WorldWideScience

Sample records for atlas pixel chip

  1. FE-I4 Chip Development for Upgraded ATLAS Pixel Detector at LHC

    CERN Document Server

    Barbero, M; The ATLAS collaboration

    2010-01-01

    A new ATLAS pixel chip FE-I4 has been developed for use in upgraded LHC luminosity environments, including the near-term Insertable B-Layer upgrade. FE-I4 is designed in a 130 nm CMOS technology, presenting advantages in terms of radiation tolerance and digital logic density compared to the 0.25 μm CMOS technology used for the current ATLAS pixel IC, FE-I3. FE-I4 architecture is based on an array of 80×336 pixels, each 50×250 μm2, consisting of analog and digital sections. The analog pixel section is designed for low power consumption and compatibility to several sensor candidates. It is based on a two-stage architecture with a pre-amp AC-coupled to a second stage of amplification. It features leakage current compensation circuitry, local 4-bit pre-amp feedback tuning and a discriminator locally adjusted through 5 configuration bits. The digital architecture is based on a 4-pixel unit called Pixel Digital Region (PDR) allowing for local storage of hits in 5-deep data buffers at pixel level for the duratio...

  2. Spectroscopic measurements with the ATLAS FE-I4 pixel readout chip

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, David-Leon; Janssen, Jens; Hemperek, Tomasz; Huegging, Fabian; Wermes, Norbert [Physikalisches Institut der Univeristaet Bonn (Germany)

    2015-07-01

    The ATLAS FE-I4 pixel readout chip is a large (2 x 2 cm{sup 2}) state of the art ASIC used in high energy physics experiments as well as for research and development purposes. While the FE-I4 is optimized for high hit rates it provides very limited charge resolution. Therefore two methods were developed to obtain high resolution single pixel charge spectra with the ATLAS FE-I4. The first method relies on the ability to change the detection threshold in small steps while counting hits from a particle source and has a resolution limited by electronic noise only. The other method uses a FPGA based time-to-digital-converter to digitize the analog charge signal with high precision. The feasibility, performance and challenges of these methods are discussed. First results of sensor characterizations from radioactive sources and test beams with the ATLAS FE-I4 in view of the charge collection efficiency after irradiation are presented.

  3. Module concepts with ultra thin FE chips and Through Silicon Vias for the upgrades of the ATLAS pixel detector

    International Nuclear Information System (INIS)

    The development of trackers for High Energy Physics experiments at high luminosity poses strict requirements on the material budget to allow good vertexing and b-tagging performance. State-of-the-art silicon technologies offer a variety of processes that can be used to achieve light modules design. Together with IZM Berlin we investigated the thinning of FE (Front-End) chips down to 90 μm, and developed a dedicated flip chip process to assure a reliable mechanical and electrical connection between thin FE chips and sensor. The selected flip chip method is currently used for the production of modules for the IBL (Insertable B-Layer) project, the first ATLAS pixel detector upgrade. Results from the characterization of IBL modules with 100 and 150 μm thin FE chip are shown. For future upgrades of the ATLAS pixel detector we propose more advanced module concepts with Through Silicon Vias (TSVs). IZM offers two via last TSV processes, Straight Side Wall TSVs and Tapered Side Wall TSVs. Both processes were successfully demonstrated with ATLAS pixel readout electronics (FE-I2/3). Results from prototype modules with planar sensor and 90 μm thin FE-I2 with Tapered TSV and back side redistribution layer are shown.

  4. ATLAS Pixel Detector Operational Experience

    CERN Document Server

    Di Girolamo, B; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.9% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  5. Submission of the First Full Scale Prototype Chip for Upgraded ATLAS Pixel Detector at LHC, FE-I4A

    CERN Document Server

    Barbero, M; The ATLAS collaboration; Beccherle, R; Darbo, G; Dube, S; Elledge, D; Fleury, J; Fougeron, D; Garcia-Sciveres, M; Gensolen, F; Gnani, D; Gromov, V; Jensen, F; Hemperek, T; Karagounis, M; Kluit, R; Kruth, A; Mekkaoui, A; Menouni, M; Schipper, JD; Wermes, N; Zivkovic, V

    2010-01-01

    A new ATLAS pixel chip FE-I4 is being developed for use in upgraded LHC luminosity environments, including the near-term Insertable B-Layer (IBL) upgrade. FE-I4 is designed in a 130nm CMOS technology, presenting advantages in terms of radiation tolerance and digital logic density compared to the 250nm CMOS technology used for the current ATLAS pixel IC, FE-I3. The FE-I4 architecture is based on an array of 80x336 pixels, each 50x250um^2, consisting of analog and digital sections. In the summer 2010, a first full scale prototype FE-I4A was submitted for an engineering run. This IC features the full scale pixel array as well as the complex periphery of the future full-size FE-I4. The FE-I4A contains also various extra test features which should prove very useful for the chip characterization, but deviate from the needs for standard operation of the final FE-I4 for IBL. In this paper, focus will be brought to the various features implemented in the FE-I4A submission, while also underlining the main differences b...

  6. Pixel detector readout chip

    CERN Multimedia

    1991-01-01

    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  7. The ATLAS pixel detector

    OpenAIRE

    Cristinziani, M.

    2007-01-01

    After a ten years planning and construction phase, the ATLAS pixel detector is nearing its completion and is scheduled to be integrated into the ATLAS detector to take data with the first LHC collisions in 2007. An overview of the construction is presented with particular emphasis on some of the major and most recent problems encountered and solved.

  8. What's A Pixel Particle Sensor Chip?

    CERN Multimedia

    2008-01-01

    ATLAS particle physics experiment aided with collaboration ON Semiconductor was recently honored by the European Council for Nuclear Research (CERN), with an Industrial Award recognizing the company's contribution in supplying complex "Pixel Particle Sensor" chips for use in CERN's ATLAS particle physics experiment.

  9. Operational experience of the ATLAS Pixel Detector

    CERN Document Server

    Marcisovsky, M; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  10. Operational experience of the ATLAS Pixel detector

    CERN Document Server

    Hirschbuehl, D; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  11. Operational experience with the ATLAS Pixel Detector

    CERN Document Server

    Ince, T; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost element of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.2% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  12. Optical Link of the Atlas Pixel Detector

    OpenAIRE

    Gan, K. K.

    2007-01-01

    The on-detector optical link of the ATLAS pixel detector contains radiation-hard receiver chips to decode bi-phase marked signals received on PIN arrays and data transmitter chips to drive VCSEL arrays. The components are mounted on hybrid boards (opto-boards). We present results from the irradiation studies with 24 GeV protons up to 32 Mrad (1.2 x 10^15 p/cm^2) and the experience from the production.

  13. Test results of the first 3D-IC prototype chip developed in the framework of HL-LHC/ATLAS hybrid pixel upgrade

    CERN Document Server

    Pangaud, P; Barbero, M; Bompard, F; Breugnon, P; Clemens, J C; Fougeron, D; Garcia-Sciveres, M; Godiot, S; Hemperek, T; Krüger, H; Obermann, T; Rozanov, S; Wermes, N

    2014-01-01

    The ATLAS pixel detector needs to handle this new challenging environment. As a consequence, 3D integrated technologies are pursued with the target of offering higher spatial resolution, very good signal to noise ratio and unprecedented radiation hardness. We present here the test results of the first 3D prototype chip developed in the GlobalFoundries 130 nm technology processed by the Tezzaron Company, submitted within the 3D-IC consortium for which a qualification program was developed. Reliability and influence on the behavior of the integrated devices due to the presence of the Bond Interface (BI) and of the Through Silicon Via (TSV) connections, ...

  14. Pixel electronics for the ATLAS experiment

    CERN Document Server

    Fischer, P

    2001-01-01

    The ATLAS experiment at LHC will use 3 barrel layers and 2*5 disks of silicon pixel detectors as the innermost elements of the semiconductor tracker. The basic building blocks are pixel modules with an active area of 16.4 mm*60.8 mm which include an n/sup +/ on n-type silicon sensor and 16 VLSI front-end (FE) chips. Every FE chip contains a low power, high speed charge sensitive preamplifier, a fast discriminator, and a readout system which operates at the 40 MHz rate of LHC. The addresses of hit pixels (as well as a low resolution pulse height information) are stored on the FE chips until arrival of a level 1 trigger signal. Hits are then transferred to a module controller chip (MCC) which collects the data of all 16 FE chips, builds complete events and sends the data through two optical links to the data acquisition system. The MCC receives clock and data through an additional optical link and provides timing and configuration information for the FE chips. Two additional chips are used to amplify and decode...

  15. Characterization of the FE-I4B pixel readout chip production run for the ATLAS Insertable B-layer upgrade

    CERN Document Server

    Backhaus, M

    2013-01-01

    The Insertable B-layer (IBL) is a fourth pixel layer that will be added inside the existing ATLAS pixel detector during the long LHC shutdown of 2013 and 2014. The new four layer pixel system will ensure excellent tracking, vertexing and b-tagging performance in the high luminosity pile-up conditions projected for the next LHC run. The peak luminosity is expected to reach 3• 10^34 cm^−2 s ^−1with an integrated luminosity over the IBL lifetime of 300 fb^−1 corresponding to a design lifetime fluence of 5 • 10^15 n_eqcm^−2 and ionizing dose of 250 Mrad including safety factors. The production front-end electronics FE-I4B for the IBL has been fabricated at the end of 2011 and has been extensively characterized on diced ICs as well as at the wafer level. The production tests at the wafer level were performed during 2012. Selected results of the diced IC characterization are presented, including measurements of the on-chip voltage regulators. The IBL powering scheme, which was chosen based on these resu...

  16. The ATLAS Silicon Pixel Sensors

    CERN Document Server

    Alam, M S; Einsweiler, K F; Emes, J; Gilchriese, M G D; Joshi, A; Kleinfelder, S A; Marchesini, R; McCormack, F; Milgrome, O; Palaio, N; Pengg, F; Richardson, J; Zizka, G; Ackers, M; Andreazza, A; Comes, G; Fischer, P; Keil, M; Klasen, V; Kühl, T; Meuser, S; Ockenfels, W; Raith, B; Treis, J; Wermes, N; Gössling, C; Hügging, F G; Wüstenfeld, J; Wunstorf, R; Barberis, D; Beccherle, R; Darbo, G; Gagliardi, G; Gemme, C; Morettini, P; Musico, P; Osculati, B; Parodi, F; Rossi, L; Blanquart, L; Breugnon, P; Calvet, D; Clemens, J-C; Delpierre, P A; Hallewell, G D; Laugier, D; Mouthuy, T; Rozanov, A; Valin, I; Aleppo, M; Caccia, M; Ragusa, F; Troncon, C; Lutz, Gerhard; Richter, R H; Rohe, T; Brandl, A; Gorfine, G; Hoeferkamp, M; Seidel, SC; Boyd, GR; Skubic, P L; Sícho, P; Tomasek, L; Vrba, V; Holder, M; Ziolkowski, M; D'Auria, S; del Papa, C; Charles, E; Fasching, D; Becks, K H; Lenzen, G; Linder, C

    2001-01-01

    Prototype sensors for the ATLAS silicon pixel detector have been developed. The design of the sensors is guided by the need to operate them in the severe LHC radiation environment at up to several hundred volts while maintaining a good signal-to-noise ratio, small cell size, and minimal multiple scattering. The ability to be operated under full bias for electrical characterization prior to the attachment of the readout integrated circuit electronics is also desired.

  17. Operational experience with the ATLAS Pixel Detector at the LHC

    Science.gov (United States)

    Lapoire, C.; Atlas Collaboration

    2013-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as B-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures and detector performance. The detector performance is excellent: 96.2% of the pixels are operational, noise occupancy is sufficiently low and hit efficiency exceed the design specification.

  18. Operational experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Hirschbuehl, D; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.7% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  19. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Keil, M; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  20. Operational experience with the ATLAS Pixel detector at the LHC

    CERN Document Server

    Deluca, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5\\% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, ...

  1. Operational experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Ince, T; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.8% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  2. Operational experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Lapoire, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  3. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Lapoire, C; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as B-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures and detector performance. The detector performance is excellent: 96.2% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification.

  4. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Lange, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump- bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, a...

  5. Operational experience with the ATLAS Pixel detector at the LHC

    CERN Document Server

    Deluca, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  6. Status of the ATLAS pixel detector

    CERN Document Server

    Saavedra Aldo, F

    2005-01-01

    The ATLAS pixel detector is currently being constructed and will be installed in 2006 to be ready for commissioning at the Large Hadron Collider. The complete pixel detector is composed of three concentric barrels and six disks that are populated by 1744 ATLAS Pixel modules. The main components of the pixel module are the readout electronics and the silicon sensor whose active region is instrumented with rectangular pixels. The module has been designed to be able to survive 10 years of operation within the ATLAS detector. A brief description of the pixel detector will be presented with results and problems encountered during the production stage.

  7. Initial Measurements on Pixel Detector Modules for the ATLAS Upgrades

    CERN Document Server

    Gallrapp, C; The ATLAS collaboration

    2011-01-01

    Delicate conditions in terms of peak and integrated luminosity in the Large Hadron Collider (LHC) will raise the ATLAS Pixel Detector to its performance limits. Silicon planar, silicon 3D and diamond pixel sensors are three possible sensor technologies which could be implemented in the upcoming Pixel Detector upgrades of the ATLAS experiment. Measurements of the IV-behavior and measurements with radioactive Americium-241 and Strontium-90 are used to characterize the sensor properties and to understand the interaction between the ATLAS FE-I4 front-end chip and the sensor. Comparisons of results from before and after irradiation for silicon planar and 3D pixel sensors, which give a first impression on the charge collection properties of the different sensor technologies, are presented.

  8. Planar pixel detector module development for the HL-LHC ATLAS pixel system

    Energy Technology Data Exchange (ETDEWEB)

    Bates, Richard L., E-mail: richard.bates@glasgow.ac.uk [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Buttar, C.; Stewart, A.; Blue, A.; Doonan, K.; Ashby, J. [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Casse, G.; Dervan, P.; Forshaw, D.; Tsurin, I. [The University of Liverpool, Liverpool (United Kingdom); Brown, S.; Pater, J. [The Univiersty of Manchester, Manchester (United Kingdom)

    2013-12-11

    The ATLAS pixel detector for the HL-LHC requires the development of large area pixel modules that can withstand doses up to 10{sup 16} 1 MeV n{sub eq} cm{sup −2}. The area of the pixel detector system will be over 5 m{sup 2} and as such low cost, large area modules are required. The development of a quad module based on 4 FE-I4 readout integrated chips (ROIC) will be discussed. The FE-I4 ROIC is a large area chip and the yield of the flip-chip process to form an assembly is discussed for single chip assemblies. The readout of the quad module for laboratory tests will be reported.

  9. Planar pixel detector module development for the HL-LHC ATLAS pixel system

    Science.gov (United States)

    Bates, Richard L.; Buttar, C.; Stewart, A.; Blue, A.; Doonan, K.; Ashby, J.; Casse, G.; Dervan, P.; Forshaw, D.; Tsurin, I.; Brown, S.; Pater, J.

    2013-12-01

    The ATLAS pixel detector for the HL-LHC requires the development of large area pixel modules that can withstand doses up to 1016 1 MeV neq cm-2. The area of the pixel detector system will be over 5 m2 and as such low cost, large area modules are required. The development of a quad module based on 4 FE-I4 readout integrated chips (ROIC) will be discussed. The FE-I4 ROIC is a large area chip and the yield of the flip-chip process to form an assembly is discussed for single chip assemblies. The readout of the quad module for laboratory tests will be reported.

  10. Planar pixel detector module development for the HL-LHC ATLAS pixel system

    International Nuclear Information System (INIS)

    The ATLAS pixel detector for the HL-LHC requires the development of large area pixel modules that can withstand doses up to 1016 1 MeV neq cm−2. The area of the pixel detector system will be over 5 m2 and as such low cost, large area modules are required. The development of a quad module based on 4 FE-I4 readout integrated chips (ROIC) will be discussed. The FE-I4 ROIC is a large area chip and the yield of the flip-chip process to form an assembly is discussed for single chip assemblies. The readout of the quad module for laboratory tests will be reported

  11. Initial Measurements On Pixel Detector Modules For The ATLAS Upgrades

    CERN Document Server

    Gallrapp, C; The ATLAS collaboration

    2011-01-01

    Sophisticated conditions in terms of peak and integrated luminosity in the Large Hadron Collider (LHC) will raise the ATLAS Pixel detector to its performance limits. Silicon planar, silicon 3D and diamond pixel sensors are three possible sensor technologies which could be implemented in the upcoming pixel detector upgrades of the ATLAS experiment. Measurements of the IV-behavior and measurements with radioactive Americium-241 and Strontium-90 are used to characterize the sensor properties and to understand the interaction between the ATLAS FE-I4 front-end chip and the sensor. Comparisons of results from before and after irradiation, which give a first impression on the charge collection properties of the different sensor technologies are presented.

  12. Vertex measurement at a hadron collider. The ATLAS pixel detector

    International Nuclear Information System (INIS)

    The ATLAS Pixel Detector is the innermost layer of the ATLAS tracking system and will contribute significantly to the ATLAS track and vertex reconstruction. The detector consists of identical sensor-chip-hybrid modules, arranged in three barrels in the centre and three disks on either side for the forward region. The position of the Pixel Detector near the interaction point requires excellent radiation hardness, fast read-out, mechanical and thermal robustness, good long-term stability, all combined with a low material budget. The new design concepts used to meet the challenging requirements are discussed with their realisation in the Pixel Detector, followed by a description of a refined and extensive set of measurements to assess the detector performance during and after its construction. (orig.)

  13. Commissioning of the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    ATLAS Collaboration; Golling, Tobias

    2008-09-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of the ATLAS pixel system are presented.

  14. Total Ionization Dose effects in the FE-I4 front-end chip of the ATLAS Pixel IBL detector

    CERN Document Server

    ATLAS Pixel Collaboration; The ATLAS collaboration

    2016-01-01

    During the first year of operation, a drift of the IBL calibration parameters (Threshold and ToT) and a low voltage current increase was observed. It was assumed that both observations were related to radiation damage effects depending on the Total Ionizing Dose (TID) in the NMOS transistors of which each Front End chip holds around 80 million. The effect of radiation on those transistors was investigated in lab measurements and the results will be presented in this talk.

  15. ATLAS Pixel Group - Photo Gallery from Irradiation

    CERN Multimedia

    2001-01-01

    Photos 1,2,3,4,5,6,7 - Photos taken before irradiation of Pixel Test Analog Chip and Pmbars (April 2000) Photos 8,9,10,11 - Irradiation of VDC chips (May 2000) Photos 12, 13 - Irradiation of Passive Components (June 2000) Photos 14,15, 16 - Irradiation of Marebo Chip (November 1999)

  16. Commissioning of the ATLAS Pixel Detector

    OpenAIRE

    Golling, Tobias; ATLAS Collaboration

    2008-01-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and su...

  17. Multi-chip module development for the ATLAS pixel detector. Analysis of the front-end chip electronics in radiation hard 0.25-μm technology as well as development and realization of a serial power concept

    International Nuclear Information System (INIS)

    The innermost layer of the ATLAS tracking system is a silicon pixel detector. The use of radiation tolerant components is mandatory due to the harsh radiation environment. The smallest independent component of the pixel detector is a hybride pixel module consisting of a large oxygen enriched silicon sensor and 16 specifically developed ASICs. To achieve the necessary radiation tolerance the ASICs are produced in a 0.25 μm technology in combination with special design techniques. The measurements of the readout electronics during all stages of production of a full module are presented and the performance of the modules is compared with the strict requirements of the ATLAS pixel detector. Furthermore a new powering scheme for pixel detectors is presented, aiming at reducing the total power consumption, the material for the electrical services and the amount of power cables. The advantages and disadvantages of this concept are discussed on the example of the ATLAS pixel detector with pixel modules modified accounting to the new powering scheme. The performance of six of those modules operating at the same time in a small system test is compared to that of normal ATLAS pixel modules. (orig.)

  18. Planar pixel sensors for the ATLAS upgrade: beam tests results

    International Nuclear Information System (INIS)

    The performance of planar silicon pixel sensors, in development for the ATLAS Insertable B-Layer and High Luminosity LHC (HL-LHC) upgrades, has been examined in a series of beam tests at the CERN SPS facilities since 2009. Salient results are reported on the key parameters, including the spatial resolution, the charge collection and the charge sharing between adjacent cells, for different bulk materials and sensor geometries. Measurements are presented for n+-in-n pixel sensors irradiated with a range of fluences and for p-type silicon sensors with various layouts from different vendors. All tested sensors were connected via bump-bonding to the ATLAS Pixel read-out chip. The tests reveal that both n-type and p-type planar sensors are able to collect significant charge even after the lifetime fluence expected at the HL-LHC.

  19. Calibration analysis software for the ATLAS Pixel Detector

    Science.gov (United States)

    Stramaglia, Maria Elena

    2016-07-01

    The calibration of the ATLAS Pixel Detector at LHC fulfils two main purposes: to tune the front-end configuration parameters for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel Detector scans and analyses is called calibration console. The introduction of a new layer, equipped with new FE-I4 chips, required an update of the console architecture. It now handles scans and scan analyses applied together to chips with different characteristics. An overview of the newly developed calibration analysis software will be presented, together with some preliminary results.

  20. Calibration Analysis Software for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    The calibration of the ATLAS Pixel detector at LHC fulfils two main purposes: to tune the front-end configuration parameters for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel detector scans and analyses is called Calibration Console. The introduction of a new layer, equipped with new Front End-I4 Chips, required an update the Console architecture. It now handles scans and scans analyses applied together to chips with different characteristics. An overview of the newly developed Calibration Analysis Software will be presented, together with some preliminary result.

  1. Operational Experience with the ATLAS Pixel Detector

    CERN Document Server

    Lantzsch, Kerstin; The ATLAS collaboration

    2016-01-01

    Run 2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). In addition the Pixel detector was refurbished with new service quarter panels to recover about 3% of defective modules lost during run 1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning, operation and performance of the 4-layer Pixel Detector will be presented.

  2. High-voltage pixel sensors for ATLAS upgrade

    Science.gov (United States)

    Perić, I.; Kreidl, C.; Fischer, P.; Bompard, F.; Breugnon, P.; Clemens, J.-C.; Fougeron, D.; Liu, J.; Pangaud, P.; Rozanov, A.; Barbero, M.; Feigl, S.; Capeans, M.; Ferrere, D.; Pernegger, H.; Ristic, B.; Muenstermann, D.; Gonzalez Sevilla, S.; La Rosa, A.; Miucci, A.; Nessi, M.; Iacobucci, G.; Backhaus, M.; Hügging, Fabian; Krüger, H.; Hemperek, T.; Obermann, T.; Wermes, N.; Garcia-Sciveres, M.; Quadt, A.; Weingarten, J.; George, M.; Grosse-Knetter, J.; Rieger, J.; Bates, R.; Blue, A.; Buttar, C.; Hynds, D.

    2014-11-01

    The high-voltage (HV-) CMOS pixel sensors offer several good properties: a fast charge collection by drift, the possibility to implement relatively complex CMOS in-pixel electronics and the compatibility with commercial processes. The sensor element is a deep n-well diode in a p-type substrate. The n-well contains CMOS pixel electronics. The main charge collection mechanism is drift in a shallow, high field region, which leads to a fast charge collection and a high radiation tolerance. We are currently evaluating the use of the high-voltage detectors implemented in 180 nm HV-CMOS technology for the high-luminosity ATLAS upgrade. Our approach is replacing the existing pixel and strip sensors with the CMOS sensors while keeping the presently used readout ASICs. By intelligence we mean the ability of the sensor to recognize a particle hit and generate the address information. In this way we could benefit from the advantages of the HV sensor technology such as lower cost, lower mass, lower operating voltage, smaller pitch, smaller clusters at high incidence angles. Additionally we expect to achieve a radiation hardness necessary for ATLAS upgrade. In order to test the concept, we have designed two HV-CMOS prototypes that can be readout in two ways: using pixel and strip readout chips. In the case of the pixel readout, the connection between HV-CMOS sensor and the readout ASIC can be established capacitively.

  3. Design considerations for pixel readout chips

    CERN Document Server

    Fischer, P

    2003-01-01

    Pixel detectors are becoming a standard tracking component in modern particle physics experiment and find first applications in X-ray diffraction, medical imaging and astronomy. The amplification and the readout of the small signal charges from the pixel sensor require highly integrated ASICs in which several thousand low-noise charge-sensitive amplifiers are densely interspersed with fast data-processing logic. The reduction of crosstalk from the digital to the analog section is therefore crucial. The frequent demand for radiation tolerance requires special chip technologies or the use of deep sub-micron processes with suited design rules. This paper summarizes a few designs aspects particularly important for pixel readout chips.

  4. Studies for the detector control system of the ATLAS pixel at the HL-LHC

    International Nuclear Information System (INIS)

    In the context of the LHC upgrade to the HL-LHC the inner detector of the ATLAS experiment will be replaced completely. As part of this redesign there will also be a new pixel detector. This new pixel detector requires a control system which meets the strict space requirements for electronics in the ATLAS experiment. To accomplish this goal we propose a DCS (Detector Control System) network with the smallest form factor currently available. This network consists of a DCS chip located in close proximity to the interaction point and a DCS controller located in the outer regions of the ATLAS detector. These two types of chips form a star shaped network with several DCS chips being controlled by one DCS controller. Both chips are manufactured in deep sub-micron technology. We present prototypes with emphasis on studies concerning single event upsets.

  5. Upgrades of the ATLAS Pixel Detector

    CERN Document Server

    Hügging, F; The ATLAS collaboration

    2013-01-01

    The upgrade for the ATLAS detector will undergo different phases towards HL-LHC. The first upgrade for the Pixel Detector (Phase 1) consists in the construction of a new pixel layer, which will be installed during the 1st long shutdown of the LHC machine (LS1) in 2013/14. The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of about 3.2 cm. The IBL requires the development of several new technologies to cope with the increase of radiation and pixel occupancy as well as to improve the physics performance of the existing pixel detector. The pixel size is reduced and the material budget is minimized by using new lightweight mechanical support materials and a CO2 based cooling system. For Phase 2 upgrade of LHC a complete new 4-layer pixel system is planned as part of a new all silicon Inner Detector. The increase in luminosity to about $5\\cdot 10^{34}$cm$^{-2}$s$^{-1}$ together with a total expected lifetime of ab...

  6. Results on 0.7% X0 thick pixel modules for the ATLAS detector

    CERN Document Server

    Netchaeva, P; Darbo, G; Einsweiler, Kevin F; Gagliardi, G; Gemme, C; Gilchriese, M G D; Oppizzi, P; Richardson, J; Rossi, L; Ruscino, E; Vernocchi, F; Znizka, G

    2001-01-01

    Modules are the basic building blocks of the ATLAS pixel detector system, they are made of a silicon sensor tile containing ~46000 pixel cells of 50 mu m*400 mu m, 16 front-end chips connected to the sensor through bump bonding, a kapton flex circuit and the module controller chip. The pixel detector is the first to encounter particles emerging from LHC interactions, minimization of radiation length of pixel modules is therefore very important. We report here on the construction techniques and on the operation of the first ATLAS pixel modules of 0.7% radiation length thickness. We have operated these modules with threshold of 3700*10+or-300*10, mean noise value of 225*10 and 0.3% dead channels. (3 refs).

  7. Results on 0.7% X0 thick pixel modules for the ATLAS detector

    International Nuclear Information System (INIS)

    Modules are the basic building blocks of the ATLAS pixel detector system, they are made of a silicon sensor tile containing ∼46 000 pixel cells of 50 μmx400 μm, 16 front-end chips connected to the sensor through bump bonding, a kapton flex circuit and the module controller chip. The Pixel detector is the first to encounter particles emerging from LHC interactions, minimization of radiation length of pixel modules is therefore very important. We report here on the construction techniques and on the operation of the first ATLAS pixel modules of 0.7% radiation length thickness. We have operated these modules with threshold of 3700x10±300x10, mean noise value of 225x10 and 0.3% dead channels

  8. ATLAS rewards two pixel detector suppliers

    CERN Multimedia

    2007-01-01

    Peter Jenni, ATLAS spokesperson, presented the ATLAS supplier award to Herbert Reichl, IZM director, and to Simonetta Di Gioia, from the SELEX company.Two of ATLAS’ suppliers were awarded prizes at a ceremony on Wednesday 13 June attended by representatives of the experiment’s management and of CERN. The prizes went to the Fraunhofer Institut für Zuverlässigkeit und Mikrointegration (IZM) in Berlin and the company SELEX Sistemi Integrati in Rome for the manufacture of modules for the ATLAS pixel detector. SELEX supplied 1500 of the modules for the tracker, while IZM produced a further 1300. The modules, each made up of 46080 channels, form the active part of the ATLAS pixel detector. IZM and SELEX received the awards for the excellent quality of their work: the average number of faulty channels per module was less than 2.10-3. They also stayed within budget and on schedule. The difficulty they faced was designing modules based on electronic components and sensor...

  9. Readout Architecture for Hybrid Pixel Readout Chips

    CERN Document Server

    AUTHOR|(SzGeCERN)694170; Westerlund, Tomi; Wyllie, Ken

    The original contribution of this thesis to knowledge are novel digital readout architectures for hybrid pixel readout chips. The thesis presents asynchronous bus-based architecture, a data-node based column architecture and a network-based pixel matrix architecture for data transportation. It is shown that the data-node architecture achieves readout efficiency 99 % with half the output rate as a bus-based system. The network-based solution avoids ``broken'' columns due to some manufacturing errors, and it distributes internal data traffic more evenly across the pixel matrix than column-based architectures. An improvement of $>$ 10 % to the efficiency is achieved with uniform and non-uniform hit occupancies. Architectural design has been done using transaction level modeling ($TLM$) and sequential high-level design techniques for reducing the design and simulation time. It has been possible to simulate tens of column and full chip architectures using the high-level techniques. A decrease of $>$ 10 in run-time...

  10. Studies for the detector control system of the ATLAS pixel at the HL-LHC

    CERN Document Server

    Püllen, L; Boek, J; Kersten, S; Kind, P; Mättig, P; Zeitnitz, C

    2012-01-01

    experiment will be replaced completely. As part of this redesign there will also be a new pixel detector. This new pixel detector requires a control system which meets the strict space requirements for electronics in the ATLAS experiment. To accomplish this goal we propose a DCS (Detector Control System) network with the smallest form factor currently available. This network consists of a DCS chip located in close proximity to the interaction point and a DCS controller located in the outer regions of the ATLAS detector. These two types of chips form a star shaped network with several DCS chips being controlled by one DCS controller. Both chips are manufactured in deep sub-micron technology. We present prototypes with emphasis on studies concerning single event upsets.

  11. Radiation-Hard Opto-Link for the Atlas Pixel Detector

    OpenAIRE

    Gan, K. K.

    2004-01-01

    The on-detector optical link of the ATLAS pixel detector contains radiation-hard receiver chips to decode bi-phase marked signals received on PIN arrays and data transmitter chips to drive VCSEL arrays. The components are mounted on hybrid boards (opto-boards). We present results from the opto-boards and from irradiation studies with 24 GeV protons up to 33 Mrad (1.2 x 10^15 p/cm^2).

  12. Multi-chip module development for the ATLAS pixel detector. Analysis of the front-end chip electronics in radiation hard 0.25-{mu}m technology as well as development and realization of a serial power concept; Multi-Chip-Modul-Entwicklung fuer den ATLAS-Pixeldetektor. Analyse der Front-End-Chip-Elektronik in strahlenharter0,25-{mu}m-Technologie sowie Entwicklung und Realisierung eines Serial-Powering-Konzeptes

    Energy Technology Data Exchange (ETDEWEB)

    Stockmanns, T.

    2004-08-01

    The innermost layer of the ATLAS tracking system is a silicon pixel detector. The use of radiation tolerant components is mandatory due to the harsh radiation environment. The smallest independent component of the pixel detector is a hybride pixel module consisting of a large oxygen enriched silicon sensor and 16 specifically developed ASICs. To achieve the necessary radiation tolerance the ASICs are produced in a 0.25 {mu}m technology in combination with special design techniques. The measurements of the readout electronics during all stages of production of a full module are presented and the performance of the modules is compared with the strict requirements of the ATLAS pixel detector. Furthermore a new powering scheme for pixel detectors is presented, aiming at reducing the total power consumption, the material for the electrical services and the amount of power cables. The advantages and disadvantages of this concept are discussed on the example of the ATLAS pixel detector with pixel modules modified accounting to the new powering scheme. The performance of six of those modules operating at the same time in a small system test is compared to that of normal ATLAS pixel modules. (orig.)

  13. Survey of the ATLAS Pixel Detector Components

    International Nuclear Information System (INIS)

    This document provides a description of the survey performed on different components of the ATLAS Pixel Detector at different stages of its assembly. During the production of the ATLAS pixel detector great care was put in the geometrical survey of the location of the sensitive area of modules. This had a double purpose: (1) to provide a check of the quality of the assembly procedure and assure tolerances in the geometrical assembly were met; and (2) to provide an initial point for the alignment (the so called 'as-built detector'), better than the ideal geometry. Since direct access to the sensitive area becomes more and more difficult with the progress of the assembly, the survey needed to be performed at different stages: after module loading on the local supports (sectors and staves) and after assembly of the local supports in disks or halfshells. Different techniques were used, including both optical 2D and 3D surveys and mechanical survey. This document summarizes the survey procedures, the analysis done on the collected data and how survey data are stored in case they will need to be accessed in the future

  14. Optical links for the ATLAS Pixel detector

    CERN Document Server

    Stucci, Stefania Antonia; The ATLAS collaboration

    2015-01-01

    Optical links are necessary to satisfy the high speed readout over long distances for advanced silicon detector systems. We report on the optical readout used in the newly installed central pixel layer (IBL) in the ATLAS experiment. The off detector readout employs commercial optical to analog converters, which were extensively tested for this application. Performance measurements during installation and commissioning will be shown. With the increasing instantaneous luminosity in the next years, the next layers outwards of IBL of the ATLAS Pixel detector (Layer 1 and Layer 2) will reach their bandwidth limits. A plan to increase the bandwidth by upgrading the off detector readout chain is put in place. The plan also involves new optical readout components, in particular the optical receivers, for which commercial units cannot be used and a new design has been made. The latter allows for a wider operational range in term of data frequency and light input power to match the on-detector sending units on the pres...

  15. optical links for the atlas pixel detector

    CERN Document Server

    Stucci, Stefania Antonia; The ATLAS collaboration

    2015-01-01

    Optical links are necessary to satisfy the high speed readout over long distances for advanced silicon detector systems. We report on the optical readout used in the newly installed central pixel layer (IBL) in the ATLAS experiment. The off detector readout employs commercial optical to analog converters, which were extensively tested for this application. Performance measurements during installation and commissioning will be shown. With the increasing instantaneous luminosity in the next years, the next layers outwards of IBL of the ATLAS Pixel detector (Layer 1 and Layer 2) will reach their bandwidth limits. A plan to increase the bandwidth by upgrading the off detector readout chain is put in place. The plan also involves new optical readout components, in particular the optical receivers, for which commercial units cannot be used and a new design has been made. The latter allows for a wider operational range in term of data frequency and light input power to match the on-detector sending units on the pres...

  16. Development of hybrid pixel detectors for proton-proton collisions in the ATLAS experiment at the Large Hadron Collider at CERN

    International Nuclear Information System (INIS)

    The ATLAS experiment at the future large hadron collider at CERN uses a silicon pixel detector as the innermost tracking device. The detector is built using ∼2000 modules which consist of a silicon sensor and 16 bump bonded VLSI electronic readout chips with ∼3000 channels per chip. The requirements for the sensor and the 1.4 x 108 preamplifier channels are discussed. The architectures of several existing readout chips are described. Detailed laboratory measurements have been performed on all chips and the results are compared to the requirements of ATLAS. The performance of a first ATLAS compatible pixel detector assembly in a test beam at CERN is presented. (orig.)

  17. Bier and Pastis, a pixel readout prototype chip for LHC

    CERN Document Server

    Berg, C; Bonzom, V; Delpierre, P A; Desch, Klaus; Fischer, P; Keil, M; Meuser, S; Raith, B A; Wermes, N

    2000-01-01

    The 12*63 pixel readout prototype chip Bieu&Pastis, designed to cope with the environment imposed on a pixel detector by high-energy proton-proton collisions as expected at the Large Hadron Collider (LHC), is described. The chip contains the full pixel cell functionality, but not yet the full peripheral architecture for data transfer and readout with LHC speed. Design considerations and lab tests to characterize the performance as well as some test beam results are described. (7 refs).

  18. Bier&Pastis, a pixel readout prototype chip for LHC

    Science.gov (United States)

    Berg, C.; Blanquart, L.; Bonzom, V.; Delpierre, P.; Desch, K.; Fischer, P.; Keil, M.; Meuser, S.; Raith, B.; Wermes, N.

    2000-01-01

    The 12×63 pixel readout prototype chip Bier&Pastis, designed to cope with the environment imposed on a pixel detector by high-energy proton-proton collisions as expected at the Large Hadron Collider (LHC), is described. The chip contains the full pixel cell functionality, but not yet the full peripheral architecture for data transfer and readout with LHC speed. Design considerations and lab tests to characterize the performance as well as some test beam results are described.

  19. Test Beam Results of 3D Silicon Pixel Sensors for the ATLAS upgrade

    CERN Document Server

    Grenier, P; Barbero, M; Bates, R; Bolle, E; Borri, M; Boscardin, M; Buttar, C; Capua, M; Cavalli-Sforza, M; Cobal, M; Cristofoli, A; Dalla Betta, G F; Darbo, G; Da Via, C; Devetak, E; DeWilde, B; Di Girolamo, B; Dobos, D; Einsweiler, K; Esseni, D; Fazio, S; Fleta, C; Freestone, J; Gallrapp, C; Garcia-Sciveres, M; Gariano, G; Gemme, C; Giordani, M P; Gjersdal, H; Grinstein, S; Hansen, T; Hansen, T E; Hansson, P; Hasi, J; Helle, K; Hoeferkamp, M; Hugging, F; Jackson, P; Jakobs, K; Kalliopuska, J; Karagounis, M; Kenney, C; Köhler, M; Kocian, M; Kok, A; Kolya, S; Korokolov, I; Kostyukhin, V; Krüger, H; La Rosa, A; Lai, C H; Lietaer, N; Lozano, M; Mastroberardino, A; Micelli, A; Nellist, C; Oja, A; Oshea, V; Padilla, C; Palestri, P; Parker, S; Parzefall, U; Pater, J; Pellegrini, G; Pernegger, H; Piemonte, C; Pospisil, S; Povoli, M; Roe, S; Rohne, O; Ronchin, S; Rovani, A; Ruscino, E; Sandaker, H; Seidel, S; Selmi, L; Silverstein, D; Sjøbaek, K; Slavicek, T; Stapnes, S; Stugu, B; Stupak, J; Su, D; Susinno, G; Thompson, R; Tsung, J W; Tsybychev, D; Watts, S J; Wermes, N; Young, C; Zorzi, N

    2011-01-01

    Results on beam tests of 3D silicon pixel sensors aimed at the ATLAS Insertable-B-Layer and High Luminosity LHC (HL-LHC)) upgrades are presented. Measurements include charge collection, tracking efficiency and charge sharing between pixel cells, as a function of track incident angle, and were performed with and without a 1.6 T magnetic field oriented as the ATLAS Inner Detector solenoid field. Sensors were bump bonded to the front-end chip currently used in the ATLAS pixel detector. Full 3D sensors, with electrodes penetrating through the entire wafer thickness and active edge, and double-sided 3D sensors with partially overlapping bias and read-out electrodes were tested and showed comparable performance.

  20. Test beam results of 3D silicon pixel sensors for the ATLAS upgrade

    International Nuclear Information System (INIS)

    Results on beam tests of 3D silicon pixel sensors aimed at the ATLAS Insertable B-Layer and High Luminosity LHC (HL-LHC) upgrades are presented. Measurements include charge collection, tracking efficiency and charge sharing between pixel cells, as a function of track incident angle, and were performed with and without a 1.6 T magnetic field oriented as the ATLAS inner detector solenoid field. Sensors were bump-bonded to the front-end chip currently used in the ATLAS pixel detector. Full 3D sensors, with electrodes penetrating through the entire wafer thickness and active edge, and double-sided 3D sensors with partially overlapping bias and read-out electrodes were tested and showed comparable performance.

  1. Quality control on planar n-in-n pixel sensors — Recent progress of ATLAS planar pixel sensors

    International Nuclear Information System (INIS)

    To extend the physics reach of the Large Hadron Collider (LHC), upgrades to the accelerator are planned which will increase the peak luminosity by a factor 5–10. To cope with the increased occupancy and radiation damage, the ATLAS experiment plans to introduce an all-silicon inner tracker with the high luminosity upgrade (HL-LHC). To investigate the suitability of pixel sensors using the proven planar technology for the upgraded tracker, the ATLAS Upgrade Planar Pixel Sensor (PPS) R and D Project was established. Main areas of research are the performance of planar pixel sensors at highest fluences, the exploration of possibilities for cost reduction to enable the instrumentation of large areas, the achievement of slim or active edges to provide low geometric inefficiencies without the need for shingling of modules and the investigation of the operation of highly irradiated sensors at low thresholds to increase the efficiency. The Insertable b-layer (IBL) is the first upgrade project within the ATLAS experiment and will employ a new detector layer consisting of silicon pixel sensors, which were improved and prototyped in the framework of the planar pixel sensor R and D project. A special focus of this paper is the status of the development and testing of planar n-in-n pixel sensors including the quality control of the on-going series production and postprocessing of sensor wafers. A high yield of produced planar sensor wafers and FE-I4 double chip sensors after first steps of post-processing including under bump metallization and dicing is observed. -- Highlights: ► Prototypes of irradiated planar n-in-n sensors have been successfully tested under laboratory conditions. ► A quality assurance programme on the series production of planar sensors for the IBL has started. ► A high yield of double chip sensors during the series production is observed which are compatible to the specifications to this detector component.

  2. Status and future of the ATLAS Pixel Detector at the LHC

    International Nuclear Information System (INIS)

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. The detector provides hermetic coverage with three cylindrical layers and three layers of disks in each forward end-cap. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-on-n silicon substrates. Intensive calibration, tuning, timing optimization and monitoring resulted in the successful five years of operation with good detector performance. The record breaking instantaneous luminosities of 7.7×1033cm−2s−1 recently surpassed at the LHC generated a rapidly increasing particle fluence in the ATLAS Pixel Detector. As the radiation dose accumulated, the first effects of radiation damage became observable in the silicon sensors as an increase in the silicon leakage current and the change of the voltage required to fully deplete the sensor. A fourth pixel layer at a radius of 3.3 cm will be added during the long shutdown (2013–2014) together with the replacement of pixel services. A letter of intent was submitted for a completely new Pixel Detector after 2023, capable to take data with extremely high leveled luminosities of 5×1034cm−2s−1 at the high luminosity LHC. -- Highlights: •The ATLAS Pixel Detector provides hermetic coverage with three layers with 80 million pixels. •Calibration, tuning, timing optimization and monitoring resulted in the successful five years of operation with good detector performance. •First effects of radiation damage became observable in the silicon sensors. •A fourth pixel layer at a radius of 3.3 cm will be added during the long shutdown (2013–2014). •Replacement of pixel services in 2013–2014. •A letter of intent was submitted for new Pixel Detector after 2023 for high luminosity LHC

  3. Experience in fabrication of multichip-modules for the ATLAS pixel detector

    International Nuclear Information System (INIS)

    About 1100 ATLAS bare modules will be assembled at Fraunhofer IZM. The bumping and assembly technology of these multichip-modules is described in this paper. Pixel contacts and lead-tin interconnection bumps are deposited by electroplating. A high yield manufacturing technology requires electrical test and optical inspection on wafer level as well as on chip level. In this paper, the result of optical inspection of more than 7600 readout chips is presented. Handling mistakes are the main reason for rejection of chips before flip chip assembly. A reliable process technology, the assembly of electrical Known Good Die (KGD), optical inspection after bumping and the development of a single chip repair technology result in 98% of good modules after flip chip assembly. The reliability of the bump interconnections was even checked by thermal cycling and accelerated thermal aging

  4. Novel silicon n-in-p pixel sensors for the future ATLAS upgrades

    International Nuclear Information System (INIS)

    In view of the LHC upgrade phases towards HL-LHC the ATLAS experiment plans to upgrade the inner detector with an all silicon system. The n-in-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost effectiveness that allow for enlarging the area instrumented with pixel detectors. We present the characterization and performance of novel n-in-p planar pixel sensors produced by CiS (Germany) connected by bump bonding to the ATLAS readout chip FE-I3. These results are obtained before and after irradiation up to a fluence of 10161-MeV neqcm−2, and prove the operability of this kind of sensors in the harsh radiation environment foreseen for the pixel system at HL-LHC. We also present an overview of the new pixel production, which is on-going at CiS for sensors compatible with the new ATLAS readout chip FE-I4

  5. Novel Silicon n-in-p Pixel Sensors for the future ATLAS Upgrades

    CERN Document Server

    La Rosa, A; Macchiolo, A; Nisius, R; Pernegger, H; Richter,R H; Weigell, P

    2013-01-01

    In view of the LHC upgrade phases towards HL-LHC the ATLAS experiment plans to upgrade the Inner Detector with an all silicon system. The n-in-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost eectiveness, that allow for enlarging the area instrumented with pixel detectors. We present the characterization and performance of novel n-in-p planar pixel sensors produced by CiS (Germany) connected by bump bonding to the ATLAS readout chip FE-I3. These results are obtained before and after irradiation up to a fluence of 1016 1-MeV $n_{eq}cm^{-2}$, and prove the operability of this kind of sensors in the harsh radiation environment foreseen for the pixel system at HL-LHC. We also present an overview of the new pixel production, which is on-going at CiS for sensors compatible with the new ATLAS readout chip FE-I4.

  6. Novel silicon n-in-p pixel sensors for the future ATLAS upgrades

    Science.gov (United States)

    La Rosa, A.; Gallrapp, C.; Macchiolo, A.; Nisius, R.; Pernegger, H.; Richter, R. H.; Weigell, P.

    2013-08-01

    In view of the LHC upgrade phases towards HL-LHC the ATLAS experiment plans to upgrade the inner detector with an all silicon system. The n-in-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost effectiveness that allow for enlarging the area instrumented with pixel detectors. We present the characterization and performance of novel n-in-p planar pixel sensors produced by CiS (Germany) connected by bump bonding to the ATLAS readout chip FE-I3. These results are obtained before and after irradiation up to a fluence of 10161-MeV neq cm-2, and prove the operability of this kind of sensors in the harsh radiation environment foreseen for the pixel system at HL-LHC. We also present an overview of the new pixel production, which is on-going at CiS for sensors compatible with the new ATLAS readout chip FE-I4.

  7. DAQ Hardware and software development for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    In 2014, the Pixel Detector of the ATLAS experiment was extended by about 12 million pixels with the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented by employing newly designed read-out hardware, which supports the full detector bandwidth even for calibration. The hardware is supported by an embedded software stack running on the read-out boards. The same boards will be used to upgrade the read-out bandwidth for the two outermost layers of the ATLAS Pixel Barrel (54 million pixels). We present the IBL read-out hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  8. DAQ hardware and software development for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    In 2014, the Pixel Detector of the ATLAS experiment has been extended by about 12 million pixels thanks to the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented along with newly designed read-out hardware to support high bandwidth for data readout and calibration. The hardware is supported by an embedded software stack running on the read-out boards. The same boards will be used to upgrade the read-out bandwidth for the two outermost layers of the ATLAS Pixel Barrel (54 million pixels). We present the IBL read-out hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  9. Status of the ATLAS Pixel Detector at the LHC and its performance after three years of operation

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC and its status after three years of operation will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: ~96 % of the pixels are operational, noise occupancy and hit ...

  10. Commissioning of the upgraded ATLAS Pixel Detector for Run2 at LHC

    CERN Document Server

    Dobos, Daniel; The ATLAS collaboration

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL), a fourth layer of pixel detectors, installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. An overview of the refurbishing of the Pixel Detector and of the IBL project as well as early performance tests using cosmic rays and beam data will be presented.

  11. Design and test of the CMS pixel readout chip

    Science.gov (United States)

    Barbero, M.; Bertl, W.; Dietrich, G.; Dorokhov, A.; Erdmann, W.; Gabathuler, K.; Heising, St.; Hörmann, Ch.; Horisberger, R.; Kästli, H. Chr.; Kotlinski, D.; Meier, B.; Weber, R.

    2004-01-01

    The readout chip for the CMS pixel detector must handle an enormous flux of data, while keeping the data loss at a minimum. Full size prototype readout chips bump-bonded to sensors have been tested in a pion beam simulating an LHC-like environment, and the data loss as a function of particle fluence has been measured.

  12. FE-I4 pixel chip characterization with USBpix3 test system

    Energy Technology Data Exchange (ETDEWEB)

    Filimonov, Viacheslav; Gonella, Laura; Hemperek, Tomasz; Huegging, Fabian; Janssen, Jens; Krueger, Hans; Pohl, David-Leon; Wermes, Norbert [University of Bonn, Bonn (Germany)

    2015-07-01

    The USBpix readout system is a small and light weighting test system for the ATLAS pixel readout chips. It is widely used to operate and characterize FE-I4 pixel modules in lab and test beam environments. For multi-chip modules the resources on the Multi-IO board, that is the central control unit of the readout system, are coming to their limits, which makes the simultaneous readout of more than one chip at a time challenging. Therefore an upgrade of the current USBpix system has been developed. The upgraded system is called USBpix3 - the main focus of the talk. Characterization of single chip FE-I4 modules was performed with USBpix3 prototype (digital, analog, threshold and source scans; tuning). PyBAR (Bonn ATLAS Readout in Python scripting language) was used as readout software. PyBAR consists of FEI4 DAQ and Data Analysis Libraries in Python. The presentation describes the USBpix3 system, results of FE-I4 modules characterization and preparation for the multi-chip module and multi-module readout with USBpix3.

  13. FE-I4 pixel chip characterization with USBpix3 test system

    International Nuclear Information System (INIS)

    The USBpix readout system is a small and light weighting test system for the ATLAS pixel readout chips. It is widely used to operate and characterize FE-I4 pixel modules in lab and test beam environments. For multi-chip modules the resources on the Multi-IO board, that is the central control unit of the readout system, are coming to their limits, which makes the simultaneous readout of more than one chip at a time challenging. Therefore an upgrade of the current USBpix system has been developed. The upgraded system is called USBpix3 - the main focus of the talk. Characterization of single chip FE-I4 modules was performed with USBpix3 prototype (digital, analog, threshold and source scans; tuning). PyBAR (Bonn ATLAS Readout in Python scripting language) was used as readout software. PyBAR consists of FEI4 DAQ and Data Analysis Libraries in Python. The presentation describes the USBpix3 system, results of FE-I4 modules characterization and preparation for the multi-chip module and multi-module readout with USBpix3.

  14. ATLAS pixel IBL modules construction experience and developments for future upgrade

    International Nuclear Information System (INIS)

    The first upgrade of the ATLAS Pixel Detector is the Insertable B-Layer (IBL), installed in May 2014 in the core of ATLAS. Two different silicon sensor technologies, planar n-in-n and 3D, are used. Sensors are connected with the new generation 130 nm IBM CMOS FE-I4 read-out chip via solder bump-bonds. Production quality control tests were set up to verify and rate the performance of the modules before integration into staves. An overview of module design and construction, the quality control results and production yield will be discussed, as well as future developments foreseen for future detector upgrades

  15. ATLAS pixel IBL modules construction experience and developments for future upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gaudiello, A.

    2015-10-01

    The first upgrade of the ATLAS Pixel Detector is the Insertable B-Layer (IBL), installed in May 2014 in the core of ATLAS. Two different silicon sensor technologies, planar n-in-n and 3D, are used. Sensors are connected with the new generation 130 nm IBM CMOS FE-I4 read-out chip via solder bump-bonds. Production quality control tests were set up to verify and rate the performance of the modules before integration into staves. An overview of module design and construction, the quality control results and production yield will be discussed, as well as future developments foreseen for future detector upgrades.

  16. ATLAS Pixel IBL Modules Construction Experience and Developments for Future Upgrade

    CERN Document Server

    Gaudiello, Andrea; The ATLAS collaboration

    2015-01-01

    The first upgrade of the ATLAS Pixel Detector is the Insertable B-Layer (IBL), just installed in May 2014 in the core of ATLAS. Two different silicon sensor technologies, planar n-in-n and 3D, were used, connected with the new generation 130nm IBM CMOS FE-I4 readout chip via solder bump-bonds. Production quality control tests were set up to verify and rate the performance of the modules before integration into staves. An overview of module design and construction, the quality control results and production yield will be discussed, as well as future developments foreseen for future detector upgrades.

  17. ATLAS Pixel IBL modules construction experience and developments for future upgrade

    CERN Document Server

    Gaudiello, A; The ATLAS collaboration

    2014-01-01

    The first upgrade of the ATLAS Pixel Detector is the Insertable B-Layer (IBL), just installed in May 2014 in the core of ATLAS. Two different silicon sensor technologies, planar n-in-n and 3D, were used, connected with the new generation 130nm IBM CMOS FE-I4 readout chip via solder bump-bonds. Production quality control tests were set up to verify and rate the performance of the modules before integration into staves. An overview of module design and construction, the quality control results and production yield will be discussed, as well as future developments foreseen for future detector upgrades.

  18. Prototypes for components of a control system for the ATLAS pixel detector at the HL-LHC

    CERN Document Server

    Boek, J; Kind, P; Mättig, P; Püllen, L; Zeitnitz, C

    2013-01-01

    inner detector of the ATLAS experiment will be replaced entirely including the pixel detector. This new pixel detector requires a specific control system which complies with the strict requirements in terms of radiation hardness, material budget and space for the electronics in the ATLAS experiment. The University ofWuppertal is developing a concept for a DCS (Detector Control System) network consisting of two kinds of ASICs. The first ASIC is the DCS Chip which is located on the pixel detector, very close to the interaction point. The second ASIC is the DCS Controller which is controlling 4x4 DCS Chips from the outer regions of ATLAS via differential data lines. Both ASICs are manufactured in 130 nm deep sub micron technology. We present results from measurements from new prototypes of components for the DCS network.

  19. DAQ hardware and software development for the ATLAS Pixel Detector

    Science.gov (United States)

    Stramaglia, Maria Elena

    2016-07-01

    In 2014, the Pixel Detector of the ATLAS experiment has been extended by about 12 million pixels thanks to the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented along with newly designed readout hardware to support high bandwidth for data readout and calibration. The hardware is supported by an embedded software stack running on the readout boards. The same boards will be used to upgrade the readout bandwidth for the two outermost barrel layers of the ATLAS Pixel Detector. We present the IBL readout hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel Detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  20. Characterization of the Medipix3 pixel readout chip

    CERN Document Server

    Ballabriga, R; Wong, W; Greiffenberg, D; Turecek, D; Blaj, G; Heijne, E H M; Plackett, R; Campbell, M; Procz, S; Llopart, X; Fiederle, M

    2011-01-01

    The Medipix3 chip is a hybrid pixel detector readout chip working in Single Photon Counting Mode. It has been developed with a new front-end architecture aimed at eliminating the spectral distortion produced by charge diffusion in highly segmented semiconductor detectors. In the new architecture charge deposited in overlapping clusters of four pixels is summed event-by-event and the incoming quantum is assigned as a single hit to the summing circuit with the biggest charge deposit (this mode of operation is called Charge Summing Mode (CSM)). In Single Pixel Mode (SPM) the charge reconstruction and the communication between neighbouring pixels is disabled. This is the operating mode in traditional detector systems. This paper presents the results of the characterization of the chip with electrical stimuli and radioactive sources.

  1. Sensor studies of n+-in-n planar pixel sensors for the ATLAS upgrades

    International Nuclear Information System (INIS)

    The ATLAS experiment at the LHC is planning upgrades of its pixel detector to cope with the luminosity increase foreseen in the coming years within the transition from LHC to Super-LHC (SLHC/HL-LHC). Associated with an increase in instantaneous luminosity is a rise of the target integrated luminosity from 730 fb-1 to about 3000 fb-1 which directly translates into significantly higher radiation damage. These upgrades consist of the installation of a 4th pixel layer, the insertable b-layer IBL, with a mean sensor radius of only 32 mm from the beam axis, before 2016/17. In addition, the complete pixel detector will be exchanged before 2020/21. Being very close to the beam, the radiation damage of the IBL sensors might be as high as 5.1015neqcm-2 at their end-of-life. The total fluence of the innermost pixel layer after the SLHC upgrade might even reach 2.1016neqcm-2. We have performed systematic measurements of planar pixel detectors based on the current ATLAS readout chip FE-I3 and obtained first experience with the new IBL readout chip FE-I4. First results will be presented.

  2. The upgraded Pixel Detector of the ATLAS Experiment for Run2 at the Large Hadron Collider

    CERN Document Server

    Backhaus, Malte; The ATLAS collaboration

    2015-01-01

    During Run-1 of the Large Hadron Collider (LHC), the ATLAS Pixel Detector has shown excellent performance. The ATLAS collaboration took advantage of the first long shutdown of the LHC during 2013 and 2014 and extracted the ATLAS Pixel Detector from the experiment, brought it to surface and maintained the services. This includes the installation of new service quarter panels, the repair of cables, and the installation of the new Diamond Beam Monitor (DBM). Additionally a completely new innermost pixel detector layer, the Insertable B-Layer (IBL), was constructed and installed in May 2014 between a new smaller beam pipe and the existing Pixel Detector. With a radius of 3.3 cm the IBL is located extremely close to the interaction point. Therefore a new readout chip and two new sensor technologies (planar and 3D) are used in IBL. In order to achieve best possible physics performance the material budget was improved with respect to the existing Pixel Detector. This is realized using lightweight staves for mechanic...

  3. ATLAS Inner Detector (Pixel Detector and Silicon Tracker)

    CERN Multimedia

    ATLAS Outreach

    2006-01-01

    To raise awareness of the basic functions of the Pixel Detector and Silicon Tracker in the ATLAS detector on the LHC at CERN. This colorful 3D animation is an excerpt from the film "ATLAS-Episode II, The Particles Strike Back." Shot with a bug's eye view of the inside of the detector. The viewer is taken on a tour of the inner workings of the detector, seeing critical pieces of the detector and hearing short explanations of how each works.

  4. Digital column readout architectures for hybrid pixel detector readout chips

    CERN Document Server

    Poikela, T; Westerlund, T; Buytaert, J; Campbell, M; De Gaspari, M; Llopart, X; Wyllie, K; Gromov, V; Kluit, R; van Beuzekom, M; Zappon, F; Zivkovic, V; Brezina, C; Desch, K; Fu, Y; Kruth, A

    2014-01-01

    In this paper, two digital column architectures suitable for sparse readout of data from a pixel matrix in trigger-less applications are presented. Each architecture reads out a pixel matrix of 256 x 256 pixels with a pixel pitch of 55 µm. The first architecture has been implemented in the Timepix3 chip, and this is presented together with initial measurements. Simulation results and measured data are compared. The second architecture has been designed for Velopix, a readout chip planned for the LHCb VELO upgrade. Unlike Timepix3, this has to be tolerant to radiation-induced single-event effects. Results from post-layout simulations are shown with the circuit architectures.

  5. Thin n-in-p planar pixel modules for the ATLAS upgrade at HL-LHC

    CERN Document Server

    Savic, N; Breuer, J; La Rosa, A; Macchiolo, A; Nisius, R; Terzo, S

    2016-01-01

    The ATLAS experiment will undergo a major upgrade of the tracker system in view of the high luminosity phase of the LHC (HL-LHC) foreseen to start around 2025. Thin planar pixel modules are promising candidates to instrument the new pixel system, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. New designs of the pixel cells, with an optimized biasing structure, have been implemented in n-in-p planar pixel productions with sensor thicknesses of 270 um. Using beam tests, the gain in hit efficiency is investigated as a function of the received irradiation fluence. The outlook for future thin planar pixel sensor productions will be discussed, with a focus on thin sensors with a thickness of 100 and 150 um and a novel design with the optimized biasing structure and small pixel cells (50 um x 50 um and 25 um x 100 um). These dimensions are foreseen for the new ATLAS read-out chip in 65 nm CMOS technology and the fine segmentation will represen...

  6. Readout chip for the CMS pixel detector upgrade

    International Nuclear Information System (INIS)

    For the CMS experiment a new pixel detector is planned for installation during the extended shutdown in winter 2016/2017. Among the changes of the detector modified front end electronics will be used for higher efficiency at peak luminosity of the LHC and faster readout. The first prototype versions of the new readout chip have been designed and produced. The results of qualification and calibration for the new chip are presented in this paper

  7. Readout chip for the CMS pixel detector upgrade

    Science.gov (United States)

    Rossini, Marco

    2014-11-01

    For the CMS experiment a new pixel detector is planned for installation during the extended shutdown in winter 2016/2017. Among the changes of the detector modified front end electronics will be used for higher efficiency at peak luminosity of the LHC and faster readout. The first prototype versions of the new readout chip have been designed and produced. The results of qualification and calibration for the new chip are presented in this paper.

  8. Evaluation of the breakdown behaviour of ATLAS silicon pixel sensors after partial guard-ring removal

    International Nuclear Information System (INIS)

    To avoid geometrical inefficiencies in the ATLAS pixel detector, the concept of shingling is used up to now in the barrel section. For the upgrades of ATLAS, it is desired to avoid this as it increases the volume and material budget of the pixel layers and complicates the cooling. A direct planar edge-to-edge arrangement of pixel modules has not been possible in the past due to about 1100μm of inactive edge composed of approximately 600μm of guard rings and 500μm of safety margin. In this work, the safety margin and guard rings of ATLAS SingleChip sensors were cut at different positions using a standard diamond dicing saw and irradiated afterwards to explore the breakdown behaviour and the leakage current development. It is found that the inactive edge can be reduced to about 400μm of guard rings with almost no reduction in pre-irradiation testability and leakage current performance. This is in particular important for the insertable b-layer upgrade of ATLAS (IBL) where inactive edges of less than 450μm width are required.

  9. Evaluation of the breakdown behaviour of ATLAS silicon pixel sensors after partial guard-ring removal

    Science.gov (United States)

    Goessling, C.; Klingenberg, R.; Muenstermann, D.; Wittig, T.

    2010-12-01

    To avoid geometrical inefficiencies in the ATLAS pixel detector, the concept of shingling is used up to now in the barrel section. For the upgrades of ATLAS, it is desired to avoid this as it increases the volume and material budget of the pixel layers and complicates the cooling. A direct planar edge-to-edge arrangement of pixel modules has not been possible in the past due to about 1100 μm of inactive edge composed of approximately 600 μm of guard rings and 500 μm of safety margin. In this work, the safety margin and guard rings of ATLAS SingleChip sensors were cut at different positions using a standard diamond dicing saw and irradiated afterwards to explore the breakdown behaviour and the leakage current development. It is found that the inactive edge can be reduced to about 400 μm of guard rings with almost no reduction in pre-irradiation testability and leakage current performance. This is in particular important for the insertable b-layer upgrade of ATLAS (IBL) where inactive edges of less than 450 μm width are required.

  10. Evaluation of the breakdown behaviour of ATLAS silicon pixel sensors after partial guard-ring removal

    Energy Technology Data Exchange (ETDEWEB)

    Goessling, C.; Klingenberg, R. [Lehrstuhl fuer Experimentelle Physik IV, TU Dortmund, 44221 Dortmund (Germany); Muenstermann, D., E-mail: Daniel.Muenstermann@TU-Dortmund.d [Lehrstuhl fuer Experimentelle Physik IV, TU Dortmund, 44221 Dortmund (Germany); Wittig, T. [Lehrstuhl fuer Experimentelle Physik IV, TU Dortmund, 44221 Dortmund (Germany)

    2010-12-11

    To avoid geometrical inefficiencies in the ATLAS pixel detector, the concept of shingling is used up to now in the barrel section. For the upgrades of ATLAS, it is desired to avoid this as it increases the volume and material budget of the pixel layers and complicates the cooling. A direct planar edge-to-edge arrangement of pixel modules has not been possible in the past due to about 1100{mu}m of inactive edge composed of approximately 600{mu}m of guard rings and 500{mu}m of safety margin. In this work, the safety margin and guard rings of ATLAS SingleChip sensors were cut at different positions using a standard diamond dicing saw and irradiated afterwards to explore the breakdown behaviour and the leakage current development. It is found that the inactive edge can be reduced to about 400{mu}m of guard rings with almost no reduction in pre-irradiation testability and leakage current performance. This is in particular important for the insertable b-layer upgrade of ATLAS (IBL) where inactive edges of less than 450{mu}m width are required.

  11. Ongoing studies for the control system of a serially powered ATLAS pixel detector at the HL-LHC

    Science.gov (United States)

    Kersten, S.; Püllen, L.; Zeitnitz, C.

    2016-02-01

    In terms of the phase-2 upgrade of the ATLAS detector, the entire inner tracker (ITk) of ATLAS will be replaced. This includes the pixel detector and the corresponding detector control system (DCS). The current baseline is a serial powering scheme of the detector modules. Therefore a new detector control system is being developed with emphasis on the supervision of serially powered modules. Previous chips had been designed to test the radiation hardness of the technology and the implementation of the modified I2C as well as the implementation of the logic of the CAN protocol. This included tests with triple redundant registers. The described chip is focusing on the implementation in a serial powering scheme. It was designed for laboratory tests, aiming for the proof of principle. The concept of the DCS for ATLAS pixel after the phase-2 upgrade is presented as well as the status of development including tests with the prototype ASIC.

  12. Front-End electronics and integration of ATLAS pixel modules

    Science.gov (United States)

    Hügging, F.; ATLAS Pixel Collaboration

    2005-09-01

    For the ATLAS Pixel Detector fast readout electronics has been successfully developed and tested. Main attention was given to the ability to detect small charges in the order of 5,000 e - within 25 ns in the harsh radiation environment of LHC together with the challenge to cope with the huge amount of data generated by the 80 million channels of the Pixel detector. For the integration of the 50 μm pitch hybrid pixel detector, reliable bump bonding techniques using either lead-tin or indium bumps has been developed and has been successfully tested for large-scale production.

  13. Front-End electronics and integration of ATLAS pixel modules

    CERN Document Server

    Hügging, F G

    2005-01-01

    For the ATLAS Pixel Detector fast readout electronics has been successfully developed and tested. Main attention was given to the ability to detect small charges in the order of 5,000 electrons within 25 ns in the harsh radiation environment of LHC together with the challenge to cope with the huge amount of data generated by the 80 millions channels of the Pixel detector. For the integration of the 50 micron pitch hybrid pixel detector reliable bump bonding techniques using either lead-tin or indium bumps has been developed and has been successfully tested for large scale production.

  14. The ATLAS pixel stave emulator for serial powering

    International Nuclear Information System (INIS)

    A serial powering scheme is being developed for the upgrade of the ATLAS pixel detector in view of sLHC. It offers in fact significant advantages over the presently used parallel powering scheme, namely reduced material budget in active area and power losses on cables, smaller number of power supplies, and no need for external, distant regulation of voltages. The development of this powering scheme requires not only the design of custom-developed voltage regulators, the basic elements of serial powering, but also the early study of system aspects connected to it, for instance the safety of the powering chain and AC-coupled data transmission. To this aim a test system emulating an ATLAS pixel stave is being developed. It will provide a realistic environment to test both concepts and sub-components. Due to its flexibility, it will offer the possibility to study not only serial powering concepts, but more generally system aspects related to the ATLAS pixel detector. In particular alternative powering schemes, data coding schemes, physical layer data transmission, and Detector Control System concepts will also be evaluated with this test system. The description and development of the ATLAS pixel stave emulator are presented and first results are discussed

  15. Slim edge studies, design and quality control of planar ATLAS IBL pixel sensors

    International Nuclear Information System (INIS)

    One of the four large experiments at the LHC at CERN is the ATLAS detector, a multi purpose detector. Its pixel detector, composed of three layers, is the innermost part of the tracker. As it is closest to the interaction point, it represents a basic part of the track reconstruction. Besides the requested high resolution one main requirement is the radiation hardness. In the coming years the radiation damage will cause deteriorations of the detector performance. With the planned increase of the luminosity, especially after the upgrade to the High Luminosity LHC, this radiation damage will be even intensified. This circumstance necessitates a new pixel detector featuring improved radiation hard sensors and read-out chips. The present shutdown of the LHC is already utilized to insert an additional b-layer (IBL) into the existing ATLAS pixel detector. The current n-in-n pixel sensor design had to be adapted to the new read-out chip and the module specifications. The new stave geometry requests a reduction of the inactive sensor edge. In a prototype wafer production all modifications have been implemented. The sensor quality control was supervised which led to the decision of the final sensor thickness. In order to evaluate the performance of the sensor chip assemblies with an innovative slim edge design, they have been operated in test beam setups before and after irradiation. Furthermore, the quality control of the planar IBL sensor wafer production was supervised from the stage of wafer delivery to that before the flip chip process to ensure a sufficient amount of functional sensors for the module production.

  16. Slim edge studies, design and quality control of planar ATLAS IBL pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wittig, Tobias

    2013-05-08

    One of the four large experiments at the LHC at CERN is the ATLAS detector, a multi purpose detector. Its pixel detector, composed of three layers, is the innermost part of the tracker. As it is closest to the interaction point, it represents a basic part of the track reconstruction. Besides the requested high resolution one main requirement is the radiation hardness. In the coming years the radiation damage will cause deteriorations of the detector performance. With the planned increase of the luminosity, especially after the upgrade to the High Luminosity LHC, this radiation damage will be even intensified. This circumstance necessitates a new pixel detector featuring improved radiation hard sensors and read-out chips. The present shutdown of the LHC is already utilized to insert an additional b-layer (IBL) into the existing ATLAS pixel detector. The current n-in-n pixel sensor design had to be adapted to the new read-out chip and the module specifications. The new stave geometry requests a reduction of the inactive sensor edge. In a prototype wafer production all modifications have been implemented. The sensor quality control was supervised which led to the decision of the final sensor thickness. In order to evaluate the performance of the sensor chip assemblies with an innovative slim edge design, they have been operated in test beam setups before and after irradiation. Furthermore, the quality control of the planar IBL sensor wafer production was supervised from the stage of wafer delivery to that before the flip chip process to ensure a sufficient amount of functional sensors for the module production.

  17. The Pixel Detector of the ATLAS Experiment for the Run 2 at the Large Hadron Collider

    CERN Document Server

    Mandelli, B; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run 1 of LHC. Taking advantage of the long shutdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). The IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO$_2$ based cooling system have been adopted. The IBL construction and installation in the ATLAS Experiment has been completed very successfu...

  18. Development of n-in-p pixel modules for the ATLAS Upgrade at HL-LHC

    CERN Document Server

    Macchiolo, Anna; Savic, Natascha; Terzo, Stefano

    2016-01-01

    Thin planar pixel modules are promising candidates to instrument the inner layers of the new ATLAS pixel detector for HL-LHC, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. 100-200 $\\mu$m thick sensors, interconnected to FE-I4 read-out chips, have been characterized with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements are reported for devices before and after irradiation up to a fluence of $14\\times10^{15}$ n$_{eq}$/cm$^2$. The charge collection and tracking efficiency of the different sensor thicknesses are compared. The outlook for future planar pixel sensor production is discussed, with a focus on sensor design with the pixel pitches (50x50 and 25x100 $\\mu$m$^2$) foreseen for the RD53 Collaboration read-out chip in 65 nm CMOS technology. An optimization of the biasing structures in the pixel cells is required to avoid the hit efficiency loss presently observed in the punch-through region...

  19. Development of n-in-p pixel modules for the ATLAS upgrade at HL-LHC

    CERN Document Server

    Macchiolo, A.; Savic, N.; Terzo, S.

    2016-01-01

    Thin planar pixel modules are promising candidates to instrument the inner layers of the new ATLAS pixel detector for HL-LHC, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. 100–200 μm thick sensors, interconnected to FE-I4 read-out chips, have been characterized with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements are reported for devices before and after irradiation up to a fluence of 14×1015 neq/cm2. The charge collection and tracking efficiency of the different sensor thicknesses are compared. The outlook for future planar pixel sensor production is discussed, with a focus on sensor design with the pixel pitches (50×50 and 25×100 μm2) foreseen for the RD53 Collaboration read-out chip in 65 nm CMOS technology. An optimization of the biasing structures in the pixel cells is required to avoid the hit efficiency loss presently observed in the punch-through region after irradiation. F...

  20. High bandwidth pixel detector modules for the ATLAS Insertable B-Layer

    International Nuclear Information System (INIS)

    The investigation of the nature of the recently discovered electro-weak symmetry breaking mechanism of the standard model of particle physics as well as the search for physics beyond the standard model with the LHC require to collect even more data. To achieve this goal, the luminosity of the LHC will be increased in two steps. The increased luminosity results in serious challenges for the inner tracking systems of the experiments at the LHC. The ATLAS pixel detector will also be upgraded in a two stage program. During the shutdown in 2013 and 2014 a fourth hybrid pixel detector layer, the socalled Insertable B-Layer (IBL) is inserted inside the existing pixel detector. This thesis focuses on the characterization, performance measurement, and production quality assurance of the central sensitive elements of the IBL, the modules. This includes a full characterization of the readout chip (FE-I4) and of the assembled modules. A completely new inner tracking system is mandatory in ATLAS after the second luminosity increase in the shutdown of 2022 and 2023. The final chapter of this thesis introduces a new module concept that uses an industrial high voltage CMOS technology as sensor layer, which is capacitively coupled to the FE-I4 readout chip.

  1. High bandwidth pixel detector modules for the ATLAS Insertable B-Layer

    Energy Technology Data Exchange (ETDEWEB)

    Backhaus, Malte

    2014-01-15

    The investigation of the nature of the recently discovered electro-weak symmetry breaking mechanism of the standard model of particle physics as well as the search for physics beyond the standard model with the LHC require to collect even more data. To achieve this goal, the luminosity of the LHC will be increased in two steps. The increased luminosity results in serious challenges for the inner tracking systems of the experiments at the LHC. The ATLAS pixel detector will also be upgraded in a two stage program. During the shutdown in 2013 and 2014 a fourth hybrid pixel detector layer, the socalled Insertable B-Layer (IBL) is inserted inside the existing pixel detector. This thesis focuses on the characterization, performance measurement, and production quality assurance of the central sensitive elements of the IBL, the modules. This includes a full characterization of the readout chip (FE-I4) and of the assembled modules. A completely new inner tracking system is mandatory in ATLAS after the second luminosity increase in the shutdown of 2022 and 2023. The final chapter of this thesis introduces a new module concept that uses an industrial high voltage CMOS technology as sensor layer, which is capacitively coupled to the FE-I4 readout chip.

  2. KPIX a pixel detector imaging chip

    CERN Document Server

    Cadeddu, S; Caria, M

    2002-01-01

    We present a VLSI custom device, named KPIX, developed in a 0.6 mu m CMOS technology. The circuit is dedicated to readout solid-state detectors covering large areas (on the order of square centimetre) and featuring very small currents. KPIX integrates 1024 channels (current amplifiers) and 8 ADCs on a 15.5x4 mm sup 2 area. Both an analogue and digital readout are allowed, with a 10 bit amplitude resolution. Amplifiers are organized in 8 columns of 128 rows. When choosing the digital or the analogue readout, the complete set of channels can be read out in about 30 ms. The specific design of the amplification cells allows to measure very small input current levels, on the order of fractions of pico-ampere. Power consumption has also been kept at the level of 80 mu W per cell and 150 mW (peak value) in total. The specific chip architecture and geometry allow use of many KPIX circuits together in order to serve a large detector sensitive area. The KPIX structure is presented along with some measurements character...

  3. Robustness of the ATLAS pixel clustering neural network algorithm

    CERN Document Server

    Sidebo, Per Edvin; The ATLAS collaboration

    2016-01-01

    Proton-proton collisions at the energy frontier puts strong constraints on track reconstruction algorithms. In the ATLAS track reconstruction algorithm, an artificial neural network is utilised to identify and split clusters of neighbouring read-out elements in the ATLAS pixel detector created by multiple charged particles. The robustness of the neural network algorithm is presented, probing its sensitivity to uncertainties in the detector conditions. The robustness is studied by evaluating the stability of the algorithm's performance under a range of variations in the inputs to the neural networks. Within reasonable variation magnitudes, the neural networks prove to be robust to most variation types.

  4. Operation experience with highly irradiated ATLAS FE-I3 SingleChipAssemblies

    Energy Technology Data Exchange (ETDEWEB)

    Goessling, Claus; Herbst, Silke; Klingenberg, Reiner; Muenstermann, Daniel; Rummler, Andre; Wittig, Tobias [TU Dortmund, Experimentelle Physik IV, D-44221 Dortmund (Germany)

    2010-07-01

    ATLAS is a multi-purpose detector at the Large Hadron Collider (LHC). After the planned upgrade to SuperLHC, the pixel detector as the innermost part of the ATLAS tracker will have to withstand particle fluences of up to 2.10{sup 16} n{sub eq}cm{sup -2} and ionizing doses of up to 800 MRad. We operated silicon pixel sensors with FE-I3 readout electronics (SingleChip-Assemblies) irradiated with 24 MeV protons and reactor neutrons up to doses of 300 MRad and investigated the performance of the SingleChip-Assemblies after irradiation. The observed changes of the readout chip's behaviour and the necessary modifications of the FE-I3 tuning are presented.

  5. Operation experience with highly irradiated ATLAS FE-I3 SingleChipAssemblies

    International Nuclear Information System (INIS)

    ATLAS is a multi-purpose detector at the Large Hadron Collider (LHC). After the planned upgrade to SuperLHC, the pixel detector as the innermost part of the ATLAS tracker will have to withstand particle fluences of up to 2.1016 neqcm-2 and ionizing doses of up to 800 MRad. We operated silicon pixel sensors with FE-I3 readout electronics (SingleChip-Assemblies) irradiated with 24 MeV protons and reactor neutrons up to doses of 300 MRad and investigated the performance of the SingleChip-Assemblies after irradiation. The observed changes of the readout chip's behaviour and the necessary modifications of the FE-I3 tuning are presented.

  6. Calibration Analysis Software for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    The calibration of the Pixel detector fulfills two main purposes: to tune front-end registers for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel detector scans and analyses is called Calibration Console. The introduction of a new layer, equipped with new Front End-I4 Chips, required an update the Console architecture. It now handles scans and scans analyses applied toghether to chips with dierent characteristics. An overview of the newly developed Calibration Analysis Software will be presented, together with some preliminary result.

  7. Optical Links for the ATLAS Pixel Detector

    CERN Document Server

    Gregor, Ingrid-Maria

    In der vorliegenden Dissertation wird eine strahlentolerante optische Datenstrecke mit hoher Datenrate für den Einsatz in dem Hochenergiephysikexperiment Atlas am Lhc Beschleuniger entwickelt. Da die Lhc-Experimente extremen Strahlenbelastungen ausgesetzt sind, müssen die Komponenten spezielle Ansprüche hinsichtlich der Strahlentoleranz erfüllen. Die Qualifikation der einzelnen Bauteile wurde im Rahmen dieser Arbeit durchgeführt. Die zu erwartenden Fluenzen im Atlas Inner Detector für Silizium und Gallium Arsenid (GaAs) wurden berechnet. Siliziumbauteile werden einer Fluenz von bis zu 1.1.1015neq /cm2 in 1 MeV äquivalenten Neutronen ausgesetzt sein, wohingegen GaAs Bauteile bis zu 7.8.1015neq /cm2 ausgesetzt sein werden. Die Strahlentoleranz der einzelnen benötigten Komponenten wie z.B. der Laserdioden sowie der jeweiligen Treiberchips wurde untersucht. Sowohl die Photo- als auch die Laserdioden haben sich als strahlentolerant für die Fluenzen an dem vorgesehenen Radius erwiesen. Aus de...

  8. Radiation damage monitoring of the ATLAS pixel detector

    CERN Document Server

    Seidel, Sally; The ATLAS collaboration

    2015-01-01

    A measurement has been made of the radiation damage incurred by the ATLAS Pixel Detector barrel silicon modules from the beginning of operations through the end of 2012. This translates to hadronic fluence received over the full period of operation at energies up to and including 8 TeV. The measurement is based on a per-module record of the silicon sensor leakage current. The results are presented as a function of integrated luminosity and compared to predictions by the Hamburg Model. This information can be used to predict limits on the lifetime of the Pixel Detector due to current, for various operating scenarios.

  9. The Pixel Detector of the ATLAS Experiment for LHC Run-2

    CERN Document Server

    Pernegger, H; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detector and of the IBL project as ...

  10. The Pixel Detector of the ATLAS experiment for the Run2 at the Large Hadron Collider

    CERN Document Server

    Takubo, Yosuke

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detect or and of the IBL project as...

  11. The ATLAS Pixel Detector for Run II at the Large Hadron Collider

    CERN Document Server

    Marx, Marilyn; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detector and of the IBL project as ...

  12. The upgraded Pixel Detector of the ATLAS experiment for Run-2 at the Large Hadron Collider

    International Nuclear Information System (INIS)

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of the Large Hadron Collider (LHC) . Taking advantage of Long Shutdown 1 (LS1) during 2014/2015, the Pixel Detector was brought to surface to equip it with new service panels and to repair modules. The Insertable B-Layer (IBL), a fourth layer of pixel sensors, was installed in-between the existing Pixel Detector and a new beam-pipe at a radius of 3.3 cm. To cope with the high radiation and increased pixel occupancy due to the proximity to the interaction point, two different silicon sensor technologies (planar and 3D) were used and a new readout chip has been designed with CMOS 130 nm technology with larger area, smaller pixel size and faster readout capability. Dedicated design features in combination with a new composite material were considered and used in order to reduce the material budget of the support structure while keeping the optimal thermo-mechanical performance. An overview of the lessons learned during the IBL project is presented, focusing on the challenges and highlighting the issues met during the production, integration, installation and commissioning phases of the detector. Early performance tests using cosmic and beam data are also presented

  13. The upgraded Pixel Detector of the ATLAS Experiment for Run2 at the Large Hadron Collider

    CERN Document Server

    Backhaus, Malte; The ATLAS collaboration

    2015-01-01

    Run-2 of the LHC will provide new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, two different silicon sensor technologies (planar and 3D) have been developed as well as a new read-out chip within CMOS 130nm technology and with larger area, smaller pixel size and faster readout capability. The new detector is the first large scale application of of 3D detectors and CMOS 130nm technology. An overview of the lessons learned during the IBL project will be presented, focusing on the challenges and highlighting the issues met during the productio...

  14. The Pixel Detector of the ATLAS experiment for the Run2 at the Large Hadron Collider

    CERN Document Server

    Takubo, Y; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long shutdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair the modules and to ease installation of the Insertable B-Layer (IBL). The IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using light weight staves and CO$_{2}$ based cooling system have been adopted. An overview of the refurbishing of the Pixel Detector and the IBL pr...

  15. Commissioning of the upgraded ATLAS Pixel Detector for Run2 at LHC

    CERN Document Server

    ATLAS Pixel Collaboration; The ATLAS collaboration

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detector and of the IBL project as ...

  16. Recent results of the ATLAS upgrade planar pixel sensors R&D project

    Science.gov (United States)

    Weigell, Philipp

    2013-12-01

    To extend the physics reach of the LHC experiments, several upgrades to the accelerator complex are planned, culminating in the HL-LHC, which eventually leads to an increase of the peak luminosity by a factor of five to ten compared to the LHC design value. To cope with the higher occupancy and radiation damage also the LHC experiments will be upgraded. The ATLAS Planar Pixel Sensor R&D Project is an international collaboration of 17 institutions and more than 80 scientists, exploring the feasibility of employing planar pixel sensors for this scenario. Depending on the radius, different pixel concepts are investigated using laboratory and beam test measurements. At small radii the extreme radiation environment and strong space constraints are addressed with very thin pixel sensors active thickness in the range of (75-150) μm, and the development of slim as well as active edges. At larger radii the main challenge is the cost reduction to allow for instrumenting the large area of (7-10) m2. To reach this goal the pixel productions are being transferred to 6 in production lines and more cost-efficient and industrialised interconnection techniques are investigated. Additionally, the n-in-p technology is employed, which requires less production steps since it relies on a single-sided process. An overview of the recent accomplishments obtained within the ATLAS Planar Pixel Sensor R&D Project is given. The performance in terms of charge collection and tracking efficiency, obtained with radioactive sources in the laboratory and at beam tests, is presented for devices built from sensors of different vendors connected to either the present ATLAS read-out chip FE-I3 or the new Insertable B-Layer read-out chip FE-I4. The devices, with a thickness varying between 75 μm and 300 μm, were irradiated to several fluences up to 2×1016 neq/cm2. Finally, the different approaches followed inside the collaboration to achieve slim or active edges for planar pixel sensors are presented.

  17. The CMS Pixel Readout Chip for the Phase 1 Upgrade

    International Nuclear Information System (INIS)

    The present CMS pixel Read Out Chip (ROC) was designed for operation at a bunch spacing of 25 ns and to be efficient up to the nominal instantaneous luminosity of 1034 cm−2 s−1. Based on the excellent LHC performance to date and the upgrade plans for the accelerators, it is anticipated that the instantaneous luminosity could reach 2×1034 cm−2 s−1 before the Long Shutdown 2 (LS2) in 2018, and well above this by the LS3 in 2022. That is why a new ROC has been designed and why a completely new pixel detector will be built with a planned installation in CMS during an extended winter shutdown in 2016/17. The ROC for the upgraded pixel detector is an evolution of the present architecture. It will be manufactured in the same 250 nm CMOS process. The core of the architecture is maintained, with enhancement in performance in three main areas: readout protocol, reduced data loss and enhanced analog performance. The main features of the new CMS pixel ROC are presented together with measured performance of the chip

  18. Monitoring Radiation Damage in the ATLAS Pixel Detector

    CERN Document Server

    Schorlemmer, André Lukas; Große-Knetter, Jörn; Rembser, Christoph; Di Girolamo, Beniamino

    2014-11-05

    Radiation hardness is one of the most important features of the ATLAS pixel detector in order to ensure a good performance and a long lifetime. Monitoring of radiation damage is crucial in order to assess and predict the expected performance of the detector. Key values for the assessment of radiation damage in silicon, such as the depletion voltage and depletion depth in the sensors, are measured on a regular basis during operations. This thesis summarises the monitoring program that is conducted in order to assess the impact of radiation damage and compares it to model predictions. In addition, the physics performance of the ATLAS detector highly depends on the amount of disabled modules in the ATLAS pixel detector. A worrying amount of module failures was observed during run I. Thus it was decided to recover repairable modules during the long shutdown (LS1) by extracting the pixel detector. The impact of the module repairs and module failures on the detector performance is analysed in this thesis.

  19. Development of n-in-p silicon planar pixel sensors and flip-chip modules for very high radiation environments

    Science.gov (United States)

    Unno, Y.; Ikegami, Y.; Terada, S.; Mitsui, S.; Jinnouchi, O.; Kamada, S.; Yamamura, K.; Ishida, A.; Ishihara, M.; Inuzuka, T.; Hanagaki, K.; Hara, K.; Kondo, T.; Kimura, N.; Nakano, I.; Nagai, K.; Takashima, R.; Tojo, J.; Yorita, K.

    2011-09-01

    In this paper we present R&D of n-in-p pixel sensors, aiming for a very high radiation environment up to a fluence of 10 16 n eq/cm 2. To fabricate these sensors, two batches with different mask sets were employed: the first resulted in pixel sensors compatible with the ATLAS pixel readout frontend chip called FE-I3, and the second in FE-I3 and a new frontend chip, FE-I4, compatible sensors; small diodes were employed to investigate the width from the active diode to the dicing edge and the guard rings. Tests involving the diodes showed that the strong increase of leakage current was attributed to the edge current when the lateral depletion zone reaches the dicing edge and the lateral depletion along the silicon surface was correlated with the 'field' width. The onset was observed at a voltage of 1000 V when the width was equal to ˜400 μm. The pixel sensors that were diced at a width of 450 μm could successfully maintain a bias voltage of 1000 V. Hybrid flip-chip pixel modules with dummy and real chips were also fabricated. Lead (PbSn) solder bump bonding proved to be successful. However, lead-free (SnAg) solder bump bonding requires further optimization.

  20. Experiences with module-production and system tests for the ATLAS Pixel Detector

    Science.gov (United States)

    Grosse-Knetter, Jörn; Hügging, Fabian; Mättig, Peter; Reeves, Kendall; Schultes, Joachim; Weingarten, Jens; Wermes, Norbert

    2006-09-01

    The ATLAS pixel detector is built from 1744 modules which are organized in three barrel layers and three disk layers in forward direction. The modules consist of an oxygen-enriched silicon sensor with an active area of 60.8×16.4 mm2. Its 46 080 pixels are read out by 16 frontend chips, bump bonded to the sensor using a state-of-the-art hybridization technique. After extensive characterization of the single modules they are mounted on support structures, made from a carbon-carbon composite material, which make up the barrel or the disc layers. The first of these assemblies are used to study the behavior of the modules outside the lab environment.

  1. Prototype ATLAS IBL Modules using the FE-I4A Front-End Readout Chip

    CERN Document Server

    Albert, J; Alimonti, Gianluca; Allport, Phil; Altenheiner, Silke; Ancu, Lucian; Andreazza, Attilio; Arguin, Jean-Francois; Arutinov, David; Backhaus, Malte; Bagolini, Alvise; Ballansat, Jacques; Barbero, Marlon; Barbier, Gérard; Bates, Richard; Battistin, Michele; Baudin, Patrick; Beau, Tristan; Beccherle, Roberto; Beck, Hans Peter; Benoit, Mathieu; Bensinger, Jim; Bomben, Marco; Borri, Marcello; Boscardin, Maurizio; Botelho Direito, Jose Antonio; Bousson, Nicolas; Boyd, George Russell Jr; Breugnon, Patrick; Bruni, Graziano; Bruschi, Marco; Buchholz, Peter; Buttar, Craig; Cadoux, Franck; Calderini, Giovanni; Caminada, Leah; Capeans, Mar; Casse, Gianluigi; Catinaccio, Andrea; Cavalli-Sforza, Matteo; Chauveau, Jacques; Chu, Ming-Lee; Ciapetti, Marco; Cindro, Vladimir; Citterio, Mauro; Clark, Allan; Cobal, Marina; Coelli, Simone; Colijn, Auke-Pieter; Colin, Daly; Collot, Johann; Crespo-Lopez, Olivier; Dalla Betta, Gian-Franco; Darbo, Giovanni; DaVia, Cinzia; David, Pierre-Yves; Debieux, Stéphane; Delebecque, Pierre; Devetak, Erik; DeWilde, Burton; Di Girolamo, Beniamino; Dinu, Nicoleta; Dittus, Fridolin; Diyakov, Denis; Djama, Fares; Dobos, Daniel Adam; Doonan, Kate; Dopke, Jens; Dorholt, Ole; Dube, Sourabh; Dushkin, Andrey; Dzahini, Daniel; Egorov, Kirill; Ehrmann, Oswin; Elldge, David; Elles, Sabine; Elsing, Markus; Eraud, Ludovic; Ereditato, Antonio; Eyring, Andreas; Falchieri, Davide; Falou, Aboud; Fang, Xiaochao; Fausten, Camille; Favre, Yannick; Ferrere, Didier; Fleta, Celeste; Fleury, Julien; Flick, Tobias; Forshaw, Dean; Fougeron, Denis; Fritzsch, Thomas; Gabrielli, Alessandro; Gaglione, Renaud; Gallrapp, Christian; Gan, K; Garcia-Sciveres, Maurice; Gariano, Giuseppe; Gastaldi, Thibaut; Gemme, Claudia; Gensolen, Fabrice; George, Matthias; Ghislain, Patrick; Giacomini, Gabriele; Gibson, Stephen; Giordani, Mario Paolo; Giugni, Danilo; Gjersdal, Håvard; Glitza, Karl Walter; Gnani, Dario; Godlewski, Jan; Gonella, Laura; Gorelov, Igor; Gorišek, Andrej; Gössling, Claus; Grancagnolo, Sergio; Gray, Heather; Gregor, Ingrid-Maria; Grenier, Philippe; Grinstein, Sebastian; Gromov, Vladimir; Grondin, Denis; Grosse-Knetter, Jörn; Hansen, Thor-Erik; Hansson, Per; Harb, Ali; Hartman, Neal; Hasi, Jasmine; Hegner, Franziska; Heim, Timon; Heinemann, Beate; Hemperek, Tomasz; Hessey, Nigel; Hetmánek, Martin; Hoeferkamp, Martin; Hostachy, Jean-Yves; Hügging, Fabian; Husi, Coralie; Iacobucci, Giuseppe; Idarraga, John; Ikegami, Yoichi; Janoška, Zdenko; Jansen, Jens; Jansen, Luc; Jensen, Frank; Jentzsch, Jennifer; Joseph, John; Kagan, Harris; Karagounis, Michael; Kass, Richard; Kenney, Christopher J; Kersten, Susanne; Kind, Peter; Klingenberg, Reiner; Kluit, Ruud; Kocian, Martin; Koffeman, Els; Kok, Angela; Korchak, Oleksandr; Korolkov, Ilya; Kostyukhin, Vadim; Krieger, Nina; Krüger, Hans; Kruth, Andre; Kugel, Andreas; Kuykendall, William; La Rosa, Alessandro; Lai, Chung-Hang; Lantzsch, Kerstin; Laporte, Didier; Lapsien, Tobias; Lounis, abdenour; Lozano, Manuel; Lu, Yunpeng; Lubatti, Henry; Macchiolo, Anna; Mallik, Usha; Mandić, Igor; Marchand, Denis; Marchiori, Giovanni; Massol, Nicolas; Matthias, Wittgen; Mättig, Peter; Mekkaoui, Abderrazak; Menouni, Mohsine; Menu, Johann; Meroni, Chiara; Mesa, Javier; Micelli, Andrea; Michal, Sébastien; Miglioranzi, Silvia; Mikuž, Marko; Mitsui, Shingo; Monti, Mauro; Moore, J; Morettini, Paolo; Muenstermann, Daniel; Murray, Peyton; Nellist, Clara; Nelson, David J; Nessi, Marzio; Neumann, Manuel; Nisius, Richard; Nordberg, Markus; Nuiry, Francois-Xavier; Oppermann, Hermann; Oriunno, Marco; Padilla, Cristobal; Parker, Sherwood; Pellegrini, Giulio; Pelleriti, Gabriel; Pernegger, Heinz; Piacquadio, Nicola Giacinto; Picazio, Attilio; Pohl, David; Polini, Alessandro; Popule, Jiří; Portell Bueso, Xavier; Povoli, Marco; Puldon, David; Pylypchenko, Yuriy; Quadt, Arnulf; Quirion, David; Ragusa, Francesco; Rambure, Thibaut; Richards, Erik; Ristic, Branislav; Røhne, Ole; Rothermund, Mario; Rovani, Alessandro; Rozanov, Alexandre; Rubinskiy, Igor; Rudolph, Matthew Scott; Rummler, André; Ruscino, Ettore; Salek, David; Salzburger, Andreas; Sandaker, Heidi; Schipper, Jan-David; Schneider, Basil; Schorlemmer, Andre; Schroer, Nicolai; Schwemling, Philippe; Seidel, Sally; Seiden, Abraham; Šícho, Petr; Skubic, Patrick; Sloboda, Michal; Smith, D; Sood, Alex; Spencer, Edwin; Strang, Michael; Stugu, Bjarne; Stupak, John; Su, Dong; Takubo, Yosuke; Tassan, Jean; Teng, Ping-Kun; Terada, Susumu; Todorov, Theodore; Tomášek, Michal; Toms, Konstantin; Travaglini, Riccardo; Trischuk, William; Troncon, Clara; Troska, Georg; Tsiskaridze, Shota; Tsurin, Ilya; Tsybychev, Dmitri; Unno, Yoshinobu; Vacavant, Laurent; Verlaat, Bart; Vianello, Elisa; Vigeolas, Eric; von Kleist, Stephan; Vrba, Václav; Vuillermet, Raphaël; Wang, Rui; Watts, Stephen; Weber, Michele; Weber, Marteen; Weigell, Philipp; Weingarten, Jens; Welch, Steven David; Wenig, Siegfried; Wermes, Norbert; Wiese, Andreas; Wittig, Tobias; Yildizkaya, Tamer; Zeitnitz, Christian; Ziolkowski, Michal; Zivkovic, Vladimir; Zoccoli, Antonio; Zorzi, Nicola; Zwalinski, Lukasz

    2012-01-01

    The ATLAS Collaboration will upgrade its semiconductor pixel tracking detector with a new Insertable B-layer (IBL) between the existing pixel detector and the vacuum pipe of the Large Hadron Collider. The extreme operating conditions at this location have necessitated the development of new radiation hard pixel sensor technologies and a new front-end readout chip, called the FE-I4. Planar pixel sensors and 3D pixel sensors have been investigated to equip this new pixel layer, and prototype modules using the FE-I4A have been fabricated and characterized using 120 GeV pions at the CERN SPS and 4 GeV positrons at DESY, before and after module irradiation. Beam test results are presented, including charge collection efficiency, tracking efficiency and charge sharing.

  2. The Pixel Detector of the ATLAS experiment for the Run2 at the Large Hadron Collider

    CERN Document Server

    Mandelli, B; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long shutdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and will be installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. IBL construction is now completed. An overview of the IBL project as well as the ...

  3. The Pixel Detector of the ATLAS experiment for the Run2 at the Large Hadron Collider

    CERN Document Server

    Oide, H; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and will be installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. IBL construction is now completed. An overview of the IBL project as well as the ...

  4. The Pixel Detector of the ATLAS experiment for the Run 2 at the Large Hadron Collider

    CERN Document Server

    Oide, H; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run 1 of LHC. Taking advantage of the long shutdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). The IBL is the fourth layer of the Run 2 Pixel Detector, and it was installed in May 2014 between the existing Pixel Detector and the new smaller-radius beam pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. IBL construction is now completed. An overview of the IBL project...

  5. The Pixel Detector of the ATLAS Experiment for LHC Run-2

    CERN Document Server

    Pernegger, Heinz; The ATLAS collaboration

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long shutdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and hit occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detector and of the IBL project as we...

  6. The upgraded Pixel Detector of the ATLAS Experiment for Run2 at the Large Hadron Collider

    CERN Document Server

    Mullier, Geoffrey Andre; The ATLAS collaboration

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL), a fourth layer of pixel detectors, installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and increased pixel occupancy due to the proximity to the interaction point, two different silicon sensor technologies (planar and 3D) have been developed. A new readout chip has been developed within CMOS 130nm technology with larger area, smaller pixel size and faster readout capability. Dedicated design features in combination with a new composite material were considered and used in order to reduce the material budget of the support structure while keeping the optimal thermo-mechanical performan...

  7. High bandwidth pixel detector modules for the ATLAS Insertable B-Layer

    CERN Document Server

    Backhaus, Malte

    2014-02-19

    The investigation of the nature of the recently discovered electro-weak symmetry breaking mechanism of the standard model of particle physics as well as the search for physics beyond the standard model with the LHC require to collect even more data. To achieve this goal, the luminosity of the LHC will be increased in two steps. The increased luminosity results in serious challenges for the inner tracking systems of the experiments at the LHC. The ATLAS pixel detector will also be upgraded in a two stage program. During the shutdown in 2013 and 2014 a fourth hybrid pixel detector layer, the so-called Insertable B-Layer (IBL) is inserted inside the existing pixel detector. This thesis focuses on the characterization, performance measurement, and production quality assurance of the central sensitive elements of the IBL, the modules. This includes a full characterization of the readout chip (FE-I4) and of the assembled modules. A completely new inner tracking system is mandatory in ATLAS after the second luminosi...

  8. Towards a new generation of pixel detector readout chips

    International Nuclear Information System (INIS)

    The Medipix3 Collaboration has broken new ground in spectroscopic X-ray imaging and in single particle detection and tracking. This paper will review briefly the performance and limitations of the present generation of pixel detector readout chips developed by the Collaboration. Through Silicon Via technology has the potential to provide a significant improvement in the tile-ability and more flexibility in the choice of readout architecture. This has been explored in the context of 3 projects with CEA-LETI using Medipix3 and Timepix3 wafers. The next generation of chips will aim to provide improved spectroscopic imaging performance at rates compatible with human CT. It will also aim to provide full spectroscopic images with unprecedented energy and spatial resolution. Some of the opportunities and challenges posed by moving to a more dense CMOS process will be discussed

  9. The CMS pixel readout chip for the Phase 1 Upgrade

    CERN Document Server

    Hits, Dmitry

    2015-01-01

    The present CMS pixel Read Out Chip (ROC) was designed for operation at a bunch spacing of 25\\,ns and to be efficient up to the nominal instantaneous luminosity of 10$^{34} \\rm cm^{-2} \\rm s^{-1}$. Based on the excellent LHC performance to date and the upgrade plans for the accelerators, it is anticipated that the instantaneous luminosity could reach $2\\times10^{34} \\rm cm^{-2} \\rm s^{-1}$ before the Long Shutdown 2 (LS2) in 2018, and well above this by the LS3 in 2022. That is why a new ROC has been designed and why a completely new pixel detector will be built with a planned installation in CMS during an extended winter shutdown in 2016/17. The ROC for the upgraded pixel detector is an evolution of the present architecture. It will be manufactured in the same 250\\,nm CMOS process. The core of the architecture is maintained, with enhancement in performance in three main areas: readout protocol, reduced data loss and enhanced analog performance. The main features of the new CMS pixel ROC are presented togeth...

  10. Pixel detector modules performance for ATLAS IBL and future pixel detectors

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00355104; Pernegger, Heinz

    2015-11-06

    The ATLAS Detector is one of the four big particle physics experiments at CERN’s LHC. Its innermost tracking system consisted of the 3-Layer silicon Pixel Detector (~80M readout channels) in the first run (2010-2012). Over the past two years it was refurbished and equipped with new services as well as a new beam monitor. The major upgrade, however, was the Insertable B-Layer (IBL). It adds ~12M readout channels for improved vertexing, tracking robustness and b-tagging performance for the upcoming runs, before the high luminosity upgrade of the LHC will take place. This thesis covers two main aspects of Pixel detector performance studies: The main work was the planning, commissioning and operation of a test bench that meets the requirements of current pixel detector components. Each newly built ATLAS IBL stave was thoroughly tested, following a specifically developed procedure, and initially calibrated in that setup. A variety of production accompanying measurements as well as preliminary results after integ...

  11. Development of a Micro Pixel Chamber for the ATLAS Upgrade

    CERN Document Server

    Ochi, Atsuhiko; Komai, Hidetoshi; Edo, Yuki; Yamaguchi, Takahiro

    2012-01-01

    The Micro Pixel Chamber (μ-PIC) is being developed a sacandidate for the muon system of the ATLAS detector for upgrading in LHC experiments. The μ-PIC is a micro-pattern gaseous detector that doesn’t have floating structure such as wires, mesh, or foil. This detector can be made by printed-circuit-board (PCB) technology, which is commercially available and suited for mass production. Operation tests have been performed under high flux neutrons under similar conditions to the ATLAS cavern. Spark rates are measured using several gas mixtures under 7 MeV neutron irradiation, and good properties were observed using neon, ethane, and CF4 mixture of gases.Using resistive materials as electrodes, we are also developing a new μ-PIC, which is not expected to damage the electrodes in the case of discharge sparks.

  12. Robustness of the ATLAS pixel clustering neural network algorithm

    CERN Document Server

    Sidebo, Per Edvin; The ATLAS collaboration

    2016-01-01

    Proton-proton collisions at the energy frontier puts strong constraints on track reconstruction algorithms. The algorithms depend heavily on accurate estimation of the position of particles as they traverse the inner detector elements. An artificial neural network algorithm is utilised to identify and split clusters of neighbouring read-out elements in the ATLAS pixel detector created by multiple charged particles. The method recovers otherwise lost tracks in dense environments where particles are separated by distances comparable to the size of the detector read-out elements. Such environments are highly relevant for LHC run 2, e.g. in searches for heavy resonances. Within the scope of run 2 track reconstruction performance and upgrades, the robustness of the neural network algorithm will be presented. The robustness has been studied by evaluating the stability of the algorithm’s performance under a range of variations in the pixel detector conditions.

  13. ATLAS SemiConductor Tracker and Pixel Detector: Status and Performance

    CERN Document Server

    Reeves, K; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) and the Pixel Detector are the key precision tracking devices in the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is a silicon strip detector and is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals from the strips are processed in the front-end ASICS ABCD3TA, working in the binary readout mode. The Pixel Detector consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In the talk the current status of the SCT and Pixel Detector will be reviewed. We will report on the operation of the detectors including an overview of the issues we encountered and the observation of significant increases in leakage currents (as expected) from bulk ...

  14. Firmware development and testing of the ATLAS Pixel Detector / IBL ROD card

    Science.gov (United States)

    Gabrielli, A.; Backhaus, M.; Balbi, G.; Bindi, M.; Chen, S. P.; Falchieri, D.; Flick, T.; Hauck, S.; Hsu, S. C.; Kretz, M.; Kugel, A.; Lama, L.; Travaglini, R.; Wensing, M.

    2015-03-01

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shut down. In particular, the Pixel detector has inserted an additional inner layer called the Insertable B-Layer (IBL). The Readout-Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL's off-detector DAQ system. The strategy for IBL ROD firmware development was three-fold: keeping as much of the Pixel ROD datapath firmware logic as possible, employing a complete new scheme of steering and calibration firmware, and designing the overall system to prepare for a future unified code version integrating IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBL DAQ test bench using a realistic front-end chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBL ROD data path implementation, test on the test bench and ROD prototypes, will be reported. Recent Pixel collaboration efforts focus on finalizing hardware and firmware tests for the IBL. The plan is to approach a complete IBL DAQ hardware-software installation by the end of 2014.

  15. Firmware development and testing of the ATLAS Pixel Detector / IBL ROD card

    International Nuclear Information System (INIS)

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shut down. In particular, the Pixel detector has inserted an additional inner layer called the Insertable B-Layer (IBL). The Readout-Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL's off-detector DAQ system. The strategy for IBL ROD firmware development was three-fold: keeping as much of the Pixel ROD datapath firmware logic as possible, employing a complete new scheme of steering and calibration firmware, and designing the overall system to prepare for a future unified code version integrating IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBL DAQ test bench using a realistic front-end chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBL ROD data path implementation, test on the test bench and ROD prototypes, will be reported. Recent Pixel collaboration efforts focus on finalizing hardware and firmware tests for the IBL. The plan is to approach a complete IBL DAQ hardware-software installation by the end of 2014

  16. Prototypes for components of a control system for the ATLAS pixel detector at the HL-LHC

    International Nuclear Information System (INIS)

    In the years around 2020 an upgrade of the LHC to the HL-LHC is scheduled, which will increase the accelerator's instantaneous luminosity by a factor of 5 and the integrated luminosity by a factor of 10. In the context of this upgrade, the inner detector (including the pixel detector) of the ATLAS experiment will be replaced. This new pixel detector requires a specific control system which complies with strict requirements in terms of radiation hardness, material budget and space for the electronics in the ATLAS experiment. The University of Wuppertal is developing a concept for a DCS (Detector Control System) network consisting of two kinds of ASICs. The first ASIC is the DCS chip which is located on the pixel detector, very close to the interaction point. The second ASIC is the DCS Controller which is controlling 4×4 DCS chips from the outer regions of ATLAS via differential data lines. Both ASICs are manufactured in 130 nm deep sub-micron technology. We present results from reliability measurements under irradiation from new prototypes of components for the DCS network.

  17. Development of a Standardised Readout System for Active Pixel Sensors in HV/HR-CMOS Technologies for ATLAS Inner Detector Upgrades

    International Nuclear Information System (INIS)

    The LHC Phase-II Upgrade results in new challenges for tracking detectors for example in terms of cost effectiveness, resolution and radiation hardness. Active Pixel Sensors in HV/HR-CMOS technologies show promising results coping with these challenges. In order to demonstrate the feasibility of hybrid modules with active CMOS sensors and readout chips for the future ATLAS Inner Tracker, ATLAS R and D activities have started. After introducing the basic concepts and the demonstrator program, the development of an ATLAS compatible readout system will be presented as well as tuning procedures and measurements with demonstrator modules to test the readout system

  18. ATLAS Pixel Detector Design For HL-LHC

    CERN Document Server

    Smart, Ben; The ATLAS collaboration

    2016-01-01

    The ATLAS Inner Detector will be replaced for the High-Luminosity LHC (HL-LHC) running in 2026. The new Inner Detector will be called the Inner Tracker (ITk). The ITk will cover an extended eta-range: at least to |eta|<3.2, and likely up to |eta|<4.0. The ITk will be an all-Silicon based detector, consisting of a Silicon strip detector outside of a radius of 362mm, and a Silicon pixel detector inside of this radius. Several novel designs are being considered for the ITk pixel detector, to cope with high-eta charged particle tracks. These designs are grouped into 'extended' and 'inclined' design-types. Extended designs have long pixel staves with sensors parallel to the beamline. High-eta particles will therefore hit these sensors at shallow angles, leaving elongated charge clusters. The length of such a charge cluster can be used to estimate the angle of the passing particle. This information can then be used in track reconstruction to improve tracking efficiency and reduce fake rates. Inclined designs ...

  19. Firmware development and testing of the ATLAS Pixel Detector / IBL ROD card

    CERN Document Server

    Gabrielli, Alessandro; The ATLAS collaboration; Balbi, Gabriele; Bindi, Marcello; Chen, Shaw-pin; Falchieri, Davide; Flick, Tobias; Hauck, Scott Alan; Hsu, Shih-Chieh; Kretz, Moritz; Kugel, Andreas; Lama, Luca; Travaglini, Riccardo; Wensing, Marius; ATLAS Pixel Collaboration

    2015-01-01

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shut down. In particular, the Pixel detector has inserted an additional inner layer called Insertable B-Layer (IBL). The Readout-Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL’s off-detector DAQ system. The strategy for IBL ROD firmware development was three-fold: keeping as much of the Pixel ROD datapath firmware logic as possible, employing a complete new scheme of steering and calibration firmware and designing the overall system to prepare for a future unified code version integrating IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBL DAQ testbench using realistic frontend chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBL ROD data pat...

  20. Firmware development and testing of the ATLAS Pixel Detector / IBL ROD card

    CERN Document Server

    Balbi, G; The ATLAS collaboration; Gabrielli, A; Lama, L; Travaglini, R; Backhaus, M; Bindi, M; Chen, S-P; Flick, T; Kretz, M; Kugel, A; Wensing, M

    2014-01-01

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shut down. In particular, the Pixel detector has inserted an additional inner layer called Insertable B-Layer (IBL). The Readout-Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL’s off-detector DAQ system. The strategy for IBLROD firmware development was three-fold: keeping as much of the PixelROD datapath firmware logic as possible, employing a complete new scheme of steering and calibration firmware and designing the overall system to prepare for a future unified code version integrating IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBLDAQ testbench using realistic frontend chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBLROD data path im...

  1. Performance of a Fast Binary Readout CMOS Active Pixel Sensor Chip Designed for Charged Particle Detection

    OpenAIRE

    Degerli, Y.; Besancon, M.; Besson, A.; Claus, G; Deptuch, G; Dulinski, W.; Fourches, N.; Goffe, M.; Himmi, A.; Li, Y.; Li, Y.; Lutz, P.; Orsini, F.; Szelezniak, M.

    2006-01-01

    We report on the performance of the MIMOSA8 (HiMAPS1) chip. The chip is a 128$, times ,$32 pixels array where 24 columns have discriminated binary outputs and eight columns analog test outputs. Offset correction techniques are used extensively in this chip to overcome process related mismatches. The array is divided in four blocks of pixels with different conversion factors and is controlled by a serially programmable sequencer. MIMOSA8 is a representative of the CMOS sensors development opti...

  2. 3D silicon pixel detectors for the ATLAS Forward Physics experiment

    International Nuclear Information System (INIS)

    The ATLAS Forward Physics (AFP) project plans to install 3D silicon pixel detectors about 210 m away from the interaction point and very close to the beamline (2–3 mm). This implies the need of slim edges of about 100–200 μm width for the sensor side facing the beam to minimise the dead area. Another challenge is an expected non-uniform irradiation of the pixel sensors. It is studied if these requirements can be met using slightly-modified FE-I4 3D pixel sensors from the ATLAS Insertable B-Layer production. AFP-compatible slim edges are obtained with a simple diamond-saw cut. Electrical characterisations and beam tests are carried out and no detrimental impact on the leakage current and hit efficiency is observed. For devices without a 3D guard ring a remaining insensitive edge of less than 15 μm width is found. Moreover, 3D detectors are non-uniformly irradiated up to fluences of several 1015 neq/cm2 with either a focussed 23 GeV proton beam or a 23 MeV proton beam through holes in Al masks. The efficiency in the irradiated region is found to be similar to the one in the non-irradiated region and exceeds 97% in case of favourable chip-parameter settings. Only in a narrow transition area at the edge of the hole in the Al mask, a significantly lower efficiency is seen. A follow-up study of this effect using arrays of small pad diodes for position-resolved dosimetry via the leakage current is carried out

  3. ATLAS pixel detector timing optimisation with the back of crate card of the optical pixel readout system

    Energy Technology Data Exchange (ETDEWEB)

    Flick, T; Gerlach, P; Reeves, K; Maettig, P [Department of Physics, Bergische Universitaet Wuppertal (Germany)

    2007-04-15

    As with all detector systems at the Large Hadron Collider (LHC), the assignment of data to the correct bunch crossing, where bunch crossings will be separated in time by 25 ns, is one of the challenges for the ATLAS pixel detector. This document explains how the detector system will accomplish this by describing the general strategy, its implementation, the optimisation of the parameters, and the results obtained during a combined testbeam of all ATLAS subdetectors.

  4. Thin n-in-p planar pixel sensors and active edge sensors for the ATLAS upgrade at HL-LHC

    CERN Document Server

    Terzo, S; Nisius, R; Paschen, B

    2014-01-01

    Silicon pixel modules employing n-in-p planar sensors with an active thickness of 200 $\\mu$m, produced at CiS, and 100-200 $\\mu$m thin active/slim edge sensor devices, produced at VTT in Finland have been interconnected to ATLAS FE-I3 and FE-I4 read-out chips. The thin sensors are designed for high energy physics collider experiments to ensure radiation hardness at high fluences. Moreover, the active edge technology of the VTT production maximizes the sensitive region of the assembly, allowing for a reduced overlap of the modules in the pixel layer close to the beam pipe. The CiS production includes also four chip sensors according to the module geometry planned for the outer layers of the upgraded ATLAS pixel detector to be operated at the HL-LHC. The modules have been characterized using radioactive sources in the laboratory and with high precision measurements at beam tests to investigate the hit efficiency and charge collection properties at different bias voltages and particle incidence angles. The perfo...

  5. Thin n-in-p planar pixel sensors and active edge sensors for the ATLAS upgrade at HL-LHC

    Science.gov (United States)

    Terzo, S.; Macchiolo, A.; Nisius, R.; Paschen, B.

    2014-12-01

    Silicon pixel modules employing n-in-p planar sensors with an active thickness of 200 μm, produced at CiS, and 100-200 μm thin active/slim edge sensor devices, produced at VTT in Finland have been interconnected to ATLAS FE-I3 and FE-I4 read-out chips. The thin sensors are designed for high energy physics collider experiments to ensure radiation hardness at high fluences. Moreover, the active edge technology of the VTT production maximizes the sensitive region of the assembly, allowing for a reduced overlap of the modules in the pixel layer close to the beam pipe. The CiS production includes also four chip sensors according to the module geometry planned for the outer layers of the upgraded ATLAS pixel detector to be operated at the HL-LHC. The modules have been characterized using radioactive sources in the laboratory and with high precision measurements at beam tests to investigate the hit efficiency and charge collection properties at different bias voltages and particle incidence angles. The performance of the different sensor thicknesses and edge designs are compared before and after irradiation up to a fluence of 1.4 × 1016 neq/cm2.

  6. Thin n-in-p planar pixel sensors and active edge sensors for the ATLAS upgrade at HL-LHC

    International Nuclear Information System (INIS)

    Silicon pixel modules employing n-in-p planar sensors with an active thickness of 200 μm, produced at CiS, and 100-200 μm thin active/slim edge sensor devices, produced at VTT in Finland have been interconnected to ATLAS FE-I3 and FE-I4 read-out chips. The thin sensors are designed for high energy physics collider experiments to ensure radiation hardness at high fluences. Moreover, the active edge technology of the VTT production maximizes the sensitive region of the assembly, allowing for a reduced overlap of the modules in the pixel layer close to the beam pipe. The CiS production includes also four chip sensors according to the module geometry planned for the outer layers of the upgraded ATLAS pixel detector to be operated at the HL-LHC. The modules have been characterized using radioactive sources in the laboratory and with high precision measurements at beam tests to investigate the hit efficiency and charge collection properties at different bias voltages and particle incidence angles. The performance of the different sensor thicknesses and edge designs are compared before and after irradiation up to a fluence of 1.4 × 1016 neq/cm2

  7. ATLAS Pixel-Optoboard Production and Simulation Studies

    CERN Document Server

    Nderitu, Simon

    At CERN, a Large collider will collide protons at high energies. There are four experiments being built to study the particle properties from the collision. The ATLAS experiment is the largest. It has many sub detectors among which is the Pixel detector which is the innermost part. The Pixel detector has eighty million channels that have to be read out. An optical link is utilized for the read out. It has optical to electronic interfaces both on the detector and off the detector at the counting room. The component on the detector in called the opto-board. This work discusses the production testing of the opto-boards to be installed on the detector. A total of 300 opto-boards including spares have been produced. The production was done in three laboratories among which is the laboratory at the University of Wuppertal which had the responsibility of Post production testing of all the one third of the total opto-boards. The results are discussed in this work. The analysis of the results from the total productio...

  8. Thin n-in-p planar pixel sensors and active edge sensors for the ATLAS upgrade at HL-LHC

    OpenAIRE

    Terzo, S.; Macchiolo, A; Nisius, R.; Paschen, B.

    2014-01-01

    Silicon pixel modules employing n-in-p planar sensors with an active thickness of 200 $\\mu$m, produced at CiS, and 100-200 $\\mu$m thin active/slim edge sensor devices, produced at VTT in Finland have been interconnected to ATLAS FE-I3 and FE-I4 read-out chips. The thin sensors are designed for high energy physics collider experiments to ensure radiation hardness at high fluences. Moreover, the active edge technology of the VTT production maximizes the sensitive region of the assembly, allowin...

  9. Development and characterization of diamond and 3D-silicon pixel detectors with ATLAS-pixel readout electronics

    International Nuclear Information System (INIS)

    Hybrid pixel detectors are used for particle tracking in the innermost layers of current high energy experiments like ATLAS. After the proposed luminosity upgrade of the LHC, they will have to survive very high radiation fluences of up to 1016 particles per cm2 per life time. New sensor concepts and materials are required, which promise to be more radiation tolerant than the currently used planar silicon sensors. Most prominent candidates are so-called 3D-silicon and single crystal or poly-crystalline diamond sensors. Using the ATLAS pixel electronics different detector prototypes with a pixel geometry of 400 x 50 μm2 have been built. In particular three devices have been studied in detail: a 3D-silicon and a single crystal diamond detector with an active area of about 1 cm2 and a poly-crystalline diamond detector of the same size as a current ATLAS pixel detector module (2 x 6 cm2). To characterize the devices regarding their particle detection efficiency and spatial resolution, the charge collection inside a pixel cell as well as the charge sharing between adjacent pixels was studied using a high energy particle beam. (orig.)

  10. Development and characterization of diamond and 3D-silicon pixel detectors with ATLAS-pixel readout electronics

    Energy Technology Data Exchange (ETDEWEB)

    Mathes, Markus

    2008-12-15

    Hybrid pixel detectors are used for particle tracking in the innermost layers of current high energy experiments like ATLAS. After the proposed luminosity upgrade of the LHC, they will have to survive very high radiation fluences of up to 10{sup 16} particles per cm{sup 2} per life time. New sensor concepts and materials are required, which promise to be more radiation tolerant than the currently used planar silicon sensors. Most prominent candidates are so-called 3D-silicon and single crystal or poly-crystalline diamond sensors. Using the ATLAS pixel electronics different detector prototypes with a pixel geometry of 400 x 50 {mu}m{sup 2} have been built. In particular three devices have been studied in detail: a 3D-silicon and a single crystal diamond detector with an active area of about 1 cm{sup 2} and a poly-crystalline diamond detector of the same size as a current ATLAS pixel detector module (2 x 6 cm{sup 2}). To characterize the devices regarding their particle detection efficiency and spatial resolution, the charge collection inside a pixel cell as well as the charge sharing between adjacent pixels was studied using a high energy particle beam. (orig.)

  11. Active Pixel Sensors in ams H18/H35 HV-CMOS Technology for the ATLAS HL-LHC Upgrade

    CERN Document Server

    Ristic, Branislav

    2016-01-01

    Deep sub micron HV-CMOS processes offer the opportunity for sensors built by industry standard techniques while being HV tolerant, making them good candidates for drift-based, fast collecting, thus radiation-hard pixel detectors. For the upgrade of the ATLAS Pixel Detector towards the HL-LHC requirements, active pixel sensors in HV-CMOS technology were investigated. These implement amplifier and discriminator stages directly in insulating deep n-wells, which also act as collecting electrodes. The deep n-wells allow for bias voltages up to 150V leading to a depletion depth of several 10um. Prototype sensors in the ams H18 180nm and H35 350nm HV-CMOS processes have been manufactured, acting as a potential drop-in replacement for the current ATLAS Pixel sensors, thus leaving higher level processing such as trigger handling to dedicated read-out chips. Sensors were thoroughly tested in lab measurements as well as in testbeam experiments. Irradiation with X-rays and protons revealed a tolerance to ionizing doses o...

  12. The Pixel Detector of the ATLAS experiment for the Run2 at the Large Hadron Collider -- Plot Approval (Pixel, IBL) : This is a submission of plot approval request for Pixel+IBL, facing on a talk at ICHEP 2014 conference

    CERN Document Server

    Mandelli, B; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and will be installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. IBL construction is now completed. An overview of the IBL project as well as the ...

  13. Simulation of gas mixture drift properties for GasPixel detector for modernization of ATLAS

    International Nuclear Information System (INIS)

    Results of simulation of gas mixture drift properties for GasPixel detector are presented. The properties of gaseous mixtures for the GasPixel detector have been studied in view of its use in high luminosity tracking applications for the ATLAS Inner Detector in a future super-LHC collider

  14. Simulation of digital pixel readout chip architectures with the RD53 SystemVerilog-UVM verification environment using Monte Carlo physics data

    International Nuclear Information System (INIS)

    The simulation and verification framework developed by the RD53 collaboration is a powerful tool for global architecture optimization and design verification of next generation hybrid pixel readout chips. In this paper the framework is used for studying digital pixel chip architectures at behavioral level. This is carried out by simulating a dedicated, highly parameterized pixel chip description, which makes it possible to investigate different grouping strategies between pixels and different latency buffering and arbitration schemes. The pixel hit information used as simulation input can be either generated internally in the framework or imported from external Monte Carlo detector simulation data. The latter have been provided by both the CMS and ATLAS experiments, featuring HL-LHC operating conditions and the specifications related to the Phase 2 upgrade. Pixel regions and double columns were simulated using such Monte Carlo data as inputs: the performance of different latency buffering architectures was compared and the compliance of different link speeds with the expected column data rate was verified

  15. Development and Characterization of Diamond and 3D-Silicon Pixel Detectors with ATLAS-Pixel Readout Electronics

    CERN Document Server

    Mathes, Markus

    2008-01-01

    Abstract: Hybrid pixel detectors are used for particle tracking in the innermost layers of current high energy experiments like ATLAS. After the proposed luminosity upgrade of the LHC, they will have to survive very high radiation fluences of up to 10^16 particles per cm^2 per life time. New sensor concepts and materials are required, which promise to be more radiation tolerant than the currently used planar silicon sensors. Most prominent candidates are so-called 3D-silicon and single crystal or poly-crystalline diamond sensors. Using the ATLAS pixel electronics different detector prototypes with a pixel geometry of 400 × 50 um^2 have been built. In particular three devices have been studied in detail: a 3D-silicon and a single crystal diamond detector with an active area of about 1 cm^2 and a poly-crystalline diamond detector of the same size as a current ATLAS pixel detector module (2 × 6 cm^2). To characterize the devices regarding their particle detection efficiency and spatial resolution, the charge c...

  16. Radiation Damage of the ATLAS Pixel Sensors Using Leakage Current Measurement System

    CERN Document Server

    Gorelov, I; The ATLAS collaboration

    2013-01-01

    The current measurement system measures directly the leakage current in pixel sensors. The system is integrated with the ATLAS Pixel high voltage delivery system. The system runs as a monitor of a radiation damage of the pixel sensors. The leakage current data collected for the completed data taking period are analyzed. The recent status of the sensor's radiation damage and a comparison with the theoretical predictions are presented.

  17. The upgraded Pixel Detector of the ATLAS Experiment for Run-II at the Large Hadron Collider

    CERN Document Server

    Mullier, Geoffrey; The ATLAS collaboration

    2015-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of the LHC. Taking advantage of the detector development period 2013 – 2014, the detector was extracted from the experiment and brought to surface to equip it with new service panels and to repair modules furthermore this helped with the installation of the Insertable B-Layer (IBL), fourth layer of pixel, installed in between the existing Pixel Detector and a new beam-pipe at a radius of 3.3 cm. To cope with the high radiation and increased pixel occupancy due to the proximity to the interaction point, two different silicon sensor technologies (planar and 3D) have been used. A new readout chip has been designed with CMOS 130nm technology with larger area, smaller pixel size and faster readout capability. Dedicated design features in combination with a new composite material were considered and used in order to reduce the material budget of the support structure while keeping the optimal thermo-mechanical perfor...

  18. Simulations of 3D-Si sensors for the innermost layer of the ATLAS pixel upgrade

    CERN Document Server

    Baselga, Marta; Quirion, David

    2016-01-01

    The LHC is expected to reach luminosities up to 3000fb-1 and the innermost layer of the ATLAS upgrade plans to cope with higher occupancy and to decrease the pixel size. 3D-Si sensors are a good candidate for the innermost layer of the ATLAS pixel upgrade since they exhibit good performance under high fluences and the new designs will have smaller pixel size to fulfill the electronics expectations. This paper reports TCAD simulations of the 3D-Si sensors designed at IMB-CNM with non passing-through columns that are being fabricated for the next innermost layer of the ATLAS pixel upgrade, shows the charge collection response before and after irradiation, and the response of 3D-Si sensors located at large $\\eta$ angles.

  19. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy

    Science.gov (United States)

    Greenbaum, Alon; Luo, Wei; Khademhosseinieh, Bahar; Su, Ting-Wei; Coskun, Ahmet F.; Ozcan, Aydogan

    2013-04-01

    Pixel-size limitation of lensfree on-chip microscopy can be circumvented by utilizing pixel-super-resolution techniques to synthesize a smaller effective pixel, improving the resolution. Here we report that by using the two-dimensional pixel-function of an image sensor-array as an input to lensfree image reconstruction, pixel-super-resolution can improve the numerical aperture of the reconstructed image by ~3 fold compared to a raw lensfree image. This improvement was confirmed using two different sensor-arrays that significantly vary in their pixel-sizes, circuit architectures and digital/optical readout mechanisms, empirically pointing to roughly the same space-bandwidth improvement factor regardless of the sensor-array employed in our set-up. Furthermore, such a pixel-count increase also renders our on-chip microscope into a Giga-pixel imager, where an effective pixel count of ~1.6-2.5 billion can be obtained with different sensors. Finally, using an ultra-violet light-emitting-diode, this platform resolves 225 nm grating lines and can be useful for wide-field on-chip imaging of nano-scale objects, e.g., multi-walled-carbon-nanotubes.

  20. Test beam campaigns for the CMS Phase I Upgrade pixel readout chip

    International Nuclear Information System (INIS)

    The current CMS silicon pixel detector as the innermost component of the CMS experiment is performing well at LHC design luminosity, but would be subject to severe inefficiencies at LHC peak luminosities of 2 × 1034 cm−2 s−1. Therefore, an upgrade of the CMS pixel detector is planned, including a new readout chip. The chip design comprises additional on-chip buffer cells as well as high-speed data links and low-threshold comparators in the pixel cells. With these changes the upgraded pixel detector will be able to maintain or even improve the efficiency of the current detector at the increased requirements imposed by high luminosities and pile-up. The effects of these design changes on e.g. position resolution and charge collection efficiency were studied in detail using a precision tracking telescope at the DESY test beam facilities. The high telescope track resolution enables precise studies of tracking efficiency, charge sharing and collection even within single pixel cells of the device under test. This publication focuses on the improved performance and capabilities of the new pixel readout chip and summarizes results from test beam campaigns with both unirradiated and irradiated devices. The functionality of the chip design with its improved charge threshold, redesigned data transmission and buffering scheme has been verified

  1. A New Pixel Layer for ATLAS: The IBL

    CERN Document Server

    Kehal, Asma

    2013-01-01

    This report represents the main work in our intership at CERN we investegated the quality assurance of some staves by analyzed data . In this work, we briefly review the ATLAS detector, then we taken about IBL wish play an important role at ATLAS upgrade. And finally we analyzed data with Root to check the validity of the staves .

  2. Medipix3: A 64 k pixel detector readout chip working in single photon counting mode with improved spectrometric performance

    International Nuclear Information System (INIS)

    Medipix3 is a 256x256 channel hybrid pixel detector readout chip working in a single photon counting mode with a new inter-pixel architecture, which aims to improve the energy resolution in pixelated detectors by mitigating the effects of charge sharing between channels. Charges are summed in all 2x2 pixel clusters on the chip and a given hit is allocated locally to the pixel summing circuit with the biggest total charge on an event-by-event basis. Each pixel contains also two 12-bit binary counters with programmable depth and overflow control. The chip is configurable such that either the dimensions of each detector pixel match those of one readout pixel or detector pixels are four times greater in area than the readout pixels. In the latter case, event-by-event summing is still possible between the larger pixels. Each pixel has around 1600 transistors and the analog static power consumption is below 15 μW in the charge summing mode and 9 μW in the single pixel mode. The chip has been built in an 8-metal 0.13 μm CMOS technology. This paper describes the chip from the pixel to the periphery and first electrical results are summarized.

  3. Testbeam Measurements with Pixel Sensors for the ATLAS Insertable b-Layer Project

    CERN Document Server

    George, Matthias; Quadt, Arnulf

    During the current long machine shutdown of the Large Hadron Collider (LHC) at CERN (Geneva), the innermost part of the ATLAS experiment, the pixel detector, is upgraded. The existing ATLAS pixel system is equipped with silicon sensors, organized in three barrel layers and three end cap disks on either side. To cope with the higher instantaneous luminosity in the future and for compensation of radiation damages due to past and near future running time of the experiment, a new fourth pixel detector layer is inserted into the existing system. This additional pixel layer is called “Insertable b-Layer” (IBL). The IBL is a detector system, based on silicon pixel sensors. Due to the smaller radius, compared to all other detectors of the ATLAS experiment, it has to be more radiation tolerant, than e.g. the current pixel layers. Furthermore, a reduced pixel size is necessary to cope with the expected higher particle flux. During the planning phase for the IBL upgrade, three different sensor technologies were comp...

  4. High speed data transmission on small gauge cables for the ATLAS Phase-II Pixel detector upgrade

    Science.gov (United States)

    Shahinian, J.; Volk, J.; Fadeyev, V.; Grillo, A. A.; Meimban, B.; Nielsen, J.; Wilder, M.

    2016-03-01

    The High Luminosity LHC will present a number of challenges for the upgraded ATLAS detector. In particular, data transmission requirements for the upgrade of the ATLAS Pixel detector will be difficult to meet. The expected trigger rate and occupancy imply multi-gigabit per second transmission rates will be required but radiation levels at the smallest radius preclude completely optical solutions. Electrical transmission up to distances of 7m will be necessary to move optical components to an area with lower radiation levels. Here, we explore the use of small gauge electrical cables as a high-bandwidth, radiation hard solution with a sufficiently small radiation length. In particular, we present a characterization of various twisted wire pair (TWP) configurations of various material structures, including measurements of their bandwidth, crosstalk, and radiation hardness. We find that a custom ``hybrid'' cable consisting of 1m of a multi-stranded TWP with Poly-Ether-Ether-Ketone (PEEK) insulation and a thin Al shield followed by 6m of a thin twin-axial cable presents a low-mass solution that fulfills bandwidth requirements and is expected to be sufficiently radiation hard. Additionally, we discuss preliminary results of using measured S-parameters to produce a SPICE model for a 1m sample of the custom TWP to be used for the development of new pixel readout chips.

  5. High speed data transmission on small gauge cables for the ATLAS Phase-II Pixel detector upgrade

    International Nuclear Information System (INIS)

    The High Luminosity LHC will present a number of challenges for the upgraded ATLAS detector. In particular, data transmission requirements for the upgrade of the ATLAS Pixel detector will be difficult to meet. The expected trigger rate and occupancy imply multi-gigabit per second transmission rates will be required but radiation levels at the smallest radius preclude completely optical solutions. Electrical transmission up to distances of 7m will be necessary to move optical components to an area with lower radiation levels. Here, we explore the use of small gauge electrical cables as a high-bandwidth, radiation hard solution with a sufficiently small radiation length. In particular, we present a characterization of various twisted wire pair (TWP) configurations of various material structures, including measurements of their bandwidth, crosstalk, and radiation hardness. We find that a custom ''hybrid'' cable consisting of 1m of a multi-stranded TWP with Poly-Ether-Ether-Ketone (PEEK) insulation and a thin Al shield followed by 6m of a thin twin-axial cable presents a low-mass solution that fulfills bandwidth requirements and is expected to be sufficiently radiation hard. Additionally, we discuss preliminary results of using measured S-parameters to produce a SPICE model for a 1m sample of the custom TWP to be used for the development of new pixel readout chips

  6. Development of a pixel readout chip compatible with large area coverage

    International Nuclear Information System (INIS)

    A second version of the Omega pixel readout chip has been developed in order to make it compatible with large area coverage. Specific features of the new chip include a reset which can be applied immediately following a ''false'' trigger, an improved minimum strobe time of ∼100 ns, a readout clock rate of ∼20 MHz and tri-state buffers on the output data lines. The excellent performance figures of the first chip for noise (100 e- rms wiithout detector and 170 e- rms with detector) and power consumption (30 μW/pixel) have been maintained. We demonstrate how with solder bump-bonding we can create hybrid ''ladders'' which hermetically cover an area of ∼5 mmx50 mm. Potential problems of electrical matching and yield have been addressed and procedures are in place for selecting only ''good'' readout chips for mounting. (orig.)

  7. Charge Pump Clock Generation PLL for the Data Output Block of the Upgraded ATLAS Pixel Front-End in 130 nm CMOS

    CERN Document Server

    Kruth, A; Arutinov, D; Barbero, M; Gronewald, M; Hemperek, T; Karagounis, M; Krueger, H; Wermes, N; Fougeron, D; Menouni, M; Beccherle, R; Dube, S; Ellege, D; Garcia-Sciveres, M; Gnani, D; Mekkaoui, A; Gromov, V; Kluit, R; Schipper, J

    2009-01-01

    FE-I4 is the 130 nm ATLAS pixel IC currently under development for upgraded Large Hadron Collider (LHC) luminosities. FE-I4 is based on a low-power analog pixel array and digital architecture concepts tuned to higher hit rates [1]. An integrated Phase Locked Loop (PLL) has been developed that locally generates a clock signal for the 160 Mbit/s output data stream from the 40 MHz bunch crossing reference clock. This block is designed for low power, low area consumption and recovers quickly from loss of lock related to single-event transients in the high radiation environment of the ATLAS pixel detector. After a general introduction to the new FE-I4 pixel front-end chip, this work focuses on the FE-I4 output blocks and on a first PLL prototype test chip submitted in early 2009. The PLL is nominally operated from a 1.2V supply and consumes 3.84mW of DC power. Under nominal operating conditions, the control voltage settles to within 2% of its nominal value in less than 700 ns. The nominal operating frequency for t...

  8. Simulations of planar pixel sensors for the ATLAS high luminosity upgrade

    OpenAIRE

    Calderini, G.; Benoit, M; Dinu, N.; Lounis, A.; Marchiori, G.

    2011-01-01

    A physics-based device simulation was used to study the charge carrier distribution and the electric field configuration inside simplified two-dimensional models for pixel layouts based on the ATLAS pixel sensor. In order to study the behavior of such detectors under different levels of irradiation, a three-level defect model was implemented into the simulation. Using these models, the number of guard rings, the dead edge width and the detector thickness were modified to investigate their inf...

  9. Screen printing and chip flipping techniques for large area hybrid pixel detectors bonding

    International Nuclear Information System (INIS)

    In the last few years hybrid silicon pixel detectors came to use in high energy physics. One of the most serious problems is the realization of detectors and read out electronics interconnection at high density and low cost. For the upgrade in the forward direction of the DELPHI silicon vertex detector, it has been successfully carried out the bonding of pixel detectors to VLSI read out chips by means of conductive glue screen printing followed by a precise chip flipping procedure. The measured missing contact rate is (0.05±0.03)%. (orig.)

  10. Design and Characterization of 64K Pixels Chips Working in Single Photon Processing Mode

    CERN Document Server

    Llopart Cudie, Xavier; Campbell, M

    2007-01-01

    Progress in CMOS technology and in fine pitch bump bonding has made possible the development of high granularity single photon counting detectors for X-ray imaging. This thesis studies the design and characterization of three pulse processing chips with 65536 square pixels of 55 µm x 55 µm designed in a commercial 0.25 µm 6-metal CMOS technology. The 3 chips share the same architecture and dimensions and are named Medipix2, Mpix2MXR20 and Timepix. The Medipix2 chip is a pixel detector readout chip consisting of 256 x 256 identical elements, each working in single photon counting mode for positive or negative input charge signals. The preamplifier feedback provides compensation for detector leakage current on a pixel by pixel basis. Two identical pulse height discriminators are used to define an energy window. Every event falling inside the energy window is counted with a 13 bit pseudo-random counter. The counter logic, based in a shift register, also behaves as the input/output register for the pixel. Each...

  11. Performance of a chip for hybrid pixel detectors with two counters for X-ray imaging

    International Nuclear Information System (INIS)

    A semiconductor hybrid pixel detector for dynamic X-ray imaging is developed. The detector, called DIXI, consists of a semiconductor sensor mounted onto a readout chip. A detector module with a 500 μm silicon sensor is currently being assembled with the use of anisotropic conductive film as interconnection between the sensor and the readout chip. The basic building block of the detector is 1 cm2 in size and consists of 992 square pixel cells arranged in 31 columns and 32 rows. The pixels have a side of 270 μm. The readout chip is capable of performing photon counting and has an externally adjustable threshold. The readout chip has been characterised by charge injection in the absence of a sensor. The threshold dispersion is measured to 365 e- for hole collection. Even if the chip was not originally designed for electron collection a threshold dispersion of 1650 e- has been achieved. Two counters are implemented in every single pixel cell and the threshold can be changed from one image to the next in order to select different parts of the X-ray spectrum

  12. Development of a detector control system for the serially powered ATLAS pixel detector at the HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Puellen, Lukas

    2015-02-10

    In the years around 2020 the LHC will be upgraded to the HL-LHC. In terms of this upgrade, the ATLAS detector will also be upgraded. This also includes the pixel detector, the innermost of the sub-detectors in ATLAS. Thereby the powering concept of the pixel detector will be changed to reduce the material budget of the detector. From individual powering of each detector module, the concept changes to serial powering, where all modules of a powering group are connected in series. This change makes the development of a new detector control system (DCS) mandatory. Therefore, a new concept for the ATLAS pixel DCS is being developed at the University of Wuppertal. This concept is split into three paths: a safety path, a control path, and a diagnostics path. The safety path is a hard wired interlock system. The concept of this system will not differ significantly, compared to the interlock system of the current detector. The diagnostics path is embedded into the optical data read-out of the detector and will be used for detector tuning with high precision and granularity. The control path supervises the detector and provides a user interface to the hardware components. A concept for this path, including a prototype and proof-of-principle studies, has been developed in terms of this thesis. The control path consists of the DCS network, a read-out and controlling topology created by two types of ASICs: the DCS controller and the DCS chip. These ASICs measure and control all values, necessary for a safe detector operation in situ. This reduces the number of required cables and hence the material budget of the system. For the communication between these ASICs, two very fault tolerant bus protocols have been chosen: CAN bus carries data from the DCS computers, outside of the detector, to the DCS controllers at the edge of the pixel detector. For the communication between the DCS controller and the DCS chip, which is located close to each detector module, an enhanced I2C

  13. Development of a detector control system for the serially powered ATLAS pixel detector at the HL-LHC

    International Nuclear Information System (INIS)

    In the years around 2020 the LHC will be upgraded to the HL-LHC. In terms of this upgrade, the ATLAS detector will also be upgraded. This also includes the pixel detector, the innermost of the sub-detectors in ATLAS. Thereby the powering concept of the pixel detector will be changed to reduce the material budget of the detector. From individual powering of each detector module, the concept changes to serial powering, where all modules of a powering group are connected in series. This change makes the development of a new detector control system (DCS) mandatory. Therefore, a new concept for the ATLAS pixel DCS is being developed at the University of Wuppertal. This concept is split into three paths: a safety path, a control path, and a diagnostics path. The safety path is a hard wired interlock system. The concept of this system will not differ significantly, compared to the interlock system of the current detector. The diagnostics path is embedded into the optical data read-out of the detector and will be used for detector tuning with high precision and granularity. The control path supervises the detector and provides a user interface to the hardware components. A concept for this path, including a prototype and proof-of-principle studies, has been developed in terms of this thesis. The control path consists of the DCS network, a read-out and controlling topology created by two types of ASICs: the DCS controller and the DCS chip. These ASICs measure and control all values, necessary for a safe detector operation in situ. This reduces the number of required cables and hence the material budget of the system. For the communication between these ASICs, two very fault tolerant bus protocols have been chosen: CAN bus carries data from the DCS computers, outside of the detector, to the DCS controllers at the edge of the pixel detector. For the communication between the DCS controller and the DCS chip, which is located close to each detector module, an enhanced I2C

  14. Commissioning and Operation of the ATLAS Pixel Detector at the CERN LHC Collider

    CERN Document Server

    Djama, F; The ATLAS collaboration

    2010-01-01

    Physics program at the CERN LHC collider started in autumn 2009. Since then, LHC daily delivers collisions between its two proton beams. This talk was devoted to the commissioning and early operation of the ATLAS Pixel Detector. The Pixel Detector is working nicely and all the required performances like efficiency, resolution and low noise were met. The fraction of working modules is as high as 97.4 %. The Pixel Detector fully participates in the reconstruction of charged particles trajectories, and is a key element in finding primary and secondary verticies and in tagging of short-lived particles.

  15. Development of thin sensors and a novel interconnection technology for the upgrade of the ATLAS pixel system

    International Nuclear Information System (INIS)

    A new pixel module concept is presented utilizing thin sensors and a novel vertical integration technique for the ATLAS pixel detector in view of the foreseen LHC luminosity upgrades. A first set of pixel sensors with active thicknesses of 75 and 150μm has been produced from wafers of standard thickness using a thinning process developed at the Max-Planck-Institut Halbleiterlabor (HLL) and the Max-Planck-Institut fuer Physik (MPP). Pre-irradiation characterizations of these sensors show a very good device yield and high break down voltage. First proton irradiations up to a fluence of 1015 neq cm-2 have been carried out and their impact on the electrical properties of thin sensors has been studied. The novel ICV-SLID vertical integration technology will allow for routing signals vertically to the back side of the readout chips. With this, four-side buttable detector devices with an increased active area fraction are made possible. A first production of SLID test structures was performed and showed a high connection efficiency for different pad sizes and a mild sensitivity to disturbances of the surface planarity.

  16. Spark protection layers for CMOS pixel anode chips in MPGDs

    Energy Technology Data Exchange (ETDEWEB)

    Bilevych, Y. [Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Blanco Carballo, V.M. [Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); University of Twente/Mesa Institute for Nanotechnology, Hogekamp 3214, 7500 AE Enschede (Netherlands); Chefdeville, M. [Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Colas, P.; Delagnes, E. [Irfu, CEA Saclay, F91191 Gif sur Yvette Cedex (France); Fransen, M. [Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Graaf, H. van der, E-mail: vdgraaf@nikhef.n [Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Koppert, W.J.C. [Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Melai, J.; Salm, C.; Schmitz, J. [University of Twente/Mesa Institute for Nanotechnology, Hogekamp 3214, 7500 AE Enschede (Netherlands); Timmermans, J. [Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Wyrsch, N. [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Microengineering (IMT), Breguet 2, CH-2000 Neuchatel (Switzerland)

    2011-02-11

    In this work we have investigated the functioning of high resistivity amorphous silicon and silicon-rich nitride layers as a protection against discharges in Micro-Patterned Gaseous Detectors (MPGDs). When the anode is protected by a high resistivity layer, discharge signals are limited in charge. A signal reduction is expected when the layers are too thick; simulations presented in this paper indicate that layers up to 10 {mu}m thick can be applied without significantly degrading the detector performance. Layers of amorphous silicon and silicon-rich nitride have been deposited on top of Timepix and Medipix2 chips in GridPix detectors; with this, chips survive naturally occurring as well as intentionally produced discharges.

  17. Low Power Camera-on-a-Chip Using CMOS Active Pixel Sensor Technology

    Science.gov (United States)

    Fossum, E. R.

    1995-01-01

    A second generation image sensor technology has been developed at the NASA Jet Propulsion Laboratory as a result of the continuing need to miniaturize space science imaging instruments. Implemented using standard CMOS, the active pixel sensor (APS) technology permits the integration of the detector array with on-chip timing, control and signal chain electronics, including analog-to-digital conversion.

  18. Test Beam Campaigns for the CMS Phase I Upgrade Pixel Readout Chip

    CERN Document Server

    Spannagel, Simon

    2014-01-01

    The current CMS silicon pixel detector as the innermost component of the CMS experiment is performing well at LHC design luminosity, but would be subject to severe inefficiencies at LHC peak luminosities of 2x10e34 cm^-2 s^-1. Therefore, an upgrade of the CMS pixel detector is planned, including a new readout chip. The chip design comprises additional on-chip buffer cells as well as high-speed data links and low-threshold comparators in the pixel cells. With these changes the upgraded pixel detector will be able to maintain or even improve the efficiency of the current detector at the increased requirements imposed by high luminosities and pile-up. The effects of these design changes on e.g. position resolution and charge collection efficiency were studied in detail using a precision tracking telescope at the DESY test beam facilities. The high telescope track resolution enables precise studies of tracking efficiency, charge sharing and collection even within single pixel cells of the device under test. This ...

  19. Development of thin sensors and a novel interconnection technology for the upgrade of the ATLAS pixel system

    Energy Technology Data Exchange (ETDEWEB)

    Beimforde, Michael

    2010-07-19

    edge demonstrate that the active sensor area fraction can be increased to fulfill the requirements for the detector upgrades. A subset of sensors, irradiated up to the fluence expected at the sLHC demonstrated that thin sensors show a higher charge collection efficiency than expected from current radiation damage models. First thin diodes equipped with the SLID metallization and first test structures that were connected with SLID indicate that this novel interconnection as part of the ICV-SLID technology could be a suitable replacement for the present bump-bonding technology. Finally, a new calibration algorithm for the ATLAS pixel readout chips is presented which is used to lower the discriminator threshold from 4000 electrons to 2000 electrons, to account for the reduction of the signal size due to radiation damage and the reduced sensor thickness. (orig.)

  20. Development of thin sensors and a novel interconnection technology for the upgrade of the ATLAS pixel system

    International Nuclear Information System (INIS)

    area fraction can be increased to fulfill the requirements for the detector upgrades. A subset of sensors, irradiated up to the fluence expected at the sLHC demonstrated that thin sensors show a higher charge collection efficiency than expected from current radiation damage models. First thin diodes equipped with the SLID metallization and first test structures that were connected with SLID indicate that this novel interconnection as part of the ICV-SLID technology could be a suitable replacement for the present bump-bonding technology. Finally, a new calibration algorithm for the ATLAS pixel readout chips is presented which is used to lower the discriminator threshold from 4000 electrons to 2000 electrons, to account for the reduction of the signal size due to radiation damage and the reduced sensor thickness. (orig.)

  1. Achievements of the ATLAS Upgrade Planar Pixel Sensors R&D Project

    CERN Document Server

    Nellist, C

    2015-01-01

    In the framework of the HL-LHC upgrade, the ATLAS experiment plans to introduce an all-silicon inner tracker to cope with the elevated occupancy. To investigate the suitability of pixel sensors using the proven planar technology for the upgraded tracker, the ATLAS Planar Pixel Sensor R&D Project (PPS) was established comprising 19 institutes and more than 90 scientists. The paper provides an overview of the research and development project and highlights accomplishments, among them: beam test results with planar sensors up to innermost layer fluences (> 10^16 n_eq cm^2); measurements obtained with irradiated thin edgeless n-in-p pixel assemblies; recent studies of the SCP technique to obtain almost active edges by postprocessing already existing sensors based on scribing, cleaving and edge passivation; an update on prototyping efforts for large areas: sensor design improvements and concepts for low-cost hybridisation; comparison between Secondary Ion Mass Spectrometry results and TCAD simulations. Togethe...

  2. Characterization of Ni/SnPb-TiW/Pt Flip Chip Interconnections in Silicon Pixel Detector Modules

    CERN Document Server

    Karadzhinova, Aneliya; Härkönen, Jaakko; Luukka, Panja-riina; Mäenpää, Teppo; Tuominen, Eija; Haeggstrom, Edward; Kalliopuska, Juha; Vahanen, Sami; Kassamakov, Ivan

    2014-01-01

    In contemporary high energy physics experiments, silicon detectors are essential for recording the trajectory of new particles generated by multiple simultaneous collisions. Modern particle tracking systems may feature 100 million channels, or pixels, which need to be individually connected to read-out chains. Silicon pixel detectors are typically connected to readout chips by flip-chip bonding using solder bumps. High-quality electro-mechanical flip-chip interconnects minimizes the number of dead read-out channels in the particle tracking system. Furthermore, the detector modules must endure handling during installation and withstand heat generation and cooling during operation. Silicon pixel detector modules were constructed by flip-chip bonding 16 readout chips to a single sensor. Eutectic SnPb solder bumps were deposited on the readout chips and the sensor chips were coated with TiW/Pt thin film UBM (under bump metallization). The modules were assembled at Advacam Ltd, Finland. We studied the uniformity o...

  3. XPAD3-S: A fast hybrid pixel readout chip for X-ray synchrotron facilities

    International Nuclear Information System (INIS)

    At X-ray synchrotron facilities, scattering experiments require detectors with a large sensitive surface, an high count rate capability, a large counter dynamics, a fast readout system and an adjustable energy threshold. X-ray pixel chip with adaptable dynamics (XPAD3) is a new pixellized photon detector based on hybrid pixel technology, which provides low noise data readout at high speed. It is designed in 0.25 μm IBM technology and contains 9600 pixels (130 μmx130 μm) distributed into 80 columns of 120 elements each. Its features have been optimized to fulfill a count rate capability up to 10+6 photons/pixel/s, an high dynamic range over 35 keV, a very low noise of 130e-, and a threshold adjustment well below 4 keV. Fast data readout below 2 ms/frame is expected. To meet these requirements, an innovative architecture has been designed that makes possible the readout the circuit during acquisition while preserving the precise setting of the thresholds all over the pixel array. The XPAD3 circuit can be bump-bonded with Si, CdTe, or GaAs sensors to optimize its detection efficiency at high X-ray energies. XPAD3 detector modules will be tiled together to form the XPIX detector with a 8 cmx12 cm sensitive area. We present first results obtained using a single-chip prototype of the XPAD3 detector

  4. Study of planar pixel sensors hardener to radiations for the upgrade of the ATLAS vertex detector

    International Nuclear Information System (INIS)

    In this work, we present a study, using TCAD (Technology Computer-Assisted Design) simulation, of the possible methods of designing planar pixel sensors by reducing their inactive area and improving their radiation hardness for use in the Insertable B-Layer (IBL) project and for SLHC upgrade phase for the ATLAS experiment. Different physical models available have been studied to develop a coherent model of radiation damage in silicon that can be used to predict silicon pixel sensor behavior after exposure to radiation. The Multi-Guard Ring Structure, a protection structure used in pixel sensor design was studied to obtain guidelines for the reduction of inactive edges detrimental to detector operation while keeping a good sensor behavior through its lifetime in the ATLAS detector. A campaign of measurement of the sensor process parameters and electrical behavior to validate and calibrate the TCAD simulation models and results are also presented. A model for diode charge collection in highly irradiated environment was developed to explain the high charge collection observed in highly irradiated devices. A simple planar pixel sensor digitization model to be used in test beam and full detector system is detailed. It allows for easy comparison between experimental data and prediction by the various radiation damage models available. The digitizer has been validated using test beam data for unirradiated sensors and can be used to produce the first full scale simulation of the ATLAS detector with the IBL that include sensor effects such as slim edge and thinning of the sensor. (author)

  5. Development of Micromegas-like gaseous detectors using a pixel readout chip as collecting anode

    International Nuclear Information System (INIS)

    This thesis reports on the fabrication and test of a new gaseous detector with a very large number of readout channels. This detector is intended for measuring the tracks of charged particles with an unprecedented sensitivity to single electrons of almost 100 %. It combines a metal grid for signal amplification called the Micromegas with a pixel readout chip as signal collecting anode and is dubbed GridPix. GridPix is a potential candidate for a sub-detector at a future electron linear collider (ILC) foreseen to work in parallel with the LHC around 2020--2030. The tracking capability of GridPix is best exploited if the Micromegas is integrated on the pixel chip. This integrated grid is called InGrid and is precisely fabricated by wafer post-processing. The various steps of the fabrication process and the measurements of its gain, energy resolution and ion back-flow property are reported in this document. Studies of the response of the complete detector formed by an InGrid and a TimePix pixel chip to X-rays and cosmic particles are also presented. In particular, the efficiency for detecting single electrons and the point resolution in the pixel plane are measured. Implications for a GridPix detector at ILC are discussed. (author)

  6. Radiation tolerance of prototype BTeV pixel detector readout chips

    International Nuclear Information System (INIS)

    High energy and nuclear physics experiments need tracking devices with increasing spatial precision and readout speed in the face of ever-higher track densities and increased radiation environments. The new generation of hybrid pixel detectors (arrays of silicon diodes bump bonded to arrays of front-end electronic cells) is the state of the art technology able to meet these challenges. We report on irradiation studies performed on BTeV pixel readout chip prototypes exposed to a 200 MeV proton beam at Indiana University Cyclotron Facility. Prototype pixel readout chip preFPIX2 has been developed at Fermilab for collider experiments and implemented in standard 0.25 micron CMOS technology following radiation tolerant design rules. The tests confirmed the radiation tolerance of the chip design to proton total dose up to 87 MRad. In addition, non destructive radiation-induced single event upsets have been observed in on-chip static registers and the single bit upset cross section has been extensively measured

  7. Radiation tolerance of prototype BTeV pixel detector readout chips

    Energy Technology Data Exchange (ETDEWEB)

    Gabriele Chiodini et al.

    2002-07-12

    High energy and nuclear physics experiments need tracking devices with increasing spatial precision and readout speed in the face of ever-higher track densities and increased radiation environments. The new generation of hybrid pixel detectors (arrays of silicon diodes bump bonded to arrays of front-end electronic cells) is the state of the art technology able to meet these challenges. We report on irradiation studies performed on BTeV pixel readout chip prototypes exposed to a 200 MeV proton beam at Indiana University Cyclotron Facility. Prototype pixel readout chip preFPIX2 has been developed at Fermilab for collider experiments and implemented in standard 0.25 micron CMOS technology following radiation tolerant design rules. The tests confirmed the radiation tolerance of the chip design to proton total dose up to 87 MRad. In addition, non destructive radiation-induced single event upsets have been observed in on-chip static registers and the single bit upset cross section has been extensively measured.

  8. Mega-pixel PQR laser chips for interconnect, display ITS, and biocell-tweezers OEIC

    Science.gov (United States)

    Kwon, O'Dae; Yoon, J. H.; Kim, D. K.; Kim, Y. C.; Lee, S. E.; Kim, S. S.

    2008-02-01

    We describe a photonic quantum ring (PQR) laser device of three dimensional toroidal whispering gallery cavity. We have succeeded in fabricating the first genuine mega-pixel laser chips via regular semiconductor technology. This has been realized since the present injection laser emitting surface-normal dominant 3D whispering gallery modes (WGMs) can be operated CW with extremely low operating currents (μA-nA per pixel), together with the lasing temperature stabilities well above 140 deg C with minimal redshifts, which solves the well-known integration problems facing the conventional VCSEL. Such properties unusual for quantum well lasers become usual because the active region, involving vertically confining DBR structure in addition to the 2D concave WGM geometry, induces a 'photonic quantum ring (PQR)-like' carrier distribution through a photonic quantum corral effect. A few applications of such mega-pixel PQR chips are explained as follows: (A) Next-generation 3D semiconductor technologies demand a strategy on the inter-chip and intra-chip optical interconnect schemes with a key to the high-density emitter array. (B) Due to mounting traffic problems and fatalities ITS technology today is looking for a revolutionary change in the technology. We will thus outline how 'SLEEP-ITS' can emerge with the PQR's position-sensing capability. (C) We describe a recent PQR 'hole' laser of convex WGM: Mega-pixel PQR 'hole' laser chips are even easier to fabricate than PQR 'mesa' lasers. Genuine Laguerre-Gaussian (LG) beam patterns of PQR holes are very promising for biocell manipulations like sorting mouse myeloid leukemia (M1s) cells. (D) Energy saving and 3D speckle-free POR laser can outdo LEDs in view of red GaAs and blue GaN devices fabricated recently.

  9. Characterization of edgeless pixel detectors coupled to Medipix2 readout chip

    Science.gov (United States)

    Kalliopuska, Juha; Tlustos, Lukas; Eränen, Simo; Virolainen, Tuula

    2011-08-01

    VTT has developed a straightforward and fast process to fabricate four-side buttable (edgeless) microstrip and pixel detectors on 6 in. (150 mm) wafers. The process relies on advanced ion implantation to activate the edges of the detector instead of using polysilicon. The article characterizes 150 μm thick n-on-n edgeless pixel detector prototypes with a dead layer at the edge below 1 μm. Electrical and radiation response characterization of 1.4×1.4 cm2 n-on-n edgeless detectors has been done by coupling them to the Medipix2 readout chips. The distance of the detector's physical edge from the pixels was either 20 or 50 μm. The leakage current of flip-chip bonded edgeless Medipix2 detector assembles were measured to be ˜90 nA/cm2 and no breakdown was observed below 110 V. Radiation response characterization includes X-ray tube and radiation source responses. The characterization results show that the detector's response at the pixels close to the physical edge of the detector depend dramatically on the pixel-to-edge distance.

  10. The Pixels find their way to the heart of ATLAS

    CERN Multimedia

    Kevin Einsweiler

    Since the last e-news article on the Pixel Detector in December 2006, there has been much progress. At that time, we were just about to receive the Beryllium beampipe, and to integrate the innermost layer of the Pixel Detector around it. This innermost layer is referred to as the B-layer because of the powerful role it plays in finding the secondary vertices that are the key signature for the presence of b-quarks, and with somewhat greater difficulty, c-quarks and tau leptons. The integration of the central 7m long beampipe into the Pixel Detector was completed in December, and the B-layer was successfully integrated around it. In January this year, we had largely completed the central 1.5m long detector, including the three barrel layers and the three disk layers on each end of the barrel. Although this region contains all of the 80 million readout channels, it cannot be integrated into the Inner Detector without additional services and infrastructure. Therefore, the next step was to add the Service Panels...

  11. Radiationhard components for the control system of a future ATLAS pixel detector

    CERN Document Server

    Becker, K; Kersten, S; Kind, P; Mättig, P; Püllen, L; Zeitnitz, C

    2015-01-01

    will include a new pixel detector. A completely new detector control system (DCS) for this pixel detector will be required in order to cope with the substantial increase in radiation at the HL-LHC. The DCS has to have a very high reliability and all components installed within the detector volume have to be radiationhard. This will ensure a safe operation of the pixel detector and the experiment. A further design constraint is the minimization of the used material and cables in order to limit the impact on the tracking performance to a minimum. To meet these requirements we propose a DCS network which consists of a DCS chip and a DCS controller. In the following we present the development of the first prototypes for the DCS chip and the DCS controller with a special focus on the communication interface, radiation hardness and robustness against single event upsets.

  12. Neural network based cluster reconstruction in the ATLAS silicon Pixel Detector

    International Nuclear Information System (INIS)

    The hit signals read out from pixels on planar semi-conductor sensors are grouped into clusters, to reconstruct the location where a charged particle passed through. The spatial resolution of the pixel detector can be improved significantly using the information from the cluster of adjacent pixels. Such analogue cluster creation techniques have been used by the ATLAS experiment for many years giving an excellent performance. However, in dense environments, such as those inside high-energy jets, it is likely that the charge deposited by two or more close-by tracks merges into one single cluster. A clusterization algorithm based on neural network methods has been developed for the ATLAS Pixel Detector. This can identify the shared clusters, split them if necessary, and estimate the positions of all particles traversing the cluster. The algorithm significantly reduces ambiguities in the assignment of pixel detector measurements to tracks within jets, and improves the positional accuracy with respect to standard interpolation techniques, by the use of the 2-dimensional charge distribution information. The reconstruction using the neural network reduces strongly the number of hits shared by more than one track and improves the resolution of the impact parameter by about 15%.

  13. A Leakage Current-based Measurement of the Radiation Damage in the ATLAS Pixel Detector

    CERN Document Server

    Gorelov, Igor; The ATLAS collaboration

    2015-01-01

    A measurement has been made of the radiation damage incurred by the ATLAS Pixel Detector barrel silicon modules from the beginning of operations through the end of 2012. This translates to hadronic fluence received over the full period of operation at energies up to and including 8 TeV. The measurement is based on a per-module measurement of the silicon sensor leakage current. The results are presented as a function of integrated luminosity and compared to predictions by the Hamburg Model. This information can be used to predict limits on the lifetime of the Pixel Detector due to current, for various operating scenarios.

  14. Simulation of guard ring influence on the performance of ATLAS pixel detectors for inner layer replacement

    Energy Technology Data Exchange (ETDEWEB)

    Benoit, M; Lounis, A; Dinu, N [Laboratoire de l' accelerateur lineaire, Orsay (France)], E-mail: Benoit@lal.in2p3.fr

    2009-03-15

    Electric field magnitude and depletion in the bulk of silicon pixel detectors, which influence its breakdown behaviour, was studied using finite-element method to solve the drift-diffusion equation coupled to Poisson's equation in a simplified two dimensional model of the ATLAS pixel sensor. Based on this model, the number of guard rings and dead edges width were modified to investigate their influence on the detector's depletion at the edge and on its internal electrical field distribution. Finally, the 3 level model was implemented into the simulation to study the behaviour of such detector under different level of irradiation.

  15. Flip chip assembly of thinned chips for hybrid pixel detector applications

    CERN Document Server

    Fritzsch, T; Woehrmann, M; Rothermund, M; Huegging, F; Ehrmann, O; Oppermann, H; Lang, K.D

    2014-01-01

    There is a steady trend to ultra-thin microelectronic devices. Especially for future particle detector systems a reduced readout chip thickness is required to limit the loss of tracking precision due to scattering. The reduction of silicon thickness is performed at wafer level in a two-step thinning process. To minimize the risk of wafer breakage the thinned wafer needs to be handled by a carrier during the whole process chain of wafer bumping. Another key process is the flip chip assembly of thinned readout chips onto thin sensor tiles. Besides the prevention of silicon breakage the minimization of chip warpage is one additional task for a high yield and reliable flip chip process. A new technology using glass carrier wafer will be described in detail. The main advantage of this technology is the combination of a carrier support during wafer processing and the chip support during flip chip assembly. For that a glass wafer is glue-bonded onto the backside of the thinned readout chip wafer. After the bump depo...

  16. Physics performance and upgrade for Run II of the ATLAS pixel detector

    International Nuclear Information System (INIS)

    The ATLAS pixel detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle trajectories in the high radiation environment close to the collision region. The operation and performance of the pixel detector during the first years of LHC running are described. More than 96% of the detector modules were operational during this period, with an average intrinsic hit efficiency larger than 99%. The alignment of the detector was found to be stable at the few-micron level over long periods of time. Detector material description, tracking performances in Run I and expectations for the upcoming Run II are presented

  17. A module concept for the upgrades of the ATLAS pixel system using the novel SLID-ICV vertical integration technology

    CERN Document Server

    Beimforde, M; Macchiolo, A; Moser, H G; Nisius, R; Richter, R H; Weigell, P; 10.1088/1748-0221/5/12/C12025

    2010-01-01

    The presented R&D activity is focused on the development of a new pixel module concept for the foreseen upgrades of the ATLAS detector towards the Super LHC employing thin n-in-p silicon sensors together with a novel vertical integration technology. A first set of pixel sensors with active thicknesses of 75 μm and 150 μm has been produced using a thinning technique developed at the Max-Planck-Institut für Physik (MPP) and the MPI Semiconductor Laboratory (HLL). Charge Collection Efficiency (CCE) measurements of these sensors irradiated with 26 MeV protons up to a particle fluence of 1016neqcm−2 have been performed, yielding higher values than expected from the present radiation damage models. The novel integration technology, developed by the Fraunhofer Institut EMFT, consists of the Solid-Liquid InterDiffusion (SLID) interconnection, being an alternative to the standard solder bump-bonding, and Inter-Chip Vias (ICVs) for routing signals vertically through electronics. This allows for extracting the ...

  18. Evaluation of novel KEK/HPK n-in-p pixel sensors for ATLAS upgrade with testbeam

    International Nuclear Information System (INIS)

    A new type of n-in-p planar pixel sensors have been developed at KEK/HPK in order to cope with the maximum particle fluence of 1–3×1016 1 MeV equivalent neutrons per square centimeter (neq/cm2) in the upcoming LHC upgrades. Four n-in-p devices were connected by bump-bonding to the new ATLAS Pixel front-end chip (FE-I4A) and characterized before and after the irradiation to 2×1015neq/cm2. These planar sensors are 150μm thick, using biasing structures made out of polysilicon or punch-through dot and isolation structures of common or individual p-stop. Results of measurements with radioactive 90Sr source and with a 120 GeV/c momentum pion beam at the CERN Super Proton Synchrotron (SPS) are presented. The common p-stop isolation structure shows a better performance than the individual p-stop design, after the irradiation. The flat distribution of the collected charge in the depth direction after the irradiation implies that the effect of charge trapping is small, at the fluence, with the bias voltage well above the full depletion voltage.

  19. The ATLAS Pixel nSQP Readout Chain

    CERN Document Server

    Welch, S; The ATLAS collaboration

    2012-01-01

    Concerns regarding the failure of off detector optical components caused concern that on detector optical components would begin to fail in the same way. Therefor, replacements for the current Pixel Detector Service Quarter Panels have been designed and are under construction. The design challenges of the nSQP project are discussed and an overview of the changes is given. The nSQP project allows a few other upgrades to the current detector which are described. Finally a description of the design validation and testing on the new components is given.

  20. Simulation of an efficiency measurement of the CMS pixel Read-Out Chip at high rates.

    CERN Document Server

    Delcourt, Martin

    2014-01-01

    My summer student project investigates the effects on the efficiency of out-of-sync events during a beam test at Fermilab on pixel detectors for the phase 1 upgrade of the CMS. While the best results of this project came from direct lab measurements, most of my work was focused on the development of a wider simulation to have a better understanding of the behaviour of the read-out chips during the beam test.

  1. SMARTPIX, a photon-counting pixel detector for synchrotron applications based on Medipix3RX readout chip and active edge pixel sensors

    International Nuclear Information System (INIS)

    Photon-counting pixel detectors are now routinely used on synchrotron beamlines. Many applications benefit from their noiseless mode of operation, single-pixel point spread function and high frame rates. One of their drawbacks is a discontinuous detection area due to the space-consuming wirebonded connections of the readout chips. Moreover, charge sharing limits their efficiency and their energy discrimination capabilities. In order to overcome these issues the ESRF is developing SMARTPIX,a scalable and versatile pixel detector system with minimized dead areas and with energy resolving capabilities based on the MEDIPIX3RX readout chip. SMARTPIX exploits the through-silicon via technology implemented on MEDIPIX3RX, the active edge sensor processing developed in particular at ADVACAM, and the on-chip analog charge summing feature of MEDIPIX3RX. This article reports on system architecture, unit module structure, data acquisition electronics, target characteristics and applications

  2. SMARTPIX, a photon-counting pixel detector for synchrotron applications based on Medipix3RX readout chip and active edge pixel sensors

    Science.gov (United States)

    Ponchut, C.; Collet, E.; Hervé, C.; Le Caer, T.; Cerrai, J.; Siron, L.; Dabin, Y.; Ribois, J. F.

    2015-01-01

    Photon-counting pixel detectors are now routinely used on synchrotron beamlines. Many applications benefit from their noiseless mode of operation, single-pixel point spread function and high frame rates. One of their drawbacks is a discontinuous detection area due to the space-consuming wirebonded connections of the readout chips. Moreover, charge sharing limits their efficiency and their energy discrimination capabilities. In order to overcome these issues the ESRF is developing SMARTPIX,a scalable and versatile pixel detector system with minimized dead areas and with energy resolving capabilities based on the MEDIPIX3RX readout chip. SMARTPIX exploits the through-silicon via technology implemented on MEDIPIX3RX, the active edge sensor processing developed in particular at ADVACAM, and the on-chip analog charge summing feature of MEDIPIX3RX. This article reports on system architecture, unit module structure, data acquisition electronics, target characteristics and applications.

  3. Robustness of the Artificial Neural Networks Used for Clustering in the ATLAS Pixel Detector

    CERN Document Server

    The ATLAS collaboration

    2015-01-01

    A study of the robustness of the ATLAS pixel neural network clustering algorithm is presented. The sensitivity to variations to its input is evaluated. These variations are motivated by potential discrepancies between data and simulation due to uncertainties in the modelling of pixel clusters in simulation, as well as uncertainties from the detector calibration. Within reasonable variation magnitudes, the neural networks prove to be robust to most variations. The neural network used to identify pixel clusters created by multiple charged particles, is most sensitive to variations affecting the total amount of charge collected in the cluster. Modifying the read-out threshold has the biggest effect on the clustering's ability to estimate the position of the particle's intersection with the detector.

  4. The Layer 1 / Layer 2 readout upgrade for the ATLAS Pixel Detector

    CERN Document Server

    Mullier, Geoffrey; The ATLAS collaboration

    2016-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of the Large Hadron Collider (LHC). The increase of instantaneous luminosity foreseen during the LHC Run 2, will lead to an increased detector occupancy that is expected to saturate the readout links of the outermost layers of the pixel detector: Layers 1 and 2. To ensure a smooth data taking under such conditions, the read out system of the recently installed fourth innermost pixel layer, the Insertable B-Layer, was modified to accomodate the needs of the older detector. The Layer 2 upgrade installation took place during the 2015 winter shutdown, with the Layer 1 installation scheduled for 2016. A report of the successful installation, together with the design of novel dedicated optical to electrical converters and the software and firmware updates will be presented.

  5. The Upgraded Pixel Detector of the ATLAS Experiment for Run-2

    CERN Document Server

    Ferrere, Didier; The ATLAS collaboration

    2016-01-01

    Run-2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with high radiation and expected occupancy, is the first large scale application of 3D detectors and CMOS 130nm technology. In addition the Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during run-1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning and performance of the 4-layer Pixel Detector, in particular the IBL, will be presented, using collision data.

  6. Study of FPGA and GPU based pixel calibration for ATLAS IBL

    CERN Document Server

    Dopke, J; The ATLAS collaboration; Flick, T; Gabrielli, A; Grosse-Knetter, J; Krieger, N; Kugel, A; Polini, A; Schroer, N

    2010-01-01

    The insertable B-layer (IBL) is a new stage of the ATLAS pixel detector to be installed around 2014. 12 million pixel are attached to new FE-I4 readout ASICs, each controlling 26680 pixel. Compared to the existing FE-I3 based detector the new system features higher readout speed of 160Mbit/s per ASIC and simplified control. For calibration defined charges are applied to all pixels and the resulting time-over-threshold values are evaluated. In the present system multiple sets of two custom VME cards which employ a combination of FPGA and DSP technology are used for I/O interfacing, formatting and processing. The execution time of 51s to perform a threshold scan on a FE-I3 module of 46080 pixel is composed of 8s control, 29s transfer, 7.5s histogramming and 7s analysis. Extrapolating to FE-I4 the times per module of 53760 pixels are 12ms, 5.8s, 9.4s and 8.3s, a total of 23.5s. We present a proposal for a novel approach to the dominant tasks for FE-I4: histogramming and ananlysis. An FPGA-based histogramming uni...

  7. A pixel readout chip for 10-30 Mrad in standard 0.25microm CMOS

    International Nuclear Information System (INIS)

    A radiation tolerant pixel detector readout chip has been developed in a commercial 0.25 microm CMOS process. The chip is a matrix of two columns of 65 identical cells. Each readout cell comprises a preamplifier, a shaper filter, a discriminator, a delay line and readout logic. The chip occupies 10 mm2, and contains about 50,000 transistors. Electronic noise (∼220 e- rms) and threshold dispersion (∼160 e- rms) allow operation at 1,500 e- average threshold. The radiation tolerance of this mixed mode analog-digital circuit has been enhanced by designing NMOS transistors in enclosed geometry and introducing guardrings wherever necessary. The chip, which was developed at CERN for the ALICE and LHCb experiments, was still operational after receiving 3.6 x 1013 protons over an area of 2 mm x 2 mm. Other chips were irradiated with X-rays and remained fully functional up to 30 Mrad (SiO2) with only minor changes in analog parameters. These results indicate that careful use of deep submicron CMOS technologies can lead to circuits with high radiation tolerance

  8. TCAD Simulations of ATLAS Pixel Guard Ring and Edge Structure for SLHC Upgrade

    CERN Document Server

    Lounis, A; The ATLAS collaboration; Calderini, G; Marchiori, G; Benoit, M; Dinu, N

    2010-01-01

    In this work, the magnitude of the electric field and the depletion inside a simplified two dimensional model of the ATLAS planar pixel sensor for the insertable b-layer and the super-LHC upgrade have been studied. The parameters influencing the breakdown behavior were studied using a finite-element method to solve the drift-diffusion equations coupled to Poisson's equation. Using these models, the number of guard rings, dead edge width and sensor's thickness were modified with respect to the ATLAS actual pixel sensor to investigate their influence on the sensor's depletion at the edge and on its internal electrical field distribution. The goal of the simulation is to establish a model to discriminate between different designs and to select the most optimized to fit the needs in radiation hardness and low material budget of ATLAS inner detector during super-LHC operation. A three defects level model has been implemented in the simulations to study the behavior of such sensors under different level of irradiat...

  9. Studies on irradiated pixel detectors for the ATLAS IBL and HL-LHC upgrade

    International Nuclear Information System (INIS)

    The constant demand for higher luminosity in high energy physics is the reason for the continuous effort to adapt the accelerators and the experiments. The upgrade program for the experiments and the accelerators at CERN already includes several expansion stages of the Large Hadron Collider (LHC) which will increase the luminosity and the energy of the accelerator. Simultaneously the LHC experiments prepare the individual sub-detectors for the increasing demands in the coming years. Especially the tracking detectors have to cope with fluence levels unprecedented for high energy physics experiments. Correspondingly to the fluence increases the impact of the radiation damage which reduces the life time of the detectors by decreasing the detector performance and efficiency. To cope with this effect new and more radiation hard detector concepts become necessary to extend the life time. This work concentrates on the impact of radiation damage on the pixel sensor technologies to be used in the next upgrade of the ATLAS Pixel Detector as well as for applications in the ATLAS Experiment at HL-LHC conditions. The sensors considered in this work include various designs based on silicon and diamond as sensor material. The investigated designs include a planar silicon pixel design currently used in the ATLAS Experiment as well as a 3D pixel design which uses electrodes penetrating the entire sensor material. The diamond designs implement electrodes similar to the design used by the planar technology with diamond sensors made out of single- and poly-crystalline material. To investigate the sensor properties characterization tests are performed before and after irradiation with protons or neutrons. The measurements are used to determine the interaction between the read-out electronics and the sensors to ensure the signal transfer after irradiation. Further tests focus on the sensor performance itself which includes the analysis of the leakage current behavior and the charge

  10. A digital monolithic active pixel sensor chip in a quadruple-well CIS process

    International Nuclear Information System (INIS)

    A CMOS sensor chip for charged particle detection has been developed and submitted for fabrication in a 0.18 m Quadruple-Well (N and P-Wells, Deep N and P-Wells) CMOS Image Sensor (CIS) process. Improvement of the radiation hardness, the readout speed and the power dissipation of the mainstream CMOS sensors is expected with the exploration of this process. In order to ensure better charge collection and neutron tolerance, wafers with high-resistivity epitaxial layer have been chosen. The chip comprises several sub-chips, and in this paper one of them, a digital CMOS sensor prototype developed in order to validate the key analog blocs (from sensing element to I-bit digital conversion) of a binary MAPS in this process will be presented. The digital sensor prototype comprises four different sub-arrays of 20 μm pitch 64 * 32 pixels, 128 column-level auto-zeroed discriminators, a sequencer and an output digital multiplexer. Laboratory tests results including the charge-to-voltage conversion factor, the charge collection efficiency, the temporal noise and the fixed-pattern noise are presented in details. A 55Fe source is used for calibration of pixels. Some irradiation results will also be given. (authors)

  11. Recent Results of the ATLAS Upgrade Planar Pixel Sensors R&D Project

    CERN Document Server

    Weigell, Philipp

    2013-01-01

    To cope with the higher occupancy and radiation damage at the HL-LHC also the LHC experiments will be upgraded. The ATLAS Planar Pixel Sensor R&D Project (PPS) is an international collaboration of 17 institutions and more than 80 scientists, exploring the feasibility of employing planar pixel sensors for this scenario. Depending on the radius, different pixel concepts are investigated using laboratory and beam test measurements. At small radii the extreme radiation environment and strong space constraints are addressed with very thin pixel sensors active thickness in the range of (75-150) mum, and the development of slim as well as active edges. At larger radii the main challenge is the cost reduction to allow for instrumenting the large area of (7-10) m^2. To reach this goal the pixel productions are being transferred to 6 inch production lines. Additionally, investigated are more cost-efficient and industrialised interconnection techniques as well as the n-in-p technology, which, being a single-sided pr...

  12. Simulations of planar pixel sensors for the ATLAS high luminosity upgrade

    CERN Document Server

    Calderini, G; Dinu, N; Lounis, A; Marchiori, G

    2011-01-01

    A physics-based device simulation was used to study the charge carrier distribution and the electric field configuration inside simplified two-dimensional models for pixel layouts based on the ATLAS pixel sensor. In order to study the behavior of such detectors under different levels of irradiation, a three-level defect model was implemented into the simulation. Using these models, the number of guard rings, the dead edge width and the detector thickness were modified to investigate their influence on the detector depletion at the edge and on its internal electric field distribution in order to optimize the layout parameters. Simulations indicate that the number of guard rings can be reduced by a few hundred microns with respect to the layout used for the present ATLAS sensors, with a corresponding extension of the active area of the sensors. A study of the inter-pixel capacitance and of the capacitance between the implants and the high-voltage contact as a function of several parameters affecting the geometr...

  13. 3D silicon pixel detectors for the ATLAS Forward Physics experiment

    CERN Document Server

    Lange, Jörn; Grinstein, Sebastian; Paz, Ivan Lopez

    2015-01-01

    The ATLAS Forward Physics (AFP) project plans to install 3D silicon pixel detectors about 210 m away from the interaction point and very close to the beamline (2-3 mm). This implies the need of slim edges of about 100-200 $\\mu$m width for the sensor side facing the beam to minimise the dead area. Another challenge is an expected non-uniform irradiation of the pixel sensors. It is studied if these requirements can be met using slightly-modified FE-I4 3D pixel sensors from the ATLAS Insertable B-Layer production. AFP-compatible slim edges are obtained with a simple diamond-saw cut. Electrical characterisations and beam tests are carried out and no detrimental impact on the leakage current and hit efficiency is observed. For devices without a 3D guard ring a remaining insensitive edge of less than 15 $\\mu$m width is found. Moreover, 3D detectors are non-uniformly irradiated up to fluences of several 10$^{15}$ n$_{eq}$/cm$^2$ with either a focussed 23 GeV proton beam or a 23 MeV proton beam through holes in Al ma...

  14. A neural network clustering algorithm for the ATLAS silicon pixel detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Almond, John; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boddy, Christopher Richard; Boehler, Michael; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; do Vale, Maria Aline Barros; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gandrajula, Reddy Pratap; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Guan, Liang; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le, Bao Tran; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire, Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonhardt, Kathrin; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marques, Carlos; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moraes, Arthur; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sauvage, Gilles; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Christopher; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    2014-01-01

    A novel technique to identify and split clusters created by multiple charged particles in the ATLAS pixel detector using a set of artificial neural networks is presented. Such merged clusters are a common feature of tracks originating from highly energetic objects, such as jets. Neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. This technique replaces the former clustering approach based on a connected component analysis and charge interpolation. The performance of the neural network splitting technique is quantified using data from proton-proton collisions at the LHC collected by the ATLAS detector in 2011 and from Monte Carlo simulations. This technique reduces the number of clusters shared between tracks in highly energetic jets by up to a factor of three. It also provides more precise position and error estimates of the clusters in both the transverse and longitudinal impact parameter resolution.

  15. Design of the low area monotonic trim DAC in 40 nm CMOS technology for pixel readout chips

    International Nuclear Information System (INIS)

    The recent research in hybrid pixel detectors working in single photon counting mode focuses on nanometer or 3D technologies which allow making pixels smaller and implementing more complex solutions in each of the pixels. Usually single pixel in readout electronics for X-ray detection comprises of charge amplifier, shaper and discriminator that allow classification of events occurring at the detector as true or false hits by comparing amplitude of the signal obtained with threshold voltage, which minimizes the influence of noise effects. However, making the pixel size smaller often causes problems with pixel to pixel uniformity and additional effects like charge sharing become more visible. To improve channel-to-channel uniformity or implement an algorithm for charge sharing effect minimization, small area trimming DACs working in each pixel independently are necessary. However, meeting the requirement of small area often results in poor linearity and even non-monotonicity. In this paper we present a novel low-area thermometer coded 6-bit DAC implemented in 40 nm CMOS technology. Monte Carlo simulations were performed on the described design proving that under all conditions designed DAC is inherently monotonic. Presented DAC was implemented in the prototype readout chip with 432 pixels working in single photon counting mode, with two trimming DACs in each pixel. Each DAC occupies the area of 8 μm × 18.5 μm. Measurements and chips' tests were performed to obtain reliable statistical results

  16. Radiation tolerance of the readout chip for the phase I upgrade of the CMS pixel detector

    CERN Document Server

    Hoss, Jan

    2015-01-01

    For the Phase I upgrade of the CMS pixel detector a new digital readout chip (ROC) has been developed. An important part of the design verification are irradiation studies to ensure sufficient radiation tolerance. The paper summarizes results of the irradiation studies on the final ROC design for the detector layers~$2-4$. Samples have been irradiated with 23\\,MeV protons to accumulate the expected lifetime dose of 0.5\\,MGy and up to 1.1\\,MGy to project the performance of the ROC for layer~1 of the detector. It could be shown that the design is sufficiently radiation tolerant and that all performance parameters stay within their specifications. Additionally, very high doses of up to 4.2\\,MGy have been tested to explore the limits of the current chip design on 250\\,nm CMOS technology. The study confirmed that samples irradiated up to the highest dose could be successfully operated with test pulses.

  17. Fixed pattern deviations in Si pixel detectors measured using the Medipix 1 readout chip

    CERN Document Server

    Tlustos, L; Davidson, D; Heijne, Erik H M; Mikulec, B

    2003-01-01

    Dopant fluctuations and other defects in silicon wafers can lead to systematic errors in several parameters in particle or single-photon detection. In imaging applications non-uniformities in sensors or readout give rise to fixed pattern image noise and degradation of achievable spatial resolution for a given flux. High granularity pixel detectors offer the possibility to investigate local properties of the detector material on a microscopic scale. In this paper, we study fixed pattern detection fluctuations and detector inhomogeneities using the Medipix 1 readout chip. Low-frequency fixed pattern signal deviations due to dopant inhomogeneities can be separated from high-frequency deviations.

  18. Laser Soldering and Thermal Cycling Tests of Monolithic Silicon Pixel Chips

    CERN Document Server

    Strand, Frode Sneve

    2015-01-01

    An ALPIDE-1 monolithic silicon pixel sensor prototype has been laser soldered to a flex printed circuit using a novel interconnection technique using lasers. This technique is to be optimised to ensure stable, good quality connections between the sensor chips and the FPCs. To test the long-term stability of the connections, as well as study the effects on hit thresholds and noise in the sensor, it was thermally cycled in a climate chamber 1200 times. The soldered connections showed good qualities like even melting and good adhesion on pad/flex surfaces, and the chip remained in working condition for 1080 cycles. After this, a few connections failed, having cracks in the soldering tin, rendering the chip unusable. Threshold and noise characteristics seemed stable, except for the noise levels of sector 2 in the chip, for 1000 cycles in a temperature interval of "10^{\\circ}" and "50^{\\circ}" C. Still, further testing with wider temperature ranges and more cycles is needed to test the limitations of the chi...

  19. Test su fascio di prototipi del rivelatore a pixel per l'esperimento ATLAS

    CERN Document Server

    Matera, Andrea; Andreazza, A

    2005-01-01

    Silicon pixel detectors, developed to meet LHC requirements, were tested within the ATLAS collaboration in the H8 beam at CERN. Different sensor designs were studied using various versions of front end electronics developed during the R&D process. In this thesis a detailed experimental study of the overall performance of both irradiated and unirradiated detectors is presented, with special enphasis on efficiency, charge collection and spatial resolution. For the first time their dependence on timewalk is carefully investigated. Possible solutions to avoid spatial resolution deterioration due to timewalk are presented and discussed.

  20. Design, production, and reliability of the new ATLAS pixel opto-boards

    International Nuclear Information System (INIS)

    New fiber optical transceivers, opto-boards, were designed and produced to replace the first generation opto-boards installed in the ATLAS pixel detector and for the new pixel layer, the insertable barrel layer (IBL). Each opto-board contains one 12-channel PIN array and two 12-channel VCSEL arrays along with associated receiver and driver ASICs. The new opto-board design benefits from the production and operational experience of the first generation opto-boards and contains several improvements. The new opto-boards have been successfully installed. Additionally, a set of the new opto-boards have been subjected to an accelerated lifetime experiment at 85 C and 85% relative humidity for over 1,000 hours. No failures were observed. We are cautiously optimistic that the new opto-boards will survive until the shutdown for the detector upgrade for the high-luminosity Large Hadron Collider (HL-LHC)

  1. Analog front-end cell designed in a commercial 025 mu m process for the ATLAS pixel detector at LHC

    CERN Document Server

    Blanquart, L; Comes, G; Denes, P; Einsweiler, Kevin F; Fischer, P; Mandelli, E; Meddeler, G; Peric, I; Richardson, J

    2002-01-01

    A new analog pixel front-end cell has been developed for the ATLAS detector at the future Large Hadron Collider (LHC) at the European Laboratory for Particle Physics (CERN). This analog cell has been submitted in two commercial 0.25 mu m CMOS processes (in an analog test chip format), using special layout techniques for radiation hardness purposes. It is composed of two cascaded amplifiers followed by a fast discriminator featuring a detection threshold within the range of 1000 to 10000 electrons. The first preamplifier has the principal role of providing a large bandwidth, low input impedance, and fast rise time in order to enhance the time-walk and crosstalk performance, whereas the second fully differential amplifier is aimed at delivering a sufficiently high-voltage gain for optimum comparison. A new do feedback concept renders the cell tolerant of sensor leakage current up to 300 nA and provides monitoring of this current. Two 5-bit digital-to-analog converters tolerant to single- event upset have been i...

  2. The Pixel Detector of the ATLAS Experiment for the Run-2 at the Large Hadron Collider

    CERN Document Server

    Guescini, F; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radial distance of 3.3 cm from the beam axis. The realization of the IBL required the development of several new technologies and solutions in order to overcome the challenges introduced by the extreme environment and working conditions, such as the high radiation levels, the high pixel occupancy and the need of an exceptionally low material budget. Two silicon sensor technologies have been adopted for the IBL modules: planar n-in-n and 3D. Both of these are connected via bump bonding to the new generation 130 nm IBM CMOS FE-I4 ...

  3. GEM400: A front-end chip based on capacitor-switch array for pixel-based GEM detector

    International Nuclear Information System (INIS)

    The upgrade of Beijing Synchrotron Radiation Facility (BSRF) needs two-dimensional position-sensitive detection equipment to improve the experimental performance. Gas Electron Multiplier (GEM) detector, in particular, pixel-based GEM detector has good application prospects in the domain of synchrotron radiation. The read-out of larger scale pixel-based GEM detector is difficult for the high density of the pixels (PAD for collecting electrons). In order to reduce the number of cables, this paper presents a read-out scheme for pixel-based GEM detector, which is based on System-in-Package technology and ASIC technology. We proposed a circuit structure based on capacitor switch array circuit, and design a chip GEM400, which is a 400 channels ASIC. The proposed circuit can achieve good stability and low power dissipation. The chip is implemented in a 0.35μm CMOS process. The basic functional circuitry in ths chip includes analog switch, analog buffer, voltage amplifier, bandgap and control logic block, and the layout of this chip takes 5mm × 5mm area. The simulation results show that the chip can allow the maximum amount of input charge 70pC on the condition of 100pF external integrator capacitor. Besides, the chip has good channel uniformity (INL is better than 0.1%) and lower power dissipation.

  4. The RD53 Collaboration's SystemVerilog-UVM Simulation Framework and its General Applicability to Design of Advanced Pixel Readout Chips

    OpenAIRE

    Marconi, S; Conti, E; Placidi, P; Christiansen, J.; Hemperek, T.

    2014-01-01

    The foreseen Phase 2 pixel upgrades at the LHC have very challenging requirements for the design of hybrid pixel readout chips. A versatile pixel simulation platform is as an essential development tool for the design, verification and optimization of both the system architecture and the pixel chip building blocks (Intellectual Properties, IPs). This work is focused on the implemented simulation and verification environment named VEPIX53, built using the SystemVerilog language and the Universa...

  5. Tracking and b-tagging with pixel vertex detector in ATLAS experiment at LHC

    International Nuclear Information System (INIS)

    The capability of the ATLAS detector to tag b-jets is studied, using the impact parameter of charged tracks. High b-tagging performance is needed at LHC, especially during the first years of running, in order to see evidence of the Higgs boson if its mass lies between 80 and 120 GeV/c2. A pattern-recognition algorithm has been developed for this purpose, using a detailed simulation of the ATLAS inner detector. Track-finding starts from the pixel detector layers. A 'hyper-plane' concept allows the use of a simple tracking algorithm though the complex geometry. High track-finding efficiency and reconstruction quality ensure the discrimination of b-jets from other kinds of jets. After full simulation and reconstruction of H → bb-bar, H → gg, H → uu-bar, H → ss-bar and H → cc-bar events (mH = 100 GeV/c2), the mean rejections achieved against non-b-jets for a 50% b-jet tagging efficiency are as follows: Rg=39±5 Ru = 60 ± 9 Rs = 38 ± 5 Rc = 9 ± 1 The analysis of data from the first radiation-hard pixel detector prototypes justifies the potential of these detectors for track-finding and high-precision impact parameter measurement at LHC. (author)

  6. Analysis methods of testbeam data of irradiated ATLAS Planar Pixel Sensors

    International Nuclear Information System (INIS)

    The ATLAS Pixel detector is the innermost subdetector of the ATLAS-Experiment at CERN. The development of new sensor technologies is going on as detector-upgrades are foreseen to cope with higher fluences and more pile-up-events after accelerator upgrades (SLHC). For testing properties of sensors, testbeams are used. Beam-telescopes such as the EUDET-Telescope have been used for measuring the exact position of beam-tracks to determine the properties of different sensor technologies. Several sensors with different designs (e.g. slim edges) were read-out in testbeam after irradiation at differing fluences (up to 2.1016 neqcm-2) and voltages (up to 1500 V) to observe the performance of the sensors under conditions up to the end-lifetime of the ATLAS detector. The reconstruction chain of the so called Eutelescope framework including adaptions and the evaluation of the reconstructed data are presented. Typical results including hit- and charge-efficiency plots are shown and interpreted.

  7. Fully integrated system-on-chip for pixel-based 3D depth and scene mapping

    Science.gov (United States)

    Popp, Martin; De Coi, Beat; Thalmann, Markus; Gancarz, Radoslav; Ferrat, Pascal; Dürmüller, Martin; Britt, Florian; Annese, Marco; Ledergerber, Markus; Catregn, Gion-Pol

    2012-03-01

    We present for the first time a fully integrated system-on-chip (SoC) for pixel-based 3D range detection suited for commercial applications. It is based on the time-of-flight (ToF) principle, i.e. measuring the phase difference of a reflected pulse train. The product epc600 is fabricated using a dedicated process flow, called Espros Photonic CMOS. This integration makes it possible to achieve a Quantum Efficiency (QE) of >80% in the full wavelength band from 520nm up to 900nm as well as very high timing precision in the sub-ns range which is needed for exact detection of the phase delay. The SoC features 8x8 pixels and includes all necessary sub-components such as ToF pixel array, voltage generation and regulation, non-volatile memory for configuration, LED driver for active illumination, digital SPI interface for easy communication, column based 12bit ADC converters, PLL and digital data processing with temporary data storage. The system can be operated at up to 100 frames per second.

  8. Test of electrical multi-chip module for Belle II pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Felix [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: Belle II-Collaboration

    2015-07-01

    DEPFET pixel detectors offer excellent signal to noise ratio, resolution and low power consumption with few material. They will be used at Belle II and are a candidate for an ILC vertex detector. The Electrical Multi-Chip Module (EMCM) has been designed to study the back end of line (BEOL) and the metal layer interconnectivity of the DEPFET matrix production for Belle II. The electrical characterization of the EMCM allows studying the signal and control line routings. Having verified the integrity of the electrical network three different types of ASICs are flip-chipped on the EMCM. The electrical characterization of the assembled module allows the analysis and optimization of the ASICs in terms of data integrity. The EMCM serves also as a mechanical test structure to exercise flip-chip and wire bonding. Finally a small DEPFET prototype matrix is mounted on the module which acts as silicon PCB. Consequently, the full study of the complete readout chain can be done. An overview of the EMCM concept and first characterization results with the latest ASIC generation are presented.

  9. Test of electrical multi-chip module for Belle II pixel detector

    International Nuclear Information System (INIS)

    DEPFET pixel detectors offer excellent signal to noise ratio, resolution and low power consumption with few material. They will be used at Belle II and are a candidate for an ILC vertex detector. The Electrical Multi-Chip Module (EMCM) has been designed to study the back end of line (BEOL) and the metal layer interconnectivity of the DEPFET matrix production for Belle II. The electrical characterization of the EMCM allows studying the signal and control line routings. Having verified the integrity of the electrical network three different types of ASICs are flip-chipped on the EMCM. The electrical characterization of the assembled module allows the analysis and optimization of the ASICs in terms of data integrity. The EMCM serves also as a mechanical test structure to exercise flip-chip and wire bonding. Finally a small DEPFET prototype matrix is mounted on the module which acts as silicon PCB. Consequently, the full study of the complete readout chain can be done. An overview of the EMCM concept and first characterization results with the latest ASIC generation are presented.

  10. Impact of the Pixel Pitch of the Timepix Chip Integrated to the GAMPIX Gamma Camera for Spectrometric and Imaging Performances

    International Nuclear Information System (INIS)

    Spatial localization and identification of radioactive sources is a main issue interesting Homeland Security. Gamma imaging allows reaching this need. A new gamma camera, GAMPIX, has been designed by the French Atomic Energy Commission (CEA). GAMPIX enables spatial localization of hot spots on a large energy range. Sensitivity, portability (2 kg) and ergonomics were improved in comparison with previous industrial systems. The detection system is based on the 1.4 cm side Timepix pixelated readout chip developed by CERN and hybridized to a 1 mm thick CdTe substrate. Pixel size of the Timepix chip is 55 μm or 110 μm. Ongoing developments concern the addition of a spectrometric capability to the existing system. The challenge is the optimization of spectrometric performances while maintaining imaging performances. Our work intends to assess the impact of pixel pitch by means of simulations and experimental validation. A large range of pixel pitch and energies were tested by MCNPX simulations. Fluorescence impact depending on pixel pitch was demonstrated. Pixel pitch impact on imaging performances was also studied. The purpose is to preserve the angular resolution of the GAMPIX gamma camera, i.e., the ability to separate radioactive sources spatially close. Energy calibration of Timepix detectors is crucial for the optimization of spectrometric performances. The small pixel size compared to the substrate thickness induces charge depositions in several pixels, called clusters, and the shift between spectra due to different cluster sizes degrades the energy resolution. The energy calibration of our Timepix detectors was carried out in the SOLEX tunable monochromatic X-ray source (CEA). Our developments show that the replacement of the 55 μm pixelated Timepix chip currently used in the GAMPIX gamma camera by a 110 μm pixel pitch would lead to a significant improvement in terms of spectrometric performances without degrading imaging abilities. (author)

  11. The RD53 Collaboration's SystemVerilog-UVM Simulation Framework and its General Applicability to Design of Advanced Pixel Readout Chips

    CERN Document Server

    Marconi, S; Placidi, Pisana; Christiansen, Jorgen; Hemperek, Tomasz

    2014-01-01

    The foreseen Phase 2 pixel upgrades at the LHC have very challenging requirements for the design of hybrid pixel readout chips. A versatile pixel simulation platform is as an essential development tool for the design, verification and optimization of both the system architecture and the pixel chip building blocks (Intellectual Properties, IPs). This work is focused on the implemented simulation and verification environment named VEPIX53, built using the SystemVerilog language and the Universal Verification Methodology (UVM) class library in the framework of the RD53 Collaboration. The environment supports pixel chips at different levels of description: its reusable components feature the generation of different classes of parameterized input hits to the pixel matrix, monitoring of pixel chip inputs and outputs, conformity checks between predicted and actual outputs and collection of statistics on system performance. The environment has been tested performing a study of shared architectures of the trigger late...

  12. Thin n-in-p pixel sensors and the SLID-ICV vertical integration technology for the ATLAS upgrade at the HL-LHC

    Science.gov (United States)

    Macchiolo, A.; Andricek, L.; Ellenburg, M.; Moser, H. G.; Nisius, R.; Richter, R. H.; Terzo, S.; Weigell, P.

    2013-12-01

    This R&D activity is focused on the development of new modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The performance after irradiation of n-in-p pixel sensors of different active thicknesses is studied, together with an investigation of a novel interconnection technique offered by the Fraunhofer Institute EMFT in Munich, the Solid-Liquid-InterDiffusion (SLID), which is an alternative to the standard solder bump-bonding. The pixel modules are based on thin n-in-p sensors, with an active thickness of 75 μm or 150 μm, produced at the MPI Semiconductor Laboratory (MPI HLL) and on 100 μm thick sensors with active edges, fabricated at VTT, Finland. Hit efficiencies are derived from beam test data for thin devices irradiated up to a fluence of 4×1015 neq/cm2. For the active edge devices, the charge collection properties of the edge pixels before irradiation are discussed in detail, with respect to the inner ones, using measurements with radioactive sources. Beyond the active edge sensors, an additional ingredient needed to design four side buttable modules is the possibility of moving the wire bonding area from the chip surface facing the sensor to the backside, avoiding the implementation of the cantilever extruding beyond the sensor area. The feasibility of this process is under investigation with the FE-I3 SLID modules, where Inter Chip Vias are etched, employing an EMFT technology, with a cross section of 3 μm×10 μm, at the positions of the original wire bonding pads.

  13. ATLAS Pixel Detector ROD card from IBL towards Layers 2 and 1

    Science.gov (United States)

    Balbi, G.; Falchieri, D.; Gabrielli, A.; Lama, L.; Giangiacomi, N.; Travaglini, R.

    2016-01-01

    The incoming and future upgrades of LHC will require better performance by the data acquisition system, especially in terms of throughput due to the higher luminosity that is expected. For this reason, during the first shutdown of the LHC collider in 2013/14, the ATLAS Pixel Detector has been equipped with a fourth layer— the Insertable B-Layer or IBL—located at a radius smaller than the present three layers. To read out the new layer of pixels, with a smaller pixel size with respect to the other outer layers, a front end ASIC (FE-I4) was designed as well as a new off-detector read-out chain. The latter, accordingly to the structure of the other layers of pixels, is composed mainly of two 9U-VME read-out off-detector cards called the Back-Of-Crate (BOC) and Read-Out Driver (ROD). The ROD is used for data and event formatting and for configuration and control of the overall read-out electronics. After some prototyping samples were completed, a pre-production batch of 5 ROD cards was delivered with the final layout. Another production of 15 ROD cards was done in Fall 2013, and commissioning was completed in 2014. Altogether 14 cards are necessary for the 14 staves of the IBL detector, one additional card is required by the Diamond Beam Monitor (DBM), and additional spare ROD cards were produced for a total initial batch of 20 boards. This paper describes some integration tests that were performed and our plan to install the new DAQ chain for the layer 2, which is the outermost, and layer 1, which is external to the B-layer. This latter is the only layer that will not be upgraded to a higher readout speed. Rather, it will be switched off in the near future as it has too many damaged sensors that were not possible to rework. To do that, slices of the IBL read-out chain have been instrumented, and ROD performance is verified on a test bench mimicking a small-sized final setup. Thus, this contribution reports also how the adoption of the IBL ROD for ATLAS Pixel

  14. System test and noise performance studies at the ATLAS pixel detector

    International Nuclear Information System (INIS)

    The central component of the ATLAS Inner Tracker is the pixel detector. It consists of three barrel layers and three disk-layers in the end-caps in both forward directions. The innermost barrel layer is mounted at a distance of about 5 cm from the interaction region. With its very high granularity, truly two-dimensional hit information, and fast readout it is well suited to cope with the high densities of charged tracks, expected this close to the interaction region. The huge number of readout channels necessitates a very complex services infrastructure for powering, readout and safety. After a description of the pixel detector and its services infrastructure, key results from the system test at CERN are presented. Furthermore the noise performance of the pixel detector, crucial for high tracking and vertexing efficiencies, is studied. Measurements of the single-channel random noise are presented together with studies of common mode noise and measurements of the noise occupancy using a random trigger generator. (orig.)

  15. System test and noise performance studies at the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Weingarten, J.

    2007-09-15

    The central component of the ATLAS Inner Tracker is the pixel detector. It consists of three barrel layers and three disk-layers in the end-caps in both forward directions. The innermost barrel layer is mounted at a distance of about 5 cm from the interaction region. With its very high granularity, truly two-dimensional hit information, and fast readout it is well suited to cope with the high densities of charged tracks, expected this close to the interaction region. The huge number of readout channels necessitates a very complex services infrastructure for powering, readout and safety. After a description of the pixel detector and its services infrastructure, key results from the system test at CERN are presented. Furthermore the noise performance of the pixel detector, crucial for high tracking and vertexing efficiencies, is studied. Measurements of the single-channel random noise are presented together with studies of common mode noise and measurements of the noise occupancy using a random trigger generator. (orig.)

  16. Ultra-thin silicon (UTSi) on insulator CMOS transceiver and time-division multiplexed switch chips for smart pixel integration

    Science.gov (United States)

    Zhang, Liping; Sawchuk, Alexander A.

    2001-12-01

    We describe the design, fabrication and functionality of two different 0.5 micron CMOS optoelectronic integrated circuit (OEIC) chips based on the Peregrine Semiconductor Ultra-Thin Silicon on insulator technology. The Peregrine UTSi silicon- on-sapphire (SOS) technology is a member of the silicon-on- insulator (SOI) family. The low-loss synthetic sapphire substrate is optically transparent and has good thermal conductivity and coefficient of thermal expansion properties, which meet the requirements for flip-chip bonding of VCSELs and other optoelectronic input-output components. One chip contains transceiver and network components, including four channel high-speed CMOS transceiver modules, pseudo-random bit stream (PRBS) generators, a voltage controlled oscillator (VCO) and other test circuits. The transceiver chips can operate in both self-testing mode and networking mode. An on- chip clock and true-single-phase-clock (TSPC) D-flip-flop have been designed to generate a PRBS at over 2.5 Gb/s for the high-speed transceiver arrays to operate in self-testing mode. In the networking mode, an even number of transceiver chips forms a ring network through free-space or fiber ribbon interconnections. The second chip contains four channel optical time-division multiplex (TDM) switches, optical transceiver arrays, an active pixel detector and additional test devices. The eventual applications of these chips will require monolithic OEICs with integrated optical input and output. After fabrication and testing, the CMOS transceiver array dies will be packaged with 850 nm vertical cavity surface emitting lasers (VCSELs), and metal-semiconductor- metal (MSM) or GaAs p-i-n detector die arrays to achieve high- speed optical interconnections. The hybrid technique could be either wire bonding or flip-chip bonding of the CMOS SOS smart-pixel arrays with arrays of VCSELs and photodetectors onto an optoelectronic chip carrier as a multi-chip module (MCM).

  17. Studio di un algoritmo lineare di ricostruzione analogica della posizione per il rivelatore a pixel di ATLAS

    CERN Document Server

    Arelli-Maffioli, A; Troncon, C; Lari, T

    2007-01-01

    A detailed study of spatial resolution of Atlas pixel sensors prototypes was performed. Charge interpolation was used and allowed for a significant improvement with respect to digital resolution. A simplified algorithm for charge interpolation was developed. Its application to both unirradiated and irradiated sensors is presented and discussed.

  18. Beam test studies of 3D pixel sensors irradiated non-uniformly for the ATLAS forward physics detector

    International Nuclear Information System (INIS)

    Pixel detectors with cylindrical electrodes that penetrate the silicon substrate (so called 3D detectors) offer advantages over standard planar sensors in terms of radiation hardness, since the electrode distance is decoupled from the bulk thickness. In recent years significant progress has been made in the development of 3D sensors, which culminated in the sensor production for the ATLAS Insertable B-Layer (IBL) upgrade carried out at CNM (Barcelona, Spain) and FBK (Trento, Italy). Based on this success, the ATLAS Forward Physics (AFP) experiment has selected the 3D pixel sensor technology for the tracking detector. The AFP project presents a new challenge due to the need for a reduced dead area with respect to IBL, and the in-homogeneous nature of the radiation dose distribution in the sensor. Electrical characterization of the first AFP prototypes and beam test studies of 3D pixel devices irradiated non-uniformly are presented in this paper

  19. Beam test studies of 3D pixel sensors irradiated non-uniformly for the ATLAS forward physics detector

    Energy Technology Data Exchange (ETDEWEB)

    Grinstein, S., E-mail: sgrinstein@ifae.es [ICREA and Institut de Física d' Altes Energies (IFAE), Barcelona (Spain); Baselga, M. [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona (Spain); Boscardin, M. [Fondazione Bruno Kessler, FBK-CMM, Trento (Italy); Christophersen, M. [U.S. Naval Research Laboratory, Washington (United States); Da Via, C. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Dalla Betta, G.-F. [Universita degli Studi di Trento and INFN, Trento (Italy); Darbo, G. [INFN Sezione di Genova, Genova (Italy); Fadeyev, V. [Santa Cruz Institute for Particle Physics, University of California, Santa Cruz (United States); Fleta, C. [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona (Spain); Gemme, C. [Universita degli Studi di Trento and INFN, Trento (Italy); Grenier, P. [SLAC National Accelerator Laboratory, Menlo Park (United States); Jimenez, A.; Lopez, I.; Micelli, A. [ICREA and Institut de Física d' Altes Energies (IFAE), Barcelona (Spain); Nelist, C. [INFN Sezione di Genova, Genova (Italy); Parker, S. [University of Hawaii, c/o Lawrence Berkeley Laboratory, Berkeley (United States); Pellegrini, G. [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona (Spain); Phlips, B. [U.S. Naval Research Laboratory, Washington (United States); Pohl, D.-L. [University of Bonn, Bonn (Germany); Sadrozinski, H.F.-W. [Santa Cruz Institute for Particle Physics, University of California, Santa Cruz (United States); and others

    2013-12-01

    Pixel detectors with cylindrical electrodes that penetrate the silicon substrate (so called 3D detectors) offer advantages over standard planar sensors in terms of radiation hardness, since the electrode distance is decoupled from the bulk thickness. In recent years significant progress has been made in the development of 3D sensors, which culminated in the sensor production for the ATLAS Insertable B-Layer (IBL) upgrade carried out at CNM (Barcelona, Spain) and FBK (Trento, Italy). Based on this success, the ATLAS Forward Physics (AFP) experiment has selected the 3D pixel sensor technology for the tracking detector. The AFP project presents a new challenge due to the need for a reduced dead area with respect to IBL, and the in-homogeneous nature of the radiation dose distribution in the sensor. Electrical characterization of the first AFP prototypes and beam test studies of 3D pixel devices irradiated non-uniformly are presented in this paper.

  20. Beam Test Studies of 3D Pixel Sensors Irradiated Non-Uniformly for the ATLAS Forward Physics Detector

    CERN Document Server

    Grinstein, S; Boscardin, M; Christophersen, M; Da Via, C; Betta, G -F Dalla; Darbo, G; Fadeyev, V; Fleta, C; Gemme, C; Grenier, P; Jimenez, A; Lopez, I; Micelli, A; Nelist, C; Parker, S; Pellegrini, G; Phlips, B; Pohl, D L; Sadrozinski, H F -W; Sicho, P; Tsiskaridze, S

    2013-01-01

    Pixel detectors with cylindrical electrodes that penetrate the silicon substrate (so called 3D detectors) offer advantages over standard planar sensors in terms of radiation hardness, since the electrode distance is decoupled from the bulk thickness. In recent years significant progress has been made in the development of 3D sensors, which culminated in the sensor production for the ATLAS Insertable B-Layer (IBL) upgrade carried out at CNM (Barcelona, Spain) and FBK (Trento, Italy). Based on this success, the ATLAS Forward Physics (AFP) experiment has selected the 3D pixel sensor technology for the tracking detector. The AFP project presents a new challenge due to the need for a reduced dead area with respect to IBL, and the in-homogeneous nature of the radiation dose distribution in the sensor. Electrical characterization of the first AFP prototypes and beam test studies of 3D pixel devices irradiated non-uniformly are presented in this paper.

  1. Pixelized M-pi-n CdTe detector coupled to Medipix2 readout chip

    CERN Document Server

    Kalliopuska, J; Penttila, R; Andersson, H; Nenonen, S; Gadda, A; Pohjonen, H; Vanttajac, I; Laaksoc, P; Likonen, J

    2011-01-01

    We have realized a simple method for patterning an M-pi-n CdTe diode with a deeply diffused pn-junction, such as indium anode on CdTe. The method relies on removing the semiconductor material on the anode-side of the diode until the physical junction has been reached. The pixelization of the p-type CdTe diode with an indium anode has been demonstrated by patterning perpendicular trenches with a high precision diamond blade and pulsed laser. Pixelization or microstrip pattering can be done on both sides of the diode, also on the cathode-side to realize double sided detector configuration. The article compares the patterning quality of the diamond blade process, pulsed pico-second and femto-second lasers processes. Leakage currents and inter-strip resistance have been measured and are used as the basis of the comparison. Secondary ion mass spectrometry (SIMS) characterization has been done for a diode to define the pn-junction depth and to see the effect of the thermal loads of the flip-chip bonding process. Th...

  2. Radiation tolerance of the readout chip for the Phase I upgrade of the CMS pixel detector

    International Nuclear Information System (INIS)

    For the Phase I upgrade of the CMS pixel detector a new digital readout chip (ROC) has been developed. An important part of the design verification are irradiation studies to ensure sufficient radiation tolerance. The paper summarizes results of the irradiation studies on the final ROC design for the detector layers 2 – 4. Samples have been irradiated with 23 MeV protons to accumulate the expected lifetime dose of 0.5 MGy and up to 1.1 MGy to project the performance of the ROC for layer 1 of the detector. It could be shown that the design is sufficiently radiation tolerant and that all performance parameters stay within their specifications. Additionally, very high doses of up to 4.2 MGy have been tested to explore the limits of the current chip design on 250 nm CMOS technology. The study confirmed that samples irradiated up to the highest dose could be successfully operated with test pulses

  3. Pixel readout chips in deep submicron CMOS for ALICE and LHCb tolerant to 10 mrad and beyond

    CERN Document Server

    Snoeys, W; Campbell, M; Cantatore, E; Cencelli, V; Dinapoli, R; Heijne, Erik H M; Jarron, Pierre; Lamanna, P; Minervini, D; Morel, M; O'Shea, V; Quiquempoix, V; San Segundo-Bello, D; Van Koningsveld, B; Wyllie, Ken H

    2001-01-01

    The ALICE1LHCB chip is a mixed-mode integrated circuit designed to read out silicon pixel detectors for two different applications: particle tracking in the ALICE Silicon Pixel Detector and particle identification in the LHCb Ring Imaging Cherenkov detector. To satisfy the different needs for these two experiments, the chip can be operated in two different modes. In tracking mode all the 50 mu m *425 mu m pixel cells in the 256*32 array are read out individually, whilst in particle identification mode they are combined in groups of 8 to form a 32*32 array of 300 mu m x 425 mu m cells. Radiation tolerance was enhanced through special circuit layout. Sensitivity to coupling of digital signals into the analog front end was minimized. System issues such as testability and uniformity further constrained the design. The circuit is currently being manufactured in a commercial 0.25 mu m CMOS technology. (28 refs).

  4. A 1,000 Frames/s Programmable Vision Chip with Variable Resolution and Row-Pixel-Mixed Parallel Image Processors

    OpenAIRE

    2009-01-01

    A programmable vision chip with variable resolution and row-pixel-mixed parallel image processors is presented. The chip consists of a CMOS sensor array, with row-parallel 6-bit Algorithmic ADCs, row-parallel gray-scale image processors, pixel-parallel SIMD Processing Element (PE) array, and instruction controller. The resolution of the image in the chip is variable: high resolution for a focused area and low resolution for general view. It implements gray-scale and binary mathematical morpho...

  5. Studio di Rivelatori a Pixel di nuova generazione per il Sistema di Tracciamento di ATLAS.

    CERN Document Server

    Gaudiello, Andrea; Schiavi, Carlo

    In 2013 the LHC will undergo a long shutdown (Phase 0) in preparation for a an energy and luminosity upgrade. During this period the ATLAS Pixel Detector (that is the tracking detector closest to the beamline) will be upgraded. The new detector, called Insertable B-Layer (IBL), will be installed between the existing pixel detector and a new beam-pipe of smaller radius in order to ensure and maintain excellent performance of tracking, vertexing and jet flavor tagging. To satisfy the new requirements a new electronic front- end (FE-I4) and 2 sensor technologies have been developed: Planar and 3D. Genova is one of two sites dedicated to the assembly of the modules of IBL. The work is then carried out in two parallel directions: on one hand the production and its optimization; on the other the comparison and testing of these new technologies. Chapter 1 gives an overview of the theoretical framework needed to understand the importance and the goals of the experiments operating at the Large Hadron Collider (LHC), w...

  6. Three Generations of FPGA DAQ Development for the ATLAS Pixel Detector

    CERN Document Server

    AUTHOR|(CDS)2091916; Hsu, Shih-Chieh; Hauck, Scott Alan

    The Large Hadron Collider (LHC) at the European Center for Nuclear Research (CERN) tracks a schedule of long physics runs, followed by periods of inactivity known as Long Shutdowns (LS). During these LS phases both the LHC, and the experiments around its ring, undergo maintenance and upgrades. For the LHC these upgrades improve their ability to create data for physicists; the more data the LHC can create the more opportunities there are for rare events to appear that physicists will be interested in. The experiments upgrade so they can record the data and ensure the event won’t be missed. Currently the LHC is in Run 2 having completed the first LS of three. This thesis focuses on the development of Field-Programmable Gate Array (FPGA)-based readout systems that span across three major tasks of the ATLAS Pixel data acquisition (DAQ) system. The evolution of Pixel DAQ’s Readout Driver (ROD) card is presented. Starting from improvements made to the new Insertable B-Layer (IBL) ROD design, which was part of t...

  7. Silvaco ATLAS model of ESA's Gaia satellite e2v CCD91-72 pixels

    CERN Document Server

    Seabroke, G M; Burt, D; Robbins, M S; 10.1117/12.856958

    2010-01-01

    The Gaia satellite is a high-precision astrometry, photometry and spectroscopic ESA cornerstone mission, currently scheduled for launch in 2012. Its primary science drivers are the composition, formation and evolution of the Galaxy. Gaia will achieve its unprecedented accuracy requirements with detailed calibration and correction for CCD radiation damage and CCD geometric distortion. In this paper, the third of the series, we present our 3D Silvaco ATLAS model of the Gaia e2v CCD91-72 pixel. We publish e2v's design model predictions for the capacities of one of Gaia's pixel features, the supplementary buried channel (SBC), for the first time. Kohley et al. (2009) measured the SBC capacities of a Gaia CCD to be an order of magnitude smaller than e2v's design. We have found the SBC doping widths that yield these measured SBC capacities. The widths are systematically 2 {\\mu}m offset to the nominal widths. These offsets appear to be uncalibrated systematic offsets in e2v photolithography, which could either be du...

  8. Development of Edgeless n-on-p Planar Pixel Sensors for future ATLAS Upgrades

    CERN Document Server

    Bomben, M; Boscardin, M; Bosisio, L; Calderini, G; Chauveau, J; Giacomini, G; La Rosa, A; Marchori, G; Zorzi, N

    2012-01-01

    The development of n-on-p "edgeless" planar pixel sensors being fabricated at FBK (Trento, Italy), aimed at the upgrade of the ATLAS Inner Detector for the High Luminosity phase of the Large Hadron Collider (HL-LHC), is reported. A characterizing feature of the devices is the reduced dead area at the edge, achieved by adopting the "active edge" technology, based on a deep etched trench, suitably doped to make an ohmic contact to the substrate. The project is presented, along with the active edge process, the sensor design for this first n-on-p production and a selection of simulation results, including the expected charge collection efficiency after radiation fluence of $1 \\times 10^{15} {\\rm n_{eq}}/{\\rm cm}^2$ comparable to those expected at HL-LHC (about ten years of running, with an integrated luminosity of 3000 fb$^{-1}$) for the outer pixel layers. We show that, after irradiation, more than 50% of the signal should be collected in the edge region; this confirms the validity of the active edge approach.

  9. Development of Edgeless n-on-p Planar Pixel Sensors for future ATLAS Upgrades

    CERN Document Server

    Bomben, M

    2013-01-01

    The development of n-on-p “edgeless” planar pixel sensors being fabricated at FBK (Trento, Italy), aimed at the upgrade of the ATLAS Inner Detector for the High Luminosity phase of the Large Hadron Collider (HL-LHC), is reported. A characterizing feature of the devices is the reduced dead area at the edge, achieved by adopting the “active edge” technology, based on a deep etched trench, suitably doped to make an ohmic contact to the substrate. The project is presented, along with the active edge process, the sensor design for this first n-on-p production and a selection of simulation results, including the expected charge collection efficiency after radiation fluence of View the MathML source1×1015neq/cm2 comparable to those expected at HL-LHC (about ten years of running, with an integrated luminosity of 3000 fb−1) for the outer pixel layers. We show that, after irradiation and at a bias voltage of 500 V, more than 50% of the signal should be collected in the edge region; this confirms the validity...

  10. Development of edgeless n-on-p planar pixel sensors for future ATLAS upgrades

    Science.gov (United States)

    Bomben, Marco; Bagolini, Alvise; Boscardin, Maurizio; Bosisio, Luciano; Calderini, Giovanni; Chauveau, Jacques; Giacomini, Gabriele; La Rosa, Alessandro; Marchiori, Giovanni; Zorzi, Nicola

    2013-06-01

    The development of n-on-p "edgeless" planar pixel sensors being fabricated at FBK (Trento, Italy), aimed at the upgrade of the ATLAS Inner Detector for the High Luminosity phase of the Large Hadron Collider (HL-LHC), is reported. A characterizing feature of the devices is the reduced dead area at the edge, achieved by adopting the "active edge" technology, based on a deep etched trench, suitably doped to make an ohmic contact to the substrate. The project is presented, along with the active edge process, the sensor design for this first n-on-p production and a selection of simulation results, including the expected charge collection efficiency after radiation fluence of 1×1015 neq/cm2 comparable to those expected at HL-LHC (about ten years of running, with an integrated luminosity of 3000 fb-1) for the outer pixel layers. We show that, after irradiation and at a bias voltage of 500 V, more than 50% of the signal should be collected in the edge region; this confirms the validity of the active edge approach.

  11. Commissioning of the Atlas pixel detector and search of the Higgs boson in the tt-H, H → bb- channel with the Atlas experiment at the LHC

    International Nuclear Information System (INIS)

    The global fit of Higgs boson quantum contributions to the electroweak experimental observables, computed within the Standard Model, favors a light Higgs boson with a mass of mH = 90-27+36 GeV, on the edge of the 95% Confidence Level region excluded by LEP. Finding a light Higgs boson at LHC is experimentally difficult and several channels with various signatures will be sought for. The associated production of the Higgs boson with a pair of top quarks, with the subsequent decay of the Higgs boson into b-quark pairs (dominant for mH <135 GeV), is one of the channels considered. This channel opens the possibility of measuring the top and b-quark Yukawa couplings. The potential of the ATLAS detector to observe this channel is described. Several ingredients are crucial: the reconstruction of the top-anti-top system with a high-purity, excellent b-tagging capabilities and good knowledge of the tt-bar+jets background. The pixel detector is the most important ATLAS sub-detectors for tagging b -jets. The ATLAS detector was commissioned with cosmic muon rays in autumn 2008. The pixel detector dead channels, calibration constants and slow control informations are described for this period. A detailed study about pixel noise determination and suppression is presented. Finally, the pixel detection efficiency is measured using cosmic muon rays. (author)

  12. Design of a current based readout chip and development of a DEPFET pixel prototype system for the ILC vertex detector

    International Nuclear Information System (INIS)

    The future TeV-scale linear collider ILC (International Linear Collider) offers a large variety of precision measurements complementary to the discovery potential of the LHC (Large Hadron Collider). To fully exploit its physics potential, a vertex detector with unprecedented performance is needed. One proposed technology for the ILC vertex detector is the DEPFET active pixel sensor. The DEPFET sensor offers particle detection with in-pixel amplification by incorporating a field effect transistor into a fully depleted high-ohmic silicon substrate. The device provides an excellent signal-to-noise ratio and a good spatial resolution at the same time. To establish a very fast readout of a DEPFET pixel matrix with row rates of 20 MHz and more, the 128 channel CURO II ASIC has been designed and fabricated. The architecture of the chip is completely based on current mode techniques (SI) perfectly adapted to the current signal of the sensor. For the ILC vertex detector a prototype system with a 64 x 128 DEPFET pixel matrix read out by the CURO II chip has been developed. The design issues and the standalone performance of the readout chip as well as first results with the prototype system will be presented. (orig.)

  13. Design of a current based readout chip and development of a DEPFET pixel prototype system for the ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Trimpl, M.

    2005-12-15

    The future TeV-scale linear collider ILC (International Linear Collider) offers a large variety of precision measurements complementary to the discovery potential of the LHC (Large Hadron Collider). To fully exploit its physics potential, a vertex detector with unprecedented performance is needed. One proposed technology for the ILC vertex detector is the DEPFET active pixel sensor. The DEPFET sensor offers particle detection with in-pixel amplification by incorporating a field effect transistor into a fully depleted high-ohmic silicon substrate. The device provides an excellent signal-to-noise ratio and a good spatial resolution at the same time. To establish a very fast readout of a DEPFET pixel matrix with row rates of 20 MHz and more, the 128 channel CURO II ASIC has been designed and fabricated. The architecture of the chip is completely based on current mode techniques (SI) perfectly adapted to the current signal of the sensor. For the ILC vertex detector a prototype system with a 64 x 128 DEPFET pixel matrix read out by the CURO II chip has been developed. The design issues and the standalone performance of the readout chip as well as first results with the prototype system will be presented. (orig.)

  14. Experiment list: SRX112178 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available line=OS25 ES cells || chip antibody=8WG16 (MMS-126R, Covance) || chip antibody manufacturer=Covance || chromatin=Fixed || beads=Magn...etic beads http://dbarchive.biosciencedbc.jp/kyushu-u/mm

  15. Experiment list: SRX180159 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available sd || cell type=hemogenic endothelium || chip antibody=CEBPb || chip antibody vendor=santa cruz biotechnol...ogy http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/eachData/bw/SRX180159.bw http://

  16. Experiment list: SRX352043 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available technologies http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/eachData/bw/SRX352043.b...e primary epidermal keratinocytes || chip antibody=anti-Brg1 (H-88) || chip antibody vendor=Santa Cruz Bio

  17. Experiment list: SRX367328 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available nology) || sirna transfection=siCTL http://dbarchive.bio...=HEK293T cell || cell line=Human Embryonic Kidney 293 cells || chip antibody=CDK9 || chip antibody details=2316S (Cell Signaling Tech

  18. Experiment list: SRX367330 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available nology) || sirna transfection=siBrd4 http://dbarchive.bi...=HEK293T cell || cell line=Human Embryonic Kidney 293 cells || chip antibody=CDK9 || chip antibody details=2316S (Cell Signaling Tech

  19. Experiment list: SRX367329 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available hnology) || sirna transfection=siJMJD6 http://dbarchive....e=HEK293T cell || cell line=Human Embryonic Kidney 293 cells || chip antibody=CDK9 || chip antibody details=2316S (Cell Signaling Tec

  20. Experiment list: SRX821820 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available PPARG ChIP-seq || tissue=SQ White Adipose Tissue || chip antibody=anti-PPAR? antibody || chip antibody vendor=Santa Cruz Biotechnolog...ies http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/each

  1. Experiment list: SRX821806 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available PPARG ChIP-seq || tissue=SQ White Adipose Tissue || chip antibody=anti-PPAR? antibody || chip antibody vendor=Santa Cruz Biotechnolog...ies http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/each

  2. Experiment list: SRX821815 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available PPARG ChIP-seq || tissue=SQ White Adipose Tissue || chip antibody=anti-PPAR? antibody || chip antibody vendor=Santa Cruz Biotechnolog...ies http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/each

  3. Experiment list: SRX821812 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available =PPARG ChIP-seq || tissue=SQ White Adipose Tissue || chip antibody=anti-PPAR? antibody || chip antibody vendor=Santa Cruz Biotechnolo...gies http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/eac

  4. Experiment list: SRX821821 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available PPARG ChIP-seq || tissue=SQ White Adipose Tissue || chip antibody=anti-PPAR? antibody || chip antibody vendor=Santa Cruz Biotechnolog...ies http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/each

  5. Experiment list: SRX821809 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available PPARG ChIP-seq || tissue=SQ White Adipose Tissue || chip antibody=anti-PPAR? antibody || chip antibody vendor=Santa Cruz Biotechnolog...ies http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/each

  6. Measurement of charm and beauty-production in deep inelastic scattering at HERA and test beam studies of ATLAS pixel sensors

    International Nuclear Information System (INIS)

    A measurement of charm and beauty production in Deep Inelastic Scattering at HERA is presented. The analysis is based on the data sample collected by the ZEUS detector in the period from 2003 to 2007 corresponding to an integrated luminosity of 354 pb-1. The kinematic region of the measurement is given by 522 and 0.022 is the photon virtuality and y is the inelasticity. A lifetime technique is used to tag the production of charm and beauty quarks. Secondary vertices due to decays of charm and beauty hadrons are reconstructed, in association with jets. The jet kinematics is defined by EjetT>4.2(5) GeV for charm (beauty) and -1.6jetjetT and ηjet are the transverse energy and pseudorapidity of the jet, respectively. The significance of the decay length and the invariant mass of charged tracks associated with the secondary vertex are used as discriminating variables to distinguish between signal and background. Differential cross sections of jet production in charm and beauty events as a function of Q2, y, EjetT and ηjet are measured. Results are compared to Next-to-Leading Order (NLO) predictions from Quantum Chromodynamics (QCD) in the fixed flavour number scheme. Good agreement between data and theory is observed. Contributions of the charm and beauty production to the inclusive proton structure function, Fcbarc2 and Fbantib2, are determined by extrapolating the double differential cross sections using NLO QCD predictions. Contributions to the test beam program for the Insertable B-Layer upgrade project of the ATLAS pixel detector are discussed. The test beam data analysis software package EUTelescope was extended, which allowed an efficient analysis of ATLAS pixel sensors. The USBPix DAQ system was integrated into the EUDET telescope allowing test beam measurements with the front end chip FE-I4. Planar and 3D ATLAS pixel sensors were studied at the first IBL test beam at the CERN SPS.

  7. Measurement of charm and beauty-production in deep inelastic scattering at HERA and test beam studies of ATLAS pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Libov, Vladyslav

    2013-08-15

    measurements with the front end chip FE-I4. Planar and 3D ATLAS pixel sensors were studied at the first IBL test beam at the CERN SPS.

  8. Design and realisation of integrated circuits for the readout of pixel sensors in high-energy physics and biomedical imaging

    International Nuclear Information System (INIS)

    Radiation tolerant pixel-readout chip for the ATLAS pixel detector has been designed, implemented in a deep-submicron CMOS technology and successfully tested. The chip contains readout-channels with complex analog and digital circuits. Chip for steering of the DEPFET active-pixel matrix has been implemented in a high-voltage CMOS technology. The chip contains channels which generate fast sequences of high-voltage signals. Detector containing this chip has been successfully tested. Pixel-readout test chip for an X-ray imaging pixel sensor has been designed, implemented in a CMOS technology and tested. Pixel-readout channels are able to simultaneously count the signals generated by passage of individual photons and to sum the total charge generated during exposure time. (orig.)

  9. Design and realisation of integrated circuits for the readout of pixel sensors in high-energy physics and biomedical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Peric, I.

    2004-08-01

    Radiation tolerant pixel-readout chip for the ATLAS pixel detector has been designed, implemented in a deep-submicron CMOS technology and successfully tested. The chip contains readout-channels with complex analog and digital circuits. Chip for steering of the DEPFET active-pixel matrix has been implemented in a high-voltage CMOS technology. The chip contains channels which generate fast sequences of high-voltage signals. Detector containing this chip has been successfully tested. Pixel-readout test chip for an X-ray imaging pixel sensor has been designed, implemented in a CMOS technology and tested. Pixel-readout channels are able to simultaneously count the signals generated by passage of individual photons and to sum the total charge generated during exposure time. (orig.)

  10. The RD53 collaboration's SystemVerilog-UVM simulation framework and its general applicability to design of advanced pixel readout chips

    International Nuclear Information System (INIS)

    The foreseen Phase 2 pixel upgrades at the LHC have very challenging requirements for the design of hybrid pixel readout chips. A versatile pixel simulation platform is as an essential development tool for the design, verification and optimization of both the system architecture and the pixel chip building blocks (Intellectual Properties, IPs). This work is focused on the implemented simulation and verification environment named VEPIX53, built using the SystemVerilog language and the Universal Verification Methodology (UVM) class library in the framework of the RD53 Collaboration. The environment supports pixel chips at different levels of description: its reusable components feature the generation of different classes of parameterized input hits to the pixel matrix, monitoring of pixel chip inputs and outputs, conformity checks between predicted and actual outputs and collection of statistics on system performance. The environment has been tested performing a study of shared architectures of the trigger latency buffering section of pixel chips. A fully shared architecture and a distributed one have been described at behavioral level and simulated; the resulting memory occupancy statistics and hit loss rates have subsequently been compared

  11. Atlas pixel opto-board production and analysis and optolink simulation studies

    International Nuclear Information System (INIS)

    At CERN, a Large collider will collide protons at high energies. There are four experiments being built to study the particle properties from the collision. The ATLAS experiment is the largest. It has many sub detectors among which is the Pixel detector which is the innermost part. The Pixel detector has eighty million channels that have to be read out. An optical link is utilized for the read out. It has optical to electronic interfaces both on the detector and off the detector at the counting room. The component on the detector in called the opto-board. This work discusses the production testing of the opto-boards to be installed on the detector. A total of 300 opto-boards including spares have been produced. The production was done in three laboratories among which is the laboratory at the University of Wuppertal which had the responsibility of Post production testing of all the one third of the total opto-boards. The results are discussed in this work. The analysis of the results from the total production process has been done in the scope of this work as well. In addition to the production, a study by simulation of the communication links optical signal has been done. This has enabled an assessment of the sufficiency of the optical signal against the transmission attenuation and irradiation degradation. A System Test set up has been put up at Wuppertal to enhance general studies for better understanding of the Pixel read out system. Among other studies is the study of the timing parameters behavior of the System which has been done in this work and enhanced by a simulation. These parameters are namely the mark to space ratio and the fine delay and their relatedness during the optolink tuning. A bit error rate test based on the System has also been done which enabled assessment of the transmission quality utilizing the tools inbuilt in the System Test. These results have been presented in this work. (orig.)

  12. Experience with 3D integration technologies in the framework of the ATLAS pixel detector upgrade for the HL-LHC

    CERN Document Server

    Aruntinov, D; Gonella, L; Hemperek, T; Hügging, F; Krüger, H; Wermes, N; Breugnon, P; Chantepie, B; Clemens, J.C; Fei, R; Fougeron, D; Godiot, S; Pangaud, P; Rozanov, A; Garcia-Sciveres, M; Mekkaoui, A

    2013-01-01

    3D technologies are investigated for the upgrade of the ATLAS pixel detector at the HL-LHC. R&D focuses on both, IC design in 3D, as well as on post-processing 3D technologies such as Through Silicon Via (TSV). The first one uses a so-called via first technology, featuring the insertion of small aspect ratio TSV at the pixel level. As discussed in the paper, this technology can still present technical challenges for the industrial partners. The second one consists of etching the TSV via last. This technology is investigated to enable 4-side abuttable module concepts, using today's pixel detector technology. Both approaches are presented in this paper and results from first available prototypes are discussed.

  13. Measurements and TCAD simulation of novel ATLAS planar pixel detector structures for the HL-LHC upgrade

    CERN Document Server

    Nellist, C; Gkougkousis, E; Lounis, A

    2015-01-01

    The LHC accelerator complex will be upgraded between 2020-2022, to the High-Luminosity-LHC, to considerably increase statistics for the various physics analyses. To operate under these challenging new conditions, and maintain excellent performance in track reconstruction and vertex location, the ATLAS pixel detector must be substantially upgraded and a full replacement is expected. Processing techniques for novel pixel designs are optimised through characterisation of test structures in a clean room and also through simulations with Technology Computer Aided Design (TCAD). A method to study non-perpendicular tracks through a pixel device is discussed. Comparison of TCAD simulations with Secondary Ion Mass Spectrometry (SIMS) measurements to investigate the doping profile of structures and validate the simulation process is also presented.

  14. Measurements and TCAD simulation of novel ATLAS planar pixel detector structures for the HL-LHC upgrade

    International Nuclear Information System (INIS)

    The LHC accelerator complex will be upgraded between 2020–2022, to the High-Luminosity-LHC, to considerably increase statistics for the various physics analyses. To operate under these challenging new conditions, and maintain excellent performance in track reconstruction and vertex location, the ATLAS pixel detector must be substantially upgraded and a full replacement is expected. Processing techniques for novel pixel designs are optimised through characterisation of test structures in a clean room and also through simulations with Technology Computer Aided Design (TCAD). A method to study non-perpendicular tracks through a pixel device is discussed. Comparison of TCAD simulations with Secondary Ion Mass Spectrometry (SIMS) measurements to investigate the doping profile of structures and validate the simulation process is also presented

  15. The FE-I4 pixel readout system-on-chip resubmission for the insertable B-Layer project

    CERN Document Server

    Zivkovic, V; Garcia-Sciveres, M; Mekkaoui, A; Barbero, M; Darbo, G; Gnani, D; Hemperek, T; Menouni, M; Fougeron, D; Gensolen, F; Jensen, F; Caminada, L; Gromov, V; Kluit, R; Fleury, J; Krüger, H; Backhaus, M; Fang, X; Gonella, L; Rozanove, A; Arutinov, D

    2012-01-01

    The FE-I4 is a new pixel readout integrated circuit designed to meet the requirements of ATLAS experiment upgrades. The first samples of the FE-I4 engineering run (called FE-I4A) delivered promising results in terms of the requested performances. The FE-I4 team envisaged a number of modifications and fine-tuning before the actual exploitation, planned within the Insertable B-Layer (IBL) of ATLAS. As the IBL schedule was pushed significantly forward, a quick and efficient plan had to be devised for the FE-I4 redesign. This article will present the main objectives of the resubmission, together with the major changes that were a driving factor for this redesign. In addition, the top-level verification and test efforts of the FE-I4 will also be addressed.

  16. Experiment list: SRX119684 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 2,13603 GSM874990: ES.H3K79me2; Homo sapiens; ChIP-Seq source_name=H1 human Embryonic stem cell || cell line=H1 || treatment=diagnost...ic sample (pre-treatment) || chip antibody=H3K79me2 || chip antibody manufacturer=A

  17. Experiment list: SRX119679 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 8,18360 GSM874985: ES.H3K27me3; Homo sapiens; ChIP-Seq source_name=H1 human Embryonic stem cells || cell line=H1 || treatment=diagnos...tic sample (pre-treatment) || chip antibody=H3K27me3 || chip antibody manufacturer=

  18. Experiment list: SRX170376 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Diagnosis=Normal 9474255,92.7,4.5,398 GSM971949: HEK293 HP1a ChIPSeq; Homo sapiens; ChIP-Seq source_name=HEK293..., HP1a ChIP || cell line=HEK293 || chip antibody=anti-FLAG M2 affinity gel || antibody vendor=Sigma-Aldri

  19. Experiment list: SRX170377 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Diagnosis=Normal 11861200,76.8,8.0,229 GSM971950: HEK293 HP1b ChIPSeq; Homo sapiens; ChIP-Seq source_name=HEK293..., HP1b ChIP || cell line=HEK293 || chip antibody=anti-FLAG M2 affinity gel || antibody vendor=Sigma-Aldr

  20. Experiment list: SRX170373 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Diagnosis=Normal 12749066,94.0,7.9,19829 GSM971946: HEK293 Brd2 ChIPSeq; Homo sapiens; ChIP-Seq source_name=HEK293..., Brd2 ChIP || cell line=HEK293 || chip antibody=anti-FLAG M2 affinity gel || antibody vendor=Sigma-Al

  1. Experiment list: SRX170374 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Diagnosis=Normal 12901656,89.7,3.2,445 GSM971947: HEK293 Brd3 ChIPSeq; Homo sapiens; ChIP-Seq source_name=HEK293..., Brd3 ChIP || cell line=HEK293 || chip antibody=anti-FLAG M2 affinity gel || antibody vendor=Sigma-Aldr

  2. Experiment list: SRX170375 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Diagnosis=Normal 13813513,90.4,3.3,191 GSM971948: HEK293 Brd4 ChIPSeq; Homo sapiens; ChIP-Seq source_name=HEK293..., Brd4 ChIP || cell line=HEK293 || chip antibody=anti-FLAG M2 affinity gel || antibody vendor=Sigma-Aldr

  3. Experiment list: SRX507382 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available + (wildtype) || age of animals=1-5 day old || tissue=Ovaries || chip antibody=Anti-H3K9me3 || chip antibody ... Anti-H3K9me3- replicate#2; Drosophila melanogaster; ChIP-Seq source_name=WT_WT_Anti-H3K9me3 || strain=piwi/

  4. Experiment list: SRX507383 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available + (wildtype) || age of animals=1-5 day old || tissue=Ovaries || chip antibody=Anti-H3K4me2 || chip antibody ... Anti-H3K4me2- replicate#1; Drosophila melanogaster; ChIP-Seq source_name=WT_WT_Anti-H3K4me2 || strain=piwi/

  5. Experiment list: SRX507380 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available + (wildtype) || age of animals=1-5 day old || tissue=Ovaries || chip antibody=anti-HP1 || chip antibody vend...1770: WT anti-HP1- replicate#2; Drosophila melanogaster; ChIP-Seq source_name=WT_WT_anti-HP1 || strain=piwi/

  6. Experiment list: SRX507381 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available + (wildtype) || age of animals=1-5 day old || tissue=Ovaries || chip antibody=Anti-H3K9me3 || chip antibody ...Anti-H3K9me3 - replicate#1; Drosophila melanogaster; ChIP-Seq source_name=WT_WT_Anti-H3K9me3 || strain=piwi/

  7. Experiment list: SRX1038541 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 1695734: H8083 Red1 ChIP in pREC8-SCC1 biological replicate 1; Saccharomyces cerevisiae; ChIP-Seq source_nam...e=Red1 ChIP in pREC8-SCC1 biological replicate 1 || strain=sk1 || meiotic timepoint=3 hour || genotype=pREC8

  8. Experiment list: SRX1038525 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 1695718: H119 Red1 ChIP biological replicate 1; Saccharomyces cerevisiae; ChIP-Seq source_name=Red1 ChIP of H119 biological...SRX1038525 sacCer3 TFs and others RED1 Yeast strain SK1 NA 22907545,92.4,48.3,0 GSM

  9. Experiment list: SRX1038526 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 695719: H119 Red1 ChIP biological replicate 2; Saccharomyces cerevisiae; ChIP-Seq source_name=Red1 ChIP of H119 biological...SRX1038526 sacCer3 TFs and others RED1 Yeast strain SK1 NA 6440074,94.5,38.5,0 GSM1

  10. Experiment list: SRX1038537 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 1695730: H6200 Red1 ChIP in rec8 delta biological replicate 1; Saccharomyces cerevisiae; ChIP-Seq source_nam...e=Red1 ChIP in rec8 delta biological replicate 1 || strain=sk1 || meiotic timepoint=3 hour || genotype=rec8

  11. Experiment list: SRX1038542 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 1695735: H8083 Red1 ChIP in pREC8-SCC1 biological replicate 2; Saccharomyces cerevisiae; ChIP-Seq source_nam...e=Red1 ChIP in pREC8-SCC1 biological replicate 2 || strain=sk1 || meiotic timepoint=3 hour || genotype=pREC8

  12. Experiment list: SRX1038534 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 95727: H6309 Smc3 ChIP biological replicate 1; Saccharomyces cerevisiae; ChIP-Seq source_name=Smc3 ChIP of H6309 biological...SRX1038534 sacCer3 TFs and others SMC3 Yeast strain SK1 NA 1594898,87.7,9.1,0 GSM16

  13. Experiment list: SRX1038532 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 695725: H4471 Rec8 ChIP biological replicate 2; Saccharomyces cerevisiae; ChIP-Seq source_name=Red1 ChIP of H4471 biological...SRX1038532 sacCer3 TFs and others RED1 Yeast strain SK1 NA 1426016,92.6,26.8,0 GSM1

  14. Experiment list: SRX1038538 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 695731: H7660 Red1 ChIP in rec8 delta biological replicate 2; Saccharomyces cerevisiae; ChIP-Seq source_name...=Red1 ChIP in rec8 delta biological replicate 2 || strain=sk1 || meiotic timepoint=3 hour || genotype=rec8 d

  15. Experiment list: SRX821798 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available riment type=PPARG ChIP-seq || strain=N/A || tissue=NA || chip antibody=anti-PPAR? antibody || chip antibody vendor=Santa Cruz Biotech...nologies http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/

  16. Experiment list: SRX821808 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available pe=PPARG ChIP-seq || tissue=SQ White Adipose Tissue || chip antibody=anti-PPAR? antibody || chip antibody vendor=Santa Cruz Biotechno...logies http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/e

  17. Experiment list: SRX1338947 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ription=Progenitor cells from which all blood cells derive. 38987751,98.2,6.0,267 GSM1909031: Resistant line ChIP input...tion=Resistant || strain=C57BL/6 || chip antibody=none (input) http://dbarchive.b

  18. Experiment list: SRX671992 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ; Mus musculus; ChIP-Seq source_name=embryonic stem cells, TC11, empty vector, input || strain/background=12...9/Ola || transchromosomic=hsa11 || plasmid=empty vector || chip_or_input=input DNA || chip antibody=none ||

  19. Experiment list: SRX365696 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available e_name=Kc167_CP190_ChIP-seq || cell line=Kc167 || chip antibody=CP190 rabbit || chip antibody reference=PMID:21852534 || input... used=input-b http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/ea

  20. Experiment list: SRX1338948 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ription=Progenitor cells from which all blood cells derive. 38012300,94.7,8.9,314 GSM1909032: Sensitive line ChIP input...tion=Sensitive || strain=C57BL/6 || chip antibody=none (input) http://dbarchive.b

  1. Experiment list: SRX791596 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available idered part of the BASAL GANGLIA. 172081391,94.4,6.9,1090 GSM1556658: C Input; Mus musculus; ChIP-Seq source_name=mouse cocai...ne NAc ChIP input || tissue=nucleus accumbens || chip antibody=input || strategy=ChIP-seq || treatment=Cocai

  2. Experiment list: SRX200052 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 4 GSM1023626: LaminA ChIP, HGPS, p16, rep2; Homo sapiens; ChIP-Seq source_name=patient forearm skin biopsy, ...lamin ChIP || disease status=Hutchinson-Gilford progeria syndrome || tissue=forearm skin biopsy || cell type

  3. Experiment list: SRX200048 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 7 GSM1023622: LaminA ChIP, Father, p16, rep2; Homo sapiens; ChIP-Seq source_name=normal forearm skin biopsy,... lamin ChIP || disease status=normal || tissue=forearm skin biopsy || cell type=fibroblasts || gender=male |

  4. Experiment list: SRX200038 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available M1023612: H3K27me3 ChIP, Father, p19; Homo sapiens; ChIP-Seq source_name=normal forearm skin biopsy, H3K27me...3 ChIP || disease status=normal || tissue=forearm skin biopsy || cell type=fibroblasts || gender=male || cel

  5. Experiment list: SRX200046 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available GSM1023620: LaminA ChIP, Father, p16, rep1; Homo sapiens; ChIP-Seq source_name=normal forearm skin biopsy, ...lamin ChIP || disease status=normal || tissue=forearm skin biopsy || cell type=fibroblasts || gender=male ||

  6. Experiment list: SRX200042 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 1023616: H3K27me3 ChIP, HGPS, p14; Homo sapiens; ChIP-Seq source_name=patient forearm skin biopsy, H3K27me3 ...ChIP || disease status=Hutchinson-Gilford progeria syndrome || tissue=forearm skin biopsy || cell type=fibro

  7. Experiment list: SRX200044 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available M1023618: H3K27me3 ChIP, HGPS, p17; Homo sapiens; ChIP-Seq source_name=patient forearm skin biopsy, H3K27me3... ChIP || disease status=Hutchinson-Gilford progeria syndrome || tissue=forearm skin biopsy || cell type=fibr

  8. Experiment list: SRX200050 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available GSM1023624: LaminA ChIP, HGPS, p16, rep1; Homo sapiens; ChIP-Seq source_name=patient forearm skin biopsy, l...amin ChIP || disease status=Hutchinson-Gilford progeria syndrome || tissue=forearm skin biopsy || cell type=

  9. Experiment list: SRX200040 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 14: H3K27me3 ChIP, Age Control, p17; Homo sapiens; ChIP-Seq source_name=normal skin biopsy, H3K27me3 ChIP ||... disease status=normal || tissue=skin biopsy || cell type=fibroblasts || gender=female || cell line=AG08470

  10. Experiment list: SRX220827 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available n fetal lung fibroblast cells, growing, H3K4me3 ChIP || cell line=IMR90 || cell type=human fetal lung fibrob...last cell line || growth state=growing || chip antibody=anti-H3K4me3 http://dbarc

  11. Experiment list: SRX821816 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available e=PPARG ChIP-seq || tissue=SQ White Adipose Tissue || chip antibody=anti-PPAR? antibody || chip antibody vendor=Santa Cruz Biotechnol...ogies http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/ea

  12. Experiment list: SRX821807 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available e=PPARG ChIP-seq || tissue=SQ White Adipose Tissue || chip antibody=anti-PPAR? antibody || chip antibody vendor=Santa Cruz Biotechnol...ogies http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/ea

  13. Experiment list: SRX821810 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available e=PPARG ChIP-seq || tissue=SQ White Adipose Tissue || chip antibody=anti-PPAR? antibody || chip antibody vendor=Santa Cruz Biotechnol...ogies http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/ea

  14. Experiment list: SRX821814 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available pe=PPARG ChIP-seq || tissue=SQ White Adipose Tissue || chip antibody=anti-PPAR? antibody || chip antibody vendor=Santa Cruz Biotechno...logies http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/e

  15. Experiment list: SRX262791 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available nology http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/ea...IH3T3_MRTFB_LAT || cell line=NIH3T3 fibroblasts || genotype=normal || chip antibody=MRTF-B || chip antibody vendor=Santa Cruz Biotech

  16. Experiment list: SRX262797 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 3T3_SAP1_03 || cell line=NIH3T3 fibroblasts || genotype=normal || chip antibody=SAP-1a || chip antibody vendor=Santa Cruz Biotechnolo...gy http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/eachDa

  17. Experiment list: SRX262787 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available IH3T3_MRTFA_LAT || cell line=NIH3T3 fibroblasts || genotype=normal || chip antibody=MRTF-A || chip antibody vendor=Santa Cruz Biotech...nology http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/ea

  18. Experiment list: SRX262792 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available H3T3_MRTFB_UO || cell line=NIH3T3 fibroblasts || genotype=normal || chip antibody=MRTF-B || chip antibody vendor=Santa Cruz Biotechno...logy http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/each

  19. Experiment list: SRX262798 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 3T3_SAP1_15 || cell line=NIH3T3 fibroblasts || genotype=normal || chip antibody=SAP-1a || chip antibody vendor=Santa Cruz Biotechnolo...gy http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/eachDa

  20. Experiment list: SRX262790 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available IH3T3_MRTFB_15 || cell line=NIH3T3 fibroblasts || genotype=normal || chip antibody=MRTF-B || chip antibody vendor=Santa Cruz Biotechn...ology http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/eac

  1. Experiment list: SRX262789 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available H3T3_MRTFB_03 || cell line=NIH3T3 fibroblasts || genotype=normal || chip antibody=MRTF-B || chip antibody vendor=Santa Cruz Biotechno...logy http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/each

  2. Experiment list: SRX262781 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available _name=NIH3T3_SRF_15 || cell line=NIH3T3 fibroblasts || genotype=normal || chip antibody=SRF || chip antibody vendor=Santa Cruz Biotec...hnology http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/e

  3. Experiment list: SRX262785 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available H3T3_MRTFA_03 || cell line=NIH3T3 fibroblasts || genotype=normal || chip antibody=MRTF-A || chip antibody vendor=Santa Cruz Biotechno...logy http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/each

  4. Experiment list: SRX037430 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available =peripheral blood mononuclear cells 14488927,12.8,2.8,1378 GSM648492: Treg-H3K4me1 source_name=Treg cells fr...om PBMC, normal || gender=male || cell type=Treg cells || chip antibody=H3K4me1 || chip antibody vendor=Abca

  5. Experiment list: SRX037431 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available =peripheral blood mononuclear cells 20224353,15.6,11.0,26171 GSM648493: Treg-H3K4me3 source_name=Treg cells ...from PBMC, normal || gender=male || cell type=Treg cells || chip antibody=H3K4me3 || chip antibody vendor=Ab

  6. Experiment list: SRX327768 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Site of Extraction=Effusion, Pleural|Tissue Diagnosis=Carcinoma Small Cell 49325280,95.0,26.6,19188 GSM11955...68: H2171 DMSO POL2 ChipSeq; Homo sapiens; ChIP-Seq source_name=Small Cell Lung Carcinoma || chip antibody=R

  7. Experiment list: SRX204900 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ction=Effusion, Pleural|Tissue Diagnosis=Carcinoma Small Cell 46274812,93.4,19.9,50407 GSM1038270: H2171 BRD...4; Homo sapiens; ChIP-Seq source_name=Small Cell Lung Carcinoma || chip antibody=Brd4 || chip antibody detai

  8. 3D silicon sensors: Design, large area production and quality assurance for the ATLAS IBL pixel detector upgrade

    International Nuclear Information System (INIS)

    3D silicon sensors, where electrodes penetrate the silicon substrate fully or partially, have successfully been fabricated in different processing facilities in Europe and USA. The key to 3D fabrication is the use of plasma micro-machining to etch narrow deep vertical openings allowing dopants to be diffused in and form electrodes of pin junctions. Similar openings can be used at the sensor's edge to reduce the perimeter's dead volume to as low as ∼4 μm. Since 2009 four industrial partners of the 3D ATLAS R and D Collaboration started a joint effort aimed at one common design and compatible processing strategy for the production of 3D sensors for the LHC Upgrade and in particular for the ATLAS pixel Insertable B-Layer (IBL). In this project, aimed for installation in 2013, a new layer will be inserted as close as 3.4 cm from the proton beams inside the existing pixel layers of the ATLAS experiment. The detector proximity to the interaction point will therefore require new radiation hard technologies for both sensors and front end electronics. The latter, called FE-I4, is processed at IBM and is the biggest front end of this kind ever designed with a surface of ∼4 cm2. The performance of 3D devices from several wafers was evaluated before and after bump-bonding. Key design aspects, device fabrication plans and quality assurance tests during the 3D sensors prototyping phase are discussed in this paper.

  9. RD Collaboration Proposal: Development of pixel readout integrated circuits for extreme rate and radiation

    CERN Document Server

    Chistiansen, J (CERN)

    2013-01-01

    This proposal describes a new RD collaboration to develop the next genrration of hybrid pixel readout chips for use in ATLAS and CMS PHase 2 upgrades. extrapolation of hybrid pixel technology to the HL-LHC presents major challenges on several fronts. Challenges include: smaller pixels to resolve tracks in boosted jets, much higher hit rates (1-2 GHz/cm2 ), unprecedented radiation tolerance (10 MGy), much higher output bandwidth, and large IC format with low power consumption in order to instrument large areas while keeping the material budget low. This collaboration is specifically focused on design of hybrid pixel readout chips, and not on more general chip design or on other aspects of hybrid pixel technology. Participants include 7 institutes on ATLAS and 7 on CMS, plus 2 on both experiments.

  10. DTMROC-S: Deep submicron version of the readout chip for the TRT detector in ATLAS

    OpenAIRE

    Anghinolfi, Francisco; åkesson, Torsten, Paul, åke; Eerola, Paula; Farthouat, Philippe; Lichard, Peter; Ryjov, Vladimir; Szczygiel, Richard; Dressnandt, Nandor; Keener, Paul; Newcomer, Mitch; Van Berg, Rick; Williams, Hugh

    2002-01-01

    A new version of the circuit for the readout of the ATLAS straw tube detector, TRT [1], has been developed in a deep-submicron process. The DTMROC-S is fabricated in a commercial 0.25μm CMOS IBM technology, with a library hardened by layout techniques [2]. Compared to the previous version of the chip [3] done in a 0.8μm radiation-hard CMOS and despite of the features added for improving the robustness and testability of the circuit, the deep-submicron technology results in a much smaller chip...

  11. A Parallel FPGA Implementation for Real-Time 2D Pixel Clustering for the ATLAS Fast TracKer Processor

    CERN Document Server

    Sotiropoulou, C-L; The ATLAS collaboration; Annovi, A; Beretta, M; Kordas, K; Nikolaidis, S; Petridou, C; Volpi, G

    2014-01-01

    The parallel 2D pixel clustering FPGA implementation used for the input system of the ATLAS Fast TracKer (FTK) processor is presented. The input system for the FTK processor will receive data from the Pixel and micro-strip detectors from inner ATLAS read out drivers (RODs) at full rate, for total of 760Gbs, as sent by the RODs after level-1 triggers. Clustering serves two purposes, the first is to reduce the high rate of the received data before further processing, the second is to determine the cluster centroid to obtain the best spatial measurement. For the pixel detectors the clustering is implemented by using a 2D-clustering algorithm that takes advantage of a moving window technique to minimize the logic required for cluster identification. The cluster detection window size can be adjusted for optimizing the cluster identification process. Additionally, the implementation can be parallelized by instantiating multiple cores to identify different clusters independently thus exploiting more FPGA resources. ...

  12. A Parallel FPGA Implementation for Real-Time 2D Pixel Clustering for the ATLAS Fast TracKer Processor

    CERN Document Server

    Sotiropoulou, C-L; The ATLAS collaboration; Annovi, A; Beretta, M; Kordas, K; Nikolaidis, S; Petridou, C; Volpi, G

    2014-01-01

    The parallel 2D pixel clustering FPGA implementation used for the input system of the ATLAS Fast TracKer (FTK) processor is presented. The input system for the FTK processor will receive data from the Pixel and micro-strip detectors from inner ATLAS read out drivers (RODs) at full rate, for total of 760Gbs, as sent by the RODs after level1 triggers. Clustering serves two purposes, the first is to reduce the high rate of the received data before further processing, the second is to determine the cluster centroid to obtain the best spatial measurement. For the pixel detectors the clustering is implemented by using a 2D-clustering algorithm that takes advantage of a moving window technique to minimize the logic required for cluster identification. The cluster detection window size can be adjusted for optimizing the cluster identification process. Additionally, the implementation can be parallelized by instantiating multiple cores to identify different clusters independently thus exploiting more FPGA resources. T...

  13. Experiment list: SRX333554 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available genotype/variation=MBD3+/+ mouse Embryonic Fibroblast Cells (MEF) transgenic for DOX inducible OSKM reprogramming || stage in reprogr...amming=8 days after DOX induction || chip antibody=none

  14. Experiment list: SRX333571 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available duction || genotype/variation=MBD3flox/- mouse Embryonic Fibroblast Cells (MEF) transgenic for DOX inducible OSKM reprogramming... || stage in reprogramming=4 days after DOX induction || chip

  15. Experiment list: SRX500852 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available cell type=Embryonic Fibroblast Cells (MEF) || genotype/variation=MBD3+/+ transgenic for DOX inducible OSKM reprogramming... || stage in reprogramming=8 days after DOX induction || chip antibod

  16. Experiment list: SRX950703 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available type/variation=MBD3+/+ mouse Embryonic Fibroblast Cells (MEF) transgenic for DOX inducible OSKM reprogramming || stage in reprogrammi...ng=4 days after DOX induction || chip antibody=Oct4 (sc5

  17. Experiment list: SRX333580 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available e/variation=MBD3flox/- mouse Embryonic Fibroblast Cells (MEF) transgenic for DOX inducible OSKM reprogramming || stage in reprogrammi...ng=iPSC || chip antibody=none http://dbarchive.bioscienc

  18. Experiment list: SRX143851 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available cerebellar nuclei. Its function is to coordinate voluntary movements, maintain ba...lance, and learn motor skills. 57796523,71.5,23.1,31516 GSM918759: LICR ChipSeq Cerebellum CTCF adult-8wks s

  19. Experiment list: SRX150262 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available alance, and learn motor skills. 26472027,92.7,6.9,186 GSM939576: ChIP of MNase mononucleosome selected cereb... cerebellar nuclei. Its function is to coordinate voluntary movements, maintain b

  20. Experiment list: SRX395531 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available III antibody (gift from Jason Lieb) || strain=N2 http://dbarchive.biosciencedbc.j...ce_name=staged young adults (N2) || developmental stage=YA || tissue=whole animal || chip antibody=anti-Pol

  1. Experiment list: SRX020951 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ologies, 06-942) http://dbarchive.biosciencedbc.jp/kyush... lysine 9 || cell line=3T3-L1 || developmental stage=10 days after inducing differentiation || chip antibody=H3K9ac (Upstate Biotechn

  2. Experiment list: SRX503337 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ame=Human Burkitt lymphoma || cell type=Human Burkitt lymphoma B cells || cell line=BJAB || chip antibody=LANA (Advanced Biotechnolog...ies, 13-210-100) http://dbarchive.biosciencedbc.jp/kyush

  3. Experiment list: SRX425486 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ologies, Inc.) http://dbarchive.biosciencedbc.jp/kyushu-...28 || cell type=mineralizing osteoblast || passages=28-31 || strain=C57BL/6 || chip antibody=Runx2 antibody (M70, Santa Cruz Biotechn

  4. Experiment list: SRX386203 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available body=TAL1 - Santa Cruz Biotechnology sc-12984 http://dbarchive.biosciencedbc.jp/k...ell type=CD34+ HSPC-derived proerythroblasts || tissue=bone marrow || developmental stage=adult || chip anti

  5. Experiment list: SRX736201 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX736201 hg19 TFs and others BRD4 Neural 90-8TL NA 21809477,90.2,33.6,30233 GSM1527926: DMSO... BRD4 ChIPseq; Homo sapiens; ChIP-Seq source_name=MPNST cells 90-8TL_DMSO || cell line=MPNST cell ...line 90-8TL || treated with=DMSO for 24hrs || chip antibody=BRD4 || chip antibody vendor=Bethyl http://dbarc

  6. Experiment list: SRX203388 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available cular Immunology, 2d ed, p20) 47665471,89.3,52.3,11244 GSM1033753: MM.1S Brd4 DMSO JL ChipSeq; Homo sapiens;... ChIP-Seq source_name=Chromatin IP against Brd4 in MM.1S (DMSO) || diagnosis=Multiple myeloma || chip antibo...reatment duration=24 hr || treatment drug=DMSO http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/eachData/bw/S

  7. Experiment list: SRX796321 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available last|Lineage=primaryCells|Description=Mouse Embryonic Fibroblast 31665544,97.7,15.6,275 GSM1558591: HMGA2 Chip seq in MEF Hmga...L/6 || genotype/variation=Hmga2 Ko || chip antibody=HMGA2 (Santa cruz, cat. sc-30223, lot: F1407 ) http://db...SRX796321 mm9 TFs and others Hmga2 Embryonic fibroblast MEF Tissue=Embryonic Fibrob

  8. Experiment list: SRX100529 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available aterial_provider=WiCell Research Institute || datatype=ChipSeq || datatype description=Chromatin IP Sequencing || antibody antibody...description=Mouse monoclonal to RNA polymerase II CTD repeat YSPTSPS antibody... (4H8) - ChIP Grade. Antibody Target: POL2 || antibody targetdescription=This gene encode...s the largest subunit of RNA polymerase II, the polymerase responsible for synthesizing messenger RNA in eukaryotes || antibody... vendorname=abcam || antibody vendorid=ab5408 || controlid=SL9

  9. Experiment list: SRX100504 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available .1 source_name=U87 || biomaterial_provider=ATCC || datatype=ChipSeq || datatype description=Chromatin IP Sequencing || antibody antib...odydescription=Mouse monoclonal to RNA polymerase II CTD repeat YSPTSPS antibody... (4H8) - ChIP Grade. Antibody Target: POL2 || antibody targetdescription=This gene e...ncodes the largest subunit of RNA polymerase II, the polymerase responsible for synthesizing messenger RNA in eukaryotes || antibody... vendorname=abcam || antibody vendorid=ab5408 || controli

  10. Experiment list: SRX190193 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available rce_name=HL-60 || biomaterial_provider=ATCC || datatype=ChipSeq || datatype description=Chromatin IP Sequencing || antibody antibody...description=Mouse monoclonal to RNA polymerase II CTD repeat YSPTSPS antibody... (4H8) - ChIP Grade. Antibody Target: POL2 || antibody targetdescription=This gene encod...es the largest subunit of RNA polymerase II, the polymerase responsible for synthesizing messenger RNA in eukaryotes || antibody... vendorname=abcam || antibody vendorid=ab5408 || controlid=SL

  11. Experiment list: SRX190259 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available e_name=H1-neurons || biomaterial_provider=CDI || datatype=ChipSeq || datatype description=Chromatin IP Sequencing || antibody antibod...ydescription=Mouse monoclonal to RNA polymerase II CTD repeat YSPTSPS antibody... (4H8) - ChIP Grade. Antibody Target: POL2 || antibody targetdescription=This gene enc...odes the largest subunit of RNA polymerase II, the polymerase responsible for synthesizing messenger RNA in eukaryotes || antibody... vendorname=abcam || antibody vendorid=ab5408 || controlid=

  12. Experiment list: SRX398299 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available cinoma || chip antibody=None || antibody catalog number=None WCE || cell line=HT29 || cell type=Colon Carcin...on|Tissue Diagnosis=Adenocarcinoma 18380673,54.8,14.3,4635 GSM1296642: HT29 WCE ChipSeq; Homo sapiens; ChIP-Seq source_name=Colon Car...oma http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/each

  13. Development of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    CERN Document Server

    Calderini, G; Bomben, M; Boscardin, M; Bosisio, L; Chauveau, J; Giacomini, G; La Rosa, A; Marchiori, G; Zorzi, N

    2014-01-01

    In view of the LHC upgrade for the high luminosity phase (HL-LHC), the ATLAS experiment is planning to replace the inner detector with an all-silicon system. The n-in-p bulk technology represents a valid solution for the modules of most of the layers, given the significant radiation hardness of this option and the reduced cost. The large area necessary to instrument the outer layers will demand to tile the sensors, a solution for which the inefficient region at the border of each sensor needs to be reduced to the minimum size. This paper reports on a joint R&D project by the ATLAS LPNHE Paris group and FBK Trento on a novel n-in-p edgeless planar pixel design, based on the deep-trench process available at FBK.

  14. Selected results from the static characterization of edgeless n-on-p planar pixel sensors for ATLAS upgrades

    CERN Document Server

    Giacomini, Gabriele; Bomben, Marco; Boscardin, Maurizio; Bosisio, Luciano; Calderini, Giovanni; Chauveau, Jacques; La Rosa, Alessandro; Marchiori, Giovanni; Zorzi, Nicola

    2014-01-01

    In view of the LHC upgrade for the High Luminosity Phase (HL-LHC), the ATLAS experiment is planning to replace the Inner Detector with an all-Silicon system. The n-on-p technology represents a valid solution for the modules of most of the layers, given the significant radiation hardness of this option and the reduced cost. There is also the demand to reduce the inactive areas to a minimum. The ATLAS LPNHE Paris group and FBK Trento started a collaboration for the development on a novel n-on-p edgeless planar pixel design, based on the deep-trench process which can cope with all these requirements. This paper reports selected results from the electrical characterization, both before and after irradiation, of test structures from the first production batch.

  15. Module concepts with (Ultra-) thin chips for ATLAS IBL and sLHC

    International Nuclear Information System (INIS)

    Material budget is a crucial issue in vertex detectors for High Energy Physics experiments. For the Insertable B-Layer (IBL) project, a new front-end chip (FE-I4) is designed with an area of 18.8 x 20.2 mm2, almost 5 times larger than the present FE chip (FE-I3). A thickness of 300 to 350 μm would be required to avoid bending of this large chip at the high temperatures used in a standard flip-chip process, leading to a significant contribution of the chip to the material budget. A new flip-chip process is thus under development with IZM Berlin to allow for flip-chip using FE-I4 chips thinned down to about 100 μm. Results on flip-chip assemblies of 90 μm thin 2 x 2 FE-I3 dies to dummy sensors are encouraging, showing only some small issues that could be solved with minor process modifications or with slightly thicker chips. Both possibilities are studied to reach the goal of having thinned down FE-I4 to 100-200 μm. Bumped thin chips will also enable usage of Through Silicon Vias (TSV) in pixel modules. TSV is a via-last 3D integration technique which allows routing of signals on the backside of the FE. Two different types of vias are studied, Straight Side Walls and Tapered Side Wall. The development of a module with Tapered Side Wall TSV and simple backside metallization connected to a flex hybrid has started with IZM Berlin.

  16. Performance of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    CERN Document Server

    Bomben, Marco; Boscardin, Maurizio; Bosisio, Luciano; Calderini, Giovanni; Chauveau, Jacques; Ducourthial, Audrey; Giacomini, Gabriele; Marchiori, Giovanni; Zorzi, Nicola

    2016-01-01

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate to achieve a large area instrumented with pixel sensors, since it is radiation hard and cost effective. The paper reports on the performance of novel n-on-p edgeless planar pixel sensors produced by FBK-CMM, making use of the active trench for the reduction of the dead area at the periphery of the device. After discussing the sensor technology an overview of the first beam test results will be given.

  17. HV/HR-CMOS sensors for the ATLAS upgrade—concepts and test chip results

    International Nuclear Information System (INIS)

    In order to extend its discovery potential, the Large Hadron Collider (LHC) will have a major upgrade (Phase II Upgrade) scheduled for 2022. The LHC after the upgrade, called High-Luminosity LHC (HL-LHC), will operate at a nominal leveled instantaneous luminosity of 5× 1034 cm−2 s−1, more than twice the expected Phase I . The new Inner Tracker needs to cope with this extremely high luminosity. Therefore it requires higher granularity, reduced material budget and increased radiation hardness of all components. A new pixel detector based on High Voltage CMOS (HVCMOS) technology targeting the upgraded ATLAS pixel detector is under study. The main advantages of the HVCMOS technology are its potential for low material budget, use of possible cheaper interconnection technologies, reduced pixel size and lower cost with respect to traditional hybrid pixel detector. Several first prototypes were produced and characterized within ATLAS upgrade R and D effort, to explore the performance and radiation hardness of this technology. In this paper, an overview of the HVCMOS sensor concepts is given. Laboratory tests and irradiation tests of two technologies, HVCMOS AMS and HVCMOS GF, are also given

  18. HV/HR-CMOS sensors for the ATLAS upgrade—concepts and test chip results

    Science.gov (United States)

    Liu, J.; Backhaus, M.; Barbero, M.; Bates, R.; Blue, A.; Bompard, F.; Breugnon, P.; Buttar, C.; Capeans, M.; Clemens, J. C.; Feigl, S.; Ferrere, D.; Fougeron, D.; Garcia-Sciveres, M.; George, M.; Godiot-Basolo, S.; Gonella, L.; Gonzalez-Sevilla, S.; Große-Knetter, J.; Hemperek, T.; Hügging, F.; Hynds, D.; Iacobucci, G.; Kreidl, C.; Krüger, H.; La Rosa, A.; Miucci, A.; Muenstermann, D.; Nessi, M.; Obermann, T.; Pangaud, P.; Perić, I.; Pernegger, H.; Quadt, A.; Rieger, J.; Ristic, B.; Rozanov, A.; Weingarten, J.; Wermes, N.

    2015-03-01

    In order to extend its discovery potential, the Large Hadron Collider (LHC) will have a major upgrade (Phase II Upgrade) scheduled for 2022. The LHC after the upgrade, called High-Luminosity LHC (HL-LHC), will operate at a nominal leveled instantaneous luminosity of 5× 1034 cm-2 s-1, more than twice the expected Phase I . The new Inner Tracker needs to cope with this extremely high luminosity. Therefore it requires higher granularity, reduced material budget and increased radiation hardness of all components. A new pixel detector based on High Voltage CMOS (HVCMOS) technology targeting the upgraded ATLAS pixel detector is under study. The main advantages of the HVCMOS technology are its potential for low material budget, use of possible cheaper interconnection technologies, reduced pixel size and lower cost with respect to traditional hybrid pixel detector. Several first prototypes were produced and characterized within ATLAS upgrade R&D effort, to explore the performance and radiation hardness of this technology. In this paper, an overview of the HVCMOS sensor concepts is given. Laboratory tests and irradiation tests of two technologies, HVCMOS AMS and HVCMOS GF, are also given.

  19. A parallel FPGA implementation for real-time 2D pixel clustering for the ATLAS Fast Tracker Processor

    Science.gov (United States)

    Sotiropoulou, C. L.; Gkaitatzis, S.; Annovi, A.; Beretta, M.; Kordas, K.; Nikolaidis, S.; Petridou, C.; Volpi, G.

    2014-10-01

    The parallel 2D pixel clustering FPGA implementation used for the input system of the ATLAS Fast TracKer (FTK) processor is presented. The input system for the FTK processor will receive data from the Pixel and micro-strip detectors from inner ATLAS read out drivers (RODs) at full rate, for total of 760Gbs, as sent by the RODs after level-1 triggers. Clustering serves two purposes, the first is to reduce the high rate of the received data before further processing, the second is to determine the cluster centroid to obtain the best spatial measurement. For the pixel detectors the clustering is implemented by using a 2D-clustering algorithm that takes advantage of a moving window technique to minimize the logic required for cluster identification. The cluster detection window size can be adjusted for optimizing the cluster identification process. Additionally, the implementation can be parallelized by instantiating multiple cores to identify different clusters independently thus exploiting more FPGA resources. This flexibility makes the implementation suitable for a variety of demanding image processing applications. The implementation is robust against bit errors in the input data stream and drops all data that cannot be identified. In the unlikely event of missing control words, the implementation will ensure stable data processing by inserting the missing control words in the data stream. The 2D pixel clustering implementation is developed and tested in both single flow and parallel versions. The first parallel version with 16 parallel cluster identification engines is presented. The input data from the RODs are received through S-Links and the processing units that follow the clustering implementation also require a single data stream, therefore data parallelizing (demultiplexing) and serializing (multiplexing) modules are introduced in order to accommodate the parallelized version and restore the data stream afterwards. The results of the first hardware tests of

  20. Experiment list: SRX736202 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX736202 hg19 Histone H3K27ac Neural 90-8TL NA 23805227,94.9,16.5,34146 GSM1527927: DMSO... H3K27Ac ChIPseq; Homo sapiens; ChIP-Seq source_name=MPNST cells 90-8TL_DMSO || cell line=MPNST cell l...ine 90-8TL || treated with=DMSO for 24hrs || chip antibody=H3K27Ac || chip antibody vendor=Abcam http://dbar

  1. Experiment list: SRX100488 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available romatin IP Sequencing || antibody antibodydescription=Mouse monoclonal to RNA pol...ymerase II CTD repeat YSPTSPS antibody (4H8) - ChIP Grade. Antibody Target: POL2 || antibody targetdescripti...essenger RNA in eukaryotes || antibody vendorname=abcam || antibody vendorid=ab54...08 || controlid=SL2455 || labexpid=SL2940,SL2939 || replicate=1,2 || softwareversion=MACS || antibody=Pol2-4H8 || antibody antibody...description=Mouse monoclonal to RNA polymerase II CTD repeat YSPTSPS antibody (4H8) - ChIP Grade || antibody

  2. Experiment list: SRX190275 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available dy antibodydescription=Mouse monoclonal to RNA polymeras...e II CTD repeat YSPTSPS antibody (4H8) - ChIP Grade. Antibody Target: POL2 || antibody targetdescription=Thi...er RNA in eukaryotes || antibody vendorname=abcam || antibody vendorid=ab5408 || ...controlid=SL2339 || labexpid=SL5610,SL2353 || softwareversion=MACS || cell sex=M || antibody=Pol2-4H8 || antibody antibody...description=Mouse monoclonal to RNA polymerase II CTD repeat YSPTSPS antibody (4H8) - ChIP Gra

  3. Experiment list: SRX190244 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 1610.1 source_name=PANC-1 || biomaterial_provider=ATCC || datatype=ChipSeq || datatype description=Chromatin IP Sequencing || antibod...y antibodydescription=Mouse monoclonal to RNA polymerase... II CTD repeat YSPTSPS antibody (4H8) - ChIP Grade. Antibody Target: POL2 || antibody targetdescription=This...r RNA in eukaryotes || antibody vendorname=abcam || antibody vendorid=ab5408 || c...ontrolid=SL2340 || labexpid=SL2343,SL5609 || softwareversion=MACS || cell sex=M || antibody=Pol2-4H8 || antibody antibody

  4. Experiment list: SRX100519 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available omatin IP Sequencing || antibody antibodydescription=Mouse monoclonal to RNA poly...merase II CTD repeat YSPTSPS antibody (4H8) - ChIP Grade. Antibody Target: POL2 || antibody targetdescriptio...ssenger RNA in eukaryotes || antibody vendorname=abcam || antibody vendorid=ab540...8 || controlid=SL3457 || labexpid=SL3830,SL3456 || replicate=1,2 || softwareversion=MACS || antibody=Pol2-4H8 || antibody antibody...description=Mouse monoclonal to RNA polymerase II CTD repeat YSPTSPS antibody (4H8) - ChIP Grade || antibody

  5. A 1,000 Frames/s Programmable Vision Chip with Variable Resolution and Row-Pixel-Mixed Parallel Image Processors

    Directory of Open Access Journals (Sweden)

    Nanjian Wu

    2009-07-01

    Full Text Available A programmable vision chip with variable resolution and row-pixel-mixed parallel image processors is presented. The chip consists of a CMOS sensor array, with row-parallel 6-bit Algorithmic ADCs, row-parallel gray-scale image processors, pixel-parallel SIMD Processing Element (PE array, and instruction controller. The resolution of the image in the chip is variable: high resolution for a focused area and low resolution for general view. It implements gray-scale and binary mathematical morphology algorithms in series to carry out low-level and mid-level image processing and sends out features of the image for various applications. It can perform image processing at over 1,000 frames/s (fps. A prototype chip with 64 × 64 pixels resolution and 6-bit gray-scale image is fabricated in 0.18 mm Standard CMOS process. The area size of chip is 1.5 mm × 3.5 mm. Each pixel size is 9.5 μm × 9.5 μm and each processing element size is 23 μm × 29 μm. The experiment results demonstrate that the chip can perform low-level and mid-level image processing and it can be applied in the real-time vision applications, such as high speed target tracking.

  6. Experiment list: SRX211427 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 8.9,121 GSM1054748: untagged 4hrs DMSO RapExpt ChIP; Saccharomyces cerevisiae; ChIP-Seq source_name=S. cerev...isiae untagged strain || yeast strain=BY4741 || treatment=DMSO || hours treatment=4 || antibody=anti-Myc (9E

  7. Experiment list: SRX968914 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available an Neural Progenitor Cell, inhibition of the PI3K and MAPK signaling pathways || chip antibody=H3K4me3 || ce...ll type=Neural Progenitor Cell || treatment=Inhibition of P53 and PI3K and MAPK signaling pathways

  8. Experiment list: SRX968912 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available d human Neural Progenitor Cell, P53 knockdown and inhibition of the PI3K and MAPK signaling pathways || chip... and PI3K and MAPK signaling pathways || cell line=iPSC derived http://dbarchive.biosciencedbc.jp/kyushu-u/h

  9. Experiment list: SRX968916 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available d human Neural Progenitor Cell, P53 knockdown and inhibition of the PI3K and MAPK signaling pathways || chip...n of PI3K and MAPK signaling pathways || cell line=iPSC derived http://dbarchive.biosciencedbc.jp/kyushu-u/h

  10. Experiment list: SRX1084161 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available tissue=whole animal || gender=female || age=1-3 days || genotype=k6801/k6801;gHA-KDM5 || chip antibody=HA ht...,0 GSM1811343: P1 HA ChIPSeq; Drosophila melanogaster; ChIP-Seq source_name=Female whole animal_paraquat ||

  11. Experiment list: SRX998287 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available e=90 || Cause of death=Sepsis || postmortem delay=15.3 hrs || experiment type=ChIP-Seq || chip antibody=H3K2...an female thalamic nuclei tissue || tissue=Thalamic nuclei || gender=female || ag

  12. Experiment list: SRX608343 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available =Normal 32560212,73.5,12.2,841 GSM1414502: HEK293T Control-1 ChIP-seq; Homo sapiens; ChIP-Seq source_name=HEK293...T_none (control) || cell line=HEK293T || transfected with=none (control) || chip antibody=GFP antibody h

  13. Experiment list: SRX608345 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available =Normal 28947886,75.3,8.3,922 GSM1414504: HEK293T emx1-1 ChIP-seq; Homo sapiens; ChIP-Seq source_name=HEK293...T_emx1 sgRNA || cell line=HEK293T || transfected with=emx1 sgRNA || chip antibody=GFP antibody http://dbarch

  14. Experiment list: SRX608346 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available =Normal 17902274,81.8,7.7,379 GSM1414505: HEK293T emx1-2 ChIP-seq; Homo sapiens; ChIP-Seq source_name=HEK293...T_emx1 sgRNA || cell line=HEK293T || transfected with=emx1 sgRNA || chip antibody=GFP antibody http://dbarch

  15. Experiment list: SRX608344 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available =Normal 21107098,69.6,5.5,460 GSM1414503: HEK293T Control-2 ChIP-seq; Homo sapiens; ChIP-Seq source_name=HEK293...T_none (control) || cell line=HEK293T || transfected with=none (control) || chip antibody=GFP antibody ht

  16. Experiment list: SRX170378 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Diagnosis=Normal 47076220,74.6,6.3,571 GSM971951: HEK293 control ChIPSeq; Homo sapiens; ChIP-Seq source_name=HEK293..., control || cell line=HEK293 || chip antibody=none http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/e

  17. Experiment list: SRX1131949 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pre-PB || cell sorting strategy=CD138–GFP+CD22- FACS-sorted || chip antibody=H3K2.../6 || genotype/background=Blimp1(GFP/+) || cell preparation=4-day LPS stimulation, FACS sorted || cell type=

  18. Experiment list: SRX1131942 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ategy=CD138+ MACS sorted || chip antibody=Irf4 Ab, Santa...d=C57BL/6 || genotype/background=Wild-type || cell preparation=4-day LPS stimulation, MACS sorted || cell type=PB || cell sorting str

  19. Experiment list: SRX620738 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available mal 74603351,96.3,9.8,163459 GSM1418961: H3K4me1 ChIP (DMSO); Homo sapiens; ChIP-Seq source_name=IMR90 fetal... lung fibroblasts || cell line=IMR90 || treatment=DMSO (6hrs) || passages=30-35 || antibody=H3K4me1 (Abcam)

  20. Experiment list: SRX038734 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available of Extraction=Pleura|Tissue Diagnosis=Adenocarcinoma 10317128,81.8,10.6,2041 GSM588563: FAIRE sequencing in non-treated (DMSO...ype=breast cancer cells || agent=DMSO || chip antibody=none http://dbarchive.bios

  1. Experiment list: SRX692062 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX692062 mm9 Histone H3K79me2 Blood MLL-AF9 leukemic cell NA 41253275,96.1,7.9,5660 GSM1495602: shLUC-DMSO...line=MLL-AF9 transformed leukemic cells || treatment=shLUC RNA interference || agent=DMSO || time=6d || chip

  2. Experiment list: SRX620290 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ssue Diagnosis=Normal 54491791,97.7,78.5,22965 GSM1418776: H3K27Ac starved DMSO; Mus musculus; ChIP-Seq sour...ce_name=NIH3T3 fibroblasts || culture condition=serum starved || chemicals=DMSO || chip antibody=H3K27Ac ( a

  3. Experiment list: SRX620736 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available mal 129367844,99.0,48.1,39179 GSM1418959: H3K4me3 ChIP (DMSO); Homo sapiens; ChIP-Seq source_name=IMR90 feta...l lung fibroblasts || cell line=IMR90 || treatment=DMSO (6hrs) || passages=30-35 || antibody=H3K4me3 (Abcam)

  4. Experiment list: SRX330321 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ype=Fibroblast 11854476,67.5,46.0,4657 GSM1199134: C/EBPα ChIP-seq, 3T3-L1 Day7 1h DMSO; Mus musculus; ChIP-...; Santa Cruz) || treatment=0.1% DMSO (Vehicle) for 1 hour http://dbarchive.biosci

  5. Experiment list: SRX005631 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX005631 ce10 TFs and others daf-16 Adult Young adult NA 3482818,50.5,13.1,4578 ch...ip antibody=anti-GFP to DAF-16 || growth stage=L4/Young adult || strain=TJ356 http://dbarchive.biosciencedbc

  6. Experiment list: SRX005635 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX005635 ce10 RNA polymerase RNA polymerase II Adult Young adult NA 1958846,46.8,1...0.6,556 chip antibody=POL II || growth stage=L4/Young adult || strain=TJ356 http://dbarchive.biosciencedbc.j

  7. Experiment list: SRX005634 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX005634 ce10 TFs and others daf-16 Adult Young adult NA 4418118,33.8,15.9,5620 ch...ip antibody=anti-GFP to DAF-16 || growth stage=L4/Young adult || strain=TJ356 http://dbarchive.biosciencedbc

  8. Experiment list: SRX1388779 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX1388779 ce10 Histone H3K9me3 Adult Young adult NA 6755648,94.1,7.7,599 GSM191966...5: hrde-1 p15C G2 rep2 H3K9me3ChIP; Caenorhabditis elegans; ChIP-Seq source_name=Young adult whole animal ||

  9. Experiment list: SRX1388778 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX1388778 ce10 Histone H3K9me3 Adult Young adult NA 7341639,96.3,8.4,639 GSM191966...4: hrde-1 p15C G1 rep2 H3K9me3ChIP; Caenorhabditis elegans; ChIP-Seq source_name=Young adult whole animal ||

  10. Experiment list: SRX1388758 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX1388758 ce10 RNA polymerase RNA Polymerase II Adult Young adult NA 4494469,96.0,...9.2,3456 GSM1919644: WT 23C G4 rep2 S2ChIP; Caenorhabditis elegans; ChIP-Seq source_name=Young adult whole a

  11. Experiment list: SRX005636 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX005636 ce10 Input control Input control Adult Young adult NA 1576729,41.7,11.3,1...39 chip antibody=none, input DNA || growth stage=L4/Young adult || strain=TJ356 http://dbarchive.bioscienced

  12. Experiment list: SRX1388771 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX1388771 ce10 Histone H3K9me3 Adult Young adult NA 8786527,96.5,11.7,706 GSM19196...57: WT 23C G6 rep2 H3K9me3ChIP; Caenorhabditis elegans; ChIP-Seq source_name=Young adult whole animal || gen

  13. Experiment list: SRX005632 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX005632 ce10 RNA polymerase RNA polymerase II Adult Young adult NA 4652073,25.9,1...5.8,1045 chip antibody=POL II || growth stage=L4/Young adult || strain=TJ356 http://dbarchive.biosciencedbc.

  14. Experiment list: SRX1388777 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX1388777 ce10 Histone H3K9me3 Adult Young adult NA 6335686,95.9,9.7,613 GSM191966...3: hrde-1 23C G6 rep2 H3K9me3ChIP; Caenorhabditis elegans; ChIP-Seq source_name=Young adult whole animal ||

  15. Experiment list: SRX080069 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX080069 ce10 Input control Input control Adult Young adult NA 4160867,95.0,27.0,1... || strain=YL402 || Stage=Young adult || chip antibody=None http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/

  16. Experiment list: SRX1388764 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX1388764 ce10 RNA polymerase RNA Polymerase II Adult Young adult NA 6061718,94.5,...10.1,4146 GSM1919650: hrde-1 23C G4 rep2 S2ChIP; Caenorhabditis elegans; ChIP-Seq source_name=Young adult wh

  17. Experiment list: SRX1388769 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX1388769 ce10 Histone H3K9me3 Adult Young adult NA 3183642,96.9,6.1,432 GSM191965...5: WT 23C G2 rep2 H3K9me3ChIP; Caenorhabditis elegans; ChIP-Seq source_name=Young adult whole animal || geno

  18. Experiment list: SRX1388772 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX1388772 ce10 Histone H3K9me3 Adult Young adult NA 6307347,97.2,8.5,594 GSM191965...8: WT p15C G1 rep2 H3K9me3ChIP; Caenorhabditis elegans; ChIP-Seq source_name=Young adult whole animal || gen

  19. Experiment list: SRX080075 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX080075 ce10 Input control Input control Adult Young adult NA 5790992,77.1,5.6,40...l || strain=YL468 || Stage=Young adult || chip antibody=None http://dbarchive.biosciencedbc.jp/kyushu-u/ce10

  20. Experiment list: SRX1388770 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX1388770 ce10 Histone H3K9me3 Adult Young adult NA 3272186,94.7,6.4,442 GSM191965...6: WT 23C G4 rep2 H3K9me3ChIP; Caenorhabditis elegans; ChIP-Seq source_name=Young adult whole animal || geno

  1. Experiment list: SRX080073 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX080073 ce10 Input control Input control Adult Young adult NA 8077138,99.3,8.9,55... || strain=YL468 || Stage=Young adult || chip antibody=None http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/

  2. Experiment list: SRX005633 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX005633 ce10 Input control Input control Adult Young adult NA 883655,52.8,2.5,44 ...chip antibody=none, input DNA || growth stage=L4/Young adult || strain=TJ356 http://dbarchive.biosciencedbc.

  3. Experiment list: SRX1388763 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX1388763 ce10 RNA polymerase RNA Polymerase II Adult Young adult NA 4976690,95.1,...8.4,2915 GSM1919649: hrde-1 23C G2 rep2 S2ChIP; Caenorhabditis elegans; ChIP-Seq source_name=Young adult who

  4. Experiment list: SRX1388776 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX1388776 ce10 Histone H3K9me3 Adult Young adult NA 3633709,95.2,7.1,479 GSM191966...2: hrde-1 23C G4 rep2 H3K9me3ChIP; Caenorhabditis elegans; ChIP-Seq source_name=Young adult whole animal ||

  5. Experiment list: SRX1388774 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX1388774 ce10 Histone H3K9me3 Adult Young adult NA 3261040,96.8,6.1,458 GSM191966...0: hrde-1 15C G3 rep2 H3K9me3ChIP; Caenorhabditis elegans; ChIP-Seq source_name=Young adult whole animal ||

  6. Experiment list: SRX1388773 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX1388773 ce10 Histone H3K9me3 Adult Young adult NA 6497093,97.3,8.5,600 GSM191965...9: WT p15C G2 rep2 H3K9me3ChIP; Caenorhabditis elegans; ChIP-Seq source_name=Young adult whole animal || gen

  7. Experiment list: SRX1388759 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX1388759 ce10 RNA polymerase RNA Polymerase II Adult Young adult NA 4178244,93.9,...8.8,3451 GSM1919645: WT 23C G6 rep2 S2ChIP; Caenorhabditis elegans; ChIP-Seq source_name=Young adult whole a

  8. Experiment list: SRX1388757 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX1388757 ce10 RNA polymerase RNA Polymerase II Adult Young adult NA 4094047,94.9,...8.5,2441 GSM1919643: WT 23C G2 rep2 S2ChIP; Caenorhabditis elegans; ChIP-Seq source_name=Young adult whole a

  9. Experiment list: SRX1388765 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX1388765 ce10 RNA polymerase RNA Polymerase II Adult Young adult NA 4012072,92.0,...8.3,3099 GSM1919651: hrde-1 23C G6 rep2 S2ChIP; Caenorhabditis elegans; ChIP-Seq source_name=Young adult who

  10. Experiment list: SRX1388768 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX1388768 ce10 Histone H3K9me3 Adult Young adult NA 3322867,96.1,6.3,442 GSM191965...4: WT 15C G3 rep2 H3K9me3ChIP; Caenorhabditis elegans; ChIP-Seq source_name=Young adult whole animal || geno

  11. Experiment list: SRX1388775 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX1388775 ce10 Histone H3K9me3 Adult Young adult NA 2257065,97.0,5.5,385 GSM191966...1: hrde-1 23C G2 rep2 H3K9me3ChIP; Caenorhabditis elegans; ChIP-Seq source_name=Young adult whole animal ||

  12. Experiment list: SRX835578 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available source_name=cell line purchased from Invitrogen || cell line=Jurkat cells_T-ALL || antibody=IgG control htt... Diagnosis=Leukemia Acute Lymphocytic 246516160,69.6,56.1,2778 GSM1581343: Mock ChIP; Homo sapiens; ChIP-Seq

  13. Experiment list: SRX542620 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ental mouse ES(KH2) cells || chip antibody=MacroH2A2 antibody, Abcam ab4173 http://...sculus; ChIP-Seq source_name=Embryonic Stem Cells || time point=NA || treatment=no treatment || strain=129 X C57bl/6 || cell type=Par

  14. Experiment list: SRX116472 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available amics) || chip antibody=None http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/eachDa...,71.8,1.6,59 GSM831044: H1 WCE 2 source_name=H1 hESCs-WCE || cell type=H1 ES cells were grown in TeSR media on Matrigel (Cellular Dyn

  15. Experiment list: SRX116471 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available a on Matrigel (Cellular Dynamics) || chip antibody=None http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/each...5,97.6,4.9,423 GSM831043: H1 WCE 1 source_name=H1 hESCs-WCE || cell type=H1 ES cells were grown in TeSR medi

  16. Experiment list: SRX186806 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX186806 hg19 Histone H3K27me3 Breast Breast cancer NA 19103286,92.5,3.5,938 GSM1003716: good... tumor || procedure=ChIP-seq || chip antibody=07-449 (millipore) || aromatase inhibitor treatment outcome=good

  17. Experiment list: SRX186810 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX186810 hg19 TFs and others ESR1 Breast Breast cancer NA 20623693,88.8,3.9,5237 GSM1003720: good...umor || procedure=ChIP-seq || chip antibody=SC-543 (Santa Cruz) || aromatase inhibitor treatment outcome=good

  18. Experiment list: SRX186811 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX186811 hg19 Histone H3K4me3 Breast Breast cancer NA 12311687,90.6,13.9,4671 GSM1003721: good... tumor || procedure=ChIP-seq || chip antibody=ab8580 (Abcam) || aromatase inhibitor treatment outcome=good h

  19. Experiment list: SRX186799 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX186799 hg19 Histone H3K4me3 Breast Breast cancer NA 28108457,84.8,6.4,20107 GSM1003709: good... tumor || procedure=ChIP-seq || chip antibody=ab8580 (Abcam) || aromatase inhibitor treatment outcome=good h

  20. Experiment list: SRX897941 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 081,98.0,12.4,11292 GSM1624626: ChIP seq Chaf1a.166 Sox2 IP day3; Mus musculus; ChIP-Seq source_name=OKSM reprogramming... intermediates from Mouse Embryonic Fibroblasts || strain=Black6-129X1/SvJ || cell type=OKSM reprogramming

  1. Experiment list: SRX977394 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 99.1,7.7,102329 GSM1648645: H3K4me1 ChipSeq day5; Mus musculus; ChIP-Seq source_name=reprogramming intermedi...ate after 5days of induction || cell type=reprogramming intermediate || genotype=H3K4me1-GFP/ Rosa26-M2rtTA

  2. Experiment list: SRX684776 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ng || cell type=intermediate stage of somatic cell reprogramming || chip antibody=a...98.0,10.6,335 GSM1483905: pre-iPS.H3K4me3.ChIP-Seq; Mus musculus; ChIP-Seq source_name=intermediate stage of somatic cell reprogrammi

  3. Experiment list: SRX977371 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NA 63273752,96.7,14.1,37891 GSM1648622: flag Oct4 ChipSeq day15; Mus musculus; ChIP-Seq source_name=reprogramming... intermediate after 15days of induction || cell type=reprogramming intermediate || genotype=Oct4-GFP/ R

  4. Experiment list: SRX977431 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ates NA 63718387,98.3,16.7,29244 GSM1648682: RNAPII ChipSeq day7; Mus musculus; ChIP-Seq source_name=reprogramming... intermediate after 7days of induction || cell type=reprogramming intermediate || genotype=RNAPII-GFP/

  5. Experiment list: SRX977406 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 98.9,8.3,18501 GSM1648657: H3K27ac ChipSeq day15; Mus musculus; ChIP-Seq source_name=reprogramming intermedi...ate after 15days of induction || cell type=reprogramming intermediate || genotype=H3K27ac-GFP/ Rosa26-M2rtTA

  6. Experiment list: SRX897942 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NA 25281143,98.2,12.7,427 GSM1624627: ChIP seq Chaf1a.166 Sox2 input day3; Mus musculus; ChIP-Seq source_name=OKSM reprogramming... intermediates from Mouse Embryonic Fibroblasts || strain=Black6-129X1/SvJ || cell type=OKSM reprogramming

  7. Experiment list: SRX977393 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 98.8,8.9,31577 GSM1648644: H3K4me1 ChipSeq day3; Mus musculus; ChIP-Seq source_name=reprogramming intermedia...te after 3days of induction || cell type=reprogramming intermediate || genotype=H3K4me1-GFP/ Rosa26-M2rtTA t

  8. Experiment list: SRX977424 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ,98.8,8.1,1768 GSM1648675: H3K27me3 ChipSeq day15; Mus musculus; ChIP-Seq source_name=reprogramming intermed...iate after 15days of induction || cell type=reprogramming intermediate || genotype=H3K27me3-GFP/ Rosa26-M2rt

  9. Experiment list: SRX977411 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 99.2,25.6,52503 GSM1648662: H3K4me3 ChipSeq day3; Mus musculus; ChIP-Seq source_name=reprogramming intermedi...ate after 3days of induction || cell type=reprogramming intermediate || genotype=H3K4me3-GFP/ Rosa26-M2rtTA

  10. Experiment list: SRX977419 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ,99.0,7.8,3913 GSM1648670: H3K27me3 ChipSeq day1; Mus musculus; ChIP-Seq source_name=reprogramming intermedi...ate after 24hour of induction || cell type=reprogramming intermediate || genotype=H3K27me3-GFP/ Rosa26-M2rtT

  11. Experiment list: SRX977396 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 99.3,8.4,86055 GSM1648647: H3K4me1 ChipSeq day11; Mus musculus; ChIP-Seq source_name=reprogramming intermedi...ate after 11days of induction || cell type=reprogramming intermediate || genotype=H3K4me1-GFP/ Rosa26-M2rtTA

  12. Experiment list: SRX977367 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NA 44664053,98.2,11.6,56355 GSM1648618: flag Oct4 ChipSeq day3; Mus musculus; ChIP-Seq source_name=reprogramming... intermediate after 3days of induction || cell type=reprogramming intermediate || genotype=Oct4-GFP/ Ros

  13. Experiment list: SRX977379 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 93532,97.8,13.3,43901 GSM1648630: total Oct4 ChipSeq day15; Mus musculus; ChIP-Seq source_name=reprogramming... intermediate after 15days of induction || cell type=reprogramming intermediate || genotype=Oct4-GFP/ Rosa26

  14. Experiment list: SRX977428 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ates NA 55964625,98.1,13.0,24453 GSM1648679: RNAPII ChipSeq day1; Mus musculus; ChIP-Seq source_name=reprogramming... intermediate after 24hour of induction || cell type=reprogramming intermediate || genotype=RNAPII-GFP

  15. Experiment list: SRX977401 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 98.9,13.8,95651 GSM1648652: H3K27ac ChipSeq day1; Mus musculus; ChIP-Seq source_name=reprogramming intermedi...ate after 24hour of induction || cell type=reprogramming intermediate || genotype=H3K27ac-GFP/ Rosa26-M2rtTA

  16. Experiment list: SRX977405 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 98.9,7.4,10239 GSM1648656: H3K27ac ChipSeq day11; Mus musculus; ChIP-Seq source_name=reprogramming intermedi...ate after 11days of induction || cell type=reprogramming intermediate || genotype=H3K27ac-GFP/ Rosa26-M2rtTA

  17. Experiment list: SRX977376 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 00644,98.3,12.2,43167 GSM1648627: total Oct4 ChipSeq day5; Mus musculus; ChIP-Seq source_name=reprogramming ...intermediate after 5days of induction || cell type=reprogramming intermediate || genotype=Oct4-GFP/ Rosa26-M

  18. Experiment list: SRX897944 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NA 25129135,98.2,12.6,437 GSM1624629: ChIP seq Renilla Sox2 input day3; Mus musculus; ChIP-Seq source_name=OKSM reprogramming... intermediates from Mouse Embryonic Fibroblasts || strain=Black6-129X1/SvJ || cell type=OKSM reprogramming

  19. Experiment list: SRX1090866 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available gramming || cell type=intermediate stage of somatic cell reprogramming || chip anti...1,96.8,4.5,197 GSM1816303: pre-iPS rep.H3K27me3.ChIP-Seq; Mus musculus; ChIP-Seq source_name=intermediate stage of somatic cell repro

  20. Experiment list: SRX977377 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 40719,98.1,13.8,57202 GSM1648628: total Oct4 ChipSeq day7; Mus musculus; ChIP-Seq source_name=reprogramming ...intermediate after 7days of induction || cell type=reprogramming intermediate || genotype=Oct4-GFP/ Rosa26-M

  1. Experiment list: SRX977392 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 98.9,6.9,91916 GSM1648643: H3K4me1 ChipSeq day1; Mus musculus; ChIP-Seq source_name=reprogramming intermedia...te after 24hour of induction || cell type=reprogramming intermediate || genotype=H3K4me1-GFP/ Rosa26-M2rtTA

  2. Experiment list: SRX977413 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 97.5,28.8,20673 GSM1648664: H3K4me3 ChipSeq day7; Mus musculus; ChIP-Seq source_name=reprogramming intermedi...ate after 7days of induction || cell type=reprogramming intermediate || genotype=H3K4me3-GFP/ Rosa26-M2rtTA

  3. Experiment list: SRX977370 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NA 53414144,98.2,11.0,47875 GSM1648621: flag Oct4 ChipSeq day11; Mus musculus; ChIP-Seq source_name=reprogramming... intermediate after 11days of induction || cell type=reprogramming intermediate || genotype=Oct4-GFP/ R

  4. Experiment list: SRX684777 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ing || cell type=intermediate stage of somatic cell reprogramming || chip antibody=...,98.5,5.8,239 GSM1483906: pre-iPS.H3K27me3.ChIP-Seq; Mus musculus; ChIP-Seq source_name=intermediate stage of somatic cell reprogramm

  5. Experiment list: SRX684778 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 98.0,9.9,325 GSM1483907: pre-iPS.H3K9me3.ChIP-Seq; Mus musculus; ChIP-Seq source_name=intermediate stage of somatic cell reprogrammin...g || cell type=intermediate stage of somatic cell reprogramming || chip antibody=an

  6. Experiment list: SRX977374 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 16864,98.6,9.4,51198 GSM1648625: total Oct4 ChipSeq day1; Mus musculus; ChIP-Seq source_name=reprogramming i...ntermediate after 24hour of induction || cell type=reprogramming intermediate || genotype=Oct4-GFP/ Rosa26-M

  7. Experiment list: SRX977369 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NA 58631406,98.5,10.3,72036 GSM1648620: flag Oct4 ChipSeq day7; Mus musculus; ChIP-Seq source_name=reprogramming... intermediate after 7days of induction || cell type=reprogramming intermediate || genotype=Oct4-GFP/ Ros

  8. Experiment list: SRX977415 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 97.4,25.7,24253 GSM1648666: H3K4me3 ChipSeq day15; Mus musculus; ChIP-Seq source_name=reprogramming intermed...iate after 15days of induction || cell type=reprogramming intermediate || genotype=H3K4me3-GFP/ Rosa26-M2rtT

  9. Experiment list: SRX977378 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 23908,98.7,9.6,43208 GSM1648629: total Oct4 ChipSeq day11; Mus musculus; ChIP-Seq source_name=reprogramming ...intermediate after 11days of induction || cell type=reprogramming intermediate || genotype=Oct4-GFP/ Rosa26-

  10. Experiment list: SRX977414 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 98.5,25.1,26501 GSM1648665: H3K4me3 ChipSeq day11; Mus musculus; ChIP-Seq source_name=reprogramming intermed...iate after 11days of induction || cell type=reprogramming intermediate || genotype=H3K4me3-GFP/ Rosa26-M2rtT

  11. Experiment list: SRX977420 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ,98.5,9.4,5405 GSM1648671: H3K27me3 ChipSeq day3; Mus musculus; ChIP-Seq source_name=reprogramming intermedi...ate after 3days of induction || cell type=reprogramming intermediate || genotype=H3K27me3-GFP/ Rosa26-M2rtTA

  12. Experiment list: SRX684775 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ng || cell type=intermediate stage of somatic cell reprogramming || chip antibody=M...,29.2,290321 GSM1483904: pre-iPS.H3.MNase-ChIP-Seq; Mus musculus; ChIP-Seq source_name=intermediate stage of somatic cell reprogrammi

  13. Experiment list: SRX977397 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 98.9,8.9,45421 GSM1648648: H3K4me1 ChipSeq day15; Mus musculus; ChIP-Seq source_name=reprogramming intermedi...ate after 15days of induction || cell type=reprogramming intermediate || genotype=H3K4me1-GFP/ Rosa26-M2rtTA

  14. Experiment list: SRX977430 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ates NA 59721771,98.1,14.5,28309 GSM1648681: RNAPII ChipSeq day5; Mus musculus; ChIP-Seq source_name=reprogramming... intermediate after 5days of induction || cell type=reprogramming intermediate || genotype=RNAPII-GFP/

  15. Experiment list: SRX977422 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ,98.5,11.8,7621 GSM1648673: H3K27me3 ChipSeq day7; Mus musculus; ChIP-Seq source_name=reprogramming intermed...iate after 7days of induction || cell type=reprogramming intermediate || genotype=H3K27me3-GFP/ Rosa26-M2rtT

  16. Experiment list: SRX977395 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 98.7,7.3,62664 GSM1648646: H3K4me1 ChipSeq day7; Mus musculus; ChIP-Seq source_name=reprogramming intermedia...te after 7days of induction || cell type=reprogramming intermediate || genotype=H3K4me1-GFP/ Rosa26-M2rtTA t

  17. Experiment list: SRX977403 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 98.9,9.4,35286 GSM1648654: H3K27ac ChipSeq day5; Mus musculus; ChIP-Seq source_name=reprogramming intermedia...te after 5days of induction || cell type=reprogramming intermediate || genotype=H3K27ac-GFP/ Rosa26-M2rtTA t

  18. Experiment list: SRX1090864 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ming || cell type=intermediate stage of somatic cell reprogramming || chip antibody...5,12.8,491 GSM1816301: pre-iPS rep.H3.MNase-ChIP-Seq; Mus musculus; ChIP-Seq source_name=intermediate stage of somatic cell reprogram

  19. Experiment list: SRX977421 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ,98.5,10.5,6589 GSM1648672: H3K27me3 ChipSeq day5; Mus musculus; ChIP-Seq source_name=reprogramming intermed...iate after 5days of induction || cell type=reprogramming intermediate || genotype=H3K27me3-GFP/ Rosa26-M2rtT

  20. Experiment list: SRX977412 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 99.3,28.8,54450 GSM1648663: H3K4me3 ChipSeq day5; Mus musculus; ChIP-Seq source_name=reprogramming intermedi...ate after 5days of induction || cell type=reprogramming intermediate || genotype=H3K4me3-GFP/ Rosa26-M2rtTA

  1. Experiment list: SRX1090865 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available amming || cell type=intermediate stage of somatic cell reprogramming || chip antibo...,95.9,8.5,270 GSM1816302: pre-iPS rep.H3K4me3.ChIP-Seq; Mus musculus; ChIP-Seq source_name=intermediate stage of somatic cell reprogr

  2. Experiment list: SRX977402 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 98.8,11.6,43739 GSM1648653: H3K27ac ChipSeq day3; Mus musculus; ChIP-Seq source_name=reprogramming intermedi...ate after 3days of induction || cell type=reprogramming intermediate || genotype=H3K27ac-GFP/ Rosa26-M2rtTA

  3. Experiment list: SRX977404 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 99.1,5.7,17625 GSM1648655: H3K27ac ChipSeq day7; Mus musculus; ChIP-Seq source_name=reprogramming intermedia...te after 7days of induction || cell type=reprogramming intermediate || genotype=H3K27ac-GFP/ Rosa26-M2rtTA t

  4. Experiment list: SRX977410 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 99.3,25.0,46365 GSM1648661: H3K4me3 ChipSeq day1; Mus musculus; ChIP-Seq source_name=reprogramming intermedi...ate after 24hour of induction || cell type=reprogramming intermediate || genotype=H3K4me3-GFP/ Rosa26-M2rtTA

  5. Experiment list: SRX391771 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available cells || genotype=Irf8+/+ Batf3-/- || strain=C57BL/6 || chip antibody=ICSBP Antibody (Santa Cruz biotechno...logy inc., C-19) || cell type=DC http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/eac

  6. Experiment list: SRX661080 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available P-Seq source_name=1 million mESCs || development stage=cell strain || cell type=mESC || chip antibody=H3K4me3 || genetic background...=mixed background of MF1, 129/sv, and C57BL/6J strains http://dbarchive.biosciencedbc

  7. Experiment list: SRX661081 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available hIP-Seq source_name=1000 mESCs || development stage=cell strain || cell type=mESC || chip antibody=H3K4me3 || genetic background...=mixed background of MF1, 129/sv, and C57BL/6J strains http://dbarchive.biosciencedbc.jp

  8. Experiment list: SRX338038 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available were freshly isolated, fixed and frozen at -80°C. || strain=ICR || chip antibody=Non-immune rabbit serum ht...source_name=Splenic CD8+ T cells || cell type=Splenic CD8+ T cells || passages=Collected from 18 mice. Cells

  9. Experiment list: SRX338037 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available were freshly isolated, fixed and frozen at -80°C. || strain=ICR || chip antibody=Non-immune rabbit serum ht...source_name=Splenic CD8+ T cells || cell type=Splenic CD8+ T cells || passages=Collected from 18 mice. Cells

  10. Experiment list: SRX643411 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available mbryonic stage 9446002,86.8,2.9,1385 GSM1423064: LacZ-RNAi replicate 2 (H2AvD MNase-ChIP); Drosophila melano...gaster; ChIP-Seq source_name=S2 cell line || cell line=S2 cells || treatment=LacZ-RNAi || chip antibody=Anti

  11. Experiment list: SRX643410 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available mbryonic stage 9957476,88.6,2.9,1636 GSM1423063: LacZ-RNAi replicate 1 (H2AvD MNase-ChIP); Drosophila melano...gaster; ChIP-Seq source_name=S2 cell line || cell line=S2 cells || treatment=LacZ-RNAi || chip antibody=Anti

  12. Experiment list: SRX643412 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available mbryonic stage 8461202,88.0,2.8,1490 GSM1423065: LacZ-RNAi replicate 3 (H2AvD MNase-ChIP); Drosophila melano...gaster; ChIP-Seq source_name=S2 cell line || cell line=S2 cells || treatment=LacZ-RNAi || chip antibody=Anti

  13. Experiment list: SRX398484 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available us musculus; ChIP-Seq source_name=Liver tissue, WT, 3 months, H3K27me3 ChIP || strain/background=129SV::FVB/...N::C57BL/6 || genotype/variation=Ezh2fl/fl (wild type) || tissue=liver || age=3 month

  14. Experiment list: SRX799000 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ample 14); Mus musculus; ChIP-Seq source_name=Neuronal nuclei from 10 month old A...1Jckr || chip antibody=Anti-Histone H4 (acetyl K12) antibody (Abcam, catalog# ab61238, lot# GR38757-5) || age=10 month

  15. Experiment list: SRX398486 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ; Mus musculus; ChIP-Seq source_name=Liver tissue, E2KO, 3 months, H3K27me3 ChIP || strain/background=129SV:...:FVB/N::C57BL/6 || genotype/variation=Ezh2fl/flAlb-Cre || tissue=liver || age=3 month

  16. Experiment list: SRX798998 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 9,15.2,763 GSM1560978: input to Sample 6; Mus musculus; ChIP-Seq source_name=Non-neuronal nuclei from 20 month... old SAHA-treated animals || cellular population=non-neuronal || strain=C57B/6JRj || chip antibody=none || age=20 month

  17. Experiment list: SRX799006 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available o Sample 14; Mus musculus; ChIP-Seq source_name=Neuronal nuclei from 10 month old...)21Jckr || chip antibody=none || age=10 months || genotype=APP/Ps1-21 transgenic || drug treatment=Vehicle:

  18. Experiment list: SRX799010 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 3,16.7,639 GSM1560990: input to Sample 18; Mus musculus; ChIP-Seq source_name=Non-neuronal nuclei from 10 month...N1*L166P)21Jckr || chip antibody=none || age=10 months || genotype=APP/Ps1-21 tra

  19. Experiment list: SRX398485 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Mus musculus; ChIP-Seq source_name=Liver tissue, E1KO, 3 months, H3K27me3 ChIP || strain/background=129SV::...FVB/N::C57BL/6 || genotype/variation=Ezh1-/- || tissue=liver || age=3 months || c

  20. Experiment list: SRX799009 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 2,16.0,691 GSM1560989: input to Sample 17; Mus musculus; ChIP-Seq source_name=Non-neuronal nuclei from 10 month...PSEN1*L166P)21Jckr || chip antibody=none || age=10 months || genotype=APP/Ps1-21

  1. Experiment list: SRX798997 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available .2,16.0,794 GSM1560977: input to Sample 5; Mus musculus; ChIP-Seq source_name=Non-neuronal nuclei from 20 month... old vehicle-treated animals || cellular population=non-neuronal || strain=C57B/6JRj || chip antibody=none || age=20 month

  2. Experiment list: SRX798999 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ample 13); Mus musculus; ChIP-Seq source_name=Neuronal nuclei from 10 month old v...Thy1-PSEN1*L166P)21Jckr || chip antibody=Anti-Histone H4 (acetyl K12) antibody (Abcam, catalog# ab61238, lot...# GR38757-5) || age=10 months || genotype=WT || drug treatment=Vehicle: 18g cyclo

  3. Experiment list: SRX798994 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available o Sample 2; Mus musculus; ChIP-Seq source_name=Neuronal nuclei from 20 month old ...vehicle-treated animals || cellular population=neuronal || strain=C57B/6JRj || chip antibody=none || age=20 month

  4. Experiment list: SRX398482 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Mus musculus; ChIP-Seq source_name=Liver tissue, E2KO, 3 months, H3K4me3 ChIP || strain/background=129SV::F...VB/N::C57BL/6 || genotype/variation=Ezh2fl/flAlb-Cre || tissue=liver || age=3 month

  5. Experiment list: SRX799007 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available o Sample 15; Mus musculus; ChIP-Seq source_name=Neuronal nuclei from 10 month old...Jckr || chip antibody=none || age=10 months || genotype=APP/Ps1-21 transgenic || drug treatment=SAHA: (18g c

  6. Experiment list: SRX398487 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Mus musculus; ChIP-Seq source_name=Liver tissue, DKO, 3 months, H3K27me3 ChIP || strain/background=129SV::FV...B/N::C57BL/6 || genotype/variation=Ezh1-/-Ezh2fl/flAlb-Cre || tissue=liver || age=3 month

  7. Experiment list: SRX799005 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available o Sample 13; Mus musculus; ChIP-Seq source_name=Neuronal nuclei from 10 month old...w,Thy1-PSEN1*L166P)21Jckr || chip antibody=none || age=10 months || genotype=WT || drug treatment=Vehicle: 1

  8. Experiment list: SRX398480 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available us musculus; ChIP-Seq source_name=Liver tissue, WT, 3 months, H3K4me3 ChIP || strain/background=129SV::FVB/N...::C57BL/6 || genotype/variation=Ezh2fl/fl (wild type) || tissue=liver || age=3 month

  9. Experiment list: SRX398483 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Mus musculus; ChIP-Seq source_name=Liver tissue, DKO, 3 months, H3K4me3 ChIP || strain/background=129SV::FVB.../N::C57BL/6 || genotype/variation=Ezh1-/-Ezh2fl/flAlb-Cre || tissue=liver || age=3 month

  10. Experiment list: SRX799001 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ample 15); Mus musculus; ChIP-Seq source_name=Neuronal nuclei from 10 month old A...kr || chip antibody=Anti-Histone H4 (acetyl K12) antibody (Abcam, catalog# ab61238, lot# GR38757-5) || age=10 month

  11. Experiment list: SRX798996 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 6,13.5,666 GSM1560976: input to Sample 4; Mus musculus; ChIP-Seq source_name=Non-neuronal nuclei from 3 month... old vehicle-treated animals || cellular population=non-neuronal || strain=C57B/6JRj || chip antibody=none || age=3 month

  12. Experiment list: SRX798993 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available o Sample 1; Mus musculus; ChIP-Seq source_name=Neuronal nuclei from 3 month old v...ehicle-treated animals || cellular population=neuronal || strain=C57B/6JRj || chip antibody=none || age=3 month

  13. Experiment list: SRX798995 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available o Sample 3; Mus musculus; ChIP-Seq source_name=Neuronal nuclei from 20 month old ...SAHA-treated animals || cellular population=neuronal || strain=C57B/6JRj || chip antibody=none || age=20 month

  14. Experiment list: SRX398481 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Mus musculus; ChIP-Seq source_name=Liver tissue, E1KO, 3 months, H3K4me3 ChIP || strain/background=129SV::F...VB/N::C57BL/6 || genotype/variation=Ezh1-/- || tissue=liver || age=3 months || ch

  15. Experiment list: SRX799008 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 0,16.1,498 GSM1560988: input to Sample 16; Mus musculus; ChIP-Seq source_name=Non-neuronal nuclei from 10 month...g(Thy1-APPSw,Thy1-PSEN1*L166P)21Jckr || chip antibody=none || age=10 months || ge

  16. Experiment list: SRX1142288 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ol rep10; Homo sapiens; ChIP-Seq source_name=Genomic DNA, CD4 cells, H3K4me3 ChIP, healthy control || tissue=blood || diagnosis=Healt...hy control || cell type=CD4 T cells || gender=female ||

  17. Experiment list: SRX1142305 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ol rep15; Homo sapiens; ChIP-Seq source_name=Genomic DNA, CD4 cells, H3K4me3 ChIP, healthy control || tissue=blood || diagnosis=Healt...hy control || cell type=CD4 T cells || gender=female ||

  18. Experiment list: SRX1142292 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ol rep11; Homo sapiens; ChIP-Seq source_name=Genomic DNA, CD4 cells, H3K4me3 ChIP, healthy control || tissue=blood || diagnosis=Healt...hy control || cell type=CD4 T cells || gender=female ||

  19. Experiment list: SRX1142298 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ol rep13; Homo sapiens; ChIP-Seq source_name=Genomic DNA, CD4 cells, H3K4me3 ChIP, healthy control || tissue=blood || diagnosis=Healt...hy control || cell type=CD4 T cells || gender=male || ag

  20. Experiment list: SRX245743 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Diagnosis=Adenocarcinoma 19787036,68.2,5.3,1603 GSM1088666: input DNA; Homo sapiens; ChIP-Seq source_name=HeLa cells, input... || cell line=HeLa || chip antibody=none (input control) http://dbarchive.biosciencedbc.jp/k