of extens...

  3. Characterization of the CMS Pixel Detectors

    CERN Document Server

    Gu, Weihua

    2002-01-01

    In 2005 the Large Hadron Collider (LHC) will start the pp collisions at a high luminosity and at a center of mass energy of 14 TeV. The primary goal of the experimental programme is the search of the Higgs boson(s) and the supersymmetric particles. The programme is also proposed to detect a range of diverse signatures in order to provide guidance for future physics. The pixel detector system makes up the innermost part of the CMS experiment, which is one of the two general purpose detectors at the LHC. The main tasks of the system are vertex detection and flavor tagging. The high luminosity and the high particle multiplicity as well as the small bunch spacing at the LHC impose great challenges on the pixel detectors: radiation hardness of sensors and electronics, fast signal processing and a high granularity are the essential requirements. This thesis concentrates on the study of the suitability of two test stands, which are implemented to characterize the CMS pixel detectors: one is con-cerned with test puls...

  4. Readout architecture of the CMS pixel detector

    CERN Document Server

    Baur, R

    2001-01-01

    In this paper we describe the readout architecture of the CMS pixel chip. In column drain architecture the complex tasks of data buffering and trigger verification are performed in the circuit periphery. This allows to use a rather simple pixel unit cell which requires only a small number of transistors. The column periphery logic is designed for readout and trigger rates expected for full LHC luminosity. At LHC the high particle flux can create single event upsets in the readout chips. At small radii the upsets of logic cells could severely affect the performance of the pixel detector readout. We have therefore performed a measurement of the upset rate at the PSI pion beam and describe the consequences for the design of the readout chip. (5 refs).

  5. The ATLAS Insertable B-Layer Detector (IBL)

    CERN Document Server

    Huegging, F; The ATLAS collaboration

    2010-01-01

    The upgrade for the ATLAS detector will undergo different phases towards SLHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during a longer shutdown of the LHC machine, the so-called Phase I Upgrade. The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of about 3.2 cm. The IBL requires the development of several new technologies to cope with the increase of radiation and pixel occupancy as well as to improve the physics performance of the existing pixel detector. In order to achieve these goals the pixel size is reduced and the material budget is minimized by using new lightweight mechanical support materials and a CO2 based cooling system. Main component of the module development for the IBL is the new ATLAS pixel readout chip, FE-I4, designed in 130 nm technology which features an array of 80 by 336 pixels with a pixel size of 50x250 µ...

  6. Radiation Experience with the CMS Pixel Detector

    CERN Document Server

    Veszpremi, Viktor

    2015-01-01

    The CMS pixel detector is the innermost component of the CMS tracker occupying the region around the centre of CMS, where the LHC beams are crossed, between 4.3~cm and 30~cm in radius and 46.5~cm along the beam axis. It operates in a high-occupancy and high-radiation environment created by particle collisions. Studies of radiation damage effects to the sensors were performed throughout the first running period of the LHC. Leakage current, depletion voltage, pixel read-out thresholds, and hit finding efficiencies were monitored as functions of the increasing particle fluence. The methods and results of these measurements will be described together with their implications to detector operation as well as to performance parameters in offline hit reconstruction.

  7. Radiation experience with the CMS pixel detector

    Science.gov (United States)

    Veszpremi, V.

    2015-04-01

    The CMS pixel detector is the innermost component of the CMS tracker occupying the region around the centre of CMS, where the LHC beams are crossed, between 4.3 cm and 30 cm in radius and 46.5 cm along the beam axis. It operates in a high-occupancy and high-radiation environment created by particle collisions. Studies of radiation damage effects to the sensors were performed throughout the first running period of the LHC . Leakage current, depletion voltage, pixel readout thresholds, and hit finding efficiencies were monitored as functions of the increasing particle fluence. The methods and results of these measurements will be described together with their implications to detector operation as well as to performance parameters in offline hit reconstruction.

  8. Monolithic pixel detectors for high energy physics

    CERN Document Server

    Snoeys, W

    2013-01-01

    Monolithic pixel detectors integrating sensor matrix and readout in one piece of silicon have revolutionized imaging for consumer applications, but despite years of research they have not yet been widely adopted for high energy physics. Two major requirements for this application, radiation tolerance and low power consumption, require charge collection by drift for the most extreme radiation levels and an optimization of the collected signal charge over input capacitance ratio ( Q / C ). It is shown that monolithic detectors can achieve Q / C for low analog power consumption and even carryout the promise to practically eliminate analog power consumption, but combining suf fi cient Q / C , collection by drift, and integration of readout circuitry within the pixel remains a challenge. An overview is given of different approaches to address this challenge, with possible advantages and disadvantages.

  9. Realisation of serial powering of ATLAS pixel modules

    CERN Document Server

    Stockmanns, Tobias; Fischer, P; Hügging, Fabian Georg; Peric, Ivan; Runólfsson, Ogmundur; Wermes, Norbert

    2004-01-01

    Modern hybrid pixel detectors as they will be used for the next generation of high energy collider experiments like LHC avail deep sub micron technology for the readout electronics. To operate chips in this technology low supply voltages of 2.0 V to 2.5 V and high currents to achieve the desired performance are needed. Due to the long and low mass supply cables this high current leads to a significant voltage drop so that voltage fluctuations at the chip result, when the supply current changes. Therefore the parallel connection of the readout electronics with the power supplies imposes severe constraints on a detector with respect to voltage fluctuations and cable mass. To bypass this problem a new concept of serially connecting modules in a supply chain was developed. The basic idea of the concept, the potential risk and ways to minimize these risks are presented. In addition, studies of the implementation of this technology as an alternative for a possible upgrade of the ATLAS pixel detector are shown. In p...

  10. Characterization of the CMS pixel detectors

    OpenAIRE

    Gu, Weihua

    2002-01-01

    In 2005 the Large Hadron Collider (LHC) will start the pp collisions at a high luminosity and at a center of mass energy of 14 TeV. The primary goal of the experimental programme is the search of the Higgs boson(s) and the supersymmetric particles. The programme is also proposed to detect a range of diverse signatures in order to provide guidance for future physics. The pixel detector system makes up the innermost part of the CMS experiment, which is one of the two general purpose detectors a...

  11. The Belle II DEPFET pixel detector

    Science.gov (United States)

    Moser, Hans-Günther

    2016-09-01

    The Belle II experiment at KEK (Tsukuba, Japan) will explore heavy flavour physics (B, charm and tau) at the starting of 2018 with unprecedented precision. Charged particles are tracked by a two-layer DEPFET pixel device (PXD), a four-layer silicon strip detector (SVD) and the central drift chamber (CDC). The PXD will consist of two layers at radii of 14 mm and 22 mm with 8 and 12 ladders, respectively. The pixel sizes will vary, between 50 μm×(55-60) μm in the first layer and between 50 μm×(70-85) μm in the second layer, to optimize the charge sharing efficiency. These innermost layers have to cope with high background occupancy, high radiation and must have minimal material to reduce multiple scattering. These challenges are met using the DEPFET technology. Each pixel is a FET integrated on a fully depleted silicon bulk. The signal charge collected in the 'internal gate' modulates the FET current resulting in a first stage amplification and therefore very low noise. This allows very thin sensors (75 μm) reducing the overall material budget of the detector (0.21% X0). Four fold multiplexing of the column parallel readout allows read out a full frame of the pixel matrix in only 20 μs while keeping the power consumption low enough for air cooling. Only the active electronics outside the detector acceptance has to be cooled actively with a two phase CO2 system. Furthermore the DEPFET technology offers the unique feature of an electronic shutter which allows the detector to operate efficiently in the continuous injection mode of superKEKB.

  12. Pixel-Cluster Counting Luminosity Measurement in ATLAS

    CERN Document Server

    McCormack, William Patrick; The ATLAS collaboration

    2016-01-01

    A precision measurement of the delivered luminosity is a key component of the ATLAS physics program at the Large Hadron Collider (LHC). A fundamental ingredient of the strategy to control the systematic uncertainties affecting the absolute luminosity has been to compare the measurements of several luminometers, most of which use more than one counting technique. The level of consistency across the various methods provides valuable cross-checks as well as an estimate of the detector-related systematic uncertainties. This poster describes the development of a luminosity algorithm based on pixel-cluster counting in the recently installed ATLAS inner b-layer (IBL), using data recorded during the 2015 pp run at the LHC. The noise and background contamination of the luminosity-associated cluster count is minimized by a multi-component fit to the measured cluster-size distribution in the forward pixel modules of the IBL. The linearity, long-term stability and statistical precision of the cluster-counting method are ...

  13. ATLAS Detector : Performance and Upgrades

    CERN Document Server

    Oliveira Damazio, Denis; The ATLAS collaboration

    2016-01-01

    Describe the ATLAS detector and summarize most relevant and recent information about the detector performance in 2016 with LHC colliding bunches at sqrt(s)=13 TeV with luminosity above the nominal value. Describe the different upgrade phases previewed for the detector and main activities already ongoing.

  14. ATLAS end-cap detector

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Three scientists from the Institute of Nuclear Phyiscs at Novossibirsk with one of the end-caps of the ATLAS detector. The end-caps will be used to detect particles produced in the proton-proton collisions at the heart of the ATLAS experiment that are travelling close to the axis of the two beams.

  15. ATLAS Pixel Radiation Monitoring with HVPP4 System

    CERN Document Server

    Gorelov, Igor; Seidel, Sally; Toms, Konstantin

    2009-01-01

    In this talk we present the basis for the protocol for radiation monitoring of the ATLAS Pixel Sensors. The monitoring is based on a current measurement system, HVPP4. The status on the ATLAS HVPP4 system development is also presented.

  16. The Phase1 CMS Pixel detector upgrade

    CERN Document Server

    Tavolaro, Vittorio Raoul

    2016-01-01

    The pixel detector of the CMS experiment will be replaced in an extended end-of-year shutdown during winter 2016/2017 with an upgraded one able to cope with peak instantaneous luminosities beyond the nominal LHC instantaneous luminosity of $1 \\times 10^{34}$ cm$^{-2}$ s$^{-1}$. Under the conditions expected in the coming years, which will see an increase of a factor two in instantaneous luminosity, the present system would experience a dynamic inefficiency caused mainly by data losses due to buffer overflows. The Phase I upgrade of the CMS pixel detector, described in this paper, will operate at full efficiency at an instantaneous luminosity of $2 \\times 10^{34}$ cm$^{-2}$ s$^{-1}$, thanks to a new readout chip. The new detector will feature one additional tracking point both in the barrel and in the forward regions, while reducing the material budget as a result of a new CO$_{2}$ cooling system and optimised layout of the services. In this paper, the design and the technological choices of the Phase I detect...

  17. ATLAS Pixel IBL Modules Construction Experience and Developments for Future Upgrade

    CERN Document Server

    Gaudiello, Andrea; The ATLAS collaboration

    2015-01-01

    The first upgrade of the ATLAS Pixel Detector is the Insertable B-Layer (IBL), just installed in May 2014 in the core of ATLAS. Two different silicon sensor technologies, planar n-in-n and 3D, were used, connected with the new generation 130nm IBM CMOS FE-I4 readout chip via solder bump-bonds. Production quality control tests were set up to verify and rate the performance of the modules before integration into staves. An overview of module design and construction, the quality control results and production yield will be discussed, as well as future developments foreseen for future detector upgrades.

  18. ATLAS Pixel IBL modules construction experience and developments for future upgrade

    CERN Document Server

    Gaudiello, A; The ATLAS collaboration

    2014-01-01

    The first upgrade of the ATLAS Pixel Detector is the Insertable B-Layer (IBL), just installed in May 2014 in the core of ATLAS. Two different silicon sensor technologies, planar n-in-n and 3D, were used, connected with the new generation 130nm IBM CMOS FE-I4 readout chip via solder bump-bonds. Production quality control tests were set up to verify and rate the performance of the modules before integration into staves. An overview of module design and construction, the quality control results and production yield will be discussed, as well as future developments foreseen for future detector upgrades.

  19. ATLAS pixel IBL modules construction experience and developments for future upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gaudiello, A.

    2015-10-01

    The first upgrade of the ATLAS Pixel Detector is the Insertable B-Layer (IBL), installed in May 2014 in the core of ATLAS. Two different silicon sensor technologies, planar n-in-n and 3D, are used. Sensors are connected with the new generation 130 nm IBM CMOS FE-I4 read-out chip via solder bump-bonds. Production quality control tests were set up to verify and rate the performance of the modules before integration into staves. An overview of module design and construction, the quality control results and production yield will be discussed, as well as future developments foreseen for future detector upgrades.

  20. The pixel detector for the CMS phase-II upgrade

    CERN Document Server

    Dinardo, Mauro

    2015-01-01

    The high luminosity phase of the Large Hadron Collider (HL-LHC) requires a major pixel detector R\\&D effort to develop both readout chip and sensor that are capable to withstand unprecedented extremely high radiation. The target integrated luminosity of 3000~fb$^{-1}$, that the HL-LHC is expected to deliver over about 10 years of operation, translates into a hadron fluence of $2\\times10^{16}$~1MeV~eq.n.~/~cm$^2$, or equivalently 10~MGy of radiation dose in silicon, at about 3~cm from the interaction region where the first layer of the pixel detector could be located. The CMS collaboration has undertaken two baseline sensor R\\&D programs on thin n-on-p planar and 3D silicon sensor technologies. Together with the ATLAS collaboration it has also been established a common R\\&D effort for the development of the readout chip in the 65~nm CMOS technology. Status, progresses, and prospects of the CMS R\\&D effort are presented and discussed in this article.

  1. The pixel detector for the CMS phase-II upgrade

    Science.gov (United States)

    Dinardo, M. E.

    2015-04-01

    The high luminosity phase of the Large Hadron Collider (HL-LHC) requires a major pixel detector R&D effort to develop both readout chip and sensor that are capable to withstand unprecedented extremely high radiation. The target integrated luminosity of 3000 fb-1, that the HL-LHC is expected to deliver over about 10 years of operation, translates into a hadron fluence of 2×1016 1 MeV eq.n. / cm2, or equivalently 10 MGy of radiation dose in silicon, at about 3 cm from the interaction region where the first layer of the pixel detector could be located. The CMS collaboration has undertaken two baseline sensor R&D programs on thin n-on-p planar and 3D silicon sensor technologies. Together with the ATLAS collaboration it has also been established a common R&D effort for the development of the readout chip in the 65 nm CMOS technology. Status, progresses, and prospects of the CMS R&D effort are presented and discussed in this article.

  2. The pixel detector for the CMS phase-II upgrade

    International Nuclear Information System (INIS)

    The high luminosity phase of the Large Hadron Collider (HL-LHC) requires a major pixel detector R and D effort to develop both readout chip and sensor that are capable to withstand unprecedented extremely high radiation. The target integrated luminosity of 3000 fb−1, that the HL-LHC is expected to deliver over about 10 years of operation, translates into a hadron fluence of 2×1016 1 MeV eq.n. / cm2, or equivalently 10 MGy of radiation dose in silicon, at about 3 cm from the interaction region where the first layer of the pixel detector could be located. The CMS collaboration has undertaken two baseline sensor R and D programs on thin n-on-p planar and 3D silicon sensor technologies. Together with the ATLAS collaboration it has also been established a common R and D effort for the development of the readout chip in the 65 nm CMOS technology. Status, progresses, and prospects of the CMS R and D effort are presented and discussed in this article

  3. The ALICE Silicon Pixel Detector System

    CERN Document Server

    Fadmar Osmic, FO

    2006-01-01

    The European Organization for Particle Physics (CERN) in Geneva is currently constructing the Large Hadron Collider (LHC), which will allow the study of the subnuclear ranges of physics with an accuracy never achieved before. Within the LHC project, ALICE is to the study of strongly interacting matter at extreme densities and high temperatures. ALICE as many other modern High Energy Physics (HEP) experiments uses silicon pixel detectors for tracking close to the interaction point (IP). The ALICE Silicon Pixel Detector (SPD) will constitute the two innermost layers of ALICE, and will due to its high granularity provide precise tracking information. In heavy ion collisions, the track density could be as high as 80 tracks/cm2 in the first SPD layer. The SPD will provide tracking information at radii of 3.9 and 7.6 cm from the IP. It is a fundamental element for the study of the weak decays of the particles carrying heavy flavour, whose typical signature will be a secondary vertex separated from the primary verte...

  4. Commissioning the CMS pixel detector with Cosmic Rays

    CERN Document Server

    Heyburn, Bernadette

    2009-01-01

    The Compact Muon Solenoid (CMS) is one of two general purpose experiments at the Large Hadron Collider. The CMS experiment prides itself on an ambitious, all silicon based, tracking system. After almost 20 years of design and construction the CMS tracker detector has been installed and commissioned. The tracker detector consists of ten layers of silicon microstrip detectors while three layers of pixel detector modules are situated closest to the interaction point. The pixel detector consists of 66 million pixels of 100mm 150mm size, and is designed to use the shape of the actual charge distribution of charged particles to gain hit resolutions down to 12mm. This paper will focus on commissioning activities in the CMS pixel detector. Results from cosmic ray studies will be presented, in addition to results obtained from the integration of the pixel detector within the CMS detector and various calibration and alignment analyses.

  5. Detector performance of the ALICE silicon pixel detector

    CERN Document Server

    Cavicchioli, C

    2011-01-01

    The ALICE Silicon Pixel Detector (SPD) forms the two innermost layers of the ALICE Inner Tracking System (ITS). It consists of two barrel layers of hybrid silicon pixel detectors at radii of 39 and 76 mm. The physics targets of the ALICE experiment require that the material budget of the SPD is kept within approximate to 1\\%X(0) per layer. This has set some stringent constraints on the design and construction of the SPD. A unique feature of the ALICE SPD is that it is capable of providing a prompt trigger signal, called Fast-OR, which contributes to the L0 trigger decision. The pixel trigger system allows to apply a set of algorithms for the trigger selection, and its output is sent to the Central Trigger Processor (CTP). The detector has been installed in the experiment in summer 2007. During the first injection tests in June 2008 the SPD was able to record the very first sign of life of the LHC by registering secondary particles from the beam dumped upstream the ALICE experiment. In the following months the...

  6. Signal and noise of diamond pixel detectors at high radiation fluences

    Science.gov (United States)

    Tsung, J.-W.; Havranek, M.; Hügging, F.; Kagan, H.; Krüger, H.; Wermes, N.

    2012-09-01

    CVD diamond is an attractive material option for LHC vertex detectors mainly because of its strong radiation-hardness causal to its large band gap and strong lattice. In particular, pixel detectors operating close to the interaction point profit from tiny leakage currents and small pixel capacitances of diamond resulting in low noise figures when compared to silicon. On the other hand, the charge signal from traversing high energy particles is smaller in diamond than in silicon by a factor of about 2.2. Therefore, a quantitative determination of the signal-to-noise ratio (S/N) of diamond in comparison with silicon at fluences in excess of 1015 neq cm-2, which are expected for the LHC upgrade, is important. Based on measurements of irradiated diamond sensors and the FE-I4 pixel readout chip design and performance, we determine the signal and the noise of diamond pixel detectors irradiated with high particle fluences. To characterize the effect of the radiation damage on the materials and the signal decrease, the change of the mean free path λe/h of the charge carriers is determined as a function of irradiation fluence. We make use of the FE-I4 pixel chip developed for ATLAS upgrades to realistically estimate the expected noise figures: the expected leakage current at a given fluence is taken from calibrated calculations and the pixel capacitance is measured using a purposely developed chip (PixCap). We compare the resulting S/N figures with those for planar silicon pixel detectors using published charge loss measurements and the same extrapolation methods as for diamond. It is shown that the expected S/N of a diamond pixel detector with pixel pitches typical for LHC, exceeds that of planar silicon pixels at fluences beyond 1015 particles cm-2, the exact value only depending on the maximum operation voltage assumed for irradiated silicon pixel detectors.

  7. Novel Silicon n-in-p Pixel Sensors for the future ATLAS Upgrades

    CERN Document Server

    La Rosa, A; Macchiolo, A; Nisius, R; Pernegger, H; Richter,R H; Weigell, P

    2013-01-01

    In view of the LHC upgrade phases towards HL-LHC the ATLAS experiment plans to upgrade the Inner Detector with an all silicon system. The n-in-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost eectiveness, that allow for enlarging the area instrumented with pixel detectors. We present the characterization and performance of novel n-in-p planar pixel sensors produced by CiS (Germany) connected by bump bonding to the ATLAS readout chip FE-I3. These results are obtained before and after irradiation up to a fluence of 1016 1-MeV $n_{eq}cm^{-2}$, and prove the operability of this kind of sensors in the harsh radiation environment foreseen for the pixel system at HL-LHC. We also present an overview of the new pixel production, which is on-going at CiS for sensors compatible with the new ATLAS readout chip FE-I4.

  8. Novel silicon n-in-p pixel sensors for the future ATLAS upgrades

    Science.gov (United States)

    La Rosa, A.; Gallrapp, C.; Macchiolo, A.; Nisius, R.; Pernegger, H.; Richter, R. H.; Weigell, P.

    2013-08-01

    In view of the LHC upgrade phases towards HL-LHC the ATLAS experiment plans to upgrade the inner detector with an all silicon system. The n-in-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost effectiveness that allow for enlarging the area instrumented with pixel detectors. We present the characterization and performance of novel n-in-p planar pixel sensors produced by CiS (Germany) connected by bump bonding to the ATLAS readout chip FE-I3. These results are obtained before and after irradiation up to a fluence of 10161-MeV neq cm-2, and prove the operability of this kind of sensors in the harsh radiation environment foreseen for the pixel system at HL-LHC. We also present an overview of the new pixel production, which is on-going at CiS for sensors compatible with the new ATLAS readout chip FE-I4.

  9. The ATLAS Detector Control System

    CERN Document Server

    Schlenker, S; Kersten, S; Hirschbuehl, D; Braun, H; Poblaguev, A; Oliveira Damazio, D; Talyshev, A; Zimmermann, S; Franz, S; Gutzwiller, O; Hartert, J; Mindur, B; Tsarouchas, CA; Caforio, D; Sbarra, C; Olszowska, J; Hajduk, Z; Banas, E; Wynne, B; Robichaud-Veronneau, A; Nemecek, S; Thompson, PD; Mandic, I; Deliyergiyev, M; Polini, A; Kovalenko, S; Khomutnikov, V; Filimonov, V; Bindi, M; Stanecka, E; Martin, T; Lantzsch, K; Hoffmann, D; Huber, J; Mountricha, E; Santos, HF; Ribeiro, G; Barillari, T; Habring, J; Arabidze, G; Boterenbrood, H; Hart, R; Marques Vinagre, F; Lafarguette, P; Tartarelli, GF; Nagai, K; D'Auria, S; Chekulaev, S; Phillips, P; Ertel, E; Brenner, R; Leontsinis, S; Mitrevski, J; Grassi, V; Karakostas, K; Iakovidis, G.; Marchese, F; Aielli, G

    2011-01-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC), constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub-detectors as well as the common experimental infrastructure are supervised by the Detector Control System (DCS). The DCS enables equipment supervision of all ATLAS sub-detectors by using a system of >130 server machines running the industrial SCADA product PVSS. This highly distributed system reads, processes and archives of the order of 106 operational parameters. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, and manage the communication with external systems such as the LHC. This contribution firstly describes the status of the ATLAS DCS and the experience gained during the LHC commissioning and the first physics data taking operation period. Secondly, the future evolution and maintenance constraints for the coming years an...

  10. Sensor studies of n+-in-n planar pixel sensors for the ATLAS upgrades

    International Nuclear Information System (INIS)

    The ATLAS experiment at the LHC is planning upgrades of its pixel detector to cope with the luminosity increase foreseen in the coming years within the transition from LHC to Super-LHC (SLHC/HL-LHC). Associated with an increase in instantaneous luminosity is a rise of the target integrated luminosity from 730 fb-1 to about 3000 fb-1 which directly translates into significantly higher radiation damage. These upgrades consist of the installation of a 4th pixel layer, the insertable b-layer IBL, with a mean sensor radius of only 32 mm from the beam axis, before 2016/17. In addition, the complete pixel detector will be exchanged before 2020/21. Being very close to the beam, the radiation damage of the IBL sensors might be as high as 5.1015neqcm-2 at their end-of-life. The total fluence of the innermost pixel layer after the SLHC upgrade might even reach 2.1016neqcm-2. We have performed systematic measurements of planar pixel detectors based on the current ATLAS readout chip FE-I3 and obtained first experience with the new IBL readout chip FE-I4. First results will be presented.

  11. 3D silicon pixel detectors for the High-Luminosity LHC

    CERN Document Server

    Lange, J; Cavallaro, E; Förster, F; Grinstein, S; Paz, I López; Manna, M; Pellegrini, G; Quirion, D; Terzo, S; Furelos, D Vázquez

    2016-01-01

    3D silicon pixel detectors have been investigated as radiation-hard candidates for the innermost layers of the HL-LHC upgrade of the ATLAS pixel detector. 3D detectors are already in use today in the ATLAS IBL and AFP experiments. These are based on 50x250 um2 large pixels connected to the FE-I4 readout chip. Detectors of this generation were irradiated to HL-LHC fluences and demonstrated excellent radiation hardness with operational voltages as low as 180 V and power dissipation of 12--15 mW/cm2 at a fluence of about 1e16 neq/cm2, measured at -25 degree C. Moreover, to cope with the higher occupancies expected at the HL-LHC, a first run of a new generation of 3D detectors designed for the HL-LHC was produced at CNM with small pixel sizes of 50x50 and 25x100 um2, matched to the FE-I4 chip. They demonstrated a good performance in the laboratory and in beam tests with hit efficiencies of about 97% at already 1--2V before irradiation.

  12. The LHC Luminosity Upgrade and Related ATLAS Detector Plans

    CERN Document Server

    Hartjes, F; The ATLAS collaboration

    2009-01-01

    3rd draft of the proposed talk about Atlas Upgrade for MPGD2009 (Instrumentation conference on gaseous pixel detectors) on Friday June 12, 2009. I concentrated my presentation on the upgrade plans and schedule of the LHC and on detector technologies for the new Inner Tracker, putting less emphasis on other subdetectors. Compared to the 2nd draft I modified and clarified a few items about trigger, muon detection and calorimetry and did a number of cosmetic adaptions.

  13. Semiconductor Pixel detectors and their applications in life sciences

    International Nuclear Information System (INIS)

    Recent advances in semiconductor technology allow construction of highly efficient and low noise pixel detectors of ionizing radiation. Steadily improving quality of front end electronics enables fast digital signal processing in each pixel which offers recording of more complete information about each detected quantum (energy, time, number of particles). All these features improve an extend applicability of pixel technology in different fields. Some applications of this technology especially for imaging in life sciences will be shown (energy and phase sensitive X-ray radiography and tomography, radiography with heavy charged particles, neutron radiography, etc). On the other hand a number of obstacles can limit the detector performance if not handled. The pixel detector is in fact an array of individual detectors (pixels), each of them has its own efficiency, energy calibration and also noise. The common effort is to make all these parameters uniform for all pixels. However an ideal uniformity can be never reached. Moreover, it is often seen that the signal in one pixel can affect the neighbouring pixels due to various reasons (e.g. charge sharing). All such effects have to be taken into account during data processing to avoid false data interpretation. A brief view into the future of pixel detectors and their applications including also spectroscopy, tracking and dosimetry is given too. Special attention is paid to the problem of detector segmentation in context of the charge sharing effect.

  14. Status of the digital pixel array detector for protein crystallography

    CERN Document Server

    Datte, P; Beuville, E; Endres, N; Druillole, F; Luo, L; Millaud, J E; Xuong, N H

    1999-01-01

    A two-dimensional photon counting digital pixel array detector is being designed for static and time resolved protein crystallography. The room temperature detector will significantly enhance monochromatic and polychromatic protein crystallographic through-put data rates by more than three orders of magnitude. The detector has an almost infinite photon counting dynamic range and exhibits superior spatial resolution when compared to present crystallographic phosphor imaging plates or phosphor coupled CCD detectors. The detector is a high resistivity N-type Si with a pixel pitch of 150x150 mu m, and a thickness of 300 mu m, and is bump bonded to an application specific integrated circuit. The event driven readout of the detector is based on the column architecture and allows an independent pixel hit rate above 1 million photons/s/pixel. The device provides energy discrimination and sparse data readout which yields minimal dead-time. This type of architecture allows a continuous (frameless) data acquisition, a f...

  15. The radiation environment in the ATLAS inner detector

    CERN Document Server

    Dawson, I

    2000-01-01

    The radiation environment in the inner detector has been simulated using the particle transport program FLUKA with a recent description of the ATLAS experiment. Given in this paper are particle fluences and doses at positions relevant to the three inner detector subsystems; the Pixel, SCT and TRT detectors. In addition, studies are reported on in which (1) information concerning the optimization of the inner detector neutron-moderators is obtained and (2) the impact of including additional vacuum-equipment material is assessed. (19 refs).

  16. Status of the CMS Phase I pixel detector upgrade

    Science.gov (United States)

    Spannagel, S.

    2016-09-01

    A new pixel detector for the CMS experiment is being built, owing to the instantaneous luminosities anticipated for the Phase I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking while featuring a significantly reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and comprises a low-threshold comparator. These improvements allow the new pixel detector to sustain and improve the efficiency of the current pixel tracker at the increased requirements imposed by high luminosities and pile-up. This contribution gives an overview of the design of the upgraded pixel detector and the status of the upgrade project, and presents test beam performance measurements of the production read-out chip.

  17. Status of the CMS Phase I Pixel Detector Upgrade

    CERN Document Server

    AUTHOR|(CDS)2083994

    2016-01-01

    A new pixel detector for the CMS experiment is being built, owing to the instantaneous luminosities anticipated for the Phase~I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking while featuring a significantly reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and comprises a low-threshold comparator. These improvements allow the new pixel detector to sustain and improve the efficiency of the current pixel tracker at the increased requirements imposed by high luminosities and pile-up. This contribution gives an overview of the design of the upgraded pixel detector and the status of the upgrade project, and presents test beam performance measurements of the production read-out chip.

  18. Small pixel CZT detector for hard X-ray spectroscopy

    Science.gov (United States)

    Wilson, Matthew David; Cernik, Robert; Chen, Henry; Hansson, Conny; Iniewski, Kris; Jones, Lawrence L.; Seller, Paul; Veale, Matthew C.

    2011-10-01

    A new small pixel cadmium zinc telluride (CZT) detector has been developed for hard X-ray spectroscopy. The X-ray performance of four detectors is presented and the detectors are analysed in terms of the energy resolution of each pixel. The detectors were made from CZT crystals grown by the travelling heater method (THM) bonded to a 20×20 application specific integrated circuit (ASIC) and data acquisition (DAQ) system. The detectors had an array of 20×20 pixels on a 250 μm pitch, with each pixel gold-stud bonded to an energy resolving circuit in the ASIC. The DAQ system digitised the ASIC output with 14 bit resolution, performing offset corrections and data storage to disc in real time at up to 40,000 frames per second. The detector geometry and ASIC design was optimised for X-ray spectroscopy up to 150 keV and made use of the small pixel effect to preferentially measure the electron signal. A 241Am source was used to measure the spectroscopic performance and uniformity of the detectors. The average energy resolution (FWHM at 59.54 keV) of each pixel ranged from 1.09±0.46 to 1.50±0.57 keV across the four detectors. The detectors showed good spectral performance and uniform response over almost all pixels in the 20×20 array. A large area 80×80 pixel detector will be built that will utilise the scalable design of the ASIC and the large areas of monolithic spectroscopic grade THM grown CZT that are now available. The large area detector will have the same performance as that demonstrated here.

  19. A low mass pixel detector upgrade for CMS

    CERN Document Server

    Kaestli, Hans-Christian

    2010-01-01

    and commissioning of the present pixel detector, we intend to upgrade the whole pixel detector in 2015. The main focus is on lowering the material budget and adding more tracking points. We will present the design of a new low mass pixel system consisting of 4 barrel layers and 3 end cap disks on each side. The design comprises of thin detector modules and a lightweight mechanical support structure using CO2 cooling. In addition, large efforts have been made to move material from the services out of the tracking regi...

  20. The phase-II ATLAS pixel tracker upgrade: layout and mechanics.

    CERN Document Server

    Sharma, Abhishek; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment will upgrade its tracking detector during the Phase-II LHC shutdown, to better take advantage of the increased luminosity of the HL-LHC. The upgraded tracker will consist of silicon-strip modules surrounding a pixel detector, and will likely cover an extended eta range, perhaps as far as |eta|<4.0. A number of layout and supporting-structure options are being considered for the pixel detector, with the final choice expected to be made in early 2017. The proposed supporting structures are based on lightweight, highly-thermally-conductive carbon-based materials and are cooled by evaporative carbon dioxide. The various layouts will be described and a description of the supporting structures will be presented, along with results from testing of prototypes.

  1. Test su fascio di prototipi del rivelatore a pixel per l'esperimento ATLAS

    CERN Document Server

    Matera, Andrea; Andreazza, A

    2005-01-01

    Silicon pixel detectors, developed to meet LHC requirements, were tested within the ATLAS collaboration in the H8 beam at CERN. Different sensor designs were studied using various versions of front end electronics developed during the R&D process. In this thesis a detailed experimental study of the overall performance of both irradiated and unirradiated detectors is presented, with special enphasis on efficiency, charge collection and spatial resolution. For the first time their dependence on timewalk is carefully investigated. Possible solutions to avoid spatial resolution deterioration due to timewalk are presented and discussed.

  2. New pixelized Micromegas detector for the COMPASS experiment

    CERN Document Server

    Neyret, Damien; Bedfer, Yann; Burtin, Etienne; d'Hose, Nicole; Giganon, Arnaud; Ketzer, Bernhard; Konorov, Igor; Kunne, Fabienne; Magnon, Alain; Marchand, Claude; Paul, Bernard; Platchkov, Stéphane; Vandenbroucke, Maxence

    2009-01-01

    New Micromegas (Micro-mesh gaseous detectors) are being developed in view of the future physics projects planned by the COMPASS collaboration at CERN. Several major upgrades compared to present detectors are being studied: detectors standing five times higher luminosity with hadron beams, detection of beam particles (flux up to a few hundred of kHz/mm^2, 10 times larger than for the present detectors) with pixelized read-out in the central part, light and integrated electronics, and improved robustness. Studies were done with the present detectors moved in the beam, and two first pixelized prototypes are being tested with muon and hadron beams in real conditions at COMPASS. We present here this new project and report on two series of tests, with old detectors moved into the beam and with pixelized prototypes operated in real data taking condition with both muon and hadron beams.

  3. Slim edge studies, design and quality control of planar ATLAS IBL pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wittig, Tobias

    2013-05-08

    One of the four large experiments at the LHC at CERN is the ATLAS detector, a multi purpose detector. Its pixel detector, composed of three layers, is the innermost part of the tracker. As it is closest to the interaction point, it represents a basic part of the track reconstruction. Besides the requested high resolution one main requirement is the radiation hardness. In the coming years the radiation damage will cause deteriorations of the detector performance. With the planned increase of the luminosity, especially after the upgrade to the High Luminosity LHC, this radiation damage will be even intensified. This circumstance necessitates a new pixel detector featuring improved radiation hard sensors and read-out chips. The present shutdown of the LHC is already utilized to insert an additional b-layer (IBL) into the existing ATLAS pixel detector. The current n-in-n pixel sensor design had to be adapted to the new read-out chip and the module specifications. The new stave geometry requests a reduction of the inactive sensor edge. In a prototype wafer production all modifications have been implemented. The sensor quality control was supervised which led to the decision of the final sensor thickness. In order to evaluate the performance of the sensor chip assemblies with an innovative slim edge design, they have been operated in test beam setups before and after irradiation. Furthermore, the quality control of the planar IBL sensor wafer production was supervised from the stage of wafer delivery to that before the flip chip process to ensure a sufficient amount of functional sensors for the module production.

  4. The ATLAS Diamond Beam Monitor : Luminosity Detector on the LHC

    CERN Document Server

    Schaefer, Douglas; The ATLAS collaboration

    2015-01-01

    After the first three years of the LHC running the ATLAS experiment extracted it's pixel detector system to refurbish and re-position the optical readout drivers and install a new barrel layer of pixels. The experiment has also taken advantage of this access to also install a set of beam monitoring telescopes with pixel sensors, four each in the forward and backward regions. These telescopes were assembled based on chemical vapour deposited (CVD) diamond sensors to survive in this high radiation environment without needing extensive cooling. This talk will describe the lessons learned in construction and commissioning of the ATLAS x Diamond Beam Monitor (DBM). We will show results from the construction quality assurance tests, commissioning performance, including results from cosmic ray running in early 2015 and also expected first results from LHC run 2 collisions.

  5. The ATLAS Diamond Beam Monitor: Luminosity detector at the LHC

    Science.gov (United States)

    Schaefer, D. M.

    2016-07-01

    After the first three years of the LHC running, the ATLAS experiment extracted its pixel detector system to refurbish and re-position the optical readout drivers and install a new barrel layer of pixels. The experiment has also taken advantage of this access to install a set of beam monitoring telescopes with pixel sensors, four each in the forward and backward regions. These telescopes are based on chemical vapor deposited (CVD) diamond sensors to survive in this high radiation environment without needing extensive cooling. This paper describes the lessons learned in construction and commissioning of the ATLAS Diamond Beam Monitor (DBM). We show results from the construction quality assurance tests and commissioning performance, including results from cosmic ray running in early 2015.

  6. Monolithic CMOS pixel detector for international linear collider vertex detection

    Indian Academy of Sciences (India)

    J E Brau; O Igonkina; N Sinew; D Strom; C Baltay; W Emmet; H Neal; D Rabinowitz

    2007-12-01

    A monolithic CMS pixel detector is under development for an ILC experiment. This chronopixel array provides a time stamp resolution of one bunch crossing, a critical feature for background suppression. The status of this effort is summarized.

  7. Serial powering Proof of principle demonstration of a scheme for the operation of a large pixel detector at the LHC

    CERN Document Server

    Ta, D B; Hugging, F; Fischer, P; Grosse-Knetter, J; Runólfsson, O; Wermes, N

    2006-01-01

    Large detectors in high-energy physics experiments are mostly built from many identical individual building blocks, called modules, which possess individual parts of the services. The modules are usually also powered by parallel power lines such that they can be individually operated. The main disadvantage of such a parallel powering scheme is the vast amount of necessary power cables which constitutes also a large amount of material in the path of the particles to be detected. For the LHC experiments already now this is a major problem for the optimal performance of the detectors and it has become evident, that for an upgrade programme alternative powering schemes must be investigated. We prove and demonstrate here for the example of the large scale pixel detector of ATLAS that Serial Powering of pixel modules is a viable alternative. A powering scheme using dedicated voltage regulators and modified flex hybrid circuits has been devised and implemented for ATLAS pixel modules. The modules have been intensive...

  8. A new CMS pixel detector for the LHC luminosity upgrade

    OpenAIRE

    Favaro, Carlotta; Collaboration, for the CMS

    2011-01-01

    The CMS inner pixel detector system is planned to be replaced during the first phase of the LHC luminosity upgrade. The plans foresee an ultra low mass system with four barrel layers and three disks on either end. With the expected increase in particle rates, the electronic readout chain will be changed for fast digital signals. An overview of the envisaged design options for the upgraded CMS pixel detector is given, as well as estimates of the tracking and vertexing performance.

  9. Study of FPGA and GPU based pixel calibration for ATLAS IBL

    CERN Document Server

    Dopke, J; The ATLAS collaboration; Flick, T; Gabrielli, A; Grosse-Knetter, J; Krieger, N; Kugel, A; Polini, A; Schroer, N

    2010-01-01

    The insertable B-layer (IBL) is a new stage of the ATLAS pixel detector to be installed around 2014. 12 million pixel are attached to new FE-I4 readout ASICs, each controlling 26680 pixel. Compared to the existing FE-I3 based detector the new system features higher readout speed of 160Mbit/s per ASIC and simplified control. For calibration defined charges are applied to all pixels and the resulting time-over-threshold values are evaluated. In the present system multiple sets of two custom VME cards which employ a combination of FPGA and DSP technology are used for I/O interfacing, formatting and processing. The execution time of 51s to perform a threshold scan on a FE-I3 module of 46080 pixel is composed of 8s control, 29s transfer, 7.5s histogramming and 7s analysis. Extrapolating to FE-I4 the times per module of 53760 pixels are 12ms, 5.8s, 9.4s and 8.3s, a total of 23.5s. We present a proposal for a novel approach to the dominant tasks for FE-I4: histogramming and ananlysis. An FPGA-based histogramming uni...

  10. The ATLAS Inner Detector commissioning and calibration

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acharya, Bobby Samir; Adams, David; Addy, Tetteh; Adelman, Jahred; Adorisio, Cristina; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov , Andrei; Aktas, Adil; Alam, Mohammad; Alam, Muhammad Aftab; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Andeen, Timothy; Anders, Christoph Falk; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonelli, Stefano; Antos, Jaroslav; Antunovic, Bijana; Anulli, Fabio; Aoun, Sahar; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Argyropoulos, Theodoros; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Arutinov, David; Asai, Makoto; Asai, Shoji; Silva, José; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asner, David; Asquith, Lily; Assamagan, Ketevi; Astvatsatourov, Anatoli; Atoian, Grigor; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Austin, Nicholas; Avolio, Giuseppe; Avramidou, Rachel Maria; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Badescu, Elisabeta; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Mark; Baker, Oliver Keith; Baker, Sarah; Baltasar Dos Santos Pedrosa, Fernando; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Baranov, Sergei; Barashkou, Andrei; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Bartsch, Detlef; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Bazalova, Magdalena; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Graham; Beck, Hans Peter; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Ayda; Beddall, Andrew; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Bendel, Markus; Benedict, Brian Hugues; Benekos, Nektarios; Benhammou, Yan; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernabéu , José; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertin, Antonio; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blocker, Craig; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bocci, Andrea; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Böser, Sebastian; Bogaerts, Joannes Andreas; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bondarenko, Valery; Bondioli, Mario; Boonekamp, Maarten; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boulahouache, Chaouki; Bourdarios, Claire; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodet, Eyal; Bromberg, Carl; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, Françcois; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Byatt, Tom; Caballero, Jose; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Camarri, Paolo; Cameron, David; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D.; Carron Montero, Sebastian; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Tcherniatine, Valeri; Chesneanu, Daniela; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chevallier, Florent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Clark, Allan G.; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H.; Coggeshall, James; Cogneras, Eric; Colijn, Auke-Pieter; Collard, Caroline; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Cranshaw, Jack; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cwetanski, Peter; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dallison, Steve; Daly, Colin; Dam, Mogens; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Merlin; Davison, Adam; Dawson, Ian; Daya, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De Mora, Lee; De Oliveira Branco, Miguel; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Deng, Wensheng; Denisov, Sergey; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djilkibaev, Rashid; Djobava, Tamar; do Vale, Maria Aline Barros; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Dobson, Ellie; Dobson, Marc; Doglioni, Caterina; Doherty, Tom; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Dris, Manolis; Dubbert, Jörg; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen , Michael; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Egorov, Kirill; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ermoline, Iouri; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Facius, Katrine; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Fayard, Louis; Fayette, Florent; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Feligioni, Lorenzo; Felzmann, Ulrich; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernandes, Bruno; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; Freestone, Julian; French, Sky; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galyaev, Eugene; Gan, K K; Gao, Yongsheng; Gaponenko, Andrei; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gautard, Valerie; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; Georgatos, Fotios; George, Simon; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilchriese, Murdock; Gilewsky, Valentin; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Girtler, Peter; Giugni, Danilo; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goggi, Virginio; Goldfarb, Steven; Goldin, Daniel; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçcalo, Ricardo; Gonella, Laura; Gong, Chenwei; González de la Hoz, Santiago; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Green, Barry; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregor, Ingrid-Maria; Grenier, Philippe; Griesmayer, Erich; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Grishkevich, Yaroslav; Groh, Manfred; Groll, Marius; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guicheney, Christophe; Guida, Angelo; Guillemin, Thibault; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Gusakov, Yury; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hajduk, Zbigniew; Hakobyan, Hrachya; Haller, Johannes; Hamacher, Klaus; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, John Renner; Hansen, Peter Henrik; Hansl-Kozanecka, Traudl; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayakawa, Takashi; Hayward, Helen; Haywood, Stephen; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Mathieu; Hellman, Sten; Helsens, Clement; Hemperek, Tomasz; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Henß, Tobias; Hernández Jiménez, Yesenia; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Horazdovsky, Tomas; Hori, Takuya; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howe, Travis; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Irles Quiles, Adrian; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Isobe, Tadaaki; Issever, Cigdem; Istin, Serhat; Itoh, Yuki; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jen-La Plante, Imai; Jenni, Peter; Jež, Pavel; Jézéquel, Stéphane; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joffe, David; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jorge, Pedro; Joseph, John; Juranek, Vojtech; Jussel, Patrick; Kabachenko, Vasily; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karagoz, Muge; Karnevskiy, Mikhail; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasmi, Azzedine; Kass, Richard; Kastanas, Alex; Kastoryano, Michael; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kayumov, Fred; Kazanin, Vassili; Kazarinov, Makhail; Keates, James Robert; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kelly, Marc; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Khakzad, Mohsen; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoriauli, Gia; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kind, Oliver; Kind, Peter; King, Barry; Kirk, Julie; Kirsch, Guillaume; Kirsch, Lawrence; Kiryunin, Andrey; Kisielewska, Danuta; Kittelmann, Thomas; Kiyamura, Hironori; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Klute, Markus; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Koblitz, Birger; Kocian, Martin; Kocnar, Antonin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kolos, Serguei; Kolya, Scott; Komar, Aston; Komaragiri, Jyothsna Rani; Kondo, Takahiko; Kono, Takanori; Konoplich, Rostislav; Konovalov, Serguei; Konstantinidis, Nikolaos; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostka, Peter; Kostyukhin, Vadim; Kotov, Serguei; Kotov, Vladislav; Kotov, Konstantin; Kourkoumelis, Christine; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Henri; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumshteyn, Zinovii; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labbe, Julien; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Rémi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lane, Jenna; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Lazzaro, Alfio; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; Lebedev, Alexander; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lefebvre, Michel; Legendre, Marie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leitner, Rupert; Lellouch, Daniel; Lellouch, Jeremie; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Leyton, Michael; Li, Haifeng; Li, Xuefei; Liang, Zhihua; Liang, Zhijun; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lilley, Joseph; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Tiankuan; Liu, Yanwen; Livan, Michele; Lleres, Annick; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Lockwitz, Sarah; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Losada, Marta; Loscutoff, Peter; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Lovas, Lubomir; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Luehring, Frederick; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magalhaes Martins, Paulo Jorge; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahmood, A.; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makouski, Mikhail; Makovec, Nikola; Malecki, Piotr; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mambelli, Marco; Mameghani, Raphael; Mamuzic, Judita; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manjavidze, Ioseb; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mapelli, Alessandro; Mapelli, Livio; March , Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Marti-Garcia, Salvador; Martin, Alex; Martin, Andrew; Martin, Brian; Martin, Brian; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Tim; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massol, Nicolas; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maxfield, Stephen; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mc Donald, Jeffrey; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCubbin, Norman; McFarlane, Kenneth; McGlone, Helen; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Menke, Sven; Meoni, Evelin; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W. Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Mills, Corrinne; Mills, Bill; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Misawa, Shigeki; Misiejuk, Andrzej; Mitrevski, Jovan; Mitsou, Vasiliki A.; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Moore, Roger; Mora Herrera, Clemencia; Moraes, Arthur; Morais, Antonio; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murillo Garcia, Raul; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nairz, Armin Michael; Nakamura, Koji; Nakano, Itsuo; Nakatsuka, Hiroki; Nanava, Gizo; Napier, Austin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nderitu, Simon Kirichu; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicoletti, Giovanni; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforov, Andriy; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Notz, Dieter; Novakova, Jana; Nozaki, Mitsuaki; Nožička, Miroslav; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Ortega, Eduardo; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Ottersbach, John; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Owen, Mark; Owen, Simon; Oyarzun, Alejandro; Ozcan, Veysi Erkcan; Ozone, Kenji; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pajchel, Katarina; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadopoulou, Theodora; Park, Su-Jung; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor , Gabriella; Pataraia, Sophio; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Peak, Lawrence; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Alan; Phillips, Peter William; Piacquadio, Giacinto; Piccinini, Maurizio; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pinto, Belmiro; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Pleier, Marc-Andre; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Ponsot, Patrick; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Popule, Jiri; Portell Bueso, Xavier; Porter, Robert; Pospelov, Guennady; Pospisil, Stanislav; Potekhin, Maxim; Potrap, Igor; Potter, Christina; Potter, Christopher; Potter, Keith; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Prasad, Srivas; Pravahan, Rishiraj; Pribyl, Lukas; Price, Darren; Price, Lawrence; Prichard, Paul; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qi, Ming; Qian, Jianming; Qian, Weiming; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radeka, Veljko; Radescu, Voica; Radics, Balint; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Rauscher, Felix; Rauter, Emanuel; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renkel, Peter; Rescia, Sergio; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Roa Romero, Diego Alejandro; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodriguez, Diego; Rodriguez Garcia, Yohany; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romanov, Victor; Romeo, Gaston; Romero Maltrana, Diego; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosenbaum, Gabriel; Rosselet, Laurent; Rossetti, Valerio; Rossi, Leonardo Paolo; Rotaru, Marina; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryan, Patrick; Rybkin, Grigori; Rzaeva, Sevda; Saavedra, Aldo; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandhu, Pawan; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sanny, Bernd; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sasaki, Osamu; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Savard, Pierre; Savine, Alexandre; Savinov, Vladimir; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scannicchio, Diana; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R.~Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schreiner, Alexander; Schroeder, Christian; Schroer, Nicolai; Schroers, Marcel; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Scott, Bill; Searcy, Jacob; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Seliverstov, Dmitry; Sellden, Bjoern; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shimojima, Makoto; Shin, Taeksu; Shmeleva, Alevtina; Shochet, Mel; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Siegrist, James; Sijacki, Djordje; Silbert, Ohad; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloper, John erik; Smakhtin, Vladimir; Smirnov, Sergei; Smirnov, Yuri; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Sondericker, John; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St. Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stancu, Stefan Nicolae; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Stastny, Jan; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Kyle; Stewart, Graeme; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Sturm, Philipp; Su, Dong; Soh, Dart-yin; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Takuya; Suzuki, Yu; Sykora, Ivan; Sykora, Tomas; Szymocha, Tadeusz; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taga, Adrian; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Ryan P.; Taylor, Wendy; Teixeira-Dias, Pedro; Ten Kate, Herman; Teng, Ping-Kun; Tennenbaum-Katan, Yaniv-David; Terada, Susumu; Terashi, Koji; Terron, Juan; Terwort, Mark; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Stan; Thompson, Emily; Thompson, Peter; Thompson, Paul; Thompson, Ray; Thomson, Evelyn; Thun, Rudolf; Tic, Tomas; Tikhomirov, Vladimir; Tikhonov, Yury; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomasek, Lukas; Tomasek, Michal; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tuggle, Joseph; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Tuts, Michael; Twomey, Matthew Shaun; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urkovsky, Evgeny; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; van der Graaf, Harry; van der Kraaij, Erik; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasilyeva, Lidia; Vassilakopoulos, Vassilios; Vazeille, Francois; Vellidis, Constantine; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Viehhauser, Georg; Villa, Mauro; Villani, Giulio; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Viret, Sébastien; Virzi, Joseph; Vitale , Antonio; Vitells, Ofer; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Matteo; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vudragovic, Dusan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Peter; Walbersloh, Jorg; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Wang, Chiho; Wang, Haichen; Wang, Jin; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Wastie, Roy; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Marc; Weber, Manuel; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wenaus, Torre; Wendler, Shanti; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Werthenbach, Ulrich; Wessels, Martin; Whalen, Kathleen; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Williams, Eric; Williams, Hugh; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wraight, Kenneth; Wright, Catherine; Wright, Dennis; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wulf, Evan; Wynne, Benjamin; Xaplanteris, Leonidas; Xella, Stefania; Xie, Song; Xu, Da; Xu, Neng; Yamada, Miho; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Zhaoyu; Yao, Weiming; Yao, Yushu; Yasu, Yoshiji; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yuan, Li; Yurkewicz, Adam; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zambrano, Valentina; Zanello, Lucia; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Zenis, Tibor; Zenonos, Zenonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Qizhi; Zhang, Xueyao; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zivkovic, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu

    2010-01-01

    The ATLAS Inner Detector is a composite tracking system consisting of silicon pixels, silicon strips and straw tubes in a 2 T magnetic field. Its installation was completed in August 2008 and the detector took part in data- taking with single LHC beams and cosmic rays. The initial detector operation, hardware commissioning and in-situ calibrations are described. Tracking performance has been measured with 7.6 million cosmic-ray events, collected using a tracking trigger and reconstructed with modular pattern-recognition and fitting software. The intrinsic hit efficiency and tracking trigger efficiencies are close to 100%. Lorentz angle measurements for both electrons and holes, specific energy-loss calibration and transition radiation turn-on measurements have been performed. Different alignment techniques have been used to reconstruct the detector geometry. After the initial alignment, a transverse impact parameter resolution of 22.1+/-0.9 {\\mu}m and a relative momentum resolution {\\sigma}p/p = (4.83+/-0.16)...

  11. The ATLAS detector: status and performance in Run-II

    CERN Document Server

    Schramm, Steven; The ATLAS collaboration

    2016-01-01

    During the first extended shutdown of the LHC, in 2013 and 2014, the ATLAS detector has undergone several improvements. A new silicon pixel detector layer has been added inside of the existing layers, enhancing vertex identification, while the coverage of the muon detector has been significantly expanded. Many other detector systems have been upgraded to handle the higher expected pileup conditions in the coming years and to generally improve their performance. This document describes these upgrades and the resulting impact on the identification and performance of standard physics objects. Preliminary results using the first $\\sim80\\,\\mathrm{pb}^{-1}$ of 2015 data at $\\sqrt{s}=13\\,\\mathrm{TeV}$ are presented, demonstrating the capability of ATLAS to perform both searches and measurements.

  12. Silicon Pixel Detectors for Synchrotron Applications

    CERN Document Server

    Stewart, Graeme Douglas

    Recent advances in particle accelerators have increased the demands being placed on detectors. Novel detector designs are being implemented in many different areas including, for example, high luminosity experiments at the LHC or at next generation synchrotrons. The purpose of this thesis was to characterise some of these novel detectors. The first of the new detector types is called a 3D detector. This design was first proposed by Parker, Kenney and Segal (1997). In this design, doped electrodes are created that extend through the silicon substrate. When compared to a traditional photodiode with electrodes on the opposing surfaces, the 3D design can combine a reasonable detector thickness with a small electrode spacing resulting in fast charge collection and limited charge sharing. The small electrode spacing leads to the detectors having lower depletion voltages. This, combined with the fast collection time, makes 3D detectors a candidate for radiation hard applications. These applications include the upgra...

  13. Simulations of planar pixel sensors for the ATLAS high luminosity upgrade

    CERN Document Server

    Calderini, G; Dinu, N; Lounis, A; Marchiori, G

    2011-01-01

    A physics-based device simulation was used to study the charge carrier distribution and the electric field configuration inside simplified two-dimensional models for pixel layouts based on the ATLAS pixel sensor. In order to study the behavior of such detectors under different levels of irradiation, a three-level defect model was implemented into the simulation. Using these models, the number of guard rings, the dead edge width and the detector thickness were modified to investigate their influence on the detector depletion at the edge and on its internal electric field distribution in order to optimize the layout parameters. Simulations indicate that the number of guard rings can be reduced by a few hundred microns with respect to the layout used for the present ATLAS sensors, with a corresponding extension of the active area of the sensors. A study of the inter-pixel capacitance and of the capacitance between the implants and the high-voltage contact as a function of several parameters affecting the geometr...

  14. The ATLAS Detector Safety System

    CERN Multimedia

    Helfried Burckhart; Kathy Pommes; Heidi Sandaker

    The ATLAS Detector Safety System (DSS) has the mandate to put the detector in a safe state in case an abnormal situation arises which could be potentially dangerous for the detector. It covers the CERN alarm severity levels 1 and 2, which address serious risks for the equipment. The highest level 3, which also includes danger for persons, is the responsibility of the CERN-wide system CSAM, which always triggers an intervention by the CERN fire brigade. DSS works independently from and hence complements the Detector Control System, which is the tool to operate the experiment. The DSS is organized in a Front- End (FE), which fulfills autonomously the safety functions and a Back-End (BE) for interaction and configuration. The overall layout is shown in the picture below. ATLAS DSS configuration The FE implementation is based on a redundant Programmable Logical Crate (PLC) system which is used also in industry for such safety applications. Each of the two PLCs alone, one located underground and one at the s...

  15. The Phase-1 upgrade of the CMS silicon pixel detector

    CERN Document Server

    Menichelli, Mauro

    2015-01-01

    The present CMS pixel detector will be replaced in the shutdown period 2016/17 by an upgraded version due to the following reasons: increased luminosity at reduced bunch spacing ( from 7 x 10 33 cm - 2 s - 1 at 50 ns bunch spacing to 2 x 10 34 cm - 2 s - 1 at 25 ns bunch spacing) in the LHC , and radiation damage effects that will significantly degrade the present detector. The new upgraded detector will have higher tracking efficiency and lower mass with four barrel layer and three forward/backward disks to provide higher hit pixel coverage out to pseudorapidities of ±2.5. In this paper we will describe the new pixel detector focus ing mostly on the barrel detector design, construction and expected performances

  16. The Phase-1 Upgrade of the CMS Pixel Detector

    CERN Document Server

    Klein, Katja

    2016-01-01

    The CMS experiment features a pixel detector with three barrel layers and two disks per side, corresponding to an active silicon area of 1\\,m$^2$. The detector delivered high-quality data during LHC Run~1. However, the CMS pixel detector was designed for the nominal instantaneous LHC luminosity of $1\\cdot 10^{34}\\,$cm$^{-2}$s$^{-1}$. It is expected that the instantaneous luminosity will increase and reach twice the design value before Long Shutdown 3, scheduled for 2023. Under such conditions, the present readout chip would suffer from data loss due to buffer overflow, leading to significant inefficiencies of up to~16\\,\\%. The CMS collaboration is presently constructing a new pixel detector to replace the present device during the winter shutdown 2016/2017. The design of this new detector will be outlined, the construction status summarized and the performance described.

  17. Forward Detectors and Physics at ATLAS

    CERN Document Server

    Soni, N; The ATLAS collaboration

    2010-01-01

    This talk will cover the current Atlas forward detectors LUCID, ZDC, ALFA and the upgrade project AFP. The current forward detectors are dedicated for the luminosity measurements and the forward physics measurements at first low luminosity LHC phase. The AFP project will significantly extend the ATLAS physics program at high luminosities by tagging the very forward tagging protons.

  18. First Results of the Pixel Detector Performance in 2015

    CERN Document Server

    CMS Collaboration

    2015-01-01

    The CMS pixel detector consists of 66 million pixels arranged in three cylindric layers in the barrel region and two end-cap disks on each side of the barrel. It is used for seeding in track reconstruction. It is also the most important tool for vertex reconstruction. This report documents the good fraction of the pixel detector at the start of data-taking in 2015, its efficiency at low luminosity and 50 ns bunch-spacing, and the first measurements of the Lorentz-angle. Details are also given on the timing adjustment in the first collisions, and verification of the full depletion voltage.

  19. Commissioning of the ATLAS inner detector with cosmic rays

    Science.gov (United States)

    Hayward, H.

    2008-07-01

    The inner detector of the ATLAS experiment is in the process of being commissioned using cosmic ray events. First tests were performed in the SR1 assembly hall at CERN with both barrel and endcaps for all different detector technologies (pixels and microstrips silicon detectors as well as straw tubes with additional transition radiation detection). Integration with the rest of the ATLAS sub-detectors is now being done in the ATLAS cavern. The full software chain has been set up in order to reconstruct and analyse this kind of events. Final detector decoders have been developed, different pattern recognition algorithms and track fitters have been validated as well as the various alignment and calibration methods. The infrastructure to deal with conditions data coming from the data acquisition, detector control system and calibration runs has been put in place, allowing also to apply alignment and calibration constants. The software has also been essential to monitor the detector performance during data taking. Detector efficiencies, noise occupancies and resolutions have been studied in detail and compared with those obtained from simulation.

  20. Characterization of active CMOS sensors for capacitively coupled pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, Toko; Gonella, Laura; Janssen, Jens; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Institute of Physics, University of Bonn (Germany); Peric, Ivan [Institut fuer Prozessdatenverarbeitung und Elektronik, Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2015-07-01

    Active CMOS pixel sensor is one of the most attractive candidates for detectors of upcoming particle physics experiments. In contrast to conventional sensors of hybrid detectors, signal processing circuit can be integrated in the active CMOS sensor. The characterization and optimization of the pixel circuit are indispensable to obtain a good performance from the sensors. The prototype chips of the active CMOS sensor were fabricated in the AMS 180nm and L-Foundry 150 nm CMOS processes, respectively a high voltage and high resistivity technology. Both chips have a charge sensitive amplifier and a comparator in each pixel. The chips are designed to be glued to the FEI4 pixel readout chip. The signals from 3 pixels of the prototype chips are capacitively coupled to the FEI4 input pads. We have performed lab tests and test beams to characterize the prototypes. In this presentation, the measurement results of the active CMOS prototype sensors are shown.

  1. Charge induction in semiconductor detectors with pixellated structure

    NARCIS (Netherlands)

    Samedov, Victor V.

    2007-01-01

    Considerable interest is now being attracted to the next generation of compound semiconductor detectors with pixellated structure in application to x-ray and gamma-astronomy, nuclear spectroscopy and nuclear medicine. The spatial resolution of this type of detectors is mainly determined by the proce

  2. Micro-pixel accuracy centroid displacement estimation and detector calibration

    CERN Document Server

    Zhai, Chengxing; Goullioud, Renaud; Nemati, Bijan

    2011-01-01

    Precise centroid estimation plays a critical role in accurate astrometry using telescope images. Conventional centroid estimation fits a template point spread function (PSF) to the image data. Because the PSF is typically not known to high accuracy due to wavefront aberrations and uncertainties in optical system, a simple Gaussian function is commonly used. PSF knowledge error leads to systematic errors in the conventional centroid estimation. In this paper, we present an accurate centroid estimation algorithm by reconstructing the PSF from well sampled (above Nyquist frequency) pixelated images. In the limit of an ideal focal plane array whose pixels have identical response function (no inter-pixel variation), this method can estimate centroid displacement between two 32$\\times$32 images to sub-micropixel accuracy. Inter-pixel response variations exist in real detectors, {\\it e.g.}~CCDs, which we can calibrate by measuring the pixel response of each pixel in Fourier space. The Fourier transforms of the inter...

  3. A low mass pixel detector upgrade for CMS

    CERN Document Server

    Kästli, H C

    2010-01-01

    The CMS pixel detector has been designed for a peak luminosity of 10^34cm-2s-1 and a total dose corresponding to 2 years of LHC operation at a radius of 4 cm from the interaction region. Parts of the pixel detector will have to be replaced until 2015. The detector performance will be degraded for two reasons: radiation damage of the innermost layers and the planned increase of the LHC peak luminosity by a factor of 2-3. Based on the experience in planning, constructing and commissioning of the present pixel detector, we intend to upgrade the whole pixel detector in 2015. The main focus is on lowering the material budget and adding more tracking points. We will present the design of a new low mass pixel system consisting of 4 barrel layers and 3 end cap disks on each side. The design comprises of thin detector modules and a lightweight mechanical support structure using CO2 cooling. In addition, large efforts have been made to move material from the services out of the tracking region.

  4. Design, production, and reliability of the new ATLAS pixel opto-boards

    International Nuclear Information System (INIS)

    New fiber optical transceivers, opto-boards, were designed and produced to replace the first generation opto-boards installed in the ATLAS pixel detector and for the new pixel layer, the insertable barrel layer (IBL). Each opto-board contains one 12-channel PIN array and two 12-channel VCSEL arrays along with associated receiver and driver ASICs. The new opto-board design benefits from the production and operational experience of the first generation opto-boards and contains several improvements. The new opto-boards have been successfully installed. Additionally, a set of the new opto-boards have been subjected to an accelerated lifetime experiment at 85 C and 85% relative humidity for over 1,000 hours. No failures were observed. We are cautiously optimistic that the new opto-boards will survive until the shutdown for the detector upgrade for the high-luminosity Large Hadron Collider (HL-LHC)

  5. The Level 0 Pixel Trigger System for the ALICE Silicon Pixel Detector: implementation, testing and commissioning

    CERN Document Server

    Aglieri-Rinella, G

    2008-01-01

    The ALICE Silicon Pixel Detector transmits 1200 Fast-OR signals every 100 ns on 120 optical readout channels. They indicate the presence of at least one hit in the pixel matrix of each readout chip. The ALICE Level 0 Pixel Trigger System extracts them, processes them and delivers an input signal to the Central Trigger Processor for the first level trigger decision within a latency of 800 ns. This paper describes tests and measurements made on the system during the qualification and commissioning phases. These included Bit Error Rate tests on the Fast-OR data path, the measurement of the overall process latency and the recording of calibration data with cosmic rays. The first results of the operation of the Pixel Trigger System with the SPD detector in the ALICE experiment are also presented.

  6. Hybrid Pixel Detectors for gamma/X-ray imaging

    Science.gov (United States)

    Hatzistratis, D.; Theodoratos, G.; Zografos, V.; Kazas, I.; Loukas, D.; Lambropoulos, C. P.

    2015-09-01

    Hybrid pixel detectors are made by direct converting high-Z semi-insulating single crystalline material coupled to complementary-metal-oxide semiconductor (CMOS) readout electronics. They are attractive because direct conversion exterminates all the problems of spatial localization related to light diffusion, energy resolution, is far superior from the combination of scintillation crystals and photomultipliers and lithography can be used to pattern electrodes with very fine pitch. We are developing 2-D pixel CMOS ASICs, connect them to pixilated CdTe crystals with the flip chip and bump bonding method and characterize the hybrids. We have designed a series of circuits, whose latest member consists of a 50×25 pixel array with 400um pitch and an embedded controller. In every pixel a full spectroscopic channel with time tagging information has been implemented. The detectors are targeting Compton scatter imaging and they can be used for coded aperture imaging too. Hybridization using CMOS can overcome the limit put on pixel circuit complexity by the use of thin film transistors (TFT) in large flat panels. Hybrid active pixel sensors are used in dental imaging and other applications (e.g. industrial CT etc.). Thus X-ray imaging can benefit from the work done on dynamic range enhancement methods developed initially for visible and infrared CMOS pixel sensors. A 2-D CMOS ASIC with 100um pixel pitch to demonstrate the feasibility of such methods in the context of X-ray imaging has been designed.

  7. The ATLAS tracker strip detector for HL-LHC

    CERN Document Server

    Cormier, Kyle James Read; The ATLAS collaboration

    2016-01-01

    As part of the ATLAS upgrades for the High Luminsotiy LHC (HL-LHC) the current ATLAS Inner Detector (ID) will be replaced by a new Inner Tracker (ITk). The ITk will consist of two main components: semi-conductor pixels at the innermost radii, and silicon strips covering larger radii out as far as the ATLAS solenoid magnet including the volume currently occupied by the ATLAS Transition Radiation Tracker (TRT). The primary challenges faced by the ITk are the higher planned read out rate of ATLAS, the high density of charged particles in HL-LHC conditions for which tracks need to be resolved, and the corresponding high radiation doses that the detector and electronics will receive. The ITk strips community is currently working on designing and testing all aspects of the sensors, readout, mechanics, cooling and integration to meet these goals and a Technical Design Report is being prepared. This talk is an overview of the strip detector component of the ITk, highlighting the current status and the road ahead.

  8. The CMS pixel detector and challenges for its upgrade

    CERN Document Server

    Bean, A

    2009-01-01

    The CMS pixel detector was installed in July 2008 in the innermost region of CMS. It consists of 66M pixels of 100um*150um size over 3 barrel layers and 2 forward disks. The pixel system has been successfully commissioned. Over 80K muon tracks were taken during the CMS cosmic runs and the detector is ready for the first physics run. The pixel detector, so close to the interaction point, will be exposed to a very high radiation dose. The estimation is that the first barrel layer, located at 4.3 cm from the beam pipe, after 3 years of LHC running at full luminosity, will become inefficient for position resolution reconstruction. For this reason, a substitution of a new pixel detector in 2014 has been already scheduled. At the same time an LHC luminosity upgrade is also planned. While a simple rebuild of the current detector could be done, the expectation is to design a new one, optimized for higher luminosity. This paper describes the present system and its performance as well as possible solutions for the upgr...

  9. Small-Scale Readout Systems Prototype for the STAR PIXEL Detector

    OpenAIRE

    Szelezniak, Michal A.

    2008-01-01

    A prototype readout system for the STAR PIXEL detector in the Heavy Flavor Tracker (HFT) vertex detector upgrade is presented. The PIXEL detector is a Monolithic Active Pixel Sensor (MAPS) based silicon pixel vertex detector fabricated in a commercial CMOS process that integrates the detector and front-end electronics layers in one silicon die. Two generations of MAPS prototypes designed specifically for the PIXEL are discussed. We have constructed a prototype telescope system consisting of t...

  10. Development of n-in-p pixel modules for the ATLAS upgrade at HL-LHC

    Science.gov (United States)

    Macchiolo, A.; Nisius, R.; Savic, N.; Terzo, S.

    2016-09-01

    Thin planar pixel modules are promising candidates to instrument the inner layers of the new ATLAS pixel detector for HL-LHC, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. 100-200 μm thick sensors, interconnected to FE-I4 read-out chips, have been characterized with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements are reported for devices before and after irradiation up to a fluence of 14 ×1015 neq /cm2 . The charge collection and tracking efficiency of the different sensor thicknesses are compared. The outlook for future planar pixel sensor production is discussed, with a focus on sensor design with the pixel pitches (50×50 and 25×100 μm2) foreseen for the RD53 Collaboration read-out chip in 65 nm CMOS technology. An optimization of the biasing structures in the pixel cells is required to avoid the hit efficiency loss presently observed in the punch-through region after irradiation. For this purpose the performance of different layouts have been compared in FE-I4 compatible sensors at various fluence levels by using beam test data. Highly segmented sensors will represent a challenge for the tracking in the forward region of the pixel system at HL-LHC. In order to reproduce the performance of 50×50 μm2 pixels at high pseudo-rapidity values, FE-I4 compatible planar pixel sensors have been studied before and after irradiation in beam tests at high incidence angle (80°) with respect to the short pixel direction. Results on cluster shapes, charge collection and hit efficiency will be shown.

  11. ATLAS Beam Pipe and LUCID Detector

    CERN Multimedia

    2008-01-01

    The film will show you the descending and installation of the last element of the LHC beam pipe. Around the beam pipe is installed an ATLAS detector called LUCID. The same kind of element is on both sides of ATLAS. This detector measures the rate of the collisions in ATLAS. You can also get more information about LUCID detector by watching the part were Vincent Hedberg is interviewed (00:01:20). Almost at the end of the film there is the interview of the Raymond Veness. He tells about the delicate operations of finishing the vacuum system and the LHC (00:26:00).

  12. Design methodology: edgeless 3D ASICs with complex in-pixel processing for pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fahim Farah, Fahim Farah [Northwestern U. (main); Deptuch, Grzegorz W. [Fermilab; Hoff, James R. [Fermilab; Mohseni, Hooman [Northwestern U. (main)

    2015-08-28

    The design methodology for the development of 3D integrated edgeless pixel detectors with in-pixel processing using Electronic Design Automation (EDA) tools is presented. A large area 3 tier 3D detector with one sensor layer and two ASIC layers containing one analog and one digital tier, is built for x-ray photon time of arrival measurement and imaging. A full custom analog pixel is 65μm x 65μm. It is connected to a sensor pixel of the same size on one side, and on the other side it has approximately 40 connections to the digital pixel. A 32 x 32 edgeless array without any peripheral functional blocks constitutes a sub-chip. The sub-chip is an indivisible unit, which is further arranged in a 6 x 6 array to create the entire 1.248cm x 1.248cm ASIC. Each chip has 720 bump-bond I/O connections, on the back of the digital tier to the ceramic PCB. All the analog tier power and biasing is conveyed through the digital tier from the PCB. The assembly has no peripheral functional blocks, and hence the active area extends to the edge of the detector. This was achieved by using a few flavors of almost identical analog pixels (minimal variation in layout) to allow for peripheral biasing blocks to be placed within pixels. The 1024 pixels within a digital sub-chip array have a variety of full custom, semi-custom and automated timing driven functional blocks placed together. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout. The methodology uses the Cadence design platform, however it is not limited to this tool.

  13. Analysis methods of testbeam data of irradiated ATLAS Planar Pixel Sensors

    International Nuclear Information System (INIS)

    The ATLAS Pixel detector is the innermost subdetector of the ATLAS-Experiment at CERN. The development of new sensor technologies is going on as detector-upgrades are foreseen to cope with higher fluences and more pile-up-events after accelerator upgrades (SLHC). For testing properties of sensors, testbeams are used. Beam-telescopes such as the EUDET-Telescope have been used for measuring the exact position of beam-tracks to determine the properties of different sensor technologies. Several sensors with different designs (e.g. slim edges) were read-out in testbeam after irradiation at differing fluences (up to 2.1016 neqcm-2) and voltages (up to 1500 V) to observe the performance of the sensors under conditions up to the end-lifetime of the ATLAS detector. The reconstruction chain of the so called Eutelescope framework including adaptions and the evaluation of the reconstructed data are presented. Typical results including hit- and charge-efficiency plots are shown and interpreted.

  14. Novel integrated CMOS pixel structures for vertex detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kleinfelder, Stuart; Bieser, Fred; Chen, Yandong; Gareus, Robin; Matis, Howard S.; Oldenburg, Markus; Retiere, Fabrice; Ritter, Hans Georg; Wieman, Howard H.; Yamamoto, Eugene

    2003-10-29

    Novel CMOS active pixel structures for vertex detector applications have been designed and tested. The overriding goal of this work is to increase the signal to noise ratio of the sensors and readout circuits. A large-area native epitaxial silicon photogate was designed with the aim of increasing the charge collected per struck pixel and to reduce charge diffusion to neighboring pixels. The photogate then transfers the charge to a low capacitance readout node to maintain a high charge to voltage conversion gain. Two techniques for noise reduction are also presented. The first is a per-pixel kT/C noise reduction circuit that produces results similar to traditional correlated double sampling (CDS). It has the advantage of requiring only one read, as compared to two for CDS, and no external storage or subtraction is needed. The technique reduced input-referred temporal noise by a factor of 2.5, to 12.8 e{sup -}. Finally, a column-level active reset technique is explored that suppresses kT/C noise during pixel reset. In tests, noise was reduced by a factor of 7.6 times, to an estimated 5.1 e{sup -} input-referred noise. The technique also dramatically reduces fixed pattern (pedestal) noise, by up to a factor of 21 in our tests. The latter feature may possibly reduce pixel-by-pixel pedestal differences to levels low enough to permit sparse data scan without per-pixel offset corrections.

  15. ATLAS detector records its first curved muon

    CERN Document Server

    2007-01-01

    The barrel muon spectrometer of the ATLAS detector has acquired its first cosmic event in a magnetic field produced by the barrel toroid magnet. This was an important test of the chambers in their final configurations, and marked the first triggering and measurement of curved cosmic ray muons in ATLAS.

  16. The Pixels find their way to the heart of ATLAS

    CERN Multimedia

    Kevin Einsweiler

    Since the last e-news article on the Pixel Detector in December 2006, there has been much progress. At that time, we were just about to receive the Beryllium beampipe, and to integrate the innermost layer of the Pixel Detector around it. This innermost layer is referred to as the B-layer because of the powerful role it plays in finding the secondary vertices that are the key signature for the presence of b-quarks, and with somewhat greater difficulty, c-quarks and tau leptons. The integration of the central 7m long beampipe into the Pixel Detector was completed in December, and the B-layer was successfully integrated around it. In January this year, we had largely completed the central 1.5m long detector, including the three barrel layers and the three disk layers on each end of the barrel. Although this region contains all of the 80 million readout channels, it cannot be integrated into the Inner Detector without additional services and infrastructure. Therefore, the next step was to add the Service Panels...

  17. Low mass hybrid pixel detectors for the high luminosity LHC upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gonella, Laura

    2013-10-15

    Reducing material in silicon trackers is of major importance for a good overall detector performance, and poses severe challenges to the design of the tracking system. To match the low mass constraints for trackers in High Energy Physics experiments at high luminosity, dedicated technological developments are required. This dissertation presents three technologies to design low mass hybrid pixel detectors for the high luminosity upgrades of the LHC. The work targets specifically the reduction of the material from the detector services and modules, with novel powering schemes, flip chip and interconnection technologies. A serial powering scheme is prototyped, featuring a new regulator concept, a control and protection element, and AC-coupled data transmission. A modified flip chip technology is developed for thin, large area Front-End chips, and a via last Through Silicon Via process is demonstrated on existing pixel modules. These technologies, their developments, and the achievable material reduction are discussed using the upgrades of the ATLAS pixel detector as a case study.

  18. Low mass hybrid pixel detectors for the high luminosity LHC upgrade

    International Nuclear Information System (INIS)

    Reducing material in silicon trackers is of major importance for a good overall detector performance, and poses severe challenges to the design of the tracking system. To match the low mass constraints for trackers in High Energy Physics experiments at high luminosity, dedicated technological developments are required. This dissertation presents three technologies to design low mass hybrid pixel detectors for the high luminosity upgrades of the LHC. The work targets specifically the reduction of the material from the detector services and modules, with novel powering schemes, flip chip and interconnection technologies. A serial powering scheme is prototyped, featuring a new regulator concept, a control and protection element, and AC-coupled data transmission. A modified flip chip technology is developed for thin, large area Front-End chips, and a via last Through Silicon Via process is demonstrated on existing pixel modules. These technologies, their developments, and the achievable material reduction are discussed using the upgrades of the ATLAS pixel detector as a case study.

  19. Design Methodology: ASICs with complex in-pixel processing for Pixel Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fahim, Farah [Fermilab

    2014-10-31

    The development of Application Specific Integrated Circuits (ASIC) for pixel detectors with complex in-pixel processing using Computer Aided Design (CAD) tools that are, themselves, mainly developed for the design of conventional digital circuits requires a specialized approach. Mixed signal pixels often require parasitically aware detailed analog front-ends and extremely compact digital back-ends with more than 1000 transistors in small areas below 100μm x 100μm. These pixels are tiled to create large arrays, which have the same clock distribution and data readout speed constraints as in, for example, micro-processors. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout.

  20. Readout chip for the CMS pixel detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Rossini, Marco, E-mail: marco.rossini@phys.ethz.ch

    2014-11-21

    For the CMS experiment a new pixel detector is planned for installation during the extended shutdown in winter 2016/2017. Among the changes of the detector modified front end electronics will be used for higher efficiency at peak luminosity of the LHC and faster readout. The first prototype versions of the new readout chip have been designed and produced. The results of qualification and calibration for the new chip are presented in this paper.

  1. TCAD Simulations of ATLAS Pixel Guard Ring and Edge Structure for SLHC Upgrade

    CERN Document Server

    Lounis, A; The ATLAS collaboration; Calderini, G; Marchiori, G; Benoit, M; Dinu, N

    2010-01-01

    In this work, the magnitude of the electric field and the depletion inside a simplified two dimensional model of the ATLAS planar pixel sensor for the insertable b-layer and the super-LHC upgrade have been studied. The parameters influencing the breakdown behavior were studied using a finite-element method to solve the drift-diffusion equations coupled to Poisson's equation. Using these models, the number of guard rings, dead edge width and sensor's thickness were modified with respect to the ATLAS actual pixel sensor to investigate their influence on the sensor's depletion at the edge and on its internal electrical field distribution. The goal of the simulation is to establish a model to discriminate between different designs and to select the most optimized to fit the needs in radiation hardness and low material budget of ATLAS inner detector during super-LHC operation. A three defects level model has been implemented in the simulations to study the behavior of such sensors under different level of irradiat...

  2. Leakage current measurements on pixelated CdZnTe detectors

    International Nuclear Information System (INIS)

    In the field of the R and D of a new generation hard X-ray cameras for space applications we focus on the use of pixelated CdTe or CdZnTe semiconductor detectors. They are covered with 64 (0.9x0.9 mm2) or 256 (0.5x0.5 mm2) pixels, surrounded by a guard ring and operate in the energy ranging from several keV to 1 MeV, at temperatures between -20 and +20 oC. A critical parameter in the characterisation of these detectors is the leakage current per pixel under polarisation (∼50-500 V/mm). In operation mode each pixel will be read-out by an integrated spectroscopy channel of the multi-channel IDeF-X ASIC currently developed in our lab. The design and functionality of the ASIC depends directly on the direction and value of the current. A dedicated and highly insulating electronics circuit is designed to automatically measure the current in each individual pixel, which is in the order of tens of pico-amperes. Leakage current maps of different CdZnTe detectors of 2 and 6 mm thick and at various temperatures are presented and discussed. Defect density diagnostics have been performed by calculation of the activation energy of the material

  3. Development of n-in-p pixel modules for the ATLAS Upgrade at HL-LHC

    CERN Document Server

    Macchiolo, Anna; Savic, Natascha; Terzo, Stefano

    2016-01-01

    Thin planar pixel modules are promising candidates to instrument the inner layers of the new ATLAS pixel detector for HL-LHC, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. 100-200 $\\mu$m thick sensors, interconnected to FE-I4 read-out chips, have been characterized with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements are reported for devices before and after irradiation up to a fluence of $14\\times10^{15}$ n$_{eq}$/cm$^2$. The charge collection and tracking efficiency of the different sensor thicknesses are compared. The outlook for future planar pixel sensor production is discussed, with a focus on sensor design with the pixel pitches (50x50 and 25x100 $\\mu$m$^2$) foreseen for the RD53 Collaboration read-out chip in 65 nm CMOS technology. An optimization of the biasing structures in the pixel cells is required to avoid the hit efficiency loss presently observed in the punch-through region...

  4. Development of n-in-p pixel modules for the ATLAS upgrade at HL-LHC

    CERN Document Server

    Macchiolo, A.; Savic, N.; Terzo, S.

    2016-01-01

    Thin planar pixel modules are promising candidates to instrument the inner layers of the new ATLAS pixel detector for HL-LHC, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. 100–200 μm thick sensors, interconnected to FE-I4 read-out chips, have been characterized with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements are reported for devices before and after irradiation up to a fluence of 14×1015 neq/cm2. The charge collection and tracking efficiency of the different sensor thicknesses are compared. The outlook for future planar pixel sensor production is discussed, with a focus on sensor design with the pixel pitches (50×50 and 25×100 μm2) foreseen for the RD53 Collaboration read-out chip in 65 nm CMOS technology. An optimization of the biasing structures in the pixel cells is required to avoid the hit efficiency loss presently observed in the punch-through region after irradiation. F...

  5. KPIX a pixel detector imaging chip

    CERN Document Server

    Cadeddu, S; Caria, M

    2002-01-01

    We present a VLSI custom device, named KPIX, developed in a 0.6 mu m CMOS technology. The circuit is dedicated to readout solid-state detectors covering large areas (on the order of square centimetre) and featuring very small currents. KPIX integrates 1024 channels (current amplifiers) and 8 ADCs on a 15.5x4 mm sup 2 area. Both an analogue and digital readout are allowed, with a 10 bit amplitude resolution. Amplifiers are organized in 8 columns of 128 rows. When choosing the digital or the analogue readout, the complete set of channels can be read out in about 30 ms. The specific design of the amplification cells allows to measure very small input current levels, on the order of fractions of pico-ampere. Power consumption has also been kept at the level of 80 mu W per cell and 150 mW (peak value) in total. The specific chip architecture and geometry allow use of many KPIX circuits together in order to serve a large detector sensitive area. The KPIX structure is presented along with some measurements character...

  6. The first bump-bonded pixel detectors on CVD diamond

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Palmieri, V.G.; Pan, L.S.; Peitz, A.; Pernicka, M.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Steuerer, J.; Stone, R.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W. E-mail: william@physics.utoronto.ca; Turchetta, R.; Vittone, E.; Wagner, A.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Zeuner, W.; Ziock, H.; Zoeller, M.; Charles, E.; Ciocio, A.; Dao, K.; Einsweiler, K.; Fasching, D.; Gilchriese, M.; Joshi, A.; Kleinfelder, S.; Milgrome, O.; Palaio, N.; Richardson, J.; Sinervo, P.; Zizka, G

    1999-11-01

    Diamond is a nearly ideal material for detecting ionising radiation. Its outstanding radiation hardness, fast charge collection and low leakage current allow it to be used in high radiation environments. These characteristics make diamond sensors particularly appealing for use in the next generation of pixel detectors. Over the last year, the RD42 collaboration has worked with several groups that have developed pixel readout electronics in order to optimise diamond sensors for bump-bonding. This effort resulted in an operational diamond pixel sensor that was tested in a pion beam. We demonstrate that greater than 98% of the channels were successfully bump-bonded and functioning. The device shows good overall hit efficiency as well as clear spatial hit correlation to tracks measured in a silicon reference telescope. A position resolution of 14.8 {mu}m was observed, consistent with expectations given the detector pitch.

  7. The first bump-bonded pixel detectors on CVD diamond

    CERN Document Server

    Adam, W; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Fried, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Palmieri, V G; Pan, L S; Peitz, A; Pernicka, Manfred; Pirollo, S; Polesello, P; Pretzl, Klaus P; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Steuerer, J; Stone, R; Tapper, R J; Tesarek, R J; Trawick, M L; Trischuk, W; Turchetta, R; Vittone, E; Wagner, A; Walsh, A M; Wedenig, R; Weilhammer, Peter; Zeuner, W; Ziock, H J; Zöller, M; Charles, E; Ciocio, A; Dao, K; Einsweiler, Kevin F; Fasching, D; Gilchriese, M G D; Joshi, A; Kleinfelder, S A; Milgrome, O; Palaio, N; Richardson, J; Sinervo, P K; Zizka, G

    1999-01-01

    Diamond is a nearly ideal material for detecting ionising radiation. Its outstanding radiation hardness, fast charge collection and low leakage current allow it to be used in high radiation environments. These characteristics make diamond sensors particularly appealing for use in the next generation of pixel detectors. Over the last year, the RD42 collaboration has worked with several groups that have developed pixel readout electronics in order to optimise diamond sensors for bump-bonding. This effort resulted in an operational diamond pixel sensor that was tested in a pion beam. We demonstrate that greater than 98565544f the channels were successfully bump-bonded and functioning. The device shows good overall hit efficiency as well as clear spatial hit correlation to tracks measured in a silicon reference telescope. A position resolution of 14.8 mu m was observed, consistent with expectations given the detector pitch. (13 refs).

  8. The first bump-bonded pixel detectors on CVD diamond

    International Nuclear Information System (INIS)

    Diamond is a nearly ideal material for detecting ionising radiation. Its outstanding radiation hardness, fast charge collection and low leakage current allow it to be used in high radiation environments. These characteristics make diamond sensors particularly appealing for use in the next generation of pixel detectors. Over the last year, the RD42 collaboration has worked with several groups that have developed pixel readout electronics in order to optimise diamond sensors for bump-bonding. This effort resulted in an operational diamond pixel sensor that was tested in a pion beam. We demonstrate that greater than 98% of the channels were successfully bump-bonded and functioning. The device shows good overall hit efficiency as well as clear spatial hit correlation to tracks measured in a silicon reference telescope. A position resolution of 14.8 μm was observed, consistent with expectations given the detector pitch

  9. Pixelated Single-crystal Diamond Detector for fast neutron measurements

    International Nuclear Information System (INIS)

    Single-crystal Diamond Detectors (SDDs), due to their high radiation hardness, fast response time and small size, are good candidates as fast neutron detectors in those environments where the high neutron flux is an issue, such as spallation neutron sources and the next generation thermonuclear fusion plasmas, i.e. the ITER experiment. Neutron detection in SDDs is based on the collection of electron-hole pairs produced by charged particles generated by neutron interactions with 12C. Recent measurements have demonstrated the SDD capability of measuring the neutron flux with a good energy resolution and at high rates. In this work a novel detector based on a 12-pixels SDD matrix will be presented. Each pixel is equipped with an independent electronic chain: the fast shaping preamplifier coupled to a digitizer is able to combine the high rate capability and the good energy resolution. Two CAEN digitizers are compared and the possibility of performing good energy resolution measurements (<2%) and at high rates (>1 MHz per channel) is described. Each pixel was characterized and calibrated using an 241Am source: the energy resolution was evaluated and gives a mean value of 1.73% at 5.5 MeV. The good energy resolution achieved and its uniformity between pixels are the demonstration of the capability of this novel detector as a spectrometer. This system will be installed during the next Deuterium-Tritium campaign on a collimated vertical line of sight at JET for 14 MeV neutron measurements

  10. SLID-ICV Vertical Integration Technology for the ATLAS Pixel Upgrades

    CERN Document Server

    Macchiolo, A; Moser, H G; Nisius, R; Richter, R H; Weigell, P

    2012-01-01

    We present the results of the characterization of pixel modules composed of 75 μm thick n-in-p sensors and ATLAS FE-I3 chips, interconnected with the SLID (Solid Liquid Inter-Diffusion) technology. This technique, developed at Fraunhofer-EMFT, is explored as an alternative to the bump-bonding process. These modules have been designed to demonstrate the feasibility of a very compact detector to be employed in the future ATLAS pixel upgrades, making use of vertical integration technologies. This module concept also envisages Inter-Chip-Vias (ICV) to extract the signals from the backside of the chips, thereby achieving a higher fraction of active area with respect to the present pixel module design. In the case of the demonstrator module, ICVs are etched over the original wire bonding pads of the FE-I3 chip. In the modules with ICVs the FE-I3 chips will be thinned down to 50 um. The status of the ICV preparation is presented.

  11. A Sealed Gas Pixel Detector for X-ray Astronomy

    OpenAIRE

    Bellazzini, R.; Spandre, G.; Minuti, M.; Baldini, L; Brez, A.; Latronico, L; Omodei, N.; Razzano, M.; Massai, M. M.; Pinchera, M.; Pesce-Rollins, M.; SGRO, C.; Costa, E; P. Soffitta(a); Sipila, H.

    2006-01-01

    We report on the results of a new, sealed, Gas Pixel Detector. The very compact design and the absence of the gas flow system, make this detector substantially ready for use as focal plane detector for future X-ray space telescopes. The instrument brings high sensitivity to X-ray polarimetry, which is the last unexplored field of X-ray astronomy. It derives the polarization information from the track of the photoelectrons that are imaged by a high gain (>1000), fine pitch GEM that matches the...

  12. CMOS Monolithic Active Pixel Sensors (MAPS) for future vertex detectors

    International Nuclear Information System (INIS)

    This paper reviews the development of CMOS Monolithic Active Pixel Sensors (MAPS) for future vertex detectors. MAPS are developed in a standard CMOS technology. In the imaging field, where the technology found its first applications, they are also known as CMOS Image Sensors. The use of MAPS as a detector for particle physics was first proposed at the end of 1999. Since then, their good performance in terms of spatial resolution, efficiency, radiation hardness have been demonstrated and work is now well under way to deliver the first MAPS-based vertex detectors

  13. CMOS Monolithic Active Pixel Sensors (MAPS) for future vertex detectors

    CERN Document Server

    Turchetta, R

    2006-01-01

    This paper reviews the development of CMOS Monolithic Active Pixel Sensors (MAPS) for future vertex detectors. MAPS are developed in a standard CMOS technology. In the imaging field, where the technology found its first applications, they are also known as CMOS Image Sensors. The use of MAPS as a detector for particle physics was first proposed at the end of 1999. Since then, their good performance in terms of spatial resolution, efficiency, radiation hardness have been demonstrated and work is now well under way to deliver the first MAPS-based vertex detectors.

  14. Pixel hybrid photon detectors for the ring imaging Cherenkov detectors of LHCb

    CERN Document Server

    Somerville, L

    2005-01-01

    A Pixel Hybrid Photon Detector (pixel HPD) has been developed for the LHCb Ring Imaging Cherenkov (RICH) detectors. The pixel HPD is a vacuum tube with a multi-alkali photocathode, high-voltage cross- focused electron optics and an anode consisting of a silicon pixel detector bump-bonded to a CMOS readout chip; the readout chip is thus fully encapsulated in the device. The pixel HPD fulfils the stringent requirements for the RICH detectors of LHCb, combining single photon sensitivity, high signal-to-noise ratio and fast readout with an ~8cm diameter active area and an effective pixel size of 2.5mm 2.5mm at the photocathode. The performance and characteristics of two prototype pixel HPDs have been studied in laboratory measurements and in recent beam tests. The results of all measurements agree with expectations and fulfil the LHCb RICH requirements. In readiness for production of the ~500pixel HPDs for the RICH detectors, a test programme was designed and implemented to ensure component quality control at eac...

  15. GaAs Medipix2 hybrid pixel detector

    CERN Document Server

    Kostamo, P; Vähänen, S; Tlustos, L; Fröjdh, C; Campbell, M; Zhilyaev, Y; Lipsanen, H

    2008-01-01

    A GaAs Medipix2 hybrid pixel detector based on high purity epitaxial GaAs material was successfully fabricated. The mesa type GaAs sensor with 256×256 pixels and total area of 1.4×1.4 cm2 was made of a 140-μm-thick epitaxial p–i–n structure utilizing reactive ion etching. A final thickness of approximately 110 μm for the all-epitaxial sensor element is achieved by back-thinning procedure. The sensor element is bump bonded to a Medipix2 read-out ASIC. The detector is capable of room temperature spectroscopic operation and it demonstrates the potential of GaAs for high resolution X-ray imaging systems operating at room temperature. This work describes the manufacturing process and electrical properties of the GaAs Medipix2 hybrid detector.

  16. Compensation of radiation damages for SOI pixel detector via tunneling

    CERN Document Server

    Yamada, Miho; Kurachi, Ikuo

    2015-01-01

    We are developing monolithic pixel detectors based on SOI technology for high energy physics, X-ray applications and so on.To employ SOI pixel detector on such radiation environments, we have to solve effects of total ionization damages (TID) for transistors which are enclosed in oxide layer.The holes which are generated and trapped in the oxide layers after irradiation affect characteristics of near-by transistors due to its positive electric field.Annealing and radiation of ultraviolet are not realistic to remove trapped holes for a fabricated detector due to thermal resistance of components and difficulty of handling. We studied compensation of TID effects by tunneling using a high-voltage. For decrease of trapped holes, applied high-voltage to buried p-well which is under oxide layer to inject the electrons into the oxide layer.In this report, recent progress of this study is shown.

  17. Sensor Development and Readout Prototyping for the STAR Pixel Detector

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, L.; Anderssen, E.; Matis, H.S.; Ritter, H.G.; Stezelberger, T.; Szelezniak, M.; Sun, X.; Vu, C.; Wieman, H.

    2009-01-14

    The STAR experiment at the Relativistic Heavy Ion Collider (RHIC) is designing a new vertex detector. The purpose of this upgrade detector is to provide high resolution pointing to allow for the direct topological reconstruction of heavy flavor decays such as the D{sup 0} by finding vertices displaced from the collision vertex by greater than 60 microns. We are using Monolithic Active Pixel Sensor (MAPS) as the sensor technology and have a coupled sensor development and readout system plan that leads to a final detector with a <200 {micro}s integration time, 400 M pixels and a coverage of -1 < {eta} < 1. We present our coupled sensor and readout development plan and the status of the prototyping work that has been accomplished.

  18. An EUDET/AIDA Pixel Beam Telescope for Detector Development

    CERN Document Server

    Rubinskiy, I

    2015-01-01

    Ahigh resolution(σ< 2 μm) beam telescope based on monolithic active pixel sensors (MAPS) was developed within the EUDET collaboration. EUDET was a coordinated detector R&D programme for the future International Linear Collider providing test beam infrastructure to detector R&D groups. The telescope consists of six sensor planes with a pixel pitch of either 18.4 μm or 10 μmand canbe operated insidea solenoidal magnetic fieldofupto1.2T.Ageneral purpose cooling, positioning, data acquisition (DAQ) and offine data analysis tools are available for the users. The excellent resolution, readout rate andDAQintegration capabilities made the telescopea primary beam tests tool also for several CERN based experiments. In this report the performance of the final telescope is presented. The plans for an even more flexible telescope with three differentpixel technologies(ATLASPixel, Mimosa,Timepix) withinthenew European detector infrastructure project AIDA are presented.

  19. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS Inner Detector

    OpenAIRE

    Poley, Luise; Bloch, Ingo; Edwards, Sam; Friedrich, Conrad; Gregor, Ingrid-Maria; Jones, Tim; Lacker, Heiko; Pyatt, Simon; Rehnisch, Laura; Sperlich, Dennis; Wilson, John

    2015-01-01

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy gl...

  20. Studio di Rivelatori a Pixel di nuova generazione per il Sistema di Tracciamento di ATLAS.

    CERN Document Server

    Gaudiello, Andrea; Schiavi, Carlo

    In 2013 the LHC will undergo a long shutdown (Phase 0) in preparation for a an energy and luminosity upgrade. During this period the ATLAS Pixel Detector (that is the tracking detector closest to the beamline) will be upgraded. The new detector, called Insertable B-Layer (IBL), will be installed between the existing pixel detector and a new beam-pipe of smaller radius in order to ensure and maintain excellent performance of tracking, vertexing and jet flavor tagging. To satisfy the new requirements a new electronic front- end (FE-I4) and 2 sensor technologies have been developed: Planar and 3D. Genova is one of two sites dedicated to the assembly of the modules of IBL. The work is then carried out in two parallel directions: on one hand the production and its optimization; on the other the comparison and testing of these new technologies. Chapter 1 gives an overview of the theoretical framework needed to understand the importance and the goals of the experiments operating at the Large Hadron Collider (LHC), w...

  1. Semiconductor micropattern pixel detectors a review of the beginnings

    CERN Document Server

    Heijne, Erik H M

    2001-01-01

    The innovation in monolithic and hybrid semiconductor 'micropattern' or 'reactive' pixel detectors for tracking in particle physics was actually to fit logic and pulse processing electronics with µW power on a pixel area of less than 0.04 mm2, retaining the characteristics of a traditional nuclear amplifier chain. The ns timing precision in conjunction with local memory and logic operations allowed event selection at > 10 MHz rates with unambiguous track reconstruction even at particle multiplicities > 10 cm-2. The noise in a channel was ~100 e- r.m.s. and enabled binary operation with random noise 'hits' at a level 30 Mrad, respectively.

  2. Hybrid Pixel Detector Development for the Linear Collider Vertex Tracker

    CERN Document Server

    Battaglia, Marco; Campagnolo, R; Caccia, M; Kucewicz, W; Jalocha, P; Palka, J; Zalewska-Bak, A

    2001-01-01

    In order to fully exploit the physics potential of the future high energy e+e- linear collider, a Vertex Tracker able to provide particle track extrapolation with very high resolution is needed. Hybrid Si pixel sensors are an attractive technology due to their fast read-out capabilities and radiation hardness. A novel pixel detector layout with interleaved cells has been developed to improve the single point resolution. Results of the characterisation of the first processed prototypes by electrostatic measurements and charge collection studies are discussed.

  3. High frame rate measurements of semiconductor pixel detector readout IC

    International Nuclear Information System (INIS)

    We report on high count rate and high frame rate measurements of a prototype IC named FPDR90, designed for readouts of hybrid pixel semiconductor detectors used for X-ray imaging applications. The FPDR90 is constructed in 90 nm CMOS technology and has dimensions of 4 mm×4 mm. Its main part is a matrix of 40×32 pixels with 100 μm×100 μm pixel size. The chip works in the single photon counting mode with two discriminators and two 16-bit ripple counters per pixel. The count rate per pixel depends on the effective CSA feedback resistance and can be set up to 6 Mcps. The FPDR90 can operate in the continuous readout mode, with zero dead time. Due to the architecture of digital blocks in pixel, one can select the number of bits read out from each counter from 1 to 16. Because in the FPDR90 prototype only one data output is available, the frame rate is 9 kfps and 72 kfps for 16 bits and 1 bit readout, respectively (with nominal clock frequency of 200 MHz).

  4. High frame rate measurements of semiconductor pixel detector readout IC

    Science.gov (United States)

    Szczygiel, R.; Grybos, P.; Maj, P.

    2012-07-01

    We report on high count rate and high frame rate measurements of a prototype IC named FPDR90, designed for readouts of hybrid pixel semiconductor detectors used for X-ray imaging applications. The FPDR90 is constructed in 90 nm CMOS technology and has dimensions of 4 mm×4 mm. Its main part is a matrix of 40×32 pixels with 100 μm×100 μm pixel size. The chip works in the single photon counting mode with two discriminators and two 16-bit ripple counters per pixel. The count rate per pixel depends on the effective CSA feedback resistance and can be set up to 6 Mcps. The FPDR90 can operate in the continuous readout mode, with zero dead time. Due to the architecture of digital blocks in pixel, one can select the number of bits read out from each counter from 1 to 16. Because in the FPDR90 prototype only one data output is available, the frame rate is 9 kfps and 72 kfps for 16 bits and 1 bit readout, respectively (with nominal clock frequency of 200 MHz).

  5. High frame rate measurements of semiconductor pixel detector readout IC

    Energy Technology Data Exchange (ETDEWEB)

    Szczygiel, R., E-mail: robert.szczygiel@agh.edu.pl [AGH University of Science and Technology, Department of Measurement and Instrumentation, Al. Mickiewicza 30, 30-059 Cracow (Poland); Grybos, P.; Maj, P. [AGH University of Science and Technology, Department of Measurement and Instrumentation, Al. Mickiewicza 30, 30-059 Cracow (Poland)

    2012-07-11

    We report on high count rate and high frame rate measurements of a prototype IC named FPDR90, designed for readouts of hybrid pixel semiconductor detectors used for X-ray imaging applications. The FPDR90 is constructed in 90 nm CMOS technology and has dimensions of 4 mm Multiplication-Sign 4 mm. Its main part is a matrix of 40 Multiplication-Sign 32 pixels with 100 {mu}m Multiplication-Sign 100 {mu}m pixel size. The chip works in the single photon counting mode with two discriminators and two 16-bit ripple counters per pixel. The count rate per pixel depends on the effective CSA feedback resistance and can be set up to 6 Mcps. The FPDR90 can operate in the continuous readout mode, with zero dead time. Due to the architecture of digital blocks in pixel, one can select the number of bits read out from each counter from 1 to 16. Because in the FPDR90 prototype only one data output is available, the frame rate is 9 kfps and 72 kfps for 16 bits and 1 bit readout, respectively (with nominal clock frequency of 200 MHz).

  6. Silicon sensors for the upgrades of the CMS pixel detector

    International Nuclear Information System (INIS)

    The Compact Muon Solenoid (CMS) is a general purpose detector at the Large Hadron Collider (LHC). The LHC luminosity is constantly increased through upgrades of the accelerator and its injection chain. Two major upgrades will take place in the next years. The first upgrade involves the LHC injector chain and allows the collider to achieve a luminosity of about 2.1034 cm-2s-1. A further upgrade of the LHC foreseen for 2025 will boost its luminosity to 5.1034 cm-2s-1. As a consequence of the increased luminosity, the detectors need to be upgraded. In particular, the CMS pixel detector will undergo two upgrades in the next years. The first upgrade (phase I) consists in the substitution of the current pixel detector in winter 2016/2017. The upgraded pixel detector will implement new readout electronics that allow efficient data taking up to a luminosity of 2.1034 cm-2s-1, twice as much as the LHC design luminosity. The modules that will constitute the upgraded detector are being produced at different institutes. Hamburg (University and DESY) is responsible for the production of 350 pixel modules. The second upgrade (phase II) of the pixel detector is foreseen for 2025. The innermost pixel layer of the upgraded detector will accumulate a radiation damage corresponding to an equivalent fluence of Φeq=2.1016 cm-2 and a dose of ∼10 MGy after an integrated luminosity of 3000 fb-1. Several groups are investigating sensor designs and configurations able to withstand such high doses and fluences. This work is divided into two parts related to important aspects of the upgrades of the CMS pixel detector. For the phase I upgrade, a setup has been developed to provide an absolute energy calibration of the pixel modules that will constitute the detector. The calibration is obtained using monochromatic X-rays. The same setup is used to test the buffering capabilities of the modules' readout chip. The maximum rate experienced by the modules produced in Hamburg will be 120 MHz

  7. Silicon sensors for the upgrades of the CMS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Centis Vignali, Matteo

    2015-12-15

    The Compact Muon Solenoid (CMS) is a general purpose detector at the Large Hadron Collider (LHC). The LHC luminosity is constantly increased through upgrades of the accelerator and its injection chain. Two major upgrades will take place in the next years. The first upgrade involves the LHC injector chain and allows the collider to achieve a luminosity of about 2.10{sup 34} cm{sup -2}s{sup -1}. A further upgrade of the LHC foreseen for 2025 will boost its luminosity to 5.10{sup 34} cm{sup -2}s{sup -1}. As a consequence of the increased luminosity, the detectors need to be upgraded. In particular, the CMS pixel detector will undergo two upgrades in the next years. The first upgrade (phase I) consists in the substitution of the current pixel detector in winter 2016/2017. The upgraded pixel detector will implement new readout electronics that allow efficient data taking up to a luminosity of 2.10{sup 34} cm{sup -2}s{sup -1}, twice as much as the LHC design luminosity. The modules that will constitute the upgraded detector are being produced at different institutes. Hamburg (University and DESY) is responsible for the production of 350 pixel modules. The second upgrade (phase II) of the pixel detector is foreseen for 2025. The innermost pixel layer of the upgraded detector will accumulate a radiation damage corresponding to an equivalent fluence of Φ{sub eq}=2.10{sup 16} cm{sup -2} and a dose of ∼10 MGy after an integrated luminosity of 3000 fb{sup -1}. Several groups are investigating sensor designs and configurations able to withstand such high doses and fluences. This work is divided into two parts related to important aspects of the upgrades of the CMS pixel detector. For the phase I upgrade, a setup has been developed to provide an absolute energy calibration of the pixel modules that will constitute the detector. The calibration is obtained using monochromatic X-rays. The same setup is used to test the buffering capabilities of the modules' readout chip

  8. Strip Detector for the ATLAS Detector Upgrade for the High-Luminosity LHC

    CERN Document Server

    Sperlich, Dennis; The ATLAS collaboration

    2016-01-01

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential of the LHC through a sizeable increase in the luminosity, reaching 1*10^35 cm2s-1 after 10 years of operation. A consequence of this increased luminosity is the expected radiation damage at an integrated luminosity of 3000/fb, requiring the tracking detectors to withstand hadron fluencies to over 1*10^16 1 MeV neutron equivalent per cm2. With the addition of increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk), which will consist of both strip and pixelated silicon detectors. The physics motivations, required performance characteristics and basic design of the proposed upgrade of the strip detector will be a subject of this talk. Present ideas and solutions for the strip detector and current research and development program will be discussed.

  9. Combining two major ATLAS inner detector components

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The semiconductor tracker is inserted into the transition radiation tracker for the ATLAS experiment at the LHC. These make up two of the three major components of the inner detector. They will work together to measure the trajectories produced in the proton-proton collisions at the centre of the detector when the LHC is switched on in 2008.

  10. Pixel readout electronics development for the ALICE pixel vertex and LHCb RICH detector

    CERN Document Server

    Snoeys, W; Cantatore, E; Cencelli, V; Dinapoli, R; Heijne, Erik H M; Jarron, Pierre; Lamanna, P; Minervini, D; O'Shea, V; Quiquempoix, V; San Segundo-Bello, D; Van Koningsveld, B; Wyllie, Ken H

    2001-01-01

    The ALICE1LHCB pixel readout chip emerged from previous experience at CERN. The RD-19 collaboration provided the basis for the installation of a pixel system in the WA97 and NA57 experiments. Operation in these experiments was key in the understanding of the system issues. In parallel the RD-49 collaboration provided the basis to obtain radiation tolerance in commercial submicron CMOS through special circuit layout. The new ALICE1LMB chip was developed to serve two different applications: particle tracking in the ALICE Silicon Pixel Detector and particle identification in the LHCb Ring Imaging Cherenkov detector. To satisfy the different needs for these two experiments, the chip can be operated in two different modes. In tracking mode all the 50 mu m*435 mu m pixel cells in the 256*32 array are read out individually, whilst in particle identification mode they are combined in groups of 8 to form a 32*32 array of 400 mu m*425 mu m cells. The circuit is currently being manufactured in a commercial 0.25 mu m CMO...

  11. Investigation of thin n-in-p planar pixel modules for the ATLAS upgrade

    CERN Document Server

    Savic, N; Macchiolo, A; Nisius, R

    2016-01-01

    In view of the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), planned to start around 2023-2025, the ATLAS experiment will undergo a replacement of the Inner Detector. A higher luminosity will imply higher irradiation levels and hence will demand more ra- diation hardness especially in the inner layers of the pixel system. The n-in-p silicon technology is a promising candidate to instrument this region, also thanks to its cost-effectiveness because it only requires a single sided processing in contrast to the n-in-n pixel technology presently employed in the LHC experiments. In addition, thin sensors were found to ensure radiation hardness at high fluences. An overview is given of recent results obtained with not irradiated and irradiated n-in-p planar pixel modules. The focus will be on n-in-p planar pixel sensors with an active thickness of 100 and 150 {\\mu}m recently produced at ADVACAM. To maximize the active area of the sensors, slim and active edges are implemented. The performance of th...

  12. Design and development of the IBL-BOC firmware for the ATLAS Pixel IBL optical datalink system

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00356268

    The Insertable $b$-Layer (IBL) is the first upgrade of the ATLAS Pixel detector at the LHC. It will be installed in the Pixel detector in 2013. The IBL will use a new sensor and readout technology, therefore the readout components of the current Pixel detector are redesigned for the readout of the IBL. In this diploma thesis the design and development of the firmware for the new IBL Back-of-Crate card (IBL-BOC) are described. The IBL-BOC is located on the off-detector side of the readout and performs the optical-electrical conversion and vice versa for the optical connection to and from the detector. To process the data transmitted to and received from the detector, the IBL-BOC uses multiple Field Programmable Gate Arrays (FPGA). The transmitted signal is a 40~Mb/s BiPhase Mark (BPM) encoded data stream, providing the timing, trigger and control to the detector. The received signal is a 160~Mb/s 8b10b encoded data stream, containing data from the detector. The IBL-BOC encodes and decodes these data streams. T...

  13. Development of a custom on-line ultrasonic vapour analyzer and flow meter for the ATLAS inner detector, with application to Cherenkov and gaseous charged particle detectors

    OpenAIRE

    Alhrooba, M.; Batesb, R.; Degeorged, C.; Deterree, C.; DiGirolamoc, B.; Doubekf, M.; Favrec, G.; Godlewskib, J.; Hallewellg, G.; Hasiba, A.; Katuninh, S.; Langeving, N.; Battistinc, M.; Lombardc, D.; Mathieug, M.

    2015-01-01

    Precision sound velocity measurements can simultaneously determine binary gas composition and flow. We have developed an analyzer with custom microcontroller-based electronics, currently used in the ATLAS Detector Control System, with numerous potential applications. Three instruments monitor C3F8 and CO2 coolant leak rates into the nitrogen envelopes of the ATLAS silicon microstrip and Pixel detectors. Two further instruments will aid operation of the new thermosiphon coolant recirculator: o...

  14. CMS Pixel Detector design for HL-LHC

    CERN Document Server

    Migliore, Ernesto

    2016-01-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about 7.5$\\times$10$^{34}$cm$^{-2}$s$^{-1}$ in 2028, to possibly reach an integrated luminosity of 3000 fb$^{-1}$ by the end of 2037. This High Luminosity scenario, HL-LHC, will present new challenges in higher data rates and increased radiation.In order to maintain its physics reach the CMS Collaboration has undertaken a preparation program of the detector known as Phase-2 upgrade. The CMS Phase-2 Pixel upgrade will require a high bandwidth readout system and high radiation tolerance for sensors and on-detector ASICs. Several technologies for the upgrade sensors are being studied. Serial powering schemes are under consideration to accommodate significant constraints on the system. These prospective designs, as well as new layout geometries that include very forward pixel discs, will be presented together with performance estimations.

  15. Optimisation of ROB mapping for SCT and Pixel detectors

    CERN Document Server

    Wheeler, S

    1999-01-01

    A simple object-oriented program has been written to simulate the SCT and Pixel detectors in order to determine the suitability of various ROB mapping schemes in the context of the Level 2 trigger. Layer and tower mappings have been investigated separately for the SCT barrel and endcap and for the Pixel barrel and endcap. Events containing one RoI were fired at each detector part and the number of ROBs hit determined. As a result, plots of ROB output data rates and ROB hit frequency as a function of ROB ID were obtained. In general it was found that layer mapping schemes might result in unacceptably high data rates and frequencies. This result would have to be confirmed with more detailed modelling. The tower mappings investigated, in general produced acceptable rates.

  16. The ALICE Silicon Pixel Detector Control and Calibration Systems

    CERN Document Server

    Calì, Ivan Amos; Manzari, Vito; Stefanini, Giorgio

    2008-01-01

    The work presented in this thesis was carried out in the Silicon Pixel Detector (SPD) group of the ALICE experiment at the Large Hadron Collider (LHC). The SPD is the innermost part (two cylindrical layers of silicon pixel detec- tors) of the ALICE Inner Tracking System (ITS). During the last three years I have been strongly involved in the SPD hardware and software development, construction and commissioning. This thesis is focused on the design, development and commissioning of the SPD Control and Calibration Systems. I started this project from scratch. After a prototyping phase now a stable version of the control and calibration systems is operative. These systems allowed the detector sectors and half-barrels test, integration and commissioning as well as the SPD commissioning in the experiment. The integration of the systems with the ALICE Experiment Control System (ECS), DAQ and Trigger system has been accomplished and the SPD participated in the experimental December 2007 commissioning run. The complex...

  17. Monolithic active pixel radiation detector with shielding techniques

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  18. Recent results of the ATLAS upgrade Planar Pixel Sensors R&D project

    Science.gov (United States)

    Forshaw, Dean

    2013-12-01

    To extend the physics reach of the LHC, upgrades to the accelerator are planned which will increase the integrated annual luminosity by a factor of 5-10. This will increase the occupancy and the radiation damage of the inner trackers. To cope with the elevated occupancy, the ATLAS experiment plans to introduce an all silicon inner tracker for High Luminosity LHC (HL-LHC) operation. With silicon, the occupancy can be adjusted by using the appropriate pitch for the pixels/micro-strips. Constraints due to high radiation damage mean that only sensors with electrode configuration designed to read out the electron signal (n-in-p and n-in-n) are considered. To investigate the suitability of planar pixel sensors (PPS) for the ATLAS tracker upgrade, a dedicated R&D project was established, with 17 institutes and more than 80 scientists. The main focuses of research are the performance of planar pixel sensors after the high fluences expected during HL-LHC operation, the optimisation of the detector and module production technologies for cost reduction to enable the instrumentation of large volumes and the reduction of the inactive areas needed for electrical insulation of the sensitive region from the cut edge of the sensors. An overview of recent accomplishments of the PPS (Planar Pixel Sensors) R&D project is given. The performance in terms of charge collection and tracking efficiency, evaluated with radioactive sources in the laboratory and from beam tests, is presented. Sensors with different thicknesses (ranging from 75 to 300 μm) were irradiated to several fluences up to 2 ×1016neqcm-2 to study the effect of varying thickness on the radiation hardness. The significant progresses made towards the reduction of the edge distance are reported.

  19. From vertex detectors to inner trackers with CMOS pixel sensors

    OpenAIRE

    Besson, A.; Pérez, A. Pérez; Spiriti, E.; Baudot, J.; Claus, G; Goffe, M.; de Winter, M.

    2016-01-01

    The use of CMOS Pixel Sensors (CPS) for high resolution and low material vertex detectors has been validated with the 2014 and 2015 physics runs of the STAR-PXL detector at RHIC/BNL. This opens the door to the use of CPS for inner tracking devices, with 10-100 times larger sensitive area, which require therefore a sensor design privileging power saving, response uniformity and robustness. The 350 nm CMOS technology used for the STAR-PXL sensors was considered as too poorly suited to upcoming ...

  20. Descent of the Silicon Pixel Detector (SPD) for ALICE Experiment

    CERN Multimedia

    2007-01-01

    The Silicon Pixel Detector (SPD) constitutes the two innermost layers of the ALICE Inner Tracking System (ITS) at radii of 3.9 cm and 7.6 cm, respectively. It is a fundamental element for the determination of the position of the primary vertex as well as for the measurement of the impact parameter of secondary tracks originating from the weak decays of strange, charm and beauty particles.

  1. Hexagonal pixel detector with time encoded binary readout

    International Nuclear Information System (INIS)

    The University of Hawaii is developing continuous acquisition pixel (CAP) detectors for vertexing applications in lepton colliding experiments such as SuperBelle or ILC. In parallel to the investigation of different technology options such as MAPS or SOI, both analog and binary readout concepts have been tested. First results with a binary readout scheme in which the hit information is time encoded by means of a signal shifting mechanism have recently been published. This paper explains the hit reconstruction for such a binary detector with an emphasis on fake hit reconstruction probabilities in order to evaluate the rate capability in a high background environment such as the planned SuperB factory at KEK. The results show that the binary concept is at least comparable to any analog readout strategy if not better in terms of occupancy. Furthermore, we present a completely new binary readout strategy in which the pixel cells are arranged in a hexagonal grid allowing the use of three independent output directions to reduce reconstruction ambiguities. The new concept uses the same signal shifting mechanism for time encoding, however, in dedicated transfer lines on the periphery of the detector, which enables higher shifting frequencies. Detailed Monte Carlo simulations of full size pixel matrices including hit and BG generation, signal generation, and data reconstruction show that by means of multiple signal transfer lines on the periphery the pixel can be made smaller (higher resolution), the number of output channels and the data volume per triggered event can be reduced dramatically, fake hit reconstruction is lowered to a minimum and the resulting effective occupancies are less than 10-4. A prototype detector has been designed in the AMS 0.35μm Opto process and is currently under fabrication.

  2. Pixel diamond detectors for excimer laser beam diagnostics

    Science.gov (United States)

    Girolami, M.; Allegrini, P.; Conte, G.; Salvatori, S.

    2011-05-01

    Laser beam profiling technology in the UV spectrum of light is evolving with the increase of excimer lasers and lamps applications, that span from lithography for VLSI circuits to eye surgery. The development of a beam-profiler, able to capture the excimer laser single pulse and process the acquired pixel current signals in the time period between each pulse, is mandatory for such applications. 1D and 2D array detectors have been realized on polycrystalline CVD diamond specimens. The fast diamond photoresponse, in the ns time regime, suggests the suitability of such devices for fine tuning feedback of high-power pulsed-laser cavities, whereas solar-blindness guarantees high performance in UV beam diagnostics, also under high intensity background illumination. Offering unique properties in terms of thermal conductivity and visible-light transparency, diamond represents one of the most suitable candidate for the detection of high-power UV laser emission. The relatively high resistivity of diamond in the dark has allowed the fabrication of photoconductive vertical pixel-detectors. A semitransparent light-receiving back-side contact has been used for detector biasing. Each pixel signal has been conditioned by a multi-channel read-out electronics made up of a high-sensitive integrator and a Σ-Δ A/D converter. The 500 μs conversion time has allowed a data acquisition rate up to 2 kSPS (Sample Per Second).

  3. The ATLAS Inner Detector operation,data quality and tracking performance.

    CERN Document Server

    Stanecka, E; The ATLAS collaboration

    2012-01-01

    The ATLAS Inner Detector comprises silicon and gas based detectors. The Semi-Conductor Tracker (SCT) and the Pixel Detector are the key precision tracking silicon devices in the Inner Detector of the ATLAS experiment at CERN LHC. And the the Transition Radiation Tracker (TRT), the outermost of the three subsystems of the ATLAS Inner Detector is made of thin-walled proportional-mode drift tubes (straws). The Pixel Detector consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. The SCT is a silicon strip detector and is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals from the strips are processed in the front-end ASICS ABCD3TA, working in the binary readout mode. The TRT is made...

  4. Small-Scale Readout Systems Prototype for the STAR PIXEL Detector

    Energy Technology Data Exchange (ETDEWEB)

    Szelezniak, Michal A.; Besson, Auguste; Colledani, Claude; Dorokhov, Andrei; Dulinski, Wojciech; Greiner, Leo C.; Himmi, Abdelkader; Hu, Christine; Matis, Howard S.; Ritter, Hans Georg; Rose, Andrew; Shabetai, Alexandre; Stezelberger, Thorsten; Sun, Xiangming; Thomas, Jim H.; Valin, Isabelle; Vu, Chinh Q.; Wieman, Howard H.; Winter, Marc

    2008-10-01

    A prototype readout system for the STAR PIXEL detector in the Heavy Flavor Tracker (HFT) vertex detector upgrade is presented. The PIXEL detector is a Monolithic Active Pixel Sensor (MAPS) based silicon pixel vertex detector fabricated in a commercial CMOS process that integrates the detector and front-end electronics layers in one silicon die. Two generations ofMAPS prototypes designed specifically for the PIXEL are discussed. We have constructed a prototype telescope system consisting of three small MAPS sensors arranged in three parallel and coaxial planes with a readout system based on the readout architecture for PIXEL. This proposed readout architecture is simple and scales to the size required to readout the final detector. The real-time hit finding algorithm necessary for data rate reduction in the 400 million pixel detector is described, and aspects of the PIXEL system integration into the existing STAR framework are addressed. The complete system has been recently tested and shown to be fully functional.

  5. Thermal Grease Evaluation for ATLAS Upgrade Micro-Strip Detector.

    CERN Document Server

    Barbier, G; The ATLAS collaboration; Clark, A; Ferrère, D; Pernecker, S; Perrin, E; Streit, KP; Weber, M

    2010-01-01

    The ATLAS upgrade detector foreseen at the phase 2 upgrade of LHC requires a complete new inner detector using silicon pixel and strip detectors. For both technologies, a specific mechanical and thermal design is required. Such a design may use soft thermal interfaces such as grease between the various parts. One foreseeable use would be between the cooling pipe and the thermal block allowing the strip modules to be decoupled from the mechanical and cooling structure. This note describes the technique used and the results obtained when characterizing a few grease samples. The results have been compared with thermal FEA simulations. A thermal conductivity measurement for each sample could be extracted from the measurements, with a systematic uncertainty of less than 6%. Some samples were irradiated to the expected fluence at sLHC and their resulting thermal conductivity compared with the non-irradiated samples.

  6. Pixel hybrid photon detector magnetic distortions characterization and compensation

    CERN Document Server

    Aglieri-Rinella, G; D'Ambrosio, Carmelo; Forty, Roger W; Gys, Thierry; Patel, Mitesh; Piedigrossi, Didier; Van Lysebetten, Ann

    2004-01-01

    The LHCb experiment requires positive kaon identification in the momentum range 2-100 GeV/c. This is provided by two ring imaging Cherenkov detectors. The stringent requirements on the photon detectors are fully satisfied by the novel pixel hybrid photon detector, HPD. The HPD is a vacuum tube with a quartz window, S20 photo-cathode, cross-focusing electron optics and a silicon anode encapsulated within the tube. The anode is a 32*256 pixels hybrid detector, with a silicon sensor bump-bonded onto a readout chip containing 8192 channels with analogue front-end and digital read-out circuitry. An external magnetic field influences the trajectory of the photoelectrons and could thereby degrade the inherent excellent space resolution of the HPD. The HPDs must be operational in the fringe magnetic field of the LHCb magnet. This paper reports on an extensive experimental characterization of the distortion effects. The characterization has allowed the development of parameterisations and of a compensation algorithm. ...

  7. The ALFA Roman Pot Detectors of ATLAS

    CERN Document Server

    Khalek, S Abdel; Anghinolfi, F; Barrillon, P; Blanchot, G; Blin-Bondil, S; Braem, A; Chytka, L; Muíño, P Conde; Düren, M; Fassnacht, P; Franz, S; Gurriana, L; Grafström, P; Heller, M; Haguenauer, M; Hain, W; Hamal, P; Hiller, K; Iwanski, W; Jakobsen, S; Joram, C; Kötz, U; Korcyl, K; Kreutzfeldt, K; Lohse, T; Maio, A; Maneira, M J P; Notz, D; Nozka, L; Palma, A; Petschull, D; Pons, X; Puzo, P; Ravat, S; Schneider, T; Seabra, L; Sykora, T; Staszewski, R; Stenzel, H; Trzebinski, M; Valkar, S; Viti, M; Vorobel, V; Wemans, A

    2016-01-01

    The ATLAS Roman Pot system is designed to determine the total proton-proton cross-section as well as the luminosity at the Large Hadron Collider (LHC) by measuring elastic proton scattering at very small angles. The system is made of four Roman Pot stations, located in the LHC tunnel in a distance of about 240~m at both sides of the ATLAS interaction point. Each station is equipped with tracking detectors, inserted in Roman Pots which approach the LHC beams vertically. The tracking detectors consist of multi-layer scintillating fibre structures readout by Multi-Anode-Photo-Multipliers.

  8. Active Pixel Sensors in ams H18/H35 HV-CMOS Technology for the ATLAS HL-LHC Upgrade

    CERN Document Server

    Ristic, Branislav

    2016-01-01

    Deep sub micron HV-CMOS processes offer the opportunity for sensors built by industry standard techniques while being HV tolerant, making them good candidates for drift-based, fast collecting, thus radiation-hard pixel detectors. For the upgrade of the ATLAS Pixel Detector towards the HL-LHC requirements, active pixel sensors in HV-CMOS technology were investigated. These implement amplifier and discriminator stages directly in insulating deep n-wells, which also act as collecting electrodes. The deep n-wells allow for bias voltages up to 150V leading to a depletion depth of several 10um. Prototype sensors in the ams H18 180nm and H35 350nm HV-CMOS processes have been manufactured, acting as a potential drop-in replacement for the current ATLAS Pixel sensors, thus leaving higher level processing such as trigger handling to dedicated read-out chips. Sensors were thoroughly tested in lab measurements as well as in testbeam experiments. Irradiation with X-rays and protons revealed a tolerance to ionizing doses o...

  9. Beam tests of an integrated prototype of the ATLAS Forward Proton detector

    Science.gov (United States)

    Lange, J.; Adamczyk, L.; Avoni, G.; Banas, E.; Brandt, A.; Bruschi, M.; Buglewicz, P.; Cavallaro, E.; Caforio, D.; Chiodini, G.; Chytka, L.; Cieśla, K.; Davis, P. M.; Dyndal, M.; Grinstein, S.; Janas, K.; Jirakova, K.; Kocian, M.; Korcyl, K.; Lopez Paz, I.; Northacker, D.; Nozka, L.; Rijssenbeek, M.; Seabra, L.; Staszewski, R.; Świerska, P.; Sykora, T.

    2016-09-01

    The ATLAS Forward Proton (AFP) detector is intended to measure protons scattered at small angles from the ATLAS interaction point. To this end, a combination of 3D Silicon pixel tracking modules and Quartz-Cherenkov time-of-flight (ToF) detectors is installed 210 m away from the interaction point at both sides of ATLAS. Beam tests with an AFP prototype detector combining tracking and timing sub-detectors and a common readout have been performed at the CERN-SPS test-beam facility in November 2014 and September 2015 to complete the system integration and to study the detector performance. The successful tracking-timing integration was demonstrated. Good tracker hit efficiencies above 99.9% at a sensor tilt of 14°, as foreseen for AFP, were observed. Spatial resolutions in the short pixel direction with 50 μm pitch of 5.5 ± 0.5 μm per pixel plane and of 2.8 ± 0.5 μm for the full four-plane tracker at 14° were found, largely surpassing the AFP requirement of 10 μm. The timing detector showed also good hit efficiencies above 99%, and a full-system time resolution of 35±6 ps was found for the ToF prototype detector with two Quartz bars in-line (half the final AFP size) without dedicated optimisation, fulfilling the requirements for initial low-luminosity AFP runs.

  10. An EUDET/AIDA Pixel Beam Telescope for Detector Development

    CERN Document Server

    Rubinskiy, I

    2015-01-01

    A high resolution (σ∼2μm) beam telescope based on monolithic active pixel sensors (MAPS) was developed within the EUDET collaboration. The telescope consists of six monolithic active pixel sensor planes (Mimosa26) with a pixel pitch of 18.4 \\mu m and thinned down to 50 \\mu m. The excellent resolution, readout rate and DAQ integration capabilities made the telescope a primary test beam tool for many groups including several CERN based experiments. Within the European detector infrastructure project AIDA the test beam telescope is being further extended in terms of cooling and powering infrastructure, read-out speed, area of acceptance, and precision. In order to provide a system optimized for the different requirements by the user community a combination of various state-of-the-art pixel technologies is foreseen. Furthermore, new central dead-time-free trigger logic unit (TLU) has been developed to provide LHC-speed response with one-trigger-per-particle operating mode and a synchronous clock for all conn...

  11. Novel time-dependent alignment of the ATLAS Inner Detector in the LHC Run 2

    CERN Document Server

    Jimenez Pena, Javier; The ATLAS collaboration

    2016-01-01

    ATLAS is a multipurpose experiment at the LHC proton-proton collider. Its physics goals require an unbiased and high resolution measurement of the charged particle kinematic parameters. These critically depend on the layout and performance of the tracking system and the quality of the alignment of its components. For the LHC Run 2, the system has been upgraded with the installation of a new pixel layer, the Insertable B-layer (IBL). ATLAS Inner Detector alignment framework has been adapted and upgraded to correct very short time scale movements of the sub-detectors. In particular, a mechanical distortion of the IBL staves up to 20 μm and a vertical displacement of the Pixel detector of ~6 μm have been observed during data-taking. The techniques used to correct for these effects and to match the required Inner Detector performance will be presented.

  12. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    CERN Document Server

    Alipour Tehrani, Niloufar; Benoit, Mathieu; Dannheim, Dominik; Dette, Karola; Hynds, Daniel; Kulis, Szymon; Peric, Ivan; Petric, Marko; Redford, Sophie; Sicking, Eva; Valerio, Pierpaolo

    2015-01-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor. Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  13. Low energy polarization sensitivity of the Gas Pixel Detector

    CERN Document Server

    Muleri, F; Baldini, L; Bellazzini, R; Bregeon, J; Brez, A; Costa, E; Frutti, M; Latronico, L; Minuti, M; Negri, M B; Omodei, N; Pinchera, M; Pesce-Rollins, M; Razzano, M; Rubini, A; Sgro', C; Spandre, G

    2007-01-01

    An X-ray photoelectric polarimeter based on the Gas Pixel Detector has been proposed to be included in many upcoming space missions to fill the gap of about 30 years from the first (and to date only) positive measurement of polarized X-ray emission from an astrophysical source. The estimated sensitivity of the current prototype peaks at an energy of about 3 keV, but the lack of readily available polarized sources in this energy range has prevented the measurement of detector polarimetric performances. In this paper we present the measurement of the Gas Pixel Detector polarimetric sensitivity at energies of a few keV and the new, light, compact and transportable polarized source that was devised and built to this aim. Polarized photons are produced, from unpolarized radiation generated with an X-ray tube, by means of Bragg diffraction at nearly 45 degrees. The employment of mosaic graphite and flat aluminum crystals allow the production of nearly completely polarized photons at 2.6, 3.7 and 5.2 keV from the di...

  14. A Sealed Gas Pixel Detector for X-ray Astronomy

    CERN Document Server

    Bellazzini, R; Minuti, M; Baldini, L; Brez, A; Latronico, L; Omodei, N; Razzano, M; Massai, M M; Pinchera, M; Pesce-Rollins, M; Sgro, C; Costa, E; Soffitta, P; Sipilä, H; Lempinen, E

    2006-01-01

    We report on the results of a new, sealed, Gas Pixel Detector. The very compact design and the absence of the gas flow system, make this detector substantially ready for use as focal plane detector for future X-ray space telescopes. The instrument brings high sensitivity to X-ray polarimetry, which is the last unexplored field of X-ray astronomy. It derives the polarization information from the track of the photoelectrons that are imaged by a high gain (>1000), fine pitch GEM that matches the pitch of a pixel ASIC which is the collecting anode of the GPD (105k, 50 micron wide, hexagonal cells). The device is able to simultaneously perform good imaging (50-60 micron), moderate spectroscopy (~15% at 6 keV) as well as fast, high rate timing in the 1-10keV range. Moreover, being truly 2D, it is non dispersive and does not require any rotation. The great improvement of sensitivity, at least two orders of magnitude with respect to traditional polarimeters (based on Bragg crystals or Thomson scattering), will allow ...

  15. A new sub-detector for ATLAS

    CERN Multimedia

    Marco Bruschi

    Since last August, the ATLAS detector family has been joined by a new little member named LUCID, from the acronym "LUminosity Cerenkov Integrating Detector". This may well surprise you if you are already aware that LUCID construction started only in February after its approval by an ATLAS-management mandated review committee. The rapid progress from approval to installation is the result of the close collaboration between groups from Alberta (Canada), INFN Bologna (Italy), Lund (Sweden) and CERN. LUCID is primarily intended to measure the luminosity delivered by the LHC to ATLAS with a systematic uncertainty in the range of a few percent. To achieve such a precision and still meet the demanding installation schedule, the LUCID developers prized simplicity and robustness above all. One of the LUCID vessels while under construction. One can see the aluminum Cerenkov tubes and the photomultiplier mount (plugged into the upper flange). The two fully assembled LUCID vessels seen from the front end elect...

  16. Dark Matter searches with the ATLAS Detector

    CERN Document Server

    Hooberman, Benjamin Henry; The ATLAS collaboration

    2016-01-01

    The presence of a non-baryonic Dark Matter (DM) component in the Universe is inferred from the observation of its gravitational interaction. If DM interacts non-gravitationally with the Standard Model, it could be produced at the LHC, escaping the detector and leaving missing transverse momentum (MET) as a signature. Recent results from the ATLAS detector will be presented, based on events with large MET accompanied by a variety of other objects.

  17. 'Daisy petal' connectors for the ATLAS detector

    CERN Multimedia

    Laurent Guiraud

    1997-01-01

    These daisy-petal structures are conducting connectors embedded in kapton film. This was an innovative solution to the demands of the ATLAS detector. Straws are pushed through the petals and held in contact using plugs. The flexible kapton film allows as many petals to be built in any configuration, while acting as a printed circuit carrying the high voltage between circles.

  18. Status of the CMS Phase I Pixel Detector Upgrade

    OpenAIRE

    Spannagel, Simon

    2015-01-01

    Based on the strong performance of the LHC accelerator, it is anticipated that peak luminosities of two times the design luminosity of L = 2 x10^34 cm^-2s^-1 are likely to be reached before 2018 and probably significantly exceeded in the so-called Phase I period until 2022. At this higher luminosity and increased hit occupancies the current CMS pixel detector would be subject to severe dead time and inefficiencies introduced by limited buffers in the analog read-out chip and effects of radiat...

  19. Silicon pixel-detector R&D for CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)718101

    2016-01-01

    The physics aims at the future CLIC high-energy linear e+e- collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few μm, ultra-low mass (∼ 0.2% X${}_0$ per layer for the vertex region and ∼ 1 % X${}_0$ per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ∼ 10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hybrid pixel detectors with small pitch (25 μm) and analog readout are explored. For the outer trac...

  20. Beam tests of an integrated prototype of the ATLAS Forward Proton detector

    CERN Document Server

    Lange, J; Avoni, G.; Banas, E.; Brandt, A.; Bruschi, M.; Buglewicz, P.; Cavallaro, E.; Caforio, D.; Chiodini, G.; Chytka, L.; Ciesla, K.; Davis, P.M.; Dyndal, M.; Grinstein, S.; Janas, K.; Jirakova, K.; Kocian, M.; Korcyl, K.; Lopez Paz, I.; Northacker, D.; Nozka, L.; Rijssenbeek, M.; Seabra, L.; Staszewski, R.; Swierska, P.; Sykora, T.

    2016-01-01

    The ATLAS Forward Proton (AFP) detector is intended to measure protons scattered at small angles from the ATLAS interaction point. To this end, a combination of 3D Silicon pixel tracking modules and Quartz-Cherenkov time-of-flight (ToF) detectors is installed 210m away from the interaction point at both sides of ATLAS. Beam tests with an AFP prototype detector combining tracking and timing sub-detectors and a common readout have been performed at the CERN-SPS test-beam facility in November 2014 and September 2015 to complete the system integration and to study the detector performance. The successful tracking-timing integration was demonstrated. Good tracker hit efficiencies above 99.9% at a sensor tilt of 14{\\deg}, as foreseen for AFP, were observed. Spatial resolutions in the short pixel direction with 50 {\\mu}m pitch of 5.5 +/- 0.5 {\\mu}m per pixel plane and of 2.8 +/- 0.5 {\\mu}m for the full four-plane tracker at 14{\\deg} were found, largely surpassing the AFP requirement of 10 {\\mu}m. The timing detector...

  1. A DEPFET pixel system for the ILC vertex detector

    CERN Document Server

    Trimpl, M; Kohrs, R; Krüger, H; Lodomez, P; Reuen, L; Sandow, C; Toerne, E; Velthuis, J J; Wermes, N; Andricek, L; Moser, H G; Richter, R H; Lutz, Gerhard; Giesen, F; Fischer, P; Peric, I

    2006-01-01

    We have developed a prototype system for the ILC vertex detector based on DEPFET pixels. The system operates a 128x64 pixel matrix and uses two dedicated microchips, the SWITCHER II chip for matrix steering and the CURO II chip for readout. The system development has been driven by the final ILC requirements which above all demand a detector thinned to 50 micron and a row wise read out with line rates of 20MHz and more. The targeted noise performance for the DEPFET technology is in the range of ENC=100e-. The functionality of the system has been demonstrated using different radioactive sources in an energy range from 6keV to 60keV. In recent test beam experiments using 6GeV electrons, a signal-to-noise ratio of S/N~120 has been achieved with present sensors being 450 micron thick. For improved DEPFET systems using 50 micron thin sensors in future, a signal-to-noise of 40 is expected.

  2. Tests of the gated mode for Belle II pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Prinker, Eduard [Max-Planck-Institute for Physics, Munich (Germany); Collaboration: Belle II-Collaboration

    2015-07-01

    DEPFET pixel detectors offer intrinsic amplification and very high signal to noise ratio. They form an integral building block for the vertex detector system of the Belle II experiment, which will start data taking in the year 2017 at the SuperKEKB Collider in Japan. A special Test board (Hybrid4) is used, which contains a small version of the DEPFET sensor with a read-out (DCD) and a steering chip (Switcher) attached, both controlled by a field-programmable gate array (FPGA) as the central interface to the computer. In order to keep the luminosity of the collider constant over time, the particle bunch currents have to be topped off by injecting additional bunches at a rate of 50 Hz. The particles in the daughter bunches produce a high rate of background (noisy bunches) for a short period of time, saturating the occupancy of the sensor. Operating the DEPFET sensor in a Gated Mode allows preserving the signals from collisions of normal bunches while protecting the pixels from background signals of the passing noisy bunches. An overview of the Gated Mode and first results is presented.

  3. Fabrication of a high-density MCM-D for a pixel detector system using a BCB/Cu technology

    CERN Document Server

    Topper, M; Engelmann, G; Fehlberg, S; Gerlach, P; Wolf, J; Ehrmann, O; Becks, K H; Reichl, H

    1999-01-01

    The MCM-D which is described here is a prototype for a pixel detector system for the planned Large Hadron Collider (LHC) at CERN, Geneva. The project is within the ATLAS experiment. The module consists of a sensor tile with an active area of 16.4 mm*60.4 mm, 16 readout chips, each serving 24*160 pixel unit cells, a module controller chip, an optical transceiver and the local signal interconnection and power distribution buses. The extremely high wiring density which is necessary to interconnect the readout chips was achieved using a thin film copper/photo-BCB process above the pixel array. The bumping of the readout chips was done by PbSn electroplating. All dice are then attached by flip-chip assembly to the sensor diodes and the local buses. The focus of this paper is a detailed description of the technologies for the fabrication of this advanced MCM-D. (10 refs).

  4. Physics with Electrons in the ATLAS Detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00338116

    This thesis presents two diboson measurements with the ATLAS experiment. The first is a differential measurement of Higgs boson observables in the four-lepton decay channel at $\\sqrt{s}=8$ TeV. The second presents a first measurement of the WZ diboson production cross section in the three-lepton decay channel at $\\sqrt{s}=13$ TeV. Special emphasis is given to the identification techniques of prompt electrons, particularly the likelihood identification first introduced in 2012 data taking, and electron efficiency measurements in the ATLAS detector.

  5. A Parallel FPGA Implementation for Real-Time 2D Pixel Clustering for the ATLAS Fast TracKer Processor

    CERN Document Server

    Sotiropoulou, C-L; The ATLAS collaboration; Annovi, A; Beretta, M; Kordas, K; Nikolaidis, S; Petridou, C; Volpi, G

    2014-01-01

    The parallel 2D pixel clustering FPGA implementation used for the input system of the ATLAS Fast TracKer (FTK) processor is presented. The input system for the FTK processor will receive data from the Pixel and micro-strip detectors from inner ATLAS read out drivers (RODs) at full rate, for total of 760Gbs, as sent by the RODs after level1 triggers. Clustering serves two purposes, the first is to reduce the high rate of the received data before further processing, the second is to determine the cluster centroid to obtain the best spatial measurement. For the pixel detectors the clustering is implemented by using a 2D-clustering algorithm that takes advantage of a moving window technique to minimize the logic required for cluster identification. The cluster detection window size can be adjusted for optimizing the cluster identification process. Additionally, the implementation can be parallelized by instantiating multiple cores to identify different clusters independently thus exploiting more FPGA resources. T...

  6. A Parallel FPGA Implementation for Real-Time 2D Pixel Clustering for the ATLAS Fast TracKer Processor

    CERN Document Server

    Sotiropoulou, C-L; The ATLAS collaboration; Annovi, A; Beretta, M; Kordas, K; Nikolaidis, S; Petridou, C; Volpi, G

    2014-01-01

    The parallel 2D pixel clustering FPGA implementation used for the input system of the ATLAS Fast TracKer (FTK) processor is presented. The input system for the FTK processor will receive data from the Pixel and micro-strip detectors from inner ATLAS read out drivers (RODs) at full rate, for total of 760Gbs, as sent by the RODs after level-1 triggers. Clustering serves two purposes, the first is to reduce the high rate of the received data before further processing, the second is to determine the cluster centroid to obtain the best spatial measurement. For the pixel detectors the clustering is implemented by using a 2D-clustering algorithm that takes advantage of a moving window technique to minimize the logic required for cluster identification. The cluster detection window size can be adjusted for optimizing the cluster identification process. Additionally, the implementation can be parallelized by instantiating multiple cores to identify different clusters independently thus exploiting more FPGA resources. ...

  7. Simulations of 3D-Si sensors for the innermost layer of the ATLAS pixel upgrade

    CERN Document Server

    Baselga, Marta; Quirion, David

    2016-01-01

    The LHC is expected to reach luminosities up to 3000fb-1 and the innermost layer of the ATLAS upgrade plans to cope with higher occupancy and to decrease the pixel size. 3D-Si sensors are a good candidate for the innermost layer of the ATLAS pixel upgrade since they exhibit good performance under high fluences and the new designs will have smaller pixel size to fulfill the electronics expectations. This paper reports TCAD simulations of the 3D-Si sensors designed at IMB-CNM with non passing-through columns that are being fabricated for the next innermost layer of the ATLAS pixel upgrade, shows the charge collection response before and after irradiation, and the response of 3D-Si sensors located at large $\\eta$ angles.

  8. A sealed Gas Pixel Detector for X-ray astronomy

    International Nuclear Information System (INIS)

    We report on the results of a new, sealed Gas Pixel Detector. The very compact design and the absence of the gas flow system make this detector substantially ready for use as focal plane detector for future X-ray space telescopes. The instrument brings high sensitivity to X-ray polarimetry, which is the last unexplored field of X-ray astronomy. It derives the polarization information from the track of the photoelectrons that are imaged by a high-gain (>1000), fine pitch GEM that matches the pitch of a pixel ASIC which is the collecting anode of the GPD (105k, 50 μm wide, hexagonal cells). The device is able to simultaneously perform good imaging (50-60 μm), moderate spectroscopy (∼15% at 6 keV) as well as fast, high-rate timing in the 1-10 keV range. Moreover, being truly 2D, it is non-dispersive and does not require any rotation. The great improvement of sensitivity, at least two orders of magnitude with respect to traditional polarimeters (based on Bragg crystals or Thomson scattering), will allow the direct exploration of the most dramatic objects of the X-ray sky. At the focus of the large mirror area of the XEUS telescope it will be decisive in reaching many of the scientific goals of the mission. With integration times of the order of 1 day, polarimetry of Active Galactic Nuclei at the percent level will be possible, making for a real breakthrough in high-energy astrophysics

  9. A sealed Gas Pixel Detector for X-ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Bellazzini, R. [INFN sez.Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy)], E-mail: ronaldo.bellazzini@pi.infn.it; Spandre, G.; Minuti, M.; Baldini, L.; Brez, A.; Latronico, L.; Omodei, N. [INFN sez.Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Razzano, M.; Massai, M.M. [INFN sez.Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Dipartimento di Fisica, Universita di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Pesce-Rollins, M.; Sgro, C. [INFN sez.Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Costa, Enrico; Soffitta, Paolo [Istituto di Astrofisica Spaziale e Fisica Cosmica, Via del Fosso del Cavaliere 100, I-00133, Roma (Italy); Sipila, H.; Lempinen, E. [Oxford Instruments Analytical Oy, Nihtisillankuja 5, FI-02631 Espoo (Finland)

    2007-09-01

    We report on the results of a new, sealed Gas Pixel Detector. The very compact design and the absence of the gas flow system make this detector substantially ready for use as focal plane detector for future X-ray space telescopes. The instrument brings high sensitivity to X-ray polarimetry, which is the last unexplored field of X-ray astronomy. It derives the polarization information from the track of the photoelectrons that are imaged by a high-gain (>1000), fine pitch GEM that matches the pitch of a pixel ASIC which is the collecting anode of the GPD (105k, 50 {mu}m wide, hexagonal cells). The device is able to simultaneously perform good imaging (50-60 {mu}m), moderate spectroscopy ({approx}15% at 6 keV) as well as fast, high-rate timing in the 1-10 keV range. Moreover, being truly 2D, it is non-dispersive and does not require any rotation. The great improvement of sensitivity, at least two orders of magnitude with respect to traditional polarimeters (based on Bragg crystals or Thomson scattering), will allow the direct exploration of the most dramatic objects of the X-ray sky. At the focus of the large mirror area of the XEUS telescope it will be decisive in reaching many of the scientific goals of the mission. With integration times of the order of 1 day, polarimetry of Active Galactic Nuclei at the percent level will be possible, making for a real breakthrough in high-energy astroph0011ysi.

  10. The Tilecal/ATLAS detector control system

    CERN Document Server

    Tomasio Pina, João Antonio

    2004-01-01

    Tilecal is the barrel hadronic calorimeter of the ATLAS detector that is presently being built at CERN to operate at the LHC accelerator. The main task of the Tilecal detector control system (DCS) is to enable the coherent and safe operation of the detector. All actions initiated by the operator and all errors, warnings, and alarms concerning the hardware of the detector are handled by DCS. The DCS has to continuously monitor all operational parameters, give warnings and alarms concerning the hardware of the detector. The DCS architecture consists of a distributed back-end (BE) system running on PC's and different front-end (FE) systems. The implementation of the BE will he achieved with a commercial supervisory control and data acquisition system (SCADA) and the FE instrumentation will consist on a wide variety of equipment. The connection between the FE and BE is provided by fieldbus or L

  11. Development of Edgeless n-on-p Planar Pixel Sensors for future ATLAS Upgrades

    CERN Document Server

    Bomben, M; Boscardin, M; Bosisio, L; Calderini, G; Chauveau, J; Giacomini, G; La Rosa, A; Marchori, G; Zorzi, N

    2012-01-01

    The development of n-on-p "edgeless" planar pixel sensors being fabricated at FBK (Trento, Italy), aimed at the upgrade of the ATLAS Inner Detector for the High Luminosity phase of the Large Hadron Collider (HL-LHC), is reported. A characterizing feature of the devices is the reduced dead area at the edge, achieved by adopting the "active edge" technology, based on a deep etched trench, suitably doped to make an ohmic contact to the substrate. The project is presented, along with the active edge process, the sensor design for this first n-on-p production and a selection of simulation results, including the expected charge collection efficiency after radiation fluence of $1 \\times 10^{15} {\\rm n_{eq}}/{\\rm cm}^2$ comparable to those expected at HL-LHC (about ten years of running, with an integrated luminosity of 3000 fb$^{-1}$) for the outer pixel layers. We show that, after irradiation, more than 50% of the signal should be collected in the edge region; this confirms the validity of the active edge approach.

  12. Development of Edgeless n-on-p Planar Pixel Sensors for future ATLAS Upgrades

    CERN Document Server

    Bomben, M

    2013-01-01

    The development of n-on-p “edgeless” planar pixel sensors being fabricated at FBK (Trento, Italy), aimed at the upgrade of the ATLAS Inner Detector for the High Luminosity phase of the Large Hadron Collider (HL-LHC), is reported. A characterizing feature of the devices is the reduced dead area at the edge, achieved by adopting the “active edge” technology, based on a deep etched trench, suitably doped to make an ohmic contact to the substrate. The project is presented, along with the active edge process, the sensor design for this first n-on-p production and a selection of simulation results, including the expected charge collection efficiency after radiation fluence of View the MathML source1×1015neq/cm2 comparable to those expected at HL-LHC (about ten years of running, with an integrated luminosity of 3000 fb−1) for the outer pixel layers. We show that, after irradiation and at a bias voltage of 500 V, more than 50% of the signal should be collected in the edge region; this confirms the validity...

  13. Development of edgeless n-on-p planar pixel sensors for future ATLAS upgrades

    Science.gov (United States)

    Bomben, Marco; Bagolini, Alvise; Boscardin, Maurizio; Bosisio, Luciano; Calderini, Giovanni; Chauveau, Jacques; Giacomini, Gabriele; La Rosa, Alessandro; Marchiori, Giovanni; Zorzi, Nicola

    2013-06-01

    The development of n-on-p "edgeless" planar pixel sensors being fabricated at FBK (Trento, Italy), aimed at the upgrade of the ATLAS Inner Detector for the High Luminosity phase of the Large Hadron Collider (HL-LHC), is reported. A characterizing feature of the devices is the reduced dead area at the edge, achieved by adopting the "active edge" technology, based on a deep etched trench, suitably doped to make an ohmic contact to the substrate. The project is presented, along with the active edge process, the sensor design for this first n-on-p production and a selection of simulation results, including the expected charge collection efficiency after radiation fluence of 1×1015 neq/cm2 comparable to those expected at HL-LHC (about ten years of running, with an integrated luminosity of 3000 fb-1) for the outer pixel layers. We show that, after irradiation and at a bias voltage of 500 V, more than 50% of the signal should be collected in the edge region; this confirms the validity of the active edge approach.

  14. Towards a new generation of pixel detector readout chips

    International Nuclear Information System (INIS)

    The Medipix3 Collaboration has broken new ground in spectroscopic X-ray imaging and in single particle detection and tracking. This paper will review briefly the performance and limitations of the present generation of pixel detector readout chips developed by the Collaboration. Through Silicon Via technology has the potential to provide a significant improvement in the tile-ability and more flexibility in the choice of readout architecture. This has been explored in the context of 3 projects with CEA-LETI using Medipix3 and Timepix3 wafers. The next generation of chips will aim to provide improved spectroscopic imaging performance at rates compatible with human CT. It will also aim to provide full spectroscopic images with unprecedented energy and spatial resolution. Some of the opportunities and challenges posed by moving to a more dense CMOS process will be discussed

  15. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    Science.gov (United States)

    Tehrani, N. Alipour; Arfaoui, S.; Benoit, M.; Dannheim, D.; Dette, K.; Hynds, D.; Kulis, S.; Perić, I.; Petrič, M.; Redford, S.; Sicking, E.; Valerio, P.

    2016-07-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor, where efficiencies of greater than 99% have been achieved at -60 V substrate bias, with a single hit resolution of 6.1 μm . Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  16. Pixel Detector Trial Assembly Test in the SR1 building

    CERN Multimedia

    D. Giugni

    2004-01-01

    During the last two months the Pixel group [LBL, Milan and Wuppertal] made a successful integration test on the mechanics of the barrel. The scope of the test was to qualify the integration procedures and the various assembling tools. The test took place in the clean room of the SR1 building at CERN, where the detector has been assembled around a dummy beam pipe made of Stainless Steel. The process is rather complex: the shells come in two parts and they have to be clamped together to get the full shell. This operation is carried out by a dedicated tool which is shown to the right in the picture below. The layer 1 shell is clamped around a "service" pipe that will be used for moving the full layer to the integration tool [ITT] which is visible on the left. View of the tools devoted to the Pixel barrel integration in the SR1 building Also visible in the picture is the global frame that is actually held by the tool. It will engage the layers sliding onto the rails. The first two layers are sequentially...

  17. A generic readout environment for prototype pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Turqueti, Marcos, E-mail: turqueti@fnal.go [Fermi National Accelerator Laboratory, Kirk and Wilson Road, 60510-500 (United States); Rivera, Ryan; Prosser, Alan; Kwan, Simon [Fermi National Accelerator Laboratory, Kirk and Wilson Road, 60510-500 (United States)

    2010-11-01

    Pixel detectors for experimental particle physics research have been implemented with a variety of readout formats and potentially generate massive amounts of data. Examples include the PSI46 device for the Compact Muon Solenoid (CMS) experiment which implements an analog readout, the Fermilab FPIX2.1 device with a digital readout, and the Fermilab Vertically Integrated Pixel device. The Electronic Systems Engineering Department of the Computing Division at the Fermi National Accelerator Laboratory has developed a data acquisition system flexible and powerful enough to meet the various needs of these devices to support laboratory test bench as well as test beam applications. The system is called CAPTAN (Compact And Programmable daTa Acquisition Node) and is characterized by its flexibility, versatility and scalability by virtue of several key architectural features. These include a vertical bus that permits the user to stack multiple boards, a gigabit Ethernet link that permits high speed communications to the system and a core group of boards that provide specific processing and readout capabilities for the system. System software based on distributed computing techniques supports an expandable network of CAPTANs. In this paper, we describe the system architecture and give an overview of its capabilities.

  18. Standard Model measurements with the ATLAS detector

    Directory of Open Access Journals (Sweden)

    Hassani Samira

    2015-01-01

    Full Text Available Various Standard Model measurements have been performed in proton-proton collisions at a centre-of-mass energy of √s = 7 and 8 TeV using the ATLAS detector at the Large Hadron Collider. A review of a selection of the latest results of electroweak measurements, W/Z production in association with jets, jet physics and soft QCD is given. Measurements are in general found to be well described by the Standard Model predictions.

  19. Development of thin sensors and a novel interconnection technology for the upgrade of the ATLAS pixel system

    Energy Technology Data Exchange (ETDEWEB)

    Beimforde, Michael

    2010-07-19

    To extend the discovery potential of the experiments at the LHC accelerator a two phase luminosity upgrade towards the super LHC (sLHC) with a maximum instantaneous luminosity of 10{sup 35}/cm{sup 2}s{sup 1} is planned. Retaining the reconstruction efficiency and spatial resolution of the ATLAS tracking detector at the sLHC, new pixel modules have to be developed that have a higher granularity, can be placed closer to the interaction point, and allow for a cost-efficient coverage of a larger pixel detector volume compared to the present one. The reduced distance to the interaction point calls for more compact modules that have to be radiation hard to supply a sufficient charge collection efficiency up to an integrated particle fluence equivalent to that of (1-2).10{sup 16} 1-MeV-neutrons per square centimeter (n{sub eq}/cm{sup 2}). Within this thesis a new module concept was partially realised and evaluated for the operation within an ATLAS pixel detector at the sLHC. This module concept utilizes a novel thin sensor production process for thin n-in-p silicon sensors which potentially allow for a higher radiation hardness at a reduced cost. Furthermore, the new 3D-integration technology ICV-SLID is explored which will allow for increasing the active area of the modules from 71% to about 90% and hence, for employing the modules in the innermost layer of the upgraded ATLAS pixel detector. A semiconductor simulation and measurements of irradiated test sensors are used to optimize the implantation parameters for the inter-pixel isolation of the thin sensors. These reduce the crosstalk between the pixel channels and should allow for operating the sensors during the whole runtime of the experiment without causing junction breakdowns. The characterization of the first production of sensors with active thicknesses of 75 {mu}m and 150 {mu}m proved that thin pixel sensors can be successfully produced with the new process technology. Thin pad sensors with a reduced inactive

  20. Development of thin sensors and a novel interconnection technology for the upgrade of the ATLAS pixel system

    International Nuclear Information System (INIS)

    To extend the discovery potential of the experiments at the LHC accelerator a two phase luminosity upgrade towards the super LHC (sLHC) with a maximum instantaneous luminosity of 1035/cm2s1 is planned. Retaining the reconstruction efficiency and spatial resolution of the ATLAS tracking detector at the sLHC, new pixel modules have to be developed that have a higher granularity, can be placed closer to the interaction point, and allow for a cost-efficient coverage of a larger pixel detector volume compared to the present one. The reduced distance to the interaction point calls for more compact modules that have to be radiation hard to supply a sufficient charge collection efficiency up to an integrated particle fluence equivalent to that of (1-2).1016 1-MeV-neutrons per square centimeter (neq/cm2). Within this thesis a new module concept was partially realised and evaluated for the operation within an ATLAS pixel detector at the sLHC. This module concept utilizes a novel thin sensor production process for thin n-in-p silicon sensors which potentially allow for a higher radiation hardness at a reduced cost. Furthermore, the new 3D-integration technology ICV-SLID is explored which will allow for increasing the active area of the modules from 71% to about 90% and hence, for employing the modules in the innermost layer of the upgraded ATLAS pixel detector. A semiconductor simulation and measurements of irradiated test sensors are used to optimize the implantation parameters for the inter-pixel isolation of the thin sensors. These reduce the crosstalk between the pixel channels and should allow for operating the sensors during the whole runtime of the experiment without causing junction breakdowns. The characterization of the first production of sensors with active thicknesses of 75 μm and 150 μm proved that thin pixel sensors can be successfully produced with the new process technology. Thin pad sensors with a reduced inactive edge demonstrate that the active sensor

  1. ATLAS gets its own luminosity detector

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    During the winter shutdown, the ATLAS collaboration has completed the installation of ALFA, the detector system that aims at the LHC absolute luminosity at Point 1 analysing the elastic scattering of protons at small angles.   Upper and lower ALFA Roman Pots as installed in sector 8-1 of the LHC tunnel, 240 metres from the ATLAS Interaction Point. The detectors of the ALFA system are installed at ± 240 meters from the interaction point 1, on either side of the ATLAS detector. The whole system consists of four stations, two on each side of the interaction point. Each station is equipped with two Roman Pots; each pot – that is separated from the vacuum of the accelerator by a thin window but is connected with bellows to the beam-pipe – can be moved very close to the beam. “The Roman Pot technique has been used successfully in the past for the measurement of elastic scattering very close to the circulating beam,” says Patrick Fassn...

  2. Selected results from the static characterization of edgeless n-on-p planar pixel sensors for ATLAS upgrades

    CERN Document Server

    Giacomini, Gabriele; Bomben, Marco; Boscardin, Maurizio; Bosisio, Luciano; Calderini, Giovanni; Chauveau, Jacques; La Rosa, Alessandro; Marchiori, Giovanni; Zorzi, Nicola

    2014-01-01

    In view of the LHC upgrade for the High Luminosity Phase (HL-LHC), the ATLAS experiment is planning to replace the Inner Detector with an all-Silicon system. The n-on-p technology represents a valid solution for the modules of most of the layers, given the significant radiation hardness of this option and the reduced cost. There is also the demand to reduce the inactive areas to a minimum. The ATLAS LPNHE Paris group and FBK Trento started a collaboration for the development on a novel n-on-p edgeless planar pixel design, based on the deep-trench process which can cope with all these requirements. This paper reports selected results from the electrical characterization, both before and after irradiation, of test structures from the first production batch.

  3. Development of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    CERN Document Server

    Calderini, G; Bomben, M; Boscardin, M; Bosisio, L; Chauveau, J; Giacomini, G; La Rosa, A; Marchiori, G; Zorzi, N

    2014-01-01

    In view of the LHC upgrade for the high luminosity phase (HL-LHC), the ATLAS experiment is planning to replace the inner detector with an all-silicon system. The n-in-p bulk technology represents a valid solution for the modules of most of the layers, given the significant radiation hardness of this option and the reduced cost. The large area necessary to instrument the outer layers will demand to tile the sensors, a solution for which the inefficient region at the border of each sensor needs to be reduced to the minimum size. This paper reports on a joint R&D project by the ATLAS LPNHE Paris group and FBK Trento on a novel n-in-p edgeless planar pixel design, based on the deep-trench process available at FBK.

  4. From vertex detectors to inner trackers with CMOS pixel sensors

    CERN Document Server

    Besson, A; Spiriti, E; Baudot, J; Claus, G; Goffe, M; Winter, M

    2016-01-01

    The use of CMOS Pixel Sensors (CPS) for high resolution and low material vertex detectors has been validated with the 2014 and 2015 physics runs of the STAR-PXL detector at RHIC/BNL. This opens the door to the use of CPS for inner tracking devices, with 10-100 times larger sensitive area, which require therefore a sensor design privileging power saving, response uniformity and robustness. The 350 nm CMOS technology used for the STAR-PXL sensors was considered as too poorly suited to upcoming applications like the upgraded ALICE Inner Tracking System (ITS), which requires sensors with one order of magnitude improvement on readout speed and improved radiation tolerance. This triggered the exploration of a deeper sub-micron CMOS technology, Tower-Jazz 180 nm, for the design of a CPS well adapted for the new ALICE-ITS running conditions. This paper reports the R&D results for the conception of a CPS well adapted for the ALICE-ITS.

  5. Performance of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    CERN Document Server

    Bomben, Marco; Boscardin, Maurizio; Bosisio, Luciano; Calderini, Giovanni; Chauveau, Jacques; Ducourthial, Audrey; Giacomini, Gabriele; Marchiori, Giovanni; Zorzi, Nicola

    2016-01-01

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate to achieve a large area instrumented with pixel sensors, since it is radiation hard and cost effective. The paper reports on the performance of novel n-on-p edgeless planar pixel sensors produced by FBK-CMM, making use of the active trench for the reduction of the dead area at the periphery of the device. After discussing the sensor technology an overview of the first beam test results will be given.

  6. Development of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    Science.gov (United States)

    Calderini, G.; Bagolini, A.; Beccherle, R.; Bomben, M.; Boscardin, M.; Bosisio, L.; Chauveau, J.; Giacomini, G.; La Rosa, A.; Marchiori, G.; Zorzi, N.

    2016-09-01

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate to achieve a large area instrumented with pixel sensors, since it is radiation hard and cost effective. The presentation describes the performance of novel n-in-p edgeless planar pixel sensors produced by FBK-CMM, making use of the active trench for the reduction of the dead area at the periphery of the device. After discussing the sensor technology, some feedback from preliminary results of the first beam test will be discussed.

  7. Charge Sharing Effect on 600 {\\mu}m Pitch Pixelated CZT Detector for Imaging Applications

    CERN Document Server

    Yin, Yongzhi; Xu, Dapeng; Chen, Ximeng

    2013-01-01

    We are currently investigating the spatial resolution of highly pixelated Cadmium Zinc Telluride (CZT) detector for imaging applications. A 20 mm {\\times} 20 mm {\\times} 5 mm CZT substrate was fabricated with 600 {\\mu}m pitch pixels (500 {\\mu}m anode pixels with 100 {\\mu}m gap) and coplanar cathode. Charge sharing between two pixels was studied using collimated 122 keV gamma ray source. Experiments show a resolution of 125 {\\mu}m FWHM for double-pixel charge sharing events when the 600 {\\mu}m pixelated and 5 mm thick CZT detector biased at -1000 V. In addition, we analyzed the energy response of the 600 {\\mu}m pitch pixelated CZT detector.

  8. Thin n-in-p planar pixel sensors and active edge sensors for the ATLAS upgrade at HL-LHC

    CERN Document Server

    Terzo, S; Nisius, R; Paschen, B

    2014-01-01

    Silicon pixel modules employing n-in-p planar sensors with an active thickness of 200 $\\mu$m, produced at CiS, and 100-200 $\\mu$m thin active/slim edge sensor devices, produced at VTT in Finland have been interconnected to ATLAS FE-I3 and FE-I4 read-out chips. The thin sensors are designed for high energy physics collider experiments to ensure radiation hardness at high fluences. Moreover, the active edge technology of the VTT production maximizes the sensitive region of the assembly, allowing for a reduced overlap of the modules in the pixel layer close to the beam pipe. The CiS production includes also four chip sensors according to the module geometry planned for the outer layers of the upgraded ATLAS pixel detector to be operated at the HL-LHC. The modules have been characterized using radioactive sources in the laboratory and with high precision measurements at beam tests to investigate the hit efficiency and charge collection properties at different bias voltages and particle incidence angles. The perfo...

  9. Thin n-in-p planar pixel sensors and active edge sensors for the ATLAS upgrade at HL-LHC

    Science.gov (United States)

    Terzo, S.; Macchiolo, A.; Nisius, R.; Paschen, B.

    2014-12-01

    Silicon pixel modules employing n-in-p planar sensors with an active thickness of 200 μm, produced at CiS, and 100-200 μm thin active/slim edge sensor devices, produced at VTT in Finland have been interconnected to ATLAS FE-I3 and FE-I4 read-out chips. The thin sensors are designed for high energy physics collider experiments to ensure radiation hardness at high fluences. Moreover, the active edge technology of the VTT production maximizes the sensitive region of the assembly, allowing for a reduced overlap of the modules in the pixel layer close to the beam pipe. The CiS production includes also four chip sensors according to the module geometry planned for the outer layers of the upgraded ATLAS pixel detector to be operated at the HL-LHC. The modules have been characterized using radioactive sources in the laboratory and with high precision measurements at beam tests to investigate the hit efficiency and charge collection properties at different bias voltages and particle incidence angles. The performance of the different sensor thicknesses and edge designs are compared before and after irradiation up to a fluence of 1.4 × 1016 neq/cm2.

  10. The alignment of the ATLAS Inner Detector in Run 2

    CERN Document Server

    Ripellino, Giulia; The ATLAS collaboration

    2016-01-01

    The ATLAS reconstruction of charged particle trajectories relies on the Inner Detector tracking system. The accuracy of the reconstruction is limited by the finite resolution of the detector elements and the knowledge about their positions. A precise alignment of the detector is therefore essential. In this poster we present the strategy and the status of the Inner Detector alignment in ATLAS during the LHC Run 2.

  11. ATLAS inner detector: the Run 1 to Run 2 transition, and first experience from Run 2

    CERN Document Server

    Dobos, Daniel; The ATLAS collaboration

    2015-01-01

    The ATLAS experiment is equipped with a tracking system, the Inner Detector, built using different technologies, silicon planar sensors (pixel and micro-strip) and gaseous drift- tubes, all embedded in a 2T solenoidal magnetic field. For the LHC Run II, the system has been upgraded; taking advantage of the long showdown, the Pixel Detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL), a fourth layer of pixel detectors, installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm from the beam axis. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point and the increase of Luminosity that LHC will face in Run-2, a new read-out chip within CMOS 130nm and two different silicon sensor pixel technologies (planar and 3D) have been developed. SCT and TRT systems consolidation was also carri...

  12. Characterization of M-π-n CdTe pixel detectors coupled to HEXITEC readout chip

    Science.gov (United States)

    Veale, M. C.; Kalliopuska, J.; Pohjonen, H.; Andersson, H.; Nenonen, S.; Seller, P.; Wilson, M. D.

    2012-01-01

    Segmentation of the anode-side of an M-π-n CdTe diode, where the pn-junction is diffused into the detector bulk, produces large improvements in the spatial and energy resolution of CdTe pixel detectors. It has been shown that this fabrication technique produces very high inter-pixel resistance and low leakage currents are obtained by physical isolation of the pixels of M-π-n CdTe detectors. In this paper the results from M-π-n CdTe detectors stud bonded to a spectroscopic readout ASIC are reported. The CdTe pixel detectors have 250 μm pitch and an area of 5 × 5 mm2 with thicknesses of 1 and 2 mm. The polarization and energy resolution dependence of the M-π-n CdTe detectors as a function of detector thickness are discussed.

  13. Run-2 ATLAS Trigger and Detector Performance

    CERN Document Server

    Winklmeier, Frank; The ATLAS collaboration

    2016-01-01

    The 2nd LHC run has started in June 2015 with a pp centre-of-mass collision energy of 13 TeV, and ATLAS has taken first data at this new energy. In this talk the improvements made to the ATLAS experiment during the 2-year shutdown 2013/2014 will be discussed, and first detector and trigger performance results from the Run-2 will be shown. In general, reconstruction algorithms of tracks, e/gamma, muons, taus, jets and flavour tag- ging have been improved for Run-2. The new reconstruction algorithms and their performance measured using the data taken in 2015 at sqrt(s)=13 TeV will be discussed. Reconstruction efficiency, isolation performance, transverse momentum resolution and momentum scales are measured in various regions of the detector and in momentum intervals enlarged with respect to those measured in the Run-1. This presentation will also give an overview of the upgrades to the ATLAS trigger system that have been implemented during the LHC shutdown in order to deal with the increased trigger rates (fact...

  14. Display of cosmic ray event going through the pixel detector taken on October 18th 2008

    CERN Multimedia

    ATLAS, Experiment

    2014-01-01

    Shown are the XY view (of SCT and pixels and of pixels alone) and an RZ view. The track has a hit in each of the layers in both the upper and the lower hemisphere. In the bottom of L0 there are even two hits due to a module overlap. Apart from the signal hits there is only one other hit in the pixel detector demonstrating the very low noise level in the detector.

  15. Radiation-hard active CMOS pixel sensors for HL-LHC detector upgrades

    Science.gov (United States)

    Backhaus, Malte

    2015-02-01

    The luminosity of the Large Hadron Collider (LHC) will be increased during the Long Shutdown of 2022 and 2023 (LS3) in order to increase the sensitivity of its experiments. A completely new inner detector for the ATLAS experiment needs to be developed to withstand the extremely harsh environment of the upgraded, so-called High-Luminosity LHC (HL-LHC). High radiation hardness as well as granularity is mandatory to cope with the requirements in terms of radiation damage as well as particle occupancy. A new silicon detector concept that uses commercial high voltage and/or high resistivity full complementary metal-oxide-semiconductor (CMOS) processes as active sensor for pixel and/or strip layers has risen high attention, because it potentially provides high radiation hardness and granularity and at the same time reduced price due to the commercial processing and possibly relaxed requirements for the hybridization technique. Results on the first prototypes characterized in a variety of laboratory as well as test beam environments are presented.

  16. Small-Scale Readout System Prototype for the STAR PIXEL Detector

    Energy Technology Data Exchange (ETDEWEB)

    Szelezniak, Michal; Anderssen, Eric; Greiner, Leo; Matis, Howard; Ritter, Hans Georg; Stezelberger, Thorsten; Sun, Xiangming; Thomas, James; Vu, Chinh; Wieman, Howard

    2008-10-10

    Development and prototyping efforts directed towards construction of a new vertex detector for the STAR experiment at the RHIC accelerator at BNL are presented. This new detector will extend the physics range of STAR by allowing for precision measurements of yields and spectra of particles containing heavy quarks. The innermost central part of the new detector is a high resolution pixel-type detector (PIXEL). PIXEL requirements are discussed as well as a conceptual mechanical design, a sensor development path, and a detector readout architecture. Selected progress with sensor prototypes dedicated to the PIXEL detector is summarized and the approach chosen for the readout system architecture validated in tests of hardware prototypes is discussed.

  17. A parallel FPGA implementation for real-time 2D pixel clustering for the ATLAS Fast Tracker Processor

    Science.gov (United States)

    Sotiropoulou, C. L.; Gkaitatzis, S.; Annovi, A.; Beretta, M.; Kordas, K.; Nikolaidis, S.; Petridou, C.; Volpi, G.

    2014-10-01

    The parallel 2D pixel clustering FPGA implementation used for the input system of the ATLAS Fast TracKer (FTK) processor is presented. The input system for the FTK processor will receive data from the Pixel and micro-strip detectors from inner ATLAS read out drivers (RODs) at full rate, for total of 760Gbs, as sent by the RODs after level-1 triggers. Clustering serves two purposes, the first is to reduce the high rate of the received data before further processing, the second is to determine the cluster centroid to obtain the best spatial measurement. For the pixel detectors the clustering is implemented by using a 2D-clustering algorithm that takes advantage of a moving window technique to minimize the logic required for cluster identification. The cluster detection window size can be adjusted for optimizing the cluster identification process. Additionally, the implementation can be parallelized by instantiating multiple cores to identify different clusters independently thus exploiting more FPGA resources. This flexibility makes the implementation suitable for a variety of demanding image processing applications. The implementation is robust against bit errors in the input data stream and drops all data that cannot be identified. In the unlikely event of missing control words, the implementation will ensure stable data processing by inserting the missing control words in the data stream. The 2D pixel clustering implementation is developed and tested in both single flow and parallel versions. The first parallel version with 16 parallel cluster identification engines is presented. The input data from the RODs are received through S-Links and the processing units that follow the clustering implementation also require a single data stream, therefore data parallelizing (demultiplexing) and serializing (multiplexing) modules are introduced in order to accommodate the parallelized version and restore the data stream afterwards. The results of the first hardware tests of

  18. Silicon strip detectors for the ATLAS HL-LHC upgrade

    CERN Document Server

    Bernabeu, J; The ATLAS collaboration

    2011-01-01

    While the Large Hadron Collider (LHC) at CERN is continuing to deliver an ever-increasing luminosity to the experiments, plans for an upgraded machine called Super-LHC (sLHC) are progressing. The upgrade is foreseen to increase the LHC design luminosity by a factor ten. The ATLAS experiment will need to build a new tracker for sLHC operation, which needs to be suited to the harsh sLHC conditions in terms of particle rates and radiation doses. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. To successfully face the increased radiation dose, a new generation of extremely radiation hard silicon detectors is being designed. Silicon sensors with sufficient radiation hardness are the subject of an international R&D programme, working on pixel and strip sensors. The efforts presented here concentrate on the innermost strip layers. We have developed a large number of prototype planar detectors produced on p-type wafers in a number of d...

  19. Silicon Strip Detectors for the ATLAS sLHC Upgrade

    CERN Document Server

    Soldevila, U; The ATLAS collaboration

    2011-01-01

    While the Large Hadron Collider (LHC) at CERN is continuing to deliver an ever-increasing luminosity to the experiments, plans for an upgraded machine called Super-LHC (sLHC) are progressing. The upgrade is foreseen to increase the LHC design luminosity by a factor ten. The ATLAS experiment will need to build a new tracker for sLHC operation, which needs to be suited to the harsh sLHC conditions in terms of particle rates and radiation doses. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. To successfully face the increased radiation dose, a new generation of extremely radiation hard silicon detectors is being designed. Silicon sensors with sufficient radiation hardness are the subject of an international R&amp;D programme, working on pixel and strip sensors. The efforts presented here concentrate on the innermost strip layers. We have developed a large number of prototype planar detectors produced on p-type wafers in a...

  20. Silicon Strip Detectors for ATLAS sLHC Upgrade

    CERN Document Server

    Affolder, A; The ATLAS collaboration

    2011-01-01

    While the Large Hadron Collider (LHC) at CERN is continuing to deliver an ever-increasing luminosity to the experiments, plans for an upgraded machine called Super-LHC (sLHC) are progressing. The upgrade is foreseen to increase the LHC design luminosity by a factor ten. The ATLAS experiment will need to build a new tracker for sLHC operation, which needs to be suited to the harsh sLHC conditions in terms of particle rates and radiation doses. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. To successfully face the increased radiation dose, a new generation of extremely radiation hard silicon detectors is being designed. Silicon sensors with sufficient radiation hardness are the subject of an international R&D programme, working on pixel and strip sensors. The efforts presented here concentrate on the innermost strip layers. We have developed a large number of prototype planar detectors produced on p-type wafers in a number of d...

  1. Silicon Strip Detectors for the ATLAS HL-LHC Upgrade

    CERN Document Server

    Dervan, Paul; The ATLAS collaboration

    2011-01-01

    While the Large Hadron Collider (LHC) at CERN is continuing to deliver an ever-increasing luminosity to the experiments, plans for an upgraded machine called Super-LHC (sLHC) are progressing. The upgrade is foreseen to increase the LHC design luminosity by a factor ten. The ATLAS experiment will need to build a new tracker for sLHC operation, which needs to be suited to the harsh sLHC conditions in terms of particle rates and radiation doses. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. To successfully face the increased radiation dose, a new generation of extremely radiation hard silicon detectors is being designed. Silicon sensors with sufficient radiation hardness are the subject of an international R&D programme, working on pixel and strip sensors. The efforts presented here concentrate on the innermost strip layers. We have developed a large number of prototype planar detectors produced on p-type wafers in a num...

  2. Recent SM measurements with the ATLAS detector

    CERN Document Server

    Hejbal, Jiri; The ATLAS collaboration

    2015-01-01

    Various Standard Model measurements have been performed in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 and 8 TeV using the ATLAS detector at the Large Hadron Collider. A review of a selection of the latest results of electroweak measurements, W/Z production in association with jets, jet physics and soft QCD is given. Measurements are in general found to be well described by the Standard Model predictions. First LHC Run-2 results including measurements of the properties of minimum bias interactions and early cross section measurements involving W and Z bosons are also presented.

  3. Modelling and 3D optimisation of CdTe pixels detector array geometry - Extension to small pixels

    Energy Technology Data Exchange (ETDEWEB)

    Zumbiehl, A. E-mail: zumbiehl@phase.c-strasbourg.fr; Hage-Ali, M.; Fougeres, P.; Koebel, J.M.; Regal, R.; Rit, C.; Ayoub, M.; Siffert, P

    2001-08-11

    CdTe and CdZnTe pixel detectors offer great interest for many applications, especially for medical and industrial imaging. Up to now, the material, generally, used and investigated for pixel arrays was CZT (Hamel et al., IEEE Trans. Nucl. Sci. 43 (3) (1996) 1422; Barrett et al., Phys. Rev. Lett. 75 (1) (1995) 156; Bennett et al., Nucl. Instr. and Meth. A 392 (1997) 260; Eskin et al., J. Appl. Phys. 85 (2) (1999) 647; Brunett et al., J. Appl. Phys. 86 (7) (1999) 3926; Luke, Nucl. Instr. and Meth. A 380 (1996) 232), but cadmium telluride can also be an appropriate choice, as shown here. However, we clearly demonstrate here that the optimal pixel configuration is highly dependent on the electrical transport properties of the material. Depending on the field of primary interest, either energy resolution or counting rate efficiency in the photopeak, the geometry for each case has to be optimised. For that purpose, we have developed a calculation of the signal induced onto the pixel. Two distinct parts are used: after showing our approach for the weighting potential calculation, we present our results performed by a 'pseudo-Monte Carlo' simulation. Results are supported by a few experimental comparisons. We argue about the optimum sizes with clarifying the problems caused by too small and too large pixel sizes. The study field is chosen to be vast, i.e. pixel size to detector thickness ratios (W/L) of 1/8-1, and detector thickness of 1.0-8.0 mm. In addition, several electrical transport properties are used. Since efficiency is often of primary interest, thick detectors could be very attractive, which are shown to be really feasible even on CdTe.

  4. Modelling and 3D optimisation of CdTe pixels detector array geometry - Extension to small pixels

    Science.gov (United States)

    Zumbiehl, A.; Hage-Ali, M.; Fougeres, P.; Koebel, J. M.; Regal, R.; Rit, C.; Ayoub, M.; Siffert, P.

    2001-08-01

    CdTe and CdZnTe pixel detectors offer great interest for many applications, especially for medical and industrial imaging. Up to now, the material, generally, used and investigated for pixel arrays was CZT (Hamel et al., IEEE Trans. Nucl. Sci. 43 (3) (1996) 1422; Barrett et al., Phys. Rev. Lett. 75 (1) (1995) 156; Bennett et al., Nucl. Instr. and Meth. A 392 (1997) 260; Eskin et al., J. Appl. Phys. 85 (2) (1999) 647; Brunett et al., J. Appl. Phys. 86 (7) (1999) 3926; Luke, Nucl. Instr. and Meth. A 380 (1996) 232), but cadmium telluride can also be an appropriate choice, as shown here. However, we clearly demonstrate here that the optimal pixel configuration is highly dependent on the electrical transport properties of the material. Depending on the field of primary interest, either energy resolution or counting rate efficiency in the photopeak, the geometry for each case has to be optimised. For that purpose, we have developed a calculation of the signal induced onto the pixel. Two distinct parts are used: after showing our approach for the weighting potential calculation, we present our results performed by a "pseudo-Monte Carlo" simulation. Results are supported by a few experimental comparisons. We argue about the optimum sizes with clarifying the problems caused by too small and too large pixel sizes. The study field is chosen to be vast, i.e. pixel size to detector thickness ratios ( W/ L) of 1/8-1, and detector thickness of 1.0-8.0 mm. In addition, several electrical transport properties are used. Since efficiency is often of primary interest, thick detectors could be very attractive, which are shown to be really feasible even on CdTe.

  5. Development of hybrid photon detectors with integrated silicon pixel readout for the RICH counters of LHCb

    CERN Document Server

    Alemi, M; Formenti, F; Gys, Thierry; Piedigrossi, D; Puertolas, D; Rosso, E; Snoeys, W; Wyllie, Ken H

    1999-01-01

    We report on the ongoing work towards a hybrid photon detector with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment at the Large Hadron Collider at CERN. The photon detector is based $9 on a cross-focussed image intensifier tube geometry where the image is de-magnified by a factor of 4. The anode consists of a silicon pixel array, bump-bonded to a fast, binary readout chip with matching pixel electronics. The $9 performance of a half-scale prototype is presented, together with the developments and tests of a full-scale tube with large active area. Specific requirements for pixel front-end and readout electronics in LHCb are outlined, and $9 recent results obtained from pixel chips applicable to hybrid photon detector design are summarized.

  6. Active pixel sensors in AMS H18/H35 HV-CMOS technology for the ATLAS HL-LHC upgrade

    Science.gov (United States)

    Ristic, Branislav

    2016-09-01

    Deep sub micron HV-CMOS processes offer the opportunity for sensors built by industry standard techniques while being HV tolerant, making them good candidates for drift-based, fast collecting, thus radiation-hard pixel detectors. For the upgrade of the ATLAS Pixel Detector towards the HL-LHC requirements, active pixel sensors in HV-CMOS technology were investigated. These implement signal processing electronics in deep n-wells, which also act as collecting electrodes. The deep n-wells allow for bias voltages up to 150 V leading to a depletion depth of several 10 μm. Prototype sensors in the AMS H18 180 nm and H35 350 nm HV-CMOS processes were thoroughly tested in lab measurements as well as in testbeam experiments. Irradiations with X-rays and protons revealed a tolerance to ionizing doses of 1 Grad while Edge-TCT studies assessed the effects of radiation on the charge collection. The sensors showed high detection efficiencies after neutron irradiation to 1015neq cm-2 in testbeam experiments. A full reticle size demonstrator chip, implemented in the H35 process is being submitted to prove the large scale feasibility of the HV-CMOS concept.

  7. Development of thin sensors and a novel interconnection technology for the upgrade of the ATLAS pixel system

    International Nuclear Information System (INIS)

    A new pixel module concept is presented utilizing thin sensors and a novel vertical integration technique for the ATLAS pixel detector in view of the foreseen LHC luminosity upgrades. A first set of pixel sensors with active thicknesses of 75 and 150μm has been produced from wafers of standard thickness using a thinning process developed at the Max-Planck-Institut Halbleiterlabor (HLL) and the Max-Planck-Institut fuer Physik (MPP). Pre-irradiation characterizations of these sensors show a very good device yield and high break down voltage. First proton irradiations up to a fluence of 1015 neq cm-2 have been carried out and their impact on the electrical properties of thin sensors has been studied. The novel ICV-SLID vertical integration technology will allow for routing signals vertically to the back side of the readout chips. With this, four-side buttable detector devices with an increased active area fraction are made possible. A first production of SLID test structures was performed and showed a high connection efficiency for different pad sizes and a mild sensitivity to disturbances of the surface planarity.

  8. Performance Studies of Pixel Hybrid Photon Detectors for the LHCb RICH Counters

    CERN Document Server

    Aglieri Rinella, G; Piedigrossi, D; Van Lysebetten, A

    2004-01-01

    The Pixel Hybrid Photon Detector is a vacuum tube with a multi-alkali photo cathode, high voltage cross-focused electron optics and an anode consisting of a silicon pixel detector bump-bonded to a readout CMOS electronic chip fully encapsulated in the device. The Pixel HPD fulfils the requirements of the Ring Imaging Cherenkov counters of the LHCb experiment at LHC. The performances of the Pixel HPD will be discussed with reference to laboratory measurements, Cherenkov light imaging in recent beam tests, image distortions due to a magnetic field.

  9. Performance studies of pixel hybrid photon detectors for the LHCb RICH counters

    CERN Document Server

    Aglieri-Rinella, G; Piedigrossi, D; Van Lysebetten, A

    2006-01-01

    The Pixel Hybrid Photon Detector is a vacuum tube with a multi-alkali photo cathode, high voltage cross-focused electron optics and an anode consisting of a silicon pixel detector bump-bonded to a readout CMOS electronic chip fully encapsulated in the device. The Pixel HPD fulfils the requirements of the Ring Imaging Cherenkov counters of the LHCb experiment at LHC. The performances of the Pixel HPD will be discussed with reference to laboratory measurements, Cherenkov light imaging in recent beam tests, image distortions due to a magnetic field.

  10. Monitored Drift Chambers in the ATLAS Detector

    CERN Multimedia

    Herten, G

    Monitored Drift Chambers (MDT) are used in the ATLAS Detector to measure the momentum of high energy muons. They consist of drift tubes, which are filled with an Ar-CO2 gas mixture at 3 bar gas pressure. About 1200 drift chambers are required for ATLAS. They are up to 6 m long. Nevertheless the position of every wire needs to be known with a precision of 20 µm within a chamber. In addition, optical alignment sensors are required to measure the relative position of adjacent chambers with a precision of 30µm. This gigantic task seems impossible at first instance. Indeed it took many years of R&D to invent the right tools and methods before the first chamber could be built according to specifications. Today, at the time when 50% of the chambers have been produced, we are confident that the goal for ATLAS can be reached. The mechanical precision of the chambers could be verified with the x-ray tomograph at CERN. This ingenious device, developed for the MDT system, is able to measure the wire position insid...

  11. Pixel readout electronics development for the ALICE pixel vertex and LHCb RICH detector

    NARCIS (Netherlands)

    Snoeys, W.; Campbell, M.; Cantatore, E.; Cencelli, V.; Dinapoli, R.; Heijne, E.; Jarron, P.; Lamanna, P.; Minervini, D.; O'Shea, V.; Quiquempoix, V.; San Segundo Bello, D.; Koningsveld, van B.; Wyllie, K.

    2001-01-01

    The ALICE1LHCB pixel readout chip emerged from previous experience at CERN. The RD-19 collaboration provided the basis for the installation of a pixel system in the WA97 and NA57 experiments. Operation in these experiments was key in the understanding of the system issues. In parallel the RD-49 coll

  12. Modeling Inter-Pixel Crosstalk in Teledyne Imaging Sensors H4RG Detectors

    CERN Document Server

    Dudik, R P; Dorland, B N; Veillette, D; Waczynski, A; Lane, B; Loose, M; Kan, E; Waterman, J; Pravdo, S

    2012-01-01

    CMOS-hybrid arrays have recently surfaced as competitive optical detectors for use in ground- and space-based astronomy. One source of error in these detectors that does not appear in more traditional CCD arrays is the inter-pixel capacitance component of crosstalk. In this paper we use a single pixel reset method to model inter-pixel capacitance (IPC). We combine this IPC model with a model for charge diffusion to estimate the total crosstalk on H4RG arrays. Finally, we compare our model results to Fe55 data obtained using an astrometric camera built to test the H4RG-B0 generation detectors.

  13. Uncooled infrared detectors toward smaller pixel pitch with newly proposed pixel structure

    Science.gov (United States)

    Tohyama, Shigeru; Sasaki, Tokuhito; Endoh, Tsutomu; Sano, Masahiko; Kato, Koji; Kurashina, Seiji; Miyoshi, Masaru; Yamazaki, Takao; Ueno, Munetaka; Katayama, Haruyoshi; Imai, Tadashi

    2013-12-01

    An uncooled infrared (IR) focal plane array (FPA) with 23.5 μm pixel pitch has been successfully demonstrated and has found wide commercial applications in the areas of thermography, security cameras, and other applications. One of the key issues for uncooled IRFPA technology is to shrink the pixel pitch because the size of the pixel pitch determines the overall size of the FPA, which, in turn, determines the cost of the IR camera products. This paper proposes an innovative pixel structure with a diaphragm and beams placed in different levels to realize an uncooled IRFPA with smaller pixel pitch (≦17 μm). The upper level consists of a diaphragm with VOx bolometer and IR absorber layers, while the lower level consists of the two beams, which are designed to be placed on the adjacent pixels. The test devices of this pixel design with 12, 15, and 17 μm pitch have been fabricated on the Si read-out integrated circuit (ROIC) of quarter video graphics array (QVGA) (320×240) with 23.5 μm pitch. Their performances are nearly equal to those of the IRFPA with 23.5 μm pitch. For example, a noise equivalent temperature difference of 12 μm pixel is 63.1 mK for F/1 optics with the thermal time constant of 14.5 ms. Then, the proposed structure is shown to be effective for the existing IRFPA with 23.5 μm pitch because of the improvements in IR sensitivity. Furthermore, the advanced pixel structure that has the beams composed of two levels are demonstrated to be realizable.

  14. Thin n-in-p planar pixel modules for the ATLAS upgrade at HL-LHC

    CERN Document Server

    Savic, N; Breuer, J; La Rosa, A; Macchiolo, A; Nisius, R; Terzo, S

    2016-01-01

    The ATLAS experiment will undergo a major upgrade of the tracker system in view of the high luminosity phase of the LHC (HL-LHC) foreseen to start around 2025. Thin planar pixel modules are promising candidates to instrument the new pixel system, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. New designs of the pixel cells, with an optimized biasing structure, have been implemented in n-in-p planar pixel productions with sensor thicknesses of 270 um. Using beam tests, the gain in hit efficiency is investigated as a function of the received irradiation fluence. The outlook for future thin planar pixel sensor productions will be discussed, with a focus on thin sensors with a thickness of 100 and 150 um and a novel design with the optimized biasing structure and small pixel cells (50 um x 50 um and 25 um x 100 um). These dimensions are foreseen for the new ATLAS read-out chip in 65 nm CMOS technology and the fine segmentation will represen...

  15. X-ray imaging with photon counting hybrid semiconductor pixel detectors

    CERN Document Server

    Manolopoulos, S; Campbell, M; Snoeys, W; Heijne, Erik H M; Pernigotti, E; Raine, C; Smith, K; Watt, J; O'Shea, V; Ludwig, J; Schwarz, C

    1999-01-01

    Semiconductor pixel detectors, originally developed for particle physics experiments, have been studied as X-ray imaging devices. The performance of devices using the OMEGA 3 read-out chip bump-bonded to pixellated silicon semiconductor detectors is characterised in terms of their signal-to-noise ratio when exposed to 60 kVp X-rays. Although parts of the devices achieve values of this ratio compatible with the noise being photon statistics limited, this is not found to hold for the whole pixel matrix, resulting in the global signal-to-noise ratio being compromised. First results are presented of X-ray images taken with a gallium arsenide pixel detector bump-bonded to a new read-out chip, (MEDIPIX), which is a single photon counting read-out chip incorporating a 15-bit counter in every pixel. (author)

  16. X-ray imaging with photon counting hybrid semiconductor pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Manolopoulos, S.; Bates, R.; Campbell, M.; Snoeys, W.; Heijne, E.; Pernigotti, E.; Raine, C.; Smith, K. E-mail: k.smith@physics.gla.ac.uk; Watt, J.; O' Shea, V.; Ludwig, J.; Schwarz, C

    1999-09-11

    Semiconductor pixel detectors, originally developed for particle physics experiments, have been studied as X-ray imaging devices. The performance of devices using the {omega}3 read-out chip bump-bonded to pixellated silicon semiconductor detectors is characterised in terms of their signal-to-noise ratio when exposed to 60 kVp X-rays. Although parts of the devices achieve values of this ratio compatible with the noise being photon statistics limited, this is not found to hold for the whole pixel matrix, resulting in the global signal-to-noise ratio being compromised. First results are presented of X-ray images taken with a gallium arsenide pixel detector bump-bonded to a new read-out chip, (MEDIPIX), which is a single photon counting read-out chip incorporating a 15-bit counter in every pixel. (author)

  17. The simulation of charge sharing in semiconductor X-ray pixel detectors

    CERN Document Server

    Mathieson, K; O'Shea, V; Passmore, M S; Rahman, M; Smith, K M; Watt, J; Whitehill, C

    2002-01-01

    Two simulation packages were used to model the sharing of charge, due to the scattering and diffusion of carriers, between adjacent pixel elements in semiconductors X-ray detectors. The X-ray interaction and the consequent multiple scattering was modelled with the aid of the Monte Carlo package, MCNP. The resultant deposited charge distribution was then used to create the charge cloud profile in the finite element semiconductor simulation code MEDICI. The analysis of the current pulses induced on pixel electrodes for varying photon energies was performed for a GaAs pixel detector. For a pixel pitch of 25 mu m, the charge lost to a neighbouring pixel was observed to be constant, at 0.6%, through the energies simulated. Ultimately, a fundamental limit on the pixel element size for imaging and spectroscopic devices may be set due to these key physical principles.

  18. X-CSIT: a toolkit for simulating 2D pixel detectors

    CERN Document Server

    Joy, Ashley; Hauf, Steffen; Kuster, Markus; Rüter, Tonn

    2015-01-01

    A new, modular toolkit for creating simulations of 2D X-ray pixel detectors, X-CSIT (X-ray Camera SImulation Toolkit), is being developed. The toolkit uses three sequential simulations of detector processes which model photon interactions, electron charge cloud spreading with a high charge density plasma model and common electronic components used in detector readout. In addition, because of the wide variety in pixel detector design, X-CSIT has been designed as a modular platform so that existing functions can be modified or additional functionality added if the specific design of a detector demands it. X-CSIT will be used to create simulations of the detectors at the European XFEL, including three bespoke 2D detectors: the Adaptive Gain Integrating Pixel Detector (AGIPD), Large Pixel Detector (LPD) and DePFET Sensor with Signal Compression (DSSC). These simulations will be used by the detector group at the European XFEL for detector characterisation and calibration. For this purpose, X-CSIT has been integrat...

  19. Efficient phase contrast imaging in STEM using a pixelated detector. Part II: Optimisation of imaging conditions

    International Nuclear Information System (INIS)

    In Part I of this series of two papers, we demonstrated the formation of a high efficiency phase-contrast image at atomic resolution using a pixelated detector in the scanning transmission electron microscope (STEM) with ptychography. In this paper we explore the technique more quantitatively using theory and simulations. Compared to other STEM phase contrast modes including annular bright field (ABF) and differential phase contrast (DPC), we show that the ptychographic phase reconstruction method using pixelated detectors offers the highest contrast transfer efficiency and superior low dose performance. Applying the ptychographic reconstruction method to DPC segmented detectors also improves the detector contrast transfer and results in less noisy images than DPC images formed using difference signals. We also find that using a minimum array of 16×16 pixels is sufficient to provide the highest signal-to-noise ratio (SNR) for imaging beam sensitive weak phase objects. Finally, the convergence angle can be adjusted to enhance the contrast transfer based on the spatial frequencies of the specimen under study. - Highlights: • High efficiency phase contrast transfer function (PCTF) can be achieved using pixelated detectors followed by a ptychographic reconstruction. • Ptychographic reconstruction offers the highest PCTF across the entire spatial frequency range compared to DPC and ABF. • Image simulations show that a ptychographic reconstruction using pixelated detectors offers a superior low dose performance for imaging weak phase objects. • Optimisation of imaging conditions using pixelated detectors are discussed by considering the contrast transfer function for various cases

  20. Efficient phase contrast imaging in STEM using a pixelated detector. Part II: Optimisation of imaging conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao, E-mail: hao.yang@materials.ox.ac.uk [University of Oxford, Department of Materials. Parks Rd, Oxford OX1 3PH (United Kingdom); Pennycook, Timothy J.; Nellist, Peter D. [University of Oxford, Department of Materials. Parks Rd, Oxford OX1 3PH (United Kingdom); EPSRC SuperSTEM Facility, Daresbury Laboratory, WA4 4AD (United Kingdom)

    2015-04-15

    In Part I of this series of two papers, we demonstrated the formation of a high efficiency phase-contrast image at atomic resolution using a pixelated detector in the scanning transmission electron microscope (STEM) with ptychography. In this paper we explore the technique more quantitatively using theory and simulations. Compared to other STEM phase contrast modes including annular bright field (ABF) and differential phase contrast (DPC), we show that the ptychographic phase reconstruction method using pixelated detectors offers the highest contrast transfer efficiency and superior low dose performance. Applying the ptychographic reconstruction method to DPC segmented detectors also improves the detector contrast transfer and results in less noisy images than DPC images formed using difference signals. We also find that using a minimum array of 16×16 pixels is sufficient to provide the highest signal-to-noise ratio (SNR) for imaging beam sensitive weak phase objects. Finally, the convergence angle can be adjusted to enhance the contrast transfer based on the spatial frequencies of the specimen under study. - Highlights: • High efficiency phase contrast transfer function (PCTF) can be achieved using pixelated detectors followed by a ptychographic reconstruction. • Ptychographic reconstruction offers the highest PCTF across the entire spatial frequency range compared to DPC and ABF. • Image simulations show that a ptychographic reconstruction using pixelated detectors offers a superior low dose performance for imaging weak phase objects. • Optimisation of imaging conditions using pixelated detectors are discussed by considering the contrast transfer function for various cases.

  1. Si and CdTe pixel detector developments at SPring-8

    International Nuclear Information System (INIS)

    Single X-ray photon counting pixel detectors have become the most advanced detector technology in synchrotron radiation experiments recently. In particular, the PILATUS detector based on a silicon sensor has reached a very mature state and represents the world's largest detector in this field. This paper first reports on threshold energy calibrations and the capability of applying an energy-resolved X-ray imaging with PILATUS. Second the design of a cadmium telluride (CdTe) pixel detector is described. A high density and high-atomic number sensor material is required in high energy X-ray applications available at SPring-8. For this purpose we are developing a CdTe pixel detector with the SP8-01 readout ASIC covering a wide dynamic range between 10 and 100 keV and containing lower and upper discriminators.

  2. Development of pixel readout integrated circuits for extreme rate and radiation

    CERN Document Server

    Garcia-Sciveres, M; CERN. Geneva. The LHC experiments Committee; LHCC

    2013-01-01

    Letter of Intent for RD Collaboration Proposal focused on development of a next generation pixel readout integrated circuits needed for high luminosity LHC detector upgrades. Brings together ATLAS and CMS pixel chip design communities.

  3. Optimization of CZT Detectors with Sub-mm Pixel Pitches Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and optimize 0.5 cm thick Cadmium Zinc Telluride (CZT) detectors with very small pixel pitches, i.e. 350 micron and 600 micron. The proposed...

  4. 320x240 GaAs pixel detectors with improved X-ray imaging quality

    Energy Technology Data Exchange (ETDEWEB)

    Irsigler, R.; Andersson, J.; Alverbro, J.; Fakoor-Biniaz, Z.; Froejdh, C.; Helander, P.; Martijn, H.; Meikle, D.; Oestlund, M.; O' Shea, V.; Smith, K

    2001-03-11

    We report on gain and offset corrections for GaAs X-ray pixel detectors, which were hybridised to silicon CMOS readout integrated circuits (ROICs). The whole detector array contains 320x240 square-shaped pixels with a pitch of 38 {mu}m. The GaAs pixel detectors are based on semi-insulating and VPE grown substrates. The ROIC operates in the charge integration mode and provides snapshot as well as real time video images. Previously we have reported that the image quality of semi-insulating GaAs pixel detectors suffer from local variations in X-ray sensitivity. We have now developed a method to compensate for the sensitivity variations by applying suitable offset and gain corrections. The improvement in image quality is demonstrated in the measured signal-to-noise ratio of flood exposure images.

  5. 320x240 GaAs pixel detectors with improved X-ray imaging quality

    International Nuclear Information System (INIS)

    We report on gain and offset corrections for GaAs X-ray pixel detectors, which were hybridised to silicon CMOS readout integrated circuits (ROICs). The whole detector array contains 320x240 square-shaped pixels with a pitch of 38 μm. The GaAs pixel detectors are based on semi-insulating and VPE grown substrates. The ROIC operates in the charge integration mode and provides snapshot as well as real time video images. Previously we have reported that the image quality of semi-insulating GaAs pixel detectors suffer from local variations in X-ray sensitivity. We have now developed a method to compensate for the sensitivity variations by applying suitable offset and gain corrections. The improvement in image quality is demonstrated in the measured signal-to-noise ratio of flood exposure images

  6. Performance study of new pixel hybrid photon detector prototypes for the LHCb RICH counters

    CERN Document Server

    Moritz, M; Allebone, L; Campbell, M; Gys, Thierry; Newby, C; Pickford, A; Piedigrossi, D; Wyllie, K

    2004-01-01

    A pixel Hybrid Photon Detector was developed according to the specific requirements of the LHCb ring imaging Cerenkov counters. This detector comprises a silicon pixel detector bump-bonded to a binary readout chip to achieve a 25 ns fast readout and a high signal-to-noise ratio. The detector performance was characterized by varying the pixel threshold, the tube high voltage, the silicon bias voltage and by the determination of the photoelectron detection efficiency. Furthermore accelerated aging and high pixel occupancy tests were performed to verify the long term stability. The results were obtained using Cerenkov light and a fast pulsed light emitting diode. All measurements results are within the expectations and fulfill the design goals. (8 refs).

  7. Accessing photon bunching with photon number resolving multi-pixel detector

    OpenAIRE

    Kalashnikov, Dmitry A.; Tan, Si-Hui; Chekhova, Maria V.; Krivitsky, Leonid A.

    2010-01-01

    In quantum optics and its applications, there is an urgent demand for photon-number resolving detectors. Recently, there appeared multi-pixel detectors (MPPC) that are able to distinguish between 1,2,..10 photons. At the same time, strong coupling between different pixels (cross-talk) hinders their photon-number resolution. In this work, we suggest a method for `filtering out' the cross-talk effect in the measurement of intensity correlation functions.

  8. Modular pixelated detector system with the spectroscopic capability and fast parallel read-out

    OpenAIRE

    Vavřík, D. (Daniel); Holík, M.; Jakůbek, J; Jakůbek, M.; Kraus, V.; Krejčí, F.; Soukup, P. (Pavel); Tureček, D.; Vacík, J. (Jiří); Žemlička, J.

    2014-01-01

    A modular pixelated detector system was developed for imaging applications, where spectroscopic analysis of detected particles is advantageous e.g. for energy sensitive X-ray radiography, fluorescent and high resolution neutron imaging etc. The presented system consists of an arbitrary number of independent versatile modules. Each module is equipped with pixelated edgeless detector with spectroscopic ability and has its own fast read-out electronics. Design of the modules allows assembly of v...

  9. Characterization of edgeless pixel detectors coupled to Medipix2 readout chip

    Science.gov (United States)

    Kalliopuska, Juha; Tlustos, Lukas; Eränen, Simo; Virolainen, Tuula

    2011-08-01

    VTT has developed a straightforward and fast process to fabricate four-side buttable (edgeless) microstrip and pixel detectors on 6 in. (150 mm) wafers. The process relies on advanced ion implantation to activate the edges of the detector instead of using polysilicon. The article characterizes 150 μm thick n-on-n edgeless pixel detector prototypes with a dead layer at the edge below 1 μm. Electrical and radiation response characterization of 1.4×1.4 cm2 n-on-n edgeless detectors has been done by coupling them to the Medipix2 readout chips. The distance of the detector's physical edge from the pixels was either 20 or 50 μm. The leakage current of flip-chip bonded edgeless Medipix2 detector assembles were measured to be ˜90 nA/cm2 and no breakdown was observed below 110 V. Radiation response characterization includes X-ray tube and radiation source responses. The characterization results show that the detector's response at the pixels close to the physical edge of the detector depend dramatically on the pixel-to-edge distance.

  10. Digital column readout architectures for hybrid pixel detector readout chips

    CERN Document Server

    Poikela, T; Westerlund, T; Buytaert, J; Campbell, M; De Gaspari, M; Llopart, X; Wyllie, K; Gromov, V; Kluit, R; van Beuzekom, M; Zappon, F; Zivkovic, V; Brezina, C; Desch, K; Fu, Y; Kruth, A

    2014-01-01

    In this paper, two digital column architectures suitable for sparse readout of data from a pixel matrix in trigger-less applications are presented. Each architecture reads out a pixel matrix of 256 x 256 pixels with a pixel pitch of 55 µm. The first architecture has been implemented in the Timepix3 chip, and this is presented together with initial measurements. Simulation results and measured data are compared. The second architecture has been designed for Velopix, a readout chip planned for the LHCb VELO upgrade. Unlike Timepix3, this has to be tolerant to radiation-induced single-event effects. Results from post-layout simulations are shown with the circuit architectures.

  11. Development of a counting pixel detector for 'Digitales Roentgen'; Entwicklung eines zaehlenden Pixeldetektors fuer 'Digitales Roentgen'

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, M.

    2001-08-01

    The development of a single photon counting X-ray imaging detector for medical applications using hybrid pixel detectors is reported. The electronics development from the first prototype derived from detector development for particle physics experiments (ATLAS) to the imaging chip MPEC (multi picture element counters) for medical applications is described. This chip consists of 32 x 32 pixels of 200 {mu}m x 200 {mu}m size, each containing the complete read out electronics, i.e. an amplifier, two discriminators with adjustable thresholds and two 18-bit linear feedback shift-counters allowing energy windowing for contrast increase. Results on electronics performance are shown as well as measurements with several semiconductor materials (Si, GaAs, CdTe). Important aspects like detection efficiency, sensor homogeneity, linearity and spatial resolution are discussed. (orig.)

  12. Investigation of photon counting pixel detectors for X-ray spectroscopy and imaging

    International Nuclear Information System (INIS)

    The Medipix2 and Medipix3 detectors are hybrid pixelated photon counting detectors with a pixel pitch of 55 μm. The sensor material used in this thesis was silicon. Because of their small pixel size they suffer from charge sharing i.e. an incoming photon can be registered by more than one pixel. In order to correct for charge sharing due to lateral diffusion of charge carriers, the Medipix3 detector was developed: with its Charge Summing Mode, the charge collected in a cluster of 2 x 2 pixel is added up and attributed to only one pixel whose counter is incremented. The adjustable threshold of the detectors allows to count the photons and to gain information on their energy. The main purposes of the thesis are to investigate spectral and imaging properties of pixelated photon counting detectors from the Medipix family such as Medipix2 and Medipix3. The investigations are based on simulations and measurements. In order to investigate the spectral properties of the detectors measurements were performed using fluorescence lines of materials such as molybdenum, silver but also some radioactive sources such as Am-241 or Cd-109. From the measured data, parameters like the threshold dispersion and the gain variation from pixel-to-pixel were extracted and used as input in the Monte Carlo code ROSI to model the responses of the detector to monoenergetic photons. The measured data are well described by the simulations for Medipix2 and for Medipix3 operating in Charge Summing Mode. Due to charge sharing and due to the energy dependence of attenuation processes in silicon and to Compton scattering the incoming and the measured spectrum differ substantially from each other. Since the responses to monoenergetic photons are known, a deconvolution was performed to determine the true incoming spectrum. Several direct and iterative methods were successfully applied on measured and simulated data of an X-ray tube and radioactive sources. The knowledge of the X-ray spectrum is

  13. Investigation of photon counting pixel detectors for X-ray spectroscopy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Talla, Patrick Takoukam

    2011-04-07

    The Medipix2 and Medipix3 detectors are hybrid pixelated photon counting detectors with a pixel pitch of 55 {mu}m. The sensor material used in this thesis was silicon. Because of their small pixel size they suffer from charge sharing i.e. an incoming photon can be registered by more than one pixel. In order to correct for charge sharing due to lateral diffusion of charge carriers, the Medipix3 detector was developed: with its Charge Summing Mode, the charge collected in a cluster of 2 x 2 pixel is added up and attributed to only one pixel whose counter is incremented. The adjustable threshold of the detectors allows to count the photons and to gain information on their energy. The main purposes of the thesis are to investigate spectral and imaging properties of pixelated photon counting detectors from the Medipix family such as Medipix2 and Medipix3. The investigations are based on simulations and measurements. In order to investigate the spectral properties of the detectors measurements were performed using fluorescence lines of materials such as molybdenum, silver but also some radioactive sources such as Am-241 or Cd-109. From the measured data, parameters like the threshold dispersion and the gain variation from pixel-to-pixel were extracted and used as input in the Monte Carlo code ROSI to model the responses of the detector to monoenergetic photons. The measured data are well described by the simulations for Medipix2 and for Medipix3 operating in Charge Summing Mode. Due to charge sharing and due to the energy dependence of attenuation processes in silicon and to Compton scattering the incoming and the measured spectrum differ substantially from each other. Since the responses to monoenergetic photons are known, a deconvolution was performed to determine the true incoming spectrum. Several direct and iterative methods were successfully applied on measured and simulated data of an X-ray tube and radioactive sources. The knowledge of the X-ray spectrum is

  14. Primary Numbers Database for ATLAS Detector Description Parameters

    CERN Document Server

    Vaniachine, A; Malon, D; Nevski, P; Wenaus, T

    2003-01-01

    We present the design and the status of the database for detector description parameters in ATLAS experiment. The ATLAS Primary Numbers are the parameters defining the detector geometry and digitization in simulations, as well as certain reconstruction parameters. Since the detailed ATLAS detector description needs more than 10,000 such parameters, a preferred solution is to have a single verified source for all these data. The database stores the data dictionary for each parameter collection object, providing schema evolution support for object-based retrieval of parameters. The same Primary Numbers are served to many different clients accessing the database: the ATLAS software framework Athena, the Geant3 heritage framework Atlsim, the Geant4 developers framework FADS/Goofy, the generator of XML output for detector description, and several end-user clients for interactive data navigation, including web-based browsers and ROOT. The choice of the MySQL database product for the implementation provides addition...

  15. The ATLAS/TILECAL Detector Control System

    CERN Document Server

    Santos, H; The ATLAS collaboration

    2010-01-01

    Tilecal, the barrel hadronic calorimeter of ATLAS, is a sampling calorimeter where scintillating tiles are embedded in an iron matrix. The tiles are optically coupled to wavelength shifting fibers that carry the optical signal to photo-multipliers. It has a cylindrical shape and is made out of 3 cylinders, the Long Barrel with the LBA and LBC partitions, and the two Extended Barrel with the EBA and EBC partitions. The main task of the Tile calorimeter Detector Control System (DCS) is to enable the coherent and safe operation of the calorimeter. All actions initiated by the operator, as well as all errors, warnings and alarms concerning the hardware of the detector are handled by DCS. The Tile calorimeter DCS controls and monitors mainly the low voltage and high voltage power supply systems, but it is also interfaced with the infrastructure (cooling system and racks), the laser and cesium calibration systems, the data acquisition system, configuration and conditions databases and the detector safety system. In...

  16. Heavy Ion Physics with the ATLAS Detector

    CERN Multimedia

    Takai, H

    2003-01-01

    I guess the first thing that comes to people's mind is why is an experiment such as ATLAS interested in heavy ion physics. What is heavy ion physics anyway? The term heavy ion physics refers to the study of collisions between large nuclei such as lead, atomic number 208. But why would someone collide something as large and extensive as lead nuclei? When two nuclei collide there is a unique opportunity to study QCD at extreme energy densities. This said why do we think ATLAS is a good detector to study this particular physics? Among many of the simultaneous collisions that takes place when two nuclei encouter, hard scattering takes place. The unique situation now is that before hadronization partons from hard scattering may feel the surrounding media serving as an ideal probe for the matter formed in these collisions. As a consequence of this, jets may be quenched and their properties, e.g. fragmentation function or cone radius, modified when compared to proton-proton collisions. This is precisely where ATL...

  17. ATLAS Detector Control System Data Viewer

    CERN Document Server

    Tsarouchas, Charilaos; Roe, S; Bitenc, U; Fehling-Kaschek, ML; Winkelmann, S; D’Auria, S; Hoffmann, D; Pisano, O

    2011-01-01

    The ATLAS experiment at CERN is one of the four Large Hadron Collider experiments. DCS Data Viewer (DDV) is a web interface application that provides access to historical data of ATLAS Detector Control System [1] (DCS) parameters written to the database (DB). It has a modular andflexible design and is structured using a clientserver architecture. The server can be operated stand alone with a command-line interface to the data while the client offers a user friendly, browser independent interface. The selection of the metadata of DCS parameters is done via a column-tree view or with a powerful search engine. The final visualisation of the data is done using various plugins such as “value over time” charts, data tables, raw ASCII or structured export to ROOT. Excessive access or malicious use of the database is prevented by dedicated protection mechanisms, allowing the exposure of the tool to hundreds of inexperienced users. The metadata selection and data output features can be used separately by XML con...

  18. The New ATLAS/LUCID detector

    CERN Document Server

    Bruschi, Marco; The ATLAS collaboration

    2015-01-01

    The new ATLAS luminosity monitor has many innovative aspects implemented. Its photomultipliers tubes are used as detector elements by using the Cherenkov light produced by charged particles above threshold crossing the quartz windows. The analog shaping of the readout chain has been improved, in order to cope with the 25 ns bunch spacing of the LHC machine. The main readout card is a quite general processing unit based on 12 bit - 500 MS/s Flash ADC and on FPGAs, delivering the processed data to 1.3 Gb/s optical links. The talk will describe all these aspects and will outline future perspectives of the card for next generation high energy physics experiments.

  19. The new ATLAS/LUCID detector

    CERN Document Server

    Bruschi, Marco; The ATLAS collaboration

    2015-01-01

    The new ATLAS luminosity monitor has many innovative aspects implemented. Its photomultipliers tubes are used as detector elements by using the Cherenkov light produced by charged particles above threshold crossing the quartz windows. The analog shaping of the readout chain has been improved, in order to cope with the 25 ns bunch spacing of the LHC machine. The main readout card is a quite general processing unit based on 12 bit - 320 MS/s Flash ADC and on FPGAs, delivering the processed data to 1.3 Gb/s optical links. The article will describe all these aspects and will outline future perspectives of the card for next generation high energy physics experiments.

  20. Performance Optimization of the ATLAS Detector Simulation

    CERN Document Server

    AUTHOR|(CDS)2091018

    In the thesis at hand the current performance of the ATLAS detector simulation, part of the Athena framework, is analyzed and possible optimizations are examined. For this purpose the event based sampling profiler VTune Amplifier by Intel is utilized. As the most important metric to measure improvements, the total execution time of the simulation of $t\\bar{t}$ events is also considered. All efforts are focused on structural changes, which do not influence the simulation output and can be attributed to CPU specific issues, especially front end stalls and vectorization. The most promising change is the activation of profile guided optimization for Geant4, which is a critical external dependency of the simulation. Profile guided optimization gives an average improvement of $8.9\\%$ and $10.0\\%$ for the two considered cases at the cost of one additional compilation (instrumented binaries) and execution (training to obtain profiling data) at build time.

  1. Fabrication of pixelated CdTe and CdZnTe radiation detectors

    International Nuclear Information System (INIS)

    Cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) are compound semiconductor characterized by wide semiconducting band gap and high photon stopping power due to its high atomic number and density. The mobility-life time product (μ t product) for holes in the materials is smaller than that for electrons. Hence, the effect of trapping losses is more pronounced on holes than on electrons. The trapping losses for holes limit achievable energy resolutions for planar detectors. In this study, pixelated CdTe detectors and pixelated CdZnTe detectors were fabricated and tested by 662 KeV gamma-rays of 137Cs at room temperature. Electrodes were formed on both sides of CdTe crystals and CdZnTe crystals by vacuum evaporation of gold. For purpose of comparison, a planar CdTe detector and a planar CdZnTe detector were evaluated. Since the pixelated CdTe detectors and the pixelated CdZnTe detectors operated as a single-polarity charge sensing device, the obtained energy resolutions were significantly higher than those for the planar detectors. Further improvement of energy resolutions of the detectors will be achieved by optimizing electrode structures. (M. Suetake)

  2. Preliminary test of an imaging probe for nuclear medicine using hybrid pixel detectors

    International Nuclear Information System (INIS)

    We are investigating the feasibility of an intraoperative imaging probe for lymphoscintigraphy with Tc-99m tracer, for sentinel node radioguided surgery, using the Medipix series of hybrid detectors coupled to a collimator. These detectors are pixelated semiconductor detectors bump-bonded to the Medipix1 photon counting read-out chip (64x64 pixel, 170 μm pitch) or to the Medipix2 chip (256x256 pixel, 55 μm pitch), developed by the European Medipix collaboration. The pixel detector we plan to use in the final version of the probe is a semi-insulating GaAs detector or a 1-2 mm thick CdZnTe detector. For the preliminary tests presented here, we used 300-μm thick silicon detectors, hybridized via bump-bonding to the Medipix1 chip. We used a tungsten parallel-hole collimator (7 mm thick, matrix array of 64x64 100 μm circular holes with 170 μm pitch), and a 22, 60 and 122 keV point-like (1 mm diameter) radioactive sources, placed at various distances from the detector. These tests were conducted in order to investigate the general feasibility of this imaging probe and its resolving power. Measurements show the high resolution but low efficiency performance of the detector-collimator set, which is able to image the 122 keV source with <1 mm FWHM resolution

  3. Simulation on the Charged Particle Response of the STAR Heavy Flavor Tracker Pixel Detector

    Science.gov (United States)

    Cimaroli, Alex; Li, Xin

    2009-10-01

    The main task of the STAR experiment, located at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory, is to study the quark-gluon plasma (QGP), which is believed to have been created a few microseconds after the ``Big Bang.'' Heavy quarks are ideal tools for studying the properties of QGP. The Heavy Flavor Tracker (HFT) is the central part of the STAR future heavy flavor physics program and will enable STAR to directly measure heavy flavor mesons. The core of HFT is a pixel detector (PIXEL) using CMOS Active PIXEL Sensor. This poster will describe the development of a detailed simulation of the pixel detector response to charged particles and the corresponding fast simulation that dramatically enhances the simulation speed with little sacrifice in accuracy. The full simulation randomly generates ionized electrons along an incoming track and diffuses the electrons inside the pixel array until they are collected by the electronics or recombined inside a pixel. With the same result, the fast simulation, which quickens processing time from one hour to 5 seconds, generates a grid inside a single pixel and create a map of probability distribution functions for a single ionized electron generated from a grid point. We will also discuss the study of pixel detector position resolution using a simple clustering algorithm.

  4. Edge pixel response studies of edgeless silicon sensor technology for pixellated imaging detectors

    Science.gov (United States)

    Maneuski, D.; Bates, R.; Blue, A.; Buttar, C.; Doonan, K.; Eklund, L.; Gimenez, E. N.; Hynds, D.; Kachkanov, S.; Kalliopuska, J.; McMullen, T.; O'Shea, V.; Tartoni, N.; Plackett, R.; Vahanen, S.; Wraight, K.

    2015-03-01

    Silicon sensor technologies with reduced dead area at the sensor's perimeter are under development at a number of institutes. Several fabrication methods for sensors which are sensitive close to the physical edge of the device are under investigation utilising techniques such as active-edges, passivated edges and current-terminating rings. Such technologies offer the goal of a seamlessly tiled detection surface with minimum dead space between the individual modules. In order to quantify the performance of different geometries and different bulk and implant types, characterisation of several sensors fabricated using active-edge technology were performed at the B16 beam line of the Diamond Light Source. The sensors were fabricated by VTT and bump-bonded to Timepix ROICs. They were 100 and 200 μ m thick sensors, with the last pixel-to-edge distance of either 50 or 100 μ m. The sensors were fabricated as either n-on-n or n-on-p type devices. Using 15 keV monochromatic X-rays with a beam spot of 2.5 μ m, the performance at the outer edge and corners pixels of the sensors was evaluated at three bias voltages. The results indicate a significant change in the charge collection properties between the edge and 5th (up to 275 μ m) from edge pixel for the 200 μ m thick n-on-n sensor. The edge pixel performance of the 100 μ m thick n-on-p sensors is affected only for the last two pixels (up to 110 μ m) subject to biasing conditions. Imaging characteristics of all sensor types investigated are stable over time and the non-uniformities can be minimised by flat-field corrections. The results from the synchrotron tests combined with lab measurements are presented along with an explanation of the observed effects.

  5. Performance of the ATLAS detector using first collision data

    Science.gov (United States)

    Aad, G.; Abat, E.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Ackers, M.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, P. F.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Aktas, Å.; Alam, M. S.; Alam, M. A.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Aleppo, M.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, J.; Alviggi, M. G.; Amako, K.; Amaral, P.; Ambrosini, G.; Ambrosio, G.; Amelung, C.; Ammosov, V. V.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A. J.; Arms, K. E.; Armstrong, S. R.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, M.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Bartsch, D.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H. S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G. A.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger, G. A. N.; Belanger-Champagne, C.; Belhorma, B.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, G.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Belymam, A.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, S.; Besana, M. I.; Besson, N.; Bethke, S.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieri, M.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Binder, M.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bischof, R.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanch, O.; Blanchard, J.-B.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Boaretto, C.; Bobbink, G. J.; Bocci, A.; Bocian, D.; Bock, R.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V. G.; Bondioli, M.; Bonino, R.; Boonekamp, M.; Boorman, G.; Boosten, M.; Booth, C. N.; Booth, P. S. L.; Booth, P.; Booth, J. R. A.; Bordoni, S.; Borer, C.; Borer, K.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Braccini, S.; Bracinik, J.; Braem, A.; Brambilla, E.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Bravo, S.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N. D.; Bright-Thomas, P. G.; Britton, D.; Brochu, F. M.; Brock, I.

    2010-09-01

    More than half a million minimum-bias events of LHC collision data were collected by the ATLAS experiment in December 2009 at centre-of-mass energies of 0.9 TeV and 2.36 TeV. This paper reports on studies of the initial performance of the ATLAS detector from these data. Comparisons between data and Monte Carlo predictions are shown for distributions of several track-and calorimeter-based quantities. The good performance of the ATLAS detector in these first data gives confidence for successful running at higher energies.

  6. Performance of the ATLAS Detector using First Collision Data

    CERN Document Server

    Aad, G; Abbott, B; Abdallah, J; Abdelalim, A A; Abdesselam, A; Abdinov, O; Abi, B; Abolins, M; Abramowicz, H; Abreu, H; Acerbi, E; Acharya, B S; Ackers, M; Adams, D L; Addy, T N; Adelman, J; Aderholz, M; Adomeit, S; Adorisio, C; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, J A; Aharrouche, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahmed, H; Ahsan, M; Aielli, G; Akdogan, T; Åkesson, P F; Åkesson, T P A; Akimoto, G; Akimov, A V; Aktas, A; Alam, M S; Alam, M A; Albrand, S; Aleksa, M; Aleksandrov, I N; Aleppo, M; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Aliyev, M; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alonso, J; Alviggi, M G; Amako, K; Amaral, P; Ambrosini, G; Ambrosio, G; Amelung, C; Ammosov, V V; Ammosov, V V; Amorim, A; Amorós, G; Amram, N; Anastopoulos, C; Andeen, T; Anders, C F; Anderson, K J; Andreazza, A; Andrei, V; Andrieux, M-L; Anduaga, X S; Angerami, A; Anghinolfi, F; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonelli, S; Antos, J; Antunovic, B; Anulli, F; Aoun, S; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Archambault, J P; Arfaoui, S; Arguin, J-F; Argyropoulos, T; Arik, E; Arik, M; Armbruster, A J; Arms, K E; Armstrong, S R; Arnaez, O; Arnault, C; Artamonov, A; Arutinov, D; Asai, M; Asai, S; Asfandiyarov, R; Ask, S; Åsman, B; Asner, D; Asquith, L; Assamagan, K; Astbury, A; Astvatsatourov, A; Atoian, G; Aubert, B; Auerbach, B; Auge, E; Augsten, K; Aurousseau, M; Austin, N; Avolio, G; Avramidou, R; Axen, D; Ay, C; Azuelos, G; Azuma, Y; Baak, M A; Baccaglioni, G; Bacci, C; Bach, A M; Bachacou, H; Bachas, K; Bachy, G; Backes, M; Badescu, E; Bagnaia, P; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, M D; Baker, S; Baltasar Dos Santos Pedrosa, F; Banas, E; Banerjee, P; Banerjee, S; Banfi, D; Bangert, A; Bansal, V; Baranov, S P; Baranov, S; Barashkou, A; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baroncelli, A; Barone, M; Barr, A J; Barreiro, F; Barreiro Guimarães da, J; Barrillon, P; Bartoldus, R; Bartsch, D; Bates, R L; Batkova, L; Batley, J R; Battaglia, A; Battistin, M; Battistoni, G; Bauer, F; Bawa, H S; Bazalova, M; Beare, B; Beau, T; Beauchemin, P H; Beccherle, R; Becerici, N; Bechtle, P; Beck, G A; Beck, H P; Beckingham, M; Becks, K H; Beddall, A J; Beddall, A; Bednyakov, V A; Bee, C; Begel, M; Behar Harpaz, S; Behera, P K; Beimforde, M; Belanger, G A N; Belanger-Champagne, C; Belhorma, B; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellina, F; Bellomo, G; Bellomo, M; Belloni, A; Belotskiy, K; Beltramello, O; Belymam, A; Ben Ami, S; Benary, O; Benchekroun, D; Benchouk, C; Bendel, M; Benedict, B H; Benekos, N; Benhammou, Y; Benincasa, G P; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernardet, K; Bernat, P; Bernhard, R; Bernius, C; Berry, T; Bertin, A; Bertinelli, F; Bertolucci, S; Besana, M I; Besson, N; Bethke, S; Bianchi, R M; Bianco, M; Biebel, O; Bieri, M; Biesiada, J; Biglietti, M; Bilokon, H; Binder, M; Bindi, M; Binet, S; Bingul, A; Bini, C; Biscarat, C; Bischof, R; Bitenc, U; Black, K M; Blair, R E; Blanch, O; Blanchard, J-B; Blanchot, G; Blocker, C; Blocki, J; Blondel, A; Blum, W; Blumenschein, U; Boaretto, C; Bobbink, G J; Bocci, A; Bocian, D; Bock, R; Boehler, M; Boek, J; Boelaert, N; Böser, S; Bogaerts, J A; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Bondarenko, V G; Bondioli, M; Bonino, R; Boonekamp, M; Boorman, G; Boosten, M; Booth, C N; Booth, P S L; Booth, P; Booth, J R A; Bordoni, S; Borer, C; Borer, K; Borisov, A; Borissov, G; Borjanovic, I; Borroni, S; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Botterill, D; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boulahouache, C; Bourdarios, C; Boveia, A; Boyd, J; Boyko, I R; Bozhko, N I; Bozovic-Jelisavcic, I; Braccini, S; Bracinik, J; Braem, A; Brambilla, E; Branchini, P; Brandenburg, G W; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Bravo, S; Brelier, B; Bremer, J; Brenner, R; Bressler, S; Breton, D; Brett, N D; Bright-Thomas, P G; Britton, D; Brochu, F M; Brock, I; Brock, R; Brodbeck, T J; Brodet, E; Broggi, F; Bromberg, C; Brooijmans, G; Brooks, W K; Brown, G; Brubaker, E; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Buanes, T; Bucci, F; Buchanan, J; Buchanan, N J; Buchholz, P; Buckley, A G; Budagov, I A; Budick, B; Büscher, V; Bugge, L; Buira-Clark, D; Buis, E J; Bujor, F; Bulekov, O; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Bussey, P; Buszello, C P; Butin, F; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Byatt, T; Caballero, J; Cabrera Urbán, S; Caccia, M; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Calvet, S; Camard, A; Camarri, P; Cambiaghi, M; Cameron, D; Cammin, J; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Capasso, L; Capeans Garrido, M D M; Caprini, I; Caprini, M; Caprio, M; Capua, M; Caputo, R; Caramarcu, C; Cardarelli, R; Cardiel Sas, L; Carli, T; Carlino, G; Carminati, L; Caron, B; Caron, S; Carpentieri, C; Carrillo Montoya, G D; Carron Montero, S; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Cascella, M; Caso, C; Castaneda Hernandez, A M; Castaneda-Miranda, E; Castillo Gimenez, V; Castro, N F; Cataldi, G; Cataneo, F; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cauz, D; Cavallari, A; Cavalleri, P; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Cazzato, A; Ceradini, F; Cerna, C; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cervetto, M; Cetin, S A; Cevenini, F; Chafaq, A; Chakraborty, D; Chan, K; Chapman, J D; Chapman, J W; Chareyre, E; Charlton, D G; Charron, S; Chatterjii, S; Chavda, V; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chen, H; Chen, L; Chen, S; Chen, T; Chen, X; Cheng, S; Cheplakov, A; Chepurnov, V F; Cherkaoui El Moursli, R; Tcherniatine, V; Chesneanu, D; Cheu, E; Cheung, S L; Chevalier, L; Chevallier, F; Chiarella, V; Chiefari, G; Chikovani, L; Childers, J T; Chilingarov, A; Chiodini, G; Chizhov, V; Choudalakis, G; Chouridou, S; Christidi, I A; Christov, A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Cicalini, E; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciobotaru, M D; Ciocca, C; Ciocio, A; Cirilli, M; Citterio, M; Clark, A; Clark, Philip James; Cleland, W; Clemens, J C; Clement, B; Clement, C; Clements, D; Clifft, R W; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coe, P; Coelli, S; Coggeshall, J; Cogneras, E; Cojocaru, C D; Colas, J; Cole, B; Colijn, A P; Collard, C; Collins, N J; Collins-Tooth, C; Collot, J; Colon, G; Coluccia, R; Comune, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Consonni, M; Constantinescu, S; Conta, C; Conventi, F; Cook, J; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Correard, S; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Costin, T; Côté, D; Coura Torres, R; Courneyea, L; Couyoumtzelis, C; Cowan, G; Cowden, C; Cox, B E; Cranmer, K; Cranshaw, J; Cristinziani, M; Crosetti, G; Crupi, R; Crépé-Renaudin, S; Cuenca Almenar, C; Cuhadar Donszelmann, T; Cuneo, S; Curatolo, M; Curtis, C J; Cwetanski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Da Rocha Gesualdi Mello, A; Da Silva, P V M; Da Via, C; Dabrowski, W; Dahlhoff, A; Dai, T; Dallapiccola, C; Dallison, S J; Dalmau, J; Daly, C H; Dam, M; Dameri, M; Danielsson, H O; Dankers, R; Dannheim, D; Dao, V; Darbo, G; Darlea, G L; Daum, C; Dauvergne, J P; Davey, W; Davidek, T; Davidson, D W; Davidson, N; Davidson, R; Davies, M; Davison, A R; Dawson, I; Dawson, J W; Daya, R K; De, K; de Asmundis, R; De Castro, S; De Castro Faria Salgado, P E; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Cruz-Burelo, E; De La Taille, C; De Lotto, B; De Mora, L; De Oliveira Branco, M; De Pedis, D; de Saintignon, P; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dean, S; Dedes, G; Dedovich, D V; Defay, P O; Degenhardt, J; Dehchar, M; Deile, M; Del Papa, C; Del Peso, J; Del Prete, T; Dell'Acqua, A; Dell'Asta, L; Della Pietra, M; della Volpe, D; Delmastro, M; Delpierre, P; Delruelle, N; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demirkoz, B; Deng, J; Deng, W; Denisov, S P; Dennis, C; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deviveiros, P O; Dewhurst, A; DeWilde, B; Dhaliwal, S; Dhullipudi, R; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M A; Diaz Gomez, M M; Diblen, F; Diehl, E B; Dietl, H; Dietrich, J; Dietzsch, T A; Diglio, S; Dindar Yagci, K; Dingfelder, J; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djilkibaev, R; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobbs, M; Dobinson, R; Dobos, D; Dobson, E; Dobson, M; Dodd, J; Dogan, O B; Doglioni, C; Doherty, T; Doi, Y; Dolejsi, J; Dolenc, I; Dolezal, Z; Dolgoshein, B A; Dohmae, T; Domingo, E; Donega, M; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dosil, M; Dotti, A; Dova, M T; Dowell, J D; Doxiadis, A; Doyle, A T; Drasal, Z; Drees, J; Dressnandt, N; Drevermann, H; Driouichi, C; Dris, M; Drohan, J G; Dubbert, J; Dubbs, T; Dube, S; Duchovni, E; Duckeck, G; Dudarev, A; Dudziak, F; Dührssen, M; Dür, H; Duerdoth, I P; Duflot, L; Dufour, M-A; Dunford, M; Duran Yildiz, H; Dushkin, A; Duxfield, R; Dwuznik, M; Dydak, F; Dzahini, D; Düren, M; Ebenstein, W L; Ebke, J; Eckert, S; Eckweiler, S; Edmonds, K; Edwards, C A; Efthymiopoulos, I; Egorov, K; Ehrenfeld, W; Ehrich, T; Eifert, T; Eigen, G; Einsweiler, K; Eisenhandler, E; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Ely, R; Emeliyanov, D; Engelmann, R; Engl, A; Epp, B; Eppig, A; Erdmann, J; Ereditato, A; Eremin, V; Eriksson, D; Ermoline, I; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Escobar, C; Espinal Curull, X; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evans, H; Evdokimov, V N; Fabbri, L; Fabre, C; Facius, K; Fakhrutdinov, R M; Falciano, S; Falou, A C; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farley, J; Farooque, T; Farrington, S M; Farthouat, P; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Fayard, L; Fayette, F; Febbraro, R; Federic, P; Fedin, O L; Fedorko, I; Fedorko, W; Feligioni, L; Felzmann, C U; Feng, C; Feng, E J; Fenyuk, A B; Ferencei, J; Ferland, J; Fernandes, B; Fernando, W; Ferrag, S; Ferrando, J; Ferrara, V; Ferrari, A; Ferrari, P; Ferrari, R; Ferrer, A; Ferrer, M L; Ferrere, D; Ferretti, C; Ferro, F; Fiascaris, M; Fiedler, F; Filipcic, A; Filippas, A; Filthaut, F; Fincke-Keeler, M; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, G; Fischer, P; Fisher, M J; Fisher, S M; Flammer, J; Flechl, M; Fleck, I; Fleckner, J; Fleischmann, P; Fleischmann, S; Fleuret, F; Flick, T; Flores Castillo, L R; Flowerdew, M J; Föhlisch, F; Fokitis, M; Fonseca Martin, T; Fopma, J; Forbush, D A; Formica, A; Forti, A; Fortin, D; Foster, J M; Fournier, D; Foussat, A; Fowler, A J; Fowler, K; Fox, H; Francavilla, P; Franchino, S; Francis, D; Franklin, M; Franz, S; Fraternali, M; Fratina, S; Freestone, J; French, S T; Froeschl, R; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fuster, J; Gabaldon, C; Gabizon, O; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Gallas, E J; Gallas, M V; Gallo, V; Gallop, B J; Gallus, P; Galyaev, E; Gan, K K; Gao, Y S; Gapienko, V A; Gaponenko, A; Garcia-Sciveres, M; García, C; García Navarro, J E; Garde, V; Gardner, R W; Garelli, N; Garitaonandia, H; Garonne, V; Garvey, J; Gatti, C; Gaudio, G; Gaumer, O; Gautard, V; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gayde, J-C; Gazis, E N; Ge, P; Gee, C N P; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Genest, M H; Gentile, S; Georgatos, F; George, S; Gerlach, P; Gershon, A; Geweniger, C; Ghazlane, H; Ghez, P; Ghodbane, N; Giacobbe, B; Giagu, S; Giakoumopoulou, V; Giangiobbe, V; Gianotti, F; Gibbard, B; Gibson, A; Gibson, S M; Gieraltowski, G F; Gilbert, L M; Gilchriese, M; Gildemeister, O; Gilewsky, V; Gillman, A R; Gingrich, D M; Ginzburg, J; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giovannini, P; Giraud, P F; Girtler, P; Giugni, D; Giusti, P; Gjelsten, B K; Gladilin, L K; Glasman, C; Glazov, A; Glitza, K W; Glonti, G L; Gnanvo, K G; Godfrey, J; Godlewski, J; Goebel, M; Göpfert, T; Goeringer, C; Gössling, C; Göttfert, T; Goggi, V; Goldfarb, S; Goldin, D; Golling, T; Gollub, N P; Golovnia, S N; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Gonella, L; Gong, C; Gonidec, A; González de la Hoz, S; Gonzalez Silva, M L; Gonzalez-Pineiro, B; Gonzalez-Sevilla, S; Goodson, J J; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorisek, A; Gornicki, E; Gorokhov, S A; Gorski, B T; Goryachev, V N; Gosdzik, B; Gosselink, M; Gostkin, M I; Gouanère, M; Gough Eschrich, I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Grabowska-Bold, I; Grabski, V; Grafström, P; Grah, C; Grahn, K-J; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Grau, N; Gray, H M; Gray, J A; Graziani, E; Green, B; Greenfield, D; Greenshaw, T; Greenwood, Z D; Gregor, I M; Grenier, P; Grewal, A; Griesmayer, E; Griffiths, J; Grigalashvili, N; Grillo, A A; Grimm, K; Grinstein, S; Gris, P L Y; Grishkevich, Y V; Groer, L S; Grognuz, J; Groh, M; Groll, M; Gross, E; Grosse-Knetter, J; Groth-Jensen, J; Gruwe, M; Grybel, K; Guarino, V J; Guicheney, C; Guida, A; Guillemin, T; Guler, H; Gunther, J; Guo, B; Gupta, A; Gusakov, Y; Gushchin, V N; Gutierrez, A; Gutierrez, P; Guttman, N; Gutzwiller, O; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haas, S; Haber, C; Haboubi, G; Hackenburg, R; Hadavand, H K; Hadley, D R; Haeberli, C; Haefner, P; Härtel, R; Hahn, F; Haider, S; Hajduk, Z; Hakobyan, H; Hakobyan, R H; Haller, J; Hallewell, G D; Hamacher, K; Hamilton, A; Hamilton, S; Han, H; Han, L; Hanagaki, K; Hance, M; Handel, C; Hanke, P; Hansen, C J; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansl-Kozanecka, T; Hansson, P; Hara, K; Hare, G A; Harenberg, T; Harper, R; Harrington, R D; Harris, O M; Harrison, K; Hart, J C; Hartert, J; Hartjes, F; Haruyama, T; Harvey, A; Hasegawa, S; Hasegawa, Y; Hashemi, K; Hassani, S; Hatch, M; Hauff, D; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawes, B M; Hawkes, C M; Hawkings, R J; Hawkins, D; Hayakawa, T; Hayward, H S; Haywood, S J; Hazen, E; He, M; He, Y P; Head, S J; Hedberg, V; Heelan, L; Heim, S; Heinemann, B; Heinemann, F E W; Heisterkamp, S; Helary, L; Heldmann, M; Heller, M; Hellman, S; Helsens, C; Hemperek, T; Henderson, R C W; Hendriks, P J; Henke, M; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Henry-Couannier, F; Hensel, C; Henß, T; Hernández Jiménez, Y; Hershenhorn, A D; Herten, G; Hertenberger, R; Hervas, L; Hess, M; Hessey, N P; Hidvegi, A; Higón-Rodriguez, E; Hill, D; Hill, J C; Hill, N; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hindson, D; Hines, E; Hirose, M; Hirsch, F; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hohlfeld, M; Holder, M; Hollins, T I; Hollyman, G; Holmes, A; Holmgren, S O; Holy, T; Holzbauer, J L; Homer, R J; Homma, Y; Horazdovsky, T; Hori, T; Horn, C; Horner, S; Horvat, S; Hostachy, J-Y; Hott, T; Hou, S; Houlden, M A; Hoummada, A; Howe, T; Howell, D F; Hrivnac, J; Hruska, I; Hryn'ova, T; Hsu, P J; Hsu, S -C; Huang, G S; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Hughes-Jones, R E; Huhtinen, M; Hurst, P; Hurwitz, M; Husemann, U; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibbotson, M; Ibragimov, I; Ichimiya, R; Iconomidou-Fayard, L; Idarraga, J; Idzik, M; Iengo, P; Igonkina, O; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Imbault, D; Imhaeuser, M; Imori, M; Ince, T; Inigo-Golfin, J; Ioannou, P; Iodice, M; Ionescu, G; Irles Quiles, A; Ishii, K; Ishikawa, A; Ishino, M; Ishizawa, Y; Ishmukhametov, R; Isobe, T; Issakov, V; Issever, C; Istin, S; Itoh, Y; Ivashin, A V; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, J N; Jackson, P; Jaekel, M R; Jahoda, M; Jain, V; Jakobs, K; Jakobsen, S; Jakubek, J; Jana, D K; Jankowski, E; Jansen, E; Jantsch, A; Janus, M; Jared, R C; Jarlskog, G; Jeanty, L; Jelen, K; Jen-La Plante, I; Jenni, P; Jeremie, A; Jez, P; Jézéquel, S; Ji, W; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, G; Jin, S; Jinnouchi, O; Joffe, D; Johansen, L G; Johansen, M; Johansson, K E; Johansson, P; Johnert, S; Johns, K A; Jon-And, K; Jones, G; Jones, M; Jones, R W L; Jones, T W; Jones, T J; Jonsson, O; Joo, K K; Joos, D; Joram, C; Jorge, P M; Jorgensen, S; Juranek, V; Jussel, P; Kabachenko, V V; Kabana, S; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kaiser, S; Kajomovitz, E; Kalinin, S; Kalinovskaya, L V; Kalinowski, A; Kama, S; Kambara, H; Kanaya, N; Kaneda, M; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kaplon, J; Kar, D; Karagounis, M; Karagoz Unel, M; Karnevskiy, M; Karr, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasmi, A; Kass, R D; Kastanas, A; Kastoryano, M; Kataoka, M; Kataoka, Y; Katsoufis, E; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kayl, M S; Kayumov, F; Kazanin, V A; Kazarinov, M Y; Kazi, S I; Keates, J R; Keeler, R; Keener, P T; Kehoe, R; Keil, M; Kekelidze, G D; Kelly, M; Kennedy, J; Kenyon, M; Kepka, O; Kerschen, N; Kersevan, B P; Kersten, S; Kessoku, K; Ketterer, C; Khakzad, M; Khalil-zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Kholodenko, A G; Khomich, A; Khoriauli, G; Khovanskiy, N; Khovanskiy, V; Khramov, E; Khubua, J; Kilvington, G; Kim, H; Kim, M S; Kim, P C; Kim, S H; Kind, O; Kind, P; King, B T; King, M; Kirk, J; Kirsch, G P; Kirsch, L E; Kiryunin, A E; Kisielewska, D; Kisielewski, B; Kittelmann, T; Kiver, A M; Kiyamura, H; Kladiva, E; Klaiber-Lodewigs, J; Klein, M; Klein, U; Kleinknecht, K; Klemetti, M; Klier, A; Klimentov, A; Klingenberg, R; Klinkby, E B; Klioutchnikova, T; Klok, P F; Klous, S; Kluge, E -E; Kluge, T; Kluit, P; Kluth, S; Knecht, N S; Kneringer, E; Knobloch, J; Ko, B R; Kobayashi, T; Kobel, M; Koblitz, B; Kocian, M; Kocnar, A; Kodys, P; Köneke, K; König, A C; Koenig, S; König, S; Köpke, L; Koetsveld, F; Koevesarki, P; Koffas, T; Koffeman, E; Kohn, F; Kohout, Z; Kohriki, T; Koi, T; Kokott, T; Kolachev, G M; Kolanoski, H; Kolesnikov, V; Koletsou, I; Koll, J; Kollar, D; Kollefrath, M; Kolos, S; Kolya, S D; Komar, A A; Komaragiri, J R; Kondo, T; Kono, T; Kononov, A I; Konoplich, R; Konovalov, S P; Konstantinidis, N; Kootz, A; Koperny, S; Kopikov, S V; Korcyl, K; Kordas, K; Koreshev, V; Korn, A; Korolkov, I; Korolkova, E V; Korotkov, V A; Korsmo, H; Kortner, O; Kostka, P; Kostyukhin, V V; Kotamäki, M J; Kotchetkov, D; Kotov, S; Kotov, V M; Kotov, K Y; Kourkoumelis, C; Koutsman, A; Kowalewski, R; Kowalski, H; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasel, O; Krasny, M W; Krasznahorkay, A; Kraus, J; Kreisel, A; Krejci, F; Kretzschmar, J; Krieger, N; Krieger, P; Krobath, G; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumshteyn, Z V; Kruth, A; Kubota, T; Kuehn, S; Kugel, A; Kuhl, T; Kuhn, D; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kummer, C; Kuna, M; Kundu, N; Kunkle, J; Kupco, A; Kurashige, H; Kurata, M; Kurchaninov, L L; Kurochkin, Y A; Kus, V; Kuykendall, W; Kuze, M; Kuzhir, P; Kuznetsova, E; Kvasnicka, O; Kwee, R; La Rosa, A; La Rotonda, L; Labarga, L; Labbe, J; Lacasta, C; Lacava, F; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lamanna, M; Lambacher, M; Lampen, C L; Lampl, W; Lancon, E; Landgraf, U; Landon, M P J; Landsman, H; Lane, J L; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Lapin, V V; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larionov, A V; Larner, A; Lasseur, C; Lassnig, M; Lau, W; Laurelli, P; Lavorato, A; Lavrijsen, W; Laycock, P; Lazarev, A B; Lazzaro, A; Le Dortz, O; Le Guirriec, E; Le Maner, C; Le Menedeu, E; Le Vine, M; Leahu, M; Lebedev, A; Lebel, C; Lechowski, M; LeCompte, T; Ledroit-Guillon, F; Lee, H; Lee, J S H; Lee, S C; Lefebvre, M; Legendre, M; Leger, A; LeGeyt, B C; Legger, F; Leggett, C; Lehmacher, M; Lehmann Miotto, G; Lehto, M; Lei, X; Leitner, R; Lellouch, D; Lellouch, J; Leltchouk, M; Lendermann, V; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leonhardt, K; Lepidis, J; Leroy, C; Lessard, J-R; Lesser, J; Lester, C G; Leung Fook Cheong, A; Levêque, J; Levin, D; Levinson, L J; Levitski, M S; Levonian, S; Lewandowska, M; Leyton, M; Li, H; Li, S; Li, X; Liang, Z; Liang, Z; Liberti, B; Lichard, P; Lichtnecker, M; Lie, K; Liebig, W; Lifshitz, R; Lilley, J N; Lim, H; Limosani, A; Limper, M; Lin, S C; Linde, F; Linnemann, J T; Lipeles, E; Lipinsky, L; Lipniacka, A; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, C; Liu, D; Liu, H; Liu, J B; Liu, M; Liu, S; Liu, T; Liu, Y; Livan, M; Lleres, A; Lloyd, S L; Lobkowicz, F; Lobodzinska, E; Loch, P; Lockman, W S; Lockwitz, S; Loddenkoetter, T; Loebinger, F K; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Loken, J; Long, R E; Lopes, L; Lopez Mateos, D; Losada, M; Loscutoff, P; Losty, M J; Lou, X; Lounis, A; Loureiro, K F; Love, J; Love, P A; Lowe, A J; Lu, F; Lu, J; Lu, L; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, A; Ludwig, D; Ludwig, I; Ludwig, J; Luehring, F; Luijckx, G; Luisa, L; Lumb, D; Luminari, L; Lund, E; Lund-Jensen, B; Lundberg, B; Lundberg, J; Lundquist, J; Lupi, A; Lutz, G; Lynn, D; Lynn, J; Lys, J; Lytken, E; Ma, H; Ma, L L; Maaß en, M; Macana Goia, J A; Maccarrone, G; Macchiolo, A; Macek, B; Machado Miguens, J; Macina, D; Mackeprang, R; MacQueen, D; Madaras, R J; Mader, W F; Maenner, R; Maeno, T; Mättig, P; Mättig, S; Magalhaes Martins, P J; Magradze, E; Magrath, C A; Mahalalel, Y; Mahboubi, K; Mahmood, A; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Mair, G M; Majewski, S; Makida, Y; Makouski, M; Makovec, N; Mal, P; Malecki, Pa; Malecki, P; Maleev, V P; Malek, F; Mallik, U; Malon, D; Maltezos, S; Malyshev, V; Malyukov, S; Mambelli, M; Mameghani, R; Mamuzic, J; Manabe, A; Manara, A; Manca, G; Mandelli, L; Mandic, I; Mandrysch, R; Maneira, J; Mangeard, P S; Mangin-Brinet, M; Manjavidze, I D; Mann, A; Mann, W A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Manz, A; Mapelli, A; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marchesotti, M; Marchiori, G; Marcisovsky, M; Marin, A; Marino, C P; Marroquim, F; Marshall, R; Marshall, Z; Martens, F K; Marti-Garcia, S; Martin, A J; Martin, A J; Martin, B; Martin, B; Martin, F F; Martin, J P; Martin, Ph; Martin, T A; Martin dit Latour, B; Martinez, M; Martinez Outschoorn, V; Martini, A; Martynenko, V; Martyniuk, A C; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Maß, M; Massa, I; Massaro, G; Massol, N; Mastroberardino, A; Masubuchi, T; Mathes, M; Matricon, P; Matsumoto, H; Matsunaga, H; Matsushita, T; Mattravers, C; Maugain, J M; Maxfield, S J; May, E N; Mayer, J K; Mayne, A; Mazini, R; Mazur, M; Mazzanti, M; Mazzoni, E; Mc Donald, J; Mc Kee, S P; McCarn, A; McCarthy, R L; McCubbin, N A; McFarlane, K W; McGarvie, S; McGlone, H; Mchedlidze, G; McLaren, R A; McMahon, S J; McMahon, T R; McMahon, T J; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meera-Lebbai, R; Meguro, T M; Mehdiyev, R; Mehlhase, S; Mehta, A; Meier, K; Meinhardt, J; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Mendoza Navas, L; Meng, Z; Menke, S; Menot, C; Meoni, E; Merkl, D; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A M; Messmer, I; Metcalfe, J; Mete, A S; Meuser, S; Meyer, J-P; Meyer, J; Meyer, J; Meyer, T C; Meyer, W T; Miao, J; Michal, S; Micu, L; Middleton, R P; Miele, P; Migas, S; Migliaccio, A; Mijovic, L; Mikenberg, G; Mikestikova, M; Mikulec, B; Mikuz, M; Miller, D W; Miller, R J; Mills, W J; Mills, C M; Milov, A; Milstead, D A; Milstein, D; Mima, S; Minaenko, A A; Miñano, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Miralles Verge, L; Misawa, S; Miscetti, S; Misiejuk, A; Mitra, A; Mitrevski, J; Mitrofanov, G Y; Mitsou, V A; Mitsui, S; Miyagawa, P S; Miyazaki, K; Mjörnmark, J U; Mladenov, D; Moa, T; Moch, M; Mockett, P; Moed, S; Moeller, V; Mönig, K; Möser, N; Mohn, B; Mohr, W; Mohrdieck-Möck, S; Moisseev, A M; Moles-Valls, R; Molina-Perez, J; Moneta, L; Monk, J; Monnier, E; Montesano, S; Monticelli, F; Moore, R W; Moore, T B; Moorhead, G F; Mora Herrera, C; Moraes, A; Morais, A; Morel, J; Morello, G; Moreno, D; Moreno Llácer, M; Morettini, P; Morgan, D; Morii, M; Morin, J; Morita, Y; Morley, A K; Mornacchi, G; Morone, M-C; Morozov, S V; Morris, J D; Moser, H G; Mosidze, M; Moss, J; Moszczynski, A; Mount, R; Mountricha, E; Mouraviev, S V; Moye, T H; Moyse, E J W; Mudrinic, M; Mueller, F; Mueller, J; Mueller, K; Müller, T A; Muenstermann, D; Muijs, A; Muir, A; Munar, A; Munwes, Y; Murakami, K; Murillo Garcia, R; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nadal, J; Nagai, K; Nagano, K; Nagasaka, Y; Nairz, A M; Naito, D; Nakamura, K; Nakano, I; Nakatsuka, H; Nanava, G; Napier, A; Nash, M; Nasteva, I; Nation, N R; Nattermann, T; Naumann, T; Nauyock, F; Navarro, G; Nderitu, S K; Neal, H A; Nebot, E; Nechaeva, P; Negri, A; Negri, G; Negroni, S; Nelson, A; Nelson, S; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Nesterov, S Y; Neubauer, M S; Neukermans, L; Neusiedl, A; Neves, R M; Nevski, P; Newcomer, F M; Nicholson, C; Nickerson, R B; Nicolaidou, R; Nicolas, L; Nicoletti, G; Nicquevert, B; Niedercorn, F; Niegl, M; Nielsen, J; Niinikoski, T; Nikiforov, A; Nikolaev, K; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, H; Nilsson, P; Nisati, A; Nishiyama, T; Nisius, R; Nodulman, L; Nomachi, M; Nomidis, I; Nomoto, H; Nordberg, M; Nordkvist, B; Norniella Francisco, O; Norton, P R; Notz, D; Novakova, J; Nozaki, M; Nozicka, M; Nugent, I M; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nyman, T; O'Neale, S W; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermaier, M; Oberson, P; Ochi, A; Oda, S; Odaka, S; Odier, J; Odino, G A; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohshima, T; Ohshita, H; Ohska, T K; Ohsugi, T; Okada, S; Okawa, H; Okumura, Y; Okuyama, T; Olcese, M; Olchevski, A G; Oliveira, M; Oliveira Damazio, D; Oliver, C; Oliver, J; Oliver Garcia, E; Olivito, D; Olivo Gomez, M; Olszewski, A; Olszowska, J; Omachi, C; Onea, A; Onofre, A; Onyisi, P U E; Oram, C J; Ordonez, G; Oreglia, M J; Orellana, F; Oren, Y; Orestano, D; Orlov, I; Oropeza Barrera, C; Orr, R S; Ortega, E O; Osculati, B; Ospanov, R; Osuna, C; Otero y Garzon, G; Ottersbach, J P; Ottewell, B; Ould-Saada, F; Ouraou, A; Ouyang, Q; Owen, M; Owen, S; Oyarzun, A; Oye, O K; Ozcan, V E; Ozone, K; Ozturk, N; Pacheco Pages, A; Padilla Aranda, C; Paganis, E; Pahl, C; Paige, F; Pajchel, K; Palestini, S; Palla, J; Pallin, D; Palma, A; Palmer, J D; Palmer, M J; Pan, Y B; Panagiotopoulou, E; Panes, B; Panikashvili, N; Panin, V N; Panitkin, S; Pantea, D; Panuskova, M; Paolone, V; Paoloni, A; Papadopoulos, I; Papadopoulou, Th D; Park, S J; Park, W; Parker, M A; Parker, S I; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N; Pater, J R; Patricelli, S; Patwa, A; Pauly, T; Peak, L S; Pecsy, M; Pedraza Morales, M I; Peeters, S J M; Peez, M; Peleganchuk, S V; Peng, H; Pengo, R; Penson, A; Penwell, J; Perantoni, M; Perez, K; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Peric, I; Perini, L; Pernegger, H; Perrino, R; Perrodo, P; Persembe, S; Perus, P; Peshekhonov, V D; Petereit, E; Peters, O; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridou, C; Petrolo, E; Petrucci, F; Petschull, D; Petteni, M; Pezoa, R; Pfeifer, B; Phan, A; Phillips, A W; Piacquadio, G; Piccaro, E; Piccinini, M; Pickford, A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinfold, J L; Ping, J; Pinto, B; Pirotte, O; Pizio, C; Placakyte, R; Plamondon, M; Plano, W G; Pleier, M -A; Pleskach, A V; Poblaguev, A; Poddar, S; Podlyski, F; Poffenberger, P; Poggioli, L; Pohl, M; Polci, F; Polesello, G; Policicchio, A; Polini, A; Poll, J; Polychronakos, V; Pomarede, D M; Pomeroy, D; Pommès, K; Ponsot, P; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popescu, R; Popovic, D S; Poppleton, A; Popule, J; Portell Bueso, X; Porter, R; Posch, C; Pospelov, G E; Pospichal, P; Pospisil, S; Potekhin, M; Potrap, I N; Potter, C J; Potter, C T; Potter, K P; Poulard, G; Poveda, J; Prabhu, R; Pralavorio, P; Prasad, S; Prata, M; Pravahan, R; Pretzl, K; Pribyl, L; Price, D; Price, L E; Price, M J; Prichard, P M; Prieur, D; Primavera, M; Primor, D; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Prudent, X; Przysiezniak, H; Psoroulas, S; Ptacek, E; Puigdengoles, C; Purdham, J; Purohit, M; Puzo, P; Pylypchenko, Y; Qi, M; Qian, J; Qian, W; Qian, Z; Qin, Z; Qing, D; Quadt, A; Quarrie, D R; Quayle, W B; Quinonez, F; Raas, M; Radeka, V; Radescu, V; Radics, B; Rador, T; Ragusa, F; Rahal, G; Rahimi, A M; Rahm, D; Raine, C; Raith, B; Rajagopalan, S; Rajek, S; Rammensee, M; Rammes, M; Ramstedt, M; Ratoff, P N; Rauscher, F; Rauter, E; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehak, M; Reichold, A; Reinherz-Aronis, E; Reinsch, A; Reisinger, I; Reljic, D; Rembser, C; Ren, Z L; Renkel, P; Rensch, B; Rescia, S; Rescigno, M; Resconi, S; Resende, B; Rezaie, E; Reznicek, P; Rezvani, R; Richards, A; Richards, R A; Richter, R; Richter-Was, E; Ridel, M; Rieke, S; Rijpstra, M; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Rios, R R; Risler, C; Riu, I; Rivoltella, G; Rizatdinova, F; Rizvi, E; Roa Romero, D A; Robertson, S H; Robichaud-Veronneau, A; Robins, S; Robinson, D; Robinson, JEM; Robinson, M; Robson, A; Rocha de Lima, J G; Roda, C; Roda Dos Santos, D; Rodier, S; Rodriguez, D; Rodriguez Garcia, Y; Roe, S; Röhne, O; Rojo, V; Rolli, S; Romaniouk, A; Romanov, V M; Romeo, G; Romero Maltrana, D; Roos, L; Ros, E; Rosati, S; Rosenbaum, F; Rosenbaum, G A; Rosenberg, E I; Rosselet, L; Rossetti, V; Rossi, L P; Rossi, L; Rotaru, M; Rothberg, J; Rottländer, I; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Ruckert, B; Ruckstuhl, N; Rud, V I; Rudolph, G; Rühr, F; Ruggieri, F; Ruiz-Martinez, A; Rulikowska-Zarebska, E; Rumiantsev, V; Rumyantsev, L; Runge, K; Runolfsson, O; Rurikova, Z; Rusakovich, N A; Rust, D R; Rutherfoord, J P; Ruwiedel, C; Ruzicka, P; Ryabov, Y F; Ryadovikov, V; Ryan, P; Rybkin, G; Rzaeva, S; Saavedra, A F; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Sala, P; Salamanna, G; Salamon, A; Saleem, M S; Salihagic, D; Salnikov, A; Salt, J; Saltó Bauza, O; Salvachua Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Samset, B H; Sánchez Sánchez, C A; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandhu, P; Sandstroem, R; Sandvoss, S; Sankey, D P C; Sanny, B; Sansoni, A; Santamarina Rios, C; Santoni, C; Santonico, R; Saraiva, J G; Sarangi, T; Sarkisyan-Grinbaum, E; Sarri, F; Sasaki, O; Sasaki, T; Sasao, N; Satsounkevitch, I; Sauvage, G; Savard, P; Savine, A Y; Savinov, V; Savoy-Navarro, A; Savva, P; Sawyer, L; Saxon, D H; Says, L P; Sbarra, C; Sbrizzi, A; Scannicchio, D A; Schaarschmidt, J; Schacht, P; Schäfer, U; Schaetzel, S; Schaffer, A C; Schaile, D; Schaller, M; Schamberger, R D; Schamov, A G; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schioppa, M; Schlager, G; Schlenker, S; Schlereth, J L; Schmidt, E; Schmidt, M P; Schmieden, K; Schmitt, C; Schmitz, M; Scholte, R C; Schönig, A; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schreiner, A; Schricker, A; Schroeder, C; Schroer, N; Schroers, M; Schroff, D; Schuh, S; Schuler, G; Schultes, J; Schultz-Coulon, H -C; Schumacher, J W; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schweiger, D; Schwemling, Ph; Schwienhorst, R; Schwierz, R; Schwindling, J; Scott, W G; Searcy, J; Sedykh, E; Segura, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Seliverstov, D M; Sellden, B; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Seuster, R; Severini, H; Sevior, M E; Sfyrla, A; Shabalina, E; Shah, T P; Shamim, M; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaver, L; Shaw, C; Shaw, K; Sherman, D; Sherwood, P; Shibata, A; Shield, P; Shimojima, M; Shin, T; Shmeleva, A; Shochet, M J; Shupe, M A; Sicho, P; Sidoti, A; Siebel, A; Siebel, M; Siegert, F; Siegrist, J; Sijacki, Dj; Silbert, O; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simic, Lj; Simion, S; Simmons, B; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjoelin, J; Sjursen, T B; Skovpen, K; Skubic, P; Skvorodnev, N; Slater, M; Slattery, P; Slavicek, T; Sliwa, K; Sloan, T J; Sloper, J; Sluka, T; Smakhtin, V; Small, A; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, B C; Smith, D; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snow, S W; Snow, J; Snuverink, J; Snyder, S; Soares, M; Sobie, R; Sodomka, J; Soffer, A; Solans, C A; Solar, M; Solc, J; Solfaroli Camillocci, E; Solodkov, A A; Solovyanov, O V; Soluk, R; Sondericker, J; Sopko, V; Sopko, B; Sorbi, M; Sosebee, M; Soukharev, A; Spagnolo, S; Spanò, F; Speckmayer, P; Spencer, E; Spighi, R; Spigo, G; Spila, F; Spiriti, E; Spiwoks, R; Spogli, L; Spousta, M; Spreitzer, T; Spurlock, B; StDenis, R D; Stahl, T; Stahlman, J; Stamen, R; Stancu, S N; Stanecka, E; Stanek, R W; Stanescu, C; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Stastny, J; Staude, A; Stavina, P; Stavropoulos, G; Steele, G; Stefanidis, E; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stevenson, K; Stewart, G A; Stewart, T D; Stiller, W; Stockmanns, T; Stockton, M C; Stodulski, M; Stoerig, K; Stoicea, G; Stonjek, S; Strachota, P; Stradling, A R; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strang, M; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Strong, J A; Stroynowski, R; Strube, J; Stugu, B; Stumer, I; Sturm, P; Soh, D A; Su, D; Subramania, S; Sugaya, Y; Sugimoto, T; Suhr, C; Suita, K; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X H; Sundermann, J E; Suruliz, K; Sushkov, S; Susinno, G; Sutton, M R; Suzuki, T; Suzuki, Y; Sviridov, Yu M; Sykora, I; Sykora, T; Szczygiel, R R; Szeless, B; Szymocha, T; Sánchez, J; Ta, D; Taboada Gameiro, S; Tackmann, K; Taffard, A; Tafirout, R; Taga, A; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Talby, M; Talyshev, A; Tamsett, M C; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanaka, Y; Tani, K; Tappern, G P; Tapprogge, S; Tardif, D; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tassi, E; Tatarkhanov, M; Tayalati, Y; Taylor, C; Taylor, F E; Taylor, G; Taylor, G N; Taylor, R P; Taylor, W; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Ten Kate, H; Teng, P K; Tennenbaum-Katan, Y D; Terada, S; Terashi, K; Terron, J; Terwort, M; Testa, M; Teuscher, R J; Tevlin, C M; Thadome, J; Therhaag, J; Thioye, M; Thoma, S; Thomas, J P; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, R J; Thompson, A S; Thomson, E; Thun, R P; Tic, T; Tikhomirov, V O; Tikhonov, Y A; Timmermans, C J W P; Tipton, P; Tique Aires Viegas, F J; Tisserant, S; Tobias, J; Toczek, B; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokunaga, K; Tokushuku, K; Tollefson, K; Tomasek, L; Tomasek, M; Tomoto, M; Tompkins, D; Tompkins, L; Toms, K; Tonazzo, A; Tong, G; Tonoyan, A; Topfel, C; Topilin, N D; Torchiani, I; Torrence, E; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Treis, J; Tremblet, L; Tricoli, A; Trigger, I M; Trilling, G; Trincaz-Duvoid, S; Trinh, T N; Tripiana, M F; Triplett, N; Trischuk, W; Trivedi, A; Trocmé, B; Troncon, C; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiakiris, M; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J -W; Tsuno, S; Tsybychev, D; Tuggle, J M; Turala, M; Turecek, D; Turk Cakir, I; Turlay, E; Tuts, P M; Twomey, M S; Tylmad, M; Tyndel, M; Typaldos, D; Tyrvainen, H; Tzamarioudaki, E; Tzanakos, G; Uchida, K; Ueda, I; Ueno, R; Ugland, M; Uhlenbrock, M; Uhrmacher, M; Ukegawa, F; Unal, G; Underwood, D G; Undrus, A; Unel, G; Unno, Y; Urbaniec, D; Urkovsky, E; Urquijo, P; Urrejola, P; Usai, G; Uslenghi, M; Vacavant, L; Vacek, V; Vachon, B; Vahsen, S; Valderanis, C; Valenta, J; Valente, P; Valentinetti, S; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Berg, R; van der Graaf, H; van der Kraaij, E; van der Poel, E; van der Ster, D; Van Eijk, B; van Eldik, N; van Gemmeren, P; van Kesteren, Z; van Vulpen, I; Vandelli, W; Vandoni, G; Vaniachine, A; Vankov, P; Vannucci, F; Varela Rodriguez, F; Vari, R; Varnes, E W; Varouchas, D; Vartapetian, A; Varvell, K E; Vasilyeva, L; Vassilakopoulos, V I; Vazeille, F; Vegni, G; Veillet, J J; Vellidis, C; Veloso, F; Veness, R; Veneziano, S; Ventura, A; Ventura, D; Ventura, S; Venturi, M; Venturi, N; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vertogardov, L; Vetterli, M C; Vichou, I; Vickey, T; Viehhauser, G H A; Villa, M; Villani, E G; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinek, E; Vinogradov, V B; Virchaux, M; Viret, S; Virzi, J; Vitale, A; Vitells, O; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vlasak, M; Vlasov, N; Vogel, A; Vogt, H; Vokac, P; Vollmer, C F; Volpi, M; Volpini, G; von der Schmitt, H; von Loeben, J; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobiev, A P; Vorwerk, V; Vos, M; Voss, K C; Voss, R; Voss, T T; Vossebeld, J H; Vovenko, A S; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuaridel, B; Vudragovic, D; Vuillermet, R; Vukotic, I; Wagner, P; Wahlen, H; Walbersloh, J; Walder, J; Walker, R; Walkowiak, W; Wall, R; Walsh, S; Wang, C; Wang, H; Wang, J; Wang, J C; Wang, S M; Warburton, A; Ward, C P; Warsinsky, M; Wastie, R; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Webel, M; Weber, G; Weber, J; Weber, M D; Weber, M; Weber, M S; Weber, P; Weidberg, A R; Weingarten, J; Weiser, C; Wellenstein, H; Wellisch, H P; Wells, P S; Wen, M; Wenaus, T; Wendler, S; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Werth, M; Werthenbach, U; Wessels, M; Whalen, K; Wheeler-Ellis, S J; Whitaker, S P; White, A; White, M J; White, S; Whitehead, S R; Whiteson, D; Whittington, D; Wicek, F; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiesmann, M; Wiglesworth, C; Wiik, L A M; Wildauer, A; Wildt, M A; Wilhelm, I; Wilkens, H G; Williams, E; Williams, H H; Willis, W; Willocq, S; Wilson, J A; Wilson, M G; Wilson, A; Wingerter-Seez, I; Winklmeier, F; Wittgen, M; Woehrling, E; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wraight, K; Wright, C; Wright, D; Wrona, B; Wu, S L; Wu, X; Wuestenfeld, J; Wulf, E; Wunstorf, R; Wynne, B M; Xaplanteris, L; Xella, S; Xie, S; Xie, Y; Xu, D; Xu, G; Xu, N; Yamada, M; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamaoka, J; Yamazaki, T; Yamazaki, Y; Yan, Z; Yang, H; Yang, S; Yang, U K; Yang, Y; Yang, Z; Yao, W-M; Yao, Y; Yasu, Y; Ye, J; Ye, S; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Young, C; Youssef, S P; Yu, D; Yu, J; Yuan, J; Yuan, L; Yurkewicz, A; Zaets, V G; Zaidan, R; Zaitsev, A M; Zajacova, Z; Zalite, Yo K; Zambrano, V; Zanello, L; Zarzhitsky, P; Zaytsev, A; Zdrazil, M; Zeitnitz, C; Zeller, M; Zema, P F; Zemla, A; Zendler, C; Zenin, A V; Zenin, O; Zenis, T; Zenonos, Z; Zenz, S; Zerwas, D; Zevi della Porta, G; Zhan, Z; Zhang, H; Zhang, J; Zhang, Q; Zhang, X; Zhao, L; Zhao, T; Zhao, Z; Zhemchugov, A; Zheng, S; Zhong, J; Zhou, B; Zhou, N; Zhou, Y; Zhu, C G; Zhu, H; Zhu, Y; Zhuang, X; Zhuravlov, V; Zilka, B; Zimmermann, R; Zimmermann, S; Zimmermann, S; Ziolkowski, M; Zitoun, R; Zivkovic, L; Zmouchko, V V; Zobernig, G; Zoccoli, A; Zolnierowski, Y; Zsenei, A; zur Nedden, M; Zutshi, V

    2010-01-01

    More than half a million minimum-bias events of LHC collision data were collected by the ATLAS experiment in December 2009 at centre-of-mass energies of 0.9 TeV and 2.36 TeV. This paper reports on studies of the initial performance of the ATLAS detector from these data. Comparisons between data and Monte Carlo predictions are shown for distributions of several track- and calorimeter-based quantities. The good performance of the ATLAS detector in these first data gives confidence for successful running at higher energies.

  7. X-ray analog pixel array detector for single synchrotron bunch time-resolved imaging

    CERN Document Server

    Koerner, Lucas J

    2010-01-01

    Dynamic x-ray studies may reach temporal resolutions limited by only the x-ray pulse duration if the detector is fast enough to segregate synchrotron pulses. An analog integrating pixel array detector with in-pixel storage and temporal resolution of around 150 ns, sufficient to isolate pulses, is presented. Analog integration minimizes count-rate limitations and in-pixel storage captures successive pulses. Fundamental tests of noise and linearity as well as high-speed laser measurements are shown. The detector resolved individual bunch trains at the Cornell High Energy Synchrotron Source (CHESS) at levels of up to 3.7x10^3 x-rays/pixel/train. When applied to turn-by-turn x-ray beam characterization single-shot intensity measurements were made with a repeatability of 0.4% and horizontal oscillations of the positron cloud were detected. This device is appropriate for time-resolved Bragg spot single crystal experiments.

  8. 4.3 μm quantum cascade detector in pixel configuration.

    Science.gov (United States)

    Harrer, A; Schwarz, B; Schuler, S; Reininger, P; Wirthmüller, A; Detz, H; MacFarland, D; Zederbauer, T; Andrews, A M; Rothermund, M; Oppermann, H; Schrenk, W; Strasser, G

    2016-07-25

    We present the design simulation and characterization of a quantum cascade detector operating at 4.3μm wavelength. Array integration and packaging processes were investigated. The device operates in the 4.3μm CO2 absorption region and consists of 64 pixels. The detector is designed fully compatible to standard processing and material growth methods for scalability to large pixel counts. The detector design is optimized for a high device resistance at elevated temperatures. A QCD simulation model was enhanced for resistance and responsivity optimization. The substrate illuminated pixels utilize a two dimensional Au diffraction grating to couple the light to the active region. A single pixel responsivity of 16mA/W at room temperature with a specific detectivity D* of 5⋅107 cmHz/W was measured. PMID:27464155

  9. ASICs in nanometer and 3D technologies for readout of hybrid pixel detectors

    Science.gov (United States)

    Maj, Piotr; Grybos, Pawel; Kmon, Piotr; Szczygiel, Robert

    2013-07-01

    Hybrid pixel detectors working in a single photon counting mode are very attractive solutions for material science and medical X-ray imaging applications. Readout electronics of these detectors has to match the geometry of pixel detectors with an area of readout channel of 100 μm × 100 μm (or even less) and very small power consumption (a few tens of μW). New solutions of readout ASICs are going into directions of better spatial resolutions, higher data throughput and more advanced functionality. We report on the design and measurement results of two pixel prototype ASICs in nanometer technology and 3D technology which offer fast signal processing, low noise performance and advanced functionality per single readout pixel cell.

  10. Module Production and Qualification for the Phase I Upgrade of the CMS Pixel Detector

    CERN Document Server

    AUTHOR|(CDS)2086689

    2015-01-01

    After consolidation of the LHC in 2013/14 its centre-of-mass energy will increase to 13TeV and the luminosity will reach $2 \\cdot 10^{34}\\, \\textnormal{cm}^{-2} \\textnormal{s}^{-1}$, which is twice the design luminosity. The latter will result in more simultaneous particle collisions, which would significantly increase the dead time of the current readout chip of the CMS pixel detector. Therefore the entire CMS pixel detector is replaced in 2016/17 and a new digital readout with larger buffers will be used to handle increasing pixel hit rates. An additional fourth barrel-layer provides more space points to improve track reconstruction. Half of the required modules for layer four is being produced at Karlsruhe Institute of Technology (KIT). This poster deals with the smallest discrete subunit of the pixel detector, the module and its assembly process. Moreover first production experience will be shown.

  11. X-ray characterization of a multichannel smart-pixel array detector.

    Science.gov (United States)

    Ross, Steve; Haji-Sheikh, Michael; Huntington, Andrew; Kline, David; Lee, Adam; Li, Yuelin; Rhee, Jehyuk; Tarpley, Mary; Walko, Donald A; Westberg, Gregg; Williams, George; Zou, Haifeng; Landahl, Eric

    2016-01-01

    The Voxtel VX-798 is a prototype X-ray pixel array detector (PAD) featuring a silicon sensor photodiode array of 48 × 48 pixels, each 130 µm × 130 µm × 520 µm thick, coupled to a CMOS readout application specific integrated circuit (ASIC). The first synchrotron X-ray characterization of this detector is presented, and its ability to selectively count individual X-rays within two independent arrival time windows, a programmable energy range, and localized to a single pixel is demonstrated. During our first trial run at Argonne National Laboratory's Advance Photon Source, the detector achieved a 60 ns gating time and 700 eV full width at half-maximum energy resolution in agreement with design parameters. Each pixel of the PAD holds two independent digital counters, and the discriminator for X-ray energy features both an upper and lower threshold to window the energy of interest discarding unwanted background. This smart-pixel technology allows energy and time resolution to be set and optimized in software. It is found that the detector linearity follows an isolated dead-time model, implying that megahertz count rates should be possible in each pixel. Measurement of the line and point spread functions showed negligible spatial blurring. When combined with the timing structure of the synchrotron storage ring, it is demonstrated that the area detector can perform both picosecond time-resolved X-ray diffraction and fluorescence spectroscopy measurements. PMID:26698064

  12. The Dosepix detector—an energy-resolving photon-counting pixel detector for spectrometric measurements

    CERN Document Server

    Zang, A; Ballabriga, R; Bisello, F; Campbell, M; Celi, J C; Fauler, A; Fiederle, M; Jensch, M; Kochanski, N; Llopart, X; Michel, N; Mollenhauer, U; Ritter, I; Tennert, F; Wölfel, S; Wong, W; Michel, T

    2015-01-01

    The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation wa...

  13. X-ray Characterization of a Multichannel Smart-Pixel Array Detector

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Steve; Haji-Sheikh, Michael; Huntington, Andrew; Kline, David; Lee, Adam; Li, Yuelin; Rhee, Jehyuk; Tarpley, Mary; Walko, Donald A.; Westberg, Gregg; Williams, George; Zou, Haifeng; Landahl, Eric

    2016-01-01

    The Voxtel VX-798 is a prototype X-ray pixel array detector (PAD) featuring a silicon sensor photodiode array of 48 x 48 pixels, each 130 mu m x 130 mu m x 520 mu m thick, coupled to a CMOS readout application specific integrated circuit (ASIC). The first synchrotron X-ray characterization of this detector is presented, and its ability to selectively count individual X-rays within two independent arrival time windows, a programmable energy range, and localized to a single pixel is demonstrated. During our first trial run at Argonne National Laboratory's Advance Photon Source, the detector achieved a 60 ns gating time and 700 eV full width at half-maximum energy resolution in agreement with design parameters. Each pixel of the PAD holds two independent digital counters, and the discriminator for X-ray energy features both an upper and lower threshold to window the energy of interest discarding unwanted background. This smart-pixel technology allows energy and time resolution to be set and optimized in software. It is found that the detector linearity follows an isolated dead-time model, implying that megahertz count rates should be possible in each pixel. Measurement of the line and point spread functions showed negligible spatial blurring. When combined with the timing structure of the synchrotron storage ring, it is demonstrated that the area detector can perform both picosecond time-resolved X-ray diffraction and fluorescence spectroscopy measurements.

  14. A study on the shielding mechanisms of SOI pixel detector

    CERN Document Server

    Lu, Yunpeng; Wu, Zhigang; Ouyang, Qun; Arai, Yasuo

    2015-01-01

    In order to tackle the charge injection issue that had perplexed the counting type SOI pixel for years, two successive chips CPIXTEG3 and CPIXTEG3b were developed utilizing two shielding mechanisms, Nested-well and Double-SOI, in the LAPIS process. A TCAD simulation showed the shielding effectiveness influenced by the high sheet resistance of shielding layers. Test structures specially designed to measure the crosstalk associated to charge injection were implemented in CPIXTEG3/3b. Measurement results proved that using shielding layer is indispensable for counting type pixel and Double-SOI is superior to Nested-well in terms of shielding effectiveness and design flexibility.

  15. Design of analog-to-digital converters for energy sensitive hybrid pixel detectors

    NARCIS (Netherlands)

    San Segundo Bello, David; Nauta, Bram; Visschers, Jan

    2001-01-01

    An important feature of hybrid semiconductor pixel detectors is the fact that detector and readout electronics are manufactured separately, allowing the use of industrial state-of-the-art CMOS processes to manufacture the readout electronics. As the feature size of these processes decreases, faster

  16. Preliminary test of an imaging probe for nuclear medicine using hybrid pixel detectors

    CERN Document Server

    Bertolucci, Ennio; Mettivier, G; Montesi, M C; Russo, P

    2002-01-01

    We are investigating the feasibility of an intraoperative imaging probe for lymphoscintigraphy with Tc-99m tracer, for sentinel node radioguided surgery, using the Medipix series of hybrid detectors coupled to a collimator. These detectors are pixelated semiconductor detectors bump-bonded to the Medipix1 photon counting read-out chip (64x64 pixel, 170 mu m pitch) or to the Medipix2 chip (256x256 pixel, 55 mu m pitch), developed by the European Medipix collaboration. The pixel detector we plan to use in the final version of the probe is a semi-insulating GaAs detector or a 1-2 mm thick CdZnTe detector. For the preliminary tests presented here, we used 300-mu m thick silicon detectors, hybridized via bump-bonding to the Medipix1 chip. We used a tungsten parallel-hole collimator (7 mm thick, matrix array of 64x64 100 mu m circular holes with 170 mu m pitch), and a 22, 60 and 122 keV point-like (1 mm diameter) radioactive sources, placed at various distances from the detector. These tests were conducted in order ...

  17. Pixel array detector for X-ray free electron laser experiments

    Energy Technology Data Exchange (ETDEWEB)

    Philipp, Hugh T., E-mail: htp2@cornell.edu [Department of Physics, Laboratory of Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Hromalik, Marianne [Electrical and Computer Engineering, SUNY Oswego, Oswego, NY 13126 (United States); Tate, Mark; Koerner, Lucas [Department of Physics, Laboratory of Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M. [Department of Physics, Laboratory of Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Wilson Laboratory, Cornell University, CHESS, Ithaca, NY 14853 (United States)

    2011-09-01

    X-ray free electron lasers (XFELs) promise to revolutionize X-ray science with extremely high peak brilliances and femtosecond X-ray pulses. This will require novel detectors to fully realize the potential of these new sources. There are many current detector development projects aimed at the many challenges of meeting the XFEL requirements . This paper describes a pixel array detector (PAD) that has been developed for the Coherent X-ray Imaging experiment at the Linac Coherent Light Source (LCLS) at the SLAC National Laboratory . The detector features 14-bit in-pixel digitization; a 2-level in-pixel gain setting that can be used to make an arbitrary 2-D gain pattern that is adaptable to a particular experiment; the ability to handle instantaneous X-ray flux rates of 10{sup 17} photons per second; and continuous frames rates in excess of 120 Hz. The detector uses direct detection of X-rays in a silicon diode. The charge produced by the diode is integrated in a pixilated application specific integrated circuit (ASIC) which digitizes collected holes with single X-ray photon capability. Each ASIC is 194x185 pixels, each pixel is 110{mu}mx110{mu}m on a side. Each pixel can detect up to 2500 X-rays per frame in low-gain mode, yet easily detects single photons at high-gain. Cooled, single-chip detectors have been built and meet all the required specifications. SLAC National Laboratory is engaged in constructing a tiled, multi-chip 1516x1516 pixel detector.

  18. Evaluation of Compton gamma camera prototype based on pixelated CdTe detectors

    OpenAIRE

    Calderón, Y.; Chmeissani, M.; Kolstein, M.; De Lorenzo, G.

    2014-01-01

    A proposed Compton camera prototype based on pixelated CdTe is simulated and evaluated in order to establish its feasibility and expected performance in real laboratory tests. The system is based on module units containing a 2×4 array of square CdTe detectors of 10×10 mm2 area and 2 mm thickness. The detectors are pixelated and stacked forming a 3D detector with voxel sizes of 2 × 1 × 2 mm3. The camera performance is simulated with Geant4-based Architecture for Medicine-Oriented Simulations(G...

  19. Development of a custom on-line ultrasonic vapour analyzer and flow meter for the ATLAS inner detector, with application to Cherenkov and gaseous charged particle detectors

    Science.gov (United States)

    Alhroob, M.; Bates, R.; Battistin, M.; Berry, S.; Bitadze, A.; Bonneau, P.; Bousson, N.; Boyd, G.; Bozza, G.; Crespo-Lopez, O.; Degeorge, C.; Deterre, C.; DiGirolamo, B.; Doubek, M.; Favre, G.; Godlewski, J.; Hallewell, G.; Hasib, A.; Katunin, S.; Langevin, N.; Lombard, D.; Mathieu, M.; McMahon, S.; Nagai, K.; O'Rourke, A.; Pearson, B.; Robinson, D.; Rossi, C.; Rozanov, A.; Strauss, M.; Vacek, V.; Zwalinski, L.

    2015-03-01

    Precision sound velocity measurements can simultaneously determine binary gas composition and flow. We have developed an analyzer with custom microcontroller-based electronics, currently used in the ATLAS Detector Control System, with numerous potential applications. Three instruments monitor C3F8 and CO2 coolant leak rates into the nitrogen envelopes of the ATLAS silicon microstrip and Pixel detectors. Two further instruments will aid operation of the new thermosiphon coolant recirculator: one of these will monitor air leaks into the low pressure condenser while the other will measure return vapour flow along with C3F8/C2F6 blend composition, should blend operation be necessary to protect the ATLAS silicon tracker under increasing LHC luminosity. We describe these instruments and their electronics.

  20. The pixel hybrid photon detectors for the LHCb-RICH project

    CERN Document Server

    Gys, Thierry

    2001-01-01

    This paper describes a hybrid photon detector with integrated silicon pixel readout to be used in the ring imaging Cherenkov detectors of the LHCb experiment. The photon detector is based on a cross-focussed image intensifier tube geometry where the image is de-magnified by a factor of 5. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The paper starts with the general specification of the baseline option. Followed by a summary of the main results achieved so far during the R&D phase. It concludes with a description of the remaining work towards the final photon detector. (17 refs).

  1. Modelling and 3D optimisation of CdTe pixels detector array geometry - Extension to small pixels

    CERN Document Server

    Zumbiehl, A; Fougeres, P; Koebel, J M; Regal, R; Rit, C; Ayoub, M; Siffert, P

    2001-01-01

    CdTe and CdZnTe pixel detectors offer great interest for many applications, especially for medical and industrial imaging. Up to now, the material, generally, used and investigated for pixel arrays was CZT (Hamel et al., IEEE Trans. Nucl. Sci. 43 (3) (1996) 1422; Barrett et al., Phys. Rev. Lett. 75 (1) (1995) 156; Bennett et al., Nucl. Instr. and Meth. A 392 (1997) 260; Eskin et al., J. Appl. Phys. 85 (2) (1999) 647; Brunett et al., J. Appl. Phys. 86 (7) (1999) 3926; Luke, Nucl. Instr. and Meth. A 380 (1996) 232), but cadmium telluride can also be an appropriate choice, as shown here. However, we clearly demonstrate here that the optimal pixel configuration is highly dependent on the electrical transport properties of the material. Depending on the field of primary interest, either energy resolution or counting rate efficiency in the photopeak, the geometry for each case has to be optimised. For that purpose, we have developed a calculation of the signal induced onto the pixel. Two distinct parts are used: af...

  2. Design, production and first operation of the ALICE Silicon Pixel Detector system

    CERN Document Server

    Kluge, A; Antinori, F; Burns, M; Cali, I A; Campbell, M; Caselle, M; Cavicchioli, C; Dima, R; Elia, D; Fabris, D; Krivda, M; Librizzi, F; Manzari, V; Marangio, G; Morel, M; Moretto, S; Osmic, F; Pappalardo, G S; Pepato, Adriano; Pulvirenti, A; Riedler, P; Riggi, F; Santoro, R; Stefanini, G; Torcato Matos, C; Turrisi, R; Tydesjol, H; Viesti, G

    2008-01-01

    The ALICE Silicon Pixel Detector (SPD) constitutes the two innermost barrel layers of the ALICE experiment. The SPD is the detector closest to the interaction point, mounted around the beam pipe with the two layers at r=3.9 cm and 7.6 cm distance from beam axis. In order to reduce multiple scattering the material budget per layer in the active region has been limited to ≈1% X0. The SPD consists of 120 hybrid silicon pixel detectors modules with a total of ~107 cells. The on-detector read-out is based on a multi-chip-module containing 4 ASICs and an optical transceiver module. The readout electronics, located in the control room, is housed in 20 VME boards; it is the interface to the ALICE trigger, data acquisition, control system and detector electronics. In this contribution the SPD detector components design and production are reviewed. First operation results are reported.

  3. DEPFET Active Pixel Detectors for a Future Linear e(+}e({-)) Collider

    Science.gov (United States)

    Alonso, O.; Casanova, R.; Dieguez, A.; Dingfelder, J.; Hemperek, T.; Kishishita, T.; Kleinohl, T.; Koch, M.; Kruger, H.; Lemarenko, M.; Lutticke, F.; Marinas, C.; Schnell, M.; Wermes, N.; Campbell, A.; Ferber, T.; Kleinwort, C.; Niebuhr, C.; Soloviev, Y.; Steder, M.; Volkenborn, R.; Yaschenko, S.; Fischer, P.; Kreidl, C.; Peric, I.; Knopf, J.; Ritzert, M.; Curras, E.; Lopez-Virto, A.; Moya, D.; Vila, I.; Boronat, M.; Esperante, D.; Fuster, J.; Garcia, I. Garcia; Lacasta, C.; Oyanguren, A.; Ruiz, P.; Timon, G.; Vos, M.; Gessler, T.; Kuhn, W.; Lange, S.; Munchow, D.; Spruck, B.; Frey, A.; Geisler, C.; Schwenker, B.; Wilk, F.; Barvich, T.; Heck, M.; Heindl, S.; Lutz, O.; Muller, Th.; Pulvermacher, C.; Simonis, H. J.; Weiler, T.; Krausser, T.; Lipsky, O.; Rummel, S.; Schieck, J.; Schluter, T.; Ackermann, K.; Andricek, L.; Chekelian, V.; Chobanova, V.; Dalseno, J.; Kiesling, C.; Koffmane, C.; Gioi, L. Li; Moll, A.; Moser, H. G.; Muller, F.; Nedelkovska, E.; Ninkovic, J.; Petrovics, S.; Prothmann, K.; Richter, R.; Ritter, A.; Ritter, M.; Simon, F.; Vanhoefer, P.; Wassatsch, A.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Kvasnicka, P.; Scheirich, J.

    2013-04-01

    The DEPFET collaboration develops highly granular, ultra-transparent active pixel detectors for high-performance vertex reconstruction at future collider experiments. The characterization of detector prototypes has proven that the key principle, the integration of a first amplification stage in a detector-grade sensor material, can provide a comfortable signal to noise ratio of over 40 for a sensor thickness of 50-75 $\\mathrm{\\mathbf{\\mu m}}$. ASICs have been designed and produced to operate a DEPFET pixel detector with the required read-out speed. A complete detector concept is being developed, including solutions for mechanical support, cooling and services. In this paper the status of DEPFET R & D project is reviewed in the light of the requirements of the vertex detector at a future linear $\\mathbf{e^+ e^-}$ collider.

  4. Calibration of the CMS Pixel Detector at the Large Hadron Collider

    CERN Document Server

    Vami, Tamas Almos

    2015-01-01

    The Compact Muon Solenoid (CMS) detector is one of two general-purpose detectors that reconstruct the products of high energy particle interactions at the Large Hadron Collider (LHC) at CERN. The silicon pixel detector is the innermost component of the CMS tracking system. It determines the trajectories of charged particles originating from the interaction region in three points with high resolution enabling precise momentum and impact parameter measurements in the tracker. The pixel detector is exposed to intense ionizing radiation generated by particle collisions in the LHC. This irradiation could result in temporary or permanent malfunctions of the sensors and could decrease the efficiency of the detector. We have developed procedures in order to correct for these effects. In this paper, we present the types of malfunctions and the offline calibration procedures. We will also show the efficiency and the resolution of the detector in 2012.

  5. DEPFET active pixel detectors for a future linear e+e− collider

    CERN Document Server

    Vos, M

    2010-01-01

    The DEPFET collaboration develops highly granular, ultra-transparent active pixel detectors for high-performance vertex reconstruction at future collider experiments. The characterization of detector prototypes has proven that the key principle, the integration of a first amplification stage in a detector-grade sensor material, can provide a comfortable signal to noise ratio of over 40 for a sensor thickness of 50-75 µm. ASICs have been designed and produced to operate a DEPFET pixel detector with the required read-out speed. A complete detector concept is being developed, including solutions for mechanical support, cooling and services. In this paper the status of DEPFET R & D project is reviewed in the light of the requirements of the vertex detector at a future linear e^+e^− collider.

  6. DEPFET active pixel detectors for a future linear $e^+e^-$ collider

    CERN Document Server

    Alonso, O; Dieguez, A; Dingfelder, J; Hemperek, T; Kishishita, T; Kleinohl, T; Koch, M; Krueger, H; Lemarenko, M; Luetticke, F; Marinas, C; Schnell, M; Wermes, N; Campbell, A; Ferber, T; Kleinwort, C; Niebuhr, C; Soloviev, Y; Steder, M; Volkenborn, R; Yaschenko, S; Fischer, P; Kreidl, C; Peric, I; Knopf, J; Ritzert, M; Curras, E; Lopez-Virto, A; Moya, D; Vila, I; Boronat, M; Esperante, D; Fuster, J; Garcia Garcia, I; Lacasta, C; Oyanguren, A; Ruiz, P; Timon, G; Vos, M; Gessler, T; Kuehn, W; Lange, S; Muenchow, D; Spruck, B; Frey, A; Geisler, C; Schwenker, B; Wilk, F; Barvich, T; Heck, M; Heindl, S; Lutz, O; Mueller, Th; Pulvermacher, C; Simonis, H.J; Weiler, T; Krausser, T; Lipsky, O; Rummel, S; Schieck, J; Schlueter, T; Ackermann, K; Andricek, L; Chekelian, V; Chobanova, V; Dalseno, J; Kiesling, C; Koffmane, C; Gioi, L.Li; Moll, A; Moser, H.G; Mueller, F; Nedelkovska, E; Ninkovic, J; Petrovics, S; Prothmann, K; Richter, R; Ritter, A; Ritter, M; Simon, F; Vanhoefer, P; Wassatsch, A; Dolezal, Z; Drasal, Z; Kodys, P; Kvasnicka, P; Scheirich, J

    2013-01-01

    The DEPFET collaboration develops highly granular, ultra-transparent active pixel detectors for high-performance vertex reconstruction at future collider experiments. The characterization of detector prototypes has proven that the key principle, the integration of a first amplification stage in a detector-grade sensor material, can provide a comfortable signal to noise ratio of over 40 for a sensor thickness of 50-75 $\\mathrm{\\mathbf{\\mu m}}$. ASICs have been designed and produced to operate a DEPFET pixel detector with the required read-out speed. A complete detector concept is being developed, including solutions for mechanical support, cooling and services. In this paper the status of DEPFET R & D project is reviewed in the light of the requirements of the vertex detector at a future linear $\\mathbf{e^+ e^-}$ collider.

  7. Edge pixel response studies of edgeless silicon sensor technology for pixellated imaging detectors

    International Nuclear Information System (INIS)

    Silicon sensor technologies with reduced dead area at the sensor's perimeter are under development at a number of institutes. Several fabrication methods for sensors which are sensitive close to the physical edge of the device are under investigation utilising techniques such as active-edges, passivated edges and current-terminating rings. Such technologies offer the goal of a seamlessly tiled detection surface with minimum dead space between the individual modules. In order to quantify the performance of different geometries and different bulk and implant types, characterisation of several sensors fabricated using active-edge technology were performed at the B16 beam line of the Diamond Light Source. The sensors were fabricated by VTT and bump-bonded to Timepix ROICs. They were 100 and 200 μ m thick sensors, with the last pixel-to-edge distance of either 50 or 100 μ m. The sensors were fabricated as either n-on-n or n-on-p type devices. Using 15 keV monochromatic X-rays with a beam spot of 2.5 μ m, the performance at the outer edge and corners pixels of the sensors was evaluated at three bias voltages. The results indicate a significant change in the charge collection properties between the edge and 5th (up to 275 μ m) from edge pixel for the 200 μ m thick n-on-n sensor. The edge pixel performance of the 100 μ m thick n-on-p sensors is affected only for the last two pixels (up to 110 μ m) subject to biasing conditions. Imaging characteristics of all sensor types investigated are stable over time and the non-uniformities can be minimised by flat-field corrections. The results from the synchrotron tests combined with lab measurements are presented along with an explanation of the observed effects

  8. High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy

    CERN Document Server

    Tate, Mark W; Chamberlain, Darol; Nguyen, Kayla X; Hovden, Robert M; Chang, Celesta S; Deb, Pratiti; Turgut, Emrah; Heron, John T; Schlom, Darrell G; Ralph, Daniel C; Fuchs, Gregory D; Shanks, Katherine S; Philipp, Hugh T; Muller, David A; Gruner, Sol M

    2015-01-01

    We describe a hybrid pixel array detector (EMPAD - electron microscope pixel array detector) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128 x 128 pixel detector consists of a 500 um thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit (ASIC). The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as loc...

  9. Performance of radiation-hard HV/HR CMOS sensors for the ATLAS inner detector upgrades

    Science.gov (United States)

    Liu, J.; Barbero, M.; Bilbao De Mendizabal, J.; Breugnon, P.; Godiot-Basolo, S.; Pangaud, P.; Rozanov, A.

    2016-03-01

    A major upgrade (Phase II Upgrade) to the Large Hadron Collider (LHC), scheduled for 2022, will be brought to the machine so as to extend its discovery potential. The upgraded LHC, called High-Luminosity LHC (HL-LHC), will run with a nominal leveled instantaneous luminosity of 5×1034 cm-2s-1, more than twice the expected luminosity. This unprecedented luminosity will result in higher occupancy and background radiations, which will request the design of a new Inner Tracker (ITk) which should have higher granularity, reduced material budget and improved radiation tolerance. A new pixel sensor concept based on High Voltage and High Resistivity CMOS (HV/HR CMOS) technology targeting the ATLAS inner detector upgrade is under exploration. With respect to the traditional hybrid pixel detector, the HV/HR CMOS sensor can potentially offer lower material budget, reduced pixel pitch and lower cost. Several prototypes have been designed and characterized within the ATLAS upgrade R&D effort, to investigate the detection and radiation hardness performance of various commercial technologies. An overview of the HV/HR CMOS sensor operation principle is described in this paper. The characterizations of three prototypes with X-ray, proton and neutron irradiation are also given.

  10. Performance of radiation-hard HV/HR CMOS sensors for the ATLAS inner detector upgrades

    International Nuclear Information System (INIS)

    A major upgrade (Phase II Upgrade) to the Large Hadron Collider (LHC), scheduled for 2022, will be brought to the machine so as to extend its discovery potential. The upgraded LHC, called High-Luminosity LHC (HL-LHC), will run with a nominal leveled instantaneous luminosity of 5×1034 cm−2s−1, more than twice the expected luminosity. This unprecedented luminosity will result in higher occupancy and background radiations, which will request the design of a new Inner Tracker (ITk) which should have higher granularity, reduced material budget and improved radiation tolerance. A new pixel sensor concept based on High Voltage and High Resistivity CMOS (HV/HR CMOS) technology targeting the ATLAS inner detector upgrade is under exploration. With respect to the traditional hybrid pixel detector, the HV/HR CMOS sensor can potentially offer lower material budget, reduced pixel pitch and lower cost. Several prototypes have been designed and characterized within the ATLAS upgrade R and D effort, to investigate the detection and radiation hardness performance of various commercial technologies. An overview of the HV/HR CMOS sensor operation principle is described in this paper. The characterizations of three prototypes with X-ray, proton and neutron irradiation are also given

  11. A study on the shielding mechanisms of SOI pixel detector

    OpenAIRE

    Lu, Yunpeng; Liu, Yi; Wu, Zhigang; Ouyang, Qun; Arai, Yasuo

    2015-01-01

    In order to tackle the charge injection issue that had perplexed the counting type SOI pixel for years, two successive chips CPIXTEG3 and CPIXTEG3b were developed utilizing two shielding mechanisms, Nested-well and Double-SOI, in the LAPIS process. A TCAD simulation showed the shielding effectiveness influenced by the high sheet resistance of shielding layers. Test structures specially designed to measure the crosstalk associated to charge injection were implemented in CPIXTEG3/3b. Measuremen...

  12. ATLAS's inner detector installed in the heart of the experiment

    CERN Multimedia

    2006-01-01

    The ATLAS collaboration recently celebrated a major engineering milestone, namely the transport and installation of the central part of the inner detector (ID-barrel) into the ATLAS detector. Right: Engineers and technicians work to carefully align and install the inner detector in the centre of ATLAS.Left: The crane used in the carefully coordinated effort by the ATLAS collaboration to lower down the fragile inner detector 100 metres underground to its new home. Many members of the collaboration gathered to witness this moment at Point 1. After years of design, construction and commissioning, the two outer detectors (TRT and SCT) of the inner detector barrel (ID-barrel) were moved from the SR1 cleanroom to the ATLAS cavern. The barrel was moved across the car park from Building 2175 to SX1. Although only a journey of about 100 metres, this required weeks of planning and some degree of luck as far as the weather was concerned. Special measures were in place to minimize shock and vibration during transportati...

  13. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    Energy Technology Data Exchange (ETDEWEB)

    Philipp, Hugh T., E-mail: htp2@cornell.edu; Tate, Mark W.; Purohit, Prafull; Shanks, Katherine S.; Weiss, Joel T. [Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M. [Cornell University, Ithaca, NY 14853 (United States); Cornell University, Ithaca, NY 14853 (United States)

    2016-01-28

    A high-speed pixel array detector for time-resolved X-ray imaging at synchrotrons has been developed. The ability to isolate single synchrotron bunches makes it ideal for time-resolved dynamical studies. A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed.

  14. A new generation of small pixel pitch/SWaP cooled infrared detectors

    Science.gov (United States)

    Espuno, L.; Pacaud, O.; Reibel, Y.; Rubaldo, L.; Kerlain, A.; Péré-Laperne, N.; Dariel, A.; Roumegoux, J.; Brunner, A.; Kessler, A.; Gravrand, O.; Castelein, P.

    2015-10-01

    Following clear technological trends, the cooled IR detectors market is now in demand for smaller, more efficient and higher performance products. This demand pushes products developments towards constant innovations on detectors, read-out circuits, proximity electronics boards, and coolers. Sofradir was first to show a 10μm focal plane array (FPA) at DSS 2012, and announced the DAPHNIS 10μm product line back in 2014. This pixel pitch is a key enabler for infrared detectors with increased resolution. Sofradir recently achieved outstanding products demonstrations at this pixel pitch, which clearly demonstrate the benefits of adopting 10μm pixel pitch focal plane array-based detectors. Both HD and XGA Daphnis 10μm products also benefit from a global video datapath efficiency improvement by transitioning to digital video interfaces. Moreover, innovative smart pixels functionalities drastically increase product versatility. In addition to this strong push towards a higher pixels density, Sofradir acknowledges the need for smaller and lower power cooled infrared detector. Together with straightforward system interfaces and better overall performances, latest technological advances on SWAP-C (Size, Weight, Power and Cost) Sofradir products enable the advent of a new generation of high performance portable and agile systems (handheld thermal imagers, unmanned aerial vehicles, light gimbals etc...). This paper focuses on those features and performances that can make an actual difference in the field.

  15. Silicon strip detectors for the ATLAS HL-LHC upgrade

    CERN Document Server

    Gonzalez Sevilla, S; The ATLAS collaboration

    2011-01-01

    The LHC upgrade is foreseen to increase the ATLAS design luminosity by a factor ten, implying the need to build a new tracker suited to the harsh HL-LHC conditions in terms of particle rates and radiation doses. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. To successfully face the increased radiation dose, a new generation of extremely radiation hard silicon detectors is being designed. We give an overview of the ATLAS tracker upgrade project, in particular focusing on the crucial innermost silicon strip layers. Results from a wide range of irradiated silicon detectors for the strip region of the future ATLAS tracker are presented. Layout concepts for lightweight yet mechanically very rigid detector modules with high service integration are shown.

  16. Alignment of the ATLAS Inner Detector Tracking System

    CERN Document Server

    Moles-Valls, R

    2008-01-01

    The ATLAS experiment is equipped with a tracking system for c harged particles built on two technologies: silicon and drift tube base detectors. These kind of detectors compose the ATLAS Inner Detector (ID). The Alignment of the ATLAS ID tracking s ystem requires the determination of almost 36000 degrees of freedom. From the tracking point o f view, the alignment parameters should be know to a few microns precision. This permits to att ain optimal measurements of the parameters of the charged particles trajectories, thus ena bling ATLAS to achieve its physics goals. The implementation of the alignment software, its framewor k and the data flow will be discussed. Special attention will be paid to the recent challenges wher e large scale computing simulation of the ATLAS detector has been performed, mimicking the ATLAS o peration, which is going to be very important for the LHC startup scenario. The alignment r esult for several challenges (real cosmic ray data taking and computing system commissioning) will be...

  17. Charge Pump Clock Generation PLL for the Data Output Block of the Upgraded ATLAS Pixel Front-End in 130 nm CMOS

    CERN Document Server

    Kruth, A; Arutinov, D; Barbero, M; Gronewald, M; Hemperek, T; Karagounis, M; Krueger, H; Wermes, N; Fougeron, D; Menouni, M; Beccherle, R; Dube, S; Ellege, D; Garcia-Sciveres, M; Gnani, D; Mekkaoui, A; Gromov, V; Kluit, R; Schipper, J

    2009-01-01

    FE-I4 is the 130 nm ATLAS pixel IC currently under development for upgraded Large Hadron Collider (LHC) luminosities. FE-I4 is based on a low-power analog pixel array and digital architecture concepts tuned to higher hit rates [1]. An integrated Phase Locked Loop (PLL) has been developed that locally generates a clock signal for the 160 Mbit/s output data stream from the 40 MHz bunch crossing reference clock. This block is designed for low power, low area consumption and recovers quickly from loss of lock related to single-event transients in the high radiation environment of the ATLAS pixel detector. After a general introduction to the new FE-I4 pixel front-end chip, this work focuses on the FE-I4 output blocks and on a first PLL prototype test chip submitted in early 2009. The PLL is nominally operated from a 1.2V supply and consumes 3.84mW of DC power. Under nominal operating conditions, the control voltage settles to within 2% of its nominal value in less than 700 ns. The nominal operating frequency for t...

  18. NIRSpec detectors: noise properties and the effect of signal dependent inter-pixel crosstalk

    Science.gov (United States)

    Giardino, Giovanna; Sirianni, Marco; Birkmann, Stephan M.; Rauscher, Bernard J.; Lindler, Don; Boeker, Torsten; Ferruit, Pierre; De Marchi, Guido; Stuhlinger, Martin; Jensen, Peter; Strada, Paolo

    2012-07-01

    NIRSpec (Near Infrared Spectrograph) is one of the four science instruments of the James Webb Space Telescope (JWST) and its focal plane consists of two HAWAII-2RG sensors operating in the wavelength range 0.6-5.0μm. As part of characterizing NIRSpec, we studied the noise properties of these detectors under dark and illuminated conditions. Under dark conditions, and as already known, 1/f noise in the detector system produces somewhat more noise than can be accounted for by a simple model that includes white read noise and shot noise on integrated charge. More surprisingly, at high flux, we observe significantly lower total noise levels than expected. We show this effect to be due to pixel-to-pixel correlations introduced by signal dependent inter-pixel crosstalk, with an inter-pixel coupling factor, α, that ranges from ~ 0.01 for zero signal to ~ 0.03 close to saturation.

  19. Development of DC-DC converters for the upgrade of the CMS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Feld, Lutz; Karpinski, Waclaw; Klein, Katja; Sammet, Jan; Wlochal, Michael [RWTH Aachen University (Germany)

    2012-07-01

    Around 2017, the pixel detector of the CMS experiment at LHC will be upgraded. The amount of current that has to be provided to the front-end electronics is expected to increase by a factor of two. Since the space available for cables is limited, this would imply unacceptable power losses in the available supply cables. Therefore it is foreseen to place DC-DC converters close to the front-end electronics, allowing to provide the power at higher voltages and thereby to facilitate the supply of the required currents with the present cable plant. The talk introduces the foreseen powering scheme of the pixel upgrade and summarizes the results of system test measurements with CMS pixel sensor modules, radiation tolerant DC-DC converters and the full power supply chain of the pixel detector. In addition, measurements of the converter efficiency and performance before, after and during thermal cycling are presented.

  20. Prototype Active Silicon Sensor in 150 nm HR-CMOS technology for ATLAS Inner Detector Upgrade

    Science.gov (United States)

    Rymaszewski, P.; Barbero, M.; Breugnon, P.; Godiot, S.; Gonella, L.; Hemperek, T.; Hirono, T.; Hügging, F.; Krüger, H.; Liu, J.; Pangaud, P.; Peric, I.; Rozanov, A.; Wang, A.; Wermes, N.

    2016-02-01

    The LHC Phase-II upgrade will lead to a significant increase in luminosity, which in turn will bring new challenges for the operation of inner tracking detectors. A possible solution is to use active silicon sensors, taking advantage of commercial CMOS technologies. Currently ATLAS R&D programme is qualifying a few commercial technologies in terms of suitability for this task. In this paper a prototype designed in one of them (LFoundry 150 nm process) will be discussed. The chip architecture will be described, including different pixel types incorporated into the design, followed by simulation and measurement results.

  1. Prototype Active Silicon Sensor in 150 nm HR-CMOS Technology for ATLAS Inner Detector Upgrade

    CERN Document Server

    Rymaszewski, Piotr; Breugnon, Patrick; Godiot, Stépahnie; Gonella, Laura; Hemperek, Tomasz; Hirono, Toko; Hügging, Fabian; Krüger, Hans; Liu, Jian; Pangaud, Patrick; Peric, Ivan; Rozanov, Alexandre; Wang, Anqing; Wermes, Norbert

    2016-01-01

    The LHC Phase-II upgrade will lead to a significant increase in luminosity, which in turn will bring new challenges for the operation of inner tracking detectors. A possible solution is to use active silicon sensors, taking advantage of commercial CMOS technologies. Currently ATLAS R&D programme is qualifying a few commercial technologies in terms of suitability for this task. In this paper a prototype designed in one of them (LFoundry 150 nm process) will be discussed. The chip architecture will be described, including different pixel types incorporated into the design, followed by simulation and measurement results.

  2. The Detector Control System of the ATLAS SemiCondutor Tracker during Macro-Assembly and Integration

    CERN Document Server

    Abdesselam, A; Basiladze, S; Bates, R L; Bell, P; Bingefors, N; Böhm, J; Brenner, R; Chamizo-Llatas, M; Clark, A; Codispoti, G; Colijn, A P; D'Auria, S; Dorholt, O; Doherty, F; Ferrari, P; Ferrère, D; Górnicki, E; Koperny, S; Lefèvre, R; Lindquist, L-E; Malecki, P; Mikulec, B; Mohn, B; Pater, J; Pernegger, H; Phillips, P; Robichaud-Véronneau, A; Robinson, D; Roe, S; Sandaker, H; Sfyrla, A; Stanecka, E; Stastny, J; Viehhauser, G; Vossebeld, J; Wells, P

    2008-01-01

    The ATLAS SemiConductor Tracker (SCT) is one of the largest existing semiconductor detectors. It is situated between the Pixel detector and the Transition Radiation Tracker at one of the four interaction points of the Large Hadron Collider (LHC). During 2006-2007 the detector was lowered into the ATLAS cavern and installed in its final position. For the assembly, integration and commissioning phase, a complete Detector Control System (DCS) was developed to ensure the safe operation of the tracker. This included control of the individual powering of the silicon modules, a bi-phase cooling system and various types of sensors monitoring the SCT environment and the surrounding test enclosure. The DCS software architecture, performance and operational experience will be presented in the view of a validation of the DCS for the final SCT installation and operation phase.

  3. The barrel sector assembly system of the ALICE silicon pixel detector

    CERN Document Server

    Antinori, F; Cinausero, M; Dima, R; Fabris, D; Fioretto, E; Lunardon, M; Moretto, S; Pepato, Adriano; Prete, G; Scarlassara, F; Segato, G F; Soramel, F; Turrisi, R; Vannucci, L; Viesti, G

    2004-01-01

    The Silicon Pixel Detector is the inner part of the ITS tracking system of the ALICE experiment at LHC. The 240 silicon modules, hosting almost 10 million pixel cells with dimension 50 . 425 mu m /sup 2/, have to be assembled on a carbon fiber support with micrometric precision. To reach this result, a dedicated high- precision computer-controlled tooling system has been developed at the INFN Padova. The assembly system and the mounting procedures are presented. (10 refs).

  4. Low-cost bump-bonding processes for high energy physics pixel detectors

    International Nuclear Information System (INIS)

    In the next generation of collider experiments detectors will be challenged by unprecedented particle fluxes. Thus large detector arrays of highly pixelated detectors with minimal dead area will be required at reasonable costs. Bump-bonding of pixel detectors has been shown to be a major cost-driver. KIT is one of five production centers of the CMS barrel pixel detector for the Phase I Upgrade. In this contribution the SnPb bump-bonding process and the production yield is reported. In parallel to the production of the new CMS pixel detector, several alternatives to the expensive photolithography electroplating/electroless metal deposition technologies are developing. Recent progress and challenges faced in the development of bump-bonding technology based on gold-stud bonding by thin (15μm) gold wire is presented. This technique allows producing metal bumps with diameters down to 30μm without using photolithography processes, which are typically required to provide suitable under bump metallization. The short setup time for the bumping process makes gold-stud bump-bonding highly attractive (and affordable) for the flip-chipping of single prototype ICs, which is the main limitation of the current photolithography processes

  5. \\title{Low-Cost Bump-Bonding Processes for High Energy Physics Pixel Detectors}

    CERN Document Server

    Caselle, Michele; Colombo, Fabio; Dierlamm, Alexander Hermann; Husemann, Ulrich; Kudella, Simon; Weber, M

    2015-01-01

    In the next generation of collider experiments detectors will be challenged by unprecedented particle fluxes. Thus large detector arrays of highly pixelated detectors with minimal dead area at reasonable costs are required. Bump-bonding of pixel detectors has been shown to be a major cost-driver. KIT is one of the production centers of the CMS barrel pixel detector for the Phase I Upgrade. In this contribution the SnPb bump-bonding process and the production yield is reported. In parallel to the production of the new CMS pixel detector, several alternatives to the expensive photolithography electroplating/electroless metal deposition technologies are developing. Recent progress and challenges faced in the development of bump-bonding technology based on gold-stud bonding by thin ($15\\,\\rm{\\mu m}$) gold wire is presented. This technique allows producing metal bumps with diameters down to $30\\,\\rm{\\mu m}$ without using photolithography processes, which are typically required to provide suitable under bu...

  6. Low-cost bump-bonding processes for high energy physics pixel detectors

    Science.gov (United States)

    Caselle, M.; Blank, T.; Colombo, F.; Dierlamm, A.; Husemann, U.; Kudella, S.; Weber, M.

    2016-01-01

    In the next generation of collider experiments detectors will be challenged by unprecedented particle fluxes. Thus large detector arrays of highly pixelated detectors with minimal dead area will be required at reasonable costs. Bump-bonding of pixel detectors has been shown to be a major cost-driver. KIT is one of five production centers of the CMS barrel pixel detector for the Phase I Upgrade. In this contribution the SnPb bump-bonding process and the production yield is reported. In parallel to the production of the new CMS pixel detector, several alternatives to the expensive photolithography electroplating/electroless metal deposition technologies are developing. Recent progress and challenges faced in the development of bump-bonding technology based on gold-stud bonding by thin (15 μm) gold wire is presented. This technique allows producing metal bumps with diameters down to 30 μm without using photolithography processes, which are typically required to provide suitable under bump metallization. The short setup time for the bumping process makes gold-stud bump-bonding highly attractive (and affordable) for the flip-chipping of single prototype ICs, which is the main limitation of the current photolithography processes.

  7. The ITk strips tracker for the phase-II upgrade of the ATLAS detector of the HL-LHC

    CERN Document Server

    Koutoulaki, Afroditi; The ATLAS collaboration

    2016-01-01

    The inner detector of the present ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the particle densities and radiation levels will be higher by as much as a factor of ten. The new detectors must be faster, they need to be more highly segmented, and covering more area. They also need to be more resistant to radiation, and they require much greater power delivery to the front-end systems. At the same time, they cannot introduce excess material which could undermine performance. For those reasons, the inner tracker of the ATLAS detector must be redesigned and rebuilt completely. The design of the ATLAS Upgrade inner tracker (ITk) has already been defined. It consists of several layers of silicon particle detectors. The innermost layers will be composed of silicon pixel sensors, and the outer layers will consist of s...

  8. 14C autoradiography with an energy-sensitive silicon pixel detector

    International Nuclear Information System (INIS)

    The first performance tests are presented of a carbon-14 (14C) beta-particle digital autoradiography system with an energy-sensitive hybrid silicon pixel detector based on the Timepix readout circuit. Timepix was developed by the Medipix2 Collaboration and it is similar to the photon-counting Medipix2 circuit, except for an added time-based synchronization logic which allows derivation of energy information from the time-over-threshold signal. This feature permits direct energy measurements in each pixel of the detector array. Timepix is bump-bonded to a 300 μm thick silicon detector with 256 x 256 pixels of 55 μm pitch. Since an energetic beta-particle could release its kinetic energy in more than one detector pixel as it slows down in the semiconductor detector, an off-line image analysis procedure was adopted in which the single-particle cluster of hit pixels is recognized; its total energy is calculated and the position of interaction on the detector surface is attributed to the centre of the charge cluster. Measurements reported are detector sensitivity, (4.11 ± 0.03) x 10-3 cps mm-2 kBq-1 g, background level, (3.59 ± 0.01) x 10-5 cps mm-2, and minimum detectable activity, 0.0077 Bq. The spatial resolution is 76.9 μm full-width at half-maximum. These figures are compared with several digital imaging detectors for 14C beta-particle digital autoradiography.

  9. Novel module production methods for the CMS pixel detector, upgrade phase I

    Science.gov (United States)

    Blank, T.; Caselle, M.; Weber, M.; Kudella, S.; Colombo, F.; Hansen, K.; Arab, S.

    2015-02-01

    For the High-Luminosity upgrade of the LHC (HL-LHC), phase I, the CMS pixel detector needs to be replaced. In order to improve the tracking resolution even at high luminosity the pixel detector is upgraded by a fourth barrel layer. This paper describes the production process and results for the fourth barrel layer for the CMS silicon pixel detector, upgrade phase I. The additional barrel layer will be produced by KIT and DESY. Both research centers have commonly developed and investigated new production processes, including SAC solder bump jetting, gold stud bumping and "Precoat by Powder Processes" (PPS) to bump the sensor tiles and prepare them for the flip-chip process. First bare modules have been produced with the new digital ROC.

  10. Recent progress in the development of a B-factory monolithic active pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Stanic, S. [University of Nova Gorica, Vipavska 13, 5000 Nova Gorica (Slovenia)]. E-mail: samo.stanic@p-ng.si; Aihara, H. [University of Tokyo, Department of Physics, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 (Japan); Barbero, M. [Department of Physics and Astronomy, University of Hawaii, 2505 Correa Road, Honolulu HI 96822 (United States); Bozek, A. [H. Niewoniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Ul. Radzikowskiego 152, 31-342 Cracow (Poland); Browder, T. [Department of Physics and Astronomy, University of Hawaii, 2505 Correa Road, Honolulu HI 96822 (United States); Hazumi, M. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba 305-0801 (Japan); Kennedy, J. [Department of Physics and Astronomy, University of Hawaii, 2505 Correa Road, Honolulu HI 96822 (United States); Kent, N. [Department of Physics and Astronomy, University of Hawaii, 2505 Correa Road, Honolulu HI 96822 (United States); Olsen, S. [Department of Physics and Astronomy, University of Hawaii, 2505 Correa Road, Honolulu HI 96822 (United States); Palka, H. [H. Niewoniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Ul. Radzikowskiego 152, 31-342 Cracow (Poland); Rosen, M. [Department of Physics and Astronomy, University of Hawaii, 2505 Correa Road, Honolulu HI 96822 (United States); Ruckman, L. [Department of Physics and Astronomy, University of Hawaii, 2505 Correa Road, Honolulu HI 96822 (United States); Trabelsi, K. [Department of Physics and Astronomy, University of Hawaii, 2505 Correa Road, Honolulu HI 96822 (United States); Tsuboyama, T. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba 305-0801 (Japan); Uchida, K. [Department of Physics and Astronomy, University of Hawaii, 2505 Correa Road, Honolulu HI 96822 (United States); Varner, G.; Yang, Q. [Department of Physics and Astronomy, University of Hawaii, 2505 Correa Road, Honolulu HI 96822 (United States)

    2006-11-30

    Due to the need for precise vertexing at future higher luminosity B-factories with the expectedly increasing track densities and radiation exposures, upgrade of present silicon strip detectors with thin, radiation resistant pixel detectors is highly desired. Considerable progress in the technological development of thin CMOS based Monolithic Active Pixel Sensors (MAPS) in the last years makes them a realistic upgrade option and the feasibility studies of their application in Belle are actively pursued. The most serious concerns are their radiation hardness and their read-out speed. To address them, several prototypes denoted as Continuous Acquisition Pixel (CAP) sensors have been developed and tested. The latest of the CAP sensor prototypes is CAP3, designed in the TSMC 0.25{mu}m process with a 5-deep sample pair pipeline in each pixel. A setup with several CAP3 sensors will be used to assess the performance of a full scale pixel read-out system running at realistic read-out speed. The results and plans for the next stages of R and D towards a full Pixel Vertex Detector (PVD) are presented.

  11. Recent progress in the development of a B-factory monolithic active pixel detector

    Science.gov (United States)

    Stanič, S.; Aihara, H.; Barbero, M.; Bozek, A.; Browder, T.; Hazumi, M.; Kennedy, J.; Kent, N.; Olsen, S.; Palka, H.; Rosen, M.; Ruckman, L.; Trabelsi, K.; Tsuboyama, T.; Uchida, K.; Varner, G.; Yang, Q.

    2006-11-01

    Due to the need for precise vertexing at future higher luminosity B-factories with the expectedly increasing track densities and radiation exposures, upgrade of present silicon strip detectors with thin, radiation resistant pixel detectors is highly desired. Considerable progress in the technological development of thin CMOS based Monolithic Active Pixel Sensors (MAPS) in the last years makes them a realistic upgrade option and the feasibility studies of their application in Belle are actively pursued. The most serious concerns are their radiation hardness and their read-out speed. To address them, several prototypes denoted as Continuous Acquisition Pixel (CAP) sensors have been developed and tested. The latest of the CAP sensor prototypes is CAP3, designed in the TSMC 0.25 μm process with a 5-deep sample pair pipeline in each pixel. A setup with several CAP3 sensors will be used to assess the performance of a full scale pixel read-out system running at realistic read-out speed. The results and plans for the next stages of R&D towards a full Pixel Vertex Detector (PVD) are presented.

  12. Status and Plan for The Upgrade of The CMS Pixel Detector

    CERN Document Server

    Lu, Rong-Shyang

    2014-01-01

    The silicon pixel detector is the innermost component of the CMS tracking system and plays a crucial role in the all-silicon CMS tracker. While the current pixel tracker is designed for and performing well at an instantaneous luminosity of up to $\\rm 1\\times 10^{34}cm^{-2}s^{-1}$, it can no longer be operated efficiently at significantly higher values. Based on the strong performance of the LHC accelerator, it is anticipated that peak luminosities of two times the design luminosity are likely to be reached before 2018 and perhaps significantly exceeded in the running period until 2022, referred to as LHC Run 3. Therefore, an upgraded pixel detector, referred to as the phase 1 upgrade, is planned for the year-end technical stop in 2016. With a new pixel readout chip (ROC), an additional fourth layer, two additional endcap disks, and a significantly reduced material budget the upgraded pixel detector will be able to sustain the efficiency of the pixel tracker at the increased requirements imposed by high lumin...

  13. Accumulated-carrier screening effect based investigation for pixellated CdZnTe radiation detector

    International Nuclear Information System (INIS)

    Using the pixellated CdZnTe detector,the radiation imaging experiment for the Rh target X-ray source was accomplished. The experimental results indicate that the response signals of the anode pixels, which distribute over the center irradiated area,are completely shut-off when the tube Jantage is 45 kV and the tube current increases to 20 μA. Moreover, the non-response pixel area expands with the increase of the tube current, and the total event count of the CdZnTe detector reduces obviously. Furthermore, the inner electric potential and electric field distributions of the pixellated CdZnTe detector were simulated based on the Poisson equation. The simulation results reveal that the accumulation of the hole carriers, which results from the extremely low drift ability of the hole carrier, leads to a relatively high space-charge-density area in the CdZnTe bulk when the irradiated photon flux increases to 5 x 105 mm-2·s-1. And thus, the induced signal screen effect of the anode pixels in the center irradiated area is mainly attributed to the distorted electric field which makes electron carriers drift toward the high potential area in the CdZnTe crystal instead of the pixel anodes. (authors)

  14. Performance and applications of a high rate imaging pixel detector

    Science.gov (United States)

    Pavel, N. A.; Besch, H. J.; Menk, R.; Sarvestani, A.; Sauer, N.; Stiehler, R.; Walenta, A. H.

    2002-01-01

    In the past years a large variety of gas filled micro pattern detectors have been developed for applications in high energy physics as well as for X-ray imaging in synchrotron light experiments. Here, we present the most recent developments on the MicroCAT detector with resistive position encodeing readout, which has been demonstrated to meet even the strong requirements in high resolution protein crystallography and time resolved small angle scattering at synchrotron light sources of the third generation. Recent test measurements with the prototype under the working conditions of a synchrotron light source as well as high time resolved measurements in the laboratory are presented.

  15. Performance and applications of a high rate imaging pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Pavel, N.A. E-mail: pavel@alwa02.physik.uni-siegen.de; Besch, H.J.; Menk, R.; Sarvestani, A.; Sauer, N.; Stiehler, R.; Walenta, A.H

    2002-01-21

    In the past years a large variety of gas filled micro pattern detectors have been developed for applications in high energy physics as well as for X-ray imaging in synchrotron light experiments. Here, we present the most recent developments on the MicroCAT detector with resistive position encodeing readout, which has been demonstrated to meet even the strong requirements in high resolution protein crystallography and time resolved small angle scattering at synchrotron light sources of the third generation. Recent test measurements with the prototype under the working conditions of a synchrotron light source as well as high time resolved measurements in the laboratory are presented.

  16. System Electronics for the ATLAS Upgraded Strip Detector

    CERN Document Server

    Affolder, T; The ATLAS collaboration; Clark, A; Dabrowskic, W; Dewitt, J; Diez Cornell, S; Dressdant, N; Fadeyev, V; Farthouat, P; Ferrere, D; Greenall, A; Grillo, A; Kaplon, J; Key-Charriere, M; La Marra, D; Lipeles, E; Lynn, D; Newcomer, M; Pereirab, F; Phillips, P; Spencer, E; Swientekc, K; Warren, M; Weidberg, A

    2013-01-01

    The basic concept of the front-end system of the Silicon Strip Detector in the Atlas Detector upgraded for the HL-LHC is being elaborated and proposed. The readout electronics of this new detector is based on front-end chips (ABC130), Hybrid Controller chips (HCC) and End of Stave Controller chips (EOSC). This document defines the basic functionality of the front-end system and of the different ASICs.

  17. Summer Student Project Report. Parallelization of the path reconstruction algorithm for the inner detector of the ATLAS experiment.

    CERN Document Server

    Maldonado Puente, Bryan Patricio

    2014-01-01

    The inner detector of the ATLAS experiment has two types of silicon detectors used for tracking: Pixel Detector and SCT (semiconductor tracker). Once a proton-proton collision occurs, the result- ing particles pass through these detectors and these are recorded as hits on the detector surfaces. A medium to high energy particle passes through seven different surfaces of the two detectors, leaving seven hits, while lower energy particles can leave many more hits as they circle through the detector. For a typical event during the expected operational conditions, there are 30 000 hits in average recorded by the sensors. Only high energy particles are of interest for physics analysis and are taken into account for the path reconstruction; thus, a filtering process helps to discard the low energy particles produced in the collision. The following report presents a solution for increasing the speed of the filtering process in the path reconstruction algorithm.

  18. Spectroscopic measurements with the ATLAS FE-I4 pixel readout chip

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, David-Leon; Janssen, Jens; Hemperek, Tomasz; Huegging, Fabian; Wermes, Norbert [Physikalisches Institut der Univeristaet Bonn (Germany)

    2015-07-01

    The ATLAS FE-I4 pixel readout chip is a large (2 x 2 cm{sup 2}) state of the art ASIC used in high energy physics experiments as well as for research and development purposes. While the FE-I4 is optimized for high hit rates it provides very limited charge resolution. Therefore two methods were developed to obtain high resolution single pixel charge spectra with the ATLAS FE-I4. The first method relies on the ability to change the detection threshold in small steps while counting hits from a particle source and has a resolution limited by electronic noise only. The other method uses a FPGA based time-to-digital-converter to digitize the analog charge signal with high precision. The feasibility, performance and challenges of these methods are discussed. First results of sensor characterizations from radioactive sources and test beams with the ATLAS FE-I4 in view of the charge collection efficiency after irradiation are presented.

  19. Beam test characterization of CMS silicon pixel detectors for the phase-1 upgrade

    International Nuclear Information System (INIS)

    The Silicon Pixel Detector forms the innermost part of the CMS tracking system and is critical to track and vertex reconstruction. Being in close proximity to the beam interaction point, it is exposed to the highest radiation levels in the silicon tracker. In order to preserve the tracking performance with the LHC luminosity increase which is foreseen for the next years, the CMS collaboration has decided to build a new pixel detector with four barrel layers mounted around a reduced diameter beam pipe, as compared to the present three layer pixel detector in the central region. A new digital version of the front-end readout chip has been designed and tested; it has increased data buffering and readout link speed to maintain high efficiency at increasing occupancy. In addition, it offers lower charge thresholds that will improve the tracking efficiency and position resolution. Single chip modules have been evaluated in the DESY electron test beam in terms of charge collection, noise, tracking efficiency and position resolution before and after irradiation with 24 GeV protons from the CERN Proton Synchroton equivalent to the fluence expected after 500 fb−1 of integrated luminosity in the fourth layer of the pixel tracker. High efficiency and an excellent position resolution have been observed which are well maintained even after the proton irradiation. The results are well described by the CMS pixel detector simulation

  20. Geneva University: Pixel Detectors – trends and options for the future

    CERN Multimedia

    Geneva University

    2012-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92   Wednesday 25 April 2012 SEMINAIRE DE PHYSIQUE CORPUSCULAIRE Science III, Auditoire 1S081 30Science III, Auditoire 1S081 30 Pixel Detectors – trends and options for the future Prof. Norbert Wermes - University of Bonn  Pixel detectors have been invented in the early 90s with the advancement of micro technologies. With the advent of the LHC, big vertex detectors have demonstrated that the pixel detector type is holding many of the promises it had made before. Meanwhile new, different or just improved variants of the pixel technology are being studied for their suitability for future experiments or experiment upgrades. The talk will address the various pro's and con's comparing hybrid and monolithic pixel technologies and their su...

  1. Beam test characterization of CMS silicon pixel detectors for the phase-1 upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Korol, I.

    2015-10-01

    The Silicon Pixel Detector forms the innermost part of the CMS tracking system and is critical to track and vertex reconstruction. Being in close proximity to the beam interaction point, it is exposed to the highest radiation levels in the silicon tracker. In order to preserve the tracking performance with the LHC luminosity increase which is foreseen for the next years, the CMS collaboration has decided to build a new pixel detector with four barrel layers mounted around a reduced diameter beam pipe, as compared to the present three layer pixel detector in the central region. A new digital version of the front-end readout chip has been designed and tested; it has increased data buffering and readout link speed to maintain high efficiency at increasing occupancy. In addition, it offers lower charge thresholds that will improve the tracking efficiency and position resolution. Single chip modules have been evaluated in the DESY electron test beam in terms of charge collection, noise, tracking efficiency and position resolution before and after irradiation with 24 GeV protons from the CERN Proton Synchroton equivalent to the fluence expected after 500 fb{sup −1} of integrated luminosity in the fourth layer of the pixel tracker. High efficiency and an excellent position resolution have been observed which are well maintained even after the proton irradiation. The results are well described by the CMS pixel detector simulation.

  2. The ONSEN Data Reduction System for the Belle II Pixel Detector

    CERN Document Server

    Geßler, Thomas; Lange, Jens Sören; Liu, Zhen'An; Münchow, David; Spruck, Björn; Zhao, Jingzhou

    2015-01-01

    We present an FPGA-based online data reduction system for the pixel detector of the future Belle II experiment. The occupancy of the pixel detector is estimated at 3 %. This corresponds to a data output rate of more than 20 GB/s after zero suppression, dominated by background. The Online Selection Nodes (ONSEN) system aims at reducing the background data by a factor of 30. It consists of 33 MicroTCA cards, each equipped with a Xilinx Virtex-5 FPGA and 4 GiB DDR2 RAM. These cards are hosted by 9 AdvancedTCA carrier boards. The ONSEN system buffers the entire output data from the pixel detector for up to 5 seconds. During this time, the Belle II high-level trigger PC farm performs an online event reconstruction, using data from the other Belle II subdetectors. It extrapolates reconstructed tracks to the layers of the pixel detector and defines regions of interest around the intercepts. Based on this information, the ONSEN system discards all pixels not inside a region of interest before sending the remaining hi...

  3. Searching for Supersymmetry with the ATLAS detector

    CERN Document Server

    White, Martin J

    2006-01-01

    This thesis presents a new method by which one may use data from the ATLAS detector of the Large Hadron Collider at CERN to measure the parameters of the theory of supersymmetry (SUSY). The technique uses a Markov Chain Monte Carlo sampling algorithm to combine measurements of exclusive variables, in the form of kinematic endpoints that arise in the invariant mass distributions of leptons and jets given out in sparticle decay chains, with inclusive data, in the form of the cross-section of events passing a missing transverse energy cut. This improves the precision of sparticle mass measurements (beyond that obtained using exclusive data alone), whilst also enabling experimental uncertainties to be handled in an intuitive fashion. The method is demonstrated on an mSUGRA benchmark model, and is also used to constrain a model with a greater number of parameters. Throughout, an attempt is made to break some of the unrealistic assumptions that characterise current SUSY search techniques, and to this end it is succ...

  4. Recent Results of the ATLAS Upgrade Planar Pixel Sensors R&D Project

    CERN Document Server

    Weigell, Philipp

    2013-01-01

    To cope with the higher occupancy and radiation damage at the HL-LHC also the LHC experiments will be upgraded. The ATLAS Planar Pixel Sensor R&D Project (PPS) is an international collaboration of 17 institutions and more than 80 scientists, exploring the feasibility of employing planar pixel sensors for this scenario. Depending on the radius, different pixel concepts are investigated using laboratory and beam test measurements. At small radii the extreme radiation environment and strong space constraints are addressed with very thin pixel sensors active thickness in the range of (75-150) mum, and the development of slim as well as active edges. At larger radii the main challenge is the cost reduction to allow for instrumenting the large area of (7-10) m^2. To reach this goal the pixel productions are being transferred to 6 inch production lines. Additionally, investigated are more cost-efficient and industrialised interconnection techniques as well as the n-in-p technology, which, being a single-sided pr...

  5. Compressive spectral polarization imaging by a pixelized polarizer and colored patterned detector.

    Science.gov (United States)

    Fu, Chen; Arguello, Henry; Sadler, Brian M; Arce, Gonzalo R

    2015-11-01

    A compressive spectral and polarization imager based on a pixelized polarizer and colored patterned detector is presented. The proposed imager captures several dispersed compressive projections with spectral and polarization coding. Stokes parameter images at several wavelengths are reconstructed directly from 2D projections. Employing a pixelized polarizer and colored patterned detector enables compressive sensing over spatial, spectral, and polarization domains, reducing the total number of measurements. Compressive sensing codes are specially designed to enhance the peak signal-to-noise ratio in the reconstructed images. Experiments validate the architecture and reconstruction algorithms.

  6. Effects of bulk and surface conductivity on the performance of CdZnTe pixel detectors

    DEFF Research Database (Denmark)

    Bolotnikov, A.E.; Chen, C.M.H.; Cook, W.R.;

    2002-01-01

    We studied the effects of bulk and surface conductivity on the performance of high-resistivity CdZnTe (CZT) pixel detectors with Pt contacts. We emphasize the difference in mechanisms of the bulk and surface conductivity as indicated by their different temperature behaviors. In addition......-collection efficiency in detectors with multicontact geometry; some fraction of the electric field lines that originated on the cathode intersects the surface areas between the pixel contacts where the charge produced by an ionizing particle gets trapped. To overcome this effect, we place a grid of thin electrodes...

  7. Gamma spectroscopic measurements using the PID350 pixelated CdTe radiation detector

    CERN Document Server

    Karafasoulis, K; Seferlis, S; Papadakis, I; Loukas, D; Lambropoulos, C; Potiriadis, C

    2010-01-01

    Spectroscopic measurements are presented using the PID350 pixelated gamma radiation detectors. A high-speed data acquisition system has been developed in order to reduce the data loss during the data reading in case of a high flux of photons. A data analysis framework has been developed in order to improve the resolution of the acquired energy spectra, using specific calibration parameters for each PID350's pixel. Three PID350 detectors have been used to construct a stacked prototype system and spectroscopic measurements have been performed in order to test the ability of the prototype to localize radioactive sources.

  8. Simulation of active-edge pixelated CdTe radiation detectors

    OpenAIRE

    Duarte, DD; Lipp, JD; Schneider, A.; Seller, P; Veale, MC; Wilson, MD; Baker, MA; Sellin, PJ

    2016-01-01

    The edge surfaces of single crystal CdTe play an important role in the electronic properties and performance of this material as an X-ray and γ-ray radiation detector. Edge effects have previously been reported to reduce the spectroscopic performance of the edge pixels in pixelated CdTe radiation detectors without guard bands. A novel Technology Computer Aided Design (TCAD) model based on experimental data has been developed to investigate these effects. The results presented in this paper sh...

  9. A history of hybrid pixel detectors, from high energy physics to medical imaging

    Science.gov (United States)

    Delpierre, P.

    2014-05-01

    The aim of this paper is to describe the development of hybrid pixel detectors from the origin to the application on medical imaging. We are going to recall the need for fast 2D detectors in the high energy physics experiments and to follow the different pixel electronic circuits created to satisfy this demand. The adaptation of these circuits for X-rays will be presented as well as their industrialization. Today, a number of applications are open for these cameras, particularly for biomedical imaging applications. Some developments for clinical CT will also be shown.

  10. Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

    Energy Technology Data Exchange (ETDEWEB)

    Aad, G.; Abat, E.; Abbott, B.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Acharya, Bobby Samir; Adams, D.L.; Addy, T.N.; Adorisio, C.; Adragna, P.; Adye, T.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; /SUNY, Albany /Alberta U. /Ankara U. /Annecy, LAPP /Argonne /Arizona U. /Texas U., Arlington /Athens U. /Natl. Tech. U., Athens /Baku, Inst. Phys. /Barcelona, IFAE /Belgrade U. /VINCA Inst. Nucl. Sci., Belgrade /Bergen U. /LBL, Berkeley /Humboldt U., Berlin /Bern U., LHEP /Birmingham U. /Bogazici U. /INFN, Bologna /Bologna U.

    2011-11-28

    The Large Hadron Collider (LHC) at CERN promises a major step forward in the understanding of the fundamental nature of matter. The ATLAS experiment is a general-purpose detector for the LHC, whose design was guided by the need to accommodate the wide spectrum of possible physics signatures. The major remit of the ATLAS experiment is the exploration of the TeV mass scale where groundbreaking discoveries are expected. In the focus are the investigation of the electroweak symmetry breaking and linked to this the search for the Higgs boson as well as the search for Physics beyond the Standard Model. In this report a detailed examination of the expected performance of the ATLAS detector is provided, with a major aim being to investigate the experimental sensitivity to a wide range of measurements and potential observations of new physical processes. An earlier summary of the expected capabilities of ATLAS was compiled in 1999 [1]. A survey of physics capabilities of the CMS detector was published in [2]. The design of the ATLAS detector has now been finalised, and its construction and installation have been completed [3]. An extensive test-beam programme was undertaken. Furthermore, the simulation and reconstruction software code and frameworks have been completely rewritten. Revisions incorporated reflect improved detector modelling as well as major technical changes to the software technology. Greatly improved understanding of calibration and alignment techniques, and their practical impact on performance, is now in place. The studies reported here are based on full simulations of the ATLAS detector response. A variety of event generators were employed. The simulation and reconstruction of these large event samples thus provided an important operational test of the new ATLAS software system. In addition, the processing was distributed world-wide over the ATLAS Grid facilities and hence provided an important test of the ATLAS computing system - this is the origin of

  11. Studies on the Optical Readout for the ATLAS Pixel Detector

    CERN Document Server

    Flick, Tobias

    The particle physics is concentrating on the research of the structure of the matter which is observable in our world. How is this world built. Which particles exist, which are necessary to build up the world? How is this matter kept together, what are the interactions between the known particles? The answers to these questions are obtained by observing the known particles, to study their properties, and to search new for particles. Models are developed to describe all the observations. Experiments are performed to proove the models. The best prooven model to describe many of the observations is the Standard Model. The Standard Model is elucidated in Chapter 1. It is tested very precisely by experimental measurements in the last years, but cannot explain all phenomena of nature. To discover the last not observed particle of the Standard Model, the Higgs boson, and to extend the model further experiments are needed. To study the elementary particles machines and instruments are necessary to produce and measur...

  12. Medipix3: A 64 k pixel detector readout chip working in single photon counting mode with improved spectrometric performance

    CERN Document Server

    Ballabriga, R; Wong, W; Heijne, E; Campbell, M; Llopart, X

    2011-01-01

    Medipix3 is a 256 x 256 channel hybrid pixel detector readout chip working in a single photon counting mode with a new inter-pixel architecture, which aims to improve the energy resolution in pixelated detectors by mitigating the effects of charge sharing between channels. Charges are summed in all 2 x 2 pixel clusters on the chip and a given hit is allocated locally to the pixel summing circuit with the biggest total charge on an event-by-event basis. Each pixel contains also two 12-bit binary counters with programmable depth and overflow control. The chip is configurable such that either the dimensions of each detector pixel match those of one readout pixel or detector pixels are four times greater in area than the readout pixels. In the latter case, event-by-event summing is still possible between the larger pixels. Each pixel has around 1600 transistors and the analog static power consumption is below 15 mu W in the charge summing mode and 9 mu W in the single pixel mode. The chip has been built in an 8-m...

  13. Development of Micromegas-like gaseous detectors using a pixel readout chip as collecting anode

    International Nuclear Information System (INIS)

    This thesis reports on the fabrication and test of a new gaseous detector with a very large number of readout channels. This detector is intended for measuring the tracks of charged particles with an unprecedented sensitivity to single electrons of almost 100 %. It combines a metal grid for signal amplification called the Micromegas with a pixel readout chip as signal collecting anode and is dubbed GridPix. GridPix is a potential candidate for a sub-detector at a future electron linear collider (ILC) foreseen to work in parallel with the LHC around 2020--2030. The tracking capability of GridPix is best exploited if the Micromegas is integrated on the pixel chip. This integrated grid is called InGrid and is precisely fabricated by wafer post-processing. The various steps of the fabrication process and the measurements of its gain, energy resolution and ion back-flow property are reported in this document. Studies of the response of the complete detector formed by an InGrid and a TimePix pixel chip to X-rays and cosmic particles are also presented. In particular, the efficiency for detecting single electrons and the point resolution in the pixel plane are measured. Implications for a GridPix detector at ILC are discussed. (author)

  14. Design Optimization of Pixel Structure for α-Si based Uncooled Infrared Detector

    Directory of Open Access Journals (Sweden)

    Sudha Gupta

    2013-11-01

    Full Text Available In this paper authors present the design and simulation results achieved for pixel structure of amorphous Si (α-Si based bolometer array. Most uncooled IR detectors in the world are based on VOx material. But this is not a standard material in IC technology and has many inherent disadvantages. The α-Si, an alternative material with high TCR is becoming as popular. However, large TCR values, in this material are achieved only in films of high resistivity. To achieve TCR value more than 2.5%/K, α-Si film resistivity is ~ 80 ohms-cm. This gives rise to very large pixel resistance of the order of 100 Mega ohms depending upon the design of the leg structure. This high pixel resistance causes very large noise and hence lower sensitivity. If leg width or membrane thickness is increased in order to reduce the pixel resistance, then this results in higher thermal conductance which also decreases sensitivity. To overcome this problem, pixel structure is so designed that within a pixel, only part of the electrical conduction is through α-Si and rest is through metal. Simulation using Coventorware software has been done to optimize pixel resistance as well as thermal conductance through legs so that maximum sensitivity could be obtained. Optimization is also carried out in order to reduce sensitivity of pixel resistance to variation in material resistivity.

  15. Pixel detectors for use in retina neurophysiology studies

    CERN Document Server

    Cunningham, W; Chichilnisky, E J; Horn, M; Litke, A M; Mathieson, K; McEwan, F A; Melone, J; O'Shea, V; Rahman, M; Smith, K M

    2003-01-01

    One area of major inter-disciplinary co-operation is between the particle physics and bio-medical communities. The type of large detector arrays and fast electronics developed in laboratories like CERN are becoming used for a wide range of medical and biological experiments. In the present work fabrication technology developed for producing semiconductor radiation detectors has been applied to produce arrays which have been used in neuro-physiological experiments on retinal tissue. We have exploited UVIII, a low molecular weight resist, that has permitted large area electron beam lithography. This allows the resolution to go below that of conventional photolithography and hence the production of densely packed similar to 500 electrode arrays with feature sizes down to below 2 mum. The neural signals from significant areas of the retina may thus be captured.

  16. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS inner detector

    Energy Technology Data Exchange (ETDEWEB)

    Poley, Luise [DESY, Zeuthen (Germany); Humboldt Univ. Berlin (Germany); Bloch, Ingo [DESY, Zeuthen (Germany); Edwards, Sam [Birmingham Univ. (United Kingdom); and others

    2016-04-15

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). This glue has several disadvantages, which motivated the search for an alternative. This paper presents a study concerning the use of six ultra-violet (UV) cure glues and a glue pad for use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, the thermal conduction and shear strength, thermal cycling, radiation hardness, corrosion resistance and shear strength tests. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives. Results from electrical tests of first prototype modules constructed using these glues are presented.

  17. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS Inner Detector

    CERN Document Server

    Poley, Luise; Edwards, Sam; Friedrich, Conrad; Gregor, Ingrid; Lacker, Heiko; Pyatt, Simon; Rehnisch, Laura; Sperlich, Dennis; Wilson, John

    2016-01-01

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). This glue has several disadvantages, which motivated the search for an alternative. This paper presents a study concerning the use of six ultra-violet (UV) cure glues and a glue pad for use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, the thermal conduction and shear strength, thermal cycling, radiation hardness, corrosion resistance and shear strength tests. These investigatio...

  18. Test of a fine pitch SOI pixel detector with laser beam

    CERN Document Server

    Liu, Yi; Ju, Xudong; Ouyang, Qun

    2015-01-01

    A fine pitch pixel detector, developed on SOI (Silicon on Insulator) technology, has been tested under the illumination of infrared laser pulses. As an alternative way beside particel beam test, the laser pulses are tuned to very short duration and small transverse profile to simulate tracks of MIPs (Minimum Ionization Particles) in silicon. Hit cluster size and substrate depletion characteristics of this SOI detector are obtained. When focused laser pulses propagate through SOI detector perpendicularly to its surface, the hit cluster is measured, and most of signal charges are collected directly by the seed pixel. The signal amplitude as a function of applied bias voltage has been measured on this SOI detector for the first time, which helps us better understand of depletion characteristics.

  19. Characterisation and compensation of magnetic distortions for the pixel Hybrid Photon Detectors of the LHCb RICH

    CERN Document Server

    Aglieri Rinella, G; Forty, R; Gys, T; Patel, M; Piedigrossi, D; Van Lysebetten, A

    2005-01-01

    The LHCb experiment at LHC, optimised for the study of CP violation, has two RICH detectors to provide particle identification in the momentum range 2–100 GeV=c. The stringent requirements on the photon detectors are met by the custom-made pixel Hybrid Photon Detector. The photon detectors need to operate in the fringe field of the LHCb dipole magnet which will produce distortions of the image detected on the pixel chip which is encapsulated inside the HPD. This paper reports on the experimental characterisation of the image distortions caused by an external magnetic flux density. These measurements allow for the development of a parameterisation of the effects and a compensation algorithm, which are also presented.

  20. Silicon micro-fluidic cooling for NA62 GTK pixel detectors

    CERN Document Server

    Romagnoli, G; Brunel, B; Catinaccio, A; Degrange, J; Mapelli, A; Morel, M; Noel, J; Petagna, P

    2015-01-01

    Silicon micro-channel cooling is being studied for efficient thermal management in application fields such as high power computing and 3D electronic integration. This concept has been introduced in 2010 for the thermal management of silicon pixel detectors in high energy physics experiments. Combining the versatility of standard micro-fabrication processes with the high thermal efficiency typical of micro-fluidics, it is possible to produce effective thermal management devices that are well adapted to different detector configurations. The production of very thin cooling devices in silicon enables a minimization of material of the tracking sensors and eliminates mechanical stresses due to the mismatch of the coefficient of thermal expansion between detectors and cooling systems. The NA62 experiment at CERN will be the first high particle physics experiment that will install a micro-cooling system to perform the thermal management of the three detection planes of its Gigatracker pixel detector.